Merge tag 'mtd/fixes-for-5.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/delay.h>
10 #include <linux/errno.h>
11 #include <linux/hdreg.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/list_sort.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/pr.h>
19 #include <linux/ptrace.h>
20 #include <linux/nvme_ioctl.h>
21 #include <linux/t10-pi.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27
28 #include "nvme.h"
29 #include "fabrics.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such are scan, aen handling, fw activation,
70  * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static DEFINE_IDA(nvme_subsystems_ida);
85 static LIST_HEAD(nvme_subsystems);
86 static DEFINE_MUTEX(nvme_subsystems_lock);
87
88 static DEFINE_IDA(nvme_instance_ida);
89 static dev_t nvme_chr_devt;
90 static struct class *nvme_class;
91 static struct class *nvme_subsys_class;
92
93 static int nvme_revalidate_disk(struct gendisk *disk);
94 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
95 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
96                                            unsigned nsid);
97
98 static void nvme_set_queue_dying(struct nvme_ns *ns)
99 {
100         /*
101          * Revalidating a dead namespace sets capacity to 0. This will end
102          * buffered writers dirtying pages that can't be synced.
103          */
104         if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
105                 return;
106         revalidate_disk(ns->disk);
107         blk_set_queue_dying(ns->queue);
108         /* Forcibly unquiesce queues to avoid blocking dispatch */
109         blk_mq_unquiesce_queue(ns->queue);
110 }
111
112 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
113 {
114         /*
115          * Only new queue scan work when admin and IO queues are both alive
116          */
117         if (ctrl->state == NVME_CTRL_LIVE)
118                 queue_work(nvme_wq, &ctrl->scan_work);
119 }
120
121 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
122 {
123         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
124                 return -EBUSY;
125         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
126                 return -EBUSY;
127         return 0;
128 }
129 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
130
131 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
132 {
133         int ret;
134
135         ret = nvme_reset_ctrl(ctrl);
136         if (!ret) {
137                 flush_work(&ctrl->reset_work);
138                 if (ctrl->state != NVME_CTRL_LIVE &&
139                     ctrl->state != NVME_CTRL_ADMIN_ONLY)
140                         ret = -ENETRESET;
141         }
142
143         return ret;
144 }
145 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
146
147 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
148 {
149         dev_info(ctrl->device,
150                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
151
152         flush_work(&ctrl->reset_work);
153         nvme_stop_ctrl(ctrl);
154         nvme_remove_namespaces(ctrl);
155         ctrl->ops->delete_ctrl(ctrl);
156         nvme_uninit_ctrl(ctrl);
157         nvme_put_ctrl(ctrl);
158 }
159
160 static void nvme_delete_ctrl_work(struct work_struct *work)
161 {
162         struct nvme_ctrl *ctrl =
163                 container_of(work, struct nvme_ctrl, delete_work);
164
165         nvme_do_delete_ctrl(ctrl);
166 }
167
168 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
169 {
170         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
171                 return -EBUSY;
172         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
173                 return -EBUSY;
174         return 0;
175 }
176 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
177
178 static int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
179 {
180         int ret = 0;
181
182         /*
183          * Keep a reference until nvme_do_delete_ctrl() complete,
184          * since ->delete_ctrl can free the controller.
185          */
186         nvme_get_ctrl(ctrl);
187         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
188                 ret = -EBUSY;
189         if (!ret)
190                 nvme_do_delete_ctrl(ctrl);
191         nvme_put_ctrl(ctrl);
192         return ret;
193 }
194
195 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
196 {
197         return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
198 }
199
200 static blk_status_t nvme_error_status(struct request *req)
201 {
202         switch (nvme_req(req)->status & 0x7ff) {
203         case NVME_SC_SUCCESS:
204                 return BLK_STS_OK;
205         case NVME_SC_CAP_EXCEEDED:
206                 return BLK_STS_NOSPC;
207         case NVME_SC_LBA_RANGE:
208                 return BLK_STS_TARGET;
209         case NVME_SC_BAD_ATTRIBUTES:
210         case NVME_SC_ONCS_NOT_SUPPORTED:
211         case NVME_SC_INVALID_OPCODE:
212         case NVME_SC_INVALID_FIELD:
213         case NVME_SC_INVALID_NS:
214                 return BLK_STS_NOTSUPP;
215         case NVME_SC_WRITE_FAULT:
216         case NVME_SC_READ_ERROR:
217         case NVME_SC_UNWRITTEN_BLOCK:
218         case NVME_SC_ACCESS_DENIED:
219         case NVME_SC_READ_ONLY:
220         case NVME_SC_COMPARE_FAILED:
221                 return BLK_STS_MEDIUM;
222         case NVME_SC_GUARD_CHECK:
223         case NVME_SC_APPTAG_CHECK:
224         case NVME_SC_REFTAG_CHECK:
225         case NVME_SC_INVALID_PI:
226                 return BLK_STS_PROTECTION;
227         case NVME_SC_RESERVATION_CONFLICT:
228                 return BLK_STS_NEXUS;
229         default:
230                 return BLK_STS_IOERR;
231         }
232 }
233
234 static inline bool nvme_req_needs_retry(struct request *req)
235 {
236         if (blk_noretry_request(req))
237                 return false;
238         if (nvme_req(req)->status & NVME_SC_DNR)
239                 return false;
240         if (nvme_req(req)->retries >= nvme_max_retries)
241                 return false;
242         return true;
243 }
244
245 static void nvme_retry_req(struct request *req)
246 {
247         struct nvme_ns *ns = req->q->queuedata;
248         unsigned long delay = 0;
249         u16 crd;
250
251         /* The mask and shift result must be <= 3 */
252         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
253         if (ns && crd)
254                 delay = ns->ctrl->crdt[crd - 1] * 100;
255
256         nvme_req(req)->retries++;
257         blk_mq_requeue_request(req, false);
258         blk_mq_delay_kick_requeue_list(req->q, delay);
259 }
260
261 void nvme_complete_rq(struct request *req)
262 {
263         blk_status_t status = nvme_error_status(req);
264
265         trace_nvme_complete_rq(req);
266
267         if (nvme_req(req)->ctrl->kas)
268                 nvme_req(req)->ctrl->comp_seen = true;
269
270         if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
271                 if ((req->cmd_flags & REQ_NVME_MPATH) &&
272                     blk_path_error(status)) {
273                         nvme_failover_req(req);
274                         return;
275                 }
276
277                 if (!blk_queue_dying(req->q)) {
278                         nvme_retry_req(req);
279                         return;
280                 }
281         }
282         blk_mq_end_request(req, status);
283 }
284 EXPORT_SYMBOL_GPL(nvme_complete_rq);
285
286 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
287 {
288         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
289                                 "Cancelling I/O %d", req->tag);
290
291         nvme_req(req)->status = NVME_SC_ABORT_REQ;
292         blk_mq_complete_request_sync(req);
293         return true;
294 }
295 EXPORT_SYMBOL_GPL(nvme_cancel_request);
296
297 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
298                 enum nvme_ctrl_state new_state)
299 {
300         enum nvme_ctrl_state old_state;
301         unsigned long flags;
302         bool changed = false;
303
304         spin_lock_irqsave(&ctrl->lock, flags);
305
306         old_state = ctrl->state;
307         switch (new_state) {
308         case NVME_CTRL_ADMIN_ONLY:
309                 switch (old_state) {
310                 case NVME_CTRL_CONNECTING:
311                         changed = true;
312                         /* FALLTHRU */
313                 default:
314                         break;
315                 }
316                 break;
317         case NVME_CTRL_LIVE:
318                 switch (old_state) {
319                 case NVME_CTRL_NEW:
320                 case NVME_CTRL_RESETTING:
321                 case NVME_CTRL_CONNECTING:
322                         changed = true;
323                         /* FALLTHRU */
324                 default:
325                         break;
326                 }
327                 break;
328         case NVME_CTRL_RESETTING:
329                 switch (old_state) {
330                 case NVME_CTRL_NEW:
331                 case NVME_CTRL_LIVE:
332                 case NVME_CTRL_ADMIN_ONLY:
333                         changed = true;
334                         /* FALLTHRU */
335                 default:
336                         break;
337                 }
338                 break;
339         case NVME_CTRL_CONNECTING:
340                 switch (old_state) {
341                 case NVME_CTRL_NEW:
342                 case NVME_CTRL_RESETTING:
343                         changed = true;
344                         /* FALLTHRU */
345                 default:
346                         break;
347                 }
348                 break;
349         case NVME_CTRL_DELETING:
350                 switch (old_state) {
351                 case NVME_CTRL_LIVE:
352                 case NVME_CTRL_ADMIN_ONLY:
353                 case NVME_CTRL_RESETTING:
354                 case NVME_CTRL_CONNECTING:
355                         changed = true;
356                         /* FALLTHRU */
357                 default:
358                         break;
359                 }
360                 break;
361         case NVME_CTRL_DEAD:
362                 switch (old_state) {
363                 case NVME_CTRL_DELETING:
364                         changed = true;
365                         /* FALLTHRU */
366                 default:
367                         break;
368                 }
369                 break;
370         default:
371                 break;
372         }
373
374         if (changed)
375                 ctrl->state = new_state;
376
377         spin_unlock_irqrestore(&ctrl->lock, flags);
378         if (changed && ctrl->state == NVME_CTRL_LIVE)
379                 nvme_kick_requeue_lists(ctrl);
380         return changed;
381 }
382 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
383
384 static void nvme_free_ns_head(struct kref *ref)
385 {
386         struct nvme_ns_head *head =
387                 container_of(ref, struct nvme_ns_head, ref);
388
389         nvme_mpath_remove_disk(head);
390         ida_simple_remove(&head->subsys->ns_ida, head->instance);
391         list_del_init(&head->entry);
392         cleanup_srcu_struct(&head->srcu);
393         nvme_put_subsystem(head->subsys);
394         kfree(head);
395 }
396
397 static void nvme_put_ns_head(struct nvme_ns_head *head)
398 {
399         kref_put(&head->ref, nvme_free_ns_head);
400 }
401
402 static void nvme_free_ns(struct kref *kref)
403 {
404         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
405
406         if (ns->ndev)
407                 nvme_nvm_unregister(ns);
408
409         put_disk(ns->disk);
410         nvme_put_ns_head(ns->head);
411         nvme_put_ctrl(ns->ctrl);
412         kfree(ns);
413 }
414
415 static void nvme_put_ns(struct nvme_ns *ns)
416 {
417         kref_put(&ns->kref, nvme_free_ns);
418 }
419
420 static inline void nvme_clear_nvme_request(struct request *req)
421 {
422         if (!(req->rq_flags & RQF_DONTPREP)) {
423                 nvme_req(req)->retries = 0;
424                 nvme_req(req)->flags = 0;
425                 req->rq_flags |= RQF_DONTPREP;
426         }
427 }
428
429 struct request *nvme_alloc_request(struct request_queue *q,
430                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
431 {
432         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
433         struct request *req;
434
435         if (qid == NVME_QID_ANY) {
436                 req = blk_mq_alloc_request(q, op, flags);
437         } else {
438                 req = blk_mq_alloc_request_hctx(q, op, flags,
439                                 qid ? qid - 1 : 0);
440         }
441         if (IS_ERR(req))
442                 return req;
443
444         req->cmd_flags |= REQ_FAILFAST_DRIVER;
445         nvme_clear_nvme_request(req);
446         nvme_req(req)->cmd = cmd;
447
448         return req;
449 }
450 EXPORT_SYMBOL_GPL(nvme_alloc_request);
451
452 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
453 {
454         struct nvme_command c;
455
456         memset(&c, 0, sizeof(c));
457
458         c.directive.opcode = nvme_admin_directive_send;
459         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
460         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
461         c.directive.dtype = NVME_DIR_IDENTIFY;
462         c.directive.tdtype = NVME_DIR_STREAMS;
463         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
464
465         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
466 }
467
468 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
469 {
470         return nvme_toggle_streams(ctrl, false);
471 }
472
473 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
474 {
475         return nvme_toggle_streams(ctrl, true);
476 }
477
478 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
479                                   struct streams_directive_params *s, u32 nsid)
480 {
481         struct nvme_command c;
482
483         memset(&c, 0, sizeof(c));
484         memset(s, 0, sizeof(*s));
485
486         c.directive.opcode = nvme_admin_directive_recv;
487         c.directive.nsid = cpu_to_le32(nsid);
488         c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
489         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
490         c.directive.dtype = NVME_DIR_STREAMS;
491
492         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
493 }
494
495 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
496 {
497         struct streams_directive_params s;
498         int ret;
499
500         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
501                 return 0;
502         if (!streams)
503                 return 0;
504
505         ret = nvme_enable_streams(ctrl);
506         if (ret)
507                 return ret;
508
509         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
510         if (ret)
511                 return ret;
512
513         ctrl->nssa = le16_to_cpu(s.nssa);
514         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
515                 dev_info(ctrl->device, "too few streams (%u) available\n",
516                                         ctrl->nssa);
517                 nvme_disable_streams(ctrl);
518                 return 0;
519         }
520
521         ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
522         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
523         return 0;
524 }
525
526 /*
527  * Check if 'req' has a write hint associated with it. If it does, assign
528  * a valid namespace stream to the write.
529  */
530 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
531                                      struct request *req, u16 *control,
532                                      u32 *dsmgmt)
533 {
534         enum rw_hint streamid = req->write_hint;
535
536         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
537                 streamid = 0;
538         else {
539                 streamid--;
540                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
541                         return;
542
543                 *control |= NVME_RW_DTYPE_STREAMS;
544                 *dsmgmt |= streamid << 16;
545         }
546
547         if (streamid < ARRAY_SIZE(req->q->write_hints))
548                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
549 }
550
551 static inline void nvme_setup_flush(struct nvme_ns *ns,
552                 struct nvme_command *cmnd)
553 {
554         cmnd->common.opcode = nvme_cmd_flush;
555         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
556 }
557
558 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
559                 struct nvme_command *cmnd)
560 {
561         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
562         struct nvme_dsm_range *range;
563         struct bio *bio;
564
565         range = kmalloc_array(segments, sizeof(*range),
566                                 GFP_ATOMIC | __GFP_NOWARN);
567         if (!range) {
568                 /*
569                  * If we fail allocation our range, fallback to the controller
570                  * discard page. If that's also busy, it's safe to return
571                  * busy, as we know we can make progress once that's freed.
