993898d1712f320ee85237c1cd9f008051d4ccab
[sfrench/cifs-2.6.git] / drivers / power / supply / ab8500_fg.c
1 /*
2  * Copyright (C) ST-Ericsson AB 2012
3  *
4  * Main and Back-up battery management driver.
5  *
6  * Note: Backup battery management is required in case of Li-Ion battery and not
7  * for capacitive battery. HREF boards have capacitive battery and hence backup
8  * battery management is not used and the supported code is available in this
9  * driver.
10  *
11  * License Terms: GNU General Public License v2
12  * Author:
13  *      Johan Palsson <johan.palsson@stericsson.com>
14  *      Karl Komierowski <karl.komierowski@stericsson.com>
15  *      Arun R Murthy <arun.murthy@stericsson.com>
16  */
17
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/time64.h>
29 #include <linux/of.h>
30 #include <linux/completion.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/abx500.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/mfd/abx500/ab8500-bm.h>
35 #include <linux/mfd/abx500/ab8500-gpadc.h>
36 #include <linux/kernel.h>
37
38 #define MILLI_TO_MICRO                  1000
39 #define FG_LSB_IN_MA                    1627
40 #define QLSB_NANO_AMP_HOURS_X10         1071
41 #define INS_CURR_TIMEOUT                (3 * HZ)
42
43 #define SEC_TO_SAMPLE(S)                (S * 4)
44
45 #define NBR_AVG_SAMPLES                 20
46
47 #define LOW_BAT_CHECK_INTERVAL          (HZ / 16) /* 62.5 ms */
48
49 #define VALID_CAPACITY_SEC              (45 * 60) /* 45 minutes */
50 #define BATT_OK_MIN                     2360 /* mV */
51 #define BATT_OK_INCREMENT               50 /* mV */
52 #define BATT_OK_MAX_NR_INCREMENTS       0xE
53
54 /* FG constants */
55 #define BATT_OVV                        0x01
56
57 #define interpolate(x, x1, y1, x2, y2) \
58         ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
59
60 /**
61  * struct ab8500_fg_interrupts - ab8500 fg interupts
62  * @name:       name of the interrupt
63  * @isr         function pointer to the isr
64  */
65 struct ab8500_fg_interrupts {
66         char *name;
67         irqreturn_t (*isr)(int irq, void *data);
68 };
69
70 enum ab8500_fg_discharge_state {
71         AB8500_FG_DISCHARGE_INIT,
72         AB8500_FG_DISCHARGE_INITMEASURING,
73         AB8500_FG_DISCHARGE_INIT_RECOVERY,
74         AB8500_FG_DISCHARGE_RECOVERY,
75         AB8500_FG_DISCHARGE_READOUT_INIT,
76         AB8500_FG_DISCHARGE_READOUT,
77         AB8500_FG_DISCHARGE_WAKEUP,
78 };
79
80 static char *discharge_state[] = {
81         "DISCHARGE_INIT",
82         "DISCHARGE_INITMEASURING",
83         "DISCHARGE_INIT_RECOVERY",
84         "DISCHARGE_RECOVERY",
85         "DISCHARGE_READOUT_INIT",
86         "DISCHARGE_READOUT",
87         "DISCHARGE_WAKEUP",
88 };
89
90 enum ab8500_fg_charge_state {
91         AB8500_FG_CHARGE_INIT,
92         AB8500_FG_CHARGE_READOUT,
93 };
94
95 static char *charge_state[] = {
96         "CHARGE_INIT",
97         "CHARGE_READOUT",
98 };
99
100 enum ab8500_fg_calibration_state {
101         AB8500_FG_CALIB_INIT,
102         AB8500_FG_CALIB_WAIT,
103         AB8500_FG_CALIB_END,
104 };
105
106 struct ab8500_fg_avg_cap {
107         int avg;
108         int samples[NBR_AVG_SAMPLES];
109         time64_t time_stamps[NBR_AVG_SAMPLES];
110         int pos;
111         int nbr_samples;
112         int sum;
113 };
114
115 struct ab8500_fg_cap_scaling {
116         bool enable;
117         int cap_to_scale[2];
118         int disable_cap_level;
119         int scaled_cap;
120 };
121
122 struct ab8500_fg_battery_capacity {
123         int max_mah_design;
124         int max_mah;
125         int mah;
126         int permille;
127         int level;
128         int prev_mah;
129         int prev_percent;
130         int prev_level;
131         int user_mah;
132         struct ab8500_fg_cap_scaling cap_scale;
133 };
134
135 struct ab8500_fg_flags {
136         bool fg_enabled;
137         bool conv_done;
138         bool charging;
139         bool fully_charged;
140         bool force_full;
141         bool low_bat_delay;
142         bool low_bat;
143         bool bat_ovv;
144         bool batt_unknown;
145         bool calibrate;
146         bool user_cap;
147         bool batt_id_received;
148 };
149
150 struct inst_curr_result_list {
151         struct list_head list;
152         int *result;
153 };
154
155 /**
156  * struct ab8500_fg - ab8500 FG device information
157  * @dev:                Pointer to the structure device
158  * @node:               a list of AB8500 FGs, hence prepared for reentrance
159  * @irq                 holds the CCEOC interrupt number
160  * @vbat:               Battery voltage in mV
161  * @vbat_nom:           Nominal battery voltage in mV
162  * @inst_curr:          Instantenous battery current in mA
163  * @avg_curr:           Average battery current in mA
164  * @bat_temp            battery temperature
165  * @fg_samples:         Number of samples used in the FG accumulation
166  * @accu_charge:        Accumulated charge from the last conversion
167  * @recovery_cnt:       Counter for recovery mode
168  * @high_curr_cnt:      Counter for high current mode
169  * @init_cnt:           Counter for init mode
170  * @low_bat_cnt         Counter for number of consecutive low battery measures
171  * @nbr_cceoc_irq_cnt   Counter for number of CCEOC irqs received since enabled
172  * @recovery_needed:    Indicate if recovery is needed
173  * @high_curr_mode:     Indicate if we're in high current mode
174  * @init_capacity:      Indicate if initial capacity measuring should be done
175  * @turn_off_fg:        True if fg was off before current measurement
176  * @calib_state         State during offset calibration
177  * @discharge_state:    Current discharge state
178  * @charge_state:       Current charge state
179  * @ab8500_fg_started   Completion struct used for the instant current start
180  * @ab8500_fg_complete  Completion struct used for the instant current reading
181  * @flags:              Structure for information about events triggered
182  * @bat_cap:            Structure for battery capacity specific parameters
183  * @avg_cap:            Average capacity filter
184  * @parent:             Pointer to the struct ab8500
185  * @gpadc:              Pointer to the struct gpadc
186  * @bm:                 Platform specific battery management information
187  * @fg_psy:             Structure that holds the FG specific battery properties
188  * @fg_wq:              Work queue for running the FG algorithm
189  * @fg_periodic_work:   Work to run the FG algorithm periodically
190  * @fg_low_bat_work:    Work to check low bat condition
191  * @fg_reinit_work      Work used to reset and reinitialise the FG algorithm
192  * @fg_work:            Work to run the FG algorithm instantly
193  * @fg_acc_cur_work:    Work to read the FG accumulator
194  * @fg_check_hw_failure_work:   Work for checking HW state
195  * @cc_lock:            Mutex for locking the CC
196  * @fg_kobject:         Structure of type kobject
197  */
198 struct ab8500_fg {
199         struct device *dev;
200         struct list_head node;
201         int irq;
202         int vbat;
203         int vbat_nom;
204         int inst_curr;
205         int avg_curr;
206         int bat_temp;
207         int fg_samples;
208         int accu_charge;
209         int recovery_cnt;
210         int high_curr_cnt;
211         int init_cnt;
212         int low_bat_cnt;
213         int nbr_cceoc_irq_cnt;
214         bool recovery_needed;
215         bool high_curr_mode;
216         bool init_capacity;
217         bool turn_off_fg;
218         enum ab8500_fg_calibration_state calib_state;
219         enum ab8500_fg_discharge_state discharge_state;
220         enum ab8500_fg_charge_state charge_state;
221         struct completion ab8500_fg_started;
222         struct completion ab8500_fg_complete;
223         struct ab8500_fg_flags flags;
224         struct ab8500_fg_battery_capacity bat_cap;
225         struct ab8500_fg_avg_cap avg_cap;
226         struct ab8500 *parent;
227         struct ab8500_gpadc *gpadc;
228         struct abx500_bm_data *bm;
229         struct power_supply *fg_psy;
230         struct workqueue_struct *fg_wq;
231         struct delayed_work fg_periodic_work;
232         struct delayed_work fg_low_bat_work;
233         struct delayed_work fg_reinit_work;
234         struct work_struct fg_work;
235         struct work_struct fg_acc_cur_work;
236         struct delayed_work fg_check_hw_failure_work;
237         struct mutex cc_lock;
238         struct kobject fg_kobject;
239 };
240 static LIST_HEAD(ab8500_fg_list);
241
242 /**
243  * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
244  * (i.e. the first fuel gauge in the instance list)
245  */
246 struct ab8500_fg *ab8500_fg_get(void)
247 {
248         return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg,
249                                         node);
250 }
251
252 /* Main battery properties */
253 static enum power_supply_property ab8500_fg_props[] = {
254         POWER_SUPPLY_PROP_VOLTAGE_NOW,
255         POWER_SUPPLY_PROP_CURRENT_NOW,
256         POWER_SUPPLY_PROP_CURRENT_AVG,
257         POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
258         POWER_SUPPLY_PROP_ENERGY_FULL,
259         POWER_SUPPLY_PROP_ENERGY_NOW,
260         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
261         POWER_SUPPLY_PROP_CHARGE_FULL,
262         POWER_SUPPLY_PROP_CHARGE_NOW,
263         POWER_SUPPLY_PROP_CAPACITY,
264         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
265 };
266
267 /*
268  * This array maps the raw hex value to lowbat voltage used by the AB8500
269  * Values taken from the UM0836
270  */
271 static int ab8500_fg_lowbat_voltage_map[] = {
272         2300 ,
273         2325 ,
274         2350 ,
275         2375 ,
276         2400 ,
277         2425 ,
278         2450 ,
279         2475 ,
280         2500 ,
281         2525 ,
282         2550 ,
283         2575 ,
284         2600 ,
285         2625 ,
286         2650 ,
287         2675 ,
288         2700 ,
289         2725 ,
290         2750 ,
291         2775 ,
292         2800 ,
293         2825 ,
294         2850 ,
295         2875 ,
296         2900 ,
297         2925 ,
298         2950 ,
299         2975 ,
300         3000 ,
301         3025 ,
302         3050 ,
303         3075 ,
304         3100 ,
305         3125 ,
306         3150 ,
307         3175 ,
308         3200 ,
309         3225 ,
310         3250 ,
311         3275 ,
312         3300 ,
313         3325 ,
314         3350 ,
315         3375 ,
316         3400 ,
317         3425 ,
318         3450 ,
319         3475 ,
320         3500 ,
321         3525 ,
322         3550 ,
323         3575 ,
324         3600 ,
325         3625 ,
326         3650 ,
327         3675 ,
328         3700 ,
329         3725 ,
330         3750 ,
331         3775 ,
332         3800 ,
333         3825 ,
334         3850 ,
335         3850 ,
336 };
337
338 static u8 ab8500_volt_to_regval(int voltage)
339 {
340         int i;
341
342         if (voltage < ab8500_fg_lowbat_voltage_map[0])
343                 return 0;
344
345         for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
346                 if (voltage < ab8500_fg_lowbat_voltage_map[i])
347                         return (u8) i - 1;
348         }
349
350         /* If not captured above, return index of last element */
351         return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
352 }
353
354 /**
355  * ab8500_fg_is_low_curr() - Low or high current mode
356  * @di:         pointer to the ab8500_fg structure
357  * @curr:       the current to base or our decision on
358  *
359  * Low current mode if the current consumption is below a certain threshold
360  */
361 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
362 {
363         /*
364          * We want to know if we're in low current mode
365          */
366         if (curr > -di->bm->fg_params->high_curr_threshold)
367                 return true;
368         else
369                 return false;
370 }
371
372 /**
373  * ab8500_fg_add_cap_sample() - Add capacity to average filter
374  * @di:         pointer to the ab8500_fg structure
375  * @sample:     the capacity in mAh to add to the filter
376  *
377  * A capacity is added to the filter and a new mean capacity is calculated and
378  * returned
379  */
380 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
381 {
382         struct timespec64 ts64;
383         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
384
385         getnstimeofday64(&ts64);
386
387         do {
388                 avg->sum += sample - avg->samples[avg->pos];
389                 avg->samples[avg->pos] = sample;
390                 avg->time_stamps[avg->pos] = ts64.tv_sec;
391                 avg->pos++;
392
393                 if (avg->pos == NBR_AVG_SAMPLES)
394                         avg->pos = 0;
395
396                 if (avg->nbr_samples < NBR_AVG_SAMPLES)
397                         avg->nbr_samples++;
398
399                 /*
400                  * Check the time stamp for each sample. If too old,
401                  * replace with latest sample
402                  */
403         } while (ts64.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
404
405         avg->avg = avg->sum / avg->nbr_samples;
406
407         return avg->avg;
408 }
409
410 /**
411  * ab8500_fg_clear_cap_samples() - Clear average filter
412  * @di:         pointer to the ab8500_fg structure
413  *
414  * The capacity filter is is reset to zero.
