Merge tag 'configfs-for-4.15' of git://git.infradead.org/users/hch/configfs
[sfrench/cifs-2.6.git] / drivers / nvme / host / rdma.c
1 /*
2  * NVMe over Fabrics RDMA host code.
3  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/blk-mq-rdma.h>
23 #include <linux/types.h>
24 #include <linux/list.h>
25 #include <linux/mutex.h>
26 #include <linux/scatterlist.h>
27 #include <linux/nvme.h>
28 #include <asm/unaligned.h>
29
30 #include <rdma/ib_verbs.h>
31 #include <rdma/rdma_cm.h>
32 #include <linux/nvme-rdma.h>
33
34 #include "nvme.h"
35 #include "fabrics.h"
36
37
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS    3000            /* 3 second */
39
40 #define NVME_RDMA_MAX_SEGMENTS          256
41
42 #define NVME_RDMA_MAX_INLINE_SEGMENTS   1
43
44 /*
45  * We handle AEN commands ourselves and don't even let the
46  * block layer know about them.
47  */
48 #define NVME_RDMA_NR_AEN_COMMANDS      1
49 #define NVME_RDMA_AQ_BLKMQ_DEPTH       \
50         (NVME_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
51
52 struct nvme_rdma_device {
53         struct ib_device       *dev;
54         struct ib_pd           *pd;
55         struct kref             ref;
56         struct list_head        entry;
57 };
58
59 struct nvme_rdma_qe {
60         struct ib_cqe           cqe;
61         void                    *data;
62         u64                     dma;
63 };
64
65 struct nvme_rdma_queue;
66 struct nvme_rdma_request {
67         struct nvme_request     req;
68         struct ib_mr            *mr;
69         struct nvme_rdma_qe     sqe;
70         struct ib_sge           sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
71         u32                     num_sge;
72         int                     nents;
73         bool                    inline_data;
74         struct ib_reg_wr        reg_wr;
75         struct ib_cqe           reg_cqe;
76         struct nvme_rdma_queue  *queue;
77         struct sg_table         sg_table;
78         struct scatterlist      first_sgl[];
79 };
80
81 enum nvme_rdma_queue_flags {
82         NVME_RDMA_Q_LIVE                = 0,
83         NVME_RDMA_Q_DELETING            = 1,
84 };
85
86 struct nvme_rdma_queue {
87         struct nvme_rdma_qe     *rsp_ring;
88         atomic_t                sig_count;
89         int                     queue_size;
90         size_t                  cmnd_capsule_len;
91         struct nvme_rdma_ctrl   *ctrl;
92         struct nvme_rdma_device *device;
93         struct ib_cq            *ib_cq;
94         struct ib_qp            *qp;
95
96         unsigned long           flags;
97         struct rdma_cm_id       *cm_id;
98         int                     cm_error;
99         struct completion       cm_done;
100 };
101
102 struct nvme_rdma_ctrl {
103         /* read only in the hot path */
104         struct nvme_rdma_queue  *queues;
105
106         /* other member variables */
107         struct blk_mq_tag_set   tag_set;
108         struct work_struct      delete_work;
109         struct work_struct      err_work;
110
111         struct nvme_rdma_qe     async_event_sqe;
112
113         struct delayed_work     reconnect_work;
114
115         struct list_head        list;
116
117         struct blk_mq_tag_set   admin_tag_set;
118         struct nvme_rdma_device *device;
119
120         u32                     max_fr_pages;
121
122         struct sockaddr_storage addr;
123         struct sockaddr_storage src_addr;
124
125         struct nvme_ctrl        ctrl;
126 };
127
128 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
129 {
130         return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
131 }
132
133 static LIST_HEAD(device_list);
134 static DEFINE_MUTEX(device_list_mutex);
135
136 static LIST_HEAD(nvme_rdma_ctrl_list);
137 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
138
139 /*
140  * Disabling this option makes small I/O goes faster, but is fundamentally
141  * unsafe.  With it turned off we will have to register a global rkey that
142  * allows read and write access to all physical memory.
143  */
144 static bool register_always = true;
145 module_param(register_always, bool, 0444);
146 MODULE_PARM_DESC(register_always,
147          "Use memory registration even for contiguous memory regions");
148
149 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
150                 struct rdma_cm_event *event);
151 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
152
153 static const struct blk_mq_ops nvme_rdma_mq_ops;
154 static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
155
156 /* XXX: really should move to a generic header sooner or later.. */
157 static inline void put_unaligned_le24(u32 val, u8 *p)
158 {
159         *p++ = val;
160         *p++ = val >> 8;
161         *p++ = val >> 16;
162 }
163
164 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
165 {
166         return queue - queue->ctrl->queues;
167 }
168
169 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
170 {
171         return queue->cmnd_capsule_len - sizeof(struct nvme_command);
172 }
173
174 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
175                 size_t capsule_size, enum dma_data_direction dir)
176 {
177         ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
178         kfree(qe->data);
179 }
180
181 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
182                 size_t capsule_size, enum dma_data_direction dir)
183 {
184         qe->data = kzalloc(capsule_size, GFP_KERNEL);
185         if (!qe->data)
186                 return -ENOMEM;
187
188         qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
189         if (ib_dma_mapping_error(ibdev, qe->dma)) {
190                 kfree(qe->data);
191                 return -ENOMEM;
192         }
193
194         return 0;
195 }
196
197 static void nvme_rdma_free_ring(struct ib_device *ibdev,
198                 struct nvme_rdma_qe *ring, size_t ib_queue_size,
199                 size_t capsule_size, enum dma_data_direction dir)
200 {
201         int i;
202
203         for (i = 0; i < ib_queue_size; i++)
204                 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
205         kfree(ring);
206 }
207
208 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
209                 size_t ib_queue_size, size_t capsule_size,
210                 enum dma_data_direction dir)
211 {
212         struct nvme_rdma_qe *ring;
213         int i;
214
215         ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
216         if (!ring)
217                 return NULL;
218
219         for (i = 0; i < ib_queue_size; i++) {
220                 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
221                         goto out_free_ring;
222         }
223
224         return ring;
225
226 out_free_ring:
227         nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
228         return NULL;
229 }
230
231 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
232 {
233         pr_debug("QP event %s (%d)\n",
234                  ib_event_msg(event->event), event->event);
235
236 }
237
238 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
239 {
240         wait_for_completion_interruptible_timeout(&queue->cm_done,
241                         msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
242         return queue->cm_error;
243 }
244
245 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
246 {
247         struct nvme_rdma_device *dev = queue->device;
248         struct ib_qp_init_attr init_attr;
249         int ret;
250
251         memset(&init_attr, 0, sizeof(init_attr));
252         init_attr.event_handler = nvme_rdma_qp_event;
253         /* +1 for drain */
254         init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
255         /* +1 for drain */
256         init_attr.cap.max_recv_wr = queue->queue_size + 1;
257         init_attr.cap.max_recv_sge = 1;
258         init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
259         init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
260         init_attr.qp_type = IB_QPT_RC;
261         init_attr.send_cq = queue->ib_cq;
262         init_attr.recv_cq = queue->ib_cq;
263
264         ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
265
266         queue->qp = queue->cm_id->qp;
267         return ret;
268 }
269
270 static int nvme_rdma_reinit_request(void *data, struct request *rq)
271 {
272         struct nvme_rdma_ctrl *ctrl = data;
273         struct nvme_rdma_device *dev = ctrl->device;
274         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
275         int ret = 0;
276
277         ib_dereg_mr(req->mr);
278
279         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
280                         ctrl->max_fr_pages);
281         if (IS_ERR(req->mr)) {
282                 ret = PTR_ERR(req->mr);
283                 req->mr = NULL;
284                 goto out;
285         }
286
287         req->mr->need_inval = false;
288
289 out:
290         return ret;
291 }
292
293 static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
294                 struct request *rq, unsigned int hctx_idx)
295 {
296         struct nvme_rdma_ctrl *ctrl = set->driver_data;
297         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
298         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
299         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
300         struct nvme_rdma_device *dev = queue->device;
301
302         if (req->mr)
303                 ib_dereg_mr(req->mr);
304
305         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
306                         DMA_TO_DEVICE);
307 }
308
309 static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
310                 struct request *rq, unsigned int hctx_idx,
311                 unsigned int numa_node)
312 {
313         struct nvme_rdma_ctrl *ctrl = set->driver_data;
314         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
315         int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
316         struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
317         struct nvme_rdma_device *dev = queue->device;
318         struct ib_device *ibdev = dev->dev;
319         int ret;
320
321         ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
322                         DMA_TO_DEVICE);
323         if (ret)
324                 return ret;
325
326         req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
