Merge tag 'efi-urgent-for-v5.10-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/compat.h>
10 #include <linux/delay.h>
11 #include <linux/errno.h>
12 #include <linux/hdreg.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/list_sort.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27
28 #define CREATE_TRACE_POINTS
29 #include "trace.h"
30
31 #define NVME_MINORS             (1U << MINORBITS)
32
33 unsigned int admin_timeout = 60;
34 module_param(admin_timeout, uint, 0644);
35 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
36 EXPORT_SYMBOL_GPL(admin_timeout);
37
38 unsigned int nvme_io_timeout = 30;
39 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
40 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
41 EXPORT_SYMBOL_GPL(nvme_io_timeout);
42
43 static unsigned char shutdown_timeout = 5;
44 module_param(shutdown_timeout, byte, 0644);
45 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
46
47 static u8 nvme_max_retries = 5;
48 module_param_named(max_retries, nvme_max_retries, byte, 0644);
49 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
50
51 static unsigned long default_ps_max_latency_us = 100000;
52 module_param(default_ps_max_latency_us, ulong, 0644);
53 MODULE_PARM_DESC(default_ps_max_latency_us,
54                  "max power saving latency for new devices; use PM QOS to change per device");
55
56 static bool force_apst;
57 module_param(force_apst, bool, 0644);
58 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
59
60 static bool streams;
61 module_param(streams, bool, 0644);
62 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
63
64 /*
65  * nvme_wq - hosts nvme related works that are not reset or delete
66  * nvme_reset_wq - hosts nvme reset works
67  * nvme_delete_wq - hosts nvme delete works
68  *
69  * nvme_wq will host works such as scan, aen handling, fw activation,
70  * keep-alive, periodic reconnects etc. nvme_reset_wq
71  * runs reset works which also flush works hosted on nvme_wq for
72  * serialization purposes. nvme_delete_wq host controller deletion
73  * works which flush reset works for serialization.
74  */
75 struct workqueue_struct *nvme_wq;
76 EXPORT_SYMBOL_GPL(nvme_wq);
77
78 struct workqueue_struct *nvme_reset_wq;
79 EXPORT_SYMBOL_GPL(nvme_reset_wq);
80
81 struct workqueue_struct *nvme_delete_wq;
82 EXPORT_SYMBOL_GPL(nvme_delete_wq);
83
84 static LIST_HEAD(nvme_subsystems);
85 static DEFINE_MUTEX(nvme_subsystems_lock);
86
87 static DEFINE_IDA(nvme_instance_ida);
88 static dev_t nvme_chr_devt;
89 static struct class *nvme_class;
90 static struct class *nvme_subsys_class;
91
92 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
93 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
94                                            unsigned nsid);
95
96 static void nvme_update_bdev_size(struct gendisk *disk)
97 {
98         struct block_device *bdev = bdget_disk(disk, 0);
99
100         if (bdev) {
101                 bd_set_nr_sectors(bdev, get_capacity(disk));
102                 bdput(bdev);
103         }
104 }
105
106 /*
107  * Prepare a queue for teardown.
108  *
109  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
110  * the capacity to 0 after that to avoid blocking dispatchers that may be
111  * holding bd_butex.  This will end buffered writers dirtying pages that can't
112  * be synced.
113  */
114 static void nvme_set_queue_dying(struct nvme_ns *ns)
115 {
116         if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
117                 return;
118
119         blk_set_queue_dying(ns->queue);
120         blk_mq_unquiesce_queue(ns->queue);
121
122         set_capacity(ns->disk, 0);
123         nvme_update_bdev_size(ns->disk);
124 }
125
126 static void nvme_queue_scan(struct nvme_ctrl *ctrl)
127 {
128         /*
129          * Only new queue scan work when admin and IO queues are both alive
130          */
131         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
132                 queue_work(nvme_wq, &ctrl->scan_work);
133 }
134
135 /*
136  * Use this function to proceed with scheduling reset_work for a controller
137  * that had previously been set to the resetting state. This is intended for
138  * code paths that can't be interrupted by other reset attempts. A hot removal
139  * may prevent this from succeeding.
140  */
141 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
142 {
143         if (ctrl->state != NVME_CTRL_RESETTING)
144                 return -EBUSY;
145         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
146                 return -EBUSY;
147         return 0;
148 }
149 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
150
151 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
152 {
153         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
154                 return -EBUSY;
155         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
156                 return -EBUSY;
157         return 0;
158 }
159 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
160
161 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
162 {
163         int ret;
164
165         ret = nvme_reset_ctrl(ctrl);
166         if (!ret) {
167                 flush_work(&ctrl->reset_work);
168                 if (ctrl->state != NVME_CTRL_LIVE)
169                         ret = -ENETRESET;
170         }
171
172         return ret;
173 }
174 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
175
176 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
177 {
178         dev_info(ctrl->device,
179                  "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
180
181         flush_work(&ctrl->reset_work);
182         nvme_stop_ctrl(ctrl);
183         nvme_remove_namespaces(ctrl);
184         ctrl->ops->delete_ctrl(ctrl);
185         nvme_uninit_ctrl(ctrl);
186 }
187
188 static void nvme_delete_ctrl_work(struct work_struct *work)
189 {
190         struct nvme_ctrl *ctrl =
191                 container_of(work, struct nvme_ctrl, delete_work);
192
193         nvme_do_delete_ctrl(ctrl);
194 }
195
196 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
197 {
198         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
199                 return -EBUSY;
200         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
201                 return -EBUSY;
202         return 0;
203 }
204 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
205
206 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
207 {
208         /*
209          * Keep a reference until nvme_do_delete_ctrl() complete,
210          * since ->delete_ctrl can free the controller.
211          */
212         nvme_get_ctrl(ctrl);
213         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
214                 nvme_do_delete_ctrl(ctrl);
215         nvme_put_ctrl(ctrl);
216 }
217
218 static blk_status_t nvme_error_status(u16 status)
219 {
220         switch (status & 0x7ff) {
221         case NVME_SC_SUCCESS:
222                 return BLK_STS_OK;
223         case NVME_SC_CAP_EXCEEDED:
224                 return BLK_STS_NOSPC;
225         case NVME_SC_LBA_RANGE:
226         case NVME_SC_CMD_INTERRUPTED:
227         case NVME_SC_NS_NOT_READY:
228                 return BLK_STS_TARGET;
229         case NVME_SC_BAD_ATTRIBUTES:
230         case NVME_SC_ONCS_NOT_SUPPORTED:
231         case NVME_SC_INVALID_OPCODE:
232         case NVME_SC_INVALID_FIELD:
233         case NVME_SC_INVALID_NS:
234                 return BLK_STS_NOTSUPP;
235         case NVME_SC_WRITE_FAULT:
236         case NVME_SC_READ_ERROR:
237         case NVME_SC_UNWRITTEN_BLOCK:
238         case NVME_SC_ACCESS_DENIED:
239         case NVME_SC_READ_ONLY:
240         case NVME_SC_COMPARE_FAILED:
241                 return BLK_STS_MEDIUM;
242         case NVME_SC_GUARD_CHECK:
243         case NVME_SC_APPTAG_CHECK:
244         case NVME_SC_REFTAG_CHECK:
245         case NVME_SC_INVALID_PI:
246                 return BLK_STS_PROTECTION;
247         case NVME_SC_RESERVATION_CONFLICT:
248                 return BLK_STS_NEXUS;
249         case NVME_SC_HOST_PATH_ERROR:
250                 return BLK_STS_TRANSPORT;
251         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
252                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
253         case NVME_SC_ZONE_TOO_MANY_OPEN:
254                 return BLK_STS_ZONE_OPEN_RESOURCE;
255         default:
256                 return BLK_STS_IOERR;
257         }
258 }
259
260 static void nvme_retry_req(struct request *req)
261 {
262         struct nvme_ns *ns = req->q->queuedata;
263         unsigned long delay = 0;
264         u16 crd;
265
266         /* The mask and shift result must be <= 3 */
267         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
268         if (ns && crd)
269                 delay = ns->ctrl->crdt[crd - 1] * 100;
270
271         nvme_req(req)->retries++;
272         blk_mq_requeue_request(req, false);
273         blk_mq_delay_kick_requeue_list(req->q, delay);
274 }
275
276 enum nvme_disposition {
277         COMPLETE,
278         RETRY,
279         FAILOVER,
280 };
281
282 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
283 {
284         if (likely(nvme_req(req)->status == 0))
285                 return COMPLETE;
286
287         if (blk_noretry_request(req) ||
288             (nvme_req(req)->status & NVME_SC_DNR) ||
289             nvme_req(req)->retries >= nvme_max_retries)
290                 return COMPLETE;
291
292         if (req->cmd_flags & REQ_NVME_MPATH) {
293                 if (nvme_is_path_error(nvme_req(req)->status) ||
294                     blk_queue_dying(req->q))
295                         return FAILOVER;
296         } else {
297                 if (blk_queue_dying(req->q))
298                         return COMPLETE;
299         }
300
301         return RETRY;
302 }
303
304 static inline void nvme_end_req(struct request *req)
305 {
306         blk_status_t status = nvme_error_status(nvme_req(req)->status);
307
308         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
309             req_op(req) == REQ_OP_ZONE_APPEND)
310                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
311                         le64_to_cpu(nvme_req(req)->result.u64));
312
313         nvme_trace_bio_complete(req, status);
314         blk_mq_end_request(req, status);
315 }
316
317 void nvme_complete_rq(struct request *req)
318 {
319         trace_nvme_complete_rq(req);
320         nvme_cleanup_cmd(req);
321
322         if (nvme_req(req)->ctrl->kas)
323                 nvme_req(req)->ctrl->comp_seen = true;
324
325         switch (nvme_decide_disposition(req)) {
326         case COMPLETE:
327                 nvme_end_req(req);
328                 return;
329         case RETRY:
330                 nvme_retry_req(req);
331                 return;
332         case FAILOVER:
333                 nvme_failover_req(req);
334                 return;
335         }
336 }
337 EXPORT_SYMBOL_GPL(nvme_complete_rq);
338
339 bool nvme_cancel_request(struct request *req, void *data, bool reserved)
340 {
341         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
342                                 "Cancelling I/O %d", req->tag);
343
344         /* don't abort one completed request */
345         if (blk_mq_request_completed(req))
346                 return true;
347
348         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
349         blk_mq_complete_request(req);
350         return true;
351 }
352 EXPORT_SYMBOL_GPL(nvme_cancel_request);
353
354 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
355                 enum nvme_ctrl_state new_state)
356 {
357         enum nvme_ctrl_state old_state;
358         unsigned long flags;
359         bool changed = false;
360
361         spin_lock_irqsave(&ctrl->lock, flags);
362
363         old_state = ctrl->state;
364         switch (new_state) {
365         case NVME_CTRL_LIVE:
366                 switch (old_state) {
367                 case NVME_CTRL_NEW:
368                 case NVME_CTRL_RESETTING:
369                 case NVME_CTRL_CONNECTING:
370                         changed = true;
371                         fallthrough;
372                 default:
373                         break;
374                 }
375                 break;
376         case NVME_CTRL_RESETTING:
377                 switch (old_state) {
378                 case NVME_CTRL_NEW:
379                 case NVME_CTRL_LIVE:
380                         changed = true;
381                         fallthrough;
382                 default:
383                         break;
384                 }
385                 break;
386         case NVME_CTRL_CONNECTING:
387                 switch (old_state) {
388                 case NVME_CTRL_NEW:
389                 case NVME_CTRL_RESETTING:
390                         changed = true;
391                         fallthrough;
392                 default:
393                         break;
394                 }
395                 break;
396         case NVME_CTRL_DELETING:
397                 switch (old_state) {
398                 case NVME_CTRL_LIVE:
399                 case NVME_CTRL_RESETTING:
400                 case NVME_CTRL_CONNECTING:
401                         changed = true;
402                         fallthrough;
403                 default:
404                         break;
405                 }
406                 break;
407         case NVME_CTRL_DELETING_NOIO:
408                 switch (old_state) {
409                 case NVME_CTRL_DELETING:
410                 case NVME_CTRL_DEAD:
411                         changed = true;
412                         fallthrough;
413                 default:
414                         break;
415                 }
416                 break;
417         case NVME_CTRL_DEAD:
418                 switch (old_state) {
419                 case NVME_CTRL_DELETING:
420                         changed = true;
421                         fallthrough;
422                 default:
423                         break;
424                 }
425                 break;
426         default:
427                 break;
428         }
429
430         if (changed) {
431                 ctrl->state = new_state;
432                 wake_up_all(&ctrl->state_wq);
433         }
434
435         spin_unlock_irqrestore(&ctrl->lock, flags);
436         if (changed && ctrl->state == NVME_CTRL_LIVE)
437                 nvme_kick_requeue_lists(ctrl);
438         return changed;
439 }
440 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
441
442 /*
443  * Returns true for sink states that can't ever transition back to live.
444  */
445 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
446 {
447         switch (ctrl->state) {
448         case NVME_CTRL_NEW:
449         case NVME_CTRL_LIVE:
450         case NVME_CTRL_RESETTING:
451         case NVME_CTRL_CONNECTING:
452                 return false;
453         case NVME_CTRL_DELETING:
454         case NVME_CTRL_DELETING_NOIO:
455         case NVME_CTRL_DEAD:
456                 return true;
457         default:
458                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
459                 return true;
460         }
461 }
462
463 /*
464  * Waits for the controller state to be resetting, or returns false if it is
465  * not possible to ever transition to that state.
466  */
467 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
468 {
469         wait_event(ctrl->state_wq,
470                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
471                    nvme_state_terminal(ctrl));
472         return ctrl->state == NVME_CTRL_RESETTING;
473 }
474 EXPORT_SYMBOL_GPL(nvme_wait_reset);
475
476 static void nvme_free_ns_head(struct kref *ref)
477 {
478         struct nvme_ns_head *head =
479                 container_of(ref, struct nvme_ns_head, ref);
480
481         nvme_mpath_remove_disk(head);
482         ida_simple_remove(&head->subsys->ns_ida, head->instance);
483         cleanup_srcu_struct(&head->srcu);
484         nvme_put_subsystem(head->subsys);
485         kfree(head);
486 }
487
488 static void nvme_put_ns_head(struct nvme_ns_head *head)
489 {
490         kref_put(&head->ref, nvme_free_ns_head);
491 }
492
493 static void nvme_free_ns(struct kref *kref)
494 {
495         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
496
497         if (ns->ndev)
498                 nvme_nvm_unregister(ns);
499
500         put_disk(ns->disk);
501         nvme_put_ns_head(ns->head);
502         nvme_put_ctrl(ns->ctrl);
503         kfree(ns);
504 }
505
506 void nvme_put_ns(struct nvme_ns *ns)
507 {
508         kref_put(&ns->kref, nvme_free_ns);
509 }
510 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
511
512 static inline void nvme_clear_nvme_request(struct request *req)
513 {
514         if (!(req->rq_flags & RQF_DONTPREP)) {
515                 nvme_req(req)->retries = 0;
516                 nvme_req(req)->flags = 0;
517                 req->rq_flags |= RQF_DONTPREP;
518         }
519 }
520
521 struct request *nvme_alloc_request(struct request_queue *q,
522                 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
523 {
524         unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
525         struct request *req;
526
527         if (qid == NVME_QID_ANY) {
528                 req = blk_mq_alloc_request(q, op, flags);
529         } else {
530                 req = blk_mq_alloc_request_hctx(q, op, flags,
531                                 qid ? qid - 1 : 0);
532         }
533         if (IS_ERR(req))
534                 return req;
535
536         req->cmd_flags |= REQ_FAILFAST_DRIVER;
537         nvme_clear_nvme_request(req);
538         nvme_req(req)->cmd = cmd;
539
540         return req;
541 }
542 EXPORT_SYMBOL_GPL(nvme_alloc_request);
543
544 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
545 {
546         struct nvme_command c;
547
548         memset(&c, 0, sizeof(c));
549
550         c.directive.opcode = nvme_admin_directive_send;
551         c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
552         c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
553         c.directive.dtype = NVME_DIR_IDENTIFY;
554         c.directive.tdtype = NVME_DIR_STREAMS;
555         c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
556
557         return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
558 }
559
560 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
561 {
562         return nvme_toggle_streams(ctrl, false);
563 }
564
565 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
566 {
567         return nvme_toggle_streams(ctrl, true);
568 }
569
570 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
571                                   struct streams_directive_params *s, u32 nsid)
572 {
573         struct nvme_command c;
574
575         memset(&c, 0, sizeof(c));
576         memset(s, 0, sizeof(*s));
577
578         c.directive.opcode = nvme_admin_directive_recv;
579         c.directive.nsid = cpu_to_le32(nsid);
580         c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
581         c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
582         c.directive.dtype = NVME_DIR_STREAMS;
583
584         return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
585 }
586
587 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
588 {
589         struct streams_directive_params s;
590         int ret;
591
592         if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
593                 return 0;
594         if (!streams)
595                 return 0;
596
597         ret = nvme_enable_streams(ctrl);
598         if (ret)
599                 return ret;
600
601         ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
602         if (ret)
603                 goto out_disable_stream;
604
605         ctrl->nssa = le16_to_cpu(s.nssa);
606         if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
607                 dev_info(ctrl->device, "too few streams (%u) available\n",
608                                         ctrl->nssa);
609                 goto out_disable_stream;
610         }
611
612         ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
613         dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
614         return 0;
615
616 out_disable_stream:
617         nvme_disable_streams(ctrl);
618         return ret;
619 }
620
621 /*
622  * Check if 'req' has a write hint associated with it. If it does, assign
623  * a valid namespace stream to the write.