572                  */
573                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
574                         return BLK_STS_RESOURCE;
575
576                 range = page_address(ns->ctrl->discard_page);
577         }
578
579         __rq_for_each_bio(bio, req) {
580                 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
581                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
582
583                 if (n < segments) {
584                         range[n].cattr = cpu_to_le32(0);
585                         range[n].nlb = cpu_to_le32(nlb);
586                         range[n].slba = cpu_to_le64(slba);
587                 }
588                 n++;
589         }
590
591         if (WARN_ON_ONCE(n != segments)) {
592                 if (virt_to_page(range) == ns->ctrl->discard_page)
593                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
594                 else
595                         kfree(range);
596                 return BLK_STS_IOERR;
597         }
598
599         cmnd->dsm.opcode = nvme_cmd_dsm;
600         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
601         cmnd->dsm.nr = cpu_to_le32(segments - 1);
602         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
603
604         req->special_vec.bv_page = virt_to_page(range);
605         req->special_vec.bv_offset = offset_in_page(range);
606         req->special_vec.bv_len = sizeof(*range) * segments;
607         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
608
609         return BLK_STS_OK;
610 }
611
612 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
613                 struct request *req, struct nvme_command *cmnd)
614 {
615         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
616                 return nvme_setup_discard(ns, req, cmnd);
617
618         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
619         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
620         cmnd->write_zeroes.slba =
621                 cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
622         cmnd->write_zeroes.length =
623                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
624         cmnd->write_zeroes.control = 0;
625         return BLK_STS_OK;
626 }
627
628 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
629                 struct request *req, struct nvme_command *cmnd)
630 {
631         struct nvme_ctrl *ctrl = ns->ctrl;
632         u16 control = 0;
633         u32 dsmgmt = 0;
634
635         if (req->cmd_flags & REQ_FUA)
636                 control |= NVME_RW_FUA;
637         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
638                 control |= NVME_RW_LR;
639
640         if (req->cmd_flags & REQ_RAHEAD)
641                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
642
643         cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
644         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
645         cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
646         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
647
648         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
649                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
650
651         if (ns->ms) {
652                 /*
653                  * If formated with metadata, the block layer always provides a
654                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
655                  * we enable the PRACT bit for protection information or set the
656                  * namespace capacity to zero to prevent any I/O.
657                  */
658                 if (!blk_integrity_rq(req)) {
659                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
660                                 return BLK_STS_NOTSUPP;
661                         control |= NVME_RW_PRINFO_PRACT;
662                 } else if (req_op(req) == REQ_OP_WRITE) {
663                         t10_pi_prepare(req, ns->pi_type);
664                 }
665
666                 switch (ns->pi_type) {
667                 case NVME_NS_DPS_PI_TYPE3:
668                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
669                         break;
670                 case NVME_NS_DPS_PI_TYPE1:
671                 case NVME_NS_DPS_PI_TYPE2:
672                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
673                                         NVME_RW_PRINFO_PRCHK_REF;
674                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
675                         break;
676                 }
677         }
678
679         cmnd->rw.control = cpu_to_le16(control);
680         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
681         return 0;
682 }
683
684 void nvme_cleanup_cmd(struct request *req)
685 {
686         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
687             nvme_req(req)->status == 0) {
688                 struct nvme_ns *ns = req->rq_disk->private_data;
689
690                 t10_pi_complete(req, ns->pi_type,
691                                 blk_rq_bytes(req) >> ns->lba_shift);
692         }
693         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
694                 struct nvme_ns *ns = req->rq_disk->private_data;
695                 struct page *page = req->special_vec.bv_page;
696
697                 if (page == ns->ctrl->discard_page)
698                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
699                 else
700                         kfree(page_address(page) + req->special_vec.bv_offset);
701         }
702 }
703 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
704
705 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
706                 struct nvme_command *cmd)
707 {
708         blk_status_t ret = BLK_STS_OK;
709
710         nvme_clear_nvme_request(req);
711
712         memset(cmd, 0, sizeof(*cmd));
713         switch (req_op(req)) {
714         case REQ_OP_DRV_IN:
715         case REQ_OP_DRV_OUT:
716                 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
717                 break;
718         case REQ_OP_FLUSH:
719                 nvme_setup_flush(ns, cmd);
720                 break;
721         case REQ_OP_WRITE_ZEROES:
722                 ret = nvme_setup_write_zeroes(ns, req, cmd);
723                 break;
724         case REQ_OP_DISCARD:
725                 ret = nvme_setup_discard(ns, req, cmd);
726                 break;
727         case REQ_OP_READ:
728         case REQ_OP_WRITE:
729                 ret = nvme_setup_rw(ns, req, cmd);
730                 break;
731         default:
732                 WARN_ON_ONCE(1);
733                 return BLK_STS_IOERR;
734         }
735
736         cmd->common.command_id = req->tag;
737         trace_nvme_setup_cmd(req, cmd);
738         return ret;
739 }
740 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
741
742 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
743 {
744         struct completion *waiting = rq->end_io_data;
745
746         rq->end_io_data = NULL;
747         complete(waiting);
748 }
749
750 static void nvme_execute_rq_polled(struct request_queue *q,
751                 struct gendisk *bd_disk, struct request *rq, int at_head)
752 {
753         DECLARE_COMPLETION_ONSTACK(wait);
754
755         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
756
757         rq->cmd_flags |= REQ_HIPRI;
758         rq->end_io_data = &wait;
759         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
760
761         while (!completion_done(&wait)) {
762                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
763                 cond_resched();
764         }
765 }
766
767 /*
768  * Returns 0 on success.  If the result is negative, it's a Linux error code;
769  * if the result is positive, it's an NVM Express status code
770  */
771 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
772                 union nvme_result *result, void *buffer, unsigned bufflen,
773                 unsigned timeout, int qid, int at_head,
774                 blk_mq_req_flags_t flags, bool poll)
775 {
776         struct request *req;
777         int ret;
778
779         req = nvme_alloc_request(q, cmd, flags, qid);
780         if (IS_ERR(req))
781                 return PTR_ERR(req);
782
783         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
784
785         if (buffer && bufflen) {
786                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
787                 if (ret)
788                         goto out;
789         }
790
791         if (poll)
792                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
793         else
794                 blk_execute_rq(req->q, NULL, req, at_head);
795         if (result)
796                 *result = nvme_req(req)->result;
797         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
798                 ret = -EINTR;
799         else
800                 ret = nvme_req(req)->status;
801  out:
802         blk_mq_free_request(req);
803         return ret;
804 }
805 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
806
807 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
808                 void *buffer, unsigned bufflen)
809 {
810         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
811                         NVME_QID_ANY, 0, 0, false);
812 }
813 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
814
815 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
816                 unsigned len, u32 seed, bool write)
817 {
818         struct bio_integrity_payload *bip;
819         int ret = -ENOMEM;
820         void *buf;
821
822         buf = kmalloc(len, GFP_KERNEL);
823         if (!buf)
824                 goto out;
825
826         ret = -EFAULT;
827         if (write && copy_from_user(buf, ubuf, len))
828                 goto out_free_meta;
829
830         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
831         if (IS_ERR(bip)) {
832                 ret = PTR_ERR(bip);
833                 goto out_free_meta;
834         }
835
836         bip->bip_iter.bi_size = len;
837         bip->bip_iter.bi_sector = seed;
838         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
839                         offset_in_page(buf));
840         if (ret == len)
841                 return buf;
842         ret = -ENOMEM;
843 out_free_meta:
844         kfree(buf);
845 out:
846         return ERR_PTR(ret);
847 }
848
849 static int nvme_submit_user_cmd(struct request_queue *q,
850                 struct nvme_command *cmd, void __user *ubuffer,
851                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
852                 u32 meta_seed, u32 *result, unsigned timeout)
853 {
854         bool write = nvme_is_write(cmd);
855         struct nvme_ns *ns = q->queuedata;
856         struct gendisk *disk = ns ? ns->disk : NULL;
857         struct request *req;
858         struct bio *bio = NULL;
859         void *meta = NULL;
860         int ret;
861
862         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
863         if (IS_ERR(req))
864                 return PTR_ERR(req);
865
866         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
867         nvme_req(req)->flags |= NVME_REQ_USERCMD;
868
869         if (ubuffer && bufflen) {
870                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
871                                 GFP_KERNEL);
872                 if (ret)
873                         goto out;
874                 bio = req->bio;
875                 bio->bi_disk = disk;
876                 if (disk && meta_buffer && meta_len) {
877                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
878                                         meta_seed, write);
879                         if (IS_ERR(meta)) {
880                                 ret = PTR_ERR(meta);
881                                 goto out_unmap;
882                         }
883                         req->cmd_flags |= REQ_INTEGRITY;
884                 }
885         }
886
887         blk_execute_rq(req->q, disk, req, 0);
888         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
889                 ret = -EINTR;
890         else
891                 ret = nvme_req(req)->status;
892         if (result)
893                 *result = le32_to_cpu(nvme_req(req)->result.u32);
894         if (meta && !ret && !write) {
895                 if (copy_to_user(meta_buffer, meta, meta_len))
896                         ret = -EFAULT;
897         }
898         kfree(meta);
899  out_unmap:
900         if (bio)
901                 blk_rq_unmap_user(bio);
902  out:
903         blk_mq_free_request(req);
904         return ret;
905 }
906
907 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
908 {
909         struct nvme_ctrl *ctrl = rq->end_io_data;
910         unsigned long flags;
911         bool startka = false;
912
913         blk_mq_free_request(rq);
914
915         if (status) {
916                 dev_err(ctrl->device,
917                         "failed nvme_keep_alive_end_io error=%d\n",
918                                 status);
919                 return;
920         }
921
922         ctrl->comp_seen = false;
923         spin_lock_irqsave(&ctrl->lock, flags);
924         if (ctrl->state == NVME_CTRL_LIVE ||
925             ctrl->state == NVME_CTRL_CONNECTING)
926                 startka = true;
927         spin_unlock_irqrestore(&ctrl->lock, flags);
928         if (startka)
929                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
930 }
931
932 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
933 {
934         struct request *rq;
935
936         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
937                         NVME_QID_ANY);
938         if (IS_ERR(rq))
939                 return PTR_ERR(rq);
940
941         rq->timeout = ctrl->kato * HZ;
942         rq->end_io_data = ctrl;
943
944         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
945
946         return 0;
947 }
948
949 static void nvme_keep_alive_work(struct work_struct *work)
950 {
951         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
952                         struct nvme_ctrl, ka_work);
953         bool comp_seen = ctrl->comp_seen;
954
955         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
956                 dev_dbg(ctrl->device,
957                         "reschedule traffic based keep-alive timer\n");
958                 ctrl->comp_seen = false;
959                 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
960                 return;
961         }
962
963         if (nvme_keep_alive(ctrl)) {
964                 /* allocation failure, reset the controller */
965                 dev_err(ctrl->device, "keep-alive failed\n");
966                 nvme_reset_ctrl(ctrl);
967                 return;
968         }
969 }
970
971 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
972 {
973         if (unlikely(ctrl->kato == 0))
974                 return;
975
976         schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
977 }
978
979 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
980 {
981         if (unlikely(ctrl->kato == 0))
982                 return;
983
984         cancel_delayed_work_sync(&ctrl->ka_work);
985 }
986 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
987
988 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
989 {
990         struct nvme_command c = { };
991         int error;
992
993         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
994         c.identify.opcode = nvme_admin_identify;
995         c.identify.cns = NVME_ID_CNS_CTRL;
996
997         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
998         if (!*id)
999                 return -ENOMEM;
1000
1001         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1002                         sizeof(struct nvme_id_ctrl));
1003         if (error)
1004                 kfree(*id);
1005         return error;
1006 }
1007
1008 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1009                 struct nvme_ns_ids *ids)
1010 {
1011         struct nvme_command c = { };
1012         int status;
1013         void *data;
1014         int pos;
1015         int len;
1016
1017         c.identify.opcode = nvme_admin_identify;
1018         c.identify.nsid = cpu_to_le32(nsid);
1019         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1020
1021         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1022         if (!data)
1023                 return -ENOMEM;
1024
1025         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1026                                       NVME_IDENTIFY_DATA_SIZE);
1027         if (status)
1028                 goto free_data;
1029
1030         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1031                 struct nvme_ns_id_desc *cur = data + pos;
1032
1033                 if (cur->nidl == 0)
1034                         break;
1035
1036                 switch (cur->nidt) {
1037                 case NVME_NIDT_EUI64:
1038                         if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1039                                 dev_warn(ctrl->device,
1040                                          "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
1041                                          cur->nidl);
1042                                 goto free_data;
1043                         }
1044                         len = NVME_NIDT_EUI64_LEN;
1045                         memcpy(ids->eui64, data + pos + sizeof(*cur), len);
1046                         break;
1047                 case NVME_NIDT_NGUID:
1048                         if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1049                                 dev_warn(ctrl->device,
1050                                          "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
1051                                          cur->nidl);
1052                                 goto free_data;
1053                         }
1054                         len = NVME_NIDT_NGUID_LEN;
1055                         memcpy(ids->nguid, data + pos + sizeof(*cur), len);
1056                         break;
1057                 case NVME_NIDT_UUID:
1058                         if (cur->nidl != NVME_NIDT_UUID_LEN) {
1059                                 dev_warn(ctrl->device,
1060                                          "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
1061                                          cur->nidl);
1062                                 goto free_data;
1063                         }
1064                         len = NVME_NIDT_UUID_LEN;
1065                         uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
1066                         break;
1067                 default:
1068                         /* Skip unknown types */
1069                         len = cur->nidl;
1070                         break;
1071                 }
1072
1073                 len += sizeof(*cur);
1074         }
1075 free_data:
1076         kfree(data);
1077         return status;
1078 }
1079
1080 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
1081 {
1082         struct nvme_command c = { };
1083
1084         c.identify.opcode = nvme_admin_identify;
1085         c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
1086         c.identify.nsid = cpu_to_le32(nsid);
1087         return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
1088                                     NVME_IDENTIFY_DATA_SIZE);
1089 }
1090
1091 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
1092                 unsigned nsid)
1093 {
1094         struct nvme_id_ns *id;
1095         struct nvme_command c = { };
1096         int error;
1097
1098         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1099         c.identify.opcode = nvme_admin_identify;
1100         c.identify.nsid = cpu_to_le32(nsid);
1101         c.identify.cns = NVME_ID_CNS_NS;
1102
1103         id = kmalloc(sizeof(*id), GFP_KERNEL);
1104         if (!id)
1105                 return NULL;
1106
1107         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1108         if (error) {
1109                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1110                 kfree(id);
1111                 return NULL;
1112         }
1113
1114         return id;
1115 }
1116
1117 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1118                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1119 {
1120         struct nvme_command c;
1121         union nvme_result res;
1122         int ret;
1123
1124         memset(&c, 0, sizeof(c));
1125         c.features.opcode = op;
1126         c.features.fid = cpu_to_le32(fid);
1127         c.features.dword11 = cpu_to_le32(dword11);
1128
1129         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1130                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1131         if (ret >= 0 && result)
1132                 *result = le32_to_cpu(res.u32);
1133         return ret;
1134 }
1135
1136 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1137                       unsigned int dword11, void *buffer, size_t buflen,
1138                       u32 *result)
1139 {
1140         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1141                              buflen, result);
1142 }
1143 EXPORT_SYMBOL_GPL(nvme_set_features);
1144
1145 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1146                       unsigned int dword11, void *buffer, size_t buflen,
1147                       u32 *result)
1148 {
1149         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1150                              buflen, result);
1151 }
1152 EXPORT_SYMBOL_GPL(nvme_get_features);
1153
1154 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1155 {
1156         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1157         u32 result;
1158         int status, nr_io_queues;
1159
1160         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1161                         &result);
1162         if (status < 0)
1163                 return status;
1164
1165         /*
1166          * Degraded controllers might return an error when setting the queue
1167          * count.  We still want to be able to bring them online and offer
1168          * access to the admin queue, as that might be only way to fix them up.