327                         ctrl->max_fr_pages);
328         if (IS_ERR(req->mr)) {
329                 ret = PTR_ERR(req->mr);
330                 goto out_free_qe;
331         }
332
333         req->queue = queue;
334
335         return 0;
336
337 out_free_qe:
338         nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
339                         DMA_TO_DEVICE);
340         return -ENOMEM;
341 }
342
343 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
344                 unsigned int hctx_idx)
345 {
346         struct nvme_rdma_ctrl *ctrl = data;
347         struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
348
349         BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
350
351         hctx->driver_data = queue;
352         return 0;
353 }
354
355 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
356                 unsigned int hctx_idx)
357 {
358         struct nvme_rdma_ctrl *ctrl = data;
359         struct nvme_rdma_queue *queue = &ctrl->queues[0];
360
361         BUG_ON(hctx_idx != 0);
362
363         hctx->driver_data = queue;
364         return 0;
365 }
366
367 static void nvme_rdma_free_dev(struct kref *ref)
368 {
369         struct nvme_rdma_device *ndev =
370                 container_of(ref, struct nvme_rdma_device, ref);
371
372         mutex_lock(&device_list_mutex);
373         list_del(&ndev->entry);
374         mutex_unlock(&device_list_mutex);
375
376         ib_dealloc_pd(ndev->pd);
377         kfree(ndev);
378 }
379
380 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
381 {
382         kref_put(&dev->ref, nvme_rdma_free_dev);
383 }
384
385 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
386 {
387         return kref_get_unless_zero(&dev->ref);
388 }
389
390 static struct nvme_rdma_device *
391 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
392 {
393         struct nvme_rdma_device *ndev;
394
395         mutex_lock(&device_list_mutex);
396         list_for_each_entry(ndev, &device_list, entry) {
397                 if (ndev->dev->node_guid == cm_id->device->node_guid &&
398                     nvme_rdma_dev_get(ndev))
399                         goto out_unlock;
400         }
401
402         ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
403         if (!ndev)
404                 goto out_err;
405
406         ndev->dev = cm_id->device;
407         kref_init(&ndev->ref);
408
409         ndev->pd = ib_alloc_pd(ndev->dev,
410                 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
411         if (IS_ERR(ndev->pd))
412                 goto out_free_dev;
413
414         if (!(ndev->dev->attrs.device_cap_flags &
415               IB_DEVICE_MEM_MGT_EXTENSIONS)) {
416                 dev_err(&ndev->dev->dev,
417                         "Memory registrations not supported.\n");
418                 goto out_free_pd;
419         }
420
421         list_add(&ndev->entry, &device_list);
422 out_unlock:
423         mutex_unlock(&device_list_mutex);
424         return ndev;
425
426 out_free_pd:
427         ib_dealloc_pd(ndev->pd);
428 out_free_dev:
429         kfree(ndev);
430 out_err:
431         mutex_unlock(&device_list_mutex);
432         return NULL;
433 }
434
435 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
436 {
437         struct nvme_rdma_device *dev;
438         struct ib_device *ibdev;
439
440         dev = queue->device;
441         ibdev = dev->dev;
442         rdma_destroy_qp(queue->cm_id);
443         ib_free_cq(queue->ib_cq);
444
445         nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
446                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
447
448         nvme_rdma_dev_put(dev);
449 }
450
451 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
452 {
453         struct ib_device *ibdev;
454         const int send_wr_factor = 3;                   /* MR, SEND, INV */
455         const int cq_factor = send_wr_factor + 1;       /* + RECV */
456         int comp_vector, idx = nvme_rdma_queue_idx(queue);
457         int ret;
458
459         queue->device = nvme_rdma_find_get_device(queue->cm_id);
460         if (!queue->device) {
461                 dev_err(queue->cm_id->device->dev.parent,
462                         "no client data found!\n");
463                 return -ECONNREFUSED;
464         }
465         ibdev = queue->device->dev;
466
467         /*
468          * Spread I/O queues completion vectors according their queue index.
469          * Admin queues can always go on completion vector 0.
470          */
471         comp_vector = idx == 0 ? idx : idx - 1;
472
473         /* +1 for ib_stop_cq */
474         queue->ib_cq = ib_alloc_cq(ibdev, queue,
475                                 cq_factor * queue->queue_size + 1,
476                                 comp_vector, IB_POLL_SOFTIRQ);
477         if (IS_ERR(queue->ib_cq)) {
478                 ret = PTR_ERR(queue->ib_cq);
479                 goto out_put_dev;
480         }
481
482         ret = nvme_rdma_create_qp(queue, send_wr_factor);
483         if (ret)
484                 goto out_destroy_ib_cq;
485
486         queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
487                         sizeof(struct nvme_completion), DMA_FROM_DEVICE);
488         if (!queue->rsp_ring) {
489                 ret = -ENOMEM;
490                 goto out_destroy_qp;
491         }
492
493         return 0;
494
495 out_destroy_qp:
496         ib_destroy_qp(queue->qp);
497 out_destroy_ib_cq:
498         ib_free_cq(queue->ib_cq);
499 out_put_dev:
500         nvme_rdma_dev_put(queue->device);
501         return ret;
502 }
503
504 static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
505                 int idx, size_t queue_size)
506 {
507         struct nvme_rdma_queue *queue;
508         struct sockaddr *src_addr = NULL;
509         int ret;
510
511         queue = &ctrl->queues[idx];
512         queue->ctrl = ctrl;
513         init_completion(&queue->cm_done);
514
515         if (idx > 0)
516                 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
517         else
518                 queue->cmnd_capsule_len = sizeof(struct nvme_command);
519
520         queue->queue_size = queue_size;
521         atomic_set(&queue->sig_count, 0);
522
523         queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
524                         RDMA_PS_TCP, IB_QPT_RC);
525         if (IS_ERR(queue->cm_id)) {
526                 dev_info(ctrl->ctrl.device,
527                         "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
528                 return PTR_ERR(queue->cm_id);
529         }
530
531         if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
532                 src_addr = (struct sockaddr *)&ctrl->src_addr;
533
534         queue->cm_error = -ETIMEDOUT;
535         ret = rdma_resolve_addr(queue->cm_id, src_addr,
536                         (struct sockaddr *)&ctrl->addr,
537                         NVME_RDMA_CONNECT_TIMEOUT_MS);
538         if (ret) {
539                 dev_info(ctrl->ctrl.device,
540                         "rdma_resolve_addr failed (%d).\n", ret);
541                 goto out_destroy_cm_id;
542         }
543
544         ret = nvme_rdma_wait_for_cm(queue);
545         if (ret) {
546                 dev_info(ctrl->ctrl.device,
547                         "rdma_resolve_addr wait failed (%d).\n", ret);
548                 goto out_destroy_cm_id;
549         }
550
551         clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
552
553         return 0;
554
555 out_destroy_cm_id:
556         rdma_destroy_id(queue->cm_id);
557         return ret;
558 }
559
560 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
561 {
562         if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
563                 return;
564
565         rdma_disconnect(queue->cm_id);
566         ib_drain_qp(queue->qp);
567 }
568
569 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
570 {
571         if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
572                 return;
573
574         if (nvme_rdma_queue_idx(queue) == 0) {
575                 nvme_rdma_free_qe(queue->device->dev,
576                         &queue->ctrl->async_event_sqe,
577                         sizeof(struct nvme_command), DMA_TO_DEVICE);
578         }
579
580         nvme_rdma_destroy_queue_ib(queue);
581         rdma_destroy_id(queue->cm_id);
582 }
583
584 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
585 {
586         int i;
587
588         for (i = 1; i < ctrl->ctrl.queue_count; i++)
589                 nvme_rdma_free_queue(&ctrl->queues[i]);
590 }
591
592 static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
593 {
594         int i;
595
596         for (i = 1; i < ctrl->ctrl.queue_count; i++)
597                 nvme_rdma_stop_queue(&ctrl->queues[i]);
598 }
599
600 static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
601 {
602         int ret;
603
604         if (idx)
605                 ret = nvmf_connect_io_queue(&ctrl->ctrl, idx);
606         else
607                 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
608
609         if (!ret)
610                 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags);
611         else
612                 dev_info(ctrl->ctrl.device,
613                         "failed to connect queue: %d ret=%d\n", idx, ret);
614         return ret;
615 }
616
617 static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
618 {
619         int i, ret = 0;
620
621         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
622                 ret = nvme_rdma_start_queue(ctrl, i);
623                 if (ret)
624                         goto out_stop_queues;
625         }
626
627         return 0;
628
629 out_stop_queues:
630         for (i--; i >= 1; i--)
631                 nvme_rdma_stop_queue(&ctrl->queues[i]);
632         return ret;
633 }
634
635 static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
636 {
637         struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
638         struct ib_device *ibdev = ctrl->device->dev;
639         unsigned int nr_io_queues;
640         int i, ret;
641
642         nr_io_queues = min(opts->nr_io_queues, num_online_cpus());
643
644         /*
645          * we map queues according to the device irq vectors for
646          * optimal locality so we don't need more queues than
647          * completion vectors.
