ACPI: Make AC and battery drivers available on !X86
[sfrench/cifs-2.6.git] / drivers / net / wireless / realtek / rtw88 / phy.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4
5 #include <linux/bcd.h>
6
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12
13 struct phy_cfg_pair {
14         u32 addr;
15         u32 data;
16 };
17
18 union phy_table_tile {
19         struct rtw_phy_cond cond;
20         struct phy_cfg_pair cfg;
21 };
22
23 struct phy_pg_cfg_pair {
24         u32 band;
25         u32 rf_path;
26         u32 tx_num;
27         u32 addr;
28         u32 bitmask;
29         u32 data;
30 };
31
32 struct txpwr_lmt_cfg_pair {
33         u8 regd;
34         u8 band;
35         u8 bw;
36         u8 rs;
37         u8 ch;
38         s8 txpwr_lmt;
39 };
40
41 static const u32 db_invert_table[12][8] = {
42         {10,            13,             16,             20,
43          25,            32,             40,             50},
44         {64,            80,             101,            128,
45          160,           201,            256,            318},
46         {401,           505,            635,            800,
47          1007,          1268,           1596,           2010},
48         {316,           398,            501,            631,
49          794,           1000,           1259,           1585},
50         {1995,          2512,           3162,           3981,
51          5012,          6310,           7943,           10000},
52         {12589,         15849,          19953,          25119,
53          31623,         39811,          50119,          63098},
54         {79433,         100000,         125893,         158489,
55          199526,        251189,         316228,         398107},
56         {501187,        630957,         794328,         1000000,
57          1258925,       1584893,        1995262,        2511886},
58         {3162278,       3981072,        5011872,        6309573,
59          7943282,       1000000,        12589254,       15848932},
60         {19952623,      25118864,       31622777,       39810717,
61          50118723,      63095734,       79432823,       100000000},
62         {125892541,     158489319,      199526232,      251188643,
63          316227766,     398107171,      501187234,      630957345},
64         {794328235,     1000000000,     1258925412,     1584893192,
65          1995262315,    2511886432U,    3162277660U,    3981071706U}
66 };
67
68 enum rtw_phy_band_type {
69         PHY_BAND_2G     = 0,
70         PHY_BAND_5G     = 1,
71 };
72
73 void rtw_phy_init(struct rtw_dev *rtwdev)
74 {
75         struct rtw_chip_info *chip = rtwdev->chip;
76         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
77         u32 addr, mask;
78
79         dm_info->fa_history[3] = 0;
80         dm_info->fa_history[2] = 0;
81         dm_info->fa_history[1] = 0;
82         dm_info->fa_history[0] = 0;
83         dm_info->igi_bitmap = 0;
84         dm_info->igi_history[3] = 0;
85         dm_info->igi_history[2] = 0;
86         dm_info->igi_history[1] = 0;
87
88         addr = chip->dig[0].addr;
89         mask = chip->dig[0].mask;
90         dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
91 }
92
93 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
94 {
95         struct rtw_chip_info *chip = rtwdev->chip;
96         struct rtw_hal *hal = &rtwdev->hal;
97         u32 addr, mask;
98         u8 path;
99
100         for (path = 0; path < hal->rf_path_num; path++) {
101                 addr = chip->dig[path].addr;
102                 mask = chip->dig[path].mask;
103                 rtw_write32_mask(rtwdev, addr, mask, igi);
104         }
105 }
106
107 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
108 {
109         struct rtw_chip_info *chip = rtwdev->chip;
110
111         chip->ops->false_alarm_statistics(rtwdev);
112 }
113
114 #define RA_FLOOR_TABLE_SIZE     7
115 #define RA_FLOOR_UP_GAP         3
116
117 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
118 {
119         u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
120         u8 new_level = 0;
121         int i;
122
123         for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
124                 if (i >= old_level)
125                         table[i] += RA_FLOOR_UP_GAP;
126
127         for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
128                 if (rssi < table[i]) {
129                         new_level = i;
130                         break;
131                 }
132         }
133
134         return new_level;
135 }
136
137 struct rtw_phy_stat_iter_data {
138         struct rtw_dev *rtwdev;
139         u8 min_rssi;
140 };
141
142 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
143 {
144         struct rtw_phy_stat_iter_data *iter_data = data;
145         struct rtw_dev *rtwdev = iter_data->rtwdev;
146         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
147         u8 rssi, rssi_level;
148
149         rssi = ewma_rssi_read(&si->avg_rssi);
150         rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
151
152         rtw_fw_send_rssi_info(rtwdev, si);
153
154         iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
155 }
156
157 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
158 {
159         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
160         struct rtw_phy_stat_iter_data data = {};
161
162         data.rtwdev = rtwdev;
163         data.min_rssi = U8_MAX;
164         rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
165
166         dm_info->pre_min_rssi = dm_info->min_rssi;
167         dm_info->min_rssi = data.min_rssi;
168 }
169
170 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
171 {
172         rtw_phy_stat_rssi(rtwdev);
173         rtw_phy_stat_false_alarm(rtwdev);
174 }
175
176 #define DIG_PERF_FA_TH_LOW                      250
177 #define DIG_PERF_FA_TH_HIGH                     500
178 #define DIG_PERF_FA_TH_EXTRA_HIGH               750
179 #define DIG_PERF_MAX                            0x5a
180 #define DIG_PERF_MID                            0x40
181 #define DIG_CVRG_FA_TH_LOW                      2000
182 #define DIG_CVRG_FA_TH_HIGH                     4000
183 #define DIG_CVRG_FA_TH_EXTRA_HIGH               5000
184 #define DIG_CVRG_MAX                            0x2a
185 #define DIG_CVRG_MID                            0x26
186 #define DIG_CVRG_MIN                            0x1c
187 #define DIG_RSSI_GAIN_OFFSET                    15
188
189 static bool
190 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
191 {
192         u16 fa_lo = DIG_PERF_FA_TH_LOW;
193         u16 fa_hi = DIG_PERF_FA_TH_HIGH;
194         u16 *fa_history;
195         u8 *igi_history;
196         u8 damping_rssi;
197         u8 min_rssi;
198         u8 diff;
199         u8 igi_bitmap;
200         bool damping = false;
201
202         min_rssi = dm_info->min_rssi;
203         if (dm_info->damping) {
204                 damping_rssi = dm_info->damping_rssi;
205                 diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
206                                                  damping_rssi - min_rssi;
207                 if (diff > 3 || dm_info->damping_cnt++ > 20) {
208                         dm_info->damping = false;
209                         return false;
210                 }
211
212                 return true;
213         }
214
215         igi_history = dm_info->igi_history;
216         fa_history = dm_info->fa_history;
217         igi_bitmap = dm_info->igi_bitmap & 0xf;
218         switch (igi_bitmap) {
219         case 5:
220                 /* down -> up -> down -> up */
221                 if (igi_history[0] > igi_history[1] &&
222                     igi_history[2] > igi_history[3] &&
223                     igi_history[0] - igi_history[1] >= 2 &&
224                     igi_history[2] - igi_history[3] >= 2 &&
225                     fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
