Merge branch 'mv-merge'
[sfrench/cifs-2.6.git] / drivers / net / wireless / ipw2200.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26
27   Contact Information:
28   James P. Ketrenos <ipw2100-admin@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30
31 ******************************************************************************/
32
33 #include "ipw2200.h"
34 #include <linux/version.h>
35
36 #define IPW2200_VERSION "git-1.1.1"
37 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
38 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
39 #define DRV_VERSION     IPW2200_VERSION
40
41 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
42
43 MODULE_DESCRIPTION(DRV_DESCRIPTION);
44 MODULE_VERSION(DRV_VERSION);
45 MODULE_AUTHOR(DRV_COPYRIGHT);
46 MODULE_LICENSE("GPL");
47
48 static int cmdlog = 0;
49 static int debug = 0;
50 static int channel = 0;
51 static int mode = 0;
52
53 static u32 ipw_debug_level;
54 static int associate = 1;
55 static int auto_create = 1;
56 static int led = 0;
57 static int disable = 0;
58 static int bt_coexist = 0;
59 static int hwcrypto = 0;
60 static int roaming = 1;
61 static const char ipw_modes[] = {
62         'a', 'b', 'g', '?'
63 };
64
65 #ifdef CONFIG_IPW_QOS
66 static int qos_enable = 0;
67 static int qos_burst_enable = 0;
68 static int qos_no_ack_mask = 0;
69 static int burst_duration_CCK = 0;
70 static int burst_duration_OFDM = 0;
71
72 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
73         {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
74          QOS_TX3_CW_MIN_OFDM},
75         {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
76          QOS_TX3_CW_MAX_OFDM},
77         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
78         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
79         {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
80          QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
81 };
82
83 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
84         {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
85          QOS_TX3_CW_MIN_CCK},
86         {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
87          QOS_TX3_CW_MAX_CCK},
88         {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
89         {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
90         {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
91          QOS_TX3_TXOP_LIMIT_CCK}
92 };
93
94 static struct ieee80211_qos_parameters def_parameters_OFDM = {
95         {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
96          DEF_TX3_CW_MIN_OFDM},
97         {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
98          DEF_TX3_CW_MAX_OFDM},
99         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
100         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
101         {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
102          DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
103 };
104
105 static struct ieee80211_qos_parameters def_parameters_CCK = {
106         {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
107          DEF_TX3_CW_MIN_CCK},
108         {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
109          DEF_TX3_CW_MAX_CCK},
110         {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
111         {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
112         {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
113          DEF_TX3_TXOP_LIMIT_CCK}
114 };
115
116 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
117
118 static int from_priority_to_tx_queue[] = {
119         IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
120         IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
121 };
122
123 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
124
125 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
126                                        *qos_param);
127 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
128                                      *qos_param);
129 #endif                          /* CONFIG_IPW_QOS */
130
131 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
132 static void ipw_remove_current_network(struct ipw_priv *priv);
133 static void ipw_rx(struct ipw_priv *priv);
134 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
135                                 struct clx2_tx_queue *txq, int qindex);
136 static int ipw_queue_reset(struct ipw_priv *priv);
137
138 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
139                              int len, int sync);
140
141 static void ipw_tx_queue_free(struct ipw_priv *);
142
143 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
144 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
145 static void ipw_rx_queue_replenish(void *);
146 static int ipw_up(struct ipw_priv *);
147 static void ipw_bg_up(void *);
148 static void ipw_down(struct ipw_priv *);
149 static void ipw_bg_down(void *);
150 static int ipw_config(struct ipw_priv *);
151 static int init_supported_rates(struct ipw_priv *priv,
152                                 struct ipw_supported_rates *prates);
153 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
154 static void ipw_send_wep_keys(struct ipw_priv *, int);
155
156 static int snprint_line(char *buf, size_t count,
157                         const u8 * data, u32 len, u32 ofs)
158 {
159         int out, i, j, l;
160         char c;
161
162         out = snprintf(buf, count, "%08X", ofs);
163
164         for (l = 0, i = 0; i < 2; i++) {
165                 out += snprintf(buf + out, count - out, " ");
166                 for (j = 0; j < 8 && l < len; j++, l++)
167                         out += snprintf(buf + out, count - out, "%02X ",
168                                         data[(i * 8 + j)]);
169                 for (; j < 8; j++)
170                         out += snprintf(buf + out, count - out, "   ");
171         }
172
173         out += snprintf(buf + out, count - out, " ");
174         for (l = 0, i = 0; i < 2; i++) {
175                 out += snprintf(buf + out, count - out, " ");
176                 for (j = 0; j < 8 && l < len; j++, l++) {
177                         c = data[(i * 8 + j)];
178                         if (!isascii(c) || !isprint(c))
179                                 c = '.';
180
181                         out += snprintf(buf + out, count - out, "%c", c);
182                 }
183
184                 for (; j < 8; j++)
185                         out += snprintf(buf + out, count - out, " ");
186         }
187
188         return out;
189 }
190
191 static void printk_buf(int level, const u8 * data, u32 len)
192 {
193         char line[81];
194         u32 ofs = 0;
195         if (!(ipw_debug_level & level))
196                 return;
197
198         while (len) {
199                 snprint_line(line, sizeof(line), &data[ofs],
200                              min(len, 16U), ofs);
201                 printk(KERN_DEBUG "%s\n", line);
202                 ofs += 16;
203                 len -= min(len, 16U);
204         }
205 }
206
207 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
208 {
209         size_t out = size;
210         u32 ofs = 0;
211         int total = 0;
212
213         while (size && len) {
214                 out = snprint_line(output, size, &data[ofs],
215                                    min_t(size_t, len, 16U), ofs);
216
217                 ofs += 16;
218                 output += out;
219                 size -= out;
220                 len -= min_t(size_t, len, 16U);
221                 total += out;
222         }
223         return total;
224 }
225
226 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
227 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
228 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
229
230 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
231 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
232 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
233
234 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
235 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
236 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
237 {
238         IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
239                      __LINE__, (u32) (b), (u32) (c));
240         _ipw_write_reg8(a, b, c);
241 }
242
243 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
244 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
245 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
246 {
247         IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
248                      __LINE__, (u32) (b), (u32) (c));
249         _ipw_write_reg16(a, b, c);
250 }
251
252 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
253 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
254 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
255 {
256         IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
257                      __LINE__, (u32) (b), (u32) (c));
258         _ipw_write_reg32(a, b, c);
259 }
260
261 /* 8-bit direct write (low 4K) */
262 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
263
264 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
265 #define ipw_write8(ipw, ofs, val) \
266  IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
267  _ipw_write8(ipw, ofs, val)
268
269 /* 16-bit direct write (low 4K) */
270 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
271
272 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
273 #define ipw_write16(ipw, ofs, val) \
274  IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
275  _ipw_write16(ipw, ofs, val)
276
277 /* 32-bit direct write (low 4K) */
278 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
279
280 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
281 #define ipw_write32(ipw, ofs, val) \
282  IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
283  _ipw_write32(ipw, ofs, val)
284
285 /* 8-bit direct read (low 4K) */
286 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