415  */
416 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
417 {
418         int i;
419         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
420
421         avg->pos = 0;
422         avg->nbr_samples = 0;
423         avg->sum = 0;
424         avg->avg = 0;
425
426         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
427                 avg->samples[i] = 0;
428                 avg->time_stamps[i] = 0;
429         }
430 }
431
432 /**
433  * ab8500_fg_fill_cap_sample() - Fill average filter
434  * @di:         pointer to the ab8500_fg structure
435  * @sample:     the capacity in mAh to fill the filter with
436  *
437  * The capacity filter is filled with a capacity in mAh
438  */
439 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
440 {
441         int i;
442         struct timespec64 ts64;
443         struct ab8500_fg_avg_cap *avg = &di->avg_cap;
444
445         getnstimeofday64(&ts64);
446
447         for (i = 0; i < NBR_AVG_SAMPLES; i++) {
448                 avg->samples[i] = sample;
449                 avg->time_stamps[i] = ts64.tv_sec;
450         }
451
452         avg->pos = 0;
453         avg->nbr_samples = NBR_AVG_SAMPLES;
454         avg->sum = sample * NBR_AVG_SAMPLES;
455         avg->avg = sample;
456 }
457
458 /**
459  * ab8500_fg_coulomb_counter() - enable coulomb counter
460  * @di:         pointer to the ab8500_fg structure
461  * @enable:     enable/disable
462  *
463  * Enable/Disable coulomb counter.
464  * On failure returns negative value.
465  */
466 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
467 {
468         int ret = 0;
469         mutex_lock(&di->cc_lock);
470         if (enable) {
471                 /* To be able to reprogram the number of samples, we have to
472                  * first stop the CC and then enable it again */
473                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
474                         AB8500_RTC_CC_CONF_REG, 0x00);
475                 if (ret)
476                         goto cc_err;
477
478                 /* Program the samples */
479                 ret = abx500_set_register_interruptible(di->dev,
480                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
481                         di->fg_samples);
482                 if (ret)
483                         goto cc_err;
484
485                 /* Start the CC */
486                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
487                         AB8500_RTC_CC_CONF_REG,
488                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
489                 if (ret)
490                         goto cc_err;
491
492                 di->flags.fg_enabled = true;
493         } else {
494                 /* Clear any pending read requests */
495                 ret = abx500_mask_and_set_register_interruptible(di->dev,
496                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
497                         (RESET_ACCU | READ_REQ), 0);
498                 if (ret)
499                         goto cc_err;
500
501                 ret = abx500_set_register_interruptible(di->dev,
502                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
503                 if (ret)
504                         goto cc_err;
505
506                 /* Stop the CC */
507                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
508                         AB8500_RTC_CC_CONF_REG, 0);
509                 if (ret)
510                         goto cc_err;
511
512                 di->flags.fg_enabled = false;
513
514         }
515         dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
516                 enable, di->fg_samples);
517
518         mutex_unlock(&di->cc_lock);
519
520         return ret;
521 cc_err:
522         dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
523         mutex_unlock(&di->cc_lock);
524         return ret;
525 }
526
527 /**
528  * ab8500_fg_inst_curr_start() - start battery instantaneous current
529  * @di:         pointer to the ab8500_fg structure
530  *
531  * Returns 0 or error code
532  * Note: This is part "one" and has to be called before
533  * ab8500_fg_inst_curr_finalize()
534  */
535 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
536 {
537         u8 reg_val;
538         int ret;
539
540         mutex_lock(&di->cc_lock);
541
542         di->nbr_cceoc_irq_cnt = 0;
543         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
544                 AB8500_RTC_CC_CONF_REG, &reg_val);
545         if (ret < 0)
546                 goto fail;
547
548         if (!(reg_val & CC_PWR_UP_ENA)) {
549                 dev_dbg(di->dev, "%s Enable FG\n", __func__);
550                 di->turn_off_fg = true;
551
552                 /* Program the samples */
553                 ret = abx500_set_register_interruptible(di->dev,
554                         AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
555                         SEC_TO_SAMPLE(10));
556                 if (ret)
557                         goto fail;
558
559                 /* Start the CC */
560                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
561                         AB8500_RTC_CC_CONF_REG,
562                         (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
563                 if (ret)
564                         goto fail;
565         } else {
566                 di->turn_off_fg = false;
567         }
568
569         /* Return and WFI */
570         reinit_completion(&di->ab8500_fg_started);
571         reinit_completion(&di->ab8500_fg_complete);
572         enable_irq(di->irq);
573
574         /* Note: cc_lock is still locked */
575         return 0;
576 fail:
577         mutex_unlock(&di->cc_lock);
578         return ret;
579 }
580
581 /**
582  * ab8500_fg_inst_curr_started() - check if fg conversion has started
583  * @di:         pointer to the ab8500_fg structure
584  *
585  * Returns 1 if conversion started, 0 if still waiting
586  */
587 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
588 {
589         return completion_done(&di->ab8500_fg_started);
590 }
591
592 /**
593  * ab8500_fg_inst_curr_done() - check if fg conversion is done
594  * @di:         pointer to the ab8500_fg structure
595  *
596  * Returns 1 if conversion done, 0 if still waiting
597  */
598 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
599 {
600         return completion_done(&di->ab8500_fg_complete);
601 }
602
603 /**
604  * ab8500_fg_inst_curr_finalize() - battery instantaneous current
605  * @di:         pointer to the ab8500_fg structure
606  * @res:        battery instantenous current(on success)
607  *
608  * Returns 0 or an error code
609  * Note: This is part "two" and has to be called at earliest 250 ms
610  * after ab8500_fg_inst_curr_start()
611  */
612 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
613 {
614         u8 low, high;
615         int val;
616         int ret;
617         unsigned long timeout;
618
619         if (!completion_done(&di->ab8500_fg_complete)) {
620                 timeout = wait_for_completion_timeout(
621                         &di->ab8500_fg_complete,
622                         INS_CURR_TIMEOUT);
623                 dev_dbg(di->dev, "Finalize time: %d ms\n",
624                         jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
625                 if (!timeout) {
626                         ret = -ETIME;
627                         disable_irq(di->irq);
628                         di->nbr_cceoc_irq_cnt = 0;
629                         dev_err(di->dev, "completion timed out [%d]\n",
630                                 __LINE__);
631                         goto fail;
632                 }
633         }
634
635         disable_irq(di->irq);
636         di->nbr_cceoc_irq_cnt = 0;
637
638         ret = abx500_mask_and_set_register_interruptible(di->dev,
639                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
640                         READ_REQ, READ_REQ);
641
642         /* 100uS between read request and read is needed */
643         usleep_range(100, 100);
644
645         /* Read CC Sample conversion value Low and high */
646         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
647                 AB8500_GASG_CC_SMPL_CNVL_REG,  &low);
648         if (ret < 0)
649                 goto fail;
650
651         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
652                 AB8500_GASG_CC_SMPL_CNVH_REG,  &high);
653         if (ret < 0)
654                 goto fail;
655
656         /*
657          * negative value for Discharging
658          * convert 2's compliment into decimal
659          */
660         if (high & 0x10)
661                 val = (low | (high << 8) | 0xFFFFE000);
662         else
663                 val = (low | (high << 8));
664
665         /*
666          * Convert to unit value in mA
667          * Full scale input voltage is
668          * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
669          * Given a 250ms conversion cycle time the LSB corresponds
670          * to 107.1 nAh. Convert to current by dividing by the conversion
671          * time in hours (250ms = 1 / (3600 * 4)h)
672          * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
673          */
674         val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
675                 (1000 * di->bm->fg_res);
676
677         if (di->turn_off_fg) {
678                 dev_dbg(di->dev, "%s Disable FG\n", __func__);
679
680                 /* Clear any pending read requests */
681                 ret = abx500_set_register_interruptible(di->dev,
682                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
683                 if (ret)
684                         goto fail;
685
686                 /* Stop the CC */
687                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
688                         AB8500_RTC_CC_CONF_REG, 0);
689                 if (ret)
690                         goto fail;
691         }
692         mutex_unlock(&di->cc_lock);
693         (*res) = val;
694
695         return 0;
696 fail:
697         mutex_unlock(&di->cc_lock);
698         return ret;
699 }
700
701 /**
702  * ab8500_fg_inst_curr_blocking() - battery instantaneous current
703  * @di:         pointer to the ab8500_fg structure
704  * @res:        battery instantenous current(on success)
705  *
706  * Returns 0 else error code
707  */
708 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
709 {
710         int ret;
711         unsigned long timeout;
712         int res = 0;
713
714         ret = ab8500_fg_inst_curr_start(di);
715         if (ret) {
716                 dev_err(di->dev, "Failed to initialize fg_inst\n");
717                 return 0;
718         }
719
720         /* Wait for CC to actually start */
721         if (!completion_done(&di->ab8500_fg_started)) {
722                 timeout = wait_for_completion_timeout(
723                         &di->ab8500_fg_started,
724                         INS_CURR_TIMEOUT);
725                 dev_dbg(di->dev, "Start time: %d ms\n",
726                         jiffies_to_msecs(INS_CURR_TIMEOUT - timeout));
727                 if (!timeout) {
728                         ret = -ETIME;
729                         dev_err(di->dev, "completion timed out [%d]\n",
730                                 __LINE__);
731                         goto fail;
732                 }
733         }
734
735         ret = ab8500_fg_inst_curr_finalize(di, &res);
736         if (ret) {
737                 dev_err(di->dev, "Failed to finalize fg_inst\n");
738                 return 0;
739         }
740
741         dev_dbg(di->dev, "%s instant current: %d", __func__, res);
742         return res;
743 fail:
744         disable_irq(di->irq);
745         mutex_unlock(&di->cc_lock);
746         return ret;
747 }
748
749 /**
750  * ab8500_fg_acc_cur_work() - average battery current
751  * @work:       pointer to the work_struct structure
752  *
753  * Updated the average battery current obtained from the
754  * coulomb counter.
755  */
756 static void ab8500_fg_acc_cur_work(struct work_struct *work)
757 {
758         int val;
759         int ret;
760         u8 low, med, high;
761
762         struct ab8500_fg *di = container_of(work,
763                 struct ab8500_fg, fg_acc_cur_work);
764
765         mutex_lock(&di->cc_lock);
766         ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
767                 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
768         if (ret)
769                 goto exit;
770
771         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
772                 AB8500_GASG_CC_NCOV_ACCU_LOW,  &low);
773         if (ret < 0)
774                 goto exit;
775
776         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
777                 AB8500_GASG_CC_NCOV_ACCU_MED,  &med);
778         if (ret < 0)
779                 goto exit;
780
781         ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
782                 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
783         if (ret < 0)
784                 goto exit;
785
786         /* Check for sign bit in case of negative value, 2's compliment */
787         if (high & 0x10)
788                 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
789         else
790                 val = (low | (med << 8) | (high << 16));
791
792         /*
793          * Convert to uAh
794          * Given a 250ms conversion cycle time the LSB corresponds
795          * to 112.9 nAh.
