Merge tag 'timers-core-2024-01-21' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / perf / arm_pmu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26
27 #include <asm/irq_regs.h>
28
29 static int armpmu_count_irq_users(const int irq);
30
31 struct pmu_irq_ops {
32         void (*enable_pmuirq)(unsigned int irq);
33         void (*disable_pmuirq)(unsigned int irq);
34         void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39         free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41
42 static const struct pmu_irq_ops pmuirq_ops = {
43         .enable_pmuirq = enable_irq,
44         .disable_pmuirq = disable_irq_nosync,
45         .free_pmuirq = armpmu_free_pmuirq
46 };
47
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50         free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52
53 static const struct pmu_irq_ops pmunmi_ops = {
54         .enable_pmuirq = enable_nmi,
55         .disable_pmuirq = disable_nmi_nosync,
56         .free_pmuirq = armpmu_free_pmunmi
57 };
58
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61         enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65                                    void __percpu *devid)
66 {
67         if (armpmu_count_irq_users(irq) == 1)
68                 free_percpu_irq(irq, devid);
69 }
70
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72         .enable_pmuirq = armpmu_enable_percpu_pmuirq,
73         .disable_pmuirq = disable_percpu_irq,
74         .free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79         if (!prepare_percpu_nmi(irq))
80                 enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85         disable_percpu_nmi(irq);
86         teardown_percpu_nmi(irq);
87 }
88
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90                                       void __percpu *devid)
91 {
92         if (armpmu_count_irq_users(irq) == 1)
93                 free_percpu_nmi(irq, devid);
94 }
95
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97         .enable_pmuirq = armpmu_enable_percpu_pmunmi,
98         .disable_pmuirq = armpmu_disable_percpu_pmunmi,
99         .free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105
106 static bool has_nmi;
107
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110         if (event->hw.flags & ARMPMU_EVT_64BIT)
111                 return GENMASK_ULL(63, 0);
112         else if (event->hw.flags & ARMPMU_EVT_63BIT)
113                 return GENMASK_ULL(62, 0);
114         else if (event->hw.flags & ARMPMU_EVT_47BIT)
115                 return GENMASK_ULL(46, 0);
116         else
117                 return GENMASK_ULL(31, 0);
118 }
119
120 static int
121 armpmu_map_cache_event(const unsigned (*cache_map)
122                                       [PERF_COUNT_HW_CACHE_MAX]
123                                       [PERF_COUNT_HW_CACHE_OP_MAX]
124                                       [PERF_COUNT_HW_CACHE_RESULT_MAX],
125                        u64 config)
126 {
127         unsigned int cache_type, cache_op, cache_result, ret;
128
129         cache_type = (config >>  0) & 0xff;
130         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
131                 return -EINVAL;
132
133         cache_op = (config >>  8) & 0xff;
134         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
135                 return -EINVAL;
136
137         cache_result = (config >> 16) & 0xff;
138         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
139                 return -EINVAL;
140
141         if (!cache_map)
142                 return -ENOENT;
143
144         ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
145
146         if (ret == CACHE_OP_UNSUPPORTED)
147                 return -ENOENT;
148
149         return ret;
150 }
151
152 static int
153 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
154 {
155         int mapping;
156
157         if (config >= PERF_COUNT_HW_MAX)
158                 return -EINVAL;
159
160         if (!event_map)
161                 return -ENOENT;
162
163         mapping = (*event_map)[config];
164         return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
165 }
166
167 static int
168 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
169 {
170         return (int)(config & raw_event_mask);
171 }
172
173 int
174 armpmu_map_event(struct perf_event *event,
175                  const unsigned (*event_map)[PERF_COUNT_HW_MAX],
176                  const unsigned (*cache_map)
177                                 [PERF_COUNT_HW_CACHE_MAX]
178                                 [PERF_COUNT_HW_CACHE_OP_MAX]