287
288 /* 8-bit direct read (low 4K), with debug wrapper */
289 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
290 {
291         IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
292         return _ipw_read8(ipw, ofs);
293 }
294
295 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
296 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
297
298 /* 16-bit direct read (low 4K) */
299 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
300
301 /* 16-bit direct read (low 4K), with debug wrapper */
302 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
303 {
304         IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
305         return _ipw_read16(ipw, ofs);
306 }
307
308 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
309 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
310
311 /* 32-bit direct read (low 4K) */
312 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
313
314 /* 32-bit direct read (low 4K), with debug wrapper */
315 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
316 {
317         IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
318         return _ipw_read32(ipw, ofs);
319 }
320
321 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
322 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
323
324 /* multi-byte read (above 4K), with debug wrapper */
325 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
326 static inline void __ipw_read_indirect(const char *f, int l,
327                                        struct ipw_priv *a, u32 b, u8 * c, int d)
328 {
329         IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
330                      d);
331         _ipw_read_indirect(a, b, c, d);
332 }
333
334 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
335 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
336
337 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
338 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
339                                 int num);
340 #define ipw_write_indirect(a, b, c, d) \
341         IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
342         _ipw_write_indirect(a, b, c, d)
343
344 /* 32-bit indirect write (above 4K) */
345 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
346 {
347         IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
348         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
349         _ipw_write32(priv, IPW_INDIRECT_DATA, value);
350 }
351
352 /* 8-bit indirect write (above 4K) */
353 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
354 {
355         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
356         u32 dif_len = reg - aligned_addr;
357
358         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
359         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
360         _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
361 }
362
363 /* 16-bit indirect write (above 4K) */
364 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
365 {
366         u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;        /* dword align */
367         u32 dif_len = (reg - aligned_addr) & (~0x1ul);
368
369         IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
370         _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
371         _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
372 }
373
374 /* 8-bit indirect read (above 4K) */
375 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
376 {
377         u32 word;
378         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
379         IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
380         word = _ipw_read32(priv, IPW_INDIRECT_DATA);
381         return (word >> ((reg & 0x3) * 8)) & 0xff;
382 }
383
384 /* 32-bit indirect read (above 4K) */
385 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
386 {
387         u32 value;
388
389         IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
390
391         _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392         value = _ipw_read32(priv, IPW_INDIRECT_DATA);
393         IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
394         return value;
395 }
396
397 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
398 /*    for area above 1st 4K of SRAM/reg space */
399 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
400                                int num)
401 {
402         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
403         u32 dif_len = addr - aligned_addr;
404         u32 i;
405
406         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
407
408         if (num <= 0) {
409                 return;
410         }
411
412         /* Read the first dword (or portion) byte by byte */
413         if (unlikely(dif_len)) {
414                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
415                 /* Start reading at aligned_addr + dif_len */
416                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
417                         *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
418                 aligned_addr += 4;
419         }
420
421         /* Read all of the middle dwords as dwords, with auto-increment */
422         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
423         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
424                 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
425
426         /* Read the last dword (or portion) byte by byte */
427         if (unlikely(num)) {
428                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
429                 for (i = 0; num > 0; i++, num--)
430                         *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
431         }
432 }
433
434 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
435 /*    for area above 1st 4K of SRAM/reg space */
436 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
437                                 int num)
438 {
439         u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;       /* dword align */
440         u32 dif_len = addr - aligned_addr;
441         u32 i;
442
443         IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
444
445         if (num <= 0) {
446                 return;
447         }
448
449         /* Write the first dword (or portion) byte by byte */
450         if (unlikely(dif_len)) {
451                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
452                 /* Start writing at aligned_addr + dif_len */
453                 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
454                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
455                 aligned_addr += 4;
456         }
457
458         /* Write all of the middle dwords as dwords, with auto-increment */
459         _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
460         for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
461                 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
462
463         /* Write the last dword (or portion) byte by byte */
464         if (unlikely(num)) {
465                 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
466                 for (i = 0; num > 0; i++, num--, buf++)
467                         _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
468         }
469 }
470
471 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
472 /*    for 1st 4K of SRAM/regs space */
473 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
474                              int num)
475 {
476         memcpy_toio((priv->hw_base + addr), buf, num);
477 }
478
479 /* Set bit(s) in low 4K of SRAM/regs */
480 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
481 {
482         ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
483 }
484
485 /* Clear bit(s) in low 4K of SRAM/regs */
486 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
487 {
488         ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
489 }
490
491 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
492 {
493         if (priv->status & STATUS_INT_ENABLED)
494                 return;
495         priv->status |= STATUS_INT_ENABLED;
496         ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
497 }
498
499 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
500 {
501         if (!(priv->status & STATUS_INT_ENABLED))
502                 return;
503         priv->status &= ~STATUS_INT_ENABLED;
504         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
505 }
506
507 #ifdef CONFIG_IPW2200_DEBUG
508 static char *ipw_error_desc(u32 val)
509 {
510         switch (val) {
511         case IPW_FW_ERROR_OK:
512                 return "ERROR_OK";
513         case IPW_FW_ERROR_FAIL:
514                 return "ERROR_FAIL";
515         case IPW_FW_ERROR_MEMORY_UNDERFLOW:
516                 return "MEMORY_UNDERFLOW";
517         case IPW_FW_ERROR_MEMORY_OVERFLOW:
518                 return "MEMORY_OVERFLOW";
519         case IPW_FW_ERROR_BAD_PARAM:
520                 return "BAD_PARAM";
521         case IPW_FW_ERROR_BAD_CHECKSUM:
522                 return "BAD_CHECKSUM";
523         case IPW_FW_ERROR_NMI_INTERRUPT:
524                 return "NMI_INTERRUPT";
525         case IPW_FW_ERROR_BAD_DATABASE:
526                 return "BAD_DATABASE";
527         case IPW_FW_ERROR_ALLOC_FAIL:
528                 return "ALLOC_FAIL";
529         case IPW_FW_ERROR_DMA_UNDERRUN:
530                 return "DMA_UNDERRUN";
531         case IPW_FW_ERROR_DMA_STATUS:
532                 return "DMA_STATUS";
533         case IPW_FW_ERROR_DINO_ERROR:
534                 return "DINO_ERROR";
535         case IPW_FW_ERROR_EEPROM_ERROR:
536                 return "EEPROM_ERROR";
537         case IPW_FW_ERROR_SYSASSERT:
538                 return "SYSASSERT";
539         case IPW_FW_ERROR_FATAL_ERROR:
540                 return "FATAL_ERROR";
541         default:
542                 return "UNKNOWN_ERROR";
543         }
544 }
545