796          * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
797          */
798         di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
799                 (100 * di->bm->fg_res);
800
801         /*
802          * Convert to unit value in mA
803          * by dividing by the conversion
804          * time in hours (= samples / (3600 * 4)h)
805          * and multiply with 1000
806          */
807         di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
808                 (1000 * di->bm->fg_res * (di->fg_samples / 4));
809
810         di->flags.conv_done = true;
811
812         mutex_unlock(&di->cc_lock);
813
814         queue_work(di->fg_wq, &di->fg_work);
815
816         dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
817                                 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
818         return;
819 exit:
820         dev_err(di->dev,
821                 "Failed to read or write gas gauge registers\n");
822         mutex_unlock(&di->cc_lock);
823         queue_work(di->fg_wq, &di->fg_work);
824 }
825
826 /**
827  * ab8500_fg_bat_voltage() - get battery voltage
828  * @di:         pointer to the ab8500_fg structure
829  *
830  * Returns battery voltage(on success) else error code
831  */
832 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
833 {
834         int vbat;
835         static int prev;
836
837         vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
838         if (vbat < 0) {
839                 dev_err(di->dev,
840                         "%s gpadc conversion failed, using previous value\n",
841                         __func__);
842                 return prev;
843         }
844
845         prev = vbat;
846         return vbat;
847 }
848
849 /**
850  * ab8500_fg_volt_to_capacity() - Voltage based capacity
851  * @di:         pointer to the ab8500_fg structure
852  * @voltage:    The voltage to convert to a capacity
853  *
854  * Returns battery capacity in per mille based on voltage
855  */
856 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
857 {
858         int i, tbl_size;
859         const struct abx500_v_to_cap *tbl;
860         int cap = 0;
861
862         tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
863         tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
864
865         for (i = 0; i < tbl_size; ++i) {
866                 if (voltage > tbl[i].voltage)
867                         break;
868         }
869
870         if ((i > 0) && (i < tbl_size)) {
871                 cap = interpolate(voltage,
872                         tbl[i].voltage,
873                         tbl[i].capacity * 10,
874                         tbl[i-1].voltage,
875                         tbl[i-1].capacity * 10);
876         } else if (i == 0) {
877                 cap = 1000;
878         } else {
879                 cap = 0;
880         }
881
882         dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
883                 __func__, voltage, cap);
884
885         return cap;
886 }
887
888 /**
889  * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
890  * @di:         pointer to the ab8500_fg structure
891  *
892  * Returns battery capacity based on battery voltage that is not compensated
893  * for the voltage drop due to the load
894  */
895 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
896 {
897         di->vbat = ab8500_fg_bat_voltage(di);
898         return ab8500_fg_volt_to_capacity(di, di->vbat);
899 }
900
901 /**
902  * ab8500_fg_battery_resistance() - Returns the battery inner resistance
903  * @di:         pointer to the ab8500_fg structure
904  *
905  * Returns battery inner resistance added with the fuel gauge resistor value
906  * to get the total resistance in the whole link from gnd to bat+ node.
907  */
908 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
909 {
910         int i, tbl_size;
911         const struct batres_vs_temp *tbl;
912         int resist = 0;
913
914         tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
915         tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
916
917         for (i = 0; i < tbl_size; ++i) {
918                 if (di->bat_temp / 10 > tbl[i].temp)
919                         break;
920         }
921
922         if ((i > 0) && (i < tbl_size)) {
923                 resist = interpolate(di->bat_temp / 10,
924                         tbl[i].temp,
925                         tbl[i].resist,
926                         tbl[i-1].temp,
927                         tbl[i-1].resist);
928         } else if (i == 0) {
929                 resist = tbl[0].resist;
930         } else {
931                 resist = tbl[tbl_size - 1].resist;
932         }
933
934         dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
935             " fg resistance %d, total: %d (mOhm)\n",
936                 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
937                 (di->bm->fg_res / 10) + resist);
938
939         /* fg_res variable is in 0.1mOhm */
940         resist += di->bm->fg_res / 10;
941
942         return resist;
943 }
944
945 /**
946  * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
947  * @di:         pointer to the ab8500_fg structure
948  *
949  * Returns battery capacity based on battery voltage that is load compensated
950  * for the voltage drop
951  */
952 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
953 {
954         int vbat_comp, res;
955         int i = 0;
956         int vbat = 0;
957
958         ab8500_fg_inst_curr_start(di);
959
960         do {
961                 vbat += ab8500_fg_bat_voltage(di);
962                 i++;
963                 usleep_range(5000, 6000);
964         } while (!ab8500_fg_inst_curr_done(di));
965
966         ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
967
968         di->vbat = vbat / i;
969         res = ab8500_fg_battery_resistance(di);
970
971         /* Use Ohms law to get the load compensated voltage */
972         vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
973
974         dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
975                 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
976                 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
977
978         return ab8500_fg_volt_to_capacity(di, vbat_comp);
979 }
980
981 /**
982  * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
983  * @di:         pointer to the ab8500_fg structure
984  * @cap_mah:    capacity in mAh
985  *
986  * Converts capacity in mAh to capacity in permille
987  */
988 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
989 {
990         return (cap_mah * 1000) / di->bat_cap.max_mah_design;
991 }
992
993 /**
994  * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
995  * @di:         pointer to the ab8500_fg structure
996  * @cap_pm:     capacity in permille
997  *
998  * Converts capacity in permille to capacity in mAh
999  */
1000 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1001 {
1002         return cap_pm * di->bat_cap.max_mah_design / 1000;
1003 }
1004
1005 /**
1006  * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1007  * @di:         pointer to the ab8500_fg structure
1008  * @cap_mah:    capacity in mAh
1009  *
1010  * Converts capacity in mAh to capacity in uWh
1011  */
1012 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1013 {
1014         u64 div_res;
1015         u32 div_rem;
1016
1017         div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1018         div_rem = do_div(div_res, 1000);
1019
1020         /* Make sure to round upwards if necessary */
1021         if (div_rem >= 1000 / 2)
1022                 div_res++;
1023
1024         return (int) div_res;
1025 }
1026
1027 /**
1028  * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1029  * @di:         pointer to the ab8500_fg structure
1030  *
1031  * Return the capacity in mAh based on previous calculated capcity and the FG
1032  * accumulator register value. The filter is filled with this capacity
1033  */
1034 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1035 {
1036         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1037                 __func__,
1038                 di->bat_cap.mah,
1039                 di->accu_charge);
1040
1041         /* Capacity should not be less than 0 */
1042         if (di->bat_cap.mah + di->accu_charge > 0)
1043                 di->bat_cap.mah += di->accu_charge;
1044         else
1045                 di->bat_cap.mah = 0;
1046         /*
1047          * We force capacity to 100% once when the algorithm
1048          * reports that it's full.
1049          */
1050         if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1051                 di->flags.force_full) {
1052                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1053         }
1054
1055         ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1056         di->bat_cap.permille =
1057                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1058
1059         /* We need to update battery voltage and inst current when charging */
1060         di->vbat = ab8500_fg_bat_voltage(di);
1061         di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1062
1063         return di->bat_cap.mah;
1064 }
1065
1066 /**
1067  * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1068  * @di:         pointer to the ab8500_fg structure
1069  * @comp:       if voltage should be load compensated before capacity calc
1070  *
1071  * Return the capacity in mAh based on the battery voltage. The voltage can
1072  * either be load compensated or not. This value is added to the filter and a
1073  * new mean value is calculated and returned.
1074  */
1075 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1076 {
1077         int permille, mah;
1078
1079         if (comp)
1080                 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1081         else
1082                 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1083
1084         mah = ab8500_fg_convert_permille_to_mah(di, permille);
1085
1086         di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1087         di->bat_cap.permille =
1088                 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1089
1090         return di->bat_cap.mah;
1091 }
1092
1093 /**
1094  * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1095  * @di:         pointer to the ab8500_fg structure
1096  *
1097  * Return the capacity in mAh based on previous calculated capcity and the FG
1098  * accumulator register value. This value is added to the filter and a
1099  * new mean value is calculated and returned.
1100  */
1101 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1102 {
1103         int permille_volt, permille;
1104
1105         dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1106                 __func__,
1107                 di->bat_cap.mah,
1108                 di->accu_charge);
1109
1110         /* Capacity should not be less than 0 */
1111         if (di->bat_cap.mah + di->accu_charge > 0)
1112                 di->bat_cap.mah += di->accu_charge;
1113         else
1114                 di->bat_cap.mah = 0;
1115
1116         if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1117                 di->bat_cap.mah = di->bat_cap.max_mah_design;
1118
1119         /*
1120          * Check against voltage based capacity. It can not be lower
1121          * than what the uncompensated voltage says
1122          */
1123         permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1124         permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1125
1126         if (permille < permille_volt) {
1127                 di->bat_cap.permille = permille_volt;
1128                 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1129                         di->bat_cap.permille);
1130
1131                 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1132                         __func__,
1133                         permille,
1134                         permille_volt);
1135
1136                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1137         } else {
1138                 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1139                 di->bat_cap.permille =
1140                         ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1141         }
1142
1143         return di->bat_cap.mah;
1144 }
1145
1146 /**
1147  * ab8500_fg_capacity_level() - Get the battery capacity level
1148  * @di:         pointer to the ab8500_fg structure
1149  *
1150  * Get the battery capacity level based on the capacity in percent
1151  */
1152 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1153 {
1154         int ret, percent;
1155
1156         percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1157
1158         if (percent <= di->bm->cap_levels->critical ||
1159                 di->flags.low_bat)
1160                 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1161         else if (percent <= di->bm->cap_levels->low)
1162                 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1163         else if (percent <= di->bm->cap_levels->normal)
1164                 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1165         else if (percent <= di->bm->cap_levels->high)
1166                 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1167         else
1168                 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1169
1170         return ret;
1171 }
1172
1173 /**
1174  * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1175  * @di:         pointer to the ab8500_fg structure
1176  *
1177  * Calculates the capacity to be shown to upper layers. Scales the capacity
1178  * to have 100% as a reference from the actual capacity upon removal of charger
1179  * when charging is in maintenance mode.
1180  */
1181 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1182 {
1183         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1184         int capacity = di->bat_cap.prev_percent;
1185
1186         if (!cs->enable)
1187                 return capacity;
1188
1189         /*
1190          * As long as we are in fully charge mode scale the capacity
1191          * to show 100%.
1192          */
1193         if (di->flags.fully_charged) {
1194                 cs->cap_to_scale[0] = 100;
1195                 cs->cap_to_scale[1] =
1196                         max(capacity, di->bm->fg_params->maint_thres);
1197                 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1198                          cs->cap_to_scale[0], cs->cap_to_scale[1]);
1199         }
1200
1201         /* Calculates the scaled capacity. */
1202         if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1203                                         && (cs->cap_to_scale[1] > 0))
1204                 capacity = min(100,
1205                                  DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1206                                                  cs->cap_to_scale[0],
1207                                                  cs->cap_to_scale[1]));
1208
1209         if (di->flags.charging) {
1210                 if (capacity < cs->disable_cap_level) {
1211                         cs->disable_cap_level = capacity;
1212                         dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1213                                 cs->disable_cap_level);
1214                 } else if (!di->flags.fully_charged) {
1215                         if (di->bat_cap.prev_percent >=
1216                             cs->disable_cap_level) {
1217                                 dev_dbg(di->dev, "Disabling scaled capacity\n");
1218                                 cs->enable = false;
1219                                 capacity = di->bat_cap.prev_percent;
1220                         } else {
1221                                 dev_dbg(di->dev,
1222                                         "Waiting in cap to level %d%%\n",
1223                                         cs->disable_cap_level);
1224                                 capacity = cs->disable_cap_level;
1225                         }
1226                 }
1227         }
1228
1229         return capacity;
1230 }
1231
1232 /**
1233  * ab8500_fg_update_cap_scalers() - Capacity scaling
1234  * @di:         pointer to the ab8500_fg structure
1235  *
1236  * To be called when state change from charge<->discharge to update
1237  * the capacity scalers.