624  */
625 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
626                                      struct request *req, u16 *control,
627                                      u32 *dsmgmt)
628 {
629         enum rw_hint streamid = req->write_hint;
630
631         if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
632                 streamid = 0;
633         else {
634                 streamid--;
635                 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
636                         return;
637
638                 *control |= NVME_RW_DTYPE_STREAMS;
639                 *dsmgmt |= streamid << 16;
640         }
641
642         if (streamid < ARRAY_SIZE(req->q->write_hints))
643                 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
644 }
645
646 static void nvme_setup_passthrough(struct request *req,
647                 struct nvme_command *cmd)
648 {
649         memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
650         /* passthru commands should let the driver set the SGL flags */
651         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
652 }
653
654 static inline void nvme_setup_flush(struct nvme_ns *ns,
655                 struct nvme_command *cmnd)
656 {
657         cmnd->common.opcode = nvme_cmd_flush;
658         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
659 }
660
661 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
662                 struct nvme_command *cmnd)
663 {
664         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
665         struct nvme_dsm_range *range;
666         struct bio *bio;
667
668         /*
669          * Some devices do not consider the DSM 'Number of Ranges' field when
670          * determining how much data to DMA. Always allocate memory for maximum
671          * number of segments to prevent device reading beyond end of buffer.
672          */
673         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
674
675         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
676         if (!range) {
677                 /*
678                  * If we fail allocation our range, fallback to the controller
679                  * discard page. If that's also busy, it's safe to return
680                  * busy, as we know we can make progress once that's freed.
681                  */
682                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
683                         return BLK_STS_RESOURCE;
684
685                 range = page_address(ns->ctrl->discard_page);
686         }
687
688         __rq_for_each_bio(bio, req) {
689                 u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
690                 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
691
692                 if (n < segments) {
693                         range[n].cattr = cpu_to_le32(0);
694                         range[n].nlb = cpu_to_le32(nlb);
695                         range[n].slba = cpu_to_le64(slba);
696                 }
697                 n++;
698         }
699
700         if (WARN_ON_ONCE(n != segments)) {
701                 if (virt_to_page(range) == ns->ctrl->discard_page)
702                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
703                 else
704                         kfree(range);
705                 return BLK_STS_IOERR;
706         }
707
708         cmnd->dsm.opcode = nvme_cmd_dsm;
709         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
710         cmnd->dsm.nr = cpu_to_le32(segments - 1);
711         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
712
713         req->special_vec.bv_page = virt_to_page(range);
714         req->special_vec.bv_offset = offset_in_page(range);
715         req->special_vec.bv_len = alloc_size;
716         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
717
718         return BLK_STS_OK;
719 }
720
721 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
722                 struct request *req, struct nvme_command *cmnd)
723 {
724         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
725                 return nvme_setup_discard(ns, req, cmnd);
726
727         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
728         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
729         cmnd->write_zeroes.slba =
730                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
731         cmnd->write_zeroes.length =
732                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
733         cmnd->write_zeroes.control = 0;
734         return BLK_STS_OK;
735 }
736
737 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
738                 struct request *req, struct nvme_command *cmnd,
739                 enum nvme_opcode op)
740 {
741         struct nvme_ctrl *ctrl = ns->ctrl;
742         u16 control = 0;
743         u32 dsmgmt = 0;
744
745         if (req->cmd_flags & REQ_FUA)
746                 control |= NVME_RW_FUA;
747         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
748                 control |= NVME_RW_LR;
749
750         if (req->cmd_flags & REQ_RAHEAD)
751                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
752
753         cmnd->rw.opcode = op;
754         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
755         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
756         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
757
758         if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
759                 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
760
761         if (ns->ms) {
762                 /*
763                  * If formated with metadata, the block layer always provides a
764                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
765                  * we enable the PRACT bit for protection information or set the
766                  * namespace capacity to zero to prevent any I/O.
767                  */
768                 if (!blk_integrity_rq(req)) {
769                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
770                                 return BLK_STS_NOTSUPP;
771                         control |= NVME_RW_PRINFO_PRACT;
772                 }
773
774                 switch (ns->pi_type) {
775                 case NVME_NS_DPS_PI_TYPE3:
776                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
777                         break;
778                 case NVME_NS_DPS_PI_TYPE1:
779                 case NVME_NS_DPS_PI_TYPE2:
780                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
781                                         NVME_RW_PRINFO_PRCHK_REF;
782                         if (op == nvme_cmd_zone_append)
783                                 control |= NVME_RW_APPEND_PIREMAP;
784                         cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
785                         break;
786                 }
787         }
788
789         cmnd->rw.control = cpu_to_le16(control);
790         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
791         return 0;
792 }
793
794 void nvme_cleanup_cmd(struct request *req)
795 {
796         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
797                 struct nvme_ns *ns = req->rq_disk->private_data;
798                 struct page *page = req->special_vec.bv_page;
799
800                 if (page == ns->ctrl->discard_page)
801                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
802                 else
803                         kfree(page_address(page) + req->special_vec.bv_offset);
804         }
805 }
806 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
807
808 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
809                 struct nvme_command *cmd)
810 {
811         blk_status_t ret = BLK_STS_OK;
812
813         nvme_clear_nvme_request(req);
814
815         memset(cmd, 0, sizeof(*cmd));
816         switch (req_op(req)) {
817         case REQ_OP_DRV_IN:
818         case REQ_OP_DRV_OUT:
819                 nvme_setup_passthrough(req, cmd);
820                 break;
821         case REQ_OP_FLUSH:
822                 nvme_setup_flush(ns, cmd);
823                 break;
824         case REQ_OP_ZONE_RESET_ALL:
825         case REQ_OP_ZONE_RESET:
826                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
827                 break;
828         case REQ_OP_ZONE_OPEN:
829                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
830                 break;
831         case REQ_OP_ZONE_CLOSE:
832                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
833                 break;
834         case REQ_OP_ZONE_FINISH:
835                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
836                 break;
837         case REQ_OP_WRITE_ZEROES:
838                 ret = nvme_setup_write_zeroes(ns, req, cmd);
839                 break;
840         case REQ_OP_DISCARD:
841                 ret = nvme_setup_discard(ns, req, cmd);
842                 break;
843         case REQ_OP_READ:
844                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
845                 break;
846         case REQ_OP_WRITE:
847                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
848                 break;
849         case REQ_OP_ZONE_APPEND:
850                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
851                 break;
852         default:
853                 WARN_ON_ONCE(1);
854                 return BLK_STS_IOERR;
855         }
856
857         cmd->common.command_id = req->tag;
858         trace_nvme_setup_cmd(req, cmd);
859         return ret;
860 }
861 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
862
863 static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
864 {
865         struct completion *waiting = rq->end_io_data;
866
867         rq->end_io_data = NULL;
868         complete(waiting);
869 }
870
871 static void nvme_execute_rq_polled(struct request_queue *q,
872                 struct gendisk *bd_disk, struct request *rq, int at_head)
873 {
874         DECLARE_COMPLETION_ONSTACK(wait);
875
876         WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
877
878         rq->cmd_flags |= REQ_HIPRI;
879         rq->end_io_data = &wait;
880         blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
881
882         while (!completion_done(&wait)) {
883                 blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
884                 cond_resched();
885         }
886 }
887
888 /*
889  * Returns 0 on success.  If the result is negative, it's a Linux error code;
890  * if the result is positive, it's an NVM Express status code
891  */
892 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
893                 union nvme_result *result, void *buffer, unsigned bufflen,
894                 unsigned timeout, int qid, int at_head,
895                 blk_mq_req_flags_t flags, bool poll)
896 {
897         struct request *req;
898         int ret;
899
900         req = nvme_alloc_request(q, cmd, flags, qid);
901         if (IS_ERR(req))
902                 return PTR_ERR(req);
903
904         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
905
906         if (buffer && bufflen) {
907                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
908                 if (ret)
909                         goto out;
910         }
911
912         if (poll)
913                 nvme_execute_rq_polled(req->q, NULL, req, at_head);
914         else
915                 blk_execute_rq(req->q, NULL, req, at_head);
916         if (result)
917                 *result = nvme_req(req)->result;
918         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
919                 ret = -EINTR;
920         else
921                 ret = nvme_req(req)->status;
922  out:
923         blk_mq_free_request(req);
924         return ret;
925 }
926 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
927
928 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
929                 void *buffer, unsigned bufflen)
930 {
931         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
932                         NVME_QID_ANY, 0, 0, false);
933 }
934 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
935
936 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
937                 unsigned len, u32 seed, bool write)
938 {
939         struct bio_integrity_payload *bip;
940         int ret = -ENOMEM;
941         void *buf;
942
943         buf = kmalloc(len, GFP_KERNEL);
944         if (!buf)
945                 goto out;
946
947         ret = -EFAULT;
948         if (write && copy_from_user(buf, ubuf, len))
949                 goto out_free_meta;
950
951         bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
952         if (IS_ERR(bip)) {
953                 ret = PTR_ERR(bip);
954                 goto out_free_meta;
955         }
956
957         bip->bip_iter.bi_size = len;
958         bip->bip_iter.bi_sector = seed;
959         ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
960                         offset_in_page(buf));
961         if (ret == len)
962                 return buf;
963         ret = -ENOMEM;
964 out_free_meta:
965         kfree(buf);
966 out:
967         return ERR_PTR(ret);
968 }
969
970 static u32 nvme_known_admin_effects(u8 opcode)
971 {
972         switch (opcode) {
973         case nvme_admin_format_nvm:
974                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
975                         NVME_CMD_EFFECTS_CSE_MASK;
976         case nvme_admin_sanitize_nvm:
977                 return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
978         default:
979                 break;
980         }
981         return 0;
982 }
983
984 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
985 {
986         u32 effects = 0;
987
988         if (ns) {
989                 if (ns->head->effects)
990                         effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
991                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
992                         dev_warn(ctrl->device,
993                                  "IO command:%02x has unhandled effects:%08x\n",
994                                  opcode, effects);
995                 return 0;
996         }
997
998         if (ctrl->effects)
999                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1000         effects |= nvme_known_admin_effects(opcode);
1001
1002         return effects;
1003 }
1004 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1005
1006 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1007                                u8 opcode)
1008 {
1009         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1010
1011         /*
1012          * For simplicity, IO to all namespaces is quiesced even if the command
1013          * effects say only one namespace is affected.
1014          */
1015         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1016                 mutex_lock(&ctrl->scan_lock);
1017                 mutex_lock(&ctrl->subsys->lock);
1018                 nvme_mpath_start_freeze(ctrl->subsys);
1019                 nvme_mpath_wait_freeze(ctrl->subsys);
1020                 nvme_start_freeze(ctrl);
1021                 nvme_wait_freeze(ctrl);
1022         }
1023         return effects;
1024 }
1025
1026 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1027 {
1028         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1029                 nvme_unfreeze(ctrl);
1030                 nvme_mpath_unfreeze(ctrl->subsys);
1031                 mutex_unlock(&ctrl->subsys->lock);
1032                 nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1033                 mutex_unlock(&ctrl->scan_lock);
1034         }
1035         if (effects & NVME_CMD_EFFECTS_CCC)
1036                 nvme_init_identify(ctrl);
1037         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1038                 nvme_queue_scan(ctrl);
1039                 flush_work(&ctrl->scan_work);
1040         }
1041 }
1042
1043 void nvme_execute_passthru_rq(struct request *rq)
1044 {
1045         struct nvme_command *cmd = nvme_req(rq)->cmd;
1046         struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1047         struct nvme_ns *ns = rq->q->queuedata;
1048         struct gendisk *disk = ns ? ns->disk : NULL;
1049         u32 effects;
1050
1051         effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1052         blk_execute_rq(rq->q, disk, rq, 0);
1053         nvme_passthru_end(ctrl, effects);
1054 }
1055 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1056
1057 static int nvme_submit_user_cmd(struct request_queue *q,
1058                 struct nvme_command *cmd, void __user *ubuffer,
1059                 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
1060                 u32 meta_seed, u64 *result, unsigned timeout)
1061 {
1062         bool write = nvme_is_write(cmd);
1063         struct nvme_ns *ns = q->queuedata;
1064         struct gendisk *disk = ns ? ns->disk : NULL;
1065         struct request *req;
1066         struct bio *bio = NULL;
1067         void *meta = NULL;
1068         int ret;
1069
1070         req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
1071         if (IS_ERR(req))
1072                 return PTR_ERR(req);
1073
1074         req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
1075         nvme_req(req)->flags |= NVME_REQ_USERCMD;
1076
1077         if (ubuffer && bufflen) {
1078                 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
1079                                 GFP_KERNEL);
1080                 if (ret)
1081                         goto out;
1082                 bio = req->bio;
1083                 bio->bi_disk = disk;
1084                 if (disk && meta_buffer && meta_len) {
1085                         meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
1086                                         meta_seed, write);
1087                         if (IS_ERR(meta)) {
1088                                 ret = PTR_ERR(meta);
1089                                 goto out_unmap;
1090                         }
1091                         req->cmd_flags |= REQ_INTEGRITY;
1092                 }
1093         }
1094
1095         nvme_execute_passthru_rq(req);
1096         if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
1097                 ret = -EINTR;
1098         else
1099                 ret = nvme_req(req)->status;
1100         if (result)
1101                 *result = le64_to_cpu(nvme_req(req)->result.u64);
1102         if (meta && !ret && !write) {
1103                 if (copy_to_user(meta_buffer, meta, meta_len))
1104                         ret = -EFAULT;
1105         }
1106         kfree(meta);
1107  out_unmap:
1108         if (bio)
1109                 blk_rq_unmap_user(bio);
1110  out:
1111         blk_mq_free_request(req);
1112         return ret;
1113 }
1114
1115 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
1116 {
1117         struct nvme_ctrl *ctrl = rq->end_io_data;
1118         unsigned long flags;
1119         bool startka = false;
1120
1121         blk_mq_free_request(rq);
1122
1123         if (status) {
1124                 dev_err(ctrl->device,
1125                         "failed nvme_keep_alive_end_io error=%d\n",
1126                                 status);
1127                 return;
1128         }
1129
1130         ctrl->comp_seen = false;
1131         spin_lock_irqsave(&ctrl->lock, flags);
1132         if (ctrl->state == NVME_CTRL_LIVE ||
1133             ctrl->state == NVME_CTRL_CONNECTING)
1134                 startka = true;
1135         spin_unlock_irqrestore(&ctrl->lock, flags);
1136         if (startka)
1137                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1138 }
1139
1140 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
1141 {
1142         struct request *rq;
1143
1144         rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
1145                         NVME_QID_ANY);
1146         if (IS_ERR(rq))
1147                 return PTR_ERR(rq);
1148
1149         rq->timeout = ctrl->kato * HZ;
1150         rq->end_io_data = ctrl;
1151
1152         blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
1153
1154         return 0;
1155 }
1156
1157 static void nvme_keep_alive_work(struct work_struct *work)
1158 {
1159         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1160                         struct nvme_ctrl, ka_work);
1161         bool comp_seen = ctrl->comp_seen;
1162
1163         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1164                 dev_dbg(ctrl->device,
1165                         "reschedule traffic based keep-alive timer\n");
1166                 ctrl->comp_seen = false;
1167                 queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1168                 return;
1169         }
1170
1171         if (nvme_keep_alive(ctrl)) {
1172                 /* allocation failure, reset the controller */
1173                 dev_err(ctrl->device, "keep-alive failed\n");
1174                 nvme_reset_ctrl(ctrl);
1175                 return;
1176         }
1177 }
1178
1179 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1180 {
1181         if (unlikely(ctrl->kato == 0))
1182                 return;
1183
1184         queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
1185 }
1186
1187 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1188 {
1189         if (unlikely(ctrl->kato == 0))
1190                 return;
1191
1192         cancel_delayed_work_sync(&ctrl->ka_work);
1193 }
1194 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1195
1196 /*
1197  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1198  * flag, thus sending any new CNS opcodes has a big chance of not working.
1199  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1200  * (but not for any later version).