546 static void ipw_dump_error_log(struct ipw_priv *priv,
547                                struct ipw_fw_error *error)
548 {
549         u32 i;
550
551         if (!error) {
552                 IPW_ERROR("Error allocating and capturing error log.  "
553                           "Nothing to dump.\n");
554                 return;
555         }
556
557         IPW_ERROR("Start IPW Error Log Dump:\n");
558         IPW_ERROR("Status: 0x%08X, Config: %08X\n",
559                   error->status, error->config);
560
561         for (i = 0; i < error->elem_len; i++)
562                 IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
563                           ipw_error_desc(error->elem[i].desc),
564                           error->elem[i].time,
565                           error->elem[i].blink1,
566                           error->elem[i].blink2,
567                           error->elem[i].link1,
568                           error->elem[i].link2, error->elem[i].data);
569         for (i = 0; i < error->log_len; i++)
570                 IPW_ERROR("%i\t0x%08x\t%i\n",
571                           error->log[i].time,
572                           error->log[i].data, error->log[i].event);
573 }
574 #endif
575
576 static inline int ipw_is_init(struct ipw_priv *priv)
577 {
578         return (priv->status & STATUS_INIT) ? 1 : 0;
579 }
580
581 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
582 {
583         u32 addr, field_info, field_len, field_count, total_len;
584
585         IPW_DEBUG_ORD("ordinal = %i\n", ord);
586
587         if (!priv || !val || !len) {
588                 IPW_DEBUG_ORD("Invalid argument\n");
589                 return -EINVAL;
590         }
591
592         /* verify device ordinal tables have been initialized */
593         if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
594                 IPW_DEBUG_ORD("Access ordinals before initialization\n");
595                 return -EINVAL;
596         }
597
598         switch (IPW_ORD_TABLE_ID_MASK & ord) {
599         case IPW_ORD_TABLE_0_MASK:
600                 /*
601                  * TABLE 0: Direct access to a table of 32 bit values
602                  *
603                  * This is a very simple table with the data directly
604                  * read from the table
605                  */
606
607                 /* remove the table id from the ordinal */
608                 ord &= IPW_ORD_TABLE_VALUE_MASK;
609
610                 /* boundary check */
611                 if (ord > priv->table0_len) {
612                         IPW_DEBUG_ORD("ordinal value (%i) longer then "
613                                       "max (%i)\n", ord, priv->table0_len);
614                         return -EINVAL;
615                 }
616
617                 /* verify we have enough room to store the value */
618                 if (*len < sizeof(u32)) {
619                         IPW_DEBUG_ORD("ordinal buffer length too small, "
620                                       "need %zd\n", sizeof(u32));
621                         return -EINVAL;
622                 }
623
624                 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
625                               ord, priv->table0_addr + (ord << 2));
626
627                 *len = sizeof(u32);
628                 ord <<= 2;
629                 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
630                 break;
631
632         case IPW_ORD_TABLE_1_MASK:
633                 /*
634                  * TABLE 1: Indirect access to a table of 32 bit values
635                  *
636                  * This is a fairly large table of u32 values each
637                  * representing starting addr for the data (which is
638                  * also a u32)
639                  */
640
641                 /* remove the table id from the ordinal */
642                 ord &= IPW_ORD_TABLE_VALUE_MASK;
643
644                 /* boundary check */
645                 if (ord > priv->table1_len) {
646                         IPW_DEBUG_ORD("ordinal value too long\n");
647                         return -EINVAL;
648                 }
649
650                 /* verify we have enough room to store the value */
651                 if (*len < sizeof(u32)) {
652                         IPW_DEBUG_ORD("ordinal buffer length too small, "
653                                       "need %zd\n", sizeof(u32));
654                         return -EINVAL;
655                 }
656
657                 *((u32 *) val) =
658                     ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
659                 *len = sizeof(u32);
660                 break;
661
662         case IPW_ORD_TABLE_2_MASK:
663                 /*
664                  * TABLE 2: Indirect access to a table of variable sized values
665                  *
666                  * This table consist of six values, each containing
667                  *     - dword containing the starting offset of the data
668                  *     - dword containing the lengh in the first 16bits
669                  *       and the count in the second 16bits
670                  */
671
672                 /* remove the table id from the ordinal */
673                 ord &= IPW_ORD_TABLE_VALUE_MASK;
674
675                 /* boundary check */
676                 if (ord > priv->table2_len) {
677                         IPW_DEBUG_ORD("ordinal value too long\n");
678                         return -EINVAL;
679                 }
680
681                 /* get the address of statistic */
682                 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
683
684                 /* get the second DW of statistics ;
685                  * two 16-bit words - first is length, second is count */
686                 field_info =
687                     ipw_read_reg32(priv,
688                                    priv->table2_addr + (ord << 3) +
689                                    sizeof(u32));
690
691                 /* get each entry length */
692                 field_len = *((u16 *) & field_info);
693
694                 /* get number of entries */
695                 field_count = *(((u16 *) & field_info) + 1);
696
697                 /* abort if not enought memory */
698                 total_len = field_len * field_count;
699                 if (total_len > *len) {
700                         *len = total_len;
701                         return -EINVAL;
702                 }
703
704                 *len = total_len;
705                 if (!total_len)
706                         return 0;
707
708                 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
709                               "field_info = 0x%08x\n",
710                               addr, total_len, field_info);
711                 ipw_read_indirect(priv, addr, val, total_len);
712                 break;
713
714         default:
715                 IPW_DEBUG_ORD("Invalid ordinal!\n");
716                 return -EINVAL;
717
718         }
719
720         return 0;
721 }
722
723 static void ipw_init_ordinals(struct ipw_priv *priv)
724 {
725         priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
726         priv->table0_len = ipw_read32(priv, priv->table0_addr);
727
728         IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
729                       priv->table0_addr, priv->table0_len);
730
731         priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
732         priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
733
734         IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
735                       priv->table1_addr, priv->table1_len);
736
737         priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
738         priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
739         priv->table2_len &= 0x0000ffff; /* use first two bytes */
740
741         IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
742                       priv->table2_addr, priv->table2_len);
743
744 }
745
746 static u32 ipw_register_toggle(u32 reg)
747 {
748         reg &= ~IPW_START_STANDBY;
749         if (reg & IPW_GATE_ODMA)
750                 reg &= ~IPW_GATE_ODMA;
751         if (reg & IPW_GATE_IDMA)
752                 reg &= ~IPW_GATE_IDMA;
753         if (reg & IPW_GATE_ADMA)
754                 reg &= ~IPW_GATE_ADMA;
755         return reg;
756 }
757
758 /*
759  * LED behavior:
760  * - On radio ON, turn on any LEDs that require to be on during start
761  * - On initialization, start unassociated blink
762  * - On association, disable unassociated blink
763  * - On disassociation, start unassociated blink
764  * - On radio OFF, turn off any LEDs started during radio on
765  *
766  */
767 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
768 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
769 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
770
771 static void ipw_led_link_on(struct ipw_priv *priv)
772 {
773         unsigned long flags;
774         u32 led;
775
776         /* If configured to not use LEDs, or nic_type is 1,
777          * then we don't toggle a LINK led */
778         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
779                 return;
780
781         spin_lock_irqsave(&priv->lock, flags);
782
783         if (!(priv->status & STATUS_RF_KILL_MASK) &&
784             !(priv->status & STATUS_LED_LINK_ON)) {
785                 IPW_DEBUG_LED("Link LED On\n");
786                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
787                 led |= priv->led_association_on;
788
789                 led = ipw_register_toggle(led);
790
791                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
792                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
793
794                 priv->status |= STATUS_LED_LINK_ON;
795
796                 /* If we aren't associated, schedule turning the LED off */
797                 if (!(priv->status & STATUS_ASSOCIATED))
798                         queue_delayed_work(priv->workqueue,