1238  */
1239 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1240 {
1241         struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1242
1243         if (!cs->enable)
1244                 return;
1245         if (di->flags.charging) {
1246                 di->bat_cap.cap_scale.disable_cap_level =
1247                         di->bat_cap.cap_scale.scaled_cap;
1248                 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1249                                 di->bat_cap.cap_scale.disable_cap_level);
1250         } else {
1251                 if (cs->scaled_cap != 100) {
1252                         cs->cap_to_scale[0] = cs->scaled_cap;
1253                         cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1254                 } else {
1255                         cs->cap_to_scale[0] = 100;
1256                         cs->cap_to_scale[1] =
1257                                 max(di->bat_cap.prev_percent,
1258                                     di->bm->fg_params->maint_thres);
1259                 }
1260
1261                 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1262                                 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1263         }
1264 }
1265
1266 /**
1267  * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1268  * @di:         pointer to the ab8500_fg structure
1269  * @init:       capacity is allowed to go up in init mode
1270  *
1271  * Check if capacity or capacity limit has changed and notify the system
1272  * about it using the power_supply framework
1273  */
1274 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1275 {
1276         bool changed = false;
1277         int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1278
1279         di->bat_cap.level = ab8500_fg_capacity_level(di);
1280
1281         if (di->bat_cap.level != di->bat_cap.prev_level) {
1282                 /*
1283                  * We do not allow reported capacity level to go up
1284                  * unless we're charging or if we're in init
1285                  */
1286                 if (!(!di->flags.charging && di->bat_cap.level >
1287                         di->bat_cap.prev_level) || init) {
1288                         dev_dbg(di->dev, "level changed from %d to %d\n",
1289                                 di->bat_cap.prev_level,
1290                                 di->bat_cap.level);
1291                         di->bat_cap.prev_level = di->bat_cap.level;
1292                         changed = true;
1293                 } else {
1294                         dev_dbg(di->dev, "level not allowed to go up "
1295                                 "since no charger is connected: %d to %d\n",
1296                                 di->bat_cap.prev_level,
1297                                 di->bat_cap.level);
1298                 }
1299         }
1300
1301         /*
1302          * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1303          * shutdown
1304          */
1305         if (di->flags.low_bat) {
1306                 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1307                 di->bat_cap.prev_percent = 0;
1308                 di->bat_cap.permille = 0;
1309                 percent = 0;
1310                 di->bat_cap.prev_mah = 0;
1311                 di->bat_cap.mah = 0;
1312                 changed = true;
1313         } else if (di->flags.fully_charged) {
1314                 /*
1315                  * We report 100% if algorithm reported fully charged
1316                  * and show 100% during maintenance charging (scaling).
1317                  */
1318                 if (di->flags.force_full) {
1319                         di->bat_cap.prev_percent = percent;
1320                         di->bat_cap.prev_mah = di->bat_cap.mah;
1321
1322                         changed = true;
1323
1324                         if (!di->bat_cap.cap_scale.enable &&
1325                                                 di->bm->capacity_scaling) {
1326                                 di->bat_cap.cap_scale.enable = true;
1327                                 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1328                                 di->bat_cap.cap_scale.cap_to_scale[1] =
1329                                                 di->bat_cap.prev_percent;
1330                                 di->bat_cap.cap_scale.disable_cap_level = 100;
1331                         }
1332                 } else if (di->bat_cap.prev_percent != percent) {
1333                         dev_dbg(di->dev,
1334                                 "battery reported full "
1335                                 "but capacity dropping: %d\n",
1336                                 percent);
1337                         di->bat_cap.prev_percent = percent;
1338                         di->bat_cap.prev_mah = di->bat_cap.mah;
1339
1340                         changed = true;
1341                 }
1342         } else if (di->bat_cap.prev_percent != percent) {
1343                 if (percent == 0) {
1344                         /*
1345                          * We will not report 0% unless we've got
1346                          * the LOW_BAT IRQ, no matter what the FG
1347                          * algorithm says.
1348                          */
1349                         di->bat_cap.prev_percent = 1;
1350                         percent = 1;
1351
1352                         changed = true;
1353                 } else if (!(!di->flags.charging &&
1354                         percent > di->bat_cap.prev_percent) || init) {
1355                         /*
1356                          * We do not allow reported capacity to go up
1357                          * unless we're charging or if we're in init
1358                          */
1359                         dev_dbg(di->dev,
1360                                 "capacity changed from %d to %d (%d)\n",
1361                                 di->bat_cap.prev_percent,
1362                                 percent,
1363                                 di->bat_cap.permille);
1364                         di->bat_cap.prev_percent = percent;
1365                         di->bat_cap.prev_mah = di->bat_cap.mah;
1366
1367                         changed = true;
1368                 } else {
1369                         dev_dbg(di->dev, "capacity not allowed to go up since "
1370                                 "no charger is connected: %d to %d (%d)\n",
1371                                 di->bat_cap.prev_percent,
1372                                 percent,
1373                                 di->bat_cap.permille);
1374                 }
1375         }
1376
1377         if (changed) {
1378                 if (di->bm->capacity_scaling) {
1379                         di->bat_cap.cap_scale.scaled_cap =
1380                                 ab8500_fg_calculate_scaled_capacity(di);
1381
1382                         dev_info(di->dev, "capacity=%d (%d)\n",
1383                                 di->bat_cap.prev_percent,
1384                                 di->bat_cap.cap_scale.scaled_cap);
1385                 }
1386                 power_supply_changed(di->fg_psy);
1387                 if (di->flags.fully_charged && di->flags.force_full) {
1388                         dev_dbg(di->dev, "Battery full, notifying.\n");
1389                         di->flags.force_full = false;
1390                         sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1391                 }
1392                 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1393         }
1394 }
1395
1396 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1397         enum ab8500_fg_charge_state new_state)
1398 {
1399         dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1400                 di->charge_state,
1401                 charge_state[di->charge_state],
1402                 new_state,
1403                 charge_state[new_state]);
1404
1405         di->charge_state = new_state;
1406 }
1407
1408 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1409         enum ab8500_fg_discharge_state new_state)
1410 {
1411         dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n",
1412                 di->discharge_state,
1413                 discharge_state[di->discharge_state],
1414                 new_state,
1415                 discharge_state[new_state]);
1416
1417         di->discharge_state = new_state;
1418 }
1419
1420 /**
1421  * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1422  * @di:         pointer to the ab8500_fg structure
1423  *
1424  * Battery capacity calculation state machine for when we're charging
1425  */
1426 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1427 {
1428         /*
1429          * If we change to discharge mode
1430          * we should start with recovery
1431          */
1432         if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1433                 ab8500_fg_discharge_state_to(di,
1434                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1435
1436         switch (di->charge_state) {
1437         case AB8500_FG_CHARGE_INIT:
1438                 di->fg_samples = SEC_TO_SAMPLE(
1439                         di->bm->fg_params->accu_charging);
1440
1441                 ab8500_fg_coulomb_counter(di, true);
1442                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1443
1444                 break;
1445
1446         case AB8500_FG_CHARGE_READOUT:
1447                 /*
1448                  * Read the FG and calculate the new capacity
1449                  */
1450                 mutex_lock(&di->cc_lock);
1451                 if (!di->flags.conv_done && !di->flags.force_full) {
1452                         /* Wasn't the CC IRQ that got us here */
1453                         mutex_unlock(&di->cc_lock);
1454                         dev_dbg(di->dev, "%s CC conv not done\n",
1455                                 __func__);
1456
1457                         break;
1458                 }
1459                 di->flags.conv_done = false;
1460                 mutex_unlock(&di->cc_lock);
1461
1462                 ab8500_fg_calc_cap_charging(di);
1463
1464                 break;
1465
1466         default:
1467                 break;
1468         }
1469
1470         /* Check capacity limits */
1471         ab8500_fg_check_capacity_limits(di, false);
1472 }
1473
1474 static void force_capacity(struct ab8500_fg *di)
1475 {
1476         int cap;
1477
1478         ab8500_fg_clear_cap_samples(di);
1479         cap = di->bat_cap.user_mah;
1480         if (cap > di->bat_cap.max_mah_design) {
1481                 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1482                         " %d\n", cap, di->bat_cap.max_mah_design);
1483                 cap = di->bat_cap.max_mah_design;
1484         }
1485         ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1486         di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1487         di->bat_cap.mah = cap;
1488         ab8500_fg_check_capacity_limits(di, true);
1489 }
1490
1491 static bool check_sysfs_capacity(struct ab8500_fg *di)
1492 {
1493         int cap, lower, upper;
1494         int cap_permille;
1495
1496         cap = di->bat_cap.user_mah;
1497
1498         cap_permille = ab8500_fg_convert_mah_to_permille(di,
1499                 di->bat_cap.user_mah);
1500
1501         lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1502         upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1503
1504         if (lower < 0)
1505                 lower = 0;
1506         /* 1000 is permille, -> 100 percent */
1507         if (upper > 1000)
1508                 upper = 1000;
1509
1510         dev_dbg(di->dev, "Capacity limits:"
1511                 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1512                 lower, cap_permille, upper, cap, di->bat_cap.mah);
1513
1514         /* If within limits, use the saved capacity and exit estimation...*/
1515         if (cap_permille > lower && cap_permille < upper) {
1516                 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1517                 force_capacity(di);
1518                 return true;
1519         }
1520         dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1521         return false;
1522 }
1523
1524 /**
1525  * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1526  * @di:         pointer to the ab8500_fg structure
1527  *
1528  * Battery capacity calculation state machine for when we're discharging
1529  */
1530 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1531 {
1532         int sleep_time;
1533
1534         /* If we change to charge mode we should start with init */
1535         if (di->charge_state != AB8500_FG_CHARGE_INIT)
1536                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1537
1538         switch (di->discharge_state) {
1539         case AB8500_FG_DISCHARGE_INIT:
1540                 /* We use the FG IRQ to work on */
1541                 di->init_cnt = 0;
1542                 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1543                 ab8500_fg_coulomb_counter(di, true);
1544                 ab8500_fg_discharge_state_to(di,
1545                         AB8500_FG_DISCHARGE_INITMEASURING);
1546
1547                 /* Intentional fallthrough */
1548         case AB8500_FG_DISCHARGE_INITMEASURING:
1549                 /*
1550                  * Discard a number of samples during startup.
1551                  * After that, use compensated voltage for a few
1552                  * samples to get an initial capacity.
1553                  * Then go to READOUT
1554                  */
1555                 sleep_time = di->bm->fg_params->init_timer;
1556
1557                 /* Discard the first [x] seconds */
1558                 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1559                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1560
1561                         ab8500_fg_check_capacity_limits(di, true);
1562                 }
1563
1564                 di->init_cnt += sleep_time;
1565                 if (di->init_cnt > di->bm->fg_params->init_total_time)
1566                         ab8500_fg_discharge_state_to(di,
1567                                 AB8500_FG_DISCHARGE_READOUT_INIT);
1568
1569                 break;
1570
1571         case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1572                 di->recovery_cnt = 0;
1573                 di->recovery_needed = true;
1574                 ab8500_fg_discharge_state_to(di,
1575                         AB8500_FG_DISCHARGE_RECOVERY);
1576
1577                 /* Intentional fallthrough */
1578
1579         case AB8500_FG_DISCHARGE_RECOVERY:
1580                 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1581
1582                 /*
1583                  * We should check the power consumption
1584                  * If low, go to READOUT (after x min) or
1585                  * RECOVERY_SLEEP if time left.