648          */
649         nr_io_queues = min_t(unsigned int, nr_io_queues,
650                                 ibdev->num_comp_vectors);
651
652         ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
653         if (ret)
654                 return ret;
655
656         ctrl->ctrl.queue_count = nr_io_queues + 1;
657         if (ctrl->ctrl.queue_count < 2)
658                 return 0;
659
660         dev_info(ctrl->ctrl.device,
661                 "creating %d I/O queues.\n", nr_io_queues);
662
663         for (i = 1; i < ctrl->ctrl.queue_count; i++) {
664                 ret = nvme_rdma_alloc_queue(ctrl, i,
665                                 ctrl->ctrl.sqsize + 1);
666                 if (ret)
667                         goto out_free_queues;
668         }
669
670         return 0;
671
672 out_free_queues:
673         for (i--; i >= 1; i--)
674                 nvme_rdma_free_queue(&ctrl->queues[i]);
675
676         return ret;
677 }
678
679 static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, bool admin)
680 {
681         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
682         struct blk_mq_tag_set *set = admin ?
683                         &ctrl->admin_tag_set : &ctrl->tag_set;
684
685         blk_mq_free_tag_set(set);
686         nvme_rdma_dev_put(ctrl->device);
687 }
688
689 static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
690                 bool admin)
691 {
692         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
693         struct blk_mq_tag_set *set;
694         int ret;
695
696         if (admin) {
697                 set = &ctrl->admin_tag_set;
698                 memset(set, 0, sizeof(*set));
699                 set->ops = &nvme_rdma_admin_mq_ops;
700                 set->queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
701                 set->reserved_tags = 2; /* connect + keep-alive */
702                 set->numa_node = NUMA_NO_NODE;
703                 set->cmd_size = sizeof(struct nvme_rdma_request) +
704                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
705                 set->driver_data = ctrl;
706                 set->nr_hw_queues = 1;
707                 set->timeout = ADMIN_TIMEOUT;
708         } else {
709                 set = &ctrl->tag_set;
710                 memset(set, 0, sizeof(*set));
711                 set->ops = &nvme_rdma_mq_ops;
712                 set->queue_depth = nctrl->opts->queue_size;
713                 set->reserved_tags = 1; /* fabric connect */
714                 set->numa_node = NUMA_NO_NODE;
715                 set->flags = BLK_MQ_F_SHOULD_MERGE;
716                 set->cmd_size = sizeof(struct nvme_rdma_request) +
717                         SG_CHUNK_SIZE * sizeof(struct scatterlist);
718                 set->driver_data = ctrl;
719                 set->nr_hw_queues = nctrl->queue_count - 1;
720                 set->timeout = NVME_IO_TIMEOUT;
721         }
722
723         ret = blk_mq_alloc_tag_set(set);
724         if (ret)
725                 goto out;
726
727         /*
728          * We need a reference on the device as long as the tag_set is alive,
729          * as the MRs in the request structures need a valid ib_device.
730          */
731         ret = nvme_rdma_dev_get(ctrl->device);
732         if (!ret) {
733                 ret = -EINVAL;
734                 goto out_free_tagset;
735         }
736
737         return set;
738
739 out_free_tagset:
740         blk_mq_free_tag_set(set);
741 out:
742         return ERR_PTR(ret);
743 }
744
745 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
746                 bool remove)
747 {
748         nvme_rdma_stop_queue(&ctrl->queues[0]);
749         if (remove) {
750                 blk_cleanup_queue(ctrl->ctrl.admin_q);
751                 nvme_rdma_free_tagset(&ctrl->ctrl, true);
752         }
753         nvme_rdma_free_queue(&ctrl->queues[0]);
754 }
755
756 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
757                 bool new)
758 {
759         int error;
760
761         error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
762         if (error)
763                 return error;
764
765         ctrl->device = ctrl->queues[0].device;
766
767         ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
768                 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
769
770         if (new) {
771                 ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
772                 if (IS_ERR(ctrl->ctrl.admin_tagset)) {
773                         error = PTR_ERR(ctrl->ctrl.admin_tagset);
774                         goto out_free_queue;
775                 }
776
777                 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
778                 if (IS_ERR(ctrl->ctrl.admin_q)) {
779                         error = PTR_ERR(ctrl->ctrl.admin_q);
780                         goto out_free_tagset;
781                 }
782         } else {
783                 error = blk_mq_reinit_tagset(&ctrl->admin_tag_set,
784                                              nvme_rdma_reinit_request);
785                 if (error)
786                         goto out_free_queue;
787         }
788
789         error = nvme_rdma_start_queue(ctrl, 0);
790         if (error)
791                 goto out_cleanup_queue;
792
793         error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
794                         &ctrl->ctrl.cap);
795         if (error) {
796                 dev_err(ctrl->ctrl.device,
797                         "prop_get NVME_REG_CAP failed\n");
798                 goto out_cleanup_queue;
799         }
800
801         ctrl->ctrl.sqsize =
802                 min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
803
804         error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
805         if (error)
806                 goto out_cleanup_queue;
807
808         ctrl->ctrl.max_hw_sectors =
809                 (ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
810
811         error = nvme_init_identify(&ctrl->ctrl);
812         if (error)
813                 goto out_cleanup_queue;
814
815         error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
816                         &ctrl->async_event_sqe, sizeof(struct nvme_command),
817                         DMA_TO_DEVICE);
818         if (error)
819                 goto out_cleanup_queue;
820
821         return 0;
822
823 out_cleanup_queue:
824         if (new)
825                 blk_cleanup_queue(ctrl->ctrl.admin_q);
826 out_free_tagset:
827         if (new)
828                 nvme_rdma_free_tagset(&ctrl->ctrl, true);
829 out_free_queue:
830         nvme_rdma_free_queue(&ctrl->queues[0]);
831         return error;
832 }
833
834 static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
835                 bool remove)
836 {
837         nvme_rdma_stop_io_queues(ctrl);
838         if (remove) {
839                 blk_cleanup_queue(ctrl->ctrl.connect_q);
840                 nvme_rdma_free_tagset(&ctrl->ctrl, false);
841         }
842         nvme_rdma_free_io_queues(ctrl);
843 }
844
845 static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
846 {
847         int ret;
848
849         ret = nvme_rdma_alloc_io_queues(ctrl);
850         if (ret)
851                 return ret;
852
853         if (new) {
854                 ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
855                 if (IS_ERR(ctrl->ctrl.tagset)) {
856                         ret = PTR_ERR(ctrl->ctrl.tagset);
857                         goto out_free_io_queues;
858                 }
859
860                 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
861                 if (IS_ERR(ctrl->ctrl.connect_q)) {
862                         ret = PTR_ERR(ctrl->ctrl.connect_q);
863                         goto out_free_tag_set;
864                 }
865         } else {
866                 ret = blk_mq_reinit_tagset(&ctrl->tag_set,
867                                            nvme_rdma_reinit_request);
868                 if (ret)
869                         goto out_free_io_queues;
870
871                 blk_mq_update_nr_hw_queues(&ctrl->tag_set,
872                         ctrl->ctrl.queue_count - 1);
873         }
874
875         ret = nvme_rdma_start_io_queues(ctrl);
876         if (ret)
877                 goto out_cleanup_connect_q;
878
879         return 0;
880
881 out_cleanup_connect_q:
882         if (new)
883                 blk_cleanup_queue(ctrl->ctrl.connect_q);
884 out_free_tag_set:
885         if (new)
886                 nvme_rdma_free_tagset(&ctrl->ctrl, false);
887 out_free_io_queues:
888         nvme_rdma_free_io_queues(ctrl);
889         return ret;
890 }
891
892 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
893 {
894         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
895
896         if (list_empty(&ctrl->list))
897                 goto free_ctrl;
898
899         mutex_lock(&nvme_rdma_ctrl_mutex);