226                     fa_history[2] > fa_hi && fa_history[3] < fa_lo)
227                         damping = true;
228                 break;
229         case 9:
230                 /* up -> down -> down -> up */
231                 if (igi_history[0] > igi_history[1] &&
232                     igi_history[3] > igi_history[2] &&
233                     igi_history[0] - igi_history[1] >= 4 &&
234                     igi_history[3] - igi_history[2] >= 2 &&
235                     fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
236                     fa_history[2] < fa_lo && fa_history[3] > fa_hi)
237                         damping = true;
238                 break;
239         default:
240                 return false;
241         }
242
243         if (damping) {
244                 dm_info->damping = true;
245                 dm_info->damping_cnt = 0;
246                 dm_info->damping_rssi = min_rssi;
247         }
248
249         return damping;
250 }
251
252 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
253                                      u8 *upper, u8 *lower, bool linked)
254 {
255         u8 dig_max, dig_min, dig_mid;
256         u8 min_rssi;
257
258         if (linked) {
259                 dig_max = DIG_PERF_MAX;
260                 dig_mid = DIG_PERF_MID;
261                 /* 22B=0x1c, 22C=0x20 */
262                 dig_min = 0x1c;
263                 min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
264         } else {
265                 dig_max = DIG_CVRG_MAX;
266                 dig_mid = DIG_CVRG_MID;
267                 dig_min = DIG_CVRG_MIN;
268                 min_rssi = dig_min;
269         }
270
271         /* DIG MAX should be bounded by minimum RSSI with offset +15 */
272         dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
273
274         *lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
275         *upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
276 }
277
278 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
279                                       u16 *fa_th, u8 *step, bool linked)
280 {
281         u8 min_rssi, pre_min_rssi;
282
283         min_rssi = dm_info->min_rssi;
284         pre_min_rssi = dm_info->pre_min_rssi;
285         step[0] = 4;
286         step[1] = 3;
287         step[2] = 2;
288
289         if (linked) {
290                 fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
291                 fa_th[1] = DIG_PERF_FA_TH_HIGH;
292                 fa_th[2] = DIG_PERF_FA_TH_LOW;
293                 if (pre_min_rssi > min_rssi) {
294                         step[0] = 6;
295                         step[1] = 4;
296                         step[2] = 2;
297                 }
298         } else {
299                 fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
300                 fa_th[1] = DIG_CVRG_FA_TH_HIGH;
301                 fa_th[2] = DIG_CVRG_FA_TH_LOW;
302         }
303 }
304
305 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
306 {
307         u8 *igi_history;
308         u16 *fa_history;
309         u8 igi_bitmap;
310         bool up;
311
312         igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
313         igi_history = dm_info->igi_history;
314         fa_history = dm_info->fa_history;
315
316         up = igi > igi_history[0];
317         igi_bitmap |= up;
318
319         igi_history[3] = igi_history[2];
320         igi_history[2] = igi_history[1];
321         igi_history[1] = igi_history[0];
322         igi_history[0] = igi;
323
324         fa_history[3] = fa_history[2];
325         fa_history[2] = fa_history[1];
326         fa_history[1] = fa_history[0];
327         fa_history[0] = fa;
328
329         dm_info->igi_bitmap = igi_bitmap;
330 }
331
332 static void rtw_phy_dig(struct rtw_dev *rtwdev)
333 {
334         struct rtw_dm_info *dm_info = &rtwdev->dm_info;
335         u8 upper_bound, lower_bound;
336         u8 pre_igi, cur_igi;
337         u16 fa_th[3], fa_cnt;
338         u8 level;
339         u8 step[3];
340         bool linked;
341
342         if (rtw_flag_check(rtwdev, RTW_FLAG_DIG_DISABLE))
343                 return;
344
345         if (rtw_phy_dig_check_damping(dm_info))
346                 return;
347
348         linked = !!rtwdev->sta_cnt;
349
350         fa_cnt = dm_info->total_fa_cnt;
351         pre_igi = dm_info->igi_history[0];
352
353         rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
354
355         /* test the false alarm count from the highest threshold level first,
356          * and increase it by corresponding step size
357          *
358          * note that the step size is offset by -2, compensate it afterall
359          */
360         cur_igi = pre_igi;
361         for (level = 0; level < 3; level++) {
362                 if (fa_cnt > fa_th[level]) {
363                         cur_igi += step[level];
364                         break;
365                 }
366         }
367         cur_igi -= 2;
368
369         /* calculate the upper/lower bound by the minimum rssi we have among
370          * the peers connected with us, meanwhile make sure the igi value does
371          * not beyond the hardware limitation
372          */
373         rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
374         cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
375
376         /* record current igi value and false alarm statistics for further
377          * damping checks, and record the trend of igi values
378          */
379         rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
380
381         if (cur_igi != pre_igi)
382                 rtw_phy_dig_write(rtwdev, cur_igi);
383 }
384
385 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
386 {
387         struct rtw_dev *rtwdev = data;
388         struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
389
390         rtw_update_sta_info(rtwdev, si);
391 }
392
393 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
394 {
395         if (rtwdev->watch_dog_cnt & 0x3)
396                 return;
397
398         rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
399 }
400
401 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
402 {
403         /* for further calculation */
404         rtw_phy_statistics(rtwdev);
405         rtw_phy_dig(rtwdev);
406         rtw_phy_ra_info_update(rtwdev);
407 }
408
409 #define FRAC_BITS 3
410
411 static u8 rtw_phy_power_2_db(s8 power)
412 {
413         if (power <= -100 || power >= 20)
414                 return 0;
415         else if (power >= 0)
416                 return 100;
417         else
418                 return 100 + power;
419 }
420
421 static u64 rtw_phy_db_2_linear(u8 power_db)
422 {
423         u8 i, j;
424         u64 linear;
425
426         /* 1dB ~ 96dB */
427         i = (power_db - 1) >> 3;
428         j = (power_db - 1) - (i << 3);
429
430         linear = db_invert_table[i][j];
431         linear = i > 2 ? linear << FRAC_BITS : linear;
432
433         return linear;
434 }
435
436 static u8 rtw_phy_linear_2_db(u64 linear)
437 {
438         u8 i;
439         u8 j;
440         u32 dB;
441
442         if (linear >= db_invert_table[11][7])
443                 return 96; /* maximum 96 dB */
444
445         for (i = 0; i < 12; i++) {
446                 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
447                         break;
448                 else if (i > 2 && linear <= db_invert_table[i][7])
449                         break;
450         }
451
452         for (j = 0; j < 8; j++) {
453                 if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
454                         break;
455                 else if (i > 2 && linear <= db_invert_table[i][j])
456                         break;
457         }
458
459         if (j == 0 && i == 0)
460                 goto end;
461
462         if (j == 0) {
463                 if (i != 3) {
464                         if (db_invert_table[i][0] - linear >