1201  */
1202 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1203 {
1204         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1205                 return ctrl->vs < NVME_VS(1, 2, 0);
1206         return ctrl->vs < NVME_VS(1, 1, 0);
1207 }
1208
1209 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1210 {
1211         struct nvme_command c = { };
1212         int error;
1213
1214         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1215         c.identify.opcode = nvme_admin_identify;
1216         c.identify.cns = NVME_ID_CNS_CTRL;
1217
1218         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1219         if (!*id)
1220                 return -ENOMEM;
1221
1222         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1223                         sizeof(struct nvme_id_ctrl));
1224         if (error)
1225                 kfree(*id);
1226         return error;
1227 }
1228
1229 static bool nvme_multi_css(struct nvme_ctrl *ctrl)
1230 {
1231         return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1232 }
1233
1234 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1235                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1236 {
1237         const char *warn_str = "ctrl returned bogus length:";
1238         void *data = cur;
1239
1240         switch (cur->nidt) {
1241         case NVME_NIDT_EUI64:
1242                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1243                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1244                                  warn_str, cur->nidl);
1245                         return -1;
1246                 }
1247                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1248                 return NVME_NIDT_EUI64_LEN;
1249         case NVME_NIDT_NGUID:
1250                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1251                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1252                                  warn_str, cur->nidl);
1253                         return -1;
1254                 }
1255                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1256                 return NVME_NIDT_NGUID_LEN;
1257         case NVME_NIDT_UUID:
1258                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1259                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1260                                  warn_str, cur->nidl);
1261                         return -1;
1262                 }
1263                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1264                 return NVME_NIDT_UUID_LEN;
1265         case NVME_NIDT_CSI:
1266                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1267                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1268                                  warn_str, cur->nidl);
1269                         return -1;
1270                 }
1271                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1272                 *csi_seen = true;
1273                 return NVME_NIDT_CSI_LEN;
1274         default:
1275                 /* Skip unknown types */
1276                 return cur->nidl;
1277         }
1278 }
1279
1280 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
1281                 struct nvme_ns_ids *ids)
1282 {
1283         struct nvme_command c = { };
1284         bool csi_seen = false;
1285         int status, pos, len;
1286         void *data;
1287
1288         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1289                 return 0;
1290         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1291                 return 0;
1292
1293         c.identify.opcode = nvme_admin_identify;
1294         c.identify.nsid = cpu_to_le32(nsid);
1295         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1296
1297         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1298         if (!data)
1299                 return -ENOMEM;
1300
1301         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1302                                       NVME_IDENTIFY_DATA_SIZE);
1303         if (status) {
1304                 dev_warn(ctrl->device,
1305                         "Identify Descriptors failed (%d)\n", status);
1306                 goto free_data;
1307         }
1308
1309         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1310                 struct nvme_ns_id_desc *cur = data + pos;
1311
1312                 if (cur->nidl == 0)
1313                         break;
1314
1315                 len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
1316                 if (len < 0)
1317                         break;
1318
1319                 len += sizeof(*cur);
1320         }
1321
1322         if (nvme_multi_css(ctrl) && !csi_seen) {
1323                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1324                          nsid);
1325                 status = -EINVAL;
1326         }
1327
1328 free_data:
1329         kfree(data);
1330         return status;
1331 }
1332
1333 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1334                         struct nvme_ns_ids *ids, struct nvme_id_ns **id)
1335 {
1336         struct nvme_command c = { };
1337         int error;
1338
1339         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1340         c.identify.opcode = nvme_admin_identify;
1341         c.identify.nsid = cpu_to_le32(nsid);
1342         c.identify.cns = NVME_ID_CNS_NS;
1343
1344         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1345         if (!*id)
1346                 return -ENOMEM;
1347
1348         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1349         if (error) {
1350                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1351                 goto out_free_id;
1352         }
1353
1354         error = -ENODEV;
1355         if ((*id)->ncap == 0) /* namespace not allocated or attached */
1356                 goto out_free_id;
1357
1358         if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1359             !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1360                 memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
1361         if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1362             !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1363                 memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
1364
1365         return 0;
1366
1367 out_free_id:
1368         kfree(*id);
1369         return error;
1370 }
1371
1372 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1373                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1374 {
1375         union nvme_result res = { 0 };
1376         struct nvme_command c;
1377         int ret;
1378
1379         memset(&c, 0, sizeof(c));
1380         c.features.opcode = op;
1381         c.features.fid = cpu_to_le32(fid);
1382         c.features.dword11 = cpu_to_le32(dword11);
1383
1384         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1385                         buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
1386         if (ret >= 0 && result)
1387                 *result = le32_to_cpu(res.u32);
1388         return ret;
1389 }
1390
1391 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1392                       unsigned int dword11, void *buffer, size_t buflen,
1393                       u32 *result)
1394 {
1395         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1396                              buflen, result);
1397 }
1398 EXPORT_SYMBOL_GPL(nvme_set_features);
1399
1400 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1401                       unsigned int dword11, void *buffer, size_t buflen,
1402                       u32 *result)
1403 {
1404         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1405                              buflen, result);
1406 }
1407 EXPORT_SYMBOL_GPL(nvme_get_features);
1408
1409 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1410 {
1411         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1412         u32 result;
1413         int status, nr_io_queues;
1414
1415         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1416                         &result);
1417         if (status < 0)
1418                 return status;
1419
1420         /*
1421          * Degraded controllers might return an error when setting the queue
1422          * count.  We still want to be able to bring them online and offer
1423          * access to the admin queue, as that might be only way to fix them up.
1424          */
1425         if (status > 0) {
1426                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1427                 *count = 0;
1428         } else {
1429                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1430                 *count = min(*count, nr_io_queues);
1431         }
1432
1433         return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1436
1437 #define NVME_AEN_SUPPORTED \
1438         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1439          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1440
1441 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1442 {
1443         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1444         int status;
1445
1446         if (!supported_aens)
1447                 return;
1448
1449         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1450                         NULL, 0, &result);
1451         if (status)
1452                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1453                          supported_aens);
1454
1455         queue_work(nvme_wq, &ctrl->async_event_work);
1456 }
1457
1458 /*
1459  * Convert integer values from ioctl structures to user pointers, silently
1460  * ignoring the upper bits in the compat case to match behaviour of 32-bit
1461  * kernels.
1462  */
1463 static void __user *nvme_to_user_ptr(uintptr_t ptrval)
1464 {
1465         if (in_compat_syscall())
1466                 ptrval = (compat_uptr_t)ptrval;
1467         return (void __user *)ptrval;
1468 }
1469
1470 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1471 {
1472         struct nvme_user_io io;
1473         struct nvme_command c;
1474         unsigned length, meta_len;
1475         void __user *metadata;
1476
1477         if (copy_from_user(&io, uio, sizeof(io)))
1478                 return -EFAULT;
1479         if (io.flags)
1480                 return -EINVAL;
1481
1482         switch (io.opcode) {
1483         case nvme_cmd_write:
1484         case nvme_cmd_read:
1485         case nvme_cmd_compare:
1486                 break;
1487         default:
1488                 return -EINVAL;
1489         }
1490
1491         length = (io.nblocks + 1) << ns->lba_shift;
1492         meta_len = (io.nblocks + 1) * ns->ms;
1493         metadata = nvme_to_user_ptr(io.metadata);
1494
1495         if (ns->features & NVME_NS_EXT_LBAS) {
1496                 length += meta_len;
1497                 meta_len = 0;
1498         } else if (meta_len) {
1499                 if ((io.metadata & 3) || !io.metadata)
1500                         return -EINVAL;
1501         }
1502
1503         memset(&c, 0, sizeof(c));
1504         c.rw.opcode = io.opcode;
1505         c.rw.flags = io.flags;
1506         c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1507         c.rw.slba = cpu_to_le64(io.slba);
1508         c.rw.length = cpu_to_le16(io.nblocks);
1509         c.rw.control = cpu_to_le16(io.control);
1510         c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1511         c.rw.reftag = cpu_to_le32(io.reftag);
1512         c.rw.apptag = cpu_to_le16(io.apptag);
1513         c.rw.appmask = cpu_to_le16(io.appmask);
1514
1515         return nvme_submit_user_cmd(ns->queue, &c,
1516                         nvme_to_user_ptr(io.addr), length,
1517                         metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
1518 }
1519
1520 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1521                         struct nvme_passthru_cmd __user *ucmd)
1522 {
1523         struct nvme_passthru_cmd cmd;
1524         struct nvme_command c;
1525         unsigned timeout = 0;
1526         u64 result;
1527         int status;
1528
1529         if (!capable(CAP_SYS_ADMIN))
1530                 return -EACCES;
1531         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1532                 return -EFAULT;
1533         if (cmd.flags)
1534                 return -EINVAL;
1535
1536         memset(&c, 0, sizeof(c));
1537         c.common.opcode = cmd.opcode;
1538         c.common.flags = cmd.flags;
1539         c.common.nsid = cpu_to_le32(cmd.nsid);
1540         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1541         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1542         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1543         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1544         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1545         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1546         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1547         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1548
1549         if (cmd.timeout_ms)
1550                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1551
1552         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1553                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1554                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1555                         0, &result, timeout);
1556
1557         if (status >= 0) {
1558                 if (put_user(result, &ucmd->result))
1559                         return -EFAULT;
1560         }
1561
1562         return status;
1563 }
1564
1565 static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1566                         struct nvme_passthru_cmd64 __user *ucmd)
1567 {
1568         struct nvme_passthru_cmd64 cmd;
1569         struct nvme_command c;
1570         unsigned timeout = 0;
1571         int status;
1572
1573         if (!capable(CAP_SYS_ADMIN))
1574                 return -EACCES;
1575         if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1576                 return -EFAULT;
1577         if (cmd.flags)
1578                 return -EINVAL;
1579
1580         memset(&c, 0, sizeof(c));
1581         c.common.opcode = cmd.opcode;
1582         c.common.flags = cmd.flags;
1583         c.common.nsid = cpu_to_le32(cmd.nsid);
1584         c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1585         c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1586         c.common.cdw10 = cpu_to_le32(cmd.cdw10);
1587         c.common.cdw11 = cpu_to_le32(cmd.cdw11);
1588         c.common.cdw12 = cpu_to_le32(cmd.cdw12);
1589         c.common.cdw13 = cpu_to_le32(cmd.cdw13);
1590         c.common.cdw14 = cpu_to_le32(cmd.cdw14);
1591         c.common.cdw15 = cpu_to_le32(cmd.cdw15);
1592
1593         if (cmd.timeout_ms)
1594                 timeout = msecs_to_jiffies(cmd.timeout_ms);
1595
1596         status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1597                         nvme_to_user_ptr(cmd.addr), cmd.data_len,
1598                         nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
1599                         0, &cmd.result, timeout);
1600
1601         if (status >= 0) {
1602                 if (put_user(cmd.result, &ucmd->result))
1603                         return -EFAULT;
1604         }
1605
1606         return status;
1607 }
1608
1609 /*
1610  * Issue ioctl requests on the first available path.  Note that unlike normal
1611  * block layer requests we will not retry failed request on another controller.
1612  */
1613 struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1614                 struct nvme_ns_head **head, int *srcu_idx)
1615 {
1616 #ifdef CONFIG_NVME_MULTIPATH
1617         if (disk->fops == &nvme_ns_head_ops) {
1618                 struct nvme_ns *ns;
1619
1620                 *head = disk->private_data;
1621                 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1622                 ns = nvme_find_path(*head);
1623                 if (!ns)
1624                         srcu_read_unlock(&(*head)->srcu, *srcu_idx);
1625                 return ns;
1626         }
1627 #endif
1628         *head = NULL;
1629         *srcu_idx = -1;
1630         return disk->private_data;
1631 }
1632
1633 void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1634 {
1635         if (head)
1636                 srcu_read_unlock(&head->srcu, idx);
1637 }
1638
1639 static bool is_ctrl_ioctl(unsigned int cmd)
1640 {
1641         if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
1642                 return true;
1643         if (is_sed_ioctl(cmd))
1644                 return true;
1645         return false;
1646 }
1647
1648 static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
1649                                   void __user *argp,
1650                                   struct nvme_ns_head *head,
1651                                   int srcu_idx)
1652 {
1653         struct nvme_ctrl *ctrl = ns->ctrl;
1654         int ret;
1655
1656         nvme_get_ctrl(ns->ctrl);
1657         nvme_put_ns_from_disk(head, srcu_idx);
1658
1659         switch (cmd) {
1660         case NVME_IOCTL_ADMIN_CMD:
1661                 ret = nvme_user_cmd(ctrl, NULL, argp);
1662                 break;
1663         case NVME_IOCTL_ADMIN64_CMD:
1664                 ret = nvme_user_cmd64(ctrl, NULL, argp);
1665                 break;
1666         default:
1667                 ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
1668                 break;
1669         }
1670         nvme_put_ctrl(ctrl);
1671         return ret;
1672 }
1673
1674 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1675                 unsigned int cmd, unsigned long arg)
1676 {
1677         struct nvme_ns_head *head = NULL;
1678         void __user *argp = (void __user *)arg;
1679         struct nvme_ns *ns;
1680         int srcu_idx, ret;
1681
1682         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1683         if (unlikely(!ns))
1684                 return -EWOULDBLOCK;
1685
1686         /*
1687          * Handle ioctls that apply to the controller instead of the namespace
1688          * seperately and drop the ns SRCU reference early.  This avoids a
1689          * deadlock when deleting namespaces using the passthrough interface.
1690          */
1691         if (is_ctrl_ioctl(cmd))
1692                 return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
1693
1694         switch (cmd) {
1695         case NVME_IOCTL_ID:
1696                 force_successful_syscall_return();
1697                 ret = ns->head->ns_id;
1698                 break;
1699         case NVME_IOCTL_IO_CMD:
1700                 ret = nvme_user_cmd(ns->ctrl, ns, argp);
1701                 break;
1702         case NVME_IOCTL_SUBMIT_IO:
1703                 ret = nvme_submit_io(ns, argp);
1704                 break;
1705         case NVME_IOCTL_IO64_CMD:
1706                 ret = nvme_user_cmd64(ns->ctrl, ns, argp);
1707                 break;
1708         default:
1709                 if (ns->ndev)
1710                         ret = nvme_nvm_ioctl(ns, cmd, arg);
1711                 else
1712                         ret = -ENOTTY;
1713         }
1714
1715         nvme_put_ns_from_disk(head, srcu_idx);
1716         return ret;
1717 }
1718
1719 #ifdef CONFIG_COMPAT
1720 struct nvme_user_io32 {
1721         __u8    opcode;
1722         __u8    flags;
1723         __u16   control;
1724         __u16   nblocks;
1725         __u16   rsvd;
1726         __u64   metadata;
1727         __u64   addr;
1728         __u64   slba;
1729         __u32   dsmgmt;
1730         __u32   reftag;
1731         __u16   apptag;
1732         __u16   appmask;
1733 } __attribute__((__packed__));
1734
1735 #define NVME_IOCTL_SUBMIT_IO32  _IOW('N', 0x42, struct nvme_user_io32)
1736
1737 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1738                 unsigned int cmd, unsigned long arg)
1739 {
1740         /*
1741          * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
1742          * between 32 bit programs and 64 bit kernel.
1743          * The cause is that the results of sizeof(struct nvme_user_io),
1744          * which is used to define NVME_IOCTL_SUBMIT_IO,
1745          * are not same between 32 bit compiler and 64 bit compiler.
1746          * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
1747          * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
1748          * Other IOCTL numbers are same between 32 bit and 64 bit.
1749          * So there is nothing to do regarding to other IOCTL numbers.
1750          */
1751         if (cmd == NVME_IOCTL_SUBMIT_IO32)
1752                 return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
1753
1754         return nvme_ioctl(bdev, mode, cmd, arg);
1755 }
1756 #else
1757 #define nvme_compat_ioctl       NULL
1758 #endif /* CONFIG_COMPAT */
1759
1760 static int nvme_open(struct block_device *bdev, fmode_t mode)
1761 {
1762         struct nvme_ns *ns = bdev->bd_disk->private_data;
1763
1764 #ifdef CONFIG_NVME_MULTIPATH
1765         /* should never be called due to GENHD_FL_HIDDEN */
1766         if (WARN_ON_ONCE(ns->head->disk))
1767                 goto fail;
1768 #endif
1769         if (!kref_get_unless_zero(&ns->kref))
1770                 goto fail;
1771         if (!try_module_get(ns->ctrl->ops->module))
1772                 goto fail_put_ns;
1773
1774         return 0;
1775
1776 fail_put_ns:
1777         nvme_put_ns(ns);
1778 fail:
1779         return -ENXIO;
1780 }
1781
1782 static void nvme_release(struct gendisk *disk, fmode_t mode)
1783 {
1784         struct nvme_ns *ns = disk->private_data;
1785
1786         module_put(ns->ctrl->ops->module);
1787         nvme_put_ns(ns);
1788 }
1789
1790 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1791 {
1792         /* some standard values */
1793         geo->heads = 1 << 6;
1794         geo->sectors = 1 << 5;
1795         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1796         return 0;
1797 }
1798
1799 #ifdef CONFIG_BLK_DEV_INTEGRITY
1800 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1801                                 u32 max_integrity_segments)
1802 {
1803         struct blk_integrity integrity;
1804
1805         memset(&integrity, 0, sizeof(integrity));
1806         switch (pi_type) {
1807         case NVME_NS_DPS_PI_TYPE3:
1808                 integrity.profile = &t10_pi_type3_crc;
1809                 integrity.tag_size = sizeof(u16) + sizeof(u32);
1810                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1811                 break;
1812         case NVME_NS_DPS_PI_TYPE1:
1813         case NVME_NS_DPS_PI_TYPE2:
1814                 integrity.profile = &t10_pi_type1_crc;
1815                 integrity.tag_size = sizeof(u16);
1816                 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1817                 break;
1818         default:
1819                 integrity.profile = NULL;
1820                 break;
1821         }
1822         integrity.tuple_size = ms;
1823         blk_integrity_register(disk, &integrity);
1824         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1825 }
1826 #else
1827 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
1828                                 u32 max_integrity_segments)
1829 {
1830 }
1831 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1832
1833 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1834 {
1835         struct nvme_ctrl *ctrl = ns->ctrl;
1836         struct request_queue *queue = disk->queue;
1837         u32 size = queue_logical_block_size(queue);
1838
1839         if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
1840                 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
1841                 return;
1842         }
1843
1844         if (ctrl->nr_streams && ns->sws && ns->sgs)
1845                 size *= ns->sws * ns->sgs;
1846
1847         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1848                         NVME_DSM_MAX_RANGES);
1849
1850         queue->limits.discard_alignment = 0;
1851         queue->limits.discard_granularity = size;
1852
1853         /* If discard is already enabled, don't reset queue limits */
1854         if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
1855                 return;
1856
1857         blk_queue_max_discard_sectors(queue, UINT_MAX);
1858         blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1859
1860         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1861                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1862 }
1863
1864 static void nvme_config_write_zeroes(struct gendisk *disk, struct nvme_ns *ns)
1865 {
1866         u64 max_blocks;
1867
1868         if (!(ns->ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) ||
1869             (ns->ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
1870                 return;
1871         /*
1872          * Even though NVMe spec explicitly states that MDTS is not
1873          * applicable to the write-zeroes:- "The restriction does not apply to
1874          * commands that do not transfer data between the host and the
1875          * controller (e.g., Write Uncorrectable ro Write Zeroes command).".