900         list_del(&ctrl->list);
901         mutex_unlock(&nvme_rdma_ctrl_mutex);
902
903         kfree(ctrl->queues);
904         nvmf_free_options(nctrl->opts);
905 free_ctrl:
906         kfree(ctrl);
907 }
908
909 static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
910 {
911         /* If we are resetting/deleting then do nothing */
912         if (ctrl->ctrl.state != NVME_CTRL_RECONNECTING) {
913                 WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
914                         ctrl->ctrl.state == NVME_CTRL_LIVE);
915                 return;
916         }
917
918         if (nvmf_should_reconnect(&ctrl->ctrl)) {
919                 dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
920                         ctrl->ctrl.opts->reconnect_delay);
921                 queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
922                                 ctrl->ctrl.opts->reconnect_delay * HZ);
923         } else {
924                 dev_info(ctrl->ctrl.device, "Removing controller...\n");
925                 queue_work(nvme_wq, &ctrl->delete_work);
926         }
927 }
928
929 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
930 {
931         struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
932                         struct nvme_rdma_ctrl, reconnect_work);
933         bool changed;
934         int ret;
935
936         ++ctrl->ctrl.nr_reconnects;
937
938         if (ctrl->ctrl.queue_count > 1)
939                 nvme_rdma_destroy_io_queues(ctrl, false);
940
941         nvme_rdma_destroy_admin_queue(ctrl, false);
942         ret = nvme_rdma_configure_admin_queue(ctrl, false);
943         if (ret)
944                 goto requeue;
945
946         if (ctrl->ctrl.queue_count > 1) {
947                 ret = nvme_rdma_configure_io_queues(ctrl, false);
948                 if (ret)
949                         goto requeue;
950         }
951
952         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
953         if (!changed) {
954                 /* state change failure is ok if we're in DELETING state */
955                 WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
956                 return;
957         }
958
959         ctrl->ctrl.nr_reconnects = 0;
960
961         nvme_start_ctrl(&ctrl->ctrl);
962
963         dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
964
965         return;
966
967 requeue:
968         dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
969                         ctrl->ctrl.nr_reconnects);
970         nvme_rdma_reconnect_or_remove(ctrl);
971 }
972
973 static void nvme_rdma_error_recovery_work(struct work_struct *work)
974 {
975         struct nvme_rdma_ctrl *ctrl = container_of(work,
976                         struct nvme_rdma_ctrl, err_work);
977
978         nvme_stop_keep_alive(&ctrl->ctrl);
979
980         if (ctrl->ctrl.queue_count > 1) {
981                 nvme_stop_queues(&ctrl->ctrl);
982                 nvme_rdma_stop_io_queues(ctrl);
983         }
984         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
985         nvme_rdma_stop_queue(&ctrl->queues[0]);
986
987         /* We must take care of fastfail/requeue all our inflight requests */
988         if (ctrl->ctrl.queue_count > 1)
989                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
990                                         nvme_cancel_request, &ctrl->ctrl);
991         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
992                                 nvme_cancel_request, &ctrl->ctrl);
993
994         /*
995          * queues are not a live anymore, so restart the queues to fail fast
996          * new IO
997          */
998         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
999         nvme_start_queues(&ctrl->ctrl);
1000
1001         nvme_rdma_reconnect_or_remove(ctrl);
1002 }
1003
1004 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
1005 {
1006         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
1007                 return;
1008
1009         queue_work(nvme_wq, &ctrl->err_work);
1010 }
1011
1012 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
1013                 const char *op)
1014 {
1015         struct nvme_rdma_queue *queue = cq->cq_context;
1016         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1017
1018         if (ctrl->ctrl.state == NVME_CTRL_LIVE)
1019                 dev_info(ctrl->ctrl.device,
1020                              "%s for CQE 0x%p failed with status %s (%d)\n",
1021                              op, wc->wr_cqe,
1022                              ib_wc_status_msg(wc->status), wc->status);
1023         nvme_rdma_error_recovery(ctrl);
1024 }
1025
1026 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
1027 {
1028         if (unlikely(wc->status != IB_WC_SUCCESS))
1029                 nvme_rdma_wr_error(cq, wc, "MEMREG");
1030 }
1031
1032 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
1033 {
1034         if (unlikely(wc->status != IB_WC_SUCCESS))
1035                 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
1036 }
1037
1038 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
1039                 struct nvme_rdma_request *req)
1040 {
1041         struct ib_send_wr *bad_wr;
1042         struct ib_send_wr wr = {
1043                 .opcode             = IB_WR_LOCAL_INV,
1044                 .next               = NULL,
1045                 .num_sge            = 0,
1046                 .send_flags         = 0,
1047                 .ex.invalidate_rkey = req->mr->rkey,
1048         };
1049
1050         req->reg_cqe.done = nvme_rdma_inv_rkey_done;
1051         wr.wr_cqe = &req->reg_cqe;
1052
1053         return ib_post_send(queue->qp, &wr, &bad_wr);
1054 }
1055
1056 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
1057                 struct request *rq)
1058 {
1059         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1060         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1061         struct nvme_rdma_device *dev = queue->device;
1062         struct ib_device *ibdev = dev->dev;
1063         int res;
1064
1065         if (!blk_rq_bytes(rq))
1066                 return;
1067
1068         if (req->mr->need_inval) {
1069                 res = nvme_rdma_inv_rkey(queue, req);
1070                 if (unlikely(res < 0)) {
1071                         dev_err(ctrl->ctrl.device,
1072                                 "Queueing INV WR for rkey %#x failed (%d)\n",
1073                                 req->mr->rkey, res);
1074                         nvme_rdma_error_recovery(queue->ctrl);
1075                 }
1076         }
1077
1078         ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
1079                         req->nents, rq_data_dir(rq) ==
1080                                     WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1081
1082         nvme_cleanup_cmd(rq);
1083         sg_free_table_chained(&req->sg_table, true);
1084 }
1085
1086 static int nvme_rdma_set_sg_null(struct nvme_command *c)
1087 {
1088         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1089
1090         sg->addr = 0;
1091         put_unaligned_le24(0, sg->length);
1092         put_unaligned_le32(0, sg->key);
1093         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1094         return 0;
1095 }
1096
1097 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
1098                 struct nvme_rdma_request *req, struct nvme_command *c)
1099 {
1100         struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
1101
1102         req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
1103         req->sge[1].length = sg_dma_len(req->sg_table.sgl);
1104         req->sge[1].lkey = queue->device->pd->local_dma_lkey;
1105
1106         sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
1107         sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
1108         sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
1109
1110         req->inline_data = true;
1111         req->num_sge++;
1112         return 0;
1113 }
1114
1115 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
1116                 struct nvme_rdma_request *req, struct nvme_command *c)
1117 {
1118         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1119
1120         sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
1121         put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
1122         put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
1123         sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
1124         return 0;
1125 }
1126
1127 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
1128                 struct nvme_rdma_request *req, struct nvme_command *c,
1129                 int count)
1130 {
1131         struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
1132         int nr;
1133
1134         /*
1135          * Align the MR to a 4K page size to match the ctrl page size and
1136          * the block virtual boundary.