465                             linear - db_invert_table[i - 1][7]) {
466                                 i = i - 1;
467                                 j = 7;
468                         }
469                 } else {
470                         if (db_invert_table[3][0] - linear >
471                             linear - db_invert_table[2][7]) {
472                                 i = 2;
473                                 j = 7;
474                         }
475                 }
476         } else {
477                 if (db_invert_table[i][j] - linear >
478                     linear - db_invert_table[i][j - 1]) {
479                         j = j - 1;
480                 }
481         }
482 end:
483         dB = (i << 3) + j + 1;
484
485         return dB;
486 }
487
488 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
489 {
490         s8 power;
491         u8 power_db;
492         u64 linear;
493         u64 sum = 0;
494         u8 path;
495
496         for (path = 0; path < path_num; path++) {
497                 power = rf_power[path];
498                 power_db = rtw_phy_power_2_db(power);
499                 linear = rtw_phy_db_2_linear(power_db);
500                 sum += linear;
501         }
502
503         sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
504         switch (path_num) {
505         case 2:
506                 sum >>= 1;
507                 break;
508         case 3:
509                 sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
510                 break;
511         case 4:
512                 sum >>= 2;
513                 break;
514         default:
515                 break;
516         }
517
518         return rtw_phy_linear_2_db(sum);
519 }
520
521 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
522                     u32 addr, u32 mask)
523 {
524         struct rtw_hal *hal = &rtwdev->hal;
525         struct rtw_chip_info *chip = rtwdev->chip;
526         const u32 *base_addr = chip->rf_base_addr;
527         u32 val, direct_addr;
528
529         if (rf_path >= hal->rf_path_num) {
530                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
531                 return INV_RF_DATA;
532         }
533
534         addr &= 0xff;
535         direct_addr = base_addr[rf_path] + (addr << 2);
536         mask &= RFREG_MASK;
537
538         val = rtw_read32_mask(rtwdev, direct_addr, mask);
539
540         return val;
541 }
542
543 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
544                                u32 addr, u32 mask, u32 data)
545 {
546         struct rtw_hal *hal = &rtwdev->hal;
547         struct rtw_chip_info *chip = rtwdev->chip;
548         u32 *sipi_addr = chip->rf_sipi_addr;
549         u32 data_and_addr;
550         u32 old_data = 0;
551         u32 shift;
552
553         if (rf_path >= hal->rf_path_num) {
554                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
555                 return false;
556         }
557
558         addr &= 0xff;
559         mask &= RFREG_MASK;
560
561         if (mask != RFREG_MASK) {
562                 old_data = rtw_phy_read_rf(rtwdev, rf_path, addr, RFREG_MASK);
563
564                 if (old_data == INV_RF_DATA) {
565                         rtw_err(rtwdev, "Write fail, rf is disabled\n");
566                         return false;
567                 }
568
569                 shift = __ffs(mask);
570                 data = ((old_data) & (~mask)) | (data << shift);
571         }
572
573         data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
574
575         rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
576
577         udelay(13);
578
579         return true;
580 }
581
582 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
583                           u32 addr, u32 mask, u32 data)
584 {
585         struct rtw_hal *hal = &rtwdev->hal;
586         struct rtw_chip_info *chip = rtwdev->chip;
587         const u32 *base_addr = chip->rf_base_addr;
588         u32 direct_addr;
589
590         if (rf_path >= hal->rf_path_num) {
591                 rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
592                 return false;
593         }
594
595         addr &= 0xff;
596         direct_addr = base_addr[rf_path] + (addr << 2);
597         mask &= RFREG_MASK;
598
599         rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, DISABLE_PI);
600         rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, DISABLE_PI);
601         rtw_write32_mask(rtwdev, direct_addr, mask, data);
602
603         udelay(1);
604
605         rtw_write32_mask(rtwdev, REG_RSV_CTRL, BITS_RFC_DIRECT, ENABLE_PI);
606         rtw_write32_mask(rtwdev, REG_WLRF1, BITS_RFC_DIRECT, ENABLE_PI);
607
608         return true;
609 }
610
611 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
612                               u32 addr, u32 mask, u32 data)
613 {
614         if (addr != 0x00)
615                 return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
616
617         return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
618 }
619
620 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
621 {
622         struct rtw_hal *hal = &rtwdev->hal;
623         struct rtw_efuse *efuse = &rtwdev->efuse;
624         struct rtw_phy_cond cond = {0};
625
626         cond.cut = hal->cut_version ? hal->cut_version : 15;
627         cond.pkg = pkg ? pkg : 15;
628         cond.plat = 0x04;
629         cond.rfe = efuse->rfe_option;
630
631         switch (rtw_hci_type(rtwdev)) {
632         case RTW_HCI_TYPE_USB:
633                 cond.intf = INTF_USB;
634                 break;
635         case RTW_HCI_TYPE_SDIO:
636                 cond.intf = INTF_SDIO;
637                 break;
638         case RTW_HCI_TYPE_PCIE:
639         default:
640                 cond.intf = INTF_PCIE;
641                 break;
642         }
643
644         hal->phy_cond = cond;
645
646         rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
647 }
648
649 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
650 {
651         struct rtw_hal *hal = &rtwdev->hal;
652         struct rtw_phy_cond drv_cond = hal->phy_cond;
653
654         if (cond.cut && cond.cut != drv_cond.cut)
655                 return false;
656
657         if (cond.pkg && cond.pkg != drv_cond.pkg)
658                 return false;
659
660         if (cond.intf && cond.intf != drv_cond.intf)
661                 return false;
662
663         if (cond.rfe != drv_cond.rfe)
664                 return false;
665
666         return true;
667 }
668
669 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
670 {
671         const union phy_table_tile *p = tbl->data;
672         const union phy_table_tile *end = p + tbl->size / 2;
673         struct rtw_phy_cond pos_cond = {0};
674         bool is_matched = true, is_skipped = false;
675
676         BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
677
678         for (; p < end; p++) {
679                 if (p->cond.pos) {
680                         switch (p->cond.branch) {
681                         case BRANCH_ENDIF:
682                                 is_matched = true;
683                                 is_skipped = false;
684                                 break;
685                         case BRANCH_ELSE:
686                                 is_matched = is_skipped ? false : true;
687                                 break;
688                         case BRANCH_IF:
689                         case BRANCH_ELIF:
690                         default:
691                                 pos_cond = p->cond;
692                                 break;
693                         }
694                 } else if (p->cond.neg) {
695                         if (!is_skipped) {
696                                 if (check_positive(rtwdev, pos_cond)) {
697                                         is_matched = true;