1876          * In order to be more cautious use controller's max_hw_sectors value
1877          * to configure the maximum sectors for the write-zeroes which is
1878          * configured based on the controller's MDTS field in the
1879          * nvme_init_identify() if available.
1880          */
1881         if (ns->ctrl->max_hw_sectors == UINT_MAX)
1882                 max_blocks = (u64)USHRT_MAX + 1;
1883         else
1884                 max_blocks = ns->ctrl->max_hw_sectors + 1;
1885
1886         blk_queue_max_write_zeroes_sectors(disk->queue,
1887                                            nvme_lba_to_sect(ns, max_blocks));
1888 }
1889
1890 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1891 {
1892         return !uuid_is_null(&ids->uuid) ||
1893                 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1894                 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1895 }
1896
1897 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1898 {
1899         return uuid_equal(&a->uuid, &b->uuid) &&
1900                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1901                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1902                 a->csi == b->csi;
1903 }
1904
1905 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1906                                  u32 *phys_bs, u32 *io_opt)
1907 {
1908         struct streams_directive_params s;
1909         int ret;
1910
1911         if (!ctrl->nr_streams)
1912                 return 0;
1913
1914         ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
1915         if (ret)
1916                 return ret;
1917
1918         ns->sws = le32_to_cpu(s.sws);
1919         ns->sgs = le16_to_cpu(s.sgs);
1920
1921         if (ns->sws) {
1922                 *phys_bs = ns->sws * (1 << ns->lba_shift);
1923                 if (ns->sgs)
1924                         *io_opt = *phys_bs * ns->sgs;
1925         }
1926
1927         return 0;
1928 }
1929
1930 static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1931 {
1932         struct nvme_ctrl *ctrl = ns->ctrl;
1933
1934         /*
1935          * The PI implementation requires the metadata size to be equal to the
1936          * t10 pi tuple size.
1937          */
1938         ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1939         if (ns->ms == sizeof(struct t10_pi_tuple))
1940                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1941         else
1942                 ns->pi_type = 0;
1943
1944         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1945         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1946                 return 0;
1947         if (ctrl->ops->flags & NVME_F_FABRICS) {
1948                 /*
1949                  * The NVMe over Fabrics specification only supports metadata as
1950                  * part of the extended data LBA.  We rely on HCA/HBA support to
1951                  * remap the separate metadata buffer from the block layer.
1952                  */
1953                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1954                         return -EINVAL;
1955                 if (ctrl->max_integrity_segments)
1956                         ns->features |=
1957                                 (NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1958         } else {
1959                 /*
1960                  * For PCIe controllers, we can't easily remap the separate
1961                  * metadata buffer from the block layer and thus require a
1962                  * separate metadata buffer for block layer metadata/PI support.
1963                  * We allow extended LBAs for the passthrough interface, though.
1964                  */
1965                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1966                         ns->features |= NVME_NS_EXT_LBAS;
1967                 else
1968                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1969         }
1970
1971         return 0;
1972 }
1973
1974 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1975                 struct request_queue *q)
1976 {
1977         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1978
1979         if (ctrl->max_hw_sectors) {
1980                 u32 max_segments =
1981                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1982
1983                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1984                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1985                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1986         }
1987         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1988         blk_queue_dma_alignment(q, 7);
1989         blk_queue_write_cache(q, vwc, vwc);
1990 }
1991
1992 static void nvme_update_disk_info(struct gendisk *disk,
1993                 struct nvme_ns *ns, struct nvme_id_ns *id)
1994 {
1995         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1996         unsigned short bs = 1 << ns->lba_shift;
1997         u32 atomic_bs, phys_bs, io_opt = 0;
1998
1999         /*
2000          * The block layer can't support LBA sizes larger than the page size
2001          * yet, so catch this early and don't allow block I/O.
2002          */
2003         if (ns->lba_shift > PAGE_SHIFT) {
2004                 capacity = 0;
2005                 bs = (1 << 9);
2006         }
2007
2008         blk_integrity_unregister(disk);
2009
2010         atomic_bs = phys_bs = bs;
2011         nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
2012         if (id->nabo == 0) {
2013                 /*
2014                  * Bit 1 indicates whether NAWUPF is defined for this namespace
2015                  * and whether it should be used instead of AWUPF. If NAWUPF ==
2016                  * 0 then AWUPF must be used instead.
2017                  */
2018                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2019                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2020                 else
2021                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
2022         }
2023
2024         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2025                 /* NPWG = Namespace Preferred Write Granularity */
2026                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2027                 /* NOWS = Namespace Optimal Write Size */
2028                 io_opt = bs * (1 + le16_to_cpu(id->nows));
2029         }
2030
2031         blk_queue_logical_block_size(disk->queue, bs);
2032         /*
2033          * Linux filesystems assume writing a single physical block is
2034          * an atomic operation. Hence limit the physical block size to the
2035          * value of the Atomic Write Unit Power Fail parameter.
2036          */
2037         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
2038         blk_queue_io_min(disk->queue, phys_bs);
2039         blk_queue_io_opt(disk->queue, io_opt);
2040
2041         /*
2042          * Register a metadata profile for PI, or the plain non-integrity NVMe
2043          * metadata masquerading as Type 0 if supported, otherwise reject block
2044          * I/O to namespaces with metadata except when the namespace supports
2045          * PI, as it can strip/insert in that case.
2046          */
2047         if (ns->ms) {
2048                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
2049                     (ns->features & NVME_NS_METADATA_SUPPORTED))
2050                         nvme_init_integrity(disk, ns->ms, ns->pi_type,
2051                                             ns->ctrl->max_integrity_segments);
2052                 else if (!nvme_ns_has_pi(ns))
2053                         capacity = 0;
2054         }
2055
2056         set_capacity_revalidate_and_notify(disk, capacity, false);
2057
2058         nvme_config_discard(disk, ns);
2059         nvme_config_write_zeroes(disk, ns);
2060
2061         if (id->nsattr & NVME_NS_ATTR_RO)
2062                 set_disk_ro(disk, true);
2063 }
2064
2065 static inline bool nvme_first_scan(struct gendisk *disk)
2066 {
2067         /* nvme_alloc_ns() scans the disk prior to adding it */
2068         return !(disk->flags & GENHD_FL_UP);
2069 }
2070
2071 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
2072 {
2073         struct nvme_ctrl *ctrl = ns->ctrl;
2074         u32 iob;
2075
2076         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2077             is_power_of_2(ctrl->max_hw_sectors))
2078                 iob = ctrl->max_hw_sectors;
2079         else
2080                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
2081
2082         if (!iob)
2083                 return;
2084
2085         if (!is_power_of_2(iob)) {
2086                 if (nvme_first_scan(ns->disk))
2087                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2088                                 ns->disk->disk_name, iob);
2089                 return;
2090         }
2091
2092         if (blk_queue_is_zoned(ns->disk->queue)) {
2093                 if (nvme_first_scan(ns->disk))
2094                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
2095                                 ns->disk->disk_name);
2096                 return;
2097         }
2098
2099         blk_queue_chunk_sectors(ns->queue, iob);
2100 }
2101
2102 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
2103 {
2104         unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
2105         int ret;
2106
2107         blk_mq_freeze_queue(ns->disk->queue);
2108         ns->lba_shift = id->lbaf[lbaf].ds;
2109         nvme_set_queue_limits(ns->ctrl, ns->queue);
2110
2111         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2112                 ret = nvme_update_zone_info(ns, lbaf);
2113                 if (ret)
2114                         goto out_unfreeze;
2115         }
2116
2117         ret = nvme_configure_metadata(ns, id);
2118         if (ret)
2119                 goto out_unfreeze;
2120         nvme_set_chunk_sectors(ns, id);
2121         nvme_update_disk_info(ns->disk, ns, id);
2122         blk_mq_unfreeze_queue(ns->disk->queue);
2123
2124         if (blk_queue_is_zoned(ns->queue)) {
2125                 ret = nvme_revalidate_zones(ns);
2126                 if (ret && !nvme_first_scan(ns->disk))
2127                         return ret;
2128         }
2129
2130 #ifdef CONFIG_NVME_MULTIPATH
2131         if (ns->head->disk) {
2132                 blk_mq_freeze_queue(ns->head->disk->queue);
2133                 nvme_update_disk_info(ns->head->disk, ns, id);
2134                 blk_stack_limits(&ns->head->disk->queue->limits,
2135                                  &ns->queue->limits, 0);
2136                 blk_queue_update_readahead(ns->head->disk->queue);
2137                 nvme_update_bdev_size(ns->head->disk);
2138                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2139         }
2140 #endif
2141         return 0;
2142
2143 out_unfreeze:
2144         blk_mq_unfreeze_queue(ns->disk->queue);
2145         return ret;
2146 }
2147
2148 static char nvme_pr_type(enum pr_type type)
2149 {
2150         switch (type) {
2151         case PR_WRITE_EXCLUSIVE:
2152                 return 1;
2153         case PR_EXCLUSIVE_ACCESS:
2154                 return 2;
2155         case PR_WRITE_EXCLUSIVE_REG_ONLY:
2156                 return 3;
2157         case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2158                 return 4;
2159         case PR_WRITE_EXCLUSIVE_ALL_REGS:
2160                 return 5;
2161         case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2162                 return 6;
2163         default:
2164                 return 0;
2165         }
2166 };
2167
2168 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2169                                 u64 key, u64 sa_key, u8 op)
2170 {
2171         struct nvme_ns_head *head = NULL;
2172         struct nvme_ns *ns;
2173         struct nvme_command c;
2174         int srcu_idx, ret;
2175         u8 data[16] = { 0, };
2176
2177         ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
2178         if (unlikely(!ns))
2179                 return -EWOULDBLOCK;
2180
2181         put_unaligned_le64(key, &data[0]);
2182         put_unaligned_le64(sa_key, &data[8]);
2183
2184         memset(&c, 0, sizeof(c));
2185         c.common.opcode = op;
2186         c.common.nsid = cpu_to_le32(ns->head->ns_id);
2187         c.common.cdw10 = cpu_to_le32(cdw10);
2188
2189         ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2190         nvme_put_ns_from_disk(head, srcu_idx);
2191         return ret;
2192 }
2193
2194 static int nvme_pr_register(struct block_device *bdev, u64 old,
2195                 u64 new, unsigned flags)
2196 {
2197         u32 cdw10;
2198
2199         if (flags & ~PR_FL_IGNORE_KEY)
2200                 return -EOPNOTSUPP;
2201
2202         cdw10 = old ? 2 : 0;
2203         cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2204         cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2205         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2206 }
2207
2208 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2209                 enum pr_type type, unsigned flags)
2210 {
2211         u32 cdw10;
2212
2213         if (flags & ~PR_FL_IGNORE_KEY)
2214                 return -EOPNOTSUPP;
2215
2216         cdw10 = nvme_pr_type(type) << 8;
2217         cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2218         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2219 }
2220
2221 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2222                 enum pr_type type, bool abort)
2223 {
2224         u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2225         return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2226 }
2227
2228 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2229 {
2230         u32 cdw10 = 1 | (key ? 1 << 3 : 0);
2231         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2232 }
2233
2234 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2235 {
2236         u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
2237         return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2238 }
2239
2240 static const struct pr_ops nvme_pr_ops = {
2241         .pr_register    = nvme_pr_register,
2242         .pr_reserve     = nvme_pr_reserve,
2243         .pr_release     = nvme_pr_release,
2244         .pr_preempt     = nvme_pr_preempt,
2245         .pr_clear       = nvme_pr_clear,
2246 };
2247
2248 #ifdef CONFIG_BLK_SED_OPAL
2249 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2250                 bool send)
2251 {
2252         struct nvme_ctrl *ctrl = data;
2253         struct nvme_command cmd;
2254
2255         memset(&cmd, 0, sizeof(cmd));
2256         if (send)
2257                 cmd.common.opcode = nvme_admin_security_send;
2258         else
2259                 cmd.common.opcode = nvme_admin_security_recv;
2260         cmd.common.nsid = 0;
2261         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2262         cmd.common.cdw11 = cpu_to_le32(len);
2263
2264         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2265                                       ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
2266 }
2267 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2268 #endif /* CONFIG_BLK_SED_OPAL */
2269
2270 static const struct block_device_operations nvme_fops = {
2271         .owner          = THIS_MODULE,
2272         .ioctl          = nvme_ioctl,
2273         .compat_ioctl   = nvme_compat_ioctl,
2274         .open           = nvme_open,
2275         .release        = nvme_release,
2276         .getgeo         = nvme_getgeo,
2277         .report_zones   = nvme_report_zones,
2278         .pr_ops         = &nvme_pr_ops,
2279 };
2280
2281 #ifdef CONFIG_NVME_MULTIPATH
2282 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
2283 {
2284         struct nvme_ns_head *head = bdev->bd_disk->private_data;
2285
2286         if (!kref_get_unless_zero(&head->ref))
2287                 return -ENXIO;
2288         return 0;
2289 }
2290
2291 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
2292 {
2293         nvme_put_ns_head(disk->private_data);
2294 }
2295
2296 const struct block_device_operations nvme_ns_head_ops = {
2297         .owner          = THIS_MODULE,
2298         .submit_bio     = nvme_ns_head_submit_bio,
2299         .open           = nvme_ns_head_open,
2300         .release        = nvme_ns_head_release,
2301         .ioctl          = nvme_ioctl,
2302         .compat_ioctl   = nvme_compat_ioctl,
2303         .getgeo         = nvme_getgeo,
2304         .report_zones   = nvme_report_zones,
2305         .pr_ops         = &nvme_pr_ops,
2306 };
2307 #endif /* CONFIG_NVME_MULTIPATH */
2308
2309 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
2310 {
2311         unsigned long timeout =
2312                 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
2313         u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2314         int ret;
2315
2316         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2317                 if (csts == ~0)
2318                         return -ENODEV;
2319                 if ((csts & NVME_CSTS_RDY) == bit)
2320                         break;
2321
2322                 usleep_range(1000, 2000);
2323                 if (fatal_signal_pending(current))
2324                         return -EINTR;
2325                 if (time_after(jiffies, timeout)) {
2326                         dev_err(ctrl->device,
2327                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2328                                 enabled ? "initialisation" : "reset", csts);
2329                         return -ENODEV;
2330                 }
2331         }
2332
2333         return ret;
2334 }
2335
2336 /*
2337  * If the device has been passed off to us in an enabled state, just clear
2338  * the enabled bit.  The spec says we should set the 'shutdown notification
2339  * bits', but doing so may cause the device to complete commands to the
2340  * admin queue ... and we don't know what memory that might be pointing at!