1169          */
1170         if (status > 0) {
1171                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1172                 *count = 0;
1173         } else {
1174                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1175                 *count = min(*count, nr_io_queues);
1176         }
1177
1178         return 0;
1179 }
1180 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1181
1182 #define NVME_AEN_SUPPORTED \
1183         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | NVME_AEN_CFG_ANA_CHANGE)
1184
1185 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1186 {
1187         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1188         int status;
1189
1190         if (!supported_aens)
1191                 return;
1192
1193         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1194                         NULL, 0, &result);
1195         if (status)
1196                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1197                          supported_aens);
1198 }
1199
1200 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1201 {
1202         struct nvme_user_io io;
1203         struct nvme_command c;
1204         unsigned length, meta_len;
1205         void __user *metadata;
1206
1207         if (copy_from_user(&io, uio, sizeof(io)))
1208                 return -EFAULT;
1209         if (io.flags)
1210                 return -EINVAL;
1211
1212         switch (io.opcode) {
1213         case nvme_cmd_write:
1214         case nvme_cmd_read:
1215         case nvme_cmd_compare:
1216                 break;
1217         default:
1218                 return -EINVAL;
1219         }
1220
1221         length = (io.nblocks + 1) << ns->lba_shift;
1222         meta_len = (io.nblocks + 1) * ns->ms;
1223         metadata = (void __user *)(uintptr_t)io.metadata;
1224
1225         if (ns->ext) {
1226                 length += meta_len;
1227                 meta_len = 0;
1228         } else if (meta_len) {
1229                 if ((io.metadata & 3) || !io.metadata)
1230                         return -EINVAL;
1231         }
1232
1233         memset(&c, 0, sizeof(c));
1234         c.rw.opcode = io.opcode;
1235         c.rw.flags = io.flags;
1236         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1237         c.rw.slba = cpu_to_le64(io.slba);
1238         c.rw.length = cpu_to_le16(io.nblocks);
1239         c.rw.control = cpu_to_le16(io.control);
1240         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1241         c.rw.reftag = cpu_to_le32(io.reftag);
1242         c.rw.apptag = cpu_to_le16(io.apptag);
1243         c.rw.appmask = cpu_to_le16(io.appmask);
1244
1245         return nvme_submit_user_cmd(ns->queue, &c,
1246                         (void __user *)(uintptr_t)io.addr, length,
1247                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1248 }
1249
1250 static u32 nvme_known_admin_effects(u8 opcode)
1251 {
1252         switch (opcode) {
1253         case nvme_admin_format_nvm:
1254                 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1255                                         NVME_CMD_EFFECTS_CSE_MASK;
1256         case nvme_admin_sanitize_nvm:
1257                 return NVME_CMD_EFFECTS_CSE_MASK;
1258         default:
1259                 break;
1260         }
1261         return 0;
1262 }
1263
1264 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1265                                                                 u8 opcode)
1266 {
1267         u32 effects = 0;
1268
1269         if (ns) {
1270                 if (ctrl->effects)
1271                         effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1272                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1273                         dev_warn(ctrl->device,
1274                                  "IO command:%02x has unhandled effects:%08x\n",
1275                                  opcode, effects);
1276                 return 0;
1277         }
1278
1279         if (ctrl->effects)
1280                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1281         effects |= nvme_known_admin_effects(opcode);
1282
1283         /*
1284          * For simplicity, IO to all namespaces is quiesced even if the command
1285          * effects say only one namespace is affected.
1286          */
1287         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1288                 mutex_lock(&ctrl->scan_lock);
1289                 nvme_start_freeze(ctrl);
1290                 nvme_wait_freeze(ctrl);
1291         }
1292         return effects;
1293 }
1294
1295 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1296 {
1297         struct nvme_ns *ns;
1298
1299         down_read(&ctrl->namespaces_rwsem);
1300         list_for_each_entry(ns, &ctrl->namespaces, list)
1301                 if (ns->disk && nvme_revalidate_disk(ns->disk))
1302                         nvme_set_queue_dying(ns);
1303         up_read(&ctrl->namespaces_rwsem);
1304
1305         nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1306 }
1307
1308 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1309 {
1310         /*
1311          * Revalidate LBA changes prior to unfreezing. This is necessary to
1312          * prevent memory corruption if a logical block size was changed by
1313          * this command.
1314          */
1315         if (effects & NVME_CMD_EFFECTS_LBCC)
1316                 nvme_update_formats(ctrl);
1317         if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1318                 nvme_unfreeze(ctrl);
1319                 mutex_unlock(&ctrl->scan_lock);
1320         }
1321         if (effects & NVME_CMD_EFFECTS_CCC)
1322                 nvme_init_identify(ctrl);
1323         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1324                 nvme_queue_scan(ctrl);
1325 }
1326
1327 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1328                         struct nvme_passthru_cmd __user *ucmd)
1329 {
1330         struct nvme_passthru_cmd cmd;
1331         struct nvme_command c;
1332         unsigned timeout = 0;
1333         u32 effects;
1334         int status;
1335
1336         if (!capable(CAP_SYS_ADMIN))
1337                 return -EACCES;
1338         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1339                 return -EFAULT;
1340         if (cmd.flags)
1341                 return -EINVAL;
1342
1343         memset(&c, 0, sizeof(c));
1344         c.common.opcode = cmd.opcode;
1345         c.common.flags = cmd.flags;
1346         c.common.nsid = cpu_to_le32(cmd.nsid);
1347         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1348         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1349         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1350         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1351         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1352         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1353         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1354         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1355
1356         if (cmd.timeout_ms)
1357                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1358
1359         effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1360         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1361                         (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1362                         (void __user *)(uintptr_t)cmd.metadata, cmd.metadata_len,
1363                         0, &cmd.result, timeout);
1364         nvme_passthru_end(ctrl, effects);
1365
1366         if (status >= 0) {
1367                 if (put_user(cmd.result, &ucmd->result))
1368                         return -EFAULT;
1369         }
1370
1371         return status;
1372 }
1373
1374 /*
1375  * Issue ioctl requests on the first available path.  Note that unlike normal
1376  * block layer requests we will not retry failed request on another controller.
1377  */
1378 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1379                 struct nvme_ns_head **head, int *srcu_idx)
1380 {
1381 #ifdef CONFIG_NVME_MULTIPATH
1382         if (disk->fops == &nvme_ns_head_ops) {
1383                 struct nvme_ns *ns;
1384
1385                 *head = disk->private_data;
1386                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1387                 ns = nvme_find_path(*head);
1388                 if (!ns)
1389                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1390                 return ns;
1391         }
1392 #endif
1393         *head = NULL;
1394         *srcu_idx = -1;
1395         return disk->private_data;
1396 }
1397
1398 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1399 {
1400         if (head)
1401                 srcu_read_unlock(&head->srcu, idx);
1402 }
1403
1404 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1405                 unsigned int cmd, unsigned long arg)
1406 {
1407         struct nvme_ns_head *head = NULL;
1408         void __user *argp = (void __user *)arg;
1409         struct nvme_ns *ns;
1410         int srcu_idx, ret;
1411
1412         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1413         if (unlikely(!ns))
1414                 return -EWOULDBLOCK;
1415
1416         /*
1417          * Handle ioctls that apply to the controller instead of the namespace
1418          * seperately and drop the ns SRCU reference early.  This avoids a
1419          * deadlock when deleting namespaces using the passthrough interface.
1420          */
1421         if (cmd == NVME_IOCTL_ADMIN_CMD || is_sed_ioctl(cmd)) {
1422                 struct nvme_ctrl *ctrl = ns->ctrl;
1423
1424                 nvme_get_ctrl(ns->ctrl);
1425                 nvme_put_ns_from_disk(head, srcu_idx);
1426
1427                 if (cmd == NVME_IOCTL_ADMIN_CMD)
1428                         ret = nvme_user_cmd(ctrl, NULL, argp);
1429                 else
1430                         ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1431
1432                 nvme_put_ctrl(ctrl);
1433                 return ret;
1434         }
1435
1436         switch (cmd) {
1437         case NVME_IOCTL_ID:
1438                 force_successful_syscall_return();
1439                 ret = ns->head->ns_id;
1440                 break;
1441         case NVME_IOCTL_IO_CMD:
1442                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1443                 break;
1444         case NVME_IOCTL_SUBMIT_IO:
1445                 ret = nvme_submit_io(ns, argp);
1446                 break;
1447         default:
1448                 if (ns->ndev)
1449                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1450                 else
1451                         ret = -ENOTTY;
1452         }
1453
1454         nvme_put_ns_from_disk(head, srcu_idx);
1455         return ret;
1456 }
1457
1458 static int nvme_open(struct block_device *bdev, fmode_t mode)
1459 {
1460         struct nvme_ns *ns = bdev->bd_disk->private_data;
1461
1462 #ifdef CONFIG_NVME_MULTIPATH
1463         /* should never be called due to GENHD_FL_HIDDEN */
1464         if (WARN_ON_ONCE(ns->head->disk))
1465                 goto fail;
1466 #endif
1467         if (!kref_get_unless_zero(&ns->kref))
1468                 goto fail;
1469         if (!try_module_get(ns->ctrl->ops->module))
1470                 goto fail_put_ns;
1471
1472         return 0;
1473
1474 fail_put_ns:
1475         nvme_put_ns(ns);
1476 fail:
1477         return -ENXIO;
1478 }
1479
1480 static void nvme_release(struct gendisk *disk, fmode_t mode)
1481 {
1482         struct nvme_ns *ns = disk->private_data;
1483
1484         module_put(ns->ctrl->ops->module);
1485         nvme_put_ns(ns);
1486 }
1487
1488 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1489 {
1490         /* some standard values */
1491         geo->heads = 1 << 6;
1492         geo->sectors = 1 << 5;
1493         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1494         return 0;
1495 }
1496
1497 #ifdef CONFIG_BLK_DEV_INTEGRITY
1498 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1499 {
1500         struct blk_integrity integrity;
1501
1502         memset(&integrity, 0, sizeof(integrity));
1503         switch (pi_type) {
1504         case NVME_NS_DPS_PI_TYPE3:
1505                 integrity.profile = &t10_pi_type3_crc;
1506                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1507                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1508                 break;
1509         case NVME_NS_DPS_PI_TYPE1:
1510         case NVME_NS_DPS_PI_TYPE2:
1511                 integrity.profile = &t10_pi_type1_crc;
1512                 integrity.tag_size = sizeof(u16);
1513                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1514                 break;
1515         default:
1516                 integrity.profile = NULL;
1517                 break;
1518         }
1519         integrity.tuple_size = ms;
1520         blk_integrity_register(disk, &integrity);
1521         blk_queue_max_integrity_segments(disk->queue, 1);
1522 }
1523 #else
1524 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1525 {
1526 }
1527 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1528
1529 static void nvme_set_chunk_size(struct nvme_ns *ns)
1530 {
1531         u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1532         blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1533 }
1534
1535 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1536 {
1537         struct nvme_ctrl *ctrl = ns->ctrl;
1538         struct request_queue *queue = disk->queue;
1539         u32 size = queue_logical_block_size(queue);
1540
1541         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1542                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1543                 return;
1544         }
1545
1546         if (ctrl->nr_streams && ns->sws && ns->sgs)
1547                 size *= ns->sws * ns->sgs;
1548
1549         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1550                         NVME_DSM_MAX_RANGES);
1551
1552         queue->limits.discard_alignment = 0;
1553         queue->limits.discard_granularity = size;
1554
1555         /* If discard is already enabled, don't reset queue limits */
1556         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1557                 return;
1558
1559         blk_queue_max_discard_sectors(queue, UINT_MAX);
1560         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1561
1562         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1563                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1564 }
1565
1566 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1567 {
1568         u32 max_sectors;
1569         unsigned short bs = 1 << ns->lba_shift;
1570
1571         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1572             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1573                 return;
1574         /*
1575          * Even though NVMe spec explicitly states that MDTS is not
1576          * applicable to the write-zeroes:- "The restriction does not apply to
1577          * commands that do not transfer data between the host and the
1578          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1579          * In order to be more cautious use controller's max_hw_sectors value
1580          * to configure the maximum sectors for the write-zeroes which is
1581          * configured based on the controller's MDTS field in the
1582          * nvme_init_identify() if available.