1586                  * If high, go to READOUT
1587                  */
1588                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1589
1590                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1591                         if (di->recovery_cnt >
1592                                 di->bm->fg_params->recovery_total_time) {
1593                                 di->fg_samples = SEC_TO_SAMPLE(
1594                                         di->bm->fg_params->accu_high_curr);
1595                                 ab8500_fg_coulomb_counter(di, true);
1596                                 ab8500_fg_discharge_state_to(di,
1597                                         AB8500_FG_DISCHARGE_READOUT);
1598                                 di->recovery_needed = false;
1599                         } else {
1600                                 queue_delayed_work(di->fg_wq,
1601                                         &di->fg_periodic_work,
1602                                         sleep_time * HZ);
1603                         }
1604                         di->recovery_cnt += sleep_time;
1605                 } else {
1606                         di->fg_samples = SEC_TO_SAMPLE(
1607                                 di->bm->fg_params->accu_high_curr);
1608                         ab8500_fg_coulomb_counter(di, true);
1609                         ab8500_fg_discharge_state_to(di,
1610                                 AB8500_FG_DISCHARGE_READOUT);
1611                 }
1612                 break;
1613
1614         case AB8500_FG_DISCHARGE_READOUT_INIT:
1615                 di->fg_samples = SEC_TO_SAMPLE(
1616                         di->bm->fg_params->accu_high_curr);
1617                 ab8500_fg_coulomb_counter(di, true);
1618                 ab8500_fg_discharge_state_to(di,
1619                                 AB8500_FG_DISCHARGE_READOUT);
1620                 break;
1621
1622         case AB8500_FG_DISCHARGE_READOUT:
1623                 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1624
1625                 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1626                         /* Detect mode change */
1627                         if (di->high_curr_mode) {
1628                                 di->high_curr_mode = false;
1629                                 di->high_curr_cnt = 0;
1630                         }
1631
1632                         if (di->recovery_needed) {
1633                                 ab8500_fg_discharge_state_to(di,
1634                                         AB8500_FG_DISCHARGE_INIT_RECOVERY);
1635
1636                                 queue_delayed_work(di->fg_wq,
1637                                         &di->fg_periodic_work, 0);
1638
1639                                 break;
1640                         }
1641
1642                         ab8500_fg_calc_cap_discharge_voltage(di, true);
1643                 } else {
1644                         mutex_lock(&di->cc_lock);
1645                         if (!di->flags.conv_done) {
1646                                 /* Wasn't the CC IRQ that got us here */
1647                                 mutex_unlock(&di->cc_lock);
1648                                 dev_dbg(di->dev, "%s CC conv not done\n",
1649                                         __func__);
1650
1651                                 break;
1652                         }
1653                         di->flags.conv_done = false;
1654                         mutex_unlock(&di->cc_lock);
1655
1656                         /* Detect mode change */
1657                         if (!di->high_curr_mode) {
1658                                 di->high_curr_mode = true;
1659                                 di->high_curr_cnt = 0;
1660                         }
1661
1662                         di->high_curr_cnt +=
1663                                 di->bm->fg_params->accu_high_curr;
1664                         if (di->high_curr_cnt >
1665                                 di->bm->fg_params->high_curr_time)
1666                                 di->recovery_needed = true;
1667
1668                         ab8500_fg_calc_cap_discharge_fg(di);
1669                 }
1670
1671                 ab8500_fg_check_capacity_limits(di, false);
1672
1673                 break;
1674
1675         case AB8500_FG_DISCHARGE_WAKEUP:
1676                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1677
1678                 di->fg_samples = SEC_TO_SAMPLE(
1679                         di->bm->fg_params->accu_high_curr);
1680                 ab8500_fg_coulomb_counter(di, true);
1681                 ab8500_fg_discharge_state_to(di,
1682                                 AB8500_FG_DISCHARGE_READOUT);
1683
1684                 ab8500_fg_check_capacity_limits(di, false);
1685
1686                 break;
1687
1688         default:
1689                 break;
1690         }
1691 }
1692
1693 /**
1694  * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1695  * @di:         pointer to the ab8500_fg structure
1696  *
1697  */
1698 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1699 {
1700         int ret;
1701
1702         switch (di->calib_state) {
1703         case AB8500_FG_CALIB_INIT:
1704                 dev_dbg(di->dev, "Calibration ongoing...\n");
1705
1706                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1707                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1708                         CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1709                 if (ret < 0)
1710                         goto err;
1711
1712                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1713                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1714                         CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1715                 if (ret < 0)
1716                         goto err;
1717                 di->calib_state = AB8500_FG_CALIB_WAIT;
1718                 break;
1719         case AB8500_FG_CALIB_END:
1720                 ret = abx500_mask_and_set_register_interruptible(di->dev,
1721                         AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1722                         CC_MUXOFFSET, CC_MUXOFFSET);
1723                 if (ret < 0)
1724                         goto err;
1725                 di->flags.calibrate = false;
1726                 dev_dbg(di->dev, "Calibration done...\n");
1727                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1728                 break;
1729         case AB8500_FG_CALIB_WAIT:
1730                 dev_dbg(di->dev, "Calibration WFI\n");
1731         default:
1732                 break;
1733         }
1734         return;
1735 err:
1736         /* Something went wrong, don't calibrate then */
1737         dev_err(di->dev, "failed to calibrate the CC\n");
1738         di->flags.calibrate = false;
1739         di->calib_state = AB8500_FG_CALIB_INIT;
1740         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1741 }
1742
1743 /**
1744  * ab8500_fg_algorithm() - Entry point for the FG algorithm
1745  * @di:         pointer to the ab8500_fg structure
1746  *
1747  * Entry point for the battery capacity calculation state machine
1748  */
1749 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1750 {
1751         if (di->flags.calibrate)
1752                 ab8500_fg_algorithm_calibrate(di);
1753         else {
1754                 if (di->flags.charging)
1755                         ab8500_fg_algorithm_charging(di);
1756                 else
1757                         ab8500_fg_algorithm_discharging(di);
1758         }
1759
1760         dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1761                 "%d %d %d %d %d %d %d\n",
1762                 di->bat_cap.max_mah_design,
1763                 di->bat_cap.max_mah,
1764                 di->bat_cap.mah,
1765                 di->bat_cap.permille,
1766                 di->bat_cap.level,
1767                 di->bat_cap.prev_mah,
1768                 di->bat_cap.prev_percent,
1769                 di->bat_cap.prev_level,
1770                 di->vbat,
1771                 di->inst_curr,
1772                 di->avg_curr,
1773                 di->accu_charge,
1774                 di->flags.charging,
1775                 di->charge_state,
1776                 di->discharge_state,
1777                 di->high_curr_mode,
1778                 di->recovery_needed);
1779 }
1780
1781 /**
1782  * ab8500_fg_periodic_work() - Run the FG state machine periodically
1783  * @work:       pointer to the work_struct structure
1784  *
1785  * Work queue function for periodic work
1786  */
1787 static void ab8500_fg_periodic_work(struct work_struct *work)
1788 {
1789         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1790                 fg_periodic_work.work);
1791
1792         if (di->init_capacity) {
1793                 /* Get an initial capacity calculation */
1794                 ab8500_fg_calc_cap_discharge_voltage(di, true);
1795                 ab8500_fg_check_capacity_limits(di, true);
1796                 di->init_capacity = false;
1797
1798                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1799         } else if (di->flags.user_cap) {
1800                 if (check_sysfs_capacity(di)) {
1801                         ab8500_fg_check_capacity_limits(di, true);
1802                         if (di->flags.charging)
1803                                 ab8500_fg_charge_state_to(di,
1804                                         AB8500_FG_CHARGE_INIT);
1805                         else
1806                                 ab8500_fg_discharge_state_to(di,
1807                                         AB8500_FG_DISCHARGE_READOUT_INIT);
1808                 }
1809                 di->flags.user_cap = false;
1810                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1811         } else
1812                 ab8500_fg_algorithm(di);
1813
1814 }
1815
1816 /**
1817  * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1818  * @work:       pointer to the work_struct structure
1819  *
1820  * Work queue function for checking the OVV_BAT condition
1821  */
1822 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1823 {
1824         int ret;
1825         u8 reg_value;
1826
1827         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1828                 fg_check_hw_failure_work.work);
1829
1830         /*
1831          * If we have had a battery over-voltage situation,
1832          * check ovv-bit to see if it should be reset.
1833          */
1834         ret = abx500_get_register_interruptible(di->dev,
1835                 AB8500_CHARGER, AB8500_CH_STAT_REG,
1836                 &reg_value);
1837         if (ret < 0) {
1838                 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1839                 return;
1840         }
1841         if ((reg_value & BATT_OVV) == BATT_OVV) {
1842                 if (!di->flags.bat_ovv) {
1843                         dev_dbg(di->dev, "Battery OVV\n");
1844                         di->flags.bat_ovv = true;
1845                         power_supply_changed(di->fg_psy);
1846                 }
1847                 /* Not yet recovered from ovv, reschedule this test */
1848                 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1849                                    HZ);
1850                 } else {
1851                         dev_dbg(di->dev, "Battery recovered from OVV\n");
1852                         di->flags.bat_ovv = false;
1853                         power_supply_changed(di->fg_psy);
1854         }
1855 }
1856
1857 /**
1858  * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1859  * @work:       pointer to the work_struct structure
1860  *
1861  * Work queue function for checking the LOW_BAT condition
1862  */
1863 static void ab8500_fg_low_bat_work(struct work_struct *work)
1864 {
1865         int vbat;
1866
1867         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1868                 fg_low_bat_work.work);
1869
1870         vbat = ab8500_fg_bat_voltage(di);
1871
1872         /* Check if LOW_BAT still fulfilled */
1873         if (vbat < di->bm->fg_params->lowbat_threshold) {
1874                 /* Is it time to shut down? */
1875                 if (di->low_bat_cnt < 1) {
1876                         di->flags.low_bat = true;
1877                         dev_warn(di->dev, "Shut down pending...\n");
1878                 } else {
1879                         /*
1880                         * Else we need to re-schedule this check to be able to detect
1881                         * if the voltage increases again during charging or
1882                         * due to decreasing load.
1883                         */
1884                         di->low_bat_cnt--;
1885                         dev_warn(di->dev, "Battery voltage still LOW\n");
1886                         queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1887                                 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1888                 }
1889         } else {
1890                 di->flags.low_bat_delay = false;
1891                 di->low_bat_cnt = 10;
1892                 dev_warn(di->dev, "Battery voltage OK again\n");
1893         }
1894
1895         /* This is needed to dispatch LOW_BAT */
1896         ab8500_fg_check_capacity_limits(di, false);
1897 }
1898
1899 /**
1900  * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1901  * to the target voltage.