2341  */
2342 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2343 {
2344         int ret;
2345
2346         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2347         ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2348
2349         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2350         if (ret)
2351                 return ret;
2352
2353         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2354                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2355
2356         return nvme_wait_ready(ctrl, ctrl->cap, false);
2357 }
2358 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2359
2360 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2361 {
2362         unsigned dev_page_min;
2363         int ret;
2364
2365         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2366         if (ret) {
2367                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2368                 return ret;
2369         }
2370         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2371
2372         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2373                 dev_err(ctrl->device,
2374                         "Minimum device page size %u too large for host (%u)\n",
2375                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2376                 return -ENODEV;
2377         }
2378
2379         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2380                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2381         else
2382                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2383         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2384         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2385         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2386         ctrl->ctrl_config |= NVME_CC_ENABLE;
2387
2388         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2389         if (ret)
2390                 return ret;
2391         return nvme_wait_ready(ctrl, ctrl->cap, true);
2392 }
2393 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2394
2395 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2396 {
2397         unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2398         u32 csts;
2399         int ret;
2400
2401         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2402         ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2403
2404         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2405         if (ret)
2406                 return ret;
2407
2408         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2409                 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2410                         break;
2411
2412                 msleep(100);
2413                 if (fatal_signal_pending(current))
2414                         return -EINTR;
2415                 if (time_after(jiffies, timeout)) {
2416                         dev_err(ctrl->device,
2417                                 "Device shutdown incomplete; abort shutdown\n");
2418                         return -ENODEV;
2419                 }
2420         }
2421
2422         return ret;
2423 }
2424 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2425
2426 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2427 {
2428         __le64 ts;
2429         int ret;
2430
2431         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2432                 return 0;
2433
2434         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2435         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2436                         NULL);
2437         if (ret)
2438                 dev_warn_once(ctrl->device,
2439                         "could not set timestamp (%d)\n", ret);
2440         return ret;
2441 }
2442
2443 static int nvme_configure_acre(struct nvme_ctrl *ctrl)
2444 {
2445         struct nvme_feat_host_behavior *host;
2446         int ret;
2447
2448         /* Don't bother enabling the feature if retry delay is not reported */
2449         if (!ctrl->crdt[0])
2450                 return 0;
2451
2452         host = kzalloc(sizeof(*host), GFP_KERNEL);
2453         if (!host)
2454                 return 0;
2455
2456         host->acre = NVME_ENABLE_ACRE;
2457         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2458                                 host, sizeof(*host), NULL);
2459         kfree(host);
2460         return ret;
2461 }
2462
2463 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2464 {
2465         /*
2466          * APST (Autonomous Power State Transition) lets us program a
2467          * table of power state transitions that the controller will
2468          * perform automatically.  We configure it with a simple
2469          * heuristic: we are willing to spend at most 2% of the time
2470          * transitioning between power states.  Therefore, when running
2471          * in any given state, we will enter the next lower-power
2472          * non-operational state after waiting 50 * (enlat + exlat)
2473          * microseconds, as long as that state's exit latency is under
2474          * the requested maximum latency.
2475          *
2476          * We will not autonomously enter any non-operational state for
2477          * which the total latency exceeds ps_max_latency_us.  Users
2478          * can set ps_max_latency_us to zero to turn off APST.
2479          */
2480
2481         unsigned apste;
2482         struct nvme_feat_auto_pst *table;
2483         u64 max_lat_us = 0;
2484         int max_ps = -1;
2485         int ret;
2486
2487         /*
2488          * If APST isn't supported or if we haven't been initialized yet,
2489          * then don't do anything.
2490          */
2491         if (!ctrl->apsta)
2492                 return 0;
2493
2494         if (ctrl->npss > 31) {
2495                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2496                 return 0;
2497         }
2498
2499         table = kzalloc(sizeof(*table), GFP_KERNEL);
2500         if (!table)
2501                 return 0;
2502
2503         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2504                 /* Turn off APST. */
2505                 apste = 0;
2506                 dev_dbg(ctrl->device, "APST disabled\n");
2507         } else {
2508                 __le64 target = cpu_to_le64(0);
2509                 int state;
2510
2511                 /*
2512                  * Walk through all states from lowest- to highest-power.
2513                  * According to the spec, lower-numbered states use more
2514                  * power.  NPSS, despite the name, is the index of the
2515                  * lowest-power state, not the number of states.
2516                  */
2517                 for (state = (int)ctrl->npss; state >= 0; state--) {
2518                         u64 total_latency_us, exit_latency_us, transition_ms;
2519
2520                         if (target)
2521                                 table->entries[state] = target;
2522
2523                         /*
2524                          * Don't allow transitions to the deepest state
2525                          * if it's quirked off.
2526                          */
2527                         if (state == ctrl->npss &&
2528                             (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2529                                 continue;
2530
2531                         /*
2532                          * Is this state a useful non-operational state for
2533                          * higher-power states to autonomously transition to?
2534                          */
2535                         if (!(ctrl->psd[state].flags &
2536                               NVME_PS_FLAGS_NON_OP_STATE))
2537                                 continue;
2538
2539                         exit_latency_us =
2540                                 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2541                         if (exit_latency_us > ctrl->ps_max_latency_us)
2542                                 continue;
2543
2544                         total_latency_us =
2545                                 exit_latency_us +
2546                                 le32_to_cpu(ctrl->psd[state].entry_lat);
2547
2548                         /*
2549                          * This state is good.  Use it as the APST idle
2550                          * target for higher power states.
2551                          */
2552                         transition_ms = total_latency_us + 19;
2553                         do_div(transition_ms, 20);
2554                         if (transition_ms > (1 << 24) - 1)
2555                                 transition_ms = (1 << 24) - 1;
2556
2557                         target = cpu_to_le64((state << 3) |
2558                                              (transition_ms << 8));
2559
2560                         if (max_ps == -1)
2561                                 max_ps = state;
2562
2563                         if (total_latency_us > max_lat_us)
2564                                 max_lat_us = total_latency_us;
2565                 }
2566
2567                 apste = 1;
2568
2569                 if (max_ps == -1) {
2570                         dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2571                 } else {
2572                         dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2573                                 max_ps, max_lat_us, (int)sizeof(*table), table);
2574                 }
2575         }
2576
2577         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2578                                 table, sizeof(*table), NULL);
2579         if (ret)
2580                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2581
2582         kfree(table);
2583         return ret;
2584 }
2585
2586 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2587 {
2588         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2589         u64 latency;
2590
2591         switch (val) {
2592         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2593         case PM_QOS_LATENCY_ANY:
2594                 latency = U64_MAX;
2595                 break;
2596
2597         default:
2598                 latency = val;
2599         }
2600
2601         if (ctrl->ps_max_latency_us != latency) {
2602                 ctrl->ps_max_latency_us = latency;
2603                 nvme_configure_apst(ctrl);
2604         }
2605 }
2606
2607 struct nvme_core_quirk_entry {
2608         /*
2609          * NVMe model and firmware strings are padded with spaces.  For
2610          * simplicity, strings in the quirk table are padded with NULLs
2611          * instead.
2612          */
2613         u16 vid;
2614         const char *mn;
2615         const char *fr;
2616         unsigned long quirks;
2617 };
2618
2619 static const struct nvme_core_quirk_entry core_quirks[] = {
2620         {
2621                 /*
2622                  * This Toshiba device seems to die using any APST states.  See:
2623                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2624                  */
2625                 .vid = 0x1179,
2626                 .mn = "THNSF5256GPUK TOSHIBA",
2627                 .quirks = NVME_QUIRK_NO_APST,
2628         },
2629         {
2630                 /*
2631                  * This LiteON CL1-3D*-Q11 firmware version has a race
2632                  * condition associated with actions related to suspend to idle
2633                  * LiteON has resolved the problem in future firmware
2634                  */
2635                 .vid = 0x14a4,
2636                 .fr = "22301111",
2637                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2638         }
2639 };
2640
2641 /* match is null-terminated but idstr is space-padded. */
2642 static bool string_matches(const char *idstr, const char *match, size_t len)
2643 {
2644         size_t matchlen;
2645
2646         if (!match)
2647                 return true;
2648
2649         matchlen = strlen(match);
2650         WARN_ON_ONCE(matchlen > len);
2651
2652         if (memcmp(idstr, match, matchlen))
2653                 return false;
2654
2655         for (; matchlen < len; matchlen++)
2656                 if (idstr[matchlen] != ' ')
2657                         return false;
2658
2659         return true;
2660 }
2661
2662 static bool quirk_matches(const struct nvme_id_ctrl *id,
2663                           const struct nvme_core_quirk_entry *q)
2664 {
2665         return q->vid == le16_to_cpu(id->vid) &&
2666                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2667                 string_matches(id->fr, q->fr, sizeof(id->fr));
2668 }
2669
2670 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2671                 struct nvme_id_ctrl *id)
2672 {
2673         size_t nqnlen;
2674         int off;
2675
2676         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2677                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2678                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2679                         strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2680                         return;
2681                 }
2682
2683                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2684                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2685         }
2686
2687         /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2688         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2689                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2690                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2691         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2692         off += sizeof(id->sn);
2693         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2694         off += sizeof(id->mn);
2695         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2696 }
2697
2698 static void nvme_release_subsystem(struct device *dev)
2699 {
2700         struct nvme_subsystem *subsys =
2701                 container_of(dev, struct nvme_subsystem, dev);
2702
2703         if (subsys->instance >= 0)
2704                 ida_simple_remove(&nvme_instance_ida, subsys->instance);
2705         kfree(subsys);
2706 }
2707
2708 static void nvme_destroy_subsystem(struct kref *ref)
2709 {
2710         struct nvme_subsystem *subsys =
2711                         container_of(ref, struct nvme_subsystem, ref);
2712
2713         mutex_lock(&nvme_subsystems_lock);
2714         list_del(&subsys->entry);
2715         mutex_unlock(&nvme_subsystems_lock);
2716
2717         ida_destroy(&subsys->ns_ida);
2718         device_del(&subsys->dev);
2719         put_device(&subsys->dev);
2720 }
2721
2722 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2723 {
2724         kref_put(&subsys->ref, nvme_destroy_subsystem);
2725 }
2726
2727 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2728 {
2729         struct nvme_subsystem *subsys;
2730
2731         lockdep_assert_held(&nvme_subsystems_lock);
2732
2733         /*
2734          * Fail matches for discovery subsystems. This results
2735          * in each discovery controller bound to a unique subsystem.
2736          * This avoids issues with validating controller values
2737          * that can only be true when there is a single unique subsystem.
2738          * There may be multiple and completely independent entities
2739          * that provide discovery controllers.
2740          */
2741         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2742                 return NULL;
2743
2744         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2745                 if (strcmp(subsys->subnqn, subsysnqn))
2746                         continue;
2747                 if (!kref_get_unless_zero(&subsys->ref))
2748                         continue;
2749                 return subsys;
2750         }
2751
2752         return NULL;
2753 }
2754
2755 #define SUBSYS_ATTR_RO(_name, _mode, _show)                     \
2756         struct device_attribute subsys_attr_##_name = \
2757                 __ATTR(_name, _mode, _show, NULL)
2758
2759 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2760                                     struct device_attribute *attr,
2761                                     char *buf)
2762 {
2763         struct nvme_subsystem *subsys =
2764                 container_of(dev, struct nvme_subsystem, dev);
2765
2766         return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2767 }
2768 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2769
2770 #define nvme_subsys_show_str_function(field)                            \
2771 static ssize_t subsys_##field##_show(struct device *dev,                \
2772                             struct device_attribute *attr, char *buf)   \
2773 {                                                                       \
2774         struct nvme_subsystem *subsys =                                 \
2775                 container_of(dev, struct nvme_subsystem, dev);          \
2776         return sprintf(buf, "%.*s\n",                                   \
2777                        (int)sizeof(subsys->field), subsys->field);      \
2778 }                                                                       \
2779 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2780
2781 nvme_subsys_show_str_function(model);
2782 nvme_subsys_show_str_function(serial);
2783 nvme_subsys_show_str_function(firmware_rev);
2784
2785 static struct attribute *nvme_subsys_attrs[] = {
2786         &subsys_attr_model.attr,
2787         &subsys_attr_serial.attr,
2788         &subsys_attr_firmware_rev.attr,
2789         &subsys_attr_subsysnqn.attr,
2790 #ifdef CONFIG_NVME_MULTIPATH
2791         &subsys_attr_iopolicy.attr,
2792 #endif
2793         NULL,
2794 };
2795
2796 static struct attribute_group nvme_subsys_attrs_group = {
2797         .attrs = nvme_subsys_attrs,
2798 };
2799
2800 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2801         &nvme_subsys_attrs_group,
2802         NULL,
2803 };
2804
2805 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2806                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2807 {
2808         struct nvme_ctrl *tmp;
2809
2810         lockdep_assert_held(&nvme_subsystems_lock);
2811
2812         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2813                 if (nvme_state_terminal(tmp))
2814                         continue;
2815
2816                 if (tmp->cntlid == ctrl->cntlid) {
2817                         dev_err(ctrl->device,
2818                                 "Duplicate cntlid %u with %s, rejecting\n",
2819                                 ctrl->cntlid, dev_name(tmp->device));
2820                         return false;
2821                 }
2822
2823                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2824                     (ctrl->opts && ctrl->opts->discovery_nqn))
2825                         continue;
2826
2827                 dev_err(ctrl->device,
2828                         "Subsystem does not support multiple controllers\n");
2829                 return false;
2830         }
2831
2832         return true;
2833 }
2834
2835 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2836 {
2837         struct nvme_subsystem *subsys, *found;
2838         int ret;
2839
2840         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2841         if (!subsys)
2842                 return -ENOMEM;
2843
2844         subsys->instance = -1;
2845         mutex_init(&subsys->lock);
2846         kref_init(&subsys->ref);
2847         INIT_LIST_HEAD(&subsys->ctrls);
2848         INIT_LIST_HEAD(&subsys->nsheads);
2849         nvme_init_subnqn(subsys, ctrl, id);
2850         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2851         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2852         memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2853         subsys->vendor_id = le16_to_cpu(id->vid);
2854         subsys->cmic = id->cmic;
2855         subsys->awupf = le16_to_cpu(id->awupf);
2856 #ifdef CONFIG_NVME_MULTIPATH
2857         subsys->iopolicy = NVME_IOPOLICY_NUMA;
2858 #endif
2859
2860         subsys->dev.class = nvme_subsys_class;
2861         subsys->dev.release = nvme_release_subsystem;
2862         subsys->dev.groups = nvme_subsys_attrs_groups;
2863         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2864         device_initialize(&subsys->dev);
2865
2866         mutex_lock(&nvme_subsystems_lock);
2867         found = __nvme_find_get_subsystem(subsys->subnqn);
2868         if (found) {
2869                 put_device(&subsys->dev);
2870                 subsys = found;
2871
2872                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2873                         ret = -EINVAL;
2874                         goto out_put_subsystem;
2875                 }
2876         } else {
2877                 ret = device_add(&subsys->dev);
2878                 if (ret) {
2879                         dev_err(ctrl->device,
2880                                 "failed to register subsystem device.\n");
2881                         put_device(&subsys->dev);
2882                         goto out_unlock;
2883                 }
2884                 ida_init(&subsys->ns_ida);
2885                 list_add_tail(&subsys->entry, &nvme_subsystems);
2886         }
2887
2888         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2889                                 dev_name(ctrl->device));
2890         if (ret) {
2891                 dev_err(ctrl->device,
2892                         "failed to create sysfs link from subsystem.\n");
2893                 goto out_put_subsystem;
2894         }
2895
2896         if (!found)
2897                 subsys->instance = ctrl->instance;
2898         ctrl->subsys = subsys;
2899         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2900         mutex_unlock(&nvme_subsystems_lock);
2901         return 0;
2902
2903 out_put_subsystem:
2904         nvme_put_subsystem(subsys);
2905 out_unlock:
2906         mutex_unlock(&nvme_subsystems_lock);
2907         return ret;
2908 }
2909
2910 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2911                 void *log, size_t size, u64 offset)
2912 {
2913         struct nvme_command c = { };
2914         u32 dwlen = nvme_bytes_to_numd(size);
2915
2916         c.get_log_page.opcode = nvme_admin_get_log_page;
2917         c.get_log_page.nsid = cpu_to_le32(nsid);
2918         c.get_log_page.lid = log_page;
2919         c.get_log_page.lsp = lsp;
2920         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2921         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2922         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2923         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2924         c.get_log_page.csi = csi;
2925
2926         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2927 }
2928
2929 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2930                                 struct nvme_effects_log **log)
2931 {
2932         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2933         int ret;
2934
2935         if (cel)
2936                 goto out;
2937
2938         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2939         if (!cel)
2940                 return -ENOMEM;
2941
2942         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2943                         cel, sizeof(*cel), 0);
2944         if (ret) {
2945                 kfree(cel);
2946                 return ret;
2947         }
2948
2949         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2950 out:
2951         *log = cel;
2952         return 0;
2953 }
2954
2955 /*
2956  * Initialize the cached copies of the Identify data and various controller
2957  * register in our nvme_ctrl structure.  This should be called as soon as
2958  * the admin queue is fully up and running.