1583          */
1584         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1585                 max_sectors = ((u32)(USHRT_MAX + 1) * bs) >> 9;
1586         else
1587                 max_sectors = ((u32)(ns->ctrl->max_hw_sectors + 1) * bs) >> 9;
1588
1589         blk_queue_max_write_zeroes_sectors(disk->queue, max_sectors);
1590 }
1591
1592 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1593                 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1594 {
1595         memset(ids, 0, sizeof(*ids));
1596
1597         if (ctrl->vs >= NVME_VS(1, 1, 0))
1598                 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1599         if (ctrl->vs >= NVME_VS(1, 2, 0))
1600                 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1601         if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1602                  /* Don't treat error as fatal we potentially
1603                   * already have a NGUID or EUI-64
1604                   */
1605                 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1606                         dev_warn(ctrl->device,
1607                                  "%s: Identify Descriptors failed\n", __func__);
1608         }
1609 }
1610
1611 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1612 {
1613         return !uuid_is_null(&ids->uuid) ||
1614                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1615                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1616 }
1617
1618 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1619 {
1620         return uuid_equal(&a->uuid, &b->uuid) &&
1621                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1622                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1623 }
1624
1625 static void nvme_update_disk_info(struct gendisk *disk,
1626                 struct nvme_ns *ns, struct nvme_id_ns *id)
1627 {
1628         sector_t capacity = le64_to_cpu(id->nsze) << (ns->lba_shift - 9);
1629         unsigned short bs = 1 << ns->lba_shift;
1630         u32 atomic_bs, phys_bs, io_opt;
1631
1632         if (ns->lba_shift > PAGE_SHIFT) {
1633                 /* unsupported block size, set capacity to 0 later */
1634                 bs = (1 << 9);
1635         }
1636         blk_mq_freeze_queue(disk->queue);
1637         blk_integrity_unregister(disk);
1638
1639         if (id->nabo == 0) {
1640                 /*
1641                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1642                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1643                  * 0 then AWUPF must be used instead.
1644                  */
1645                 if (id->nsfeat & (1 << 1) && id->nawupf)
1646                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1647                 else
1648                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1649         } else {
1650                 atomic_bs = bs;
1651         }
1652         phys_bs = bs;
1653         io_opt = bs;
1654         if (id->nsfeat & (1 << 4)) {
1655                 /* NPWG = Namespace Preferred Write Granularity */
1656                 phys_bs *= 1 + le16_to_cpu(id->npwg);
1657                 /* NOWS = Namespace Optimal Write Size */
1658                 io_opt *= 1 + le16_to_cpu(id->nows);
1659         }
1660
1661         blk_queue_logical_block_size(disk->queue, bs);
1662         /*
1663          * Linux filesystems assume writing a single physical block is
1664          * an atomic operation. Hence limit the physical block size to the
1665          * value of the Atomic Write Unit Power Fail parameter.
1666          */
1667         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1668         blk_queue_io_min(disk->queue, phys_bs);
1669         blk_queue_io_opt(disk->queue, io_opt);
1670
1671         if (ns->ms && !ns->ext &&
1672             (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1673                 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1674         if ((ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk)) ||
1675             ns->lba_shift > PAGE_SHIFT)
1676                 capacity = 0;
1677
1678         set_capacity(disk, capacity);
1679
1680         nvme_config_discard(disk, ns);
1681         nvme_config_write_zeroes(disk, ns);
1682
1683         if (id->nsattr & (1 << 0))
1684                 set_disk_ro(disk, true);
1685         else
1686                 set_disk_ro(disk, false);
1687
1688         blk_mq_unfreeze_queue(disk->queue);
1689 }
1690
1691 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1692 {
1693         struct nvme_ns *ns = disk->private_data;
1694
1695         /*
1696          * If identify namespace failed, use default 512 byte block size so
1697          * block layer can use before failing read/write for 0 capacity.
1698          */
1699         ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1700         if (ns->lba_shift == 0)
1701                 ns->lba_shift = 9;
1702         ns->noiob = le16_to_cpu(id->noiob);
1703         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1704         ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1705         /* the PI implementation requires metadata equal t10 pi tuple size */
1706         if (ns->ms == sizeof(struct t10_pi_tuple))
1707                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1708         else
1709                 ns->pi_type = 0;
1710
1711         if (ns->noiob)
1712                 nvme_set_chunk_size(ns);
1713         nvme_update_disk_info(disk, ns, id);
1714 #ifdef CONFIG_NVME_MULTIPATH
1715         if (ns->head->disk) {
1716                 nvme_update_disk_info(ns->head->disk, ns, id);
1717                 blk_queue_stack_limits(ns->head->disk->queue, ns->queue);
1718         }
1719 #endif
1720 }
1721
1722 static int nvme_revalidate_disk(struct gendisk *disk)
1723 {
1724         struct nvme_ns *ns = disk->private_data;
1725         struct nvme_ctrl *ctrl = ns->ctrl;
1726         struct nvme_id_ns *id;
1727         struct nvme_ns_ids ids;
1728         int ret = 0;
1729
1730         if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1731                 set_capacity(disk, 0);
1732                 return -ENODEV;
1733         }
1734
1735         id = nvme_identify_ns(ctrl, ns->head->ns_id);
1736         if (!id)
1737                 return -ENODEV;
1738
1739         if (id->ncap == 0) {
1740                 ret = -ENODEV;
1741                 goto out;
1742         }
1743
1744         __nvme_revalidate_disk(disk, id);
1745         nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1746         if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1747                 dev_err(ctrl->device,
1748                         "identifiers changed for nsid %d\n", ns->head->ns_id);
1749                 ret = -ENODEV;
1750         }
1751
1752 out:
1753         kfree(id);
1754         return ret;
1755 }
1756
1757 static char nvme_pr_type(enum pr_type type)
1758 {
1759         switch (type) {
1760         case PR_WRITE_EXCLUSIVE:
1761                 return 1;
1762         case PR_EXCLUSIVE_ACCESS:
1763                 return 2;
1764         case PR_WRITE_EXCLUSIVE_REG_ONLY:
1765                 return 3;
1766         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1767                 return 4;
1768         case PR_WRITE_EXCLUSIVE_ALL_REGS:
1769                 return 5;
1770         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1771                 return 6;
1772         default:
1773                 return 0;
1774         }
1775 };
1776
1777 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1778                                 u64 key, u64 sa_key, u8 op)
1779 {
1780         struct nvme_ns_head *head = NULL;
1781         struct nvme_ns *ns;
1782         struct nvme_command c;
1783         int srcu_idx, ret;
1784         u8 data[16] = { 0, };
1785
1786         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1787         if (unlikely(!ns))
1788                 return -EWOULDBLOCK;
1789
1790         put_unaligned_le64(key, &data[0]);
1791         put_unaligned_le64(sa_key, &data[8]);
1792
1793         memset(&c, 0, sizeof(c));
1794         c.common.opcode = op;
1795         c.common.nsid = cpu_to_le32(ns->head->ns_id);
1796         c.common.cdw10 = cpu_to_le32(cdw10);
1797
1798         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1799         nvme_put_ns_from_disk(head, srcu_idx);
1800         return ret;
1801 }
1802
1803 static int nvme_pr_register(struct block_device *bdev, u64 old,
1804                 u64 new, unsigned flags)
1805 {
1806         u32 cdw10;
1807
1808         if (flags & ~PR_FL_IGNORE_KEY)
1809                 return -EOPNOTSUPP;
1810
1811         cdw10 = old ? 2 : 0;
1812         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1813         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1814         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1815 }
1816
1817 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1818                 enum pr_type type, unsigned flags)
1819 {
1820         u32 cdw10;
1821
1822         if (flags & ~PR_FL_IGNORE_KEY)
1823                 return -EOPNOTSUPP;
1824
1825         cdw10 = nvme_pr_type(type) << 8;
1826         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1827         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1828 }
1829
1830 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1831                 enum pr_type type, bool abort)
1832 {
1833         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
1834         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1835 }
1836
1837 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1838 {
1839         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1840         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1841 }
1842
1843 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1844 {
1845         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
1846         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1847 }
1848
1849 static const struct pr_ops nvme_pr_ops = {
1850         .pr_register    = nvme_pr_register,
1851         .pr_reserve     = nvme_pr_reserve,
1852         .pr_release     = nvme_pr_release,
1853         .pr_preempt     = nvme_pr_preempt,
1854         .pr_clear       = nvme_pr_clear,
1855 };
1856
1857 #ifdef CONFIG_BLK_SED_OPAL
1858 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1859                 bool send)
1860 {
1861         struct nvme_ctrl *ctrl = data;
1862         struct nvme_command cmd;
1863
1864         memset(&cmd, 0, sizeof(cmd));
1865         if (send)
1866                 cmd.common.opcode = nvme_admin_security_send;
1867         else
1868                 cmd.common.opcode = nvme_admin_security_recv;
1869         cmd.common.nsid = 0;
1870         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1871         cmd.common.cdw11 = cpu_to_le32(len);
1872
1873         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1874                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
1875 }
1876 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1877 #endif /* CONFIG_BLK_SED_OPAL */
1878
1879 static const struct block_device_operations nvme_fops = {
1880         .owner          = THIS_MODULE,
1881         .ioctl          = nvme_ioctl,
1882         .compat_ioctl   = nvme_ioctl,
1883         .open           = nvme_open,
1884         .release        = nvme_release,
1885         .getgeo         = nvme_getgeo,
1886         .revalidate_disk= nvme_revalidate_disk,
1887         .pr_ops         = &nvme_pr_ops,
1888 };
1889
1890 #ifdef CONFIG_NVME_MULTIPATH
1891 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1892 {
1893         struct nvme_ns_head *head = bdev->bd_disk->private_data;
1894
1895         if (!kref_get_unless_zero(&head->ref))
1896                 return -ENXIO;
1897         return 0;
1898 }
1899
1900 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1901 {
1902         nvme_put_ns_head(disk->private_data);
1903 }
1904
1905 const struct block_device_operations nvme_ns_head_ops = {
1906         .owner          = THIS_MODULE,
1907         .open           = nvme_ns_head_open,
1908         .release        = nvme_ns_head_release,
1909         .ioctl          = nvme_ioctl,
1910         .compat_ioctl   = nvme_ioctl,
1911         .getgeo         = nvme_getgeo,
1912         .pr_ops         = &nvme_pr_ops,
1913 };
1914 #endif /* CONFIG_NVME_MULTIPATH */
1915
1916 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1917 {
1918         unsigned long timeout =
1919                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1920         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1921         int ret;
1922
1923         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1924                 if (csts == ~0)
1925                         return -ENODEV;
1926                 if ((csts & NVME_CSTS_RDY) == bit)
1927                         break;
1928
1929                 msleep(100);
1930                 if (fatal_signal_pending(current))
1931                         return -EINTR;
1932                 if (time_after(jiffies, timeout)) {
1933                         dev_err(ctrl->device,
1934                                 "Device not ready; aborting %s\n", enabled ?
1935                                                 "initialisation" : "reset");
1936                         return -ENODEV;
1937                 }
1938         }
1939
1940         return ret;
1941 }
1942
1943 /*
1944  * If the device has been passed off to us in an enabled state, just clear
1945  * the enabled bit.  The spec says we should set the 'shutdown notification
1946  * bits', but doing so may cause the device to complete commands to the
1947  * admin queue ... and we don't know what memory that might be pointing at!
1948  */
1949 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1950 {
1951         int ret;
1952
1953         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1954         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1955
1956         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1957         if (ret)
1958                 return ret;
1959
1960         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1961                 msleep(NVME_QUIRK_DELAY_AMOUNT);
1962
1963         return nvme_wait_ready(ctrl, cap, false);
1964 }
1965 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1966
1967 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1968 {
1969         /*
1970          * Default to a 4K page size, with the intention to update this
1971          * path in the future to accomodate architectures with differing
1972          * kernel and IO page sizes.
1973          */
1974         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1975         int ret;
1976
1977         if (page_shift < dev_page_min) {
1978                 dev_err(ctrl->device,
1979                         "Minimum device page size %u too large for host (%u)\n",
1980                         1 << dev_page_min, 1 << page_shift);
1981                 return -ENODEV;
1982         }
1983
1984         ctrl->page_size = 1 << page_shift;
1985
1986         ctrl->ctrl_config = NVME_CC_CSS_NVM;
1987         ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1988         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1989         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1990         ctrl->ctrl_config |= NVME_CC_ENABLE;
1991
1992         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1993         if (ret)
1994                 return ret;
1995         return nvme_wait_ready(ctrl, cap, true);
1996 }
1997 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1998
1999 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2000 {
2001         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2002         u32 csts;
2003         int ret;
2004
2005         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2006         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2007
2008         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2009         if (ret)
2010                 return ret;
2011
2012         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2013                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2014                         break;
2015
2016                 msleep(100);
2017                 if (fatal_signal_pending(current))
2018                         return -EINTR;
2019                 if (time_after(jiffies, timeout)) {
2020                         dev_err(ctrl->device,
2021                                 "Device shutdown incomplete; abort shutdown\n");
2022                         return -ENODEV;
2023                 }
2024         }
2025
2026         return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2029
2030 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
2031                 struct request_queue *q)
2032 {
2033         bool vwc = false;
2034
2035         if (ctrl->max_hw_sectors) {
2036                 u32 max_segments =
2037                         (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
2038
2039                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
2040                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
2041                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
2042         }
2043         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2044             is_power_of_2(ctrl->max_hw_sectors))
2045                 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
2046         blk_queue_virt_boundary(q, ctrl->page_size - 1);
2047         if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
2048                 vwc = true;
2049         blk_queue_write_cache(q, vwc, vwc);
2050 }
2051
2052 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2053 {
2054         __le64 ts;
2055         int ret;
2056
2057         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2058                 return 0;
2059
2060         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2061         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2062                         NULL);
2063         if (ret)
2064                 dev_warn_once(ctrl->device,
2065                         "could not set timestamp (%d)\n", ret);
2066         return ret;
2067 }
2068
2069 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2070 {
2071         struct nvme_feat_host_behavior *host;
2072         int ret;
2073
2074         /* Don't bother enabling the feature if retry delay is not reported */
2075         if (!ctrl->crdt[0])
2076                 return 0;
2077
2078         host = kzalloc(sizeof(*host), GFP_KERNEL);
2079         if (!host)
2080                 return 0;
2081
2082         host->acre = NVME_ENABLE_ACRE;
2083         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2084                                 host, sizeof(*host), NULL);
2085         kfree(host);
2086         return ret;
2087 }
2088
2089 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2090 {
2091         /*
2092          * APST (Autonomous Power State Transition) lets us program a
2093          * table of power state transitions that the controller will
2094          * perform automatically.  We configure it with a simple
2095          * heuristic: we are willing to spend at most 2% of the time
2096          * transitioning between power states.  Therefore, when running
2097          * in any given state, we will enter the next lower-power
2098          * non-operational state after waiting 50 * (enlat + exlat)
2099          * microseconds, as long as that state's exit latency is under
2100          * the requested maximum latency.
2101          *
2102          * We will not autonomously enter any non-operational state for
2103          * which the total latency exceeds ps_max_latency_us.  Users
2104          * can set ps_max_latency_us to zero to turn off APST.
2105          */
2106
2107         unsigned apste;
2108         struct nvme_feat_auto_pst *table;
2109         u64 max_lat_us = 0;
2110         int max_ps = -1;
2111         int ret;
2112
2113         /*
2114          * If APST isn't supported or if we haven't been initialized yet,
2115          * then don't do anything.