698                                         is_skipped = true;
699                                 } else {
700                                         is_matched = false;
701                                         is_skipped = false;
702                                 }
703                         } else {
704                                 is_matched = false;
705                         }
706                 } else if (is_matched) {
707                         (*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
708                 }
709         }
710 }
711
712 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
713 {
714         const struct phy_pg_cfg_pair *p = tbl->data;
715         const struct phy_pg_cfg_pair *end = p + tbl->size / 6;
716
717         BUILD_BUG_ON(sizeof(struct phy_pg_cfg_pair) != sizeof(u32) * 6);
718
719         for (; p < end; p++) {
720                 if (p->addr == 0xfe || p->addr == 0xffe) {
721                         msleep(50);
722                         continue;
723                 }
724                 phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
725                                            p->tx_num, p->addr, p->bitmask,
726                                            p->data);
727         }
728 }
729
730 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
731                              const struct rtw_table *tbl)
732 {
733         const struct txpwr_lmt_cfg_pair *p = tbl->data;
734         const struct txpwr_lmt_cfg_pair *end = p + tbl->size / 6;
735
736         BUILD_BUG_ON(sizeof(struct txpwr_lmt_cfg_pair) != sizeof(u8) * 6);
737
738         for (; p < end; p++) {
739                 phy_set_tx_power_limit(rtwdev, p->regd, p->band,
740                                        p->bw, p->rs,
741                                        p->ch, p->txpwr_lmt);
742         }
743 }
744
745 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
746                      u32 addr, u32 data)
747 {
748         rtw_write8(rtwdev, addr, data);
749 }
750
751 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
752                      u32 addr, u32 data)
753 {
754         rtw_write32(rtwdev, addr, data);
755 }
756
757 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
758                     u32 addr, u32 data)
759 {
760         if (addr == 0xfe)
761                 msleep(50);
762         else if (addr == 0xfd)
763                 mdelay(5);
764         else if (addr == 0xfc)
765                 mdelay(1);
766         else if (addr == 0xfb)
767                 usleep_range(50, 60);
768         else if (addr == 0xfa)
769                 udelay(5);
770         else if (addr == 0xf9)
771                 udelay(1);
772         else
773                 rtw_write32(rtwdev, addr, data);
774 }
775
776 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
777                     u32 addr, u32 data)
778 {
779         if (addr == 0xffe) {
780                 msleep(50);
781         } else if (addr == 0xfe) {
782                 usleep_range(100, 110);
783         } else {
784                 rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
785                 udelay(1);
786         }
787 }
788
789 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
790 {
791         struct rtw_chip_info *chip = rtwdev->chip;
792
793         if (!chip->rfk_init_tbl)
794                 return;
795
796         rtw_load_table(rtwdev, chip->rfk_init_tbl);
797 }
798
799 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
800 {
801         struct rtw_chip_info *chip = rtwdev->chip;
802         u8 rf_path;
803
804         rtw_load_table(rtwdev, chip->mac_tbl);
805         rtw_load_table(rtwdev, chip->bb_tbl);
806         rtw_load_table(rtwdev, chip->agc_tbl);
807         rtw_load_rfk_table(rtwdev);
808
809         for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
810                 const struct rtw_table *tbl;
811
812                 tbl = chip->rf_tbl[rf_path];
813                 rtw_load_table(rtwdev, tbl);
814         }
815 }
816
817 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
818
819 #define RTW_MAX_POWER_INDEX             0x3F
820
821 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
822 u8 rtw_ofdm_rates[] = {
823         DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
824         DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
825         DESC_RATE48M, DESC_RATE54M
826 };
827 u8 rtw_ht_1s_rates[] = {
828         DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
829         DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
830         DESC_RATEMCS6, DESC_RATEMCS7
831 };
832 u8 rtw_ht_2s_rates[] = {
833         DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
834         DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
835         DESC_RATEMCS14, DESC_RATEMCS15
836 };
837 u8 rtw_vht_1s_rates[] = {
838         DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
839         DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
840         DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
841         DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
842         DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
843 };
844 u8 rtw_vht_2s_rates[] = {
845         DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
846         DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
847         DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
848         DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
849         DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
850 };
851 u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
852 u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
853 u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
854 u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
855 u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
856 u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
857 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
858         rtw_cck_rates, rtw_ofdm_rates,
859         rtw_ht_1s_rates, rtw_ht_2s_rates,
860         rtw_vht_1s_rates, rtw_vht_2s_rates
861 };
862 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
863         ARRAY_SIZE(rtw_cck_rates),
864         ARRAY_SIZE(rtw_ofdm_rates),
865         ARRAY_SIZE(rtw_ht_1s_rates),
866         ARRAY_SIZE(rtw_ht_2s_rates),
867         ARRAY_SIZE(rtw_vht_1s_rates),
868         ARRAY_SIZE(rtw_vht_2s_rates)
869 };
870
871 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
872         36,  38,  40,  42,  44,  46,  48, /* Band 1 */
873         52,  54,  56,  58,  60,  62,  64, /* Band 2 */
874         100, 102, 104, 106, 108, 110, 112, /* Band 3 */
875         116, 118, 120, 122, 124, 126, 128, /* Band 3 */
876         132, 134, 136, 138, 140, 142, 144, /* Band 3 */
877         149, 151, 153, 155, 157, 159, 161, /* Band 4 */
878         165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
879
880 static int rtw_channel_to_idx(u8 band, u8 channel)
881 {
882         int ch_idx;
883         u8 n_channel;
884
885         if (band == PHY_BAND_2G) {
886                 ch_idx = channel - 1;
887                 n_channel = RTW_MAX_CHANNEL_NUM_2G;
888         } else if (band == PHY_BAND_5G) {
889                 n_channel = RTW_MAX_CHANNEL_NUM_5G;
890                 for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
891                         if (rtw_channel_idx_5g[ch_idx] == channel)
892                                 break;
893         } else {
894                 return -1;
895         }
896
897         if (ch_idx >= n_channel)
898                 return -1;
899
900         return ch_idx;
901 }
902
903 static u8 rtw_get_channel_group(u8 channel)
904 {
905         switch (channel) {
906         default:
907                 WARN_ON(1);
908                 /* fall through */
909         case 1:
910         case 2:
911         case 36:
912         case 38:
913         case 40:
914         case 42:
915                 return 0;
916         case 3:
917         case 4:
918         case 5:
919         case 44:
920         case 46:
921         case 48:
922         case 50:
923                 return 1;
924         case 6:
925         case 7:
926         case 8:
927         case 52:
928         case 54:
929         case 56:
930         case 58:
931                 return 2;
932         case 9:
933         case 10:
934         case 11:
935         case 60:
936         case 62:
937         case 64:
938                 return 3;
939         case 12:
940         case 13:
941         case 100:
942         case 102:
943         case 104:
944         case 106:
945                 return 4;
946         case 14:
947         case 108:
948         case 110:
949         case 112:
950         case 114:
951                 return 5;
952         case 116:
953         case 118:
954         case 120:
955         case 122:
956                 return 6;
957         case 124:
958         case 126:
959         case 128:
960         case 130:
961                 return 7;
962         case 132:
963         case 134:
964         case 136:
965         case 138:
966                 return 8;
967         case 140:
968         case 142:
969         case 144:
970                 return 9;
971         case 149:
972         case 151:
973         case 153:
974         case 155:
975                 return 10;
976         case 157:
977         case 159:
978         case 161:
979                 return 11;
980         case 165:
981         case 167:
982         case 169:
983         case 171:
984                 return 12;
985         case 173:
986         case 175:
987         case 177:
988                 return 13;
989         }
990 }
991
992 static u8 phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
993                                     struct rtw_2g_txpwr_idx *pwr_idx_2g,
994                                     enum rtw_bandwidth bandwidth,
995                                     u8 rate, u8 group)
996 {
997         struct rtw_chip_info *chip = rtwdev->chip;
998         u8 tx_power;
999         bool mcs_rate;
1000         bool above_2ss;
1001         u8 factor = chip->txgi_factor;
1002
1003         if (rate <= DESC_RATE11M)
1004                 tx_power = pwr_idx_2g->cck_base[group];
1005         else
1006                 tx_power = pwr_idx_2g->bw40_base[group];
1007
1008         if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1009                 tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1010
1011         mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1012                    (rate >= DESC_RATEVHT1SS_MCS0 &&
1013                     rate <= DESC_RATEVHT2SS_MCS9);
1014         above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1015                     (rate >= DESC_RATEVHT2SS_MCS0);
1016
1017         if (!mcs_rate)
1018                 return tx_power;
1019
1020         switch (bandwidth) {
1021         default:
1022                 WARN_ON(1);
1023                 /* fall through */
1024         case RTW_CHANNEL_WIDTH_20:
1025                 tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1026                 if (above_2ss)
1027                         tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1028                 break;
1029         case RTW_CHANNEL_WIDTH_40:
1030                 /* bw40 is the base power */
1031                 if (above_2ss)
1032                         tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1033                 break;
1034         }
1035
1036         return tx_power;
1037 }
1038
1039 static u8 phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1040                                     struct rtw_5g_txpwr_idx *pwr_idx_5g,
1041                                     enum rtw_bandwidth bandwidth,
1042                                     u8 rate, u8 group)
1043 {
1044         struct rtw_chip_info *chip = rtwdev->chip;
1045         u8 tx_power;
1046         u8 upper, lower;
1047         bool mcs_rate;
1048         bool above_2ss;
1049         u8 factor = chip->txgi_factor;
1050
1051         tx_power = pwr_idx_5g->bw40_base[group];
1052
1053         mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1054                    (rate >= DESC_RATEVHT1SS_MCS0 &&
1055                     rate <= DESC_RATEVHT2SS_MCS9);
1056         above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1057                     (rate >= DESC_RATEVHT2SS_MCS0);
1058
1059         if (!mcs_rate) {
1060                 tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1061                 return tx_power;
1062         }
1063
1064         switch (bandwidth) {
1065         default:
1066                 WARN_ON(1);
1067                 /* fall through */
1068         case RTW_CHANNEL_WIDTH_20:
1069                 tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1070                 if (above_2ss)
1071                         tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1072                 break;
1073         case RTW_CHANNEL_WIDTH_40:
1074                 /* bw40 is the base power */
1075                 if (above_2ss)
1076                         tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1077                 break;
1078         case RTW_CHANNEL_WIDTH_80:
1079                 /* the base idx of bw80 is the average of bw40+/bw40- */
1080                 lower = pwr_idx_5g->bw40_base[group];
1081                 upper = pwr_idx_5g->bw40_base[group + 1];
1082
1083                 tx_power = (lower + upper) / 2;
1084                 tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1085                 if (above_2ss)
1086                         tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1087                 break;
1088         }
1089
1090         return tx_power;
1091 }
1092
1093 /* set tx power level by path for each rates, note that the order of the rates
1094  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1095  * power index into a four-byte power index register, and calls set_tx_agc to
1096  * write these values into hardware
1097  */
1098 static
1099 void phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev, u8 ch, u8 path)
1100 {
1101         struct rtw_hal *hal = &rtwdev->hal;
1102         u8 rs;
1103
1104         /* do not need cck rates if we are not in 2.4G */
1105         if (hal->current_band_type == RTW_BAND_2G)
1106                 rs = RTW_RATE_SECTION_CCK;
1107         else
1108                 rs = RTW_RATE_SECTION_OFDM;
1109
1110         for (; rs < RTW_RATE_SECTION_MAX; rs++)
1111                 phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1112 }
1113
1114 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1115 {
1116         struct rtw_chip_info *chip = rtwdev->chip;
1117         struct rtw_hal *hal = &rtwdev->hal;
1118         u8 path;
1119
1120         mutex_lock(&hal->tx_power_mutex);
1121
1122         for (path = 0; path < hal->rf_path_num; path++)
1123                 phy_set_tx_power_level_by_path(rtwdev, channel, path);
1124
1125         chip->ops->set_tx_power_index(rtwdev);
1126         mutex_unlock(&hal->tx_power_mutex);
1127 }
1128
1129 s8 phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1130                           enum rtw_bandwidth bandwidth, u8 rf_path,
1131                           u8 rate, u8 channel, u8 regd);
1132
1133 static
1134 u8 phy_get_tx_power_index(void *adapter, u8 rf_path, u8 rate,
1135                           enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1136 {
1137         struct rtw_dev *rtwdev = adapter;
1138         struct rtw_hal *hal = &rtwdev->hal;
1139         struct rtw_txpwr_idx *pwr_idx;
1140         u8 tx_power;
1141         u8 group;
1142         u8 band;
1143         s8 offset, limit;
1144
1145         pwr_idx = &rtwdev->efuse.txpwr_idx_table[rf_path];
1146         group = rtw_get_channel_group(channel);