179                                 [PERF_COUNT_HW_CACHE_RESULT_MAX],
180                  u32 raw_event_mask)
181 {
182         u64 config = event->attr.config;
183         int type = event->attr.type;
184
185         if (type == event->pmu->type)
186                 return armpmu_map_raw_event(raw_event_mask, config);
187
188         switch (type) {
189         case PERF_TYPE_HARDWARE:
190                 return armpmu_map_hw_event(event_map, config);
191         case PERF_TYPE_HW_CACHE:
192                 return armpmu_map_cache_event(cache_map, config);
193         case PERF_TYPE_RAW:
194                 return armpmu_map_raw_event(raw_event_mask, config);
195         }
196
197         return -ENOENT;
198 }
199
200 int armpmu_event_set_period(struct perf_event *event)
201 {
202         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
203         struct hw_perf_event *hwc = &event->hw;
204         s64 left = local64_read(&hwc->period_left);
205         s64 period = hwc->sample_period;
206         u64 max_period;
207         int ret = 0;
208
209         max_period = arm_pmu_event_max_period(event);
210         if (unlikely(left <= -period)) {
211                 left = period;
212                 local64_set(&hwc->period_left, left);
213                 hwc->last_period = period;
214                 ret = 1;
215         }
216
217         if (unlikely(left <= 0)) {
218                 left += period;
219                 local64_set(&hwc->period_left, left);
220                 hwc->last_period = period;
221                 ret = 1;
222         }
223
224         /*
225          * Limit the maximum period to prevent the counter value
226          * from overtaking the one we are about to program. In
227          * effect we are reducing max_period to account for
228          * interrupt latency (and we are being very conservative).
229          */
230         if (left > (max_period >> 1))
231                 left = (max_period >> 1);
232
233         local64_set(&hwc->prev_count, (u64)-left);
234
235         armpmu->write_counter(event, (u64)(-left) & max_period);
236
237         perf_event_update_userpage(event);
238
239         return ret;
240 }
241
242 u64 armpmu_event_update(struct perf_event *event)
243 {
244         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
245         struct hw_perf_event *hwc = &event->hw;
246         u64 delta, prev_raw_count, new_raw_count;
247         u64 max_period = arm_pmu_event_max_period(event);
248
249 again:
250         prev_raw_count = local64_read(&hwc->prev_count);
251         new_raw_count = armpmu->read_counter(event);
252
253         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
254                              new_raw_count) != prev_raw_count)
255                 goto again;
256
257         delta = (new_raw_count - prev_raw_count) & max_period;
258
259         local64_add(delta, &event->count);
260         local64_sub(delta, &hwc->period_left);
261
262         return new_raw_count;
263 }
264
265 static void
266 armpmu_read(struct perf_event *event)
267 {
268         armpmu_event_update(event);
269 }
270
271 static void
272 armpmu_stop(struct perf_event *event, int flags)
273 {
274         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
275         struct hw_perf_event *hwc = &event->hw;
276
277         /*
278          * ARM pmu always has to update the counter, so ignore
279          * PERF_EF_UPDATE, see comments in armpmu_start().
280          */
281         if (!(hwc->state & PERF_HES_STOPPED)) {
282                 armpmu->disable(event);
283                 armpmu_event_update(event);
284                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
285         }
286 }
287
288 static void armpmu_start(struct perf_event *event, int flags)
289 {
290         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
291         struct hw_perf_event *hwc = &event->hw;
292
293         /*
294          * ARM pmu always has to reprogram the period, so ignore
295          * PERF_EF_RELOAD, see the comment below.
296          */
297         if (flags & PERF_EF_RELOAD)
298                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
299
300         hwc->state = 0;
301         /*
302          * Set the period again. Some counters can't be stopped, so when we
303          * were stopped we simply disabled the IRQ source and the counter
304          * may have been left counting. If we don't do this step then we may
305          * get an interrupt too soon or *way* too late if the overflow has
306          * happened since disabling.