799                                            &priv->led_link_off,
800                                            LD_TIME_LINK_ON);
801         }
802
803         spin_unlock_irqrestore(&priv->lock, flags);
804 }
805
806 static void ipw_bg_led_link_on(void *data)
807 {
808         struct ipw_priv *priv = data;
809         mutex_lock(&priv->mutex);
810         ipw_led_link_on(data);
811         mutex_unlock(&priv->mutex);
812 }
813
814 static void ipw_led_link_off(struct ipw_priv *priv)
815 {
816         unsigned long flags;
817         u32 led;
818
819         /* If configured not to use LEDs, or nic type is 1,
820          * then we don't goggle the LINK led. */
821         if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
822                 return;
823
824         spin_lock_irqsave(&priv->lock, flags);
825
826         if (priv->status & STATUS_LED_LINK_ON) {
827                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
828                 led &= priv->led_association_off;
829                 led = ipw_register_toggle(led);
830
831                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
832                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
833
834                 IPW_DEBUG_LED("Link LED Off\n");
835
836                 priv->status &= ~STATUS_LED_LINK_ON;
837
838                 /* If we aren't associated and the radio is on, schedule
839                  * turning the LED on (blink while unassociated) */
840                 if (!(priv->status & STATUS_RF_KILL_MASK) &&
841                     !(priv->status & STATUS_ASSOCIATED))
842                         queue_delayed_work(priv->workqueue, &priv->led_link_on,
843                                            LD_TIME_LINK_OFF);
844
845         }
846
847         spin_unlock_irqrestore(&priv->lock, flags);
848 }
849
850 static void ipw_bg_led_link_off(void *data)
851 {
852         struct ipw_priv *priv = data;
853         mutex_lock(&priv->mutex);
854         ipw_led_link_off(data);
855         mutex_unlock(&priv->mutex);
856 }
857
858 static void __ipw_led_activity_on(struct ipw_priv *priv)
859 {
860         u32 led;
861
862         if (priv->config & CFG_NO_LED)
863                 return;
864
865         if (priv->status & STATUS_RF_KILL_MASK)
866                 return;
867
868         if (!(priv->status & STATUS_LED_ACT_ON)) {
869                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
870                 led |= priv->led_activity_on;
871
872                 led = ipw_register_toggle(led);
873
874                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
875                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
876
877                 IPW_DEBUG_LED("Activity LED On\n");
878
879                 priv->status |= STATUS_LED_ACT_ON;
880
881                 cancel_delayed_work(&priv->led_act_off);
882                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
883                                    LD_TIME_ACT_ON);
884         } else {
885                 /* Reschedule LED off for full time period */
886                 cancel_delayed_work(&priv->led_act_off);
887                 queue_delayed_work(priv->workqueue, &priv->led_act_off,
888                                    LD_TIME_ACT_ON);
889         }
890 }
891
892 #if 0
893 void ipw_led_activity_on(struct ipw_priv *priv)
894 {
895         unsigned long flags;
896         spin_lock_irqsave(&priv->lock, flags);
897         __ipw_led_activity_on(priv);
898         spin_unlock_irqrestore(&priv->lock, flags);
899 }
900 #endif  /*  0  */
901
902 static void ipw_led_activity_off(struct ipw_priv *priv)
903 {
904         unsigned long flags;
905         u32 led;
906
907         if (priv->config & CFG_NO_LED)
908                 return;
909
910         spin_lock_irqsave(&priv->lock, flags);
911
912         if (priv->status & STATUS_LED_ACT_ON) {
913                 led = ipw_read_reg32(priv, IPW_EVENT_REG);
914                 led &= priv->led_activity_off;
915
916                 led = ipw_register_toggle(led);
917
918                 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
919                 ipw_write_reg32(priv, IPW_EVENT_REG, led);
920
921                 IPW_DEBUG_LED("Activity LED Off\n");
922
923                 priv->status &= ~STATUS_LED_ACT_ON;
924         }
925
926         spin_unlock_irqrestore(&priv->lock, flags);
927 }
928
929 static void ipw_bg_led_activity_off(void *data)
930 {
931         struct ipw_priv *priv = data;
932         mutex_lock(&priv->mutex);
933         ipw_led_activity_off(data);
934         mutex_unlock(&priv->mutex);
935 }
936
937 static void ipw_led_band_on(struct ipw_priv *priv)
938 {
939         unsigned long flags;
940         u32 led;
941
942         /* Only nic type 1 supports mode LEDs */
943         if (priv->config & CFG_NO_LED ||
944             priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
945                 return;
946
947         spin_lock_irqsave(&priv->lock, flags);
948
949         led = ipw_read_reg32(priv, IPW_EVENT_REG);
950         if (priv->assoc_network->mode == IEEE_A) {
951                 led |= priv->led_ofdm_on;
952                 led &= priv->led_association_off;
953                 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
954         } else if (priv->assoc_network->mode == IEEE_G) {
955                 led |= priv->led_ofdm_on;
956                 led |= priv->led_association_on;
957                 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
958         } else {
959                 led &= priv->led_ofdm_off;
960                 led |= priv->led_association_on;
961                 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
962         }
963
964         led = ipw_register_toggle(led);
965
966         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
967         ipw_write_reg32(priv, IPW_EVENT_REG, led);
968
969         spin_unlock_irqrestore(&priv->lock, flags);
970 }
971
972 static void ipw_led_band_off(struct ipw_priv *priv)
973 {
974         unsigned long flags;
975         u32 led;
976
977         /* Only nic type 1 supports mode LEDs */
978         if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
979                 return;
980
981         spin_lock_irqsave(&priv->lock, flags);
982
983         led = ipw_read_reg32(priv, IPW_EVENT_REG);
984         led &= priv->led_ofdm_off;
985         led &= priv->led_association_off;
986
987         led = ipw_register_toggle(led);
988
989         IPW_DEBUG_LED("Reg: 0x%08X\n", led);
990         ipw_write_reg32(priv, IPW_EVENT_REG, led);
991
992         spin_unlock_irqrestore(&priv->lock, flags);
993 }
994
995 static void ipw_led_radio_on(struct ipw_priv *priv)
996 {
997         ipw_led_link_on(priv);
998 }
999
1000 static void ipw_led_radio_off(struct ipw_priv *priv)
1001 {
1002         ipw_led_activity_off(priv);
1003         ipw_led_link_off(priv);
1004 }
1005
1006 static void ipw_led_link_up(struct ipw_priv *priv)
1007 {
1008         /* Set the Link Led on for all nic types */
1009         ipw_led_link_on(priv);
1010 }
1011
1012 static void ipw_led_link_down(struct ipw_priv *priv)
1013 {
1014         ipw_led_activity_off(priv);
1015         ipw_led_link_off(priv);
1016
1017         if (priv->status & STATUS_RF_KILL_MASK)
1018                 ipw_led_radio_off(priv);
1019 }
1020
1021 static void ipw_led_init(struct ipw_priv *priv)
1022 {
1023         priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1024
1025         /* Set the default PINs for the link and activity leds */
1026         priv->led_activity_on = IPW_ACTIVITY_LED;
1027         priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1028
1029         priv->led_association_on = IPW_ASSOCIATED_LED;
1030         priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1031
1032         /* Set the default PINs for the OFDM leds */
1033         priv->led_ofdm_on = IPW_OFDM_LED;
1034         priv->led_ofdm_off = ~(IPW_OFDM_LED);
1035
1036         switch (priv->nic_type) {
1037         case EEPROM_NIC_TYPE_1:
1038                 /* In this NIC type, the LEDs are reversed.... */
1039                 priv->led_activity_on = IPW_ASSOCIATED_LED;
1040                 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1041                 priv->led_association_on = IPW_ACTIVITY_LED;
1042                 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1043
1044                 if (!(priv->config & CFG_NO_LED))
1045                         ipw_led_band_on(priv);
1046
1047                 /* And we don't blink link LEDs for this nic, so
1048                  * just return here */
1049                 return;
1050
1051         case EEPROM_NIC_TYPE_3:
1052         case EEPROM_NIC_TYPE_2:
1053         case EEPROM_NIC_TYPE_4:
1054         case EEPROM_NIC_TYPE_0:
1055                 break;
1056
1057         default:
1058                 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1059                                priv->nic_type);
1060                 priv->nic_type = EEPROM_NIC_TYPE_0;
1061                 break;
1062         }
1063
1064         if (!(priv->config & CFG_NO_LED)) {
1065                 if (priv->status & STATUS_ASSOCIATED)
1066                         ipw_led_link_on(priv);
1067                 else
1068                         ipw_led_link_off(priv);
1069         }
1070 }
1071
1072 static void ipw_led_shutdown(struct ipw_priv *priv)
1073 {
1074         ipw_led_activity_off(priv);
1075         ipw_led_link_off(priv);
1076         ipw_led_band_off(priv);
1077         cancel_delayed_work(&priv->led_link_on);
1078         cancel_delayed_work(&priv->led_link_off);
1079         cancel_delayed_work(&priv->led_act_off);
1080 }
1081
1082 /*
1083  * The following adds a new attribute to the sysfs representation
1084  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1085  * used for controling the debug level.
1086  *
1087  * See the level definitions in ipw for details.