1147
1148         /* base power index for 2.4G/5G */
1149         if (channel <= 14) {
1150                 band = PHY_BAND_2G;
1151                 tx_power = phy_get_2g_tx_power_index(rtwdev,
1152                                                      &pwr_idx->pwr_idx_2g,
1153                                                      bandwidth, rate, group);
1154                 offset = hal->tx_pwr_by_rate_offset_2g[rf_path][rate];
1155         } else {
1156                 band = PHY_BAND_5G;
1157                 tx_power = phy_get_5g_tx_power_index(rtwdev,
1158                                                      &pwr_idx->pwr_idx_5g,
1159                                                      bandwidth, rate, group);
1160                 offset = hal->tx_pwr_by_rate_offset_5g[rf_path][rate];
1161         }
1162
1163         limit = phy_get_tx_power_limit(rtwdev, band, bandwidth, rf_path,
1164                                        rate, channel, regd);
1165
1166         if (offset > limit)
1167                 offset = limit;
1168
1169         tx_power += offset;
1170
1171         if (tx_power > rtwdev->chip->max_power_index)
1172                 tx_power = rtwdev->chip->max_power_index;
1173
1174         return tx_power;
1175 }
1176
1177 void phy_set_tx_power_index_by_rs(void *adapter, u8 ch, u8 path, u8 rs)
1178 {
1179         struct rtw_dev *rtwdev = adapter;
1180         struct rtw_hal *hal = &rtwdev->hal;
1181         u8 regd = rtwdev->regd.txpwr_regd;
1182         u8 *rates;
1183         u8 size;
1184         u8 rate;
1185         u8 pwr_idx;
1186         u8 bw;
1187         int i;
1188
1189         if (rs >= RTW_RATE_SECTION_MAX)
1190                 return;
1191
1192         rates = rtw_rate_section[rs];
1193         size = rtw_rate_size[rs];
1194         bw = hal->current_band_width;
1195         for (i = 0; i < size; i++) {
1196                 rate = rates[i];
1197                 pwr_idx = phy_get_tx_power_index(adapter, path, rate, bw, ch,
1198                                                  regd);
1199                 hal->tx_pwr_tbl[path][rate] = pwr_idx;
1200         }
1201 }
1202
1203 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
1204 {
1205         if (rtwdev->chip->is_pwr_by_rate_dec)
1206                 return bcd_to_dec_pwr_by_rate(hex, i);
1207         else
1208                 return (hex >> (i * 8)) & 0xFF;
1209 }
1210
1211 static void phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1212                                                  u32 addr, u32 mask,
1213                                                  u32 val, u8 *rate,
1214                                                  u8 *pwr_by_rate, u8 *rate_num)
1215 {
1216         int i;
1217
1218         switch (addr) {
1219         case 0xE00:
1220         case 0x830:
1221                 rate[0] = DESC_RATE6M;
1222                 rate[1] = DESC_RATE9M;
1223                 rate[2] = DESC_RATE12M;
1224                 rate[3] = DESC_RATE18M;
1225                 for (i = 0; i < 4; ++i)
1226                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1227                 *rate_num = 4;
1228                 break;
1229         case 0xE04:
1230         case 0x834:
1231                 rate[0] = DESC_RATE24M;
1232                 rate[1] = DESC_RATE36M;
1233                 rate[2] = DESC_RATE48M;
1234                 rate[3] = DESC_RATE54M;
1235                 for (i = 0; i < 4; ++i)
1236                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1237                 *rate_num = 4;
1238                 break;
1239         case 0xE08:
1240                 rate[0] = DESC_RATE1M;
1241                 pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1242                 *rate_num = 1;
1243                 break;
1244         case 0x86C:
1245                 if (mask == 0xffffff00) {
1246                         rate[0] = DESC_RATE2M;
1247                         rate[1] = DESC_RATE5_5M;
1248                         rate[2] = DESC_RATE11M;
1249                         for (i = 1; i < 4; ++i)
1250                                 pwr_by_rate[i - 1] =
1251                                         tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1252                         *rate_num = 3;
1253                 } else if (mask == 0x000000ff) {
1254                         rate[0] = DESC_RATE11M;
1255                         pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1256                         *rate_num = 1;
1257                 }
1258                 break;
1259         case 0xE10:
1260         case 0x83C:
1261                 rate[0] = DESC_RATEMCS0;
1262                 rate[1] = DESC_RATEMCS1;
1263                 rate[2] = DESC_RATEMCS2;
1264                 rate[3] = DESC_RATEMCS3;
1265                 for (i = 0; i < 4; ++i)
1266                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1267                 *rate_num = 4;
1268                 break;
1269         case 0xE14:
1270         case 0x848:
1271                 rate[0] = DESC_RATEMCS4;
1272                 rate[1] = DESC_RATEMCS5;
1273                 rate[2] = DESC_RATEMCS6;
1274                 rate[3] = DESC_RATEMCS7;
1275                 for (i = 0; i < 4; ++i)
1276                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1277                 *rate_num = 4;
1278                 break;
1279         case 0xE18:
1280         case 0x84C:
1281                 rate[0] = DESC_RATEMCS8;
1282                 rate[1] = DESC_RATEMCS9;
1283                 rate[2] = DESC_RATEMCS10;
1284                 rate[3] = DESC_RATEMCS11;
1285                 for (i = 0; i < 4; ++i)
1286                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1287                 *rate_num = 4;
1288                 break;
1289         case 0xE1C:
1290         case 0x868:
1291                 rate[0] = DESC_RATEMCS12;
1292                 rate[1] = DESC_RATEMCS13;
1293                 rate[2] = DESC_RATEMCS14;
1294                 rate[3] = DESC_RATEMCS15;
1295                 for (i = 0; i < 4; ++i)
1296                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1297                 *rate_num = 4;
1298
1299                 break;
1300         case 0x838:
1301                 rate[0] = DESC_RATE1M;
1302                 rate[1] = DESC_RATE2M;
1303                 rate[2] = DESC_RATE5_5M;
1304                 for (i = 1; i < 4; ++i)
1305                         pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1306                                                                     val, i);
1307                 *rate_num = 3;
1308                 break;
1309         case 0xC20:
1310         case 0xE20:
1311         case 0x1820:
1312         case 0x1A20:
1313                 rate[0] = DESC_RATE1M;
1314                 rate[1] = DESC_RATE2M;
1315                 rate[2] = DESC_RATE5_5M;
1316                 rate[3] = DESC_RATE11M;
1317                 for (i = 0; i < 4; ++i)
1318                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1319                 *rate_num = 4;
1320                 break;
1321         case 0xC24:
1322         case 0xE24:
1323         case 0x1824:
1324         case 0x1A24:
1325                 rate[0] = DESC_RATE6M;
1326                 rate[1] = DESC_RATE9M;
1327                 rate[2] = DESC_RATE12M;
1328                 rate[3] = DESC_RATE18M;
1329                 for (i = 0; i < 4; ++i)
1330                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1331                 *rate_num = 4;
1332                 break;
1333         case 0xC28:
1334         case 0xE28:
1335         case 0x1828:
1336         case 0x1A28:
1337                 rate[0] = DESC_RATE24M;
1338                 rate[1] = DESC_RATE36M;
1339                 rate[2] = DESC_RATE48M;
1340                 rate[3] = DESC_RATE54M;
1341                 for (i = 0; i < 4; ++i)