1137          */
1138         nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
1139         if (unlikely(nr < count)) {
1140                 if (nr < 0)
1141                         return nr;
1142                 return -EINVAL;
1143         }
1144
1145         ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
1146
1147         req->reg_cqe.done = nvme_rdma_memreg_done;
1148         memset(&req->reg_wr, 0, sizeof(req->reg_wr));
1149         req->reg_wr.wr.opcode = IB_WR_REG_MR;
1150         req->reg_wr.wr.wr_cqe = &req->reg_cqe;
1151         req->reg_wr.wr.num_sge = 0;
1152         req->reg_wr.mr = req->mr;
1153         req->reg_wr.key = req->mr->rkey;
1154         req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
1155                              IB_ACCESS_REMOTE_READ |
1156                              IB_ACCESS_REMOTE_WRITE;
1157
1158         req->mr->need_inval = true;
1159
1160         sg->addr = cpu_to_le64(req->mr->iova);
1161         put_unaligned_le24(req->mr->length, sg->length);
1162         put_unaligned_le32(req->mr->rkey, sg->key);
1163         sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
1164                         NVME_SGL_FMT_INVALIDATE;
1165
1166         return 0;
1167 }
1168
1169 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
1170                 struct request *rq, struct nvme_command *c)
1171 {
1172         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1173         struct nvme_rdma_device *dev = queue->device;
1174         struct ib_device *ibdev = dev->dev;
1175         int count, ret;
1176
1177         req->num_sge = 1;
1178         req->inline_data = false;
1179         req->mr->need_inval = false;
1180
1181         c->common.flags |= NVME_CMD_SGL_METABUF;
1182
1183         if (!blk_rq_bytes(rq))
1184                 return nvme_rdma_set_sg_null(c);
1185
1186         req->sg_table.sgl = req->first_sgl;
1187         ret = sg_alloc_table_chained(&req->sg_table,
1188                         blk_rq_nr_phys_segments(rq), req->sg_table.sgl);
1189         if (ret)
1190                 return -ENOMEM;
1191
1192         req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
1193
1194         count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
1195                     rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1196         if (unlikely(count <= 0)) {
1197                 sg_free_table_chained(&req->sg_table, true);
1198                 return -EIO;
1199         }
1200
1201         if (count == 1) {
1202                 if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
1203                     blk_rq_payload_bytes(rq) <=
1204                                 nvme_rdma_inline_data_size(queue))
1205                         return nvme_rdma_map_sg_inline(queue, req, c);
1206
1207                 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1208                         return nvme_rdma_map_sg_single(queue, req, c);
1209         }
1210
1211         return nvme_rdma_map_sg_fr(queue, req, c, count);
1212 }
1213
1214 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1215 {
1216         if (unlikely(wc->status != IB_WC_SUCCESS))
1217                 nvme_rdma_wr_error(cq, wc, "SEND");
1218 }
1219
1220 /*
1221  * We want to signal completion at least every queue depth/2.  This returns the
1222  * largest power of two that is not above half of (queue size + 1) to optimize
1223  * (avoid divisions).
1224  */
1225 static inline bool nvme_rdma_queue_sig_limit(struct nvme_rdma_queue *queue)
1226 {
1227         int limit = 1 << ilog2((queue->queue_size + 1) / 2);
1228
1229         return (atomic_inc_return(&queue->sig_count) & (limit - 1)) == 0;
1230 }
1231
1232 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1233                 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1234                 struct ib_send_wr *first, bool flush)
1235 {
1236         struct ib_send_wr wr, *bad_wr;
1237         int ret;
1238
1239         sge->addr   = qe->dma;
1240         sge->length = sizeof(struct nvme_command),
1241         sge->lkey   = queue->device->pd->local_dma_lkey;
1242
1243         qe->cqe.done = nvme_rdma_send_done;
1244
1245         wr.next       = NULL;
1246         wr.wr_cqe     = &qe->cqe;
1247         wr.sg_list    = sge;
1248         wr.num_sge    = num_sge;
1249         wr.opcode     = IB_WR_SEND;
1250         wr.send_flags = 0;
1251
1252         /*
1253          * Unsignalled send completions are another giant desaster in the
1254          * IB Verbs spec:  If we don't regularly post signalled sends
1255          * the send queue will fill up and only a QP reset will rescue us.
1256          * Would have been way to obvious to handle this in hardware or
1257          * at least the RDMA stack..
1258          *
1259          * Always signal the flushes. The magic request used for the flush
1260          * sequencer is not allocated in our driver's tagset and it's
1261          * triggered to be freed by blk_cleanup_queue(). So we need to
1262          * always mark it as signaled to ensure that the "wr_cqe", which is
1263          * embedded in request's payload, is not freed when __ib_process_cq()
1264          * calls wr_cqe->done().
1265          */
1266         if (nvme_rdma_queue_sig_limit(queue) || flush)
1267                 wr.send_flags |= IB_SEND_SIGNALED;
1268
1269         if (first)
1270                 first->next = &wr;
1271         else
1272                 first = &wr;
1273
1274         ret = ib_post_send(queue->qp, first, &bad_wr);
1275         if (unlikely(ret)) {
1276                 dev_err(queue->ctrl->ctrl.device,
1277                              "%s failed with error code %d\n", __func__, ret);
1278         }
1279         return ret;
1280 }
1281
1282 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1283                 struct nvme_rdma_qe *qe)
1284 {
1285         struct ib_recv_wr wr, *bad_wr;
1286         struct ib_sge list;
1287         int ret;
1288
1289         list.addr   = qe->dma;
1290         list.length = sizeof(struct nvme_completion);
1291         list.lkey   = queue->device->pd->local_dma_lkey;
1292
1293         qe->cqe.done = nvme_rdma_recv_done;
1294
1295         wr.next     = NULL;
1296         wr.wr_cqe   = &qe->cqe;
1297         wr.sg_list  = &list;
1298         wr.num_sge  = 1;
1299
1300         ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1301         if (unlikely(ret)) {
1302                 dev_err(queue->ctrl->ctrl.device,
1303                         "%s failed with error code %d\n", __func__, ret);
1304         }
1305         return ret;
1306 }
1307
1308 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1309 {
1310         u32 queue_idx = nvme_rdma_queue_idx(queue);
1311
1312         if (queue_idx == 0)
1313                 return queue->ctrl->admin_tag_set.tags[queue_idx];
1314         return queue->ctrl->tag_set.tags[queue_idx - 1];
1315 }
1316
1317 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1318 {
1319         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1320         struct nvme_rdma_queue *queue = &ctrl->queues[0];
1321         struct ib_device *dev = queue->device->dev;
1322         struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1323         struct nvme_command *cmd = sqe->data;
1324         struct ib_sge sge;
1325         int ret;
1326
1327         if (WARN_ON_ONCE(aer_idx != 0))
1328                 return;
1329
1330         ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1331
1332         memset(cmd, 0, sizeof(*cmd));
1333         cmd->common.opcode = nvme_admin_async_event;
1334         cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1335         cmd->common.flags |= NVME_CMD_SGL_METABUF;
1336         nvme_rdma_set_sg_null(cmd);
1337
1338         ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1339                         DMA_TO_DEVICE);
1340
1341         ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1342         WARN_ON_ONCE(ret);
1343 }
1344
1345 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1346                 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1347 {
1348         struct request *rq;
1349         struct nvme_rdma_request *req;
1350         int ret = 0;
1351
1352         rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1353         if (!rq) {
1354                 dev_err(queue->ctrl->ctrl.device,
1355                         "tag 0x%x on QP %#x not found\n",
1356                         cqe->command_id, queue->qp->qp_num);
1357                 nvme_rdma_error_recovery(queue->ctrl);
1358                 return ret;
1359         }
1360         req = blk_mq_rq_to_pdu(rq);
1361
1362         if (rq->tag == tag)
1363                 ret = 1;
1364
1365         if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1366             wc->ex.invalidate_rkey == req->mr->rkey)
1367                 req->mr->need_inval = false;
1368
1369         nvme_end_request(rq, cqe->status, cqe->result);
1370         return ret;
1371 }
1372
1373 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1374 {
1375         struct nvme_rdma_qe *qe =
1376                 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1377         struct nvme_rdma_queue *queue = cq->cq_context;
1378         struct ib_device *ibdev = queue->device->dev;
1379         struct nvme_completion *cqe = qe->data;
1380         const size_t len = sizeof(struct nvme_completion);
1381         int ret = 0;
1382
1383         if (unlikely(wc->status != IB_WC_SUCCESS)) {
1384                 nvme_rdma_wr_error(cq, wc, "RECV");
1385                 return 0;
1386         }
1387
1388         ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1389         /*
1390          * AEN requests are special as they don't time out and can
1391          * survive any kind of queue freeze and often don't respond to
1392          * aborts.  We don't even bother to allocate a struct request
1393          * for them but rather special case them here.