1088  */
1089 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1090 {
1091         return sprintf(buf, "0x%08X\n", ipw_debug_level);
1092 }
1093
1094 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1095                                  size_t count)
1096 {
1097         char *p = (char *)buf;
1098         u32 val;
1099
1100         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1101                 p++;
1102                 if (p[0] == 'x' || p[0] == 'X')
1103                         p++;
1104                 val = simple_strtoul(p, &p, 16);
1105         } else
1106                 val = simple_strtoul(p, &p, 10);
1107         if (p == buf)
1108                 printk(KERN_INFO DRV_NAME
1109                        ": %s is not in hex or decimal form.\n", buf);
1110         else
1111                 ipw_debug_level = val;
1112
1113         return strnlen(buf, count);
1114 }
1115
1116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1117                    show_debug_level, store_debug_level);
1118
1119 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1120 {
1121         /* length = 1st dword in log */
1122         return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1123 }
1124
1125 static void ipw_capture_event_log(struct ipw_priv *priv,
1126                                   u32 log_len, struct ipw_event *log)
1127 {
1128         u32 base;
1129
1130         if (log_len) {
1131                 base = ipw_read32(priv, IPW_EVENT_LOG);
1132                 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1133                                   (u8 *) log, sizeof(*log) * log_len);
1134         }
1135 }
1136
1137 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1138 {
1139         struct ipw_fw_error *error;
1140         u32 log_len = ipw_get_event_log_len(priv);
1141         u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1142         u32 elem_len = ipw_read_reg32(priv, base);
1143
1144         error = kmalloc(sizeof(*error) +
1145                         sizeof(*error->elem) * elem_len +
1146                         sizeof(*error->log) * log_len, GFP_ATOMIC);
1147         if (!error) {
1148                 IPW_ERROR("Memory allocation for firmware error log "
1149                           "failed.\n");
1150                 return NULL;
1151         }
1152         error->jiffies = jiffies;
1153         error->status = priv->status;
1154         error->config = priv->config;
1155         error->elem_len = elem_len;
1156         error->log_len = log_len;
1157         error->elem = (struct ipw_error_elem *)error->payload;
1158         error->log = (struct ipw_event *)(error->elem + elem_len);
1159
1160         ipw_capture_event_log(priv, log_len, error->log);
1161
1162         if (elem_len)
1163                 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1164                                   sizeof(*error->elem) * elem_len);
1165
1166         return error;
1167 }
1168
1169 static void ipw_free_error_log(struct ipw_fw_error *error)
1170 {
1171         if (error)
1172                 kfree(error);
1173 }
1174
1175 static ssize_t show_event_log(struct device *d,
1176                               struct device_attribute *attr, char *buf)
1177 {
1178         struct ipw_priv *priv = dev_get_drvdata(d);
1179         u32 log_len = ipw_get_event_log_len(priv);
1180         struct ipw_event log[log_len];
1181         u32 len = 0, i;
1182
1183         ipw_capture_event_log(priv, log_len, log);
1184
1185         len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1186         for (i = 0; i < log_len; i++)
1187                 len += snprintf(buf + len, PAGE_SIZE - len,
1188                                 "\n%08X%08X%08X",
1189                                 log[i].time, log[i].event, log[i].data);
1190         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1191         return len;
1192 }
1193
1194 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1195
1196 static ssize_t show_error(struct device *d,
1197                           struct device_attribute *attr, char *buf)
1198 {
1199         struct ipw_priv *priv = dev_get_drvdata(d);
1200         u32 len = 0, i;
1201         if (!priv->error)
1202                 return 0;
1203         len += snprintf(buf + len, PAGE_SIZE - len,
1204                         "%08lX%08X%08X%08X",
1205                         priv->error->jiffies,
1206                         priv->error->status,
1207                         priv->error->config, priv->error->elem_len);
1208         for (i = 0; i < priv->error->elem_len; i++)
1209                 len += snprintf(buf + len, PAGE_SIZE - len,
1210                                 "\n%08X%08X%08X%08X%08X%08X%08X",
1211                                 priv->error->elem[i].time,
1212                                 priv->error->elem[i].desc,
1213                                 priv->error->elem[i].blink1,
1214                                 priv->error->elem[i].blink2,
1215                                 priv->error->elem[i].link1,
1216                                 priv->error->elem[i].link2,
1217                                 priv->error->elem[i].data);
1218
1219         len += snprintf(buf + len, PAGE_SIZE - len,
1220                         "\n%08X", priv->error->log_len);
1221         for (i = 0; i < priv->error->log_len; i++)
1222                 len += snprintf(buf + len, PAGE_SIZE - len,
1223                                 "\n%08X%08X%08X",
1224                                 priv->error->log[i].time,
1225                                 priv->error->log[i].event,
1226                                 priv->error->log[i].data);
1227         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1228         return len;
1229 }
1230
1231 static ssize_t clear_error(struct device *d,
1232                            struct device_attribute *attr,
1233                            const char *buf, size_t count)
1234 {
1235         struct ipw_priv *priv = dev_get_drvdata(d);
1236         if (priv->error) {
1237                 ipw_free_error_log(priv->error);
1238                 priv->error = NULL;
1239         }
1240         return count;
1241 }
1242
1243 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1244
1245 static ssize_t show_cmd_log(struct device *d,
1246                             struct device_attribute *attr, char *buf)
1247 {
1248         struct ipw_priv *priv = dev_get_drvdata(d);
1249         u32 len = 0, i;
1250         if (!priv->cmdlog)
1251                 return 0;
1252         for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1253              (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1254              i = (i + 1) % priv->cmdlog_len) {
1255                 len +=
1256                     snprintf(buf + len, PAGE_SIZE - len,
1257                              "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1258                              priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1259                              priv->cmdlog[i].cmd.len);
1260                 len +=
1261                     snprintk_buf(buf + len, PAGE_SIZE - len,
1262                                  (u8 *) priv->cmdlog[i].cmd.param,
1263                                  priv->cmdlog[i].cmd.len);
1264                 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1265         }
1266         len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1267         return len;
1268 }
1269
1270 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1271
1272 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1273                              char *buf)
1274 {
1275         struct ipw_priv *priv = dev_get_drvdata(d);
1276         return sprintf(buf, "%d\n", priv->ieee->scan_age);
1277 }
1278
1279 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1280                               const char *buf, size_t count)
1281 {
1282         struct ipw_priv *priv = dev_get_drvdata(d);
1283 #ifdef CONFIG_IPW2200_DEBUG
1284         struct net_device *dev = priv->net_dev;
1285 #endif
1286         char buffer[] = "00000000";
1287         unsigned long len =
1288             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1289         unsigned long val;
1290         char *p = buffer;
1291
1292         IPW_DEBUG_INFO("enter\n");
1293
1294         strncpy(buffer, buf, len);
1295         buffer[len] = 0;
1296
1297         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1298                 p++;
1299                 if (p[0] == 'x' || p[0] == 'X')
1300                         p++;
1301                 val = simple_strtoul(p, &p, 16);
1302         } else
1303                 val = simple_strtoul(p, &p, 10);
1304         if (p == buffer) {
1305                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1306         } else {
1307                 priv->ieee->scan_age = val;
1308                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1309         }
1310
1311         IPW_DEBUG_INFO("exit\n");
1312         return len;
1313 }
1314
1315 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1316
1317 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1318                         char *buf)
1319 {
1320         struct ipw_priv *priv = dev_get_drvdata(d);
1321         return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1322 }
1323
1324 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1325                          const char *buf, size_t count)
1326 {
1327         struct ipw_priv *priv = dev_get_drvdata(d);
1328
1329         IPW_DEBUG_INFO("enter\n");
1330
1331         if (count == 0)
1332                 return 0;
1333
1334         if (*buf == 0) {
1335                 IPW_DEBUG_LED("Disabling LED control.\n");
1336                 priv->config |= CFG_NO_LED;
1337                 ipw_led_shutdown(priv);
1338         } else {
1339                 IPW_DEBUG_LED("Enabling LED control.\n");
1340                 priv->config &= ~CFG_NO_LED;
1341                 ipw_led_init(priv);
1342         }
1343
1344         IPW_DEBUG_INFO("exit\n");
1345         return count;
1346 }
1347
1348 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1349
1350 static ssize_t show_status(struct device *d,
1351                            struct device_attribute *attr, char *buf)
1352 {
1353         struct ipw_priv *p = d->driver_data;
1354         return sprintf(buf, "0x%08x\n", (int)p->status);
1355 }
1356
1357 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1358
1359 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1360                         char *buf)
1361 {
1362         struct ipw_priv *p = d->driver_data;
1363         return sprintf(buf, "0x%08x\n", (int)p->config);
1364 }
1365
1366 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1367
1368 static ssize_t show_nic_type(struct device *d,
1369                              struct device_attribute *attr, char *buf)
1370 {
1371         struct ipw_priv *priv = d->driver_data;
1372         return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1373 }
1374
1375 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1376
1377 static ssize_t show_ucode_version(struct device *d,
1378                                   struct device_attribute *attr, char *buf)
1379 {
1380         u32 len = sizeof(u32), tmp = 0;
1381         struct ipw_priv *p = d->driver_data;
1382
1383         if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1384                 return 0;
1385
1386         return sprintf(buf, "0x%08x\n", tmp);
1387 }
1388
1389 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1390
1391 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1392                         char *buf)
1393 {
1394         u32 len = sizeof(u32), tmp = 0;
1395         struct ipw_priv *p = d->driver_data;
1396
1397         if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1398                 return 0;
1399
1400         return sprintf(buf, "0x%08x\n", tmp);
1401 }
1402
1403 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1404
1405 /*
1406  * Add a device attribute to view/control the delay between eeprom
1407  * operations.