1342                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1343                 *rate_num = 4;
1344                 break;
1345         case 0xC2C:
1346         case 0xE2C:
1347         case 0x182C:
1348         case 0x1A2C:
1349                 rate[0] = DESC_RATEMCS0;
1350                 rate[1] = DESC_RATEMCS1;
1351                 rate[2] = DESC_RATEMCS2;
1352                 rate[3] = DESC_RATEMCS3;
1353                 for (i = 0; i < 4; ++i)
1354                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1355                 *rate_num = 4;
1356                 break;
1357         case 0xC30:
1358         case 0xE30:
1359         case 0x1830:
1360         case 0x1A30:
1361                 rate[0] = DESC_RATEMCS4;
1362                 rate[1] = DESC_RATEMCS5;
1363                 rate[2] = DESC_RATEMCS6;
1364                 rate[3] = DESC_RATEMCS7;
1365                 for (i = 0; i < 4; ++i)
1366                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1367                 *rate_num = 4;
1368                 break;
1369         case 0xC34:
1370         case 0xE34:
1371         case 0x1834:
1372         case 0x1A34:
1373                 rate[0] = DESC_RATEMCS8;
1374                 rate[1] = DESC_RATEMCS9;
1375                 rate[2] = DESC_RATEMCS10;
1376                 rate[3] = DESC_RATEMCS11;
1377                 for (i = 0; i < 4; ++i)
1378                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1379                 *rate_num = 4;
1380                 break;
1381         case 0xC38:
1382         case 0xE38:
1383         case 0x1838:
1384         case 0x1A38:
1385                 rate[0] = DESC_RATEMCS12;
1386                 rate[1] = DESC_RATEMCS13;
1387                 rate[2] = DESC_RATEMCS14;
1388                 rate[3] = DESC_RATEMCS15;
1389                 for (i = 0; i < 4; ++i)
1390                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1391                 *rate_num = 4;
1392                 break;
1393         case 0xC3C:
1394         case 0xE3C:
1395         case 0x183C:
1396         case 0x1A3C:
1397                 rate[0] = DESC_RATEVHT1SS_MCS0;
1398                 rate[1] = DESC_RATEVHT1SS_MCS1;
1399                 rate[2] = DESC_RATEVHT1SS_MCS2;
1400                 rate[3] = DESC_RATEVHT1SS_MCS3;
1401                 for (i = 0; i < 4; ++i)
1402                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1403                 *rate_num = 4;
1404                 break;
1405         case 0xC40:
1406         case 0xE40:
1407         case 0x1840:
1408         case 0x1A40:
1409                 rate[0] = DESC_RATEVHT1SS_MCS4;
1410                 rate[1] = DESC_RATEVHT1SS_MCS5;
1411                 rate[2] = DESC_RATEVHT1SS_MCS6;
1412                 rate[3] = DESC_RATEVHT1SS_MCS7;
1413                 for (i = 0; i < 4; ++i)
1414                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1415                 *rate_num = 4;
1416                 break;
1417         case 0xC44:
1418         case 0xE44:
1419         case 0x1844:
1420         case 0x1A44:
1421                 rate[0] = DESC_RATEVHT1SS_MCS8;
1422                 rate[1] = DESC_RATEVHT1SS_MCS9;
1423                 rate[2] = DESC_RATEVHT2SS_MCS0;
1424                 rate[3] = DESC_RATEVHT2SS_MCS1;
1425                 for (i = 0; i < 4; ++i)
1426                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1427                 *rate_num = 4;
1428                 break;
1429         case 0xC48:
1430         case 0xE48:
1431         case 0x1848:
1432         case 0x1A48:
1433                 rate[0] = DESC_RATEVHT2SS_MCS2;
1434                 rate[1] = DESC_RATEVHT2SS_MCS3;
1435                 rate[2] = DESC_RATEVHT2SS_MCS4;
1436                 rate[3] = DESC_RATEVHT2SS_MCS5;
1437                 for (i = 0; i < 4; ++i)
1438                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1439                 *rate_num = 4;
1440                 break;
1441         case 0xC4C:
1442         case 0xE4C:
1443         case 0x184C:
1444         case 0x1A4C:
1445                 rate[0] = DESC_RATEVHT2SS_MCS6;
1446                 rate[1] = DESC_RATEVHT2SS_MCS7;
1447                 rate[2] = DESC_RATEVHT2SS_MCS8;
1448                 rate[3] = DESC_RATEVHT2SS_MCS9;
1449                 for (i = 0; i < 4; ++i)
1450                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1451                 *rate_num = 4;
1452                 break;
1453         case 0xCD8:
1454         case 0xED8:
1455         case 0x18D8:
1456         case 0x1AD8:
1457                 rate[0] = DESC_RATEMCS16;
1458                 rate[1] = DESC_RATEMCS17;
1459                 rate[2] = DESC_RATEMCS18;
1460                 rate[3] = DESC_RATEMCS19;
1461                 for (i = 0; i < 4; ++i)
1462                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1463                 *rate_num = 4;
1464                 break;
1465         case 0xCDC:
1466         case 0xEDC:
1467         case 0x18DC:
1468         case 0x1ADC:
1469                 rate[0] = DESC_RATEMCS20;
1470                 rate[1] = DESC_RATEMCS21;
1471                 rate[2] = DESC_RATEMCS22;
1472                 rate[3] = DESC_RATEMCS23;
1473                 for (i = 0; i < 4; ++i)
1474                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1475                 *rate_num = 4;
1476                 break;
1477         case 0xCE0:
1478         case 0xEE0:
1479         case 0x18E0:
1480         case 0x1AE0:
1481                 rate[0] = DESC_RATEVHT3SS_MCS0;
1482                 rate[1] = DESC_RATEVHT3SS_MCS1;
1483                 rate[2] = DESC_RATEVHT3SS_MCS2;
1484                 rate[3] = DESC_RATEVHT3SS_MCS3;
1485                 for (i = 0; i < 4; ++i)
1486                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1487                 *rate_num = 4;
1488                 break;
1489         case 0xCE4:
1490         case 0xEE4:
1491         case 0x18E4:
1492         case 0x1AE4:
1493                 rate[0] = DESC_RATEVHT3SS_MCS4;
1494                 rate[1] = DESC_RATEVHT3SS_MCS5;
1495                 rate[2] = DESC_RATEVHT3SS_MCS6;
1496                 rate[3] = DESC_RATEVHT3SS_MCS7;
1497                 for (i = 0; i < 4; ++i)
1498                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1499                 *rate_num = 4;
1500                 break;
1501         case 0xCE8:
1502         case 0xEE8:
1503         case 0x18E8:
1504         case 0x1AE8:
1505                 rate[0] = DESC_RATEVHT3SS_MCS8;
1506                 rate[1] = DESC_RATEVHT3SS_MCS9;
1507                 for (i = 0; i < 2; ++i)
1508                         pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1509                 *rate_num = 2;
1510                 break;
1511         default:
1512                 rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1513                 break;
1514         }
1515 }
1516
1517 void phy_store_tx_power_by_rate(void *adapter, u32 band, u32 rfpath, u32 txnum,
1518                                 u32 regaddr, u32 bitmask, u32 data)
1519 {
1520         struct rtw_dev *rtwdev = adapter;
1521         struct rtw_hal *hal = &rtwdev->hal;
1522         u8 rate_num = 0;
1523         u8 rate;
1524         u8 rates[RTW_RF_PATH_MAX] = {0};
1525         s8 offset;
1526         s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1527         int i;
1528
1529         phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1530                                              rates, pwr_by_rate, &rate_num);
1531
1532         if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1533                     (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1534                     rate_num > RTW_RF_PATH_MAX))
1535                 return;
1536
1537         for (i = 0; i < rate_num; i++) {
1538                 offset = pwr_by_rate[i];
1539                 rate = rates[i];
1540                 if (band == PHY_BAND_2G)
1541                         hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1542                 else if (band == PHY_BAND_5G)
1543                         hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1544                 else
1545                         continue;
1546         }
1547 }
1548
1549 static
1550 void phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1551                                          u8 rs, u8 size, u8 *rates)
1552 {
1553         u8 rate;
1554         u8 base_idx, rate_idx;
1555         s8 base_2g, base_5g;
1556
1557         if (rs >= RTW_RATE_SECTION_VHT_1S)
1558                 base_idx = rates[size - 3];
1559         else
1560                 base_idx = rates[size - 1];
1561         base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
1562         base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
1563         hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
1564         hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
1565         for (rate = 0; rate < size; rate++) {
1566                 rate_idx = rates[rate];
1567                 hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
1568                 hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
1569         }
1570 }
1571
1572 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
1573 {
1574         u8 path;
1575
1576         for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1577                 phy_tx_power_by_rate_config_by_path(hal, path,
1578                                 RTW_RATE_SECTION_CCK,
1579                                 rtw_cck_size, rtw_cck_rates);
1580                 phy_tx_power_by_rate_config_by_path(hal, path,
1581                                 RTW_RATE_SECTION_OFDM,
1582                                 rtw_ofdm_size, rtw_ofdm_rates);
1583                 phy_tx_power_by_rate_config_by_path(hal, path,
1584                                 RTW_RATE_SECTION_HT_1S,
1585                                 rtw_ht_1s_size, rtw_ht_1s_rates);
1586                 phy_tx_power_by_rate_config_by_path(hal, path,
1587                                 RTW_RATE_SECTION_HT_2S,
1588                                 rtw_ht_2s_size, rtw_ht_2s_rates);
1589                 phy_tx_power_by_rate_config_by_path(hal, path,
1590                                 RTW_RATE_SECTION_VHT_1S,
1591                                 rtw_vht_1s_size, rtw_vht_1s_rates);
1592                 phy_tx_power_by_rate_config_by_path(hal, path,
1593                                 RTW_RATE_SECTION_VHT_2S,
1594                                 rtw_vht_2s_size, rtw_vht_2s_rates);
1595         }
1596 }
1597
1598 static void
1599 phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1600 {
1601         s8 base, orig;
1602         u8 ch;
1603
1604         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
1605                 base = hal->tx_pwr_by_rate_base_2g[0][rs];
1606                 orig = hal->tx_pwr_limit_2g[regd][bw][rs][ch];
1607                 hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
1608         }
1609
1610         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
1611                 base = hal->tx_pwr_by_rate_base_5g[0][rs];
1612                 hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
1613         }
1614 }
1615
1616 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
1617 {
1618         u8 regd, bw, rs;
1619
1620         for (regd = 0; regd < RTW_REGD_MAX; regd++)
1621                 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1622                         for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1623                                 phy_tx_power_limit_config(hal, regd, bw, rs);
1624 }
1625
1626 static s8 get_tx_power_limit(struct rtw_hal *hal, u8 bw, u8 rs, u8 ch, u8 regd)
1627 {
1628         if (regd > RTW_REGD_WW)
1629                 return RTW_MAX_POWER_INDEX;
1630
1631         return hal->tx_pwr_limit_2g[regd][bw][rs][ch];
1632 }
1633
1634 s8 phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1635                           enum rtw_bandwidth bw, u8 rf_path,
1636                           u8 rate, u8 channel, u8 regd)
1637 {
1638         struct rtw_hal *hal = &rtwdev->hal;
1639         s8 power_limit;
1640         u8 rs;
1641         int ch_idx;
1642
1643         if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1644                 rs = RTW_RATE_SECTION_CCK;
1645         else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1646                 rs = RTW_RATE_SECTION_OFDM;
1647         else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1648                 rs = RTW_RATE_SECTION_HT_1S;
1649         else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1650                 rs = RTW_RATE_SECTION_HT_2S;
1651         else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1652                 rs = RTW_RATE_SECTION_VHT_1S;
1653         else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1654                 rs = RTW_RATE_SECTION_VHT_2S;
1655         else
1656                 goto err;
1657
1658         ch_idx = rtw_channel_to_idx(band, channel);
1659         if (ch_idx < 0)
1660                 goto err;
1661
1662         power_limit = get_tx_power_limit(hal, bw, rs, ch_idx, regd);
1663
1664         return power_limit;
1665
1666 err:
1667         WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1668              band, bw, rf_path, rate, channel);
1669         return RTW_MAX_POWER_INDEX;
1670 }
1671
1672 void phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1673                             u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1674 {
1675         struct rtw_hal *hal = &rtwdev->hal;
1676         int ch_idx;
1677
1678         pwr_limit = clamp_t(s8, pwr_limit,
1679                             -RTW_MAX_POWER_INDEX, RTW_MAX_POWER_INDEX);
1680         ch_idx = rtw_channel_to_idx(band, ch);
1681
1682         if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1683             rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1684                 WARN(1,
1685                      "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1686                      regd, band, bw, rs, ch_idx, pwr_limit);
1687                 return;
1688         }
1689
1690         if (band == PHY_BAND_2G)
1691                 hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1692         else if (band == PHY_BAND_5G)
1693                 hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1694 }
1695
1696 static
1697 void rtw_hw_tx_power_limit_init(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
1698 {
1699         u8 ch;
1700
1701         /* 2.4G channels */
1702         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
1703                 hal->tx_pwr_limit_2g[regd][bw][rs][ch] = RTW_MAX_POWER_INDEX;
1704
1705         /* 5G channels */
1706         for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
1707                 hal->tx_pwr_limit_5g[regd][bw][rs][ch] = RTW_MAX_POWER_INDEX;
1708 }
1709
1710 void rtw_hw_init_tx_power(struct rtw_hal *hal)
1711 {
1712         u8 regd, path, rate, rs, bw;
1713
1714         /* init tx power by rate offset */
1715         for (path = 0; path < RTW_RF_PATH_MAX; path++) {
1716                 for (rate = 0; rate < DESC_RATE_MAX; rate++) {
1717                         hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
1718                         hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
1719                 }
1720         }
1721
1722         /* init tx power limit */
1723         for (regd = 0; regd < RTW_REGD_MAX; regd++)
1724                 for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
1725                         for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
1726                                 rtw_hw_tx_power_limit_init(hal, regd, bw, rs);
1727 }