307          */
308         armpmu_event_set_period(event);
309         armpmu->enable(event);
310 }
311
312 static void
313 armpmu_del(struct perf_event *event, int flags)
314 {
315         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
317         struct hw_perf_event *hwc = &event->hw;
318         int idx = hwc->idx;
319
320         armpmu_stop(event, PERF_EF_UPDATE);
321         hw_events->events[idx] = NULL;
322         armpmu->clear_event_idx(hw_events, event);
323         perf_event_update_userpage(event);
324         /* Clear the allocated counter */
325         hwc->idx = -1;
326 }
327
328 static int
329 armpmu_add(struct perf_event *event, int flags)
330 {
331         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
333         struct hw_perf_event *hwc = &event->hw;
334         int idx;
335
336         /* An event following a process won't be stopped earlier */
337         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
338                 return -ENOENT;
339
340         /* If we don't have a space for the counter then finish early. */
341         idx = armpmu->get_event_idx(hw_events, event);
342         if (idx < 0)
343                 return idx;
344
345         /*
346          * If there is an event in the counter we are going to use then make
347          * sure it is disabled.
348          */
349         event->hw.idx = idx;
350         armpmu->disable(event);
351         hw_events->events[idx] = event;
352
353         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
354         if (flags & PERF_EF_START)
355                 armpmu_start(event, PERF_EF_RELOAD);
356
357         /* Propagate our changes to the userspace mapping. */
358         perf_event_update_userpage(event);
359
360         return 0;
361 }
362
363 static int
364 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
365                                struct perf_event *event)
366 {
367         struct arm_pmu *armpmu;
368
369         if (is_software_event(event))
370                 return 1;
371
372         /*
373          * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
374          * core perf code won't check that the pmu->ctx == leader->ctx
375          * until after pmu->event_init(event).
376          */
377         if (event->pmu != pmu)
378                 return 0;
379
380         if (event->state < PERF_EVENT_STATE_OFF)
381                 return 1;
382
383         if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
384                 return 1;
385
386         armpmu = to_arm_pmu(event->pmu);
387         return armpmu->get_event_idx(hw_events, event) >= 0;
388 }
389
390 static int
391 validate_group(struct perf_event *event)
392 {
393         struct perf_event *sibling, *leader = event->group_leader;
394         struct pmu_hw_events fake_pmu;
395
396         /*
397          * Initialise the fake PMU. We only need to populate the
398          * used_mask for the purposes of validation.
399          */
400         memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
401
402         if (!validate_event(event->pmu, &fake_pmu, leader))
403                 return -EINVAL;
404
405         if (event == leader)
406                 return 0;
407
408         for_each_sibling_event(sibling, leader) {
409                 if (!validate_event(event->pmu, &fake_pmu, sibling))
410                         return -EINVAL;
411         }
412
413         if (!validate_event(event->pmu, &fake_pmu, event))
414                 return -EINVAL;
415
416         return 0;
417 }
418
419 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
420 {
421         struct arm_pmu *armpmu;
422         int ret;
423         u64 start_clock, finish_clock;
424
425         /*
426          * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
427          * the handlers expect a struct arm_pmu*. The percpu_irq framework will
428          * do any necessary shifting, we just need to perform the first
429          * dereference.
430          */
431         armpmu = *(void **)dev;
432         if (WARN_ON_ONCE(!armpmu))
433                 return IRQ_NONE;
434
435         start_clock = sched_clock();
436         ret = armpmu->handle_irq(armpmu);
437         finish_clock = sched_clock();
438
439         perf_sample_event_took(finish_clock - start_clock);
440         return ret;
441 }
442
443 static int
444 __hw_perf_event_init(struct perf_event *event)
445 {
446         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
447         struct hw_perf_event *hwc = &event->hw;
448         int mapping, ret;
449
450         hwc->flags = 0;
451         mapping = armpmu->map_event(event);
452
453         if (mapping < 0) {
454                 pr_debug("event %x:%llx not supported\n", event->attr.type,
455                          event->attr.config);
456                 return mapping;
457         }
458
459         /*
460          * We don't assign an index until we actually place the event onto
461          * hardware. Use -1 to signify that we haven't decided where to put it
462          * yet. For SMP systems, each core has it's own PMU so we can't do any
463          * clever allocation or constraints checking at this point.
464          */
465         hwc->idx                = -1;
466         hwc->config_base        = 0;
467         hwc->config             = 0;
468         hwc->event_base         = 0;
469
470         /*
471          * Check whether we need to exclude the counter from certain modes.
472          */
473         if (armpmu->set_event_filter) {
474                 ret = armpmu->set_event_filter(hwc, &event->attr);
475                 if (ret)
476                         return ret;
477         }
478
479         /*
480          * Store the event encoding into the config_base field.