1408  */
1409 static ssize_t show_eeprom_delay(struct device *d,
1410                                  struct device_attribute *attr, char *buf)
1411 {
1412         int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1413         return sprintf(buf, "%i\n", n);
1414 }
1415 static ssize_t store_eeprom_delay(struct device *d,
1416                                   struct device_attribute *attr,
1417                                   const char *buf, size_t count)
1418 {
1419         struct ipw_priv *p = d->driver_data;
1420         sscanf(buf, "%i", &p->eeprom_delay);
1421         return strnlen(buf, count);
1422 }
1423
1424 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1425                    show_eeprom_delay, store_eeprom_delay);
1426
1427 static ssize_t show_command_event_reg(struct device *d,
1428                                       struct device_attribute *attr, char *buf)
1429 {
1430         u32 reg = 0;
1431         struct ipw_priv *p = d->driver_data;
1432
1433         reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1434         return sprintf(buf, "0x%08x\n", reg);
1435 }
1436 static ssize_t store_command_event_reg(struct device *d,
1437                                        struct device_attribute *attr,
1438                                        const char *buf, size_t count)
1439 {
1440         u32 reg;
1441         struct ipw_priv *p = d->driver_data;
1442
1443         sscanf(buf, "%x", &reg);
1444         ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1445         return strnlen(buf, count);
1446 }
1447
1448 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1449                    show_command_event_reg, store_command_event_reg);
1450
1451 static ssize_t show_mem_gpio_reg(struct device *d,
1452                                  struct device_attribute *attr, char *buf)
1453 {
1454         u32 reg = 0;
1455         struct ipw_priv *p = d->driver_data;
1456
1457         reg = ipw_read_reg32(p, 0x301100);
1458         return sprintf(buf, "0x%08x\n", reg);
1459 }
1460 static ssize_t store_mem_gpio_reg(struct device *d,
1461                                   struct device_attribute *attr,
1462                                   const char *buf, size_t count)
1463 {
1464         u32 reg;
1465         struct ipw_priv *p = d->driver_data;
1466
1467         sscanf(buf, "%x", &reg);
1468         ipw_write_reg32(p, 0x301100, reg);
1469         return strnlen(buf, count);
1470 }
1471
1472 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1473                    show_mem_gpio_reg, store_mem_gpio_reg);
1474
1475 static ssize_t show_indirect_dword(struct device *d,
1476                                    struct device_attribute *attr, char *buf)
1477 {
1478         u32 reg = 0;
1479         struct ipw_priv *priv = d->driver_data;
1480
1481         if (priv->status & STATUS_INDIRECT_DWORD)
1482                 reg = ipw_read_reg32(priv, priv->indirect_dword);
1483         else
1484                 reg = 0;
1485
1486         return sprintf(buf, "0x%08x\n", reg);
1487 }
1488 static ssize_t store_indirect_dword(struct device *d,
1489                                     struct device_attribute *attr,
1490                                     const char *buf, size_t count)
1491 {
1492         struct ipw_priv *priv = d->driver_data;
1493
1494         sscanf(buf, "%x", &priv->indirect_dword);
1495         priv->status |= STATUS_INDIRECT_DWORD;
1496         return strnlen(buf, count);
1497 }
1498
1499 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1500                    show_indirect_dword, store_indirect_dword);
1501
1502 static ssize_t show_indirect_byte(struct device *d,
1503                                   struct device_attribute *attr, char *buf)
1504 {
1505         u8 reg = 0;
1506         struct ipw_priv *priv = d->driver_data;
1507
1508         if (priv->status & STATUS_INDIRECT_BYTE)
1509                 reg = ipw_read_reg8(priv, priv->indirect_byte);
1510         else
1511                 reg = 0;
1512
1513         return sprintf(buf, "0x%02x\n", reg);
1514 }
1515 static ssize_t store_indirect_byte(struct device *d,
1516                                    struct device_attribute *attr,
1517                                    const char *buf, size_t count)
1518 {
1519         struct ipw_priv *priv = d->driver_data;
1520
1521         sscanf(buf, "%x", &priv->indirect_byte);
1522         priv->status |= STATUS_INDIRECT_BYTE;
1523         return strnlen(buf, count);
1524 }
1525
1526 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1527                    show_indirect_byte, store_indirect_byte);
1528
1529 static ssize_t show_direct_dword(struct device *d,
1530                                  struct device_attribute *attr, char *buf)
1531 {
1532         u32 reg = 0;
1533         struct ipw_priv *priv = d->driver_data;
1534
1535         if (priv->status & STATUS_DIRECT_DWORD)
1536                 reg = ipw_read32(priv, priv->direct_dword);
1537         else
1538                 reg = 0;
1539
1540         return sprintf(buf, "0x%08x\n", reg);
1541 }
1542 static ssize_t store_direct_dword(struct device *d,
1543                                   struct device_attribute *attr,
1544                                   const char *buf, size_t count)
1545 {
1546         struct ipw_priv *priv = d->driver_data;
1547
1548         sscanf(buf, "%x", &priv->direct_dword);
1549         priv->status |= STATUS_DIRECT_DWORD;
1550         return strnlen(buf, count);
1551 }
1552
1553 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1554                    show_direct_dword, store_direct_dword);
1555
1556 static int rf_kill_active(struct ipw_priv *priv)
1557 {
1558         if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1559                 priv->status |= STATUS_RF_KILL_HW;
1560         else
1561                 priv->status &= ~STATUS_RF_KILL_HW;
1562
1563         return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1564 }
1565
1566 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1567                             char *buf)
1568 {
1569         /* 0 - RF kill not enabled
1570            1 - SW based RF kill active (sysfs)
1571            2 - HW based RF kill active
1572            3 - Both HW and SW baed RF kill active */
1573         struct ipw_priv *priv = d->driver_data;
1574         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1575             (rf_kill_active(priv) ? 0x2 : 0x0);
1576         return sprintf(buf, "%i\n", val);
1577 }
1578
1579 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1580 {
1581         if ((disable_radio ? 1 : 0) ==
1582             ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1583                 return 0;
1584
1585         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1586                           disable_radio ? "OFF" : "ON");
1587
1588         if (disable_radio) {
1589                 priv->status |= STATUS_RF_KILL_SW;
1590
1591                 if (priv->workqueue)
1592                         cancel_delayed_work(&priv->request_scan);
1593                 queue_work(priv->workqueue, &priv->down);
1594         } else {
1595                 priv->status &= ~STATUS_RF_KILL_SW;
1596                 if (rf_kill_active(priv)) {
1597                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1598                                           "disabled by HW switch\n");
1599                         /* Make sure the RF_KILL check timer is running */
1600                         cancel_delayed_work(&priv->rf_kill);
1601                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
1602                                            2 * HZ);
1603                 } else
1604                         queue_work(priv->workqueue, &priv->up);
1605         }
1606
1607         return 1;
1608 }
1609
1610 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1611                              const char *buf, size_t count)
1612 {
1613         struct ipw_priv *priv = d->driver_data;
1614
1615         ipw_radio_kill_sw(priv, buf[0] == '1');
1616
1617         return count;
1618 }
1619
1620 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1621
1622 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1623                                char *buf)
1624 {
1625         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1626         int pos = 0, len = 0;
1627         if (priv->config & CFG_SPEED_SCAN) {
1628                 while (priv->speed_scan[pos] != 0)
1629                         len += sprintf(&buf[len], "%d ",
1630                                        priv->speed_scan[pos++]);
1631                 return len + sprintf(&buf[len], "\n");
1632         }
1633
1634         return sprintf(buf, "0\n");
1635 }
1636
1637 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1638                                 const char *buf, size_t count)
1639 {
1640         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1641         int channel, pos = 0;
1642         const char *p = buf;
1643
1644         /* list of space separated channels to scan, optionally ending with 0 */
1645         while ((channel = simple_strtol(p, NULL, 0))) {
1646                 if (pos == MAX_SPEED_SCAN - 1) {
1647                         priv->speed_scan[pos] = 0;
1648                         break;
1649                 }
1650
1651                 if (ieee80211_is_valid_channel(priv->ieee, channel))
1652                         priv->speed_scan[pos++] = channel;
1653                 else
1654                         IPW_WARNING("Skipping invalid channel request: %d\n",
1655                                     channel);
1656                 p = strchr(p, ' ');
1657                 if (!p)
1658                         break;
1659                 while (*p == ' ' || *p == '\t')
