Merge tag 'backlight-next-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/lee...
[sfrench/cifs-2.6.git] / drivers / perf / arm_pmu_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ACPI probing code for ARM performance counters.
4  *
5  * Copyright (C) 2017 ARM Ltd.
6  */
7
8 #include <linux/acpi.h>
9 #include <linux/cpumask.h>
10 #include <linux/init.h>
11 #include <linux/irq.h>
12 #include <linux/irqdesc.h>
13 #include <linux/percpu.h>
14 #include <linux/perf/arm_pmu.h>
15
16 #include <asm/cpu.h>
17 #include <asm/cputype.h>
18
19 static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
20 static DEFINE_PER_CPU(int, pmu_irqs);
21
22 static int arm_pmu_acpi_register_irq(int cpu)
23 {
24         struct acpi_madt_generic_interrupt *gicc;
25         int gsi, trigger;
26
27         gicc = acpi_cpu_get_madt_gicc(cpu);
28
29         gsi = gicc->performance_interrupt;
30
31         /*
32          * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
33          * have an interrupt. QEMU advertises this by using a GSI of zero,
34          * which is not known to be valid on any hardware despite being
35          * valid per the spec. Take the pragmatic approach and reject a
36          * GSI of zero for now.
37          */
38         if (!gsi)
39                 return 0;
40
41         if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
42                 trigger = ACPI_EDGE_SENSITIVE;
43         else
44                 trigger = ACPI_LEVEL_SENSITIVE;
45
46         /*
47          * Helpfully, the MADT GICC doesn't have a polarity flag for the
48          * "performance interrupt". Luckily, on compliant GICs the polarity is
49          * a fixed value in HW (for both SPIs and PPIs) that we cannot change
50          * from SW.
51          *
52          * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
53          * may not match the real polarity, but that should not matter.
54          *
55          * Other interrupt controllers are not supported with ACPI.
56          */
57         return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
58 }
59
60 static void arm_pmu_acpi_unregister_irq(int cpu)
61 {
62         struct acpi_madt_generic_interrupt *gicc;
63         int gsi;
64
65         gicc = acpi_cpu_get_madt_gicc(cpu);
66
67         gsi = gicc->performance_interrupt;
68         if (gsi)
69                 acpi_unregister_gsi(gsi);
70 }
71
72 static int __maybe_unused
73 arm_acpi_register_pmu_device(struct platform_device *pdev, u8 len,
74                              u16 (*parse_gsi)(struct acpi_madt_generic_interrupt *))
75 {
76         int cpu, this_hetid, hetid, irq, ret;
77         u16 this_gsi = 0, gsi = 0;
78
79         /*
80          * Ensure that platform device must have IORESOURCE_IRQ
81          * resource to hold gsi interrupt.
82          */
83         if (pdev->num_resources != 1)
84                 return -ENXIO;
85
86         if (pdev->resource[0].flags != IORESOURCE_IRQ)
87                 return -ENXIO;
88
89         /*
90          * Sanity check all the GICC tables for the same interrupt
91          * number. For now, only support homogeneous ACPI machines.
92          */
93         for_each_possible_cpu(cpu) {
94                 struct acpi_madt_generic_interrupt *gicc;
95
96                 gicc = acpi_cpu_get_madt_gicc(cpu);
97                 if (gicc->header.length < len)
98                         return gsi ? -ENXIO : 0;
99
100                 this_gsi = parse_gsi(gicc);
101                 this_hetid = find_acpi_cpu_topology_hetero_id(cpu);
102                 if (!gsi) {
103                         hetid = this_hetid;
104                         gsi = this_gsi;
105                 } else if (hetid != this_hetid || gsi != this_gsi) {
106                         pr_warn("ACPI: %s: must be homogeneous\n", pdev->name);
107                         return -ENXIO;
108                 }
109         }
110
111         if (!this_gsi)
112                 return 0;
113
114         irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_HIGH);
115         if (irq < 0) {
116                 pr_warn("ACPI: %s Unable to register interrupt: %d\n", pdev->name, gsi);
117                 return -ENXIO;
118         }
119
120         pdev->resource[0].start = irq;
121         ret = platform_device_register(pdev);
122         if (ret)
123                 acpi_unregister_gsi(gsi);
124
125         return ret;
126 }
127
128 #if IS_ENABLED(CONFIG_ARM_SPE_PMU)
129 static struct resource spe_resources[] = {
130         {
131                 /* irq */
132                 .flags          = IORESOURCE_IRQ,
133         }
134 };
135
136 static struct platform_device spe_dev = {
137         .name = ARMV8_SPE_PDEV_NAME,
138         .id = -1,
139         .resource = spe_resources,
140         .num_resources = ARRAY_SIZE(spe_resources)
141 };
142
143 static u16 arm_spe_parse_gsi(struct acpi_madt_generic_interrupt *gicc)
144 {
145         return gicc->spe_interrupt;
146 }
147
148 /*
149  * For lack of a better place, hook the normal PMU MADT walk
150  * and create a SPE device if we detect a recent MADT with
151  * a homogeneous PPI mapping.