1394          */
1395         if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1396                         cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1397                 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
1398                                 &cqe->result);
1399         else
1400                 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1401         ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1402
1403         nvme_rdma_post_recv(queue, qe);
1404         return ret;
1405 }
1406
1407 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1408 {
1409         __nvme_rdma_recv_done(cq, wc, -1);
1410 }
1411
1412 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1413 {
1414         int ret, i;
1415
1416         for (i = 0; i < queue->queue_size; i++) {
1417                 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1418                 if (ret)
1419                         goto out_destroy_queue_ib;
1420         }
1421
1422         return 0;
1423
1424 out_destroy_queue_ib:
1425         nvme_rdma_destroy_queue_ib(queue);
1426         return ret;
1427 }
1428
1429 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1430                 struct rdma_cm_event *ev)
1431 {
1432         struct rdma_cm_id *cm_id = queue->cm_id;
1433         int status = ev->status;
1434         const char *rej_msg;
1435         const struct nvme_rdma_cm_rej *rej_data;
1436         u8 rej_data_len;
1437
1438         rej_msg = rdma_reject_msg(cm_id, status);
1439         rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
1440
1441         if (rej_data && rej_data_len >= sizeof(u16)) {
1442                 u16 sts = le16_to_cpu(rej_data->sts);
1443
1444                 dev_err(queue->ctrl->ctrl.device,
1445                       "Connect rejected: status %d (%s) nvme status %d (%s).\n",
1446                       status, rej_msg, sts, nvme_rdma_cm_msg(sts));
1447         } else {
1448                 dev_err(queue->ctrl->ctrl.device,
1449                         "Connect rejected: status %d (%s).\n", status, rej_msg);
1450         }
1451
1452         return -ECONNRESET;
1453 }
1454
1455 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1456 {
1457         int ret;
1458
1459         ret = nvme_rdma_create_queue_ib(queue);
1460         if (ret)
1461                 return ret;
1462
1463         ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1464         if (ret) {
1465                 dev_err(queue->ctrl->ctrl.device,
1466                         "rdma_resolve_route failed (%d).\n",
1467                         queue->cm_error);
1468                 goto out_destroy_queue;
1469         }
1470
1471         return 0;
1472
1473 out_destroy_queue:
1474         nvme_rdma_destroy_queue_ib(queue);
1475         return ret;
1476 }
1477
1478 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1479 {
1480         struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1481         struct rdma_conn_param param = { };
1482         struct nvme_rdma_cm_req priv = { };
1483         int ret;
1484
1485         param.qp_num = queue->qp->qp_num;
1486         param.flow_control = 1;
1487
1488         param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1489         /* maximum retry count */
1490         param.retry_count = 7;
1491         param.rnr_retry_count = 7;
1492         param.private_data = &priv;
1493         param.private_data_len = sizeof(priv);
1494
1495         priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1496         priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1497         /*
1498          * set the admin queue depth to the minimum size
1499          * specified by the Fabrics standard.
1500          */
1501         if (priv.qid == 0) {
1502                 priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
1503                 priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
1504         } else {
1505                 /*
1506                  * current interpretation of the fabrics spec
1507                  * is at minimum you make hrqsize sqsize+1, or a
1508                  * 1's based representation of sqsize.
1509                  */
1510                 priv.hrqsize = cpu_to_le16(queue->queue_size);
1511                 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1512         }
1513
1514         ret = rdma_connect(queue->cm_id, &param);
1515         if (ret) {
1516                 dev_err(ctrl->ctrl.device,
1517                         "rdma_connect failed (%d).\n", ret);
1518                 goto out_destroy_queue_ib;
1519         }
1520
1521         return 0;
1522
1523 out_destroy_queue_ib:
1524         nvme_rdma_destroy_queue_ib(queue);
1525         return ret;
1526 }
1527
1528 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1529                 struct rdma_cm_event *ev)
1530 {
1531         struct nvme_rdma_queue *queue = cm_id->context;
1532         int cm_error = 0;
1533
1534         dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1535                 rdma_event_msg(ev->event), ev->event,
1536                 ev->status, cm_id);
1537
1538         switch (ev->event) {
1539         case RDMA_CM_EVENT_ADDR_RESOLVED:
1540                 cm_error = nvme_rdma_addr_resolved(queue);
1541                 break;
1542         case RDMA_CM_EVENT_ROUTE_RESOLVED:
1543                 cm_error = nvme_rdma_route_resolved(queue);
1544                 break;
1545         case RDMA_CM_EVENT_ESTABLISHED:
1546                 queue->cm_error = nvme_rdma_conn_established(queue);
1547                 /* complete cm_done regardless of success/failure */
1548                 complete(&queue->cm_done);
1549                 return 0;
1550         case RDMA_CM_EVENT_REJECTED:
1551                 nvme_rdma_destroy_queue_ib(queue);
1552                 cm_error = nvme_rdma_conn_rejected(queue, ev);
1553                 break;
1554         case RDMA_CM_EVENT_ROUTE_ERROR:
1555         case RDMA_CM_EVENT_CONNECT_ERROR:
1556         case RDMA_CM_EVENT_UNREACHABLE:
1557                 nvme_rdma_destroy_queue_ib(queue);
1558         case RDMA_CM_EVENT_ADDR_ERROR:
1559                 dev_dbg(queue->ctrl->ctrl.device,
1560                         "CM error event %d\n", ev->event);
1561                 cm_error = -ECONNRESET;
1562                 break;
1563         case RDMA_CM_EVENT_DISCONNECTED:
1564         case RDMA_CM_EVENT_ADDR_CHANGE:
1565         case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1566                 dev_dbg(queue->ctrl->ctrl.device,
1567                         "disconnect received - connection closed\n");
1568                 nvme_rdma_error_recovery(queue->ctrl);
1569                 break;
1570         case RDMA_CM_EVENT_DEVICE_REMOVAL:
1571                 /* device removal is handled via the ib_client API */
1572                 break;
1573         default:
1574                 dev_err(queue->ctrl->ctrl.device,
1575                         "Unexpected RDMA CM event (%d)\n", ev->event);
1576                 nvme_rdma_error_recovery(queue->ctrl);
1577                 break;
1578         }
1579
1580         if (cm_error) {
1581                 queue->cm_error = cm_error;
1582                 complete(&queue->cm_done);
1583         }
1584
1585         return 0;
1586 }
1587
1588 static enum blk_eh_timer_return
1589 nvme_rdma_timeout(struct request *rq, bool reserved)
1590 {
1591         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1592
1593         /* queue error recovery */
1594         nvme_rdma_error_recovery(req->queue->ctrl);
1595
1596         /* fail with DNR on cmd timeout */
1597         nvme_req(rq)->status = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1598
1599         return BLK_EH_HANDLED;
1600 }
1601
1602 /*
1603  * We cannot accept any other command until the Connect command has completed.