481          */
482         hwc->config_base            |= (unsigned long)mapping;
483
484         if (!is_sampling_event(event)) {
485                 /*
486                  * For non-sampling runs, limit the sample_period to half
487                  * of the counter width. That way, the new counter value
488                  * is far less likely to overtake the previous one unless
489                  * you have some serious IRQ latency issues.
490                  */
491                 hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
492                 hwc->last_period    = hwc->sample_period;
493                 local64_set(&hwc->period_left, hwc->sample_period);
494         }
495
496         return validate_group(event);
497 }
498
499 static int armpmu_event_init(struct perf_event *event)
500 {
501         struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
502
503         /*
504          * Reject CPU-affine events for CPUs that are of a different class to
505          * that which this PMU handles. Process-following events (where
506          * event->cpu == -1) can be migrated between CPUs, and thus we have to
507          * reject them later (in armpmu_add) if they're scheduled on a
508          * different class of CPU.
509          */
510         if (event->cpu != -1 &&
511                 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
512                 return -ENOENT;
513
514         /* does not support taken branch sampling */
515         if (has_branch_stack(event))
516                 return -EOPNOTSUPP;
517
518         return __hw_perf_event_init(event);
519 }
520
521 static void armpmu_enable(struct pmu *pmu)
522 {
523         struct arm_pmu *armpmu = to_arm_pmu(pmu);
524         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
525         bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
526
527         /* For task-bound events we may be called on other CPUs */
528         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
529                 return;
530
531         if (enabled)
532                 armpmu->start(armpmu);
533 }
534
535 static void armpmu_disable(struct pmu *pmu)
536 {
537         struct arm_pmu *armpmu = to_arm_pmu(pmu);
538
539         /* For task-bound events we may be called on other CPUs */
540         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
541                 return;
542
543         armpmu->stop(armpmu);
544 }
545
546 /*
547  * In heterogeneous systems, events are specific to a particular
548  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
549  * the same microarchitecture.
550  */
551 static bool armpmu_filter(struct pmu *pmu, int cpu)
552 {
553         struct arm_pmu *armpmu = to_arm_pmu(pmu);
554         return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
555 }
556
557 static ssize_t cpus_show(struct device *dev,
558                          struct device_attribute *attr, char *buf)
559 {
560         struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
561         return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
562 }
563
564 static DEVICE_ATTR_RO(cpus);
565
566 static struct attribute *armpmu_common_attrs[] = {
567         &dev_attr_cpus.attr,
568         NULL,
569 };
570
571 static const struct attribute_group armpmu_common_attr_group = {
572         .attrs = armpmu_common_attrs,
573 };
574
575 static int armpmu_count_irq_users(const int irq)
576 {
577         int cpu, count = 0;
578
579         for_each_possible_cpu(cpu) {
580                 if (per_cpu(cpu_irq, cpu) == irq)
581                         count++;
582         }
583
584         return count;
585 }
586
587 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
588 {
589         const struct pmu_irq_ops *ops = NULL;
590         int cpu;
591
592         for_each_possible_cpu(cpu) {
593                 if (per_cpu(cpu_irq, cpu) != irq)
594                         continue;
595
596                 ops = per_cpu(cpu_irq_ops, cpu);
597                 if (ops)
598                         break;
599         }
600
601         return ops;
602 }
603
604 void armpmu_free_irq(int irq, int cpu)
605 {
606         if (per_cpu(cpu_irq, cpu) == 0)
607                 return;
608         if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
609                 return;
610
611         per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
612
613         per_cpu(cpu_irq, cpu) = 0;
614         per_cpu(cpu_irq_ops, cpu) = NULL;
615 }
616
617 int armpmu_request_irq(int irq, int cpu)
618 {
619         int err = 0;
620         const irq_handler_t handler = armpmu_dispatch_irq;
621         const struct pmu_irq_ops *irq_ops;
622
623         if (!irq)
624                 return 0;
625
626         if (!irq_is_percpu_devid(irq)) {
627                 unsigned long irq_flags;
628
629                 err = irq_force_affinity(irq, cpumask_of(cpu));
630
631                 if (err && num_possible_cpus() > 1) {
632                         pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
633                                 irq, cpu);
634                         goto err_out;
635                 }
636
637                 irq_flags = IRQF_PERCPU |
638                             IRQF_NOBALANCING | IRQF_NO_AUTOEN |
639                             IRQF_NO_THREAD;
640
641                 err = request_nmi(irq, handler, irq_flags, "arm-pmu",
642                                   per_cpu_ptr(&cpu_armpmu, cpu));
643
644                 /* If cannot get an NMI, get a normal interrupt */
645                 if (err) {
646                         err = request_irq(irq, handler, irq_flags, "arm-pmu",
647                                           per_cpu_ptr(&cpu_armpmu, cpu));
648                         irq_ops = &pmuirq_ops;
649                 } else {
650                         has_nmi = true;
651                         irq_ops = &pmunmi_ops;
652                 }
653         } else if (armpmu_count_irq_users(irq) == 0) {
654                 err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
655
656                 /* If cannot get an NMI, get a normal interrupt */
657                 if (err) {
658                         err = request_percpu_irq(irq, handler, "arm-pmu",
659                                                  &cpu_armpmu);
660                         irq_ops = &percpu_pmuirq_ops;
661                 } else {
662                         has_nmi = true;
663                         irq_ops = &percpu_pmunmi_ops;
664                 }
665         } else {
666                 /* Per cpudevid irq was already requested by another CPU */
667                 irq_ops = armpmu_find_irq_ops(irq);
668
669                 if (WARN_ON(!irq_ops))
670                         err = -EINVAL;
671         }
672
673         if (err)
674                 goto err_out;
675
676         per_cpu(cpu_irq, cpu) = irq;
677         per_cpu(cpu_irq_ops, cpu) = irq_ops;
678         return 0;
679
680 err_out:
681         pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
682         return err;
683 }
684
685 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
686 {
687         struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
688         return per_cpu(hw_events->irq, cpu);
689 }
690
691 bool arm_pmu_irq_is_nmi(void)
692 {
693         return has_nmi;
694 }
695
696 /*
697  * PMU hardware loses all context when a CPU goes offline.
698  * When a CPU is hotplugged back in, since some hardware registers are
699  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
700  * junk values out of them.
701  */
702 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
703 {
704         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
705         int irq;
706
707         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
708                 return 0;
709         if (pmu->reset)
710                 pmu->reset(pmu);
711
712         per_cpu(cpu_armpmu, cpu) = pmu;
713
714         irq = armpmu_get_cpu_irq(pmu, cpu);
715         if (irq)
716                 per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
717
718         return 0;
719 }
720
721 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
722 {
723         struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
724         int irq;
725
726         if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
727                 return 0;
728
729         irq = armpmu_get_cpu_irq(pmu, cpu);
730         if (irq)
731                 per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
732
733         per_cpu(cpu_armpmu, cpu) = NULL;
734
735         return 0;
736 }
737
738 #ifdef CONFIG_CPU_PM
739 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
740 {
741         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
742         struct perf_event *event;
743         int idx;
744
745         for (idx = 0; idx < armpmu->num_events; idx++) {
746                 event = hw_events->events[idx];
747                 if (!event)
748                         continue;
749
750                 switch (cmd) {
751                 case CPU_PM_ENTER:
752                         /*
753                          * Stop and update the counter
754                          */
755                         armpmu_stop(event, PERF_EF_UPDATE);
756                         break;
757                 case CPU_PM_EXIT:
758                 case CPU_PM_ENTER_FAILED:
759                          /*
760                           * Restore and enable the counter.
761                           */
762                         armpmu_start(event, PERF_EF_RELOAD);
763                         break;
764                 default:
765                         break;
766                 }
767         }
768 }
769
770 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
771                              void *v)
772 {
773         struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
774         struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
775         bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
776
777         if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
778                 return NOTIFY_DONE;
779
780         /*
781          * Always reset the PMU registers on power-up even if
782          * there are no events running.