1902  * @di:       pointer to the ab8500_fg structure
1903  * @target:   target voltage
1904  *
1905  * Returns bit pattern closest to the target voltage
1906  * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1907  */
1908
1909 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1910 {
1911         if (target > BATT_OK_MIN +
1912                 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1913                 return BATT_OK_MAX_NR_INCREMENTS;
1914         if (target < BATT_OK_MIN)
1915                 return 0;
1916         return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1917 }
1918
1919 /**
1920  * ab8500_fg_battok_init_hw_register - init battok levels
1921  * @di:       pointer to the ab8500_fg structure
1922  *
1923  */
1924
1925 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1926 {
1927         int selected;
1928         int sel0;
1929         int sel1;
1930         int cbp_sel0;
1931         int cbp_sel1;
1932         int ret;
1933         int new_val;
1934
1935         sel0 = di->bm->fg_params->battok_falling_th_sel0;
1936         sel1 = di->bm->fg_params->battok_raising_th_sel1;
1937
1938         cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1939         cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1940
1941         selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1942
1943         if (selected != sel0)
1944                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1945                         sel0, selected, cbp_sel0);
1946
1947         selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1948
1949         if (selected != sel1)
1950                 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1951                         sel1, selected, cbp_sel1);
1952
1953         new_val = cbp_sel0 | (cbp_sel1 << 4);
1954
1955         dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1956         ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1957                 AB8500_BATT_OK_REG, new_val);
1958         return ret;
1959 }
1960
1961 /**
1962  * ab8500_fg_instant_work() - Run the FG state machine instantly
1963  * @work:       pointer to the work_struct structure
1964  *
1965  * Work queue function for instant work
1966  */
1967 static void ab8500_fg_instant_work(struct work_struct *work)
1968 {
1969         struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1970
1971         ab8500_fg_algorithm(di);
1972 }
1973
1974 /**
1975  * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1976  * @irq:       interrupt number
1977  * @_di:       pointer to the ab8500_fg structure
1978  *
1979  * Returns IRQ status(IRQ_HANDLED)
1980  */
1981 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1982 {
1983         struct ab8500_fg *di = _di;
1984         if (!di->nbr_cceoc_irq_cnt) {
1985                 di->nbr_cceoc_irq_cnt++;
1986                 complete(&di->ab8500_fg_started);
1987         } else {
1988                 di->nbr_cceoc_irq_cnt = 0;
1989                 complete(&di->ab8500_fg_complete);
1990         }
1991         return IRQ_HANDLED;
1992 }
1993
1994 /**
1995  * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
1996  * @irq:       interrupt number
1997  * @_di:       pointer to the ab8500_fg structure
1998  *
1999  * Returns IRQ status(IRQ_HANDLED)
2000  */
2001 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2002 {
2003         struct ab8500_fg *di = _di;
2004         di->calib_state = AB8500_FG_CALIB_END;
2005         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2006         return IRQ_HANDLED;
2007 }
2008
2009 /**
2010  * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2011  * @irq:       interrupt number
2012  * @_di:       pointer to the ab8500_fg structure
2013  *
2014  * Returns IRQ status(IRQ_HANDLED)
2015  */
2016 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2017 {
2018         struct ab8500_fg *di = _di;
2019
2020         queue_work(di->fg_wq, &di->fg_acc_cur_work);
2021
2022         return IRQ_HANDLED;
2023 }
2024
2025 /**
2026  * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2027  * @irq:       interrupt number
2028  * @_di:       pointer to the ab8500_fg structure
2029  *
2030  * Returns IRQ status(IRQ_HANDLED)
2031  */
2032 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2033 {
2034         struct ab8500_fg *di = _di;
2035
2036         dev_dbg(di->dev, "Battery OVV\n");
2037
2038         /* Schedule a new HW failure check */
2039         queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2040
2041         return IRQ_HANDLED;
2042 }
2043
2044 /**
2045  * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2046  * @irq:       interrupt number
2047  * @_di:       pointer to the ab8500_fg structure
2048  *
2049  * Returns IRQ status(IRQ_HANDLED)
2050  */
2051 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2052 {
2053         struct ab8500_fg *di = _di;
2054
2055         /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2056         if (!di->flags.low_bat_delay) {
2057                 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2058                 di->flags.low_bat_delay = true;
2059                 /*
2060                  * Start a timer to check LOW_BAT again after some time
2061                  * This is done to avoid shutdown on single voltage dips
2062                  */
2063                 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2064                         round_jiffies(LOW_BAT_CHECK_INTERVAL));
2065         }
2066         return IRQ_HANDLED;
2067 }
2068
2069 /**
2070  * ab8500_fg_get_property() - get the fg properties
2071  * @psy:        pointer to the power_supply structure
2072  * @psp:        pointer to the power_supply_property structure
2073  * @val:        pointer to the power_supply_propval union
2074  *
2075  * This function gets called when an application tries to get the
2076  * fg properties by reading the sysfs files.
2077  * voltage_now:         battery voltage
2078  * current_now:         battery instant current
2079  * current_avg:         battery average current
2080  * charge_full_design:  capacity where battery is considered full
2081  * charge_now:          battery capacity in nAh
2082  * capacity:            capacity in percent
2083  * capacity_level:      capacity level
2084  *
2085  * Returns error code in case of failure else 0 on success
2086  */
2087 static int ab8500_fg_get_property(struct power_supply *psy,
2088         enum power_supply_property psp,
2089         union power_supply_propval *val)
2090 {
2091         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2092
2093         /*
2094          * If battery is identified as unknown and charging of unknown
2095          * batteries is disabled, we always report 100% capacity and
2096          * capacity level UNKNOWN, since we can't calculate
2097          * remaining capacity
2098          */
2099
2100         switch (psp) {
2101         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2102                 if (di->flags.bat_ovv)
2103                         val->intval = BATT_OVV_VALUE * 1000;
2104                 else
2105                         val->intval = di->vbat * 1000;
2106                 break;
2107         case POWER_SUPPLY_PROP_CURRENT_NOW:
2108                 val->intval = di->inst_curr * 1000;
2109                 break;
2110         case POWER_SUPPLY_PROP_CURRENT_AVG:
2111                 val->intval = di->avg_curr * 1000;
2112                 break;
2113         case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2114                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2115                                 di->bat_cap.max_mah_design);
2116                 break;
2117         case POWER_SUPPLY_PROP_ENERGY_FULL:
2118                 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2119                                 di->bat_cap.max_mah);
2120                 break;
2121         case POWER_SUPPLY_PROP_ENERGY_NOW:
2122                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2123                                 di->flags.batt_id_received)
2124                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2125                                         di->bat_cap.max_mah);
2126                 else
2127                         val->intval = ab8500_fg_convert_mah_to_uwh(di,
2128                                         di->bat_cap.prev_mah);
2129                 break;
2130         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2131                 val->intval = di->bat_cap.max_mah_design;
2132                 break;
2133         case POWER_SUPPLY_PROP_CHARGE_FULL:
2134                 val->intval = di->bat_cap.max_mah;
2135                 break;
2136         case POWER_SUPPLY_PROP_CHARGE_NOW:
2137                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2138                                 di->flags.batt_id_received)
2139                         val->intval = di->bat_cap.max_mah;
2140                 else
2141                         val->intval = di->bat_cap.prev_mah;
2142                 break;
2143         case POWER_SUPPLY_PROP_CAPACITY:
2144                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2145                                 di->flags.batt_id_received)
2146                         val->intval = 100;
2147                 else
2148                         val->intval = di->bat_cap.prev_percent;
2149                 break;
2150         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2151                 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2152                                 di->flags.batt_id_received)
2153                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2154                 else
2155                         val->intval = di->bat_cap.prev_level;
2156                 break;
2157         default:
2158                 return -EINVAL;
2159         }
2160         return 0;
2161 }
2162
2163 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2164 {
2165         struct power_supply *psy;
2166         struct power_supply *ext = dev_get_drvdata(dev);
2167         const char **supplicants = (const char **)ext->supplied_to;
2168         struct ab8500_fg *di;
2169         union power_supply_propval ret;
2170         int j;
2171
2172         psy = (struct power_supply *)data;
2173         di = power_supply_get_drvdata(psy);
2174
2175         /*
2176          * For all psy where the name of your driver
2177          * appears in any supplied_to
2178          */
2179         j = match_string(supplicants, ext->num_supplicants, psy->desc->name);
2180         if (j < 0)
2181                 return 0;
2182
2183         /* Go through all properties for the psy */
2184         for (j = 0; j < ext->desc->num_properties; j++) {
2185                 enum power_supply_property prop;
2186                 prop = ext->desc->properties[j];
2187
2188                 if (power_supply_get_property(ext, prop, &ret))
2189                         continue;
2190
2191                 switch (prop) {
2192                 case POWER_SUPPLY_PROP_STATUS:
2193                         switch (ext->desc->type) {
2194                         case POWER_SUPPLY_TYPE_BATTERY:
2195                                 switch (ret.intval) {
2196                                 case POWER_SUPPLY_STATUS_UNKNOWN:
2197                                 case POWER_SUPPLY_STATUS_DISCHARGING:
2198                                 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2199                                         if (!di->flags.charging)
2200                                                 break;
2201                                         di->flags.charging = false;
2202                                         di->flags.fully_charged = false;
2203                                         if (di->bm->capacity_scaling)
2204                                                 ab8500_fg_update_cap_scalers(di);
2205                                         queue_work(di->fg_wq, &di->fg_work);
2206                                         break;
2207                                 case POWER_SUPPLY_STATUS_FULL:
2208                                         if (di->flags.fully_charged)
2209                                                 break;
2210                                         di->flags.fully_charged = true;
2211                                         di->flags.force_full = true;
2212                                         /* Save current capacity as maximum */
2213                                         di->bat_cap.max_mah = di->bat_cap.mah;
2214                                         queue_work(di->fg_wq, &di->fg_work);
2215                                         break;
2216                                 case POWER_SUPPLY_STATUS_CHARGING:
2217                                         if (di->flags.charging &&
2218                                                 !di->flags.fully_charged)
2219                                                 break;
2220                                         di->flags.charging = true;
2221                                         di->flags.fully_charged = false;
2222                                         if (di->bm->capacity_scaling)
2223                                                 ab8500_fg_update_cap_scalers(di);
2224                                         queue_work(di->fg_wq, &di->fg_work);
2225                                         break;
2226                                 };
2227                         default:
2228                                 break;
2229                         };
2230                         break;
2231                 case POWER_SUPPLY_PROP_TECHNOLOGY:
2232                         switch (ext->desc->type) {
2233                         case POWER_SUPPLY_TYPE_BATTERY:
2234                                 if (!di->flags.batt_id_received &&
2235                                     di->bm->batt_id != BATTERY_UNKNOWN) {
2236                                         const struct abx500_battery_type *b;
2237
2238                                         b = &(di->bm->bat_type[di->bm->batt_id]);
2239
2240                                         di->flags.batt_id_received = true;
2241
2242                                         di->bat_cap.max_mah_design =
2243                                                 MILLI_TO_MICRO *
2244                                                 b->charge_full_design;
2245
2246                                         di->bat_cap.max_mah =
2247                                                 di->bat_cap.max_mah_design;
2248
2249                                         di->vbat_nom = b->nominal_voltage;
2250                                 }
2251
2252                                 if (ret.intval)
2253                                         di->flags.batt_unknown = false;
2254                                 else
2255                                         di->flags.batt_unknown = true;
2256                                 break;
2257                         default:
2258                                 break;
2259                         }
2260                         break;
2261                 case POWER_SUPPLY_PROP_TEMP:
2262                         switch (ext->desc->type) {
2263                         case POWER_SUPPLY_TYPE_BATTERY:
2264                                 if (di->flags.batt_id_received)
2265                                         di->bat_temp = ret.intval;
2266                                 break;
2267                         default:
2268                                 break;
2269                         }
2270                         break;
2271                 default:
2272                         break;
2273                 }
2274         }
2275         return 0;
2276 }
2277
2278 /**
2279  * ab8500_fg_init_hw_registers() - Set up FG related registers
2280  * @di:         pointer to the ab8500_fg structure
2281  *
2282  * Set up battery OVV, low battery voltage registers
2283  */
2284 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2285 {
2286         int ret;
2287
2288         /* Set VBAT OVV threshold */
2289         ret = abx500_mask_and_set_register_interruptible(di->dev,
2290                 AB8500_CHARGER,
2291                 AB8500_BATT_OVV,
2292                 BATT_OVV_TH_4P75,
2293                 BATT_OVV_TH_4P75);
2294         if (ret) {
2295                 dev_err(di->dev, "failed to set BATT_OVV\n");
2296                 goto out;
2297         }
2298
2299         /* Enable VBAT OVV detection */
2300         ret = abx500_mask_and_set_register_interruptible(di->dev,
2301                 AB8500_CHARGER,
2302                 AB8500_BATT_OVV,
2303                 BATT_OVV_ENA,
2304                 BATT_OVV_ENA);
2305         if (ret) {
2306                 dev_err(di->dev, "failed to enable BATT_OVV\n");
2307                 goto out;
2308         }
2309
2310         /* Low Battery Voltage */
2311         ret = abx500_set_register_interruptible(di->dev,
2312                 AB8500_SYS_CTRL2_BLOCK,
2313                 AB8500_LOW_BAT_REG,
2314                 ab8500_volt_to_regval(
2315                         di->bm->fg_params->lowbat_threshold) << 1 |
2316                 LOW_BAT_ENABLE);
2317         if (ret) {
2318                 dev_err(di->dev, "%s write failed\n", __func__);
2319                 goto out;
2320         }
2321
2322         /* Battery OK threshold */
2323         ret = ab8500_fg_battok_init_hw_register(di);
2324         if (ret) {
2325                 dev_err(di->dev, "BattOk init write failed.\n");
2326                 goto out;
2327         }
2328
2329         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2330                         abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2331                         || is_ab8540(di->parent)) {
2332                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2333                         AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2334
2335                 if (ret) {
2336                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2337                         goto out;
2338                 };
2339
2340                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2341                         AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2342
2343                 if (ret) {
2344                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2345                         goto out;
2346                 };
2347
2348                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2349                         AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2350
2351                 if (ret) {
2352                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2353                         goto out;
2354                 };
2355
2356                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2357                         AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2358
2359                 if (ret) {
2360                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2361                         goto out;
2362                 };
2363
2364                 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2365                         AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2366
2367                 if (ret) {
2368                         dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2369                         goto out;
2370                 };
2371         }
2372 out:
2373         return ret;
2374 }
2375
2376 /**
2377  * ab8500_fg_external_power_changed() - callback for power supply changes
2378  * @psy:       pointer to the structure power_supply
2379  *
2380  * This function is the entry point of the pointer external_power_changed
2381  * of the structure power_supply.
2382  * This function gets executed when there is a change in any external power
2383  * supply that this driver needs to be notified of.
2384  */
2385 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2386 {
2387         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2388
2389         class_for_each_device(power_supply_class, NULL,
2390                 di->fg_psy, ab8500_fg_get_ext_psy_data);
2391 }
2392
2393 /**
2394  * ab8500_fg_reinit_work() - work to reset the FG algorithm
2395  * @work:       pointer to the work_struct structure
2396  *
2397  * Used to reset the current battery capacity to be able to
2398  * retrigger a new voltage base capacity calculation. For
2399  * test and verification purpose.
2400  */
2401 static void ab8500_fg_reinit_work(struct work_struct *work)
2402 {
2403         struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2404                 fg_reinit_work.work);
2405
2406         if (di->flags.calibrate == false) {
2407                 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2408                 ab8500_fg_clear_cap_samples(di);
2409                 ab8500_fg_calc_cap_discharge_voltage(di, true);
2410                 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2411                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2412                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2413
2414         } else {
2415                 dev_err(di->dev, "Residual offset calibration ongoing "
2416                         "retrying..\n");
2417                 /* Wait one second until next try*/
2418                 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2419                         round_jiffies(1));
2420         }
2421 }
2422
2423 /* Exposure to the sysfs interface */
2424
2425 struct ab8500_fg_sysfs_entry {
2426         struct attribute attr;
2427         ssize_t (*show)(struct ab8500_fg *, char *);
2428         ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2429 };
2430
2431 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2432 {
2433         return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2434 }
2435
2436 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2437                                  size_t count)
2438 {
2439         unsigned long charge_full;
2440         ssize_t ret;
2441
2442         ret = kstrtoul(buf, 10, &charge_full);
2443
2444         dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2445
2446         if (!ret) {
2447                 di->bat_cap.max_mah = (int) charge_full;
2448                 ret = count;
2449         }
2450         return ret;
2451 }
2452
2453 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2454 {
2455         return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2456 }
2457
2458 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2459                                  size_t count)
2460 {
2461         unsigned long charge_now;
2462         ssize_t ret;
2463
2464         ret = kstrtoul(buf, 10, &charge_now);
2465
2466         dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2467                 ret, charge_now, di->bat_cap.prev_mah);
2468
2469         if (!ret) {
2470                 di->bat_cap.user_mah = (int) charge_now;
2471                 di->flags.user_cap = true;
2472                 ret = count;
2473                 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2474         }
2475         return ret;
2476 }
2477
2478 static struct ab8500_fg_sysfs_entry charge_full_attr =
2479         __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2480
2481 static struct ab8500_fg_sysfs_entry charge_now_attr =
2482         __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2483
2484 static ssize_t
2485 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2486 {
2487         struct ab8500_fg_sysfs_entry *entry;
2488         struct ab8500_fg *di;
2489
2490         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2491         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2492
2493         if (!entry->show)
2494                 return -EIO;
2495
2496         return entry->show(di, buf);
2497 }
2498 static ssize_t
2499 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2500                 size_t count)
2501 {
2502         struct ab8500_fg_sysfs_entry *entry;
2503         struct ab8500_fg *di;
2504
2505         entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2506         di = container_of(kobj, struct ab8500_fg, fg_kobject);
2507
2508         if (!entry->store)
2509                 return -EIO;
2510
2511         return entry->store(di, buf, count);
2512 }
2513
2514 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2515         .show = ab8500_fg_show,
2516         .store = ab8500_fg_store,
2517 };
2518
2519 static struct attribute *ab8500_fg_attrs[] = {
2520         &charge_full_attr.attr,
2521         &charge_now_attr.attr,
2522         NULL,
2523 };
2524
2525 static struct kobj_type ab8500_fg_ktype = {
2526         .sysfs_ops = &ab8500_fg_sysfs_ops,
2527         .default_attrs = ab8500_fg_attrs,
2528 };
2529
2530 /**
2531  * ab8500_fg_sysfs_exit() - de-init of sysfs entry
2532  * @di:                pointer to the struct ab8500_chargalg
2533  *
2534  * This function removes the entry in sysfs.
2535  */
2536 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2537 {
2538         kobject_del(&di->fg_kobject);
2539 }
2540
2541 /**
2542  * ab8500_fg_sysfs_init() - init of sysfs entry
2543  * @di:                pointer to the struct ab8500_chargalg
2544  *
2545  * This function adds an entry in sysfs.
2546  * Returns error code in case of failure else 0(on success)
2547  */
2548 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2549 {
2550         int ret = 0;
2551
2552         ret = kobject_init_and_add(&di->fg_kobject,
2553                 &ab8500_fg_ktype,
2554                 NULL, "battery");
2555         if (ret < 0)
2556                 dev_err(di->dev, "failed to create sysfs entry\n");
2557
2558         return ret;
2559 }
2560
2561 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2562                              struct device_attribute *attr,
2563                              char *buf)
2564 {
2565         int ret;
2566         u8 reg_value;
2567         struct power_supply *psy = dev_get_drvdata(dev);
2568         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2569
2570         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2571                 AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2572
2573         if (ret < 0) {
2574                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2575                 goto fail;
2576         }
2577
2578         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2579
2580 fail:
2581         return ret;
2582 }
2583
2584 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2585                                   struct device_attribute *attr,
2586                                   const char *buf, size_t count)
2587 {
2588         int ret;
2589         long unsigned reg_value;
2590         struct power_supply *psy = dev_get_drvdata(dev);
2591         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2592
2593         reg_value = simple_strtoul(buf, NULL, 10);
2594
2595         if (reg_value > 0x7F) {
2596                 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2597                 goto fail;
2598         }
2599
2600         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2601                 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2602
2603         if (ret < 0)
2604                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2605
2606 fail:
2607         return count;
2608 }
2609
2610 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2611                              struct device_attribute *attr,
2612                              char *buf)
2613 {
2614         int ret;
2615         u8 reg_value;
2616         struct power_supply *psy = dev_get_drvdata(dev);
2617         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2618
2619         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2620                 AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2621
2622         if (ret < 0) {
2623                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2624                 goto fail;
2625         }
2626
2627         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2628
2629 fail:
2630         return ret;
2631
2632 }
2633
2634 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2635                                   struct device_attribute *attr,
2636                                   const char *buf, size_t count)
2637 {
2638         int ret;
2639         int reg_value;
2640         struct power_supply *psy = dev_get_drvdata(dev);
2641         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2642
2643         reg_value = simple_strtoul(buf, NULL, 10);
2644         if (reg_value > 0x7F) {
2645                 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2646                 goto fail;
2647         }
2648
2649         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2650                 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2651
2652         if (ret < 0)
2653                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2654
2655 fail:
2656         return count;
2657 }
2658
2659 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2660                              struct device_attribute *attr,
2661                              char *buf)
2662 {
2663         int ret;
2664         u8 reg_value;
2665         struct power_supply *psy = dev_get_drvdata(dev);
2666         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2667
2668         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2669                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2670
2671         if (ret < 0) {
2672                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2673                 goto fail;
2674         }
2675
2676         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2677
2678 fail:
2679         return ret;
2680 }
2681
2682 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2683                                              struct device_attribute *attr,
2684                                              const char *buf, size_t count)
2685 {
2686         int ret;
2687         int reg_value;
2688         struct power_supply *psy = dev_get_drvdata(dev);
2689         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2690
2691         reg_value = simple_strtoul(buf, NULL, 10);
2692         if (reg_value > 0xF) {
2693                 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2694                 goto fail;
2695         }
2696
2697         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2698                                                 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2699
2700         if (ret < 0)
2701                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2702
2703 fail:
2704         return count;
2705
2706 }
2707
2708 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2709                                           struct device_attribute *attr,
2710                                           char *buf)
2711 {
2712         int ret;
2713         u8 reg_value;
2714         struct power_supply *psy = dev_get_drvdata(dev);
2715         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2716
2717         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2718                                                 AB8505_RTC_PCUT_TIME_REG, &reg_value);
2719
2720         if (ret < 0) {
2721                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2722                 goto fail;
2723         }
2724
2725         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2726
2727 fail:
2728         return ret;
2729 }
2730
2731 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2732                                                     struct device_attribute *attr,
2733                                                     char *buf)
2734 {
2735         int ret;
2736         u8 reg_value;
2737         struct power_supply *psy = dev_get_drvdata(dev);
2738         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2739
2740         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2741                                                 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2742
2743         if (ret < 0) {
2744                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2745                 goto fail;
2746         }
2747
2748         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2749
2750 fail:
2751         return ret;
2752 }
2753
2754 static ssize_t ab8505_powercut_read(struct device *dev,
2755                                     struct device_attribute *attr,
2756                                     char *buf)
2757 {
2758         int ret;
2759         u8 reg_value;
2760         struct power_supply *psy = dev_get_drvdata(dev);
2761         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2762
2763         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2764                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2765
2766         if (ret < 0)
2767                 goto fail;
2768
2769         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2770
2771 fail:
2772         return ret;
2773 }
2774
2775 static ssize_t ab8505_powercut_write(struct device *dev,
2776                                      struct device_attribute *attr,
2777                                      const char *buf, size_t count)
2778 {
2779         int ret;
2780         int reg_value;
2781         struct power_supply *psy = dev_get_drvdata(dev);
2782         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2783
2784         reg_value = simple_strtoul(buf, NULL, 10);
2785         if (reg_value > 0x1) {
2786                 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2787                 goto fail;
2788         }
2789
2790         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2791                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2792
2793         if (ret < 0)
2794                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2795
2796 fail:
2797         return count;
2798 }
2799
2800 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2801                                          struct device_attribute *attr,
2802                                          char *buf)
2803 {
2804
2805         int ret;
2806         u8 reg_value;
2807         struct power_supply *psy = dev_get_drvdata(dev);
2808         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2809
2810         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2811                                                 AB8505_RTC_PCUT_CTL_STATUS_REG,  &reg_value);
2812
2813         if (ret < 0) {
2814                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2815                 goto fail;
2816         }
2817
2818         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2819
2820 fail:
2821         return ret;
2822 }
2823
2824 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2825                                              struct device_attribute *attr,
2826                                              char *buf)
2827 {
2828         int ret;
2829         u8 reg_value;
2830         struct power_supply *psy = dev_get_drvdata(dev);
2831         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2832
2833         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2834                                                 AB8505_RTC_PCUT_DEBOUNCE_REG,  &reg_value);
2835
2836         if (ret < 0) {
2837                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2838                 goto fail;
2839         }
2840
2841         return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2842
2843 fail:
2844         return ret;
2845 }
2846
2847 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2848                                               struct device_attribute *attr,
2849                                               const char *buf, size_t count)
2850 {
2851         int ret;