152  */
153 static void arm_spe_acpi_register_device(void)
154 {
155         int ret = arm_acpi_register_pmu_device(&spe_dev, ACPI_MADT_GICC_SPE,
156                                                arm_spe_parse_gsi);
157         if (ret)
158                 pr_warn("ACPI: SPE: Unable to register device\n");
159 }
160 #else
161 static inline void arm_spe_acpi_register_device(void)
162 {
163 }
164 #endif /* CONFIG_ARM_SPE_PMU */
165
166 #if IS_ENABLED(CONFIG_CORESIGHT_TRBE)
167 static struct resource trbe_resources[] = {
168         {
169                 /* irq */
170                 .flags          = IORESOURCE_IRQ,
171         }
172 };
173
174 static struct platform_device trbe_dev = {
175         .name = ARMV8_TRBE_PDEV_NAME,
176         .id = -1,
177         .resource = trbe_resources,
178         .num_resources = ARRAY_SIZE(trbe_resources)
179 };
180
181 static u16 arm_trbe_parse_gsi(struct acpi_madt_generic_interrupt *gicc)
182 {
183         return gicc->trbe_interrupt;
184 }
185
186 static void arm_trbe_acpi_register_device(void)
187 {
188         int ret = arm_acpi_register_pmu_device(&trbe_dev, ACPI_MADT_GICC_TRBE,
189                                                arm_trbe_parse_gsi);
190         if (ret)
191                 pr_warn("ACPI: TRBE: Unable to register device\n");
192 }
193 #else
194 static inline void arm_trbe_acpi_register_device(void)
195 {
196
197 }
198 #endif /* CONFIG_CORESIGHT_TRBE */
199
200 static int arm_pmu_acpi_parse_irqs(void)
201 {
202         int irq, cpu, irq_cpu, err;
203
204         for_each_possible_cpu(cpu) {
205                 irq = arm_pmu_acpi_register_irq(cpu);
206                 if (irq < 0) {
207                         err = irq;
208                         pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
209                                 cpu, err);
210                         goto out_err;
211                 } else if (irq == 0) {
212                         pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
213                 }
214
215                 /*
216                  * Log and request the IRQ so the core arm_pmu code can manage
217                  * it. We'll have to sanity-check IRQs later when we associate
218                  * them with their PMUs.
219                  */
220                 per_cpu(pmu_irqs, cpu) = irq;
221                 err = armpmu_request_irq(irq, cpu);
222                 if (err)
223                         goto out_err;
224         }
225
226         return 0;
227
228 out_err:
229         for_each_possible_cpu(cpu) {
230                 irq = per_cpu(pmu_irqs, cpu);
231                 if (!irq)
232                         continue;
233
234                 arm_pmu_acpi_unregister_irq(cpu);
235
236                 /*
237                  * Blat all copies of the IRQ so that we only unregister the
238                  * corresponding GSI once (e.g. when we have PPIs).
239                  */
240                 for_each_possible_cpu(irq_cpu) {
241                         if (per_cpu(pmu_irqs, irq_cpu) == irq)
242                                 per_cpu(pmu_irqs, irq_cpu) = 0;
243                 }
244         }
245
246         return err;
247 }
248
249 static struct arm_pmu *arm_pmu_acpi_find_pmu(void)
250 {
251         unsigned long cpuid = read_cpuid_id();
252         struct arm_pmu *pmu;
253         int cpu;
254
255         for_each_possible_cpu(cpu) {
256                 pmu = per_cpu(probed_pmus, cpu);
257                 if (!pmu || pmu->acpi_cpuid != cpuid)
258                         continue;
259
260                 return pmu;
261         }
262
263         return NULL;
264 }
265
266 /*
267  * Check whether the new IRQ is compatible with those already associated with
268  * the PMU (e.g. we don't have mismatched PPIs).
269  */
270 static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
271 {
272         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
273         int cpu;
274
275         if (!irq)
276                 return true;
277
278         for_each_cpu(cpu, &pmu->supported_cpus) {
279                 int other_irq = per_cpu(hw_events->irq, cpu);
280                 if (!other_irq)
281                         continue;
282
283                 if (irq == other_irq)
284                         continue;
285                 if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
286                         continue;
287
288                 pr_warn("mismatched PPIs detected\n");
289                 return false;
290         }
291
292         return true;
293 }
294
295 static void arm_pmu_acpi_associate_pmu_cpu(struct arm_pmu *pmu,
296                                            unsigned int cpu)
297 {
298         int irq = per_cpu(pmu_irqs, cpu);
299
300         per_cpu(probed_pmus, cpu) = pmu;
301
302         if (pmu_irq_matches(pmu, irq)) {
303                 struct pmu_hw_events __percpu *hw_events;
304                 hw_events = pmu->hw_events;
305                 per_cpu(hw_events->irq, cpu) = irq;
306         }
307
308         cpumask_set_cpu(cpu, &pmu->supported_cpus);
309 }
310
311 /*
312  * This must run before the common arm_pmu hotplug logic, so that we can
313  * associate a CPU and its interrupt before the common code tries to manage the
314  * affinity and so on.
315  *
316  * Note that hotplug events are serialized, so we cannot race with another CPU
317  * coming up. The perf core won't open events while a hotplug event is in
318  * progress.
319  */
320 static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
321 {
322         struct arm_pmu *pmu;
323
324         /* If we've already probed this CPU, we have nothing to do */
325         if (per_cpu(probed_pmus, cpu))
326                 return 0;
327
328         pmu = arm_pmu_acpi_find_pmu();
329         if (!pmu) {
330                 pr_warn_ratelimited("Unable to associate CPU%d with a PMU\n",
331                                     cpu);
332                 return 0;
333         }
334
335         arm_pmu_acpi_associate_pmu_cpu(pmu, cpu);
336         return 0;
337 }
338
339 static void arm_pmu_acpi_probe_matching_cpus(struct arm_pmu *pmu,
340                                              unsigned long cpuid)
341 {
342         int cpu;
343
344         for_each_online_cpu(cpu) {
345                 unsigned long cpu_cpuid = per_cpu(cpu_data, cpu).reg_midr;
346
347                 if (cpu_cpuid == cpuid)
348                         arm_pmu_acpi_associate_pmu_cpu(pmu, cpu);
349         }
350 }
351
352 int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
353 {
354         int pmu_idx = 0;
355         unsigned int cpu;
356         int ret;
357
358         ret = arm_pmu_acpi_parse_irqs();
359         if (ret)
360                 return ret;
361
362         ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_ACPI_STARTING,
363                                         "perf/arm/pmu_acpi:starting",
364                                         arm_pmu_acpi_cpu_starting, NULL);
365         if (ret)
366                 return ret;
367
368         /*
369          * Initialise and register the set of PMUs which we know about right
370          * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
371          * could handle late hotplug, but this may lead to deadlock since we
372          * might try to register a hotplug notifier instance from within a
373          * hotplug notifier.
374          *
375          * There's also the problem of having access to the right init_fn,
376          * without tying this too deeply into the "real" PMU driver.
377          *
378          * For the moment, as with the platform/DT case, we need at least one
379          * of a PMU's CPUs to be online at probe time.
380          */
381         for_each_online_cpu(cpu) {
382                 struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
383                 unsigned long cpuid;
384                 char *base_name;
385
386                 /* If we've already probed this CPU, we have nothing to do */
387                 if (pmu)
388                         continue;
389
390                 pmu = armpmu_alloc();
391                 if (!pmu) {
392                         pr_warn("Unable to allocate PMU for CPU%d\n",
393                                 cpu);
394                         return -ENOMEM;
395                 }
396
397                 cpuid = per_cpu(cpu_data, cpu).reg_midr;
398                 pmu->acpi_cpuid = cpuid;
399
400                 arm_pmu_acpi_probe_matching_cpus(pmu, cpuid);
401
402                 ret = init_fn(pmu);
403                 if (ret == -ENODEV) {
404                         /* PMU not handled by this driver, or not present */
405                         continue;
406                 } else if (ret) {
407                         pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
408                         return ret;
409                 }
410
411                 base_name = pmu->name;
412                 pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
413                 if (!pmu->name) {
414                         pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
415                         return -ENOMEM;
416                 }
417
418                 ret = armpmu_register(pmu);
419                 if (ret) {
420                         pr_warn("Failed to register PMU for CPU%d\n", cpu);
421                         kfree(pmu->name);
422                         return ret;
423                 }
424         }
425
426         return ret;
427 }
428
429 static int arm_pmu_acpi_init(void)
430 {
431         if (acpi_disabled)
432                 return 0;
433
434         arm_spe_acpi_register_device();
435         arm_trbe_acpi_register_device();
436
437         return 0;
438 }
439 subsys_initcall(arm_pmu_acpi_init)