1660                         p++;
1661         }
1662
1663         if (pos == 0)
1664                 priv->config &= ~CFG_SPEED_SCAN;
1665         else {
1666                 priv->speed_scan_pos = 0;
1667                 priv->config |= CFG_SPEED_SCAN;
1668         }
1669
1670         return count;
1671 }
1672
1673 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1674                    store_speed_scan);
1675
1676 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1677                               char *buf)
1678 {
1679         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1680         return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1681 }
1682
1683 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1684                                const char *buf, size_t count)
1685 {
1686         struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1687         if (buf[0] == '1')
1688                 priv->config |= CFG_NET_STATS;
1689         else
1690                 priv->config &= ~CFG_NET_STATS;
1691
1692         return count;
1693 }
1694
1695 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1696                    show_net_stats, store_net_stats);
1697
1698 static void notify_wx_assoc_event(struct ipw_priv *priv)
1699 {
1700         union iwreq_data wrqu;
1701         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1702         if (priv->status & STATUS_ASSOCIATED)
1703                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1704         else
1705                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1706         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1707 }
1708
1709 static void ipw_irq_tasklet(struct ipw_priv *priv)
1710 {
1711         u32 inta, inta_mask, handled = 0;
1712         unsigned long flags;
1713         int rc = 0;
1714
1715         spin_lock_irqsave(&priv->lock, flags);
1716
1717         inta = ipw_read32(priv, IPW_INTA_RW);
1718         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1719         inta &= (IPW_INTA_MASK_ALL & inta_mask);
1720
1721         /* Add any cached INTA values that need to be handled */
1722         inta |= priv->isr_inta;
1723
1724         /* handle all the justifications for the interrupt */
1725         if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1726                 ipw_rx(priv);
1727                 handled |= IPW_INTA_BIT_RX_TRANSFER;
1728         }
1729
1730         if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1731                 IPW_DEBUG_HC("Command completed.\n");
1732                 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1733                 priv->status &= ~STATUS_HCMD_ACTIVE;
1734                 wake_up_interruptible(&priv->wait_command_queue);
1735                 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1736         }
1737
1738         if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1739                 IPW_DEBUG_TX("TX_QUEUE_1\n");
1740                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1741                 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1742         }
1743
1744         if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1745                 IPW_DEBUG_TX("TX_QUEUE_2\n");
1746                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1747                 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1748         }
1749
1750         if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1751                 IPW_DEBUG_TX("TX_QUEUE_3\n");
1752                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1753                 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1754         }
1755
1756         if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1757                 IPW_DEBUG_TX("TX_QUEUE_4\n");
1758                 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1759                 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1760         }
1761
1762         if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1763                 IPW_WARNING("STATUS_CHANGE\n");
1764                 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1765         }
1766
1767         if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1768                 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1769                 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1770         }
1771
1772         if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1773                 IPW_WARNING("HOST_CMD_DONE\n");
1774                 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1775         }
1776
1777         if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1778                 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1779                 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1780         }
1781
1782         if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
1783                 IPW_WARNING("PHY_OFF_DONE\n");
1784                 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
1785         }
1786
1787         if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
1788                 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
1789                 priv->status |= STATUS_RF_KILL_HW;
1790                 wake_up_interruptible(&priv->wait_command_queue);
1791                 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1792                 cancel_delayed_work(&priv->request_scan);
1793                 schedule_work(&priv->link_down);
1794                 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
1795                 handled |= IPW_INTA_BIT_RF_KILL_DONE;
1796         }
1797
1798         if (inta & IPW_INTA_BIT_FATAL_ERROR) {
1799                 IPW_WARNING("Firmware error detected.  Restarting.\n");
1800                 if (priv->error) {
1801                         IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
1802 #ifdef CONFIG_IPW2200_DEBUG
1803                         if (ipw_debug_level & IPW_DL_FW_ERRORS) {
1804                                 struct ipw_fw_error *error =
1805                                     ipw_alloc_error_log(priv);
1806                                 ipw_dump_error_log(priv, error);
1807                                 if (error)
1808                                         ipw_free_error_log(error);
1809                         }
1810 #endif
1811                 } else {
1812                         priv->error = ipw_alloc_error_log(priv);
1813                         if (priv->error)
1814                                 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
1815                         else
1816                                 IPW_DEBUG_FW("Error allocating sysfs 'error' "
1817                                              "log.\n");
1818 #ifdef CONFIG_IPW2200_DEBUG
1819                         if (ipw_debug_level & IPW_DL_FW_ERRORS)
1820                                 ipw_dump_error_log(priv, priv->error);
1821 #endif
1822                 }
1823
1824                 /* XXX: If hardware encryption is for WPA/WPA2,
1825                  * we have to notify the supplicant. */
1826                 if (priv->ieee->sec.encrypt) {
1827                         priv->status &= ~STATUS_ASSOCIATED;
1828                         notify_wx_assoc_event(priv);
1829                 }
1830
1831                 /* Keep the restart process from trying to send host
1832                  * commands by clearing the INIT status bit */
1833                 priv->status &= ~STATUS_INIT;
1834
1835                 /* Cancel currently queued command. */
1836                 priv->status &= ~STATUS_HCMD_ACTIVE;
1837                 wake_up_interruptible(&priv->wait_command_queue);
1838
1839                 queue_work(priv->workqueue, &priv->adapter_restart);
1840                 handled |= IPW_INTA_BIT_FATAL_ERROR;
1841         }
1842
1843         if (inta & IPW_INTA_BIT_PARITY_ERROR) {
1844                 IPW_ERROR("Parity error\n");
1845                 handled |= IPW_INTA_BIT_PARITY_ERROR;
1846         }
1847
1848         if (handled != inta) {
1849                 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
1850         }
1851
1852         /* enable all interrupts */
1853         ipw_enable_interrupts(priv);
1854
1855         spin_unlock_irqrestore(&priv->lock, flags);
1856 }
1857
1858 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
1859 static char *get_cmd_string(u8 cmd)
1860 {
1861         switch (cmd) {
1862                 IPW_CMD(HOST_COMPLETE);
1863                 IPW_CMD(POWER_DOWN);
1864                 IPW_CMD(SYSTEM_CONFIG);
1865                 IPW_CMD(MULTICAST_ADDRESS);
1866                 IPW_CMD(SSID);
1867                 IPW_CMD(ADAPTER_ADDRESS);
1868                 IPW_CMD(PORT_TYPE);
1869                 IPW_CMD(RTS_THRESHOLD);
1870                 IPW_CMD(FRAG_THRESHOLD);
1871                 IPW_CMD(POWER_MODE);
1872                 IPW_CMD(WEP_KEY);
1873                 IPW_CMD(TGI_TX_KEY);
1874                 IPW_CMD(SCAN_REQUEST);
1875                 IPW_CMD(SCAN_REQUEST_EXT);
1876                 IPW_CMD(ASSOCIATE);
1877                 IPW_CMD(SUPPORTED_RATES);
1878                 IPW_CMD(SCAN_ABORT);
1879                 IPW_CMD(TX_FLUSH);
1880                 IPW_CMD(QOS_PARAMETERS);
1881                 IPW_CMD(DINO_CONFIG);
1882                 IPW_CMD(RSN_CAPABILITIES);
1883                 IPW_CMD(RX_KEY);
1884                 IPW_CMD(CARD_DISABLE);
1885                 IPW_CMD(SEED_NUMBER);
1886                 IPW_CMD(TX_POWER);
1887                 IPW_CMD(COUNTRY_INFO);
1888                 IPW_CMD(AIRONET_INFO);
1889                 IPW_CMD(AP_TX_POWER);