2959  */
2960 int nvme_init_identify(struct nvme_ctrl *ctrl)
2961 {
2962         struct nvme_id_ctrl *id;
2963         int ret, page_shift;
2964         u32 max_hw_sectors;
2965         bool prev_apst_enabled;
2966
2967         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2968         if (ret) {
2969                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2970                 return ret;
2971         }
2972         page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2973         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
2974
2975         if (ctrl->vs >= NVME_VS(1, 1, 0))
2976                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
2977
2978         ret = nvme_identify_ctrl(ctrl, &id);
2979         if (ret) {
2980                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2981                 return -EIO;
2982         }
2983
2984         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2985                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2986                 if (ret < 0)
2987                         goto out_free;
2988         }
2989
2990         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2991                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2992
2993         if (!ctrl->identified) {
2994                 int i;
2995
2996                 ret = nvme_init_subsystem(ctrl, id);
2997                 if (ret)
2998                         goto out_free;
2999
3000                 /*
3001                  * Check for quirks.  Quirk can depend on firmware version,
3002                  * so, in principle, the set of quirks present can change
3003                  * across a reset.  As a possible future enhancement, we
3004                  * could re-scan for quirks every time we reinitialize
3005                  * the device, but we'd have to make sure that the driver
3006                  * behaves intelligently if the quirks change.
3007                  */
3008                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3009                         if (quirk_matches(id, &core_quirks[i]))
3010                                 ctrl->quirks |= core_quirks[i].quirks;
3011                 }
3012         }
3013
3014         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3015                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3016                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3017         }
3018
3019         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3020         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3021         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3022
3023         ctrl->oacs = le16_to_cpu(id->oacs);
3024         ctrl->oncs = le16_to_cpu(id->oncs);
3025         ctrl->mtfa = le16_to_cpu(id->mtfa);
3026         ctrl->oaes = le32_to_cpu(id->oaes);
3027         ctrl->wctemp = le16_to_cpu(id->wctemp);
3028         ctrl->cctemp = le16_to_cpu(id->cctemp);
3029
3030         atomic_set(&ctrl->abort_limit, id->acl + 1);
3031         ctrl->vwc = id->vwc;
3032         if (id->mdts)
3033                 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
3034         else
3035                 max_hw_sectors = UINT_MAX;
3036         ctrl->max_hw_sectors =
3037                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3038
3039         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3040         ctrl->sgls = le32_to_cpu(id->sgls);
3041         ctrl->kas = le16_to_cpu(id->kas);
3042         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3043         ctrl->ctratt = le32_to_cpu(id->ctratt);
3044
3045         if (id->rtd3e) {
3046                 /* us -> s */
3047                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3048
3049                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3050                                                  shutdown_timeout, 60);
3051
3052                 if (ctrl->shutdown_timeout != shutdown_timeout)
3053                         dev_info(ctrl->device,
3054                                  "Shutdown timeout set to %u seconds\n",
3055                                  ctrl->shutdown_timeout);
3056         } else
3057                 ctrl->shutdown_timeout = shutdown_timeout;
3058
3059         ctrl->npss = id->npss;
3060         ctrl->apsta = id->apsta;
3061         prev_apst_enabled = ctrl->apst_enabled;
3062         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3063                 if (force_apst && id->apsta) {
3064                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3065                         ctrl->apst_enabled = true;
3066                 } else {
3067                         ctrl->apst_enabled = false;
3068                 }
3069         } else {
3070                 ctrl->apst_enabled = id->apsta;
3071         }
3072         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3073
3074         if (ctrl->ops->flags & NVME_F_FABRICS) {
3075                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3076                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3077                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3078                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3079
3080                 /*
3081                  * In fabrics we need to verify the cntlid matches the
3082                  * admin connect
3083                  */
3084                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3085                         dev_err(ctrl->device,
3086                                 "Mismatching cntlid: Connect %u vs Identify "
3087                                 "%u, rejecting\n",
3088                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3089                         ret = -EINVAL;
3090                         goto out_free;
3091                 }
3092
3093                 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
3094                         dev_err(ctrl->device,
3095                                 "keep-alive support is mandatory for fabrics\n");
3096                         ret = -EINVAL;
3097                         goto out_free;
3098                 }
3099         } else {
3100                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3101                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3102                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3103                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3104         }
3105
3106         ret = nvme_mpath_init(ctrl, id);
3107         kfree(id);
3108
3109         if (ret < 0)
3110                 return ret;
3111
3112         if (ctrl->apst_enabled && !prev_apst_enabled)
3113                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3114         else if (!ctrl->apst_enabled && prev_apst_enabled)
3115                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3116
3117         ret = nvme_configure_apst(ctrl);
3118         if (ret < 0)
3119                 return ret;
3120         
3121         ret = nvme_configure_timestamp(ctrl);
3122         if (ret < 0)
3123                 return ret;
3124
3125         ret = nvme_configure_directives(ctrl);
3126         if (ret < 0)
3127                 return ret;
3128
3129         ret = nvme_configure_acre(ctrl);
3130         if (ret < 0)
3131                 return ret;
3132
3133         if (!ctrl->identified) {
3134                 ret = nvme_hwmon_init(ctrl);
3135                 if (ret < 0)
3136                         return ret;
3137         }
3138
3139         ctrl->identified = true;
3140
3141         return 0;
3142
3143 out_free:
3144         kfree(id);
3145         return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(nvme_init_identify);
3148
3149 static int nvme_dev_open(struct inode *inode, struct file *file)
3150 {
3151         struct nvme_ctrl *ctrl =
3152                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3153
3154         switch (ctrl->state) {
3155         case NVME_CTRL_LIVE:
3156                 break;
3157         default:
3158                 return -EWOULDBLOCK;
3159         }
3160
3161         nvme_get_ctrl(ctrl);
3162         if (!try_module_get(ctrl->ops->module)) {
3163                 nvme_put_ctrl(ctrl);
3164                 return -EINVAL;
3165         }
3166
3167         file->private_data = ctrl;
3168         return 0;
3169 }
3170
3171 static int nvme_dev_release(struct inode *inode, struct file *file)
3172 {
3173         struct nvme_ctrl *ctrl =
3174                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3175
3176         module_put(ctrl->ops->module);
3177         nvme_put_ctrl(ctrl);
3178         return 0;
3179 }
3180
3181 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
3182 {
3183         struct nvme_ns *ns;
3184         int ret;
3185
3186         down_read(&ctrl->namespaces_rwsem);
3187         if (list_empty(&ctrl->namespaces)) {
3188                 ret = -ENOTTY;
3189                 goto out_unlock;
3190         }
3191
3192         ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
3193         if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
3194                 dev_warn(ctrl->device,
3195                         "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
3196                 ret = -EINVAL;
3197                 goto out_unlock;
3198         }
3199
3200         dev_warn(ctrl->device,
3201                 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
3202         kref_get(&ns->kref);
3203         up_read(&ctrl->namespaces_rwsem);
3204
3205         ret = nvme_user_cmd(ctrl, ns, argp);
3206         nvme_put_ns(ns);
3207         return ret;
3208
3209 out_unlock:
3210         up_read(&ctrl->namespaces_rwsem);
3211         return ret;
3212 }
3213
3214 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
3215                 unsigned long arg)
3216 {
3217         struct nvme_ctrl *ctrl = file->private_data;
3218         void __user *argp = (void __user *)arg;
3219
3220         switch (cmd) {
3221         case NVME_IOCTL_ADMIN_CMD:
3222                 return nvme_user_cmd(ctrl, NULL, argp);
3223         case NVME_IOCTL_ADMIN64_CMD:
3224                 return nvme_user_cmd64(ctrl, NULL, argp);
3225         case NVME_IOCTL_IO_CMD:
3226                 return nvme_dev_user_cmd(ctrl, argp);
3227         case NVME_IOCTL_RESET:
3228                 dev_warn(ctrl->device, "resetting controller\n");
3229                 return nvme_reset_ctrl_sync(ctrl);
3230         case NVME_IOCTL_SUBSYS_RESET:
3231                 return nvme_reset_subsystem(ctrl);
3232         case NVME_IOCTL_RESCAN:
3233                 nvme_queue_scan(ctrl);
3234                 return 0;
3235         default:
3236                 return -ENOTTY;
3237         }
3238 }
3239
3240 static const struct file_operations nvme_dev_fops = {
3241         .owner          = THIS_MODULE,
3242         .open           = nvme_dev_open,
3243         .release        = nvme_dev_release,
3244         .unlocked_ioctl = nvme_dev_ioctl,
3245         .compat_ioctl   = compat_ptr_ioctl,
3246 };
3247
3248 static ssize_t nvme_sysfs_reset(struct device *dev,
3249                                 struct device_attribute *attr, const char *buf,
3250                                 size_t count)
3251 {
3252         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3253         int ret;
3254
3255         ret = nvme_reset_ctrl_sync(ctrl);
3256         if (ret < 0)
3257                 return ret;
3258         return count;
3259 }
3260 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3261
3262 static ssize_t nvme_sysfs_rescan(struct device *dev,
3263                                 struct device_attribute *attr, const char *buf,
3264                                 size_t count)
3265 {
3266         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3267
3268         nvme_queue_scan(ctrl);
3269         return count;
3270 }
3271 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3272
3273 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3274 {
3275         struct gendisk *disk = dev_to_disk(dev);
3276
3277         if (disk->fops == &nvme_fops)
3278                 return nvme_get_ns_from_dev(dev)->head;
3279         else
3280                 return disk->private_data;
3281 }
3282
3283 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3284                 char *buf)
3285 {
3286         struct nvme_ns_head *head = dev_to_ns_head(dev);
3287         struct nvme_ns_ids *ids = &head->ids;
3288         struct nvme_subsystem *subsys = head->subsys;
3289         int serial_len = sizeof(subsys->serial);
3290         int model_len = sizeof(subsys->model);
3291
3292         if (!uuid_is_null(&ids->uuid))
3293                 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
3294
3295         if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3296                 return sprintf(buf, "eui.%16phN\n", ids->nguid);
3297
3298         if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3299                 return sprintf(buf, "eui.%8phN\n", ids->eui64);
3300
3301         while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3302                                   subsys->serial[serial_len - 1] == '\0'))
3303                 serial_len--;
3304         while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3305                                  subsys->model[model_len - 1] == '\0'))
3306                 model_len--;
3307
3308         return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3309                 serial_len, subsys->serial, model_len, subsys->model,
3310                 head->ns_id);
3311 }
3312 static DEVICE_ATTR_RO(wwid);
3313
3314 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3315                 char *buf)
3316 {
3317         return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3318 }
3319 static DEVICE_ATTR_RO(nguid);
3320
3321 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3322                 char *buf)
3323 {
3324         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3325
3326         /* For backward compatibility expose the NGUID to userspace if
3327          * we have no UUID set
3328          */
3329         if (uuid_is_null(&ids->uuid)) {
3330                 printk_ratelimited(KERN_WARNING
3331                                    "No UUID available providing old NGUID\n");
3332                 return sprintf(buf, "%pU\n", ids->nguid);
3333         }
3334         return sprintf(buf, "%pU\n", &ids->uuid);
3335 }
3336 static DEVICE_ATTR_RO(uuid);
3337
3338 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3339                 char *buf)
3340 {
3341         return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3342 }
3343 static DEVICE_ATTR_RO(eui);
3344
3345 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3346                 char *buf)
3347 {
3348         return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3349 }
3350 static DEVICE_ATTR_RO(nsid);
3351
3352 static struct attribute *nvme_ns_id_attrs[] = {
3353         &dev_attr_wwid.attr,
3354         &dev_attr_uuid.attr,
3355         &dev_attr_nguid.attr,
3356         &dev_attr_eui.attr,
3357         &dev_attr_nsid.attr,
3358 #ifdef CONFIG_NVME_MULTIPATH
3359         &dev_attr_ana_grpid.attr,
3360         &dev_attr_ana_state.attr,
3361 #endif
3362         NULL,
3363 };
3364
3365 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3366                 struct attribute *a, int n)
3367 {
3368         struct device *dev = container_of(kobj, struct device, kobj);
3369         struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3370
3371         if (a == &dev_attr_uuid.attr) {
3372                 if (uuid_is_null(&ids->uuid) &&
3373                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3374                         return 0;
3375         }
3376         if (a == &dev_attr_nguid.attr) {
3377                 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3378                         return 0;
3379         }
3380         if (a == &dev_attr_eui.attr) {
3381                 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3382                         return 0;
3383         }
3384 #ifdef CONFIG_NVME_MULTIPATH
3385         if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3386                 if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
3387                         return 0;
3388                 if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3389                         return 0;
3390         }
3391 #endif
3392         return a->mode;
3393 }
3394
3395 static const struct attribute_group nvme_ns_id_attr_group = {
3396         .attrs          = nvme_ns_id_attrs,
3397         .is_visible     = nvme_ns_id_attrs_are_visible,
3398 };
3399
3400 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3401         &nvme_ns_id_attr_group,
3402 #ifdef CONFIG_NVM
3403         &nvme_nvm_attr_group,
3404 #endif
3405         NULL,
3406 };
3407
3408 #define nvme_show_str_function(field)                                           \
3409 static ssize_t  field##_show(struct device *dev,                                \
3410                             struct device_attribute *attr, char *buf)           \
3411 {                                                                               \
3412         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3413         return sprintf(buf, "%.*s\n",                                           \
3414                 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field);         \
3415 }                                                                               \
3416 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3417
3418 nvme_show_str_function(model);
3419 nvme_show_str_function(serial);
3420 nvme_show_str_function(firmware_rev);
3421
3422 #define nvme_show_int_function(field)                                           \
3423 static ssize_t  field##_show(struct device *dev,                                \
3424                             struct device_attribute *attr, char *buf)           \
3425 {                                                                               \
3426         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);                          \
3427         return sprintf(buf, "%d\n", ctrl->field);       \
3428 }                                                                               \
3429 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3430
3431 nvme_show_int_function(cntlid);
3432 nvme_show_int_function(numa_node);
3433 nvme_show_int_function(queue_count);
3434 nvme_show_int_function(sqsize);
3435
3436 static ssize_t nvme_sysfs_delete(struct device *dev,
3437                                 struct device_attribute *attr, const char *buf,
3438                                 size_t count)
3439 {
3440         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3441
3442         if (device_remove_file_self(dev, attr))
3443                 nvme_delete_ctrl_sync(ctrl);
3444         return count;
3445 }
3446 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3447
3448 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3449                                          struct device_attribute *attr,
3450                                          char *buf)
3451 {
3452         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3453
3454         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
3455 }
3456 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3457
3458 static ssize_t nvme_sysfs_show_state(struct device *dev,
3459                                      struct device_attribute *attr,
3460                                      char *buf)
3461 {
3462         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3463         static const char *const state_name[] = {
3464                 [NVME_CTRL_NEW]         = "new",
3465                 [NVME_CTRL_LIVE]        = "live",
3466                 [NVME_CTRL_RESETTING]   = "resetting",
3467                 [NVME_CTRL_CONNECTING]  = "connecting",
3468                 [NVME_CTRL_DELETING]    = "deleting",
3469                 [NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3470                 [NVME_CTRL_DEAD]        = "dead",
3471         };
3472
3473         if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3474             state_name[ctrl->state])
3475                 return sprintf(buf, "%s\n", state_name[ctrl->state]);
3476
3477         return sprintf(buf, "unknown state\n");
3478 }
3479
3480 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3481
3482 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3483                                          struct device_attribute *attr,
3484                                          char *buf)
3485 {
3486         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3487
3488         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
3489 }
3490 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3491
3492 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3493                                         struct device_attribute *attr,
3494                                         char *buf)
3495 {
3496         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3497
3498         return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
3499 }
3500 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3501
3502 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3503                                         struct device_attribute *attr,
3504                                         char *buf)
3505 {
3506         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3507
3508         return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
3509 }
3510 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3511
3512 static ssize_t nvme_sysfs_show_address(struct device *dev,
3513                                          struct device_attribute *attr,
3514                                          char *buf)