2116          */
2117         if (!ctrl->apsta)
2118                 return 0;
2119
2120         if (ctrl->npss > 31) {
2121                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2122                 return 0;
2123         }
2124
2125         table = kzalloc(sizeof(*table), GFP_KERNEL);
2126         if (!table)
2127                 return 0;
2128
2129         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2130                 /* Turn off APST. */
2131                 apste = 0;
2132                 dev_dbg(ctrl->device, "APST disabled\n");
2133         } else {
2134                 __le64 target = cpu_to_le64(0);
2135                 int state;
2136
2137                 /*
2138                  * Walk through all states from lowest- to highest-power.
2139                  * According to the spec, lower-numbered states use more
2140                  * power.  NPSS, despite the name, is the index of the
2141                  * lowest-power state, not the number of states.
2142                  */
2143                 for (state = (int)ctrl->npss; state >= 0; state--) {
2144                         u64 total_latency_us, exit_latency_us, transition_ms;
2145
2146                         if (target)
2147                                 table->entries[state] = target;
2148
2149                         /*
2150                          * Don't allow transitions to the deepest state
2151                          * if it's quirked off.
2152                          */
2153                         if (state == ctrl->npss &&
2154                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2155                                 continue;
2156
2157                         /*
2158                          * Is this state a useful non-operational state for
2159                          * higher-power states to autonomously transition to?
2160                          */
2161                         if (!(ctrl->psd[state].flags &
2162                               NVME_PS_FLAGS_NON_OP_STATE))
2163                                 continue;
2164
2165                         exit_latency_us =
2166                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2167                         if (exit_latency_us > ctrl->ps_max_latency_us)
2168                                 continue;
2169
2170                         total_latency_us =
2171                                 exit_latency_us +
2172                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2173
2174                         /*
2175                          * This state is good.  Use it as the APST idle
2176                          * target for higher power states.
2177                          */
2178                         transition_ms = total_latency_us + 19;
2179                         do_div(transition_ms, 20);
2180                         if (transition_ms > (1 << 24) - 1)
2181                                 transition_ms = (1 << 24) - 1;
2182
2183                         target = cpu_to_le64((state << 3) |
2184                                              (transition_ms << 8));
2185
2186                         if (max_ps == -1)
2187                                 max_ps = state;
2188
2189                         if (total_latency_us > max_lat_us)
2190                                 max_lat_us = total_latency_us;
2191                 }
2192
2193                 apste = 1;
2194
2195                 if (max_ps == -1) {
2196                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2197                 } else {
2198                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2199                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2200                 }
2201         }
2202
2203         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2204                                 table, sizeof(*table), NULL);
2205         if (ret)
2206                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2207
2208         kfree(table);
2209         return ret;
2210 }
2211
2212 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2213 {
2214         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2215         u64 latency;
2216
2217         switch (val) {
2218         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2219         case PM_QOS_LATENCY_ANY:
2220                 latency = U64_MAX;
2221                 break;
2222
2223         default:
2224                 latency = val;
2225         }
2226
2227         if (ctrl->ps_max_latency_us != latency) {
2228                 ctrl->ps_max_latency_us = latency;
2229                 nvme_configure_apst(ctrl);
2230         }
2231 }
2232
2233 struct nvme_core_quirk_entry {
2234         /*
2235          * NVMe model and firmware strings are padded with spaces.  For
2236          * simplicity, strings in the quirk table are padded with NULLs
2237          * instead.
2238          */
2239         u16 vid;
2240         const char *mn;
2241         const char *fr;
2242         unsigned long quirks;
2243 };
2244
2245 static const struct nvme_core_quirk_entry core_quirks[] = {
2246         {
2247                 /*
2248                  * This Toshiba device seems to die using any APST states.  See:
2249                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2250                  */
2251                 .vid = 0x1179,
2252                 .mn = "THNSF5256GPUK TOSHIBA",
2253                 .quirks = NVME_QUIRK_NO_APST,
2254         }
2255 };
2256
2257 /* match is null-terminated but idstr is space-padded. */
2258 static bool string_matches(const char *idstr, const char *match, size_t len)
2259 {
2260         size_t matchlen;
2261
2262         if (!match)
2263                 return true;
2264
2265         matchlen = strlen(match);
2266         WARN_ON_ONCE(matchlen > len);
2267
2268         if (memcmp(idstr, match, matchlen))
2269                 return false;
2270
2271         for (; matchlen < len; matchlen++)
2272                 if (idstr[matchlen] != ' ')
2273                         return false;
2274
2275         return true;
2276 }
2277
2278 static bool quirk_matches(const struct nvme_id_ctrl *id,
2279                           const struct nvme_core_quirk_entry *q)
2280 {
2281         return q->vid == le16_to_cpu(id->vid) &&
2282                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2283                 string_matches(id->fr, q->fr, sizeof(id->fr));
2284 }
2285
2286 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2287                 struct nvme_id_ctrl *id)
2288 {
2289         size_t nqnlen;
2290         int off;
2291
2292         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2293                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2294                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2295                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2296                         return;
2297                 }
2298
2299                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2300                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2301         }
2302
2303         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2304         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2305                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2306                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2307         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2308         off += sizeof(id->sn);
2309         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2310         off += sizeof(id->mn);
2311         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2312 }
2313
2314 static void nvme_release_subsystem(struct device *dev)
2315 {
2316         struct nvme_subsystem *subsys =
2317                 container_of(dev, struct nvme_subsystem, dev);
2318
2319         ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2320         kfree(subsys);
2321 }
2322
2323 static void nvme_destroy_subsystem(struct kref *ref)
2324 {
2325         struct nvme_subsystem *subsys =
2326                         container_of(ref, struct nvme_subsystem, ref);
2327
2328         mutex_lock(&nvme_subsystems_lock);
2329         list_del(&subsys->entry);
2330         mutex_unlock(&nvme_subsystems_lock);
2331
2332         ida_destroy(&subsys->ns_ida);
2333         device_del(&subsys->dev);
2334         put_device(&subsys->dev);
2335 }
2336
2337 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2338 {
2339         kref_put(&subsys->ref, nvme_destroy_subsystem);
2340 }
2341
2342 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2343 {
2344         struct nvme_subsystem *subsys;
2345
2346         lockdep_assert_held(&nvme_subsystems_lock);
2347
2348         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2349                 if (strcmp(subsys->subnqn, subsysnqn))
2350                         continue;
2351                 if (!kref_get_unless_zero(&subsys->ref))
2352                         continue;
2353                 return subsys;
2354         }
2355
2356         return NULL;
2357 }
2358
2359 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2360         struct device_attribute subsys_attr_##_name = \
2361                 __ATTR(_name, _mode, _show, NULL)
2362
2363 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2364                                     struct device_attribute *attr,
2365                                     char *buf)
2366 {
2367         struct nvme_subsystem *subsys =
2368                 container_of(dev, struct nvme_subsystem, dev);
2369
2370         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2371 }
2372 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2373
2374 #define nvme_subsys_show_str_function(field)                            \
2375 static ssize_t subsys_##field##_show(struct device *dev,                \
2376                             struct device_attribute *attr, char *buf)   \
2377 {                                                                       \
2378         struct nvme_subsystem *subsys =                                 \
2379                 container_of(dev, struct nvme_subsystem, dev);          \
2380         return sprintf(buf, "%.*s\n",                                   \
2381                        (int)sizeof(subsys->field), subsys->field);      \
2382 }                                                                       \
2383 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2384
2385 nvme_subsys_show_str_function(model);
2386 nvme_subsys_show_str_function(serial);
2387 nvme_subsys_show_str_function(firmware_rev);
2388
2389 static struct attribute *nvme_subsys_attrs[] = {
2390         &subsys_attr_model.attr,
2391         &subsys_attr_serial.attr,
2392         &subsys_attr_firmware_rev.attr,
2393         &subsys_attr_subsysnqn.attr,
2394 #ifdef CONFIG_NVME_MULTIPATH
2395         &subsys_attr_iopolicy.attr,
2396 #endif
2397         NULL,
2398 };
2399
2400 static struct attribute_group nvme_subsys_attrs_group = {
2401         .attrs = nvme_subsys_attrs,
2402 };
2403
2404 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2405         &nvme_subsys_attrs_group,
2406         NULL,
2407 };
2408
2409 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2410                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2411 {
2412         struct nvme_ctrl *tmp;
2413
2414         lockdep_assert_held(&nvme_subsystems_lock);
2415
2416         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2417                 if (tmp->state == NVME_CTRL_DELETING ||
2418                     tmp->state == NVME_CTRL_DEAD)
2419                         continue;
2420
2421                 if (tmp->cntlid == ctrl->cntlid) {
2422                         dev_err(ctrl->device,
2423                                 "Duplicate cntlid %u with %s, rejecting\n",
2424                                 ctrl->cntlid, dev_name(tmp->device));
2425                         return false;
2426                 }
2427
2428                 if ((id->cmic & (1 << 1)) ||
2429                     (ctrl->opts && ctrl->opts->discovery_nqn))
2430                         continue;
2431
2432                 dev_err(ctrl->device,
2433                         "Subsystem does not support multiple controllers\n");
2434                 return false;
2435         }
2436
2437         return true;
2438 }
2439
2440 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2441 {
2442         struct nvme_subsystem *subsys, *found;
2443         int ret;
2444
2445         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2446         if (!subsys)
2447                 return -ENOMEM;
2448         ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2449         if (ret < 0) {
2450                 kfree(subsys);
2451                 return ret;
2452         }
2453         subsys->instance = ret;
2454         mutex_init(&subsys->lock);
2455         kref_init(&subsys->ref);
2456         INIT_LIST_HEAD(&subsys->ctrls);
2457         INIT_LIST_HEAD(&subsys->nsheads);
2458         nvme_init_subnqn(subsys, ctrl, id);
2459         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2460         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2461         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2462         subsys->vendor_id = le16_to_cpu(id->vid);
2463         subsys->cmic = id->cmic;
2464         subsys->awupf = le16_to_cpu(id->awupf);
2465 #ifdef CONFIG_NVME_MULTIPATH
2466         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2467 #endif
2468
2469         subsys->dev.class = nvme_subsys_class;
2470         subsys->dev.release = nvme_release_subsystem;
2471         subsys->dev.groups = nvme_subsys_attrs_groups;
2472         dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2473         device_initialize(&subsys->dev);
2474
2475         mutex_lock(&nvme_subsystems_lock);
2476         found = __nvme_find_get_subsystem(subsys->subnqn);
2477         if (found) {
2478                 put_device(&subsys->dev);
2479                 subsys = found;
2480
2481                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2482                         ret = -EINVAL;
2483                         goto out_put_subsystem;
2484                 }
2485         } else {
2486                 ret = device_add(&subsys->dev);
2487                 if (ret) {
2488                         dev_err(ctrl->device,
2489                                 "failed to register subsystem device.\n");
2490                         goto out_unlock;
2491                 }
2492                 ida_init(&subsys->ns_ida);
2493                 list_add_tail(&subsys->entry, &nvme_subsystems);
2494         }
2495
2496         if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2497                         dev_name(ctrl->device))) {
2498                 dev_err(ctrl->device,
2499                         "failed to create sysfs link from subsystem.\n");
2500                 goto out_put_subsystem;
2501         }
2502
2503         ctrl->subsys = subsys;
2504         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2505         mutex_unlock(&nvme_subsystems_lock);
2506         return 0;
2507
2508 out_put_subsystem:
2509         nvme_put_subsystem(subsys);
2510 out_unlock:
2511         mutex_unlock(&nvme_subsystems_lock);
2512         put_device(&subsys->dev);
2513         return ret;
2514 }
2515
2516 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp,
2517                 void *log, size_t size, u64 offset)
2518 {
2519         struct nvme_command c = { };
2520         unsigned long dwlen = size / 4 - 1;
2521
2522         c.get_log_page.opcode = nvme_admin_get_log_page;
2523         c.get_log_page.nsid = cpu_to_le32(nsid);
2524         c.get_log_page.lid = log_page;
2525         c.get_log_page.lsp = lsp;
2526         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2527         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2528         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2529         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2530
2531         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2532 }
2533
2534 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2535 {
2536         int ret;
2537
2538         if (!ctrl->effects)
2539                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2540
2541         if (!ctrl->effects)
2542                 return 0;
2543
2544         ret = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CMD_EFFECTS, 0,
2545                         ctrl->effects, sizeof(*ctrl->effects), 0);
2546         if (ret) {
2547                 kfree(ctrl->effects);
2548                 ctrl->effects = NULL;
2549         }
2550         return ret;
2551 }
2552
2553 /*
2554  * Initialize the cached copies of the Identify data and various controller
2555  * register in our nvme_ctrl structure.  This should be called as soon as
2556  * the admin queue is fully up and running.
2557  */
2558 int nvme_init_identify(struct nvme_ctrl *ctrl)
2559 {
2560         struct nvme_id_ctrl *id;
2561         u64 cap;
2562         int ret, page_shift;
2563         u32 max_hw_sectors;
2564         bool prev_apst_enabled;
2565
2566         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2567         if (ret) {
2568                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2569                 return ret;
2570         }
2571
2572         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2573         if (ret) {
2574                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2575                 return ret;
2576         }
2577         page_shift = NVME_CAP_MPSMIN(cap) + 12;
2578
2579         if (ctrl->vs >= NVME_VS(1, 1, 0))
2580                 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2581
2582         ret = nvme_identify_ctrl(ctrl, &id);
2583         if (ret) {
2584                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2585                 return -EIO;
2586         }
2587
2588         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2589                 ret = nvme_get_effects_log(ctrl);
2590                 if (ret < 0)
2591                         goto out_free;
2592         }
2593
2594         if (!ctrl->identified) {
2595                 int i;
2596
2597                 ret = nvme_init_subsystem(ctrl, id);
2598                 if (ret)
2599                         goto out_free;
2600
2601                 /*
2602                  * Check for quirks.  Quirk can depend on firmware version,
2603                  * so, in principle, the set of quirks present can change
2604                  * across a reset.  As a possible future enhancement, we
2605                  * could re-scan for quirks every time we reinitialize
2606                  * the device, but we'd have to make sure that the driver
2607                  * behaves intelligently if the quirks change.
2608                  */
2609                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2610                         if (quirk_matches(id, &core_quirks[i]))
2611                                 ctrl->quirks |= core_quirks[i].quirks;
2612                 }
2613         }
2614
2615         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2616                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2617                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2618         }
2619
2620         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
2621         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
2622         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
2623
2624         ctrl->oacs = le16_to_cpu(id->oacs);
2625         ctrl->oncs = le16_to_cpu(id->oncs);
2626         ctrl->mtfa = le16_to_cpu(id->mtfa);
2627         ctrl->oaes = le32_to_cpu(id->oaes);
2628         atomic_set(&ctrl->abort_limit, id->acl + 1);
2629         ctrl->vwc = id->vwc;
2630         if (id->mdts)
2631                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2632         else
2633                 max_hw_sectors = UINT_MAX;
2634         ctrl->max_hw_sectors =
2635                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2636
2637         nvme_set_queue_limits(ctrl, ctrl->admin_q);
2638         ctrl->sgls = le32_to_cpu(id->sgls);
2639         ctrl->kas = le16_to_cpu(id->kas);
2640         ctrl->max_namespaces = le32_to_cpu(id->mnan);
2641         ctrl->ctratt = le32_to_cpu(id->ctratt);
2642
2643         if (id->rtd3e) {
2644                 /* us -> s */
2645                 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2646
2647                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2648                                                  shutdown_timeout, 60);
2649
2650                 if (ctrl->shutdown_timeout != shutdown_timeout)
2651                         dev_info(ctrl->device,
2652                                  "Shutdown timeout set to %u seconds\n",
2653                                  ctrl->shutdown_timeout);
2654         } else
2655                 ctrl->shutdown_timeout = shutdown_timeout;
2656
2657         ctrl->npss = id->npss;
2658         ctrl->apsta = id->apsta;
2659         prev_apst_enabled = ctrl->apst_enabled;
2660         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2661                 if (force_apst && id->apsta) {
2662                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2663                         ctrl->apst_enabled = true;
2664                 } else {
2665                         ctrl->apst_enabled = false;
2666                 }
2667         } else {
2668                 ctrl->apst_enabled = id->apsta;
2669         }
2670         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2671
2672         if (ctrl->ops->flags & NVME_F_FABRICS) {
2673                 ctrl->icdoff = le16_to_cpu(id->icdoff);
2674                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2675                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2676                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2677
2678                 /*
2679                  * In fabrics we need to verify the cntlid matches the
2680                  * admin connect
2681                  */
2682                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2683                         ret = -EINVAL;
2684                         goto out_free;
2685                 }
2686
2687                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2688                         dev_err(ctrl->device,
2689                                 "keep-alive support is mandatory for fabrics\n");
2690                         ret = -EINVAL;
2691                         goto out_free;
2692                 }
2693         } else {
2694                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2695                 ctrl->hmpre = le32_to_cpu(id->hmpre);
2696                 ctrl->hmmin = le32_to_cpu(id->hmmin);
2697                 ctrl->hmminds = le32_to_cpu(id->hmminds);
2698                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2699         }
2700
2701         ret = nvme_mpath_init(ctrl, id);
2702         kfree(id);
2703
2704         if (ret < 0)
2705                 return ret;
2706
2707         if (ctrl->apst_enabled && !prev_apst_enabled)
2708                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2709         else if (!ctrl->apst_enabled && prev_apst_enabled)
2710                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2711
2712         ret = nvme_configure_apst(ctrl);
2713         if (ret < 0)
2714                 return ret;
2715         
2716         ret = nvme_configure_timestamp(ctrl);
2717         if (ret < 0)
2718                 return ret;
2719
2720         ret = nvme_configure_directives(ctrl);
2721         if (ret < 0)
2722                 return ret;
2723
2724         ret = nvme_configure_acre(ctrl);
2725         if (ret < 0)
2726                 return ret;
2727
2728         ctrl->identified = true;
2729
2730         return 0;
2731
2732 out_free:
2733         kfree(id);
2734         return ret;
2735 }
2736 EXPORT_SYMBOL_GPL(nvme_init_identify);
2737
2738 static int nvme_dev_open(struct inode *inode, struct file *file)
2739 {
2740         struct nvme_ctrl *ctrl =
2741                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2742
2743         switch (ctrl->state) {
2744         case NVME_CTRL_LIVE:
2745         case NVME_CTRL_ADMIN_ONLY:
2746                 break;
2747         default:
2748                 return -EWOULDBLOCK;
2749         }
2750
2751         file->private_data = ctrl;
2752         return 0;
2753 }
2754
2755 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2756 {
2757         struct nvme_ns *ns;
2758         int ret;
2759
2760         down_read(&ctrl->namespaces_rwsem);
2761         if (list_empty(&ctrl->namespaces)) {
2762                 ret = -ENOTTY;
2763                 goto out_unlock;
2764         }
2765
2766         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2767         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2768                 dev_warn(ctrl->device,
2769                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2770                 ret = -EINVAL;
2771                 goto out_unlock;
2772         }
2773
2774         dev_warn(ctrl->device,
2775                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2776         kref_get(&ns->kref);
2777         up_read(&ctrl->namespaces_rwsem);
2778
2779         ret = nvme_user_cmd(ctrl, ns, argp);
2780         nvme_put_ns(ns);
2781         return ret;
2782
2783 out_unlock:
2784         up_read(&ctrl->namespaces_rwsem);
2785         return ret;
2786 }
2787
2788 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2789                 unsigned long arg)
2790 {
2791         struct nvme_ctrl *ctrl = file->private_data;
2792         void __user *argp = (void __user *)arg;
2793
2794         switch (cmd) {
2795         case NVME_IOCTL_ADMIN_CMD:
2796                 return nvme_user_cmd(ctrl, NULL, argp);
2797         case NVME_IOCTL_IO_CMD:
2798                 return nvme_dev_user_cmd(ctrl, argp);
2799         case NVME_IOCTL_RESET:
2800                 dev_warn(ctrl->device, "resetting controller\n");
2801                 return nvme_reset_ctrl_sync(ctrl);
2802         case NVME_IOCTL_SUBSYS_RESET:
2803                 return nvme_reset_subsystem(ctrl);
2804         case NVME_IOCTL_RESCAN:
2805                 nvme_queue_scan(ctrl);
2806                 return 0;
2807         default:
2808                 return -ENOTTY;
2809         }
2810 }
2811
2812 static const struct file_operations nvme_dev_fops = {
2813         .owner          = THIS_MODULE,
2814         .open           = nvme_dev_open,
2815         .unlocked_ioctl = nvme_dev_ioctl,
2816         .compat_ioctl   = nvme_dev_ioctl,
2817 };
2818
2819 static ssize_t nvme_sysfs_reset(struct device *dev,
2820                                 struct device_attribute *attr, const char *buf,
2821                                 size_t count)
2822 {
2823         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2824         int ret;
2825
2826         ret = nvme_reset_ctrl_sync(ctrl);
2827         if (ret < 0)
2828                 return ret;
2829         return count;
2830 }
2831 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2832
2833 static ssize_t nvme_sysfs_rescan(struct device *dev,
2834                                 struct device_attribute *attr, const char *buf,
2835                                 size_t count)
2836 {
2837         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2838
2839         nvme_queue_scan(ctrl);
2840         return count;
2841 }
2842 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2843
2844 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2845 {
2846         struct gendisk *disk = dev_to_disk(dev);
2847
2848         if (disk->fops == &nvme_fops)
2849                 return nvme_get_ns_from_dev(dev)->head;
2850         else
2851                 return disk->private_data;
2852 }
2853
2854 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2855                 char *buf)
2856 {
2857         struct nvme_ns_head *head = dev_to_ns_head(dev);
2858         struct nvme_ns_ids *ids = &head->ids;
2859         struct nvme_subsystem *subsys = head->subsys;
2860         int serial_len = sizeof(subsys->serial);
2861         int model_len = sizeof(subsys->model);
2862
2863         if (!uuid_is_null(&ids->uuid))
2864                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2865
2866         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2867                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2868
2869         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2870                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2871
2872         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2873                                   subsys->serial[serial_len - 1] == '\0'))
2874                 serial_len--;
2875         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2876                                  subsys->model[model_len - 1] == '\0'))
2877                 model_len--;
2878
2879         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2880                 serial_len, subsys->serial, model_len, subsys->model,
2881                 head->ns_id);
2882 }
2883 static DEVICE_ATTR_RO(wwid);
2884
2885 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2886                 char *buf)
2887 {
2888         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2889 }
2890 static DEVICE_ATTR_RO(nguid);
2891
2892 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2893                 char *buf)
2894 {
2895         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2896
2897         /* For backward compatibility expose the NGUID to userspace if
2898          * we have no UUID set
2899          */
2900         if (uuid_is_null(&ids->uuid)) {
2901                 printk_ratelimited(KERN_WARNING
2902                                    "No UUID available providing old NGUID\n");
2903                 return sprintf(buf, "%pU\n", ids->nguid);
2904         }
2905         return sprintf(buf, "%pU\n", &ids->uuid);
2906 }
2907 static DEVICE_ATTR_RO(uuid);
2908
2909 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2910                 char *buf)
2911 {
2912         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2913 }
2914 static DEVICE_ATTR_RO(eui);
2915
2916 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2917                 char *buf)
2918 {
2919         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2920 }
2921 static DEVICE_ATTR_RO(nsid);
2922
2923 static struct attribute *nvme_ns_id_attrs[] = {
2924         &dev_attr_wwid.attr,
2925         &dev_attr_uuid.attr,
2926         &dev_attr_nguid.attr,
2927         &dev_attr_eui.attr,
2928         &dev_attr_nsid.attr,
2929 #ifdef CONFIG_NVME_MULTIPATH
2930         &dev_attr_ana_grpid.attr,
2931         &dev_attr_ana_state.attr,
2932 #endif
2933         NULL,
2934 };
2935
2936 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2937                 struct attribute *a, int n)
2938 {
2939         struct device *dev = container_of(kobj, struct device, kobj);
2940         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2941
2942         if (a == &dev_attr_uuid.attr) {
2943                 if (uuid_is_null(&ids->uuid) &&
2944                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2945                         return 0;
2946         }
2947         if (a == &dev_attr_nguid.attr) {
2948                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2949                         return 0;
2950         }
2951         if (a == &dev_attr_eui.attr) {
2952                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2953                         return 0;
2954         }
2955 #ifdef CONFIG_NVME_MULTIPATH
2956         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
2957                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
2958                         return 0;
2959                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
2960                         return 0;
2961         }
2962 #endif
2963         return a->mode;
2964 }
2965
2966 static const struct attribute_group nvme_ns_id_attr_group = {
2967         .attrs          = nvme_ns_id_attrs,
2968         .is_visible     = nvme_ns_id_attrs_are_visible,
2969 };
2970
2971 const struct attribute_group *nvme_ns_id_attr_groups[] = {
2972         &nvme_ns_id_attr_group,
2973 #ifdef CONFIG_NVM
2974         &nvme_nvm_attr_group,
2975 #endif
2976         NULL,
2977 };
2978
2979 #define nvme_show_str_function(field)                                           \
2980 static ssize_t  field##_show(struct device *dev,                                \
2981                             struct device_attribute *attr, char *buf)           \
2982 {                                                                               \
2983         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2984         return sprintf(buf, "%.*s\n",                                           \
2985                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
2986 }                                                                               \
2987 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2988
2989 nvme_show_str_function(model);
2990 nvme_show_str_function(serial);
2991 nvme_show_str_function(firmware_rev);
2992
2993 #define nvme_show_int_function(field)                                           \
2994 static ssize_t  field##_show(struct device *dev,                                \
2995                             struct device_attribute *attr, char *buf)           \
2996 {                                                                               \
2997         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
2998         return sprintf(buf, "%d\n", ctrl->field);       \
2999 }                                                                               \
3000 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3001
3002 nvme_show_int_function(cntlid);
3003 nvme_show_int_function(numa_node);
3004
3005 static ssize_t nvme_sysfs_delete(struct device *dev,
3006                                 struct device_attribute *attr, const char *buf,
3007                                 size_t count)
3008 {
3009         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3010
3011         if (device_remove_file_self(dev, attr))
3012                 nvme_delete_ctrl_sync(ctrl);
3013         return count;
3014 }
3015 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3016
3017 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3018                                          struct device_attribute *attr,
3019                                          char *buf)
3020 {
3021         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3022
3023         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3024 }
3025 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3026
3027 static ssize_t nvme_sysfs_show_state(struct device *dev,
3028                                      struct device_attribute *attr,
3029                                      char *buf)
3030 {
3031         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3032         static const char *const state_name[] = {
3033                 [NVME_CTRL_NEW]         = "new",
3034                 [NVME_CTRL_LIVE]        = "live",
3035                 [NVME_CTRL_ADMIN_ONLY]  = "only-admin",
3036                 [NVME_CTRL_RESETTING]   = "resetting",
3037                 [NVME_CTRL_CONNECTING]  = "connecting",
3038                 [NVME_CTRL_DELETING]    = "deleting",
3039                 [NVME_CTRL_DEAD]        = "dead",
3040         };
3041
3042         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3043             state_name[ctrl->state])
3044                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3045
3046         return sprintf(buf, "unknown state\n");
3047 }
3048
3049 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3050
3051 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3052                                          struct device_attribute *attr,
3053                                          char *buf)
3054 {
3055         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3056
3057         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3058 }
3059 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3060
3061 static ssize_t nvme_sysfs_show_address(struct device *dev,
3062                                          struct device_attribute *attr,
3063                                          char *buf)
3064 {
3065         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3066
3067         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3068 }
3069 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3070
3071 static struct attribute *nvme_dev_attrs[] = {
3072         &dev_attr_reset_controller.attr,
3073         &dev_attr_rescan_controller.attr,
3074         &dev_attr_model.attr,
3075         &dev_attr_serial.attr,
3076         &dev_attr_firmware_rev.attr,
3077         &dev_attr_cntlid.attr,
3078         &dev_attr_delete_controller.attr,
3079         &dev_attr_transport.attr,
3080         &dev_attr_subsysnqn.attr,
3081         &dev_attr_address.attr,
3082         &dev_attr_state.attr,
3083         &dev_attr_numa_node.attr,
3084         NULL
3085 };
3086
3087 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3088                 struct attribute *a, int n)
3089 {
3090         struct device *dev = container_of(kobj, struct device, kobj);
3091         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3092
3093         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3094                 return 0;
3095         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3096                 return 0;
3097
3098         return a->mode;
3099 }
3100
3101 static struct attribute_group nvme_dev_attrs_group = {
3102         .attrs          = nvme_dev_attrs,
3103         .is_visible     = nvme_dev_attrs_are_visible,
3104 };
3105
3106 static const struct attribute_group *nvme_dev_attr_groups[] = {
3107         &nvme_dev_attrs_group,
3108         NULL,
3109 };
3110
3111 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
3112                 unsigned nsid)
3113 {
3114         struct nvme_ns_head *h;
3115
3116         lockdep_assert_held(&subsys->lock);
3117
3118         list_for_each_entry(h, &subsys->nsheads, entry) {
3119                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3120                         return h;
3121         }
3122
3123         return NULL;
3124 }
3125
3126 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3127                 struct nvme_ns_head *new)
3128 {
3129         struct nvme_ns_head *h;
3130
3131         lockdep_assert_held(&subsys->lock);
3132
3133         list_for_each_entry(h, &subsys->nsheads, entry) {
3134                 if (nvme_ns_ids_valid(&new->ids) &&
3135                     !list_empty(&h->list) &&
3136                     nvme_ns_ids_equal(&new->ids, &h->ids))
3137                         return -EINVAL;
3138         }
3139
3140         return 0;
3141 }
3142
3143 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3144                 unsigned nsid, struct nvme_id_ns *id)
3145 {
3146         struct nvme_ns_head *head;
3147         size_t size = sizeof(*head);
3148         int ret = -ENOMEM;
3149
3150 #ifdef CONFIG_NVME_MULTIPATH
3151         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3152 #endif
3153
3154         head = kzalloc(size, GFP_KERNEL);
3155         if (!head)
3156                 goto out;
3157         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3158         if (ret < 0)
3159                 goto out_free_head;
3160         head->instance = ret;
3161         INIT_LIST_HEAD(&head->list);
3162         ret = init_srcu_struct(&head->srcu);
3163         if (ret)
3164                 goto out_ida_remove;
3165         head->subsys = ctrl->subsys;
3166         head->ns_id = nsid;
3167         kref_init(&head->ref);
3168
3169         nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
3170
3171         ret = __nvme_check_ids(ctrl->subsys, head);
3172         if (ret) {
3173                 dev_err(ctrl->device,
3174                         "duplicate IDs for nsid %d\n", nsid);
3175                 goto out_cleanup_srcu;
3176         }
3177
3178         ret = nvme_mpath_alloc_disk(ctrl, head);
3179         if (ret)
3180                 goto out_cleanup_srcu;
3181
3182         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3183
3184         kref_get(&ctrl->subsys->ref);
3185
3186         return head;
3187 out_cleanup_srcu:
3188         cleanup_srcu_struct(&head->srcu);
3189 out_ida_remove:
3190         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3191 out_free_head:
3192         kfree(head);
3193 out:
3194         return ERR_PTR(ret);
3195 }
3196
3197 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3198                 struct nvme_id_ns *id)
3199 {
3200         struct nvme_ctrl *ctrl = ns->ctrl;
3201         bool is_shared = id->nmic & (1 << 0);
3202         struct nvme_ns_head *head = NULL;
3203         int ret = 0;
3204
3205         mutex_lock(&ctrl->subsys->lock);
3206         if (is_shared)
3207                 head = __nvme_find_ns_head(ctrl->subsys, nsid);
3208         if (!head) {
3209                 head = nvme_alloc_ns_head(ctrl, nsid, id);
3210                 if (IS_ERR(head)) {
3211                         ret = PTR_ERR(head);
3212                         goto out_unlock;
3213                 }
3214         } else {
3215                 struct nvme_ns_ids ids;
3216
3217                 nvme_report_ns_ids(ctrl, nsid, id, &ids);
3218                 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
3219                         dev_err(ctrl->device,
3220                                 "IDs don't match for shared namespace %d\n",
3221                                         nsid);
3222                         ret = -EINVAL;
3223                         goto out_unlock;
3224                 }
3225         }
3226
3227         list_add_tail(&ns->siblings, &head->list);
3228         ns->head = head;
3229
3230 out_unlock:
3231         mutex_unlock(&ctrl->subsys->lock);
3232         return ret;
3233 }
3234
3235 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3236 {
3237         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3238         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3239
3240         return nsa->head->ns_id - nsb->head->ns_id;
3241 }
3242
3243 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3244 {
3245         struct nvme_ns *ns, *ret = NULL;
3246
3247         down_read(&ctrl->namespaces_rwsem);
3248         list_for_each_entry(ns, &ctrl->namespaces, list) {
3249                 if (ns->head->ns_id == nsid) {
3250                         if (!kref_get_unless_zero(&ns->kref))
3251                                 continue;
3252                         ret = ns;
3253                         break;
3254                 }
3255                 if (ns->head->ns_id > nsid)
3256                         break;
3257         }
3258         up_read(&ctrl->namespaces_rwsem);
3259         return ret;
3260 }
3261
3262 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
3263 {
3264         struct streams_directive_params s;
3265         int ret;
3266
3267         if (!ctrl->nr_streams)
3268                 return 0;
3269
3270         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
3271         if (ret)
3272                 return ret;
3273
3274         ns->sws = le32_to_cpu(s.sws);
3275         ns->sgs = le16_to_cpu(s.sgs);
3276
3277         if (ns->sws) {
3278                 unsigned int bs = 1 << ns->lba_shift;
3279
3280                 blk_queue_io_min(ns->queue, bs * ns->sws);
3281                 if (ns->sgs)
3282                         blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
3283         }
3284
3285         return 0;
3286 }
3287
3288 static int nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3289 {
3290         struct nvme_ns *ns;
3291         struct gendisk *disk;
3292         struct nvme_id_ns *id;
3293         char disk_name[DISK_NAME_LEN];
3294         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3295
3296         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3297         if (!ns)
3298                 return -ENOMEM;
3299
3300         ns->queue = blk_mq_init_queue(ctrl->tagset);
3301         if (IS_ERR(ns->queue)) {
3302                 ret = PTR_ERR(ns->queue);
3303                 goto out_free_ns;
3304         }
3305
3306         if (ctrl->opts && ctrl->opts->data_digest)
3307                 ns->queue->backing_dev_info->capabilities
3308                         |= BDI_CAP_STABLE_WRITES;
3309
3310         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3311         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3312                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3313
3314         ns->queue->queuedata = ns;
3315         ns->ctrl = ctrl;
3316
3317         kref_init(&ns->kref);
3318         ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
3319
3320         blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
3321         nvme_set_queue_limits(ctrl, ns->queue);
3322
3323         id = nvme_identify_ns(ctrl, nsid);
3324         if (!id) {
3325                 ret = -EIO;
3326                 goto out_free_queue;
3327         }
3328
3329         if (id->ncap == 0) {
3330                 ret = -EINVAL;
3331                 goto out_free_id;
3332         }
3333
3334         ret = nvme_init_ns_head(ns, nsid, id);
3335         if (ret)
3336                 goto out_free_id;
3337         nvme_setup_streams_ns(ctrl, ns);
3338         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3339
3340         disk = alloc_disk_node(0, node);
3341         if (!disk) {
3342                 ret = -ENOMEM;
3343                 goto out_unlink_ns;
3344         }
3345
3346         disk->fops = &nvme_fops;
3347         disk->private_data = ns;
3348         disk->queue = ns->queue;
3349         disk->flags = flags;
3350         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3351         ns->disk = disk;
3352
3353         __nvme_revalidate_disk(disk, id);
3354
3355         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3356                 ret = nvme_nvm_register(ns, disk_name, node);
3357                 if (ret) {
3358                         dev_warn(ctrl->device, "LightNVM init failure\n");
3359                         goto out_put_disk;
3360                 }
3361         }
3362
3363         down_write(&ctrl->namespaces_rwsem);
3364         list_add_tail(&ns->list, &ctrl->namespaces);
3365         up_write(&ctrl->namespaces_rwsem);
3366
3367         nvme_get_ctrl(ctrl);
3368
3369         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3370
3371         nvme_mpath_add_disk(ns, id);
3372         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3373         kfree(id);
3374
3375         return 0;
3376  out_put_disk:
3377         put_disk(ns->disk);
3378  out_unlink_ns:
3379         mutex_lock(&ctrl->subsys->lock);
3380         list_del_rcu(&ns->siblings);
3381         mutex_unlock(&ctrl->subsys->lock);
3382         nvme_put_ns_head(ns->head);
3383  out_free_id:
3384         kfree(id);
3385  out_free_queue:
3386         blk_cleanup_queue(ns->queue);
3387  out_free_ns:
3388         kfree(ns);
3389         return ret;
3390 }
3391
3392 static void nvme_ns_remove(struct nvme_ns *ns)
3393 {
3394         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3395                 return;
3396
3397         nvme_fault_inject_fini(&ns->fault_inject);
3398
3399         mutex_lock(&ns->ctrl->subsys->lock);
3400         list_del_rcu(&ns->siblings);
3401         mutex_unlock(&ns->ctrl->subsys->lock);
3402         synchronize_rcu(); /* guarantee not available in head->list */
3403         nvme_mpath_clear_current_path(ns);
3404         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3405
3406         if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3407                 del_gendisk(ns->disk);
3408                 blk_cleanup_queue(ns->queue);
3409                 if (blk_get_integrity(ns->disk))
3410                         blk_integrity_unregister(ns->disk);
3411         }
3412
3413         down_write(&ns->ctrl->namespaces_rwsem);
3414         list_del_init(&ns->list);
3415         up_write(&ns->ctrl->namespaces_rwsem);
3416
3417         nvme_mpath_check_last_path(ns);
3418         nvme_put_ns(ns);
3419 }
3420
3421 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3422 {
3423         struct nvme_ns *ns;
3424
3425         ns = nvme_find_get_ns(ctrl, nsid);
3426         if (ns) {
3427                 if (ns->disk && revalidate_disk(ns->disk))
3428                         nvme_ns_remove(ns);
3429                 nvme_put_ns(ns);
3430         } else
3431                 nvme_alloc_ns(ctrl, nsid);
3432 }
3433
3434 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3435                                         unsigned nsid)
3436 {
3437         struct nvme_ns *ns, *next;
3438         LIST_HEAD(rm_list);
3439
3440         down_write(&ctrl->namespaces_rwsem);
3441         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3442                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
3443                         list_move_tail(&ns->list, &rm_list);
3444         }
3445         up_write(&ctrl->namespaces_rwsem);
3446
3447         list_for_each_entry_safe(ns, next, &rm_list, list)
3448                 nvme_ns_remove(ns);
3449
3450 }
3451
3452 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3453 {
3454         struct nvme_ns *ns;
3455         __le32 *ns_list;
3456         unsigned i, j, nsid, prev = 0;
3457         unsigned num_lists = DIV_ROUND_UP_ULL((u64)nn, 1024);
3458         int ret = 0;
3459
3460         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3461         if (!ns_list)
3462                 return -ENOMEM;
3463
3464         for (i = 0; i < num_lists; i++) {
3465                 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3466                 if (ret)
3467                         goto free;
3468
3469                 for (j = 0; j < min(nn, 1024U); j++) {
3470                         nsid = le32_to_cpu(ns_list[j]);
3471                         if (!nsid)
3472                                 goto out;
3473
3474                         nvme_validate_ns(ctrl, nsid);
3475
3476                         while (++prev < nsid) {
3477                                 ns = nvme_find_get_ns(ctrl, prev);
3478                                 if (ns) {
3479                                         nvme_ns_remove(ns);
3480                                         nvme_put_ns(ns);
3481                                 }
3482                         }
3483                 }
3484                 nn -= j;
3485         }
3486  out:
3487         nvme_remove_invalid_namespaces(ctrl, prev);
3488  free:
3489         kfree(ns_list);
3490         return ret;
3491 }
3492
3493 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3494 {
3495         unsigned i;
3496
3497         for (i = 1; i <= nn; i++)
3498                 nvme_validate_ns(ctrl, i);
3499
3500         nvme_remove_invalid_namespaces(ctrl, nn);
3501 }
3502
3503 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3504 {
3505         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3506         __le32 *log;
3507         int error;
3508
3509         log = kzalloc(log_size, GFP_KERNEL);
3510         if (!log)
3511                 return;
3512
3513         /*
3514          * We need to read the log to clear the AEN, but we don't want to rely
3515          * on it for the changed namespace information as userspace could have
3516          * raced with us in reading the log page, which could cause us to miss
3517          * updates.
3518          */
3519         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0, log,
3520                         log_size, 0);
3521         if (error)
3522                 dev_warn(ctrl->device,
3523                         "reading changed ns log failed: %d\n", error);
3524
3525         kfree(log);
3526 }
3527
3528 static void nvme_scan_work(struct work_struct *work)
3529 {
3530         struct nvme_ctrl *ctrl =
3531                 container_of(work, struct nvme_ctrl, scan_work);
3532         struct nvme_id_ctrl *id;
3533         unsigned nn;
3534
3535         if (ctrl->state != NVME_CTRL_LIVE)
3536                 return;
3537
3538         WARN_ON_ONCE(!ctrl->tagset);
3539
3540         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3541                 dev_info(ctrl->device, "rescanning namespaces.\n");
3542                 nvme_clear_changed_ns_log(ctrl);
3543         }
3544
3545         if (nvme_identify_ctrl(ctrl, &id))
3546                 return;
3547
3548         mutex_lock(&ctrl->scan_lock);
3549         nn = le32_to_cpu(id->nn);
3550         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3551             !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3552                 if (!nvme_scan_ns_list(ctrl, nn))
3553                         goto out_free_id;
3554         }
3555         nvme_scan_ns_sequential(ctrl, nn);
3556 out_free_id:
3557         mutex_unlock(&ctrl->scan_lock);
3558         kfree(id);
3559         down_write(&ctrl->namespaces_rwsem);
3560         list_sort(NULL, &ctrl->namespaces, ns_cmp);
3561         up_write(&ctrl->namespaces_rwsem);
3562 }
3563
3564 /*
3565  * This function iterates the namespace list unlocked to allow recovery from
3566  * controller failure. It is up to the caller to ensure the namespace list is
3567  * not modified by scan work while this function is executing.
3568  */
3569 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3570 {
3571         struct nvme_ns *ns, *next;
3572         LIST_HEAD(ns_list);
3573
3574         /* prevent racing with ns scanning */
3575         flush_work(&ctrl->scan_work);
3576
3577         /*
3578          * The dead states indicates the controller was not gracefully
3579          * disconnected. In that case, we won't be able to flush any data while
3580          * removing the namespaces' disks; fail all the queues now to avoid
3581          * potentially having to clean up the failed sync later.
3582          */
3583         if (ctrl->state == NVME_CTRL_DEAD)
3584                 nvme_kill_queues(ctrl);
3585
3586         down_write(&ctrl->namespaces_rwsem);
3587         list_splice_init(&ctrl->namespaces, &ns_list);
3588         up_write(&ctrl->namespaces_rwsem);
3589
3590         list_for_each_entry_safe(ns, next, &ns_list, list)
3591                 nvme_ns_remove(ns);
3592 }
3593 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3594
3595 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3596 {
3597         char *envp[2] = { NULL, NULL };
3598         u32 aen_result = ctrl->aen_result;
3599
3600         ctrl->aen_result = 0;
3601         if (!aen_result)
3602                 return;
3603
3604         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3605         if (!envp[0])
3606                 return;
3607         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3608         kfree(envp[0]);
3609 }
3610
3611 static void nvme_async_event_work(struct work_struct *work)
3612 {
3613         struct nvme_ctrl *ctrl =
3614                 container_of(work, struct nvme_ctrl, async_event_work);
3615
3616         nvme_aen_uevent(ctrl);
3617         ctrl->ops->submit_async_event(ctrl);
3618 }
3619
3620 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3621 {
3622
3623         u32 csts;
3624
3625         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3626                 return false;
3627
3628         if (csts == ~0)
3629                 return false;
3630
3631         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3632 }
3633
3634 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3635 {
3636         struct nvme_fw_slot_info_log *log;
3637
3638         log = kmalloc(sizeof(*log), GFP_KERNEL);
3639         if (!log)
3640                 return;
3641
3642         if (nvme_get_log(ctrl, NVME_NSID_ALL, 0, NVME_LOG_FW_SLOT, log,
3643                         sizeof(*log), 0))
3644                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
3645         kfree(log);
3646 }
3647
3648 static void nvme_fw_act_work(struct work_struct *work)
3649 {
3650         struct nvme_ctrl *ctrl = container_of(work,
3651                                 struct nvme_ctrl, fw_act_work);
3652         unsigned long fw_act_timeout;
3653
3654         if (ctrl->mtfa)
3655                 fw_act_timeout = jiffies +
3656                                 msecs_to_jiffies(ctrl->mtfa * 100);
3657         else
3658                 fw_act_timeout = jiffies +
3659                                 msecs_to_jiffies(admin_timeout * 1000);
3660
3661         nvme_stop_queues(ctrl);
3662         while (nvme_ctrl_pp_status(ctrl)) {
3663                 if (time_after(jiffies, fw_act_timeout)) {
3664                         dev_warn(ctrl->device,
3665                                 "Fw activation timeout, reset controller\n");
3666                         nvme_reset_ctrl(ctrl);
3667                         break;
3668                 }
3669                 msleep(100);
3670         }
3671
3672         if (ctrl->state != NVME_CTRL_LIVE)
3673                 return;
3674
3675         nvme_start_queues(ctrl);
3676         /* read FW slot information to clear the AER */
3677         nvme_get_fw_slot_info(ctrl);
3678 }
3679
3680 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
3681 {
3682         u32 aer_notice_type = (result & 0xff00) >> 8;
3683
3684         trace_nvme_async_event(ctrl, aer_notice_type);
3685
3686         switch (aer_notice_type) {
3687         case NVME_AER_NOTICE_NS_CHANGED:
3688                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
3689                 nvme_queue_scan(ctrl);
3690                 break;
3691         case NVME_AER_NOTICE_FW_ACT_STARTING:
3692                 queue_work(nvme_wq, &ctrl->fw_act_work);
3693                 break;
3694 #ifdef CONFIG_NVME_MULTIPATH
3695         case NVME_AER_NOTICE_ANA:
3696                 if (!ctrl->ana_log_buf)
3697                         break;
3698                 queue_work(nvme_wq, &ctrl->ana_work);
3699                 break;
3700 #endif
3701         default:
3702                 dev_warn(ctrl->device, "async event result %08x\n", result);
3703         }
3704 }
3705
3706 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3707                 volatile union nvme_result *res)
3708 {
3709         u32 result = le32_to_cpu(res->u32);
3710         u32 aer_type = result & 0x07;
3711
3712         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3713                 return;
3714
3715         switch (aer_type) {
3716         case NVME_AER_NOTICE:
3717                 nvme_handle_aen_notice(ctrl, result);
3718                 break;
3719         case NVME_AER_ERROR:
3720         case NVME_AER_SMART:
3721         case NVME_AER_CSS:
3722         case NVME_AER_VS:
3723                 trace_nvme_async_event(ctrl, aer_type);
3724                 ctrl->aen_result = result;
3725                 break;
3726         default:
3727                 break;
3728         }
3729         queue_work(nvme_wq, &ctrl->async_event_work);
3730 }
3731 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3732
3733 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3734 {
3735         nvme_mpath_stop(ctrl);
3736         nvme_stop_keep_alive(ctrl);
3737         flush_work(&ctrl->async_event_work);
3738         cancel_work_sync(&ctrl->fw_act_work);
3739 }
3740 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3741
3742 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3743 {
3744         if (ctrl->kato)
3745                 nvme_start_keep_alive(ctrl);
3746
3747         if (ctrl->queue_count > 1) {
3748                 nvme_queue_scan(ctrl);
3749                 nvme_enable_aen(ctrl);
3750                 queue_work(nvme_wq, &ctrl->async_event_work);
3751                 nvme_start_queues(ctrl);
3752         }
3753 }
3754 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3755
3756 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3757 {
3758         nvme_fault_inject_fini(&ctrl->fault_inject);
3759         dev_pm_qos_hide_latency_tolerance(ctrl->device);
3760         cdev_device_del(&ctrl->cdev, ctrl->device);
3761 }
3762 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3763
3764 static void nvme_free_ctrl(struct device *dev)
3765 {
3766         struct nvme_ctrl *ctrl =
3767                 container_of(dev, struct nvme_ctrl, ctrl_device);
3768         struct nvme_subsystem *subsys = ctrl->subsys;
3769
3770         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3771         kfree(ctrl->effects);
3772         nvme_mpath_uninit(ctrl);
3773         __free_page(ctrl->discard_page);
3774
3775         if (subsys) {
3776                 mutex_lock(&nvme_subsystems_lock);
3777                 list_del(&ctrl->subsys_entry);
3778                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3779                 mutex_unlock(&nvme_subsystems_lock);
3780         }
3781
3782         ctrl->ops->free_ctrl(ctrl);
3783
3784         if (subsys)
3785                 nvme_put_subsystem(subsys);
3786 }
3787
3788 /*
3789  * Initialize a NVMe controller structures.  This needs to be called during
3790  * earliest initialization so that we have the initialized structured around
3791  * during probing.
3792  */
3793 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3794                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3795 {
3796         int ret;
3797
3798         ctrl->state = NVME_CTRL_NEW;
3799         spin_lock_init(&ctrl->lock);
3800         mutex_init(&ctrl->scan_lock);
3801         INIT_LIST_HEAD(&ctrl->namespaces);
3802         init_rwsem(&ctrl->namespaces_rwsem);
3803         ctrl->dev = dev;
3804         ctrl->ops = ops;
3805         ctrl->quirks = quirks;
3806         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3807         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3808         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3809         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3810
3811         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
3812         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
3813         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
3814
3815         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
3816                         PAGE_SIZE);
3817         ctrl->discard_page = alloc_page(GFP_KERNEL);
3818         if (!ctrl->discard_page) {
3819                 ret = -ENOMEM;
3820                 goto out;
3821         }
3822
3823         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3824         if (ret < 0)
3825                 goto out;
3826         ctrl->instance = ret;
3827
3828         device_initialize(&ctrl->ctrl_device);
3829         ctrl->device = &ctrl->ctrl_device;
3830         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3831         ctrl->device->class = nvme_class;
3832         ctrl->device->parent = ctrl->dev;
3833         ctrl->device->groups = nvme_dev_attr_groups;
3834         ctrl->device->release = nvme_free_ctrl;
3835         dev_set_drvdata(ctrl->device, ctrl);
3836         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3837         if (ret)
3838                 goto out_release_instance;
3839
3840         cdev_init(&ctrl->cdev, &nvme_dev_fops);
3841         ctrl->cdev.owner = ops->module;
3842         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3843         if (ret)
3844                 goto out_free_name;
3845
3846         /*
3847          * Initialize latency tolerance controls.  The sysfs files won't
3848          * be visible to userspace unless the device actually supports APST.
3849          */
3850         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3851         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3852                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3853
3854         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
3855
3856         return 0;
3857 out_free_name:
3858         kfree_const(ctrl->device->kobj.name);
3859 out_release_instance:
3860         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3861 out:
3862         if (ctrl->discard_page)
3863                 __free_page(ctrl->discard_page);
3864         return ret;
3865 }
3866 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3867
3868 /**
3869  * nvme_kill_queues(): Ends all namespace queues
3870  * @ctrl: the dead controller that needs to end
3871  *
3872  * Call this function when the driver determines it is unable to get the
3873  * controller in a state capable of servicing IO.
3874  */
3875 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3876 {
3877         struct nvme_ns *ns;
3878
3879         down_read(&ctrl->namespaces_rwsem);
3880
3881         /* Forcibly unquiesce queues to avoid blocking dispatch */
3882         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
3883                 blk_mq_unquiesce_queue(ctrl->admin_q);
3884
3885         list_for_each_entry(ns, &ctrl->namespaces, list)
3886                 nvme_set_queue_dying(ns);
3887
3888         up_read(&ctrl->namespaces_rwsem);
3889 }
3890 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3891
3892 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3893 {
3894         struct nvme_ns *ns;
3895
3896         down_read(&ctrl->namespaces_rwsem);
3897         list_for_each_entry(ns, &ctrl->namespaces, list)
3898                 blk_mq_unfreeze_queue(ns->queue);
3899         up_read(&ctrl->namespaces_rwsem);
3900 }
3901 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3902
3903 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3904 {
3905         struct nvme_ns *ns;
3906
3907         down_read(&ctrl->namespaces_rwsem);
3908         list_for_each_entry(ns, &ctrl->namespaces, list) {
3909                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3910                 if (timeout <= 0)
3911                         break;
3912         }
3913         up_read(&ctrl->namespaces_rwsem);
3914 }
3915 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3916
3917 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3918 {
3919         struct nvme_ns *ns;
3920
3921         down_read(&ctrl->namespaces_rwsem);
3922         list_for_each_entry(ns, &ctrl->namespaces, list)
3923                 blk_mq_freeze_queue_wait(ns->queue);
3924         up_read(&ctrl->namespaces_rwsem);
3925 }
3926 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3927
3928 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3929 {
3930         struct nvme_ns *ns;
3931
3932         down_read(&ctrl->namespaces_rwsem);
3933         list_for_each_entry(ns, &ctrl->namespaces, list)
3934                 blk_freeze_queue_start(ns->queue);
3935         up_read(&ctrl->namespaces_rwsem);
3936 }
3937 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3938
3939 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3940 {
3941         struct nvme_ns *ns;
3942
3943         down_read(&ctrl->namespaces_rwsem);
3944         list_for_each_entry(ns, &ctrl->namespaces, list)
3945                 blk_mq_quiesce_queue(ns->queue);
3946         up_read(&ctrl->namespaces_rwsem);
3947 }
3948 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3949
3950 void nvme_start_queues(struct nvme_ctrl *ctrl)
3951 {
3952         struct nvme_ns *ns;
3953
3954         down_read(&ctrl->namespaces_rwsem);
3955         list_for_each_entry(ns, &ctrl->namespaces, list)
3956                 blk_mq_unquiesce_queue(ns->queue);
3957         up_read(&ctrl->namespaces_rwsem);
3958 }
3959 EXPORT_SYMBOL_GPL(nvme_start_queues);
3960
3961
3962 void nvme_sync_queues(struct nvme_ctrl *ctrl)
3963 {
3964         struct nvme_ns *ns;
3965
3966         down_read(&ctrl->namespaces_rwsem);
3967         list_for_each_entry(ns, &ctrl->namespaces, list)
3968                 blk_sync_queue(ns->queue);
3969         up_read(&ctrl->namespaces_rwsem);
3970 }
3971 EXPORT_SYMBOL_GPL(nvme_sync_queues);
3972
3973 /*
3974  * Check we didn't inadvertently grow the command structure sizes:
3975  */
3976 static inline void _nvme_check_size(void)
3977 {
3978         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
3979         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
3980         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
3981         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
3982         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
3983         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
3984         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
3985         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
3986         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
3987         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
3988         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
3989         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
3990         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
3991         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
3992         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
3993         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
3994         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
3995 }
3996
3997
3998 static int __init nvme_core_init(void)
3999 {
4000         int result = -ENOMEM;
4001
4002         _nvme_check_size();
4003
4004         nvme_wq = alloc_workqueue("nvme-wq",
4005                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4006         if (!nvme_wq)
4007                 goto out;
4008
4009         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4010                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4011         if (!nvme_reset_wq)
4012                 goto destroy_wq;
4013
4014         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4015                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4016         if (!nvme_delete_wq)
4017                 goto destroy_reset_wq;
4018
4019         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4020         if (result < 0)
4021                 goto destroy_delete_wq;
4022
4023         nvme_class = class_create(THIS_MODULE, "nvme");
4024         if (IS_ERR(nvme_class)) {
4025                 result = PTR_ERR(nvme_class);
4026                 goto unregister_chrdev;
4027         }
4028
4029         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4030         if (IS_ERR(nvme_subsys_class)) {
4031                 result = PTR_ERR(nvme_subsys_class);
4032                 goto destroy_class;
4033         }
4034         return 0;
4035
4036 destroy_class:
4037         class_destroy(nvme_class);
4038 unregister_chrdev:
4039         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4040 destroy_delete_wq:
4041         destroy_workqueue(nvme_delete_wq);
4042 destroy_reset_wq:
4043         destroy_workqueue(nvme_reset_wq);
4044 destroy_wq:
4045         destroy_workqueue(nvme_wq);
4046 out:
4047         return result;
4048 }
4049
4050 static void __exit nvme_core_exit(void)
4051 {
4052         ida_destroy(&nvme_subsystems_ida);
4053         class_destroy(nvme_subsys_class);
4054         class_destroy(nvme_class);
4055         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4056         destroy_workqueue(nvme_delete_wq);
4057         destroy_workqueue(nvme_reset_wq);
4058         destroy_workqueue(nvme_wq);
4059 }
4060
4061 MODULE_LICENSE("GPL");
4062 MODULE_VERSION("1.0");
4063 module_init(nvme_core_init);
4064 module_exit(nvme_core_exit);