1890                 IPW_CMD(CCKM_INFO);
1891                 IPW_CMD(CCX_VER_INFO);
1892                 IPW_CMD(SET_CALIBRATION);
1893                 IPW_CMD(SENSITIVITY_CALIB);
1894                 IPW_CMD(RETRY_LIMIT);
1895                 IPW_CMD(IPW_PRE_POWER_DOWN);
1896                 IPW_CMD(VAP_BEACON_TEMPLATE);
1897                 IPW_CMD(VAP_DTIM_PERIOD);
1898                 IPW_CMD(EXT_SUPPORTED_RATES);
1899                 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
1900                 IPW_CMD(VAP_QUIET_INTERVALS);
1901                 IPW_CMD(VAP_CHANNEL_SWITCH);
1902                 IPW_CMD(VAP_MANDATORY_CHANNELS);
1903                 IPW_CMD(VAP_CELL_PWR_LIMIT);
1904                 IPW_CMD(VAP_CF_PARAM_SET);
1905                 IPW_CMD(VAP_SET_BEACONING_STATE);
1906                 IPW_CMD(MEASUREMENT);
1907                 IPW_CMD(POWER_CAPABILITY);
1908                 IPW_CMD(SUPPORTED_CHANNELS);
1909                 IPW_CMD(TPC_REPORT);
1910                 IPW_CMD(WME_INFO);
1911                 IPW_CMD(PRODUCTION_COMMAND);
1912         default:
1913                 return "UNKNOWN";
1914         }
1915 }
1916
1917 #define HOST_COMPLETE_TIMEOUT HZ
1918
1919 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
1920 {
1921         int rc = 0;
1922         unsigned long flags;
1923
1924         spin_lock_irqsave(&priv->lock, flags);
1925         if (priv->status & STATUS_HCMD_ACTIVE) {
1926                 IPW_ERROR("Failed to send %s: Already sending a command.\n",
1927                           get_cmd_string(cmd->cmd));
1928                 spin_unlock_irqrestore(&priv->lock, flags);
1929                 return -EAGAIN;
1930         }
1931
1932         priv->status |= STATUS_HCMD_ACTIVE;
1933
1934         if (priv->cmdlog) {
1935                 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
1936                 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
1937                 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
1938                 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
1939                        cmd->len);
1940                 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
1941         }
1942
1943         IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
1944                      get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
1945                      priv->status);
1946
1947 #ifndef DEBUG_CMD_WEP_KEY
1948         if (cmd->cmd == IPW_CMD_WEP_KEY)
1949                 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
1950         else
1951 #endif
1952                 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
1953
1954         rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
1955         if (rc) {
1956                 priv->status &= ~STATUS_HCMD_ACTIVE;
1957                 IPW_ERROR("Failed to send %s: Reason %d\n",
1958                           get_cmd_string(cmd->cmd), rc);
1959                 spin_unlock_irqrestore(&priv->lock, flags);
1960                 goto exit;
1961         }
1962         spin_unlock_irqrestore(&priv->lock, flags);
1963
1964         rc = wait_event_interruptible_timeout(priv->wait_command_queue,
1965                                               !(priv->
1966                                                 status & STATUS_HCMD_ACTIVE),
1967                                               HOST_COMPLETE_TIMEOUT);
1968         if (rc == 0) {
1969                 spin_lock_irqsave(&priv->lock, flags);
1970                 if (priv->status & STATUS_HCMD_ACTIVE) {
1971                         IPW_ERROR("Failed to send %s: Command timed out.\n",
1972                                   get_cmd_string(cmd->cmd));
1973                         priv->status &= ~STATUS_HCMD_ACTIVE;
1974                         spin_unlock_irqrestore(&priv->lock, flags);
1975                         rc = -EIO;
1976                         goto exit;
1977                 }
1978                 spin_unlock_irqrestore(&priv->lock, flags);
1979         } else
1980                 rc = 0;
1981
1982         if (priv->status & STATUS_RF_KILL_HW) {
1983                 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
1984                           get_cmd_string(cmd->cmd));
1985                 rc = -EIO;
1986                 goto exit;
1987         }
1988
1989       exit:
1990         if (priv->cmdlog) {
1991                 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
1992                 priv->cmdlog_pos %= priv->cmdlog_len;
1993         }
1994         return rc;
1995 }
1996
1997 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
1998 {
1999         struct host_cmd cmd = {
2000                 .cmd = command,
2001         };
2002
2003         return __ipw_send_cmd(priv, &cmd);
2004 }
2005
2006 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2007                             void *data)
2008 {
2009         struct host_cmd cmd = {
2010                 .cmd = command,
2011                 .len = len,
2012                 .param = data,
2013         };
2014
2015         return __ipw_send_cmd(priv, &cmd);
2016 }
2017
2018 static int ipw_send_host_complete(struct ipw_priv *priv)
2019 {
2020         if (!priv) {
2021                 IPW_ERROR("Invalid args\n");
2022                 return -1;
2023         }
2024
2025         return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2026 }
2027
2028 static int ipw_send_system_config(struct ipw_priv *priv,
2029                                   struct ipw_sys_config *config)
2030 {
2031         if (!priv || !config) {
2032                 IPW_ERROR("Invalid args\n");
2033                 return -1;
2034         }
2035
2036         return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG, sizeof(*config),
2037                                 config);
2038 }
2039
2040 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2041 {
2042         if (!priv || !ssid) {
2043                 IPW_ERROR("Invalid args\n");
2044                 return -1;
2045         }
2046
2047         return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2048                                 ssid);
2049 }
2050
2051 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2052 {
2053         if (!priv || !mac) {
2054                 IPW_ERROR("Invalid args\n");
2055                 return -1;
2056         }
2057
2058         IPW_DEBUG_INFO("%s: Setting MAC to " MAC_FMT "\n",
2059                        priv->net_dev->name, MAC_ARG(mac));
2060
2061         return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2062 }
2063
2064 /*
2065  * NOTE: This must be executed from our workqueue as it results in udelay
2066  * being called which may corrupt the keyboard if executed on default
2067  * workqueue
2068  */
2069 static void ipw_adapter_restart(void *adapter)
2070 {
2071         struct ipw_priv *priv = adapter;
2072
2073         if (priv->status & STATUS_RF_KILL_MASK)
2074                 return;
2075
2076         ipw_down(priv);
2077
2078         if (priv->assoc_network &&
2079             (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2080                 ipw_remove_current_network(priv);
2081
2082         if (ipw_up(priv)) {
2083                 IPW_ERROR("Failed to up device\n");
2084                 return;
2085         }
2086 }
2087
2088 static void ipw_bg_adapter_restart(void *data)
2089 {
2090         struct ipw_priv *priv = data;
2091         mutex_lock(&priv->mutex);
2092         ipw_adapter_restart(data);
2093         mutex_unlock(&priv->mutex);
2094 }
2095
2096 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2097
2098 static void ipw_scan_check(void *data)
2099 {
2100         struct ipw_priv *priv = data;
2101         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2102                 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2103                                "adapter after (%dms).\n",
2104                                jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2105                 queue_work(priv->workqueue, &priv->adapter_restart);
2106         }
2107 }
2108
2109 static void ipw_bg_scan_check(void *data)
2110 {
2111         struct ipw_priv *priv = data;
2112         mutex_lock(&priv->mutex);
2113         ipw_scan_check(data);
2114         mutex_unlock(&priv->mutex);
2115 }
2116
2117 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2118                                      struct ipw_scan_request_ext *request)
2119 {
2120         return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2121                                 sizeof(*request), request);
2122 }
2123
2124 static int ipw_send_scan_abort(struct ipw_priv *priv)
2125 {
2126         if (!priv) {
2127                 IPW_ERROR("Invalid args\n");
2128                 return -1;
2129         }
2130
2131         return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2132 }
2133
2134 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2135 {
2136         struct ipw_sensitivity_calib calib = {
2137                 .beacon_rssi_raw = sens,
2138         };
2139
2140         return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2141                                 &calib);
2142 }
2143
2144 static int ipw_send_associate(struct ipw_priv *priv,
2145                               struct ipw_associate *associate)
2146 {
2147         struct ipw_associate tmp_associate;
2148
2149         if (!priv || !associate) {
2150                 IPW_ERROR("Invalid args\n");
2151                 return -1;
2152         }
2153
2154         memcpy(&tmp_associate, associate, sizeof(*associate));
2155         tmp_associate.policy_support =
2156             cpu_to_le16(tmp_associate.policy_support);
2157         tmp_associate.assoc_tsf_msw = cpu_to_le32(tