Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[sfrench/cifs-2.6.git] / drivers / perf / arm_spe_pmu.c
1 /*
2  * Perf support for the Statistical Profiling Extension, introduced as
3  * part of ARMv8.2.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * Copyright (C) 2016 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  */
21
22 #define PMUNAME                                 "arm_spe"
23 #define DRVNAME                                 PMUNAME "_pmu"
24 #define pr_fmt(fmt)                             DRVNAME ": " fmt
25
26 #include <linux/bitops.h>
27 #include <linux/bug.h>
28 #include <linux/capability.h>
29 #include <linux/cpuhotplug.h>
30 #include <linux/cpumask.h>
31 #include <linux/device.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/irq.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/module.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/perf_event.h>
41 #include <linux/platform_device.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/smp.h>
45 #include <linux/vmalloc.h>
46
47 #include <asm/barrier.h>
48 #include <asm/cpufeature.h>
49 #include <asm/mmu.h>
50 #include <asm/sysreg.h>
51
52 #define ARM_SPE_BUF_PAD_BYTE                    0
53
54 struct arm_spe_pmu_buf {
55         int                                     nr_pages;
56         bool                                    snapshot;
57         void                                    *base;
58 };
59
60 struct arm_spe_pmu {
61         struct pmu                              pmu;
62         struct platform_device                  *pdev;
63         cpumask_t                               supported_cpus;
64         struct hlist_node                       hotplug_node;
65
66         int                                     irq; /* PPI */
67
68         u16                                     min_period;
69         u16                                     counter_sz;
70
71 #define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
72 #define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
73 #define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
74 #define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
75 #define SPE_PMU_FEAT_LDS                        (1UL << 4)
76 #define SPE_PMU_FEAT_ERND                       (1UL << 5)
77 #define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
78         u64                                     features;
79
80         u16                                     max_record_sz;
81         u16                                     align;
82         struct perf_output_handle __percpu      *handle;
83 };
84
85 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
86
87 /* Convert a free-running index from perf into an SPE buffer offset */
88 #define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
89
90 /* Keep track of our dynamic hotplug state */
91 static enum cpuhp_state arm_spe_pmu_online;
92
93 enum arm_spe_pmu_buf_fault_action {
94         SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
95         SPE_PMU_BUF_FAULT_ACT_FATAL,
96         SPE_PMU_BUF_FAULT_ACT_OK,
97 };
98
99 /* This sysfs gunk was really good fun to write. */
100 enum arm_spe_pmu_capabilities {
101         SPE_PMU_CAP_ARCH_INST = 0,
102         SPE_PMU_CAP_ERND,
103         SPE_PMU_CAP_FEAT_MAX,
104         SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
105         SPE_PMU_CAP_MIN_IVAL,
106 };
107
108 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
109         [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
110         [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
111 };
112
113 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
114 {
115         if (cap < SPE_PMU_CAP_FEAT_MAX)
116                 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
117
118         switch (cap) {
119         case SPE_PMU_CAP_CNT_SZ:
120                 return spe_pmu->counter_sz;
121         case SPE_PMU_CAP_MIN_IVAL:
122                 return spe_pmu->min_period;
123         default:
124                 WARN(1, "unknown cap %d\n", cap);
125         }
126
127         return 0;
128 }
129
130 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
131                                     struct device_attribute *attr,
132                                     char *buf)
133 {
134         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
135         struct dev_ext_attribute *ea =
136                 container_of(attr, struct dev_ext_attribute, attr);
137         int cap = (long)ea->var;
138
139         return snprintf(buf, PAGE_SIZE, "%u\n",
140                 arm_spe_pmu_cap_get(spe_pmu, cap));
141 }
142
143 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
144         &((struct dev_ext_attribute[]) {                                \
145                 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
146         })[0].attr.attr
147
148 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
149         SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
150
151 static struct attribute *arm_spe_pmu_cap_attr[] = {
152         SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
153         SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
154         SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
155         SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
156         NULL,
157 };
158
159 static struct attribute_group arm_spe_pmu_cap_group = {
160         .name   = "caps",
161         .attrs  = arm_spe_pmu_cap_attr,
162 };
163
164 /* User ABI */
165 #define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
166 #define ATTR_CFG_FLD_ts_enable_LO               0
167 #define ATTR_CFG_FLD_ts_enable_HI               0
168 #define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
169 #define ATTR_CFG_FLD_pa_enable_LO               1
170 #define ATTR_CFG_FLD_pa_enable_HI               1
171 #define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
172 #define ATTR_CFG_FLD_pct_enable_LO              2
173 #define ATTR_CFG_FLD_pct_enable_HI              2
174 #define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
175 #define ATTR_CFG_FLD_jitter_LO                  16
176 #define ATTR_CFG_FLD_jitter_HI                  16
177 #define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
178 #define ATTR_CFG_FLD_branch_filter_LO           32
179 #define ATTR_CFG_FLD_branch_filter_HI           32
180 #define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
181 #define ATTR_CFG_FLD_load_filter_LO             33
182 #define ATTR_CFG_FLD_load_filter_HI             33
183 #define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
184 #define ATTR_CFG_FLD_store_filter_LO            34
185 #define ATTR_CFG_FLD_store_filter_HI            34
186
187 #define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
188 #define ATTR_CFG_FLD_event_filter_LO            0
189 #define ATTR_CFG_FLD_event_filter_HI            63
190
191 #define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
192 #define ATTR_CFG_FLD_min_latency_LO             0
193 #define ATTR_CFG_FLD_min_latency_HI             11
194
195 /* Why does everything I do descend into this? */
196 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
197         (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
198
199 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
200         __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
201
202 #define GEN_PMU_FORMAT_ATTR(name)                                       \
203         PMU_FORMAT_ATTR(name,                                           \
204         _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
205                              ATTR_CFG_FLD_##name##_LO,                  \
206                              ATTR_CFG_FLD_##name##_HI))
207
208 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
209         ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
210
211 #define ATTR_CFG_GET_FLD(attr, name)                                    \
212         _ATTR_CFG_GET_FLD(attr,                                         \
213                           ATTR_CFG_FLD_##name##_CFG,                    \
214                           ATTR_CFG_FLD_##name##_LO,                     \
215                           ATTR_CFG_FLD_##name##_HI)
216
217 GEN_PMU_FORMAT_ATTR(ts_enable);
218 GEN_PMU_FORMAT_ATTR(pa_enable);
219 GEN_PMU_FORMAT_ATTR(pct_enable);
220 GEN_PMU_FORMAT_ATTR(jitter);
221 GEN_PMU_FORMAT_ATTR(branch_filter);
222 GEN_PMU_FORMAT_ATTR(load_filter);
223 GEN_PMU_FORMAT_ATTR(store_filter);
224 GEN_PMU_FORMAT_ATTR(event_filter);
225 GEN_PMU_FORMAT_ATTR(min_latency);
226
227 static struct attribute *arm_spe_pmu_formats_attr[] = {
228         &format_attr_ts_enable.attr,
229         &format_attr_pa_enable.attr,
230         &format_attr_pct_enable.attr,
231         &format_attr_jitter.attr,
232         &format_attr_branch_filter.attr,
233         &format_attr_load_filter.attr,
234         &format_attr_store_filter.attr,
235         &format_attr_event_filter.attr,
236         &format_attr_min_latency.attr,
237         NULL,
238 };
239
240 static struct attribute_group arm_spe_pmu_format_group = {
241         .name   = "format",
242         .attrs  = arm_spe_pmu_formats_attr,
243 };
244
245 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
246                                             struct device_attribute *attr,
247                                             char *buf)
248 {
249         struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
250
251         return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
252 }
253 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
254
255 static struct attribute *arm_spe_pmu_attrs[] = {
256         &dev_attr_cpumask.attr,
257         NULL,
258 };
259
260 static struct attribute_group arm_spe_pmu_group = {
261         .attrs  = arm_spe_pmu_attrs,
262 };
263
264 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
265         &arm_spe_pmu_group,
266         &arm_spe_pmu_cap_group,
267         &arm_spe_pmu_format_group,
268         NULL,
269 };
270
271 /* Convert between user ABI and register values */
272 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
273 {
274         struct perf_event_attr *attr = &event->attr;
275         u64 reg = 0;
276
277         reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
278         reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
279         reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
280
281         if (!attr->exclude_user)
282                 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
283
284         if (!attr->exclude_kernel)
285                 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
286
287         if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
288                 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
289
290         return reg;
291 }
292
293 static void arm_spe_event_sanitise_period(struct perf_event *event)
294 {
295         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
296         u64 period = event->hw.sample_period;
297         u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
298                          << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
299
300         if (period < spe_pmu->min_period)
301                 period = spe_pmu->min_period;
302         else if (period > max_period)
303                 period = max_period;
304         else
305                 period &= max_period;
306
307         event->hw.sample_period = period;
308 }
309
310 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
311 {
312         struct perf_event_attr *attr = &event->attr;
313         u64 reg = 0;
314
315         arm_spe_event_sanitise_period(event);
316
317         reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
318         reg |= event->hw.sample_period;
319
320         return reg;
321 }
322
323 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
324 {
325         struct perf_event_attr *attr = &event->attr;
326         u64 reg = 0;
327
328         reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
329         reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
330         reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
331
332         if (reg)
333                 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
334
335         if (ATTR_CFG_GET_FLD(attr, event_filter))
336                 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
337
338         if (ATTR_CFG_GET_FLD(attr, min_latency))
339                 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
340
341         return reg;
342 }
343
344 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
345 {
346         struct perf_event_attr *attr = &event->attr;
347         return ATTR_CFG_GET_FLD(attr, event_filter);
348 }
349
350 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
351 {
352         struct perf_event_attr *attr = &event->attr;
353         return ATTR_CFG_GET_FLD(attr, min_latency)
354                << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
355 }
356
357 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
358 {
359         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
360         u64 head = PERF_IDX2OFF(handle->head, buf);
361
362         memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
363         if (!buf->snapshot)
364                 perf_aux_output_skip(handle, len);
365 }
366
367 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
368 {
369         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
370         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
371         u64 head = PERF_IDX2OFF(handle->head, buf);
372         u64 limit = buf->nr_pages * PAGE_SIZE;
373
374         /*
375          * The trace format isn't parseable in reverse, so clamp
376          * the limit to half of the buffer size in snapshot mode
377          * so that the worst case is half a buffer of records, as
378          * opposed to a single record.
379          */
380         if (head < limit >> 1)
381                 limit >>= 1;
382
383         /*
384          * If we're within max_record_sz of the limit, we must
385          * pad, move the head index and recompute the limit.
386          */
387         if (limit - head < spe_pmu->max_record_sz) {
388                 arm_spe_pmu_pad_buf(handle, limit - head);
389                 handle->head = PERF_IDX2OFF(limit, buf);
390                 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
391         }
392
393         return limit;
394 }
395
396 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
397 {
398         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
399         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
400         const u64 bufsize = buf->nr_pages * PAGE_SIZE;
401         u64 limit = bufsize;
402         u64 head, tail, wakeup;
403
404         /*
405          * The head can be misaligned for two reasons:
406          *
407          * 1. The hardware left PMBPTR pointing to the first byte after
408          *    a record when generating a buffer management event.
409          *
410          * 2. We used perf_aux_output_skip to consume handle->size bytes
411          *    and CIRC_SPACE was used to compute the size, which always
412          *    leaves one entry free.
413          *
414          * Deal with this by padding to the next alignment boundary and
415          * moving the head index. If we run out of buffer space, we'll
416          * reduce handle->size to zero and end up reporting truncation.
417          */
418         head = PERF_IDX2OFF(handle->head, buf);
419         if (!IS_ALIGNED(head, spe_pmu->align)) {
420                 unsigned long delta = roundup(head, spe_pmu->align) - head;
421
422                 delta = min(delta, handle->size);
423                 arm_spe_pmu_pad_buf(handle, delta);
424                 head = PERF_IDX2OFF(handle->head, buf);
425         }
426
427         /* If we've run out of free space, then nothing more to do */
428         if (!handle->size)
429                 goto no_space;
430
431         /* Compute the tail and wakeup indices now that we've aligned head */
432         tail = PERF_IDX2OFF(handle->head + handle->size, buf);
433         wakeup = PERF_IDX2OFF(handle->wakeup, buf);
434
435         /*
436          * Avoid clobbering unconsumed data. We know we have space, so
437          * if we see head == tail we know that the buffer is empty. If
438          * head > tail, then there's nothing to clobber prior to
439          * wrapping.
440          */
441         if (head < tail)
442                 limit = round_down(tail, PAGE_SIZE);
443
444         /*
445          * Wakeup may be arbitrarily far into the future. If it's not in
446          * the current generation, either we'll wrap before hitting it,
447          * or it's in the past and has been handled already.
448          *
449          * If there's a wakeup before we wrap, arrange to be woken up by
450          * the page boundary following it. Keep the tail boundary if
451          * that's lower.
452          */
453         if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
454                 limit = min(limit, round_up(wakeup, PAGE_SIZE));
455
456         if (limit > head)
457                 return limit;
458
459         arm_spe_pmu_pad_buf(handle, handle->size);
460 no_space:
461         perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
462         perf_aux_output_end(handle, 0);
463         return 0;
464 }
465
466 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
467 {
468         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
469         struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
470         u64 limit = __arm_spe_pmu_next_off(handle);
471         u64 head = PERF_IDX2OFF(handle->head, buf);
472
473         /*
474          * If the head has come too close to the end of the buffer,
475          * then pad to the end and recompute the limit.
476          */
477         if (limit && (limit - head < spe_pmu->max_record_sz)) {
478                 arm_spe_pmu_pad_buf(handle, limit - head);
479                 limit = __arm_spe_pmu_next_off(handle);
480         }
481
482         return limit;
483 }
484
485 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
486                                           struct perf_event *event)
487 {
488         u64 base, limit;
489         struct arm_spe_pmu_buf *buf;
490
491         /* Start a new aux session */
492         buf = perf_aux_output_begin(handle, event);
493         if (!buf) {
494                 event->hw.state |= PERF_HES_STOPPED;
495                 /*
496                  * We still need to clear the limit pointer, since the
497                  * profiler might only be disabled by virtue of a fault.
498                  */
499                 limit = 0;
500                 goto out_write_limit;
501         }
502
503         limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
504                               : arm_spe_pmu_next_off(handle);
505         if (limit)
506                 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
507
508         limit += (u64)buf->base;
509         base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
510         write_sysreg_s(base, SYS_PMBPTR_EL1);
511
512 out_write_limit:
513         write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
514 }
515
516 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
517 {
518         struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
519         u64 offset, size;
520
521         offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
522         size = offset - PERF_IDX2OFF(handle->head, buf);
523
524         if (buf->snapshot)
525                 handle->head = offset;
526
527         perf_aux_output_end(handle, size);
528 }
529
530 static void arm_spe_pmu_disable_and_drain_local(void)
531 {
532         /* Disable profiling at EL0 and EL1 */
533         write_sysreg_s(0, SYS_PMSCR_EL1);
534         isb();
535
536         /* Drain any buffered data */
537         psb_csync();
538         dsb(nsh);
539
540         /* Disable the profiling buffer */
541         write_sysreg_s(0, SYS_PMBLIMITR_EL1);
542         isb();
543 }
544
545 /* IRQ handling */
546 static enum arm_spe_pmu_buf_fault_action
547 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
548 {
549         const char *err_str;
550         u64 pmbsr;
551         enum arm_spe_pmu_buf_fault_action ret;
552
553         /*
554          * Ensure new profiling data is visible to the CPU and any external
555          * aborts have been resolved.
556          */
557         psb_csync();
558         dsb(nsh);
559
560         /* Ensure hardware updates to PMBPTR_EL1 are visible */
561         isb();
562
563         /* Service required? */
564         pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
565         if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
566                 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
567
568         /*
569          * If we've lost data, disable profiling and also set the PARTIAL
570          * flag to indicate that the last record is corrupted.
571          */
572         if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
573                 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
574                                              PERF_AUX_FLAG_PARTIAL);
575
576         /* Report collisions to userspace so that it can up the period */
577         if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
578                 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
579
580         /* We only expect buffer management events */
581         switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
582         case SYS_PMBSR_EL1_EC_BUF:
583                 /* Handled below */
584                 break;
585         case SYS_PMBSR_EL1_EC_FAULT_S1:
586         case SYS_PMBSR_EL1_EC_FAULT_S2:
587                 err_str = "Unexpected buffer fault";
588                 goto out_err;
589         default:
590                 err_str = "Unknown error code";
591                 goto out_err;
592         }
593
594         /* Buffer management event */
595         switch (pmbsr &
596                 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
597         case SYS_PMBSR_EL1_BUF_BSC_FULL:
598                 ret = SPE_PMU_BUF_FAULT_ACT_OK;
599                 goto out_stop;
600         default:
601                 err_str = "Unknown buffer status code";
602         }
603
604 out_err:
605         pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
606                            err_str, smp_processor_id(), pmbsr,
607                            read_sysreg_s(SYS_PMBPTR_EL1),
608                            read_sysreg_s(SYS_PMBLIMITR_EL1));
609         ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
610
611 out_stop:
612         arm_spe_perf_aux_output_end(handle);
613         return ret;
614 }
615
616 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
617 {
618         struct perf_output_handle *handle = dev;
619         struct perf_event *event = handle->event;
620         enum arm_spe_pmu_buf_fault_action act;
621
622         if (!perf_get_aux(handle))
623                 return IRQ_NONE;
624
625         act = arm_spe_pmu_buf_get_fault_act(handle);
626         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
627                 return IRQ_NONE;
628
629         /*
630          * Ensure perf callbacks have completed, which may disable the
631          * profiling buffer in response to a TRUNCATION flag.
632          */
633         irq_work_run();
634
635         switch (act) {
636         case SPE_PMU_BUF_FAULT_ACT_FATAL:
637                 /*
638                  * If a fatal exception occurred then leaving the profiling
639                  * buffer enabled is a recipe waiting to happen. Since
640                  * fatal faults don't always imply truncation, make sure
641                  * that the profiling buffer is disabled explicitly before
642                  * clearing the syndrome register.
643                  */
644                 arm_spe_pmu_disable_and_drain_local();
645                 break;
646         case SPE_PMU_BUF_FAULT_ACT_OK:
647                 /*
648                  * We handled the fault (the buffer was full), so resume
649                  * profiling as long as we didn't detect truncation.
650                  * PMBPTR might be misaligned, but we'll burn that bridge
651                  * when we get to it.
652                  */
653                 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
654                         arm_spe_perf_aux_output_begin(handle, event);
655                         isb();
656                 }
657                 break;
658         case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
659                 /* We've seen you before, but GCC has the memory of a sieve. */
660                 break;
661         }
662
663         /* The buffer pointers are now sane, so resume profiling. */
664         write_sysreg_s(0, SYS_PMBSR_EL1);
665         return IRQ_HANDLED;
666 }
667
668 /* Perf callbacks */
669 static int arm_spe_pmu_event_init(struct perf_event *event)
670 {
671         u64 reg;
672         struct perf_event_attr *attr = &event->attr;
673         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
674
675         /* This is, of course, deeply driver-specific */
676         if (attr->type != event->pmu->type)
677                 return -ENOENT;
678
679         if (event->cpu >= 0 &&
680             !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
681                 return -ENOENT;
682
683         if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
684                 return -EOPNOTSUPP;
685
686         if (attr->exclude_idle)
687                 return -EOPNOTSUPP;
688
689         /*
690          * Feedback-directed frequency throttling doesn't work when we
691          * have a buffer of samples. We'd need to manually count the
692          * samples in the buffer when it fills up and adjust the event
693          * count to reflect that. Instead, just force the user to specify
694          * a sample period.
695          */
696         if (attr->freq)
697                 return -EINVAL;
698
699         reg = arm_spe_event_to_pmsfcr(event);
700         if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
701             !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
702                 return -EOPNOTSUPP;
703
704         if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
705             !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
706                 return -EOPNOTSUPP;
707
708         if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
709             !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
710                 return -EOPNOTSUPP;
711
712         reg = arm_spe_event_to_pmscr(event);
713         if (!capable(CAP_SYS_ADMIN) &&
714             (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
715                     BIT(SYS_PMSCR_EL1_CX_SHIFT) |
716                     BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
717                 return -EACCES;
718
719         return 0;
720 }
721
722 static void arm_spe_pmu_start(struct perf_event *event, int flags)
723 {
724         u64 reg;
725         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
726         struct hw_perf_event *hwc = &event->hw;
727         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
728
729         hwc->state = 0;
730         arm_spe_perf_aux_output_begin(handle, event);
731         if (hwc->state)
732                 return;
733
734         reg = arm_spe_event_to_pmsfcr(event);
735         write_sysreg_s(reg, SYS_PMSFCR_EL1);
736
737         reg = arm_spe_event_to_pmsevfr(event);
738         write_sysreg_s(reg, SYS_PMSEVFR_EL1);
739
740         reg = arm_spe_event_to_pmslatfr(event);
741         write_sysreg_s(reg, SYS_PMSLATFR_EL1);
742
743         if (flags & PERF_EF_RELOAD) {
744                 reg = arm_spe_event_to_pmsirr(event);
745                 write_sysreg_s(reg, SYS_PMSIRR_EL1);
746                 isb();
747                 reg = local64_read(&hwc->period_left);
748                 write_sysreg_s(reg, SYS_PMSICR_EL1);
749         }
750
751         reg = arm_spe_event_to_pmscr(event);
752         isb();
753         write_sysreg_s(reg, SYS_PMSCR_EL1);
754 }
755
756 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
757 {
758         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
759         struct hw_perf_event *hwc = &event->hw;
760         struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
761
762         /* If we're already stopped, then nothing to do */
763         if (hwc->state & PERF_HES_STOPPED)
764                 return;
765
766         /* Stop all trace generation */
767         arm_spe_pmu_disable_and_drain_local();
768
769         if (flags & PERF_EF_UPDATE) {
770                 /*
771                  * If there's a fault pending then ensure we contain it
772                  * to this buffer, since we might be on the context-switch
773                  * path.
774                  */
775                 if (perf_get_aux(handle)) {
776                         enum arm_spe_pmu_buf_fault_action act;
777
778                         act = arm_spe_pmu_buf_get_fault_act(handle);
779                         if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
780                                 arm_spe_perf_aux_output_end(handle);
781                         else
782                                 write_sysreg_s(0, SYS_PMBSR_EL1);
783                 }
784
785                 /*
786                  * This may also contain ECOUNT, but nobody else should
787                  * be looking at period_left, since we forbid frequency
788                  * based sampling.
789                  */
790                 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
791                 hwc->state |= PERF_HES_UPTODATE;
792         }
793
794         hwc->state |= PERF_HES_STOPPED;
795 }
796
797 static int arm_spe_pmu_add(struct perf_event *event, int flags)
798 {
799         int ret = 0;
800         struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
801         struct hw_perf_event *hwc = &event->hw;
802         int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
803
804         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
805                 return -ENOENT;
806
807         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
808
809         if (flags & PERF_EF_START) {
810                 arm_spe_pmu_start(event, PERF_EF_RELOAD);
811                 if (hwc->state & PERF_HES_STOPPED)
812                         ret = -EINVAL;
813         }
814
815         return ret;
816 }
817
818 static void arm_spe_pmu_del(struct perf_event *event, int flags)
819 {
820         arm_spe_pmu_stop(event, PERF_EF_UPDATE);
821 }
822
823 static void arm_spe_pmu_read(struct perf_event *event)
824 {
825 }
826
827 static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages,
828                                    bool snapshot)
829 {
830         int i;
831         struct page **pglist;
832         struct arm_spe_pmu_buf *buf;
833
834         /* We need at least two pages for this to work. */
835         if (nr_pages < 2)
836                 return NULL;
837
838         /*
839          * We require an even number of pages for snapshot mode, so that
840          * we can effectively treat the buffer as consisting of two equal
841          * parts and give userspace a fighting chance of getting some
842          * useful data out of it.
843          */
844         if (!nr_pages || (snapshot && (nr_pages & 1)))
845                 return NULL;
846
847         if (cpu == -1)
848                 cpu = raw_smp_processor_id();
849
850         buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
851         if (!buf)
852                 return NULL;
853
854         pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
855         if (!pglist)
856                 goto out_free_buf;
857
858         for (i = 0; i < nr_pages; ++i) {
859                 struct page *page = virt_to_page(pages[i]);
860
861                 if (PagePrivate(page)) {
862                         pr_warn("unexpected high-order page for auxbuf!");
863                         goto out_free_pglist;
864                 }
865
866                 pglist[i] = virt_to_page(pages[i]);
867         }
868
869         buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
870         if (!buf->base)
871                 goto out_free_pglist;
872
873         buf->nr_pages   = nr_pages;
874         buf->snapshot   = snapshot;
875
876         kfree(pglist);
877         return buf;
878
879 out_free_pglist:
880         kfree(pglist);
881 out_free_buf:
882         kfree(buf);
883         return NULL;
884 }
885
886 static void arm_spe_pmu_free_aux(void *aux)
887 {
888         struct arm_spe_pmu_buf *buf = aux;
889
890         vunmap(buf->base);
891         kfree(buf);
892 }
893
894 /* Initialisation and teardown functions */
895 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
896 {
897         static atomic_t pmu_idx = ATOMIC_INIT(-1);
898
899         int idx;
900         char *name;
901         struct device *dev = &spe_pmu->pdev->dev;
902
903         spe_pmu->pmu = (struct pmu) {
904                 .module = THIS_MODULE,
905                 .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
906                 .attr_groups    = arm_spe_pmu_attr_groups,
907                 /*
908                  * We hitch a ride on the software context here, so that
909                  * we can support per-task profiling (which is not possible
910                  * with the invalid context as it doesn't get sched callbacks).
911                  * This requires that userspace either uses a dummy event for
912                  * perf_event_open, since the aux buffer is not setup until
913                  * a subsequent mmap, or creates the profiling event in a
914                  * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
915                  * once the buffer has been created.
916                  */
917                 .task_ctx_nr    = perf_sw_context,
918                 .event_init     = arm_spe_pmu_event_init,
919                 .add            = arm_spe_pmu_add,
920                 .del            = arm_spe_pmu_del,
921                 .start          = arm_spe_pmu_start,
922                 .stop           = arm_spe_pmu_stop,
923                 .read           = arm_spe_pmu_read,
924                 .setup_aux      = arm_spe_pmu_setup_aux,
925                 .free_aux       = arm_spe_pmu_free_aux,
926         };
927
928         idx = atomic_inc_return(&pmu_idx);
929         name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
930         return perf_pmu_register(&spe_pmu->pmu, name, -1);
931 }
932
933 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
934 {
935         perf_pmu_unregister(&spe_pmu->pmu);
936 }
937
938 static void __arm_spe_pmu_dev_probe(void *info)
939 {
940         int fld;
941         u64 reg;
942         struct arm_spe_pmu *spe_pmu = info;
943         struct device *dev = &spe_pmu->pdev->dev;
944
945         fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
946                                                    ID_AA64DFR0_PMSVER_SHIFT);
947         if (!fld) {
948                 dev_err(dev,
949                         "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
950                         fld, smp_processor_id());
951                 return;
952         }
953
954         /* Read PMBIDR first to determine whether or not we have access */
955         reg = read_sysreg_s(SYS_PMBIDR_EL1);
956         if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
957                 dev_err(dev,
958                         "profiling buffer owned by higher exception level\n");
959                 return;
960         }
961
962         /* Minimum alignment. If it's out-of-range, then fail the probe */
963         fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
964         spe_pmu->align = 1 << fld;
965         if (spe_pmu->align > SZ_2K) {
966                 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
967                         fld, smp_processor_id());
968                 return;
969         }
970
971         /* It's now safe to read PMSIDR and figure out what we've got */
972         reg = read_sysreg_s(SYS_PMSIDR_EL1);
973         if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
974                 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
975
976         if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
977                 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
978
979         if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
980                 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
981
982         if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
983                 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
984
985         if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
986                 spe_pmu->features |= SPE_PMU_FEAT_LDS;
987
988         if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
989                 spe_pmu->features |= SPE_PMU_FEAT_ERND;
990
991         /* This field has a spaced out encoding, so just use a look-up */
992         fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
993         switch (fld) {
994         case 0:
995                 spe_pmu->min_period = 256;
996                 break;
997         case 2:
998                 spe_pmu->min_period = 512;
999                 break;
1000         case 3:
1001                 spe_pmu->min_period = 768;
1002                 break;
1003         case 4:
1004                 spe_pmu->min_period = 1024;
1005                 break;
1006         case 5:
1007                 spe_pmu->min_period = 1536;
1008                 break;
1009         case 6:
1010                 spe_pmu->min_period = 2048;
1011                 break;
1012         case 7:
1013                 spe_pmu->min_period = 3072;
1014                 break;
1015         default:
1016                 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1017                          fld);
1018                 /* Fallthrough */
1019         case 8:
1020                 spe_pmu->min_period = 4096;
1021         }
1022
1023         /* Maximum record size. If it's out-of-range, then fail the probe */
1024         fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1025         spe_pmu->max_record_sz = 1 << fld;
1026         if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1027                 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1028                         fld, smp_processor_id());
1029                 return;
1030         }
1031
1032         fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1033         switch (fld) {
1034         default:
1035                 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1036                          fld);
1037                 /* Fallthrough */
1038         case 2:
1039                 spe_pmu->counter_sz = 12;
1040         }
1041
1042         dev_info(dev,
1043                  "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1044                  cpumask_pr_args(&spe_pmu->supported_cpus),
1045                  spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1046
1047         spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1048         return;
1049 }
1050
1051 static void __arm_spe_pmu_reset_local(void)
1052 {
1053         /*
1054          * This is probably overkill, as we have no idea where we're
1055          * draining any buffered data to...
1056          */
1057         arm_spe_pmu_disable_and_drain_local();
1058
1059         /* Reset the buffer base pointer */
1060         write_sysreg_s(0, SYS_PMBPTR_EL1);
1061         isb();
1062
1063         /* Clear any pending management interrupts */
1064         write_sysreg_s(0, SYS_PMBSR_EL1);
1065         isb();
1066 }
1067
1068 static void __arm_spe_pmu_setup_one(void *info)
1069 {
1070         struct arm_spe_pmu *spe_pmu = info;
1071
1072         __arm_spe_pmu_reset_local();
1073         enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1074 }
1075
1076 static void __arm_spe_pmu_stop_one(void *info)
1077 {
1078         struct arm_spe_pmu *spe_pmu = info;
1079
1080         disable_percpu_irq(spe_pmu->irq);
1081         __arm_spe_pmu_reset_local();
1082 }
1083
1084 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1085 {
1086         struct arm_spe_pmu *spe_pmu;
1087
1088         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1089         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1090                 return 0;
1091
1092         __arm_spe_pmu_setup_one(spe_pmu);
1093         return 0;
1094 }
1095
1096 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1097 {
1098         struct arm_spe_pmu *spe_pmu;
1099
1100         spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1101         if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1102                 return 0;
1103
1104         __arm_spe_pmu_stop_one(spe_pmu);
1105         return 0;
1106 }
1107
1108 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1109 {
1110         int ret;
1111         cpumask_t *mask = &spe_pmu->supported_cpus;
1112
1113         /* Make sure we probe the hardware on a relevant CPU */
1114         ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1115         if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1116                 return -ENXIO;
1117
1118         /* Request our PPIs (note that the IRQ is still disabled) */
1119         ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1120                                  spe_pmu->handle);
1121         if (ret)
1122                 return ret;
1123
1124         /*
1125          * Register our hotplug notifier now so we don't miss any events.
1126          * This will enable the IRQ for any supported CPUs that are already
1127          * up.
1128          */
1129         ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1130                                        &spe_pmu->hotplug_node);
1131         if (ret)
1132                 free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1133
1134         return ret;
1135 }
1136
1137 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1138 {
1139         cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1140         free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1141 }
1142
1143 /* Driver and device probing */
1144 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1145 {
1146         struct platform_device *pdev = spe_pmu->pdev;
1147         int irq = platform_get_irq(pdev, 0);
1148
1149         if (irq < 0) {
1150                 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1151                 return -ENXIO;
1152         }
1153
1154         if (!irq_is_percpu(irq)) {
1155                 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1156                 return -EINVAL;
1157         }
1158
1159         if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1160                 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1161                 return -EINVAL;
1162         }
1163
1164         spe_pmu->irq = irq;
1165         return 0;
1166 }
1167
1168 static const struct of_device_id arm_spe_pmu_of_match[] = {
1169         { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1170         { /* Sentinel */ },
1171 };
1172
1173 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1174 {
1175         int ret;
1176         struct arm_spe_pmu *spe_pmu;
1177         struct device *dev = &pdev->dev;
1178
1179         /*
1180          * If kernelspace is unmapped when running at EL0, then the SPE
1181          * buffer will fault and prematurely terminate the AUX session.
1182          */
1183         if (arm64_kernel_unmapped_at_el0()) {
1184                 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1185                 return -EPERM;
1186         }
1187
1188         spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1189         if (!spe_pmu) {
1190                 dev_err(dev, "failed to allocate spe_pmu\n");
1191                 return -ENOMEM;
1192         }
1193
1194         spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1195         if (!spe_pmu->handle)
1196                 return -ENOMEM;
1197
1198         spe_pmu->pdev = pdev;
1199         platform_set_drvdata(pdev, spe_pmu);
1200
1201         ret = arm_spe_pmu_irq_probe(spe_pmu);
1202         if (ret)
1203                 goto out_free_handle;
1204
1205         ret = arm_spe_pmu_dev_init(spe_pmu);
1206         if (ret)
1207                 goto out_free_handle;
1208
1209         ret = arm_spe_pmu_perf_init(spe_pmu);
1210         if (ret)
1211                 goto out_teardown_dev;
1212
1213         return 0;
1214
1215 out_teardown_dev:
1216         arm_spe_pmu_dev_teardown(spe_pmu);
1217 out_free_handle:
1218         free_percpu(spe_pmu->handle);
1219         return ret;
1220 }
1221
1222 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1223 {
1224         struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1225
1226         arm_spe_pmu_perf_destroy(spe_pmu);
1227         arm_spe_pmu_dev_teardown(spe_pmu);
1228         free_percpu(spe_pmu->handle);
1229         return 0;
1230 }
1231
1232 static struct platform_driver arm_spe_pmu_driver = {
1233         .driver = {
1234                 .name           = DRVNAME,
1235                 .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1236         },
1237         .probe  = arm_spe_pmu_device_dt_probe,
1238         .remove = arm_spe_pmu_device_remove,
1239 };
1240
1241 static int __init arm_spe_pmu_init(void)
1242 {
1243         int ret;
1244
1245         ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1246                                       arm_spe_pmu_cpu_startup,
1247                                       arm_spe_pmu_cpu_teardown);
1248         if (ret < 0)
1249                 return ret;
1250         arm_spe_pmu_online = ret;
1251
1252         ret = platform_driver_register(&arm_spe_pmu_driver);
1253         if (ret)
1254                 cpuhp_remove_multi_state(arm_spe_pmu_online);
1255
1256         return ret;
1257 }
1258
1259 static void __exit arm_spe_pmu_exit(void)
1260 {
1261         platform_driver_unregister(&arm_spe_pmu_driver);
1262         cpuhp_remove_multi_state(arm_spe_pmu_online);
1263 }
1264
1265 module_init(arm_spe_pmu_init);
1266 module_exit(arm_spe_pmu_exit);
1267
1268 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1269 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1270 MODULE_LICENSE("GPL v2");