783          */
784         if (cmd == CPU_PM_EXIT && armpmu->reset)
785                 armpmu->reset(armpmu);
786
787         if (!enabled)
788                 return NOTIFY_OK;
789
790         switch (cmd) {
791         case CPU_PM_ENTER:
792                 armpmu->stop(armpmu);
793                 cpu_pm_pmu_setup(armpmu, cmd);
794                 break;
795         case CPU_PM_EXIT:
796         case CPU_PM_ENTER_FAILED:
797                 cpu_pm_pmu_setup(armpmu, cmd);
798                 armpmu->start(armpmu);
799                 break;
800         default:
801                 return NOTIFY_DONE;
802         }
803
804         return NOTIFY_OK;
805 }
806
807 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
808 {
809         cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
810         return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
811 }
812
813 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
814 {
815         cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
816 }
817 #else
818 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
819 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
820 #endif
821
822 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
823 {
824         int err;
825
826         err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
827                                        &cpu_pmu->node);
828         if (err)
829                 goto out;
830
831         err = cpu_pm_pmu_register(cpu_pmu);
832         if (err)
833                 goto out_unregister;
834
835         return 0;
836
837 out_unregister:
838         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839                                             &cpu_pmu->node);
840 out:
841         return err;
842 }
843
844 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
845 {
846         cpu_pm_pmu_unregister(cpu_pmu);
847         cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
848                                             &cpu_pmu->node);
849 }
850
851 struct arm_pmu *armpmu_alloc(void)
852 {
853         struct arm_pmu *pmu;
854         int cpu;
855
856         pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
857         if (!pmu)
858                 goto out;
859
860         pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
861         if (!pmu->hw_events) {
862                 pr_info("failed to allocate per-cpu PMU data.\n");
863                 goto out_free_pmu;
864         }
865
866         pmu->pmu = (struct pmu) {
867                 .pmu_enable     = armpmu_enable,
868                 .pmu_disable    = armpmu_disable,
869                 .event_init     = armpmu_event_init,
870                 .add            = armpmu_add,
871                 .del            = armpmu_del,
872                 .start          = armpmu_start,
873                 .stop           = armpmu_stop,
874                 .read           = armpmu_read,
875                 .filter         = armpmu_filter,
876                 .attr_groups    = pmu->attr_groups,
877                 /*
878                  * This is a CPU PMU potentially in a heterogeneous
879                  * configuration (e.g. big.LITTLE) so
880                  * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
881                  * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
882                  * specific PMU.
883                  */
884                 .capabilities   = PERF_PMU_CAP_EXTENDED_REGS |
885                                   PERF_PMU_CAP_EXTENDED_HW_TYPE,
886         };
887
888         pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
889                 &armpmu_common_attr_group;
890
891         for_each_possible_cpu(cpu) {
892                 struct pmu_hw_events *events;
893
894                 events = per_cpu_ptr(pmu->hw_events, cpu);
895                 events->percpu_pmu = pmu;
896         }
897
898         return pmu;
899
900 out_free_pmu:
901         kfree(pmu);
902 out:
903         return NULL;
904 }
905
906 void armpmu_free(struct arm_pmu *pmu)
907 {
908         free_percpu(pmu->hw_events);
909         kfree(pmu);
910 }
911
912 int armpmu_register(struct arm_pmu *pmu)
913 {
914         int ret;
915
916         ret = cpu_pmu_init(pmu);
917         if (ret)
918                 return ret;
919
920         if (!pmu->set_event_filter)
921                 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
922
923         ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
924         if (ret)
925                 goto out_destroy;
926
927         pr_info("enabled with %s PMU driver, %d counters available%s\n",
928                 pmu->name, pmu->num_events,
929                 has_nmi ? ", using NMIs" : "");
930
931         kvm_host_pmu_init(pmu);
932
933         return 0;
934
935 out_destroy:
936         cpu_pmu_destroy(pmu);
937         return ret;
938 }
939
940 static int arm_pmu_hp_init(void)
941 {
942         int ret;
943
944         ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
945                                       "perf/arm/pmu:starting",
946                                       arm_perf_starting_cpu,
947                                       arm_perf_teardown_cpu);
948         if (ret)
949                 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
950                        ret);
951         return ret;
952 }
953 subsys_initcall(arm_pmu_hp_init);