2852         int reg_value;
2853         struct power_supply *psy = dev_get_drvdata(dev);
2854         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2855
2856         reg_value = simple_strtoul(buf, NULL, 10);
2857         if (reg_value > 0x7) {
2858                 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2859                 goto fail;
2860         }
2861
2862         ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2863                                                 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2864
2865         if (ret < 0)
2866                 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2867
2868 fail:
2869         return count;
2870 }
2871
2872 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2873                                                   struct device_attribute *attr,
2874                                                   char *buf)
2875 {
2876         int ret;
2877         u8 reg_value;
2878         struct power_supply *psy = dev_get_drvdata(dev);
2879         struct ab8500_fg *di = power_supply_get_drvdata(psy);
2880
2881         ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2882                                                 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2883
2884         if (ret < 0) {
2885                 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2886                 goto fail;
2887         }
2888
2889         return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2890
2891 fail:
2892         return ret;
2893 }
2894
2895 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2896         __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2897                 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2898         __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2899                 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2900         __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2901                 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2902         __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2903         __ATTR(powercut_restart_counter, S_IRUGO,
2904                 ab8505_powercut_restart_counter_read, NULL),
2905         __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2906                 ab8505_powercut_read, ab8505_powercut_write),
2907         __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2908         __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2909                 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2910         __ATTR(powercut_enable_status, S_IRUGO,
2911                 ab8505_powercut_enable_status_read, NULL),
2912 };
2913
2914 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di)
2915 {
2916         unsigned int i;
2917
2918         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2919              abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2920             || is_ab8540(di->parent)) {
2921                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2922                         if (device_create_file(&di->fg_psy->dev,
2923                                                &ab8505_fg_sysfs_psy_attrs[i]))
2924                                 goto sysfs_psy_create_attrs_failed_ab8505;
2925         }
2926         return 0;
2927 sysfs_psy_create_attrs_failed_ab8505:
2928         dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n");
2929         while (i--)
2930                 device_remove_file(&di->fg_psy->dev,
2931                                    &ab8505_fg_sysfs_psy_attrs[i]);
2932
2933         return -EIO;
2934 }
2935
2936 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di)
2937 {
2938         unsigned int i;
2939
2940         if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2941              abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2942             || is_ab8540(di->parent)) {
2943                 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
2944                         (void)device_remove_file(&di->fg_psy->dev,
2945                                                  &ab8505_fg_sysfs_psy_attrs[i]);
2946         }
2947 }
2948
2949 /* Exposure to the sysfs interface <<END>> */
2950
2951 #if defined(CONFIG_PM)
2952 static int ab8500_fg_resume(struct platform_device *pdev)
2953 {
2954         struct ab8500_fg *di = platform_get_drvdata(pdev);
2955
2956         /*
2957          * Change state if we're not charging. If we're charging we will wake
2958          * up on the FG IRQ
2959          */
2960         if (!di->flags.charging) {
2961                 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
2962                 queue_work(di->fg_wq, &di->fg_work);
2963         }
2964
2965         return 0;
2966 }
2967
2968 static int ab8500_fg_suspend(struct platform_device *pdev,
2969         pm_message_t state)
2970 {
2971         struct ab8500_fg *di = platform_get_drvdata(pdev);
2972
2973         flush_delayed_work(&di->fg_periodic_work);
2974         flush_work(&di->fg_work);
2975         flush_work(&di->fg_acc_cur_work);
2976         flush_delayed_work(&di->fg_reinit_work);
2977         flush_delayed_work(&di->fg_low_bat_work);
2978         flush_delayed_work(&di->fg_check_hw_failure_work);
2979
2980         /*
2981          * If the FG is enabled we will disable it before going to suspend
2982          * only if we're not charging
2983          */
2984         if (di->flags.fg_enabled && !di->flags.charging)
2985                 ab8500_fg_coulomb_counter(di, false);
2986
2987         return 0;
2988 }
2989 #else
2990 #define ab8500_fg_suspend      NULL
2991 #define ab8500_fg_resume       NULL
2992 #endif
2993
2994 static int ab8500_fg_remove(struct platform_device *pdev)
2995 {
2996         int ret = 0;
2997         struct ab8500_fg *di = platform_get_drvdata(pdev);
2998
2999         list_del(&di->node);
3000
3001         /* Disable coulomb counter */
3002         ret = ab8500_fg_coulomb_counter(di, false);
3003         if (ret)
3004                 dev_err(di->dev, "failed to disable coulomb counter\n");
3005
3006         destroy_workqueue(di->fg_wq);
3007         ab8500_fg_sysfs_exit(di);
3008
3009         flush_scheduled_work();
3010         ab8500_fg_sysfs_psy_remove_attrs(di);
3011         power_supply_unregister(di->fg_psy);
3012         return ret;
3013 }
3014
3015 /* ab8500 fg driver interrupts and their respective isr */
3016 static struct ab8500_fg_interrupts ab8500_fg_irq_th[] = {
3017         {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3018         {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3019         {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3020         {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3021 };
3022
3023 static struct ab8500_fg_interrupts ab8500_fg_irq_bh[] = {
3024         {"CCEOC", ab8500_fg_cc_data_end_handler},
3025 };
3026
3027 static char *supply_interface[] = {
3028         "ab8500_chargalg",
3029         "ab8500_usb",
3030 };
3031
3032 static const struct power_supply_desc ab8500_fg_desc = {
3033         .name                   = "ab8500_fg",
3034         .type                   = POWER_SUPPLY_TYPE_BATTERY,
3035         .properties             = ab8500_fg_props,
3036         .num_properties         = ARRAY_SIZE(ab8500_fg_props),
3037         .get_property           = ab8500_fg_get_property,
3038         .external_power_changed = ab8500_fg_external_power_changed,
3039 };
3040
3041 static int ab8500_fg_probe(struct platform_device *pdev)
3042 {
3043         struct device_node *np = pdev->dev.of_node;
3044         struct abx500_bm_data *plat = pdev->dev.platform_data;
3045         struct power_supply_config psy_cfg = {};
3046         struct ab8500_fg *di;
3047         int i, irq;
3048         int ret = 0;
3049
3050         di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3051         if (!di) {
3052                 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3053                 return -ENOMEM;
3054         }
3055
3056         if (!plat) {
3057                 dev_err(&pdev->dev, "no battery management data supplied\n");
3058                 return -EINVAL;
3059         }
3060         di->bm = plat;
3061
3062         if (np) {
3063                 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3064                 if (ret) {
3065                         dev_err(&pdev->dev, "failed to get battery information\n");
3066                         return ret;
3067                 }
3068         }
3069
3070         mutex_init(&di->cc_lock);
3071
3072         /* get parent data */
3073         di->dev = &pdev->dev;
3074         di->parent = dev_get_drvdata(pdev->dev.parent);
3075         di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3076
3077         psy_cfg.supplied_to = supply_interface;
3078         psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface);
3079         psy_cfg.drv_data = di;
3080
3081         di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3082                 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3083
3084         di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3085
3086         di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3087
3088         di->init_capacity = true;
3089
3090         ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3091         ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3092
3093         /* Create a work queue for running the FG algorithm */
3094         di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM);
3095         if (di->fg_wq == NULL) {
3096                 dev_err(di->dev, "failed to create work queue\n");
3097                 return -ENOMEM;
3098         }
3099
3100         /* Init work for running the fg algorithm instantly */
3101         INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3102
3103         /* Init work for getting the battery accumulated current */
3104         INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3105
3106         /* Init work for reinitialising the fg algorithm */
3107         INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3108                 ab8500_fg_reinit_work);
3109
3110         /* Work delayed Queue to run the state machine */
3111         INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3112                 ab8500_fg_periodic_work);
3113
3114         /* Work to check low battery condition */
3115         INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3116                 ab8500_fg_low_bat_work);
3117
3118         /* Init work for HW failure check */
3119         INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3120                 ab8500_fg_check_hw_failure_work);
3121
3122         /* Reset battery low voltage flag */
3123         di->flags.low_bat = false;
3124
3125         /* Initialize low battery counter */
3126         di->low_bat_cnt = 10;
3127
3128         /* Initialize OVV, and other registers */
3129         ret = ab8500_fg_init_hw_registers(di);
3130         if (ret) {
3131                 dev_err(di->dev, "failed to initialize registers\n");
3132                 goto free_inst_curr_wq;
3133         }
3134
3135         /* Consider battery unknown until we're informed otherwise */
3136         di->flags.batt_unknown = true;
3137         di->flags.batt_id_received = false;
3138
3139         /* Register FG power supply class */
3140         di->fg_psy = power_supply_register(di->dev, &ab8500_fg_desc, &psy_cfg);
3141         if (IS_ERR(di->fg_psy)) {
3142                 dev_err(di->dev, "failed to register FG psy\n");
3143                 ret = PTR_ERR(di->fg_psy);
3144                 goto free_inst_curr_wq;
3145         }
3146
3147         di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3148         ab8500_fg_coulomb_counter(di, true);
3149
3150         /*
3151          * Initialize completion used to notify completion and start
3152          * of inst current
3153          */
3154         init_completion(&di->ab8500_fg_started);
3155         init_completion(&di->ab8500_fg_complete);
3156
3157         /* Register primary interrupt handlers */
3158         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3159                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3160                 ret = request_irq(irq, ab8500_fg_irq_th[i].isr,
3161                                   IRQF_SHARED | IRQF_NO_SUSPEND,
3162                                   ab8500_fg_irq_th[i].name, di);
3163
3164                 if (ret != 0) {
3165                         dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3166                                 ab8500_fg_irq_th[i].name, irq, ret);
3167                         goto free_irq;
3168                 }
3169                 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3170                         ab8500_fg_irq_th[i].name, irq, ret);
3171         }
3172
3173         /* Register threaded interrupt handler */
3174         irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3175         ret = request_threaded_irq(irq, NULL, ab8500_fg_irq_bh[0].isr,
3176                                 IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT,
3177                         ab8500_fg_irq_bh[0].name, di);
3178
3179         if (ret != 0) {
3180                 dev_err(di->dev, "failed to request %s IRQ %d: %d\n",
3181                         ab8500_fg_irq_bh[0].name, irq, ret);
3182                 goto free_irq;
3183         }
3184         dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3185                 ab8500_fg_irq_bh[0].name, irq, ret);
3186
3187         di->irq = platform_get_irq_byname(pdev, "CCEOC");
3188         disable_irq(di->irq);
3189         di->nbr_cceoc_irq_cnt = 0;
3190
3191         platform_set_drvdata(pdev, di);
3192
3193         ret = ab8500_fg_sysfs_init(di);
3194         if (ret) {
3195                 dev_err(di->dev, "failed to create sysfs entry\n");
3196                 goto free_irq;
3197         }
3198
3199         ret = ab8500_fg_sysfs_psy_create_attrs(di);
3200         if (ret) {
3201                 dev_err(di->dev, "failed to create FG psy\n");
3202                 ab8500_fg_sysfs_exit(di);
3203                 goto free_irq;
3204         }
3205
3206         /* Calibrate the fg first time */
3207         di->flags.calibrate = true;
3208         di->calib_state = AB8500_FG_CALIB_INIT;
3209
3210         /* Use room temp as default value until we get an update from driver. */
3211         di->bat_temp = 210;
3212
3213         /* Run the FG algorithm */
3214         queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3215
3216         list_add_tail(&di->node, &ab8500_fg_list);
3217
3218         return ret;
3219
3220 free_irq:
3221         power_supply_unregister(di->fg_psy);
3222
3223         /* We also have to free all registered irqs */
3224         for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq_th); i++) {
3225                 irq = platform_get_irq_byname(pdev, ab8500_fg_irq_th[i].name);
3226                 free_irq(irq, di);
3227         }
3228         irq = platform_get_irq_byname(pdev, ab8500_fg_irq_bh[0].name);
3229         free_irq(irq, di);
3230 free_inst_curr_wq:
3231         destroy_workqueue(di->fg_wq);
3232         return ret;
3233 }
3234
3235 static const struct of_device_id ab8500_fg_match[] = {
3236         { .compatible = "stericsson,ab8500-fg", },
3237         { },
3238 };
3239
3240 static struct platform_driver ab8500_fg_driver = {
3241         .probe = ab8500_fg_probe,
3242         .remove = ab8500_fg_remove,
3243         .suspend = ab8500_fg_suspend,
3244         .resume = ab8500_fg_resume,
3245         .driver = {
3246                 .name = "ab8500-fg",
3247                 .of_match_table = ab8500_fg_match,
3248         },
3249 };
3250
3251 static int __init ab8500_fg_init(void)
3252 {
3253         return platform_driver_register(&ab8500_fg_driver);
3254 }
3255
3256 static void __exit ab8500_fg_exit(void)
3257 {
3258         platform_driver_unregister(&ab8500_fg_driver);
3259 }
3260
3261 subsys_initcall_sync(ab8500_fg_init);
3262 module_exit(ab8500_fg_exit);
3263
3264 MODULE_LICENSE("GPL v2");
3265 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3266 MODULE_ALIAS("platform:ab8500-fg");
3267 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");