3515 {
3516         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3517
3518         return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3519 }
3520 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3521
3522 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3523                 struct device_attribute *attr, char *buf)
3524 {
3525         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3526         struct nvmf_ctrl_options *opts = ctrl->opts;
3527
3528         if (ctrl->opts->max_reconnects == -1)
3529                 return sprintf(buf, "off\n");
3530         return sprintf(buf, "%d\n",
3531                         opts->max_reconnects * opts->reconnect_delay);
3532 }
3533
3534 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3535                 struct device_attribute *attr, const char *buf, size_t count)
3536 {
3537         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3538         struct nvmf_ctrl_options *opts = ctrl->opts;
3539         int ctrl_loss_tmo, err;
3540
3541         err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3542         if (err)
3543                 return -EINVAL;
3544
3545         else if (ctrl_loss_tmo < 0)
3546                 opts->max_reconnects = -1;
3547         else
3548                 opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3549                                                 opts->reconnect_delay);
3550         return count;
3551 }
3552 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3553         nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3554
3555 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3556                 struct device_attribute *attr, char *buf)
3557 {
3558         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3559
3560         if (ctrl->opts->reconnect_delay == -1)
3561                 return sprintf(buf, "off\n");
3562         return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
3563 }
3564
3565 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3566                 struct device_attribute *attr, const char *buf, size_t count)
3567 {
3568         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3569         unsigned int v;
3570         int err;
3571
3572         err = kstrtou32(buf, 10, &v);
3573         if (err)
3574                 return err;
3575
3576         ctrl->opts->reconnect_delay = v;
3577         return count;
3578 }
3579 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3580         nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3581
3582 static struct attribute *nvme_dev_attrs[] = {
3583         &dev_attr_reset_controller.attr,
3584         &dev_attr_rescan_controller.attr,
3585         &dev_attr_model.attr,
3586         &dev_attr_serial.attr,
3587         &dev_attr_firmware_rev.attr,
3588         &dev_attr_cntlid.attr,
3589         &dev_attr_delete_controller.attr,
3590         &dev_attr_transport.attr,
3591         &dev_attr_subsysnqn.attr,
3592         &dev_attr_address.attr,
3593         &dev_attr_state.attr,
3594         &dev_attr_numa_node.attr,
3595         &dev_attr_queue_count.attr,
3596         &dev_attr_sqsize.attr,
3597         &dev_attr_hostnqn.attr,
3598         &dev_attr_hostid.attr,
3599         &dev_attr_ctrl_loss_tmo.attr,
3600         &dev_attr_reconnect_delay.attr,
3601         NULL
3602 };
3603
3604 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3605                 struct attribute *a, int n)
3606 {
3607         struct device *dev = container_of(kobj, struct device, kobj);
3608         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3609
3610         if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3611                 return 0;
3612         if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3613                 return 0;
3614         if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3615                 return 0;
3616         if (a == &dev_attr_hostid.attr && !ctrl->opts)
3617                 return 0;
3618         if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3619                 return 0;
3620         if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3621                 return 0;
3622
3623         return a->mode;
3624 }
3625
3626 static struct attribute_group nvme_dev_attrs_group = {
3627         .attrs          = nvme_dev_attrs,
3628         .is_visible     = nvme_dev_attrs_are_visible,
3629 };
3630
3631 static const struct attribute_group *nvme_dev_attr_groups[] = {
3632         &nvme_dev_attrs_group,
3633         NULL,
3634 };
3635
3636 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
3637                 unsigned nsid)
3638 {
3639         struct nvme_ns_head *h;
3640
3641         lockdep_assert_held(&subsys->lock);
3642
3643         list_for_each_entry(h, &subsys->nsheads, entry) {
3644                 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
3645                         return h;
3646         }
3647
3648         return NULL;
3649 }
3650
3651 static int __nvme_check_ids(struct nvme_subsystem *subsys,
3652                 struct nvme_ns_head *new)
3653 {
3654         struct nvme_ns_head *h;
3655
3656         lockdep_assert_held(&subsys->lock);
3657
3658         list_for_each_entry(h, &subsys->nsheads, entry) {
3659                 if (nvme_ns_ids_valid(&new->ids) &&
3660                     nvme_ns_ids_equal(&new->ids, &h->ids))
3661                         return -EINVAL;
3662         }
3663
3664         return 0;
3665 }
3666
3667 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3668                 unsigned nsid, struct nvme_ns_ids *ids)
3669 {
3670         struct nvme_ns_head *head;
3671         size_t size = sizeof(*head);
3672         int ret = -ENOMEM;
3673
3674 #ifdef CONFIG_NVME_MULTIPATH
3675         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3676 #endif
3677
3678         head = kzalloc(size, GFP_KERNEL);
3679         if (!head)
3680                 goto out;
3681         ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
3682         if (ret < 0)
3683                 goto out_free_head;
3684         head->instance = ret;
3685         INIT_LIST_HEAD(&head->list);
3686         ret = init_srcu_struct(&head->srcu);
3687         if (ret)
3688                 goto out_ida_remove;
3689         head->subsys = ctrl->subsys;
3690         head->ns_id = nsid;
3691         head->ids = *ids;
3692         kref_init(&head->ref);
3693
3694         ret = __nvme_check_ids(ctrl->subsys, head);
3695         if (ret) {
3696                 dev_err(ctrl->device,
3697                         "duplicate IDs for nsid %d\n", nsid);
3698                 goto out_cleanup_srcu;
3699         }
3700
3701         if (head->ids.csi) {
3702                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3703                 if (ret)
3704                         goto out_cleanup_srcu;
3705         } else
3706                 head->effects = ctrl->effects;
3707
3708         ret = nvme_mpath_alloc_disk(ctrl, head);
3709         if (ret)
3710                 goto out_cleanup_srcu;
3711
3712         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3713
3714         kref_get(&ctrl->subsys->ref);
3715
3716         return head;
3717 out_cleanup_srcu:
3718         cleanup_srcu_struct(&head->srcu);
3719 out_ida_remove:
3720         ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
3721 out_free_head:
3722         kfree(head);
3723 out:
3724         if (ret > 0)
3725                 ret = blk_status_to_errno(nvme_error_status(ret));
3726         return ERR_PTR(ret);
3727 }
3728
3729 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
3730                 struct nvme_ns_ids *ids, bool is_shared)
3731 {
3732         struct nvme_ctrl *ctrl = ns->ctrl;
3733         struct nvme_ns_head *head = NULL;
3734         int ret = 0;
3735
3736         mutex_lock(&ctrl->subsys->lock);
3737         head = nvme_find_ns_head(ctrl->subsys, nsid);
3738         if (!head) {
3739                 head = nvme_alloc_ns_head(ctrl, nsid, ids);
3740                 if (IS_ERR(head)) {
3741                         ret = PTR_ERR(head);
3742                         goto out_unlock;
3743                 }
3744                 head->shared = is_shared;
3745         } else {
3746                 ret = -EINVAL;
3747                 if (!is_shared || !head->shared) {
3748                         dev_err(ctrl->device,
3749                                 "Duplicate unshared namespace %d\n", nsid);
3750                         goto out_put_ns_head;
3751                 }
3752                 if (!nvme_ns_ids_equal(&head->ids, ids)) {
3753                         dev_err(ctrl->device,
3754                                 "IDs don't match for shared namespace %d\n",
3755                                         nsid);
3756                         goto out_put_ns_head;
3757                 }
3758         }
3759
3760         list_add_tail(&ns->siblings, &head->list);
3761         ns->head = head;
3762         mutex_unlock(&ctrl->subsys->lock);
3763         return 0;
3764
3765 out_put_ns_head:
3766         nvme_put_ns_head(head);
3767 out_unlock:
3768         mutex_unlock(&ctrl->subsys->lock);
3769         return ret;
3770 }
3771
3772 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
3773 {
3774         struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
3775         struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
3776
3777         return nsa->head->ns_id - nsb->head->ns_id;
3778 }
3779
3780 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3781 {
3782         struct nvme_ns *ns, *ret = NULL;
3783
3784         down_read(&ctrl->namespaces_rwsem);
3785         list_for_each_entry(ns, &ctrl->namespaces, list) {
3786                 if (ns->head->ns_id == nsid) {
3787                         if (!kref_get_unless_zero(&ns->kref))
3788                                 continue;
3789                         ret = ns;
3790                         break;
3791                 }
3792                 if (ns->head->ns_id > nsid)
3793                         break;
3794         }
3795         up_read(&ctrl->namespaces_rwsem);
3796         return ret;
3797 }
3798 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3799
3800 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
3801                 struct nvme_ns_ids *ids)
3802 {
3803         struct nvme_ns *ns;
3804         struct gendisk *disk;
3805         struct nvme_id_ns *id;
3806         char disk_name[DISK_NAME_LEN];
3807         int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
3808
3809         if (nvme_identify_ns(ctrl, nsid, ids, &id))
3810                 return;
3811
3812         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3813         if (!ns)
3814                 goto out_free_id;
3815
3816         ns->queue = blk_mq_init_queue(ctrl->tagset);
3817         if (IS_ERR(ns->queue))
3818                 goto out_free_ns;
3819
3820         if (ctrl->opts && ctrl->opts->data_digest)
3821                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3822
3823         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3824         if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
3825                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3826
3827         ns->queue->queuedata = ns;
3828         ns->ctrl = ctrl;
3829         kref_init(&ns->kref);
3830
3831         ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
3832         if (ret)
3833                 goto out_free_queue;
3834         nvme_set_disk_name(disk_name, ns, ctrl, &flags);
3835
3836         disk = alloc_disk_node(0, node);
3837         if (!disk)
3838                 goto out_unlink_ns;
3839
3840         disk->fops = &nvme_fops;
3841         disk->private_data = ns;
3842         disk->queue = ns->queue;
3843         disk->flags = flags;
3844         memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3845         ns->disk = disk;
3846
3847         if (nvme_update_ns_info(ns, id))
3848                 goto out_put_disk;
3849
3850         if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3851                 ret = nvme_nvm_register(ns, disk_name, node);
3852                 if (ret) {
3853                         dev_warn(ctrl->device, "LightNVM init failure\n");
3854                         goto out_put_disk;
3855                 }
3856         }
3857
3858         down_write(&ctrl->namespaces_rwsem);
3859         list_add_tail(&ns->list, &ctrl->namespaces);
3860         up_write(&ctrl->namespaces_rwsem);
3861
3862         nvme_get_ctrl(ctrl);
3863
3864         device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
3865
3866         nvme_mpath_add_disk(ns, id);
3867         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3868         kfree(id);
3869
3870         return;
3871  out_put_disk:
3872         /* prevent double queue cleanup */
3873         ns->disk->queue = NULL;
3874         put_disk(ns->disk);
3875  out_unlink_ns:
3876         mutex_lock(&ctrl->subsys->lock);
3877         list_del_rcu(&ns->siblings);
3878         if (list_empty(&ns->head->list))
3879                 list_del_init(&ns->head->entry);
3880         mutex_unlock(&ctrl->subsys->lock);
3881         nvme_put_ns_head(ns->head);
3882  out_free_queue:
3883         blk_cleanup_queue(ns->queue);
3884  out_free_ns:
3885         kfree(ns);
3886  out_free_id:
3887         kfree(id);
3888 }
3889
3890 static void nvme_ns_remove(struct nvme_ns *ns)
3891 {
3892         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3893                 return;
3894
3895         set_capacity(ns->disk, 0);
3896         nvme_fault_inject_fini(&ns->fault_inject);
3897
3898         mutex_lock(&ns->ctrl->subsys->lock);
3899         list_del_rcu(&ns->siblings);
3900         if (list_empty(&ns->head->list))
3901                 list_del_init(&ns->head->entry);
3902         mutex_unlock(&ns->ctrl->subsys->lock);
3903
3904         synchronize_rcu(); /* guarantee not available in head->list */
3905         nvme_mpath_clear_current_path(ns);
3906         synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
3907
3908         if (ns->disk->flags & GENHD_FL_UP) {
3909                 del_gendisk(ns->disk);
3910                 blk_cleanup_queue(ns->queue);
3911                 if (blk_get_integrity(ns->disk))
3912                         blk_integrity_unregister(ns->disk);
3913         }
3914
3915         down_write(&ns->ctrl->namespaces_rwsem);
3916         list_del_init(&ns->list);
3917         up_write(&ns->ctrl->namespaces_rwsem);
3918
3919         nvme_mpath_check_last_path(ns);
3920         nvme_put_ns(ns);
3921 }
3922
3923 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3924 {
3925         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3926
3927         if (ns) {
3928                 nvme_ns_remove(ns);
3929                 nvme_put_ns(ns);
3930         }
3931 }
3932
3933 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
3934 {
3935         struct nvme_id_ns *id;
3936         int ret = -ENODEV;
3937
3938         if (test_bit(NVME_NS_DEAD, &ns->flags))
3939                 goto out;
3940
3941         ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
3942         if (ret)
3943                 goto out;
3944
3945         ret = -ENODEV;
3946         if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
3947                 dev_err(ns->ctrl->device,
3948                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3949                 goto out_free_id;
3950         }
3951
3952         ret = nvme_update_ns_info(ns, id);
3953
3954 out_free_id:
3955         kfree(id);
3956 out:
3957         /*
3958          * Only remove the namespace if we got a fatal error back from the
3959          * device, otherwise ignore the error and just move on.
3960          *
3961          * TODO: we should probably schedule a delayed retry here.
3962          */
3963         if (ret && ret != -ENOMEM && !(ret > 0 && !(ret & NVME_SC_DNR)))
3964                 nvme_ns_remove(ns);
3965         else
3966                 revalidate_disk_size(ns->disk, true);
3967 }
3968
3969 static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3970 {
3971         struct nvme_ns_ids ids = { };
3972         struct nvme_ns *ns;
3973
3974         if (nvme_identify_ns_descs(ctrl, nsid, &ids))
3975                 return;
3976
3977         ns = nvme_find_get_ns(ctrl, nsid);
3978         if (ns) {
3979                 nvme_validate_ns(ns, &ids);
3980                 nvme_put_ns(ns);
3981                 return;
3982         }
3983
3984         switch (ids.csi) {
3985         case NVME_CSI_NVM:
3986                 nvme_alloc_ns(ctrl, nsid, &ids);
3987                 break;
3988         case NVME_CSI_ZNS:
3989                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
3990                         dev_warn(ctrl->device,
3991                                 "nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
3992                                 nsid);
3993                         break;
3994                 }
3995                 nvme_alloc_ns(ctrl, nsid, &ids);
3996                 break;
3997         default:
3998                 dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
3999                         ids.csi, nsid);
4000                 break;
4001         }
4002 }
4003
4004 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4005                                         unsigned nsid)
4006 {
4007         struct nvme_ns *ns, *next;
4008         LIST_HEAD(rm_list);
4009
4010         down_write(&ctrl->namespaces_rwsem);
4011         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4012                 if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4013                         list_move_tail(&ns->list, &rm_list);
4014         }
4015         up_write(&ctrl->namespaces_rwsem);
4016
4017         list_for_each_entry_safe(ns, next, &rm_list, list)
4018                 nvme_ns_remove(ns);
4019
4020 }
4021
4022 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4023 {
4024         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4025         __le32 *ns_list;
4026         u32 prev = 0;
4027         int ret = 0, i;
4028
4029         if (nvme_ctrl_limited_cns(ctrl))
4030                 return -EOPNOTSUPP;
4031
4032         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4033         if (!ns_list)
4034                 return -ENOMEM;
4035
4036         for (;;) {
4037                 struct nvme_command cmd = {
4038                         .identify.opcode        = nvme_admin_identify,
4039                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
4040                         .identify.nsid          = cpu_to_le32(prev),
4041                 };
4042
4043                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4044                                             NVME_IDENTIFY_DATA_SIZE);
4045                 if (ret)
4046                         goto free;
4047
4048                 for (i = 0; i < nr_entries; i++) {
4049                         u32 nsid = le32_to_cpu(ns_list[i]);
4050
4051                         if (!nsid)      /* end of the list? */
4052                                 goto out;
4053                         nvme_validate_or_alloc_ns(ctrl, nsid);
4054                         while (++prev < nsid)
4055                                 nvme_ns_remove_by_nsid(ctrl, prev);
4056                 }
4057         }
4058  out:
4059         nvme_remove_invalid_namespaces(ctrl, prev);
4060  free:
4061         kfree(ns_list);
4062         return ret;
4063 }
4064
4065 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4066 {
4067         struct nvme_id_ctrl *id;
4068         u32 nn, i;
4069
4070         if (nvme_identify_ctrl(ctrl, &id))
4071                 return;
4072         nn = le32_to_cpu(id->nn);
4073         kfree(id);
4074
4075         for (i = 1; i <= nn; i++)
4076                 nvme_validate_or_alloc_ns(ctrl, i);
4077
4078         nvme_remove_invalid_namespaces(ctrl, nn);
4079 }
4080
4081 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4082 {
4083         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4084         __le32 *log;
4085         int error;
4086
4087         log = kzalloc(log_size, GFP_KERNEL);
4088         if (!log)
4089                 return;
4090
4091         /*
4092          * We need to read the log to clear the AEN, but we don't want to rely
4093          * on it for the changed namespace information as userspace could have
4094          * raced with us in reading the log page, which could cause us to miss
4095          * updates.
4096          */
4097         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4098                         NVME_CSI_NVM, log, log_size, 0);
4099         if (error)
4100                 dev_warn(ctrl->device,
4101                         "reading changed ns log failed: %d\n", error);
4102
4103         kfree(log);
4104 }
4105
4106 static void nvme_scan_work(struct work_struct *work)
4107 {
4108         struct nvme_ctrl *ctrl =
4109                 container_of(work, struct nvme_ctrl, scan_work);
4110
4111         /* No tagset on a live ctrl means IO queues could not created */
4112         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4113                 return;
4114
4115         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4116                 dev_info(ctrl->device, "rescanning namespaces.\n");
4117                 nvme_clear_changed_ns_log(ctrl);
4118         }
4119
4120         mutex_lock(&ctrl->scan_lock);
4121         if (nvme_scan_ns_list(ctrl) != 0)
4122                 nvme_scan_ns_sequential(ctrl);
4123         mutex_unlock(&ctrl->scan_lock);
4124
4125         down_write(&ctrl->namespaces_rwsem);
4126         list_sort(NULL, &ctrl->namespaces, ns_cmp);
4127         up_write(&ctrl->namespaces_rwsem);
4128 }
4129
4130 /*
4131  * This function iterates the namespace list unlocked to allow recovery from
4132  * controller failure. It is up to the caller to ensure the namespace list is
4133  * not modified by scan work while this function is executing.
4134  */
4135 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4136 {
4137         struct nvme_ns *ns, *next;
4138         LIST_HEAD(ns_list);
4139
4140         /*
4141          * make sure to requeue I/O to all namespaces as these
4142          * might result from the scan itself and must complete
4143          * for the scan_work to make progress
4144          */
4145         nvme_mpath_clear_ctrl_paths(ctrl);
4146
4147         /* prevent racing with ns scanning */
4148         flush_work(&ctrl->scan_work);
4149
4150         /*
4151          * The dead states indicates the controller was not gracefully
4152          * disconnected. In that case, we won't be able to flush any data while
4153          * removing the namespaces' disks; fail all the queues now to avoid
4154          * potentially having to clean up the failed sync later.
4155          */
4156         if (ctrl->state == NVME_CTRL_DEAD)
4157                 nvme_kill_queues(ctrl);
4158
4159         /* this is a no-op when called from the controller reset handler */
4160         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4161
4162         down_write(&ctrl->namespaces_rwsem);
4163         list_splice_init(&ctrl->namespaces, &ns_list);
4164         up_write(&ctrl->namespaces_rwsem);
4165
4166         list_for_each_entry_safe(ns, next, &ns_list, list)
4167                 nvme_ns_remove(ns);
4168 }
4169 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4170
4171 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4172 {
4173         struct nvme_ctrl *ctrl =
4174                 container_of(dev, struct nvme_ctrl, ctrl_device);
4175         struct nvmf_ctrl_options *opts = ctrl->opts;
4176         int ret;
4177
4178         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4179         if (ret)
4180                 return ret;
4181
4182         if (opts) {
4183                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4184                 if (ret)
4185                         return ret;
4186
4187                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4188                                 opts->trsvcid ?: "none");
4189                 if (ret)
4190                         return ret;
4191
4192                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4193                                 opts->host_traddr ?: "none");
4194         }
4195         return ret;
4196 }
4197
4198 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4199 {
4200         char *envp[2] = { NULL, NULL };
4201         u32 aen_result = ctrl->aen_result;
4202
4203         ctrl->aen_result = 0;
4204         if (!aen_result)
4205                 return;
4206
4207         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4208         if (!envp[0])
4209                 return;
4210         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4211         kfree(envp[0]);
4212 }
4213
4214 static void nvme_async_event_work(struct work_struct *work)
4215 {
4216         struct nvme_ctrl *ctrl =
4217                 container_of(work, struct nvme_ctrl, async_event_work);
4218
4219         nvme_aen_uevent(ctrl);
4220         ctrl->ops->submit_async_event(ctrl);
4221 }
4222
4223 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4224 {
4225
4226         u32 csts;
4227
4228         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4229                 return false;
4230
4231         if (csts == ~0)
4232                 return false;
4233
4234         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4235 }
4236
4237 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4238 {
4239         struct nvme_fw_slot_info_log *log;
4240
4241         log = kmalloc(sizeof(*log), GFP_KERNEL);
4242         if (!log)
4243                 return;
4244
4245         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4246                         log, sizeof(*log), 0))
4247                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4248         kfree(log);
4249 }
4250
4251 static void nvme_fw_act_work(struct work_struct *work)
4252 {
4253         struct nvme_ctrl *ctrl = container_of(work,
4254                                 struct nvme_ctrl, fw_act_work);
4255         unsigned long fw_act_timeout;
4256
4257         if (ctrl->mtfa)
4258                 fw_act_timeout = jiffies +
4259                                 msecs_to_jiffies(ctrl->mtfa * 100);
4260         else
4261                 fw_act_timeout = jiffies +
4262                                 msecs_to_jiffies(admin_timeout * 1000);
4263
4264         nvme_stop_queues(ctrl);
4265         while (nvme_ctrl_pp_status(ctrl)) {
4266                 if (time_after(jiffies, fw_act_timeout)) {
4267                         dev_warn(ctrl->device,
4268                                 "Fw activation timeout, reset controller\n");
4269                         nvme_try_sched_reset(ctrl);
4270                         return;
4271                 }
4272                 msleep(100);
4273         }
4274
4275         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4276                 return;
4277
4278         nvme_start_queues(ctrl);
4279         /* read FW slot information to clear the AER */
4280         nvme_get_fw_slot_info(ctrl);
4281 }
4282
4283 static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4284 {
4285         u32 aer_notice_type = (result & 0xff00) >> 8;
4286
4287         trace_nvme_async_event(ctrl, aer_notice_type);
4288
4289         switch (aer_notice_type) {
4290         case NVME_AER_NOTICE_NS_CHANGED:
4291                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4292                 nvme_queue_scan(ctrl);
4293                 break;
4294         case NVME_AER_NOTICE_FW_ACT_STARTING:
4295                 /*
4296                  * We are (ab)using the RESETTING state to prevent subsequent
4297                  * recovery actions from interfering with the controller's
4298                  * firmware activation.
4299                  */
4300                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
4301                         queue_work(nvme_wq, &ctrl->fw_act_work);
4302                 break;
4303 #ifdef CONFIG_NVME_MULTIPATH
4304         case NVME_AER_NOTICE_ANA:
4305                 if (!ctrl->ana_log_buf)
4306                         break;
4307                 queue_work(nvme_wq, &ctrl->ana_work);
4308                 break;
4309 #endif
4310         case NVME_AER_NOTICE_DISC_CHANGED:
4311                 ctrl->aen_result = result;
4312                 break;
4313         default:
4314                 dev_warn(ctrl->device, "async event result %08x\n", result);
4315         }
4316 }
4317
4318 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4319                 volatile union nvme_result *res)
4320 {
4321         u32 result = le32_to_cpu(res->u32);
4322         u32 aer_type = result & 0x07;
4323
4324         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4325                 return;
4326
4327         switch (aer_type) {
4328         case NVME_AER_NOTICE:
4329                 nvme_handle_aen_notice(ctrl, result);
4330                 break;
4331         case NVME_AER_ERROR:
4332         case NVME_AER_SMART:
4333         case NVME_AER_CSS:
4334         case NVME_AER_VS:
4335                 trace_nvme_async_event(ctrl, aer_type);
4336                 ctrl->aen_result = result;
4337                 break;
4338         default:
4339                 break;
4340         }
4341         queue_work(nvme_wq, &ctrl->async_event_work);
4342 }
4343 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4344
4345 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4346 {
4347         nvme_mpath_stop(ctrl);
4348         nvme_stop_keep_alive(ctrl);
4349         flush_work(&ctrl->async_event_work);
4350         cancel_work_sync(&ctrl->fw_act_work);
4351 }
4352 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4353
4354 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4355 {
4356         nvme_start_keep_alive(ctrl);
4357
4358         nvme_enable_aen(ctrl);
4359
4360         if (ctrl->queue_count > 1) {
4361                 nvme_queue_scan(ctrl);
4362                 nvme_start_queues(ctrl);
4363         }
4364 }
4365 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4366
4367 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4368 {
4369         nvme_fault_inject_fini(&ctrl->fault_inject);
4370         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4371         cdev_device_del(&ctrl->cdev, ctrl->device);
4372         nvme_put_ctrl(ctrl);
4373 }
4374 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4375
4376 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4377 {
4378         struct nvme_effects_log *cel;
4379         unsigned long i;
4380
4381         xa_for_each (&ctrl->cels, i, cel) {
4382                 xa_erase(&ctrl->cels, i);
4383                 kfree(cel);
4384         }
4385
4386         xa_destroy(&ctrl->cels);
4387 }
4388
4389 static void nvme_free_ctrl(struct device *dev)
4390 {
4391         struct nvme_ctrl *ctrl =
4392                 container_of(dev, struct nvme_ctrl, ctrl_device);
4393         struct nvme_subsystem *subsys = ctrl->subsys;
4394
4395         if (!subsys || ctrl->instance != subsys->instance)
4396                 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4397
4398         nvme_free_cels(ctrl);
4399         nvme_mpath_uninit(ctrl);
4400         __free_page(ctrl->discard_page);
4401
4402         if (subsys) {
4403                 mutex_lock(&nvme_subsystems_lock);
4404                 list_del(&ctrl->subsys_entry);
4405                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4406                 mutex_unlock(&nvme_subsystems_lock);
4407         }
4408
4409         ctrl->ops->free_ctrl(ctrl);
4410
4411         if (subsys)
4412                 nvme_put_subsystem(subsys);
4413 }
4414
4415 /*
4416  * Initialize a NVMe controller structures.  This needs to be called during
4417  * earliest initialization so that we have the initialized structured around
4418  * during probing.
4419  */
4420 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4421                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4422 {
4423         int ret;
4424
4425         ctrl->state = NVME_CTRL_NEW;
4426         spin_lock_init(&ctrl->lock);
4427         mutex_init(&ctrl->scan_lock);
4428         INIT_LIST_HEAD(&ctrl->namespaces);
4429         xa_init(&ctrl->cels);
4430         init_rwsem(&ctrl->namespaces_rwsem);
4431         ctrl->dev = dev;
4432         ctrl->ops = ops;
4433         ctrl->quirks = quirks;
4434         ctrl->numa_node = NUMA_NO_NODE;
4435         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4436         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4437         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4438         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4439         init_waitqueue_head(&ctrl->state_wq);
4440
4441         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4442         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4443         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4444
4445         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4446                         PAGE_SIZE);
4447         ctrl->discard_page = alloc_page(GFP_KERNEL);
4448         if (!ctrl->discard_page) {
4449                 ret = -ENOMEM;
4450                 goto out;
4451         }
4452
4453         ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
4454         if (ret < 0)
4455                 goto out;
4456         ctrl->instance = ret;
4457
4458         device_initialize(&ctrl->ctrl_device);
4459         ctrl->device = &ctrl->ctrl_device;
4460         ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
4461         ctrl->device->class = nvme_class;
4462         ctrl->device->parent = ctrl->dev;
4463         ctrl->device->groups = nvme_dev_attr_groups;
4464         ctrl->device->release = nvme_free_ctrl;
4465         dev_set_drvdata(ctrl->device, ctrl);
4466         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4467         if (ret)
4468                 goto out_release_instance;
4469
4470         nvme_get_ctrl(ctrl);
4471         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4472         ctrl->cdev.owner = ops->module;
4473         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4474         if (ret)
4475                 goto out_free_name;
4476
4477         /*
4478          * Initialize latency tolerance controls.  The sysfs files won't
4479          * be visible to userspace unless the device actually supports APST.
4480          */
4481         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4482         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4483                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4484
4485         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4486
4487         return 0;
4488 out_free_name:
4489         nvme_put_ctrl(ctrl);
4490         kfree_const(ctrl->device->kobj.name);
4491 out_release_instance:
4492         ida_simple_remove(&nvme_instance_ida, ctrl->instance);
4493 out:
4494         if (ctrl->discard_page)
4495                 __free_page(ctrl->discard_page);
4496         return ret;
4497 }
4498 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4499
4500 /**
4501  * nvme_kill_queues(): Ends all namespace queues
4502  * @ctrl: the dead controller that needs to end
4503  *
4504  * Call this function when the driver determines it is unable to get the
4505  * controller in a state capable of servicing IO.
4506  */
4507 void nvme_kill_queues(struct nvme_ctrl *ctrl)
4508 {
4509         struct nvme_ns *ns;
4510
4511         down_read(&ctrl->namespaces_rwsem);
4512
4513         /* Forcibly unquiesce queues to avoid blocking dispatch */
4514         if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
4515                 blk_mq_unquiesce_queue(ctrl->admin_q);
4516
4517         list_for_each_entry(ns, &ctrl->namespaces, list)
4518                 nvme_set_queue_dying(ns);
4519
4520         up_read(&ctrl->namespaces_rwsem);
4521 }
4522 EXPORT_SYMBOL_GPL(nvme_kill_queues);
4523
4524 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4525 {
4526         struct nvme_ns *ns;
4527
4528         down_read(&ctrl->namespaces_rwsem);
4529         list_for_each_entry(ns, &ctrl->namespaces, list)
4530                 blk_mq_unfreeze_queue(ns->queue);
4531         up_read(&ctrl->namespaces_rwsem);
4532 }
4533 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4534
4535 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4536 {
4537         struct nvme_ns *ns;
4538
4539         down_read(&ctrl->namespaces_rwsem);
4540         list_for_each_entry(ns, &ctrl->namespaces, list) {
4541                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4542                 if (timeout <= 0)
4543                         break;
4544         }
4545         up_read(&ctrl->namespaces_rwsem);
4546         return timeout;
4547 }
4548 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4549
4550 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4551 {
4552         struct nvme_ns *ns;
4553
4554         down_read(&ctrl->namespaces_rwsem);
4555         list_for_each_entry(ns, &ctrl->namespaces, list)
4556                 blk_mq_freeze_queue_wait(ns->queue);
4557         up_read(&ctrl->namespaces_rwsem);
4558 }
4559 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4560
4561 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4562 {
4563         struct nvme_ns *ns;
4564
4565         down_read(&ctrl->namespaces_rwsem);
4566         list_for_each_entry(ns, &ctrl->namespaces, list)
4567                 blk_freeze_queue_start(ns->queue);
4568         up_read(&ctrl->namespaces_rwsem);
4569 }
4570 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4571
4572 void nvme_stop_queues(struct nvme_ctrl *ctrl)
4573 {
4574         struct nvme_ns *ns;
4575
4576         down_read(&ctrl->namespaces_rwsem);
4577         list_for_each_entry(ns, &ctrl->namespaces, list)
4578                 blk_mq_quiesce_queue(ns->queue);
4579         up_read(&ctrl->namespaces_rwsem);
4580 }
4581 EXPORT_SYMBOL_GPL(nvme_stop_queues);
4582
4583 void nvme_start_queues(struct nvme_ctrl *ctrl)
4584 {
4585         struct nvme_ns *ns;
4586
4587         down_read(&ctrl->namespaces_rwsem);
4588         list_for_each_entry(ns, &ctrl->namespaces, list)
4589                 blk_mq_unquiesce_queue(ns->queue);
4590         up_read(&ctrl->namespaces_rwsem);
4591 }
4592 EXPORT_SYMBOL_GPL(nvme_start_queues);
4593
4594 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4595 {
4596         struct nvme_ns *ns;
4597
4598         down_read(&ctrl->namespaces_rwsem);
4599         list_for_each_entry(ns, &ctrl->namespaces, list)
4600                 blk_sync_queue(ns->queue);
4601         up_read(&ctrl->namespaces_rwsem);
4602 }
4603 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4604
4605 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4606 {
4607         nvme_sync_io_queues(ctrl);
4608         if (ctrl->admin_q)
4609                 blk_sync_queue(ctrl->admin_q);
4610 }
4611 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4612
4613 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4614 {
4615         if (file->f_op != &nvme_dev_fops)
4616                 return NULL;
4617         return file->private_data;
4618 }
4619 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4620
4621 /*
4622  * Check we didn't inadvertently grow the command structure sizes:
4623  */
4624 static inline void _nvme_check_size(void)
4625 {
4626         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4627         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4628         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4629         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4630         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4631         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4632         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4633         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4634         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4635         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4636         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4637         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4638         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4639         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4640         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4641         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4642         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4643         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4644         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4645 }
4646
4647
4648 static int __init nvme_core_init(void)
4649 {
4650         int result = -ENOMEM;
4651
4652         _nvme_check_size();
4653
4654         nvme_wq = alloc_workqueue("nvme-wq",
4655                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4656         if (!nvme_wq)
4657                 goto out;
4658
4659         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4660                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4661         if (!nvme_reset_wq)
4662                 goto destroy_wq;
4663
4664         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4665                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4666         if (!nvme_delete_wq)
4667                 goto destroy_reset_wq;
4668
4669         result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
4670         if (result < 0)
4671                 goto destroy_delete_wq;
4672
4673         nvme_class = class_create(THIS_MODULE, "nvme");
4674         if (IS_ERR(nvme_class)) {
4675                 result = PTR_ERR(nvme_class);
4676                 goto unregister_chrdev;
4677         }
4678         nvme_class->dev_uevent = nvme_class_uevent;
4679
4680         nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
4681         if (IS_ERR(nvme_subsys_class)) {
4682                 result = PTR_ERR(nvme_subsys_class);
4683                 goto destroy_class;
4684         }
4685         return 0;
4686
4687 destroy_class:
4688         class_destroy(nvme_class);
4689 unregister_chrdev:
4690         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4691 destroy_delete_wq:
4692         destroy_workqueue(nvme_delete_wq);
4693 destroy_reset_wq:
4694         destroy_workqueue(nvme_reset_wq);
4695 destroy_wq:
4696         destroy_workqueue(nvme_wq);
4697 out:
4698         return result;
4699 }
4700
4701 static void __exit nvme_core_exit(void)
4702 {
4703         class_destroy(nvme_subsys_class);
4704         class_destroy(nvme_class);
4705         unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
4706         destroy_workqueue(nvme_delete_wq);
4707         destroy_workqueue(nvme_reset_wq);
4708         destroy_workqueue(nvme_wq);
4709         ida_destroy(&nvme_instance_ida);
4710 }
4711
4712 MODULE_LICENSE("GPL");
4713 MODULE_VERSION("1.0");
4714 module_init(nvme_core_init);
4715 module_exit(nvme_core_exit);