1604  */
1605 static inline blk_status_t
1606 nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue, struct request *rq)
1607 {
1608         if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1609                 struct nvme_command *cmd = nvme_req(rq)->cmd;
1610
1611                 if (!blk_rq_is_passthrough(rq) ||
1612                     cmd->common.opcode != nvme_fabrics_command ||
1613                     cmd->fabrics.fctype != nvme_fabrics_type_connect) {
1614                         /*
1615                          * reconnecting state means transport disruption, which
1616                          * can take a long time and even might fail permanently,
1617                          * fail fast to give upper layers a chance to failover.
1618                          * deleting state means that the ctrl will never accept
1619                          * commands again, fail it permanently.
1620                          */
1621                         if (queue->ctrl->ctrl.state == NVME_CTRL_RECONNECTING ||
1622                             queue->ctrl->ctrl.state == NVME_CTRL_DELETING) {
1623                                 nvme_req(rq)->status = NVME_SC_ABORT_REQ;
1624                                 return BLK_STS_IOERR;
1625                         }
1626                         return BLK_STS_RESOURCE; /* try again later */
1627                 }
1628         }
1629
1630         return 0;
1631 }
1632
1633 static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1634                 const struct blk_mq_queue_data *bd)
1635 {
1636         struct nvme_ns *ns = hctx->queue->queuedata;
1637         struct nvme_rdma_queue *queue = hctx->driver_data;
1638         struct request *rq = bd->rq;
1639         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1640         struct nvme_rdma_qe *sqe = &req->sqe;
1641         struct nvme_command *c = sqe->data;
1642         bool flush = false;
1643         struct ib_device *dev;
1644         blk_status_t ret;
1645         int err;
1646
1647         WARN_ON_ONCE(rq->tag < 0);
1648
1649         ret = nvme_rdma_queue_is_ready(queue, rq);
1650         if (unlikely(ret))
1651                 return ret;
1652
1653         dev = queue->device->dev;
1654         ib_dma_sync_single_for_cpu(dev, sqe->dma,
1655                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1656
1657         ret = nvme_setup_cmd(ns, rq, c);
1658         if (ret)
1659                 return ret;
1660
1661         blk_mq_start_request(rq);
1662
1663         err = nvme_rdma_map_data(queue, rq, c);
1664         if (unlikely(err < 0)) {
1665                 dev_err(queue->ctrl->ctrl.device,
1666                              "Failed to map data (%d)\n", err);
1667                 nvme_cleanup_cmd(rq);
1668                 goto err;
1669         }
1670
1671         ib_dma_sync_single_for_device(dev, sqe->dma,
1672                         sizeof(struct nvme_command), DMA_TO_DEVICE);
1673
1674         if (req_op(rq) == REQ_OP_FLUSH)
1675                 flush = true;
1676         err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1677                         req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1678         if (unlikely(err)) {
1679                 nvme_rdma_unmap_data(queue, rq);
1680                 goto err;
1681         }
1682
1683         return BLK_STS_OK;
1684 err:
1685         if (err == -ENOMEM || err == -EAGAIN)
1686                 return BLK_STS_RESOURCE;
1687         return BLK_STS_IOERR;
1688 }
1689
1690 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1691 {
1692         struct nvme_rdma_queue *queue = hctx->driver_data;
1693         struct ib_cq *cq = queue->ib_cq;
1694         struct ib_wc wc;
1695         int found = 0;
1696
1697         while (ib_poll_cq(cq, 1, &wc) > 0) {
1698                 struct ib_cqe *cqe = wc.wr_cqe;
1699
1700                 if (cqe) {
1701                         if (cqe->done == nvme_rdma_recv_done)
1702                                 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1703                         else
1704                                 cqe->done(cq, &wc);
1705                 }
1706         }
1707
1708         return found;
1709 }
1710
1711 static void nvme_rdma_complete_rq(struct request *rq)
1712 {
1713         struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1714
1715         nvme_rdma_unmap_data(req->queue, rq);
1716         nvme_complete_rq(rq);
1717 }
1718
1719 static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
1720 {
1721         struct nvme_rdma_ctrl *ctrl = set->driver_data;
1722
1723         return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0);
1724 }
1725
1726 static const struct blk_mq_ops nvme_rdma_mq_ops = {
1727         .queue_rq       = nvme_rdma_queue_rq,
1728         .complete       = nvme_rdma_complete_rq,
1729         .init_request   = nvme_rdma_init_request,
1730         .exit_request   = nvme_rdma_exit_request,
1731         .init_hctx      = nvme_rdma_init_hctx,
1732         .poll           = nvme_rdma_poll,
1733         .timeout        = nvme_rdma_timeout,
1734         .map_queues     = nvme_rdma_map_queues,
1735 };
1736
1737 static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1738         .queue_rq       = nvme_rdma_queue_rq,
1739         .complete       = nvme_rdma_complete_rq,
1740         .init_request   = nvme_rdma_init_request,
1741         .exit_request   = nvme_rdma_exit_request,
1742         .init_hctx      = nvme_rdma_init_admin_hctx,
1743         .timeout        = nvme_rdma_timeout,
1744 };
1745
1746 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1747 {
1748         cancel_work_sync(&ctrl->err_work);
1749         cancel_delayed_work_sync(&ctrl->reconnect_work);
1750
1751         if (ctrl->ctrl.queue_count > 1) {
1752                 nvme_stop_queues(&ctrl->ctrl);
1753                 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1754                                         nvme_cancel_request, &ctrl->ctrl);
1755                 nvme_rdma_destroy_io_queues(ctrl, shutdown);
1756         }
1757
1758         if (shutdown)
1759                 nvme_shutdown_ctrl(&ctrl->ctrl);
1760         else
1761                 nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
1762
1763         blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
1764         blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1765                                 nvme_cancel_request, &ctrl->ctrl);
1766         blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
1767         nvme_rdma_destroy_admin_queue(ctrl, shutdown);
1768 }
1769
1770 static void nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl)
1771 {
1772         nvme_remove_namespaces(&ctrl->ctrl);
1773         nvme_rdma_shutdown_ctrl(ctrl, true);
1774         nvme_uninit_ctrl(&ctrl->ctrl);
1775         nvme_put_ctrl(&ctrl->ctrl);
1776 }
1777
1778 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1779 {
1780         struct nvme_rdma_ctrl *ctrl = container_of(work,
1781                                 struct nvme_rdma_ctrl, delete_work);
1782
1783         nvme_stop_ctrl(&ctrl->ctrl);
1784         nvme_rdma_remove_ctrl(ctrl);
1785 }
1786
1787 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1788 {
1789         if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1790                 return -EBUSY;
1791
1792         if (!queue_work(nvme_wq, &ctrl->delete_work))
1793                 return -EBUSY;
1794
1795         return 0;
1796 }
1797
1798 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1799 {
1800         struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1801         int ret = 0;
1802
1803         /*
1804          * Keep a reference until all work is flushed since
1805          * __nvme_rdma_del_ctrl can free the ctrl mem
1806          */
1807         if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1808                 return -EBUSY;
1809         ret = __nvme_rdma_del_ctrl(ctrl);
1810         if (!ret)
1811                 flush_work(&ctrl->delete_work);
1812         nvme_put_ctrl(&ctrl->ctrl);
1813         return ret;
1814 }
1815
1816 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1817 {
1818         struct nvme_rdma_ctrl *ctrl =
1819                 container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
1820         int ret;
1821         bool changed;
1822
1823         nvme_stop_ctrl(&ctrl->ctrl);
1824         nvme_rdma_shutdown_ctrl(ctrl, false);
1825
1826         ret = nvme_rdma_configure_admin_queue(ctrl, false);
1827         if (ret)
1828                 goto out_fail;
1829
1830         if (ctrl->ctrl.queue_count > 1) {
1831                 ret = nvme_rdma_configure_io_queues(ctrl, false);
1832                 if (ret)
1833                         goto out_fail;
1834         }
1835
1836         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1837         WARN_ON_ONCE(!changed);
1838
1839         nvme_start_ctrl(&ctrl->ctrl);
1840
1841         return;
1842
1843 out_fail:
1844         dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1845         nvme_rdma_remove_ctrl(ctrl);
1846 }
1847
1848 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1849         .name                   = "rdma",
1850         .module                 = THIS_MODULE,
1851         .flags                  = NVME_F_FABRICS,
1852         .reg_read32             = nvmf_reg_read32,
1853         .reg_read64             = nvmf_reg_read64,
1854         .reg_write32            = nvmf_reg_write32,
1855         .free_ctrl              = nvme_rdma_free_ctrl,
1856         .submit_async_event     = nvme_rdma_submit_async_event,
1857         .delete_ctrl            = nvme_rdma_del_ctrl,
1858         .get_address            = nvmf_get_address,
1859 };
1860
1861 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1862                 struct nvmf_ctrl_options *opts)
1863 {
1864         struct nvme_rdma_ctrl *ctrl;
1865         int ret;
1866         bool changed;
1867         char *port;
1868
1869         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1870         if (!ctrl)
1871                 return ERR_PTR(-ENOMEM);
1872         ctrl->ctrl.opts = opts;
1873         INIT_LIST_HEAD(&ctrl->list);
1874
1875         if (opts->mask & NVMF_OPT_TRSVCID)
1876                 port = opts->trsvcid;
1877         else
1878                 port = __stringify(NVME_RDMA_IP_PORT);
1879
1880         ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1881                         opts->traddr, port, &ctrl->addr);
1882         if (ret) {
1883                 pr_err("malformed address passed: %s:%s\n", opts->traddr, port);
1884                 goto out_free_ctrl;
1885         }
1886
1887         if (opts->mask & NVMF_OPT_HOST_TRADDR) {
1888                 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
1889                         opts->host_traddr, NULL, &ctrl->src_addr);
1890                 if (ret) {
1891                         pr_err("malformed src address passed: %s\n",
1892                                opts->host_traddr);
1893                         goto out_free_ctrl;
1894                 }
1895         }
1896
1897         ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1898                                 0 /* no quirks, we're perfect! */);
1899         if (ret)
1900                 goto out_free_ctrl;
1901
1902         INIT_DELAYED_WORK(&ctrl->reconnect_work,
1903                         nvme_rdma_reconnect_ctrl_work);
1904         INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1905         INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1906         INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
1907
1908         ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1909         ctrl->ctrl.sqsize = opts->queue_size - 1;
1910         ctrl->ctrl.kato = opts->kato;
1911
1912         ret = -ENOMEM;
1913         ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
1914                                 GFP_KERNEL);
1915         if (!ctrl->queues)
1916                 goto out_uninit_ctrl;
1917
1918         ret = nvme_rdma_configure_admin_queue(ctrl, true);
1919         if (ret)
1920                 goto out_kfree_queues;
1921
1922         /* sanity check icdoff */
1923         if (ctrl->ctrl.icdoff) {
1924                 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1925                 ret = -EINVAL;
1926                 goto out_remove_admin_queue;
1927         }
1928
1929         /* sanity check keyed sgls */
1930         if (!(ctrl->ctrl.sgls & (1 << 20))) {
1931                 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1932                 ret = -EINVAL;
1933                 goto out_remove_admin_queue;
1934         }
1935
1936         if (opts->queue_size > ctrl->ctrl.maxcmd) {
1937                 /* warn if maxcmd is lower than queue_size */
1938                 dev_warn(ctrl->ctrl.device,
1939                         "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1940                         opts->queue_size, ctrl->ctrl.maxcmd);
1941                 opts->queue_size = ctrl->ctrl.maxcmd;
1942         }
1943
1944         if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
1945                 /* warn if sqsize is lower than queue_size */
1946                 dev_warn(ctrl->ctrl.device,
1947                         "queue_size %zu > ctrl sqsize %u, clamping down\n",
1948                         opts->queue_size, ctrl->ctrl.sqsize + 1);
1949                 opts->queue_size = ctrl->ctrl.sqsize + 1;
1950         }
1951
1952         if (opts->nr_io_queues) {
1953                 ret = nvme_rdma_configure_io_queues(ctrl, true);
1954                 if (ret)
1955                         goto out_remove_admin_queue;
1956         }
1957
1958         changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1959         WARN_ON_ONCE(!changed);
1960
1961         dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
1962                 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1963
1964         kref_get(&ctrl->ctrl.kref);
1965
1966         mutex_lock(&nvme_rdma_ctrl_mutex);
1967         list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1968         mutex_unlock(&nvme_rdma_ctrl_mutex);
1969
1970         nvme_start_ctrl(&ctrl->ctrl);
1971
1972         return &ctrl->ctrl;
1973
1974 out_remove_admin_queue:
1975         nvme_rdma_destroy_admin_queue(ctrl, true);
1976 out_kfree_queues:
1977         kfree(ctrl->queues);
1978 out_uninit_ctrl:
1979         nvme_uninit_ctrl(&ctrl->ctrl);
1980         nvme_put_ctrl(&ctrl->ctrl);
1981         if (ret > 0)
1982                 ret = -EIO;
1983         return ERR_PTR(ret);
1984 out_free_ctrl:
1985         kfree(ctrl);
1986         return ERR_PTR(ret);
1987 }
1988
1989 static struct nvmf_transport_ops nvme_rdma_transport = {
1990         .name           = "rdma",
1991         .required_opts  = NVMF_OPT_TRADDR,
1992         .allowed_opts   = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
1993                           NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO,
1994         .create_ctrl    = nvme_rdma_create_ctrl,
1995 };
1996
1997 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
1998 {
1999         struct nvme_rdma_ctrl *ctrl;
2000
2001         /* Delete all controllers using this device */
2002         mutex_lock(&nvme_rdma_ctrl_mutex);
2003         list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2004                 if (ctrl->device->dev != ib_device)
2005                         continue;
2006                 dev_info(ctrl->ctrl.device,
2007                         "Removing ctrl: NQN \"%s\", addr %pISp\n",
2008                         ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2009                 __nvme_rdma_del_ctrl(ctrl);
2010         }
2011         mutex_unlock(&nvme_rdma_ctrl_mutex);
2012
2013         flush_workqueue(nvme_wq);
2014 }
2015
2016 static struct ib_client nvme_rdma_ib_client = {
2017         .name   = "nvme_rdma",
2018         .remove = nvme_rdma_remove_one
2019 };
2020
2021 static int __init nvme_rdma_init_module(void)
2022 {
2023         int ret;
2024
2025         ret = ib_register_client(&nvme_rdma_ib_client);
2026         if (ret)
2027                 return ret;
2028
2029         ret = nvmf_register_transport(&nvme_rdma_transport);
2030         if (ret)
2031                 goto err_unreg_client;
2032
2033         return 0;
2034
2035 err_unreg_client:
2036         ib_unregister_client(&nvme_rdma_ib_client);
2037         return ret;
2038 }
2039
2040 static void __exit nvme_rdma_cleanup_module(void)
2041 {
2042         nvmf_unregister_transport(&nvme_rdma_transport);
2043         ib_unregister_client(&nvme_rdma_ib_client);
2044 }
2045
2046 module_init(nvme_rdma_init_module);
2047 module_exit(nvme_rdma_cleanup_module);
2048
2049 MODULE_LICENSE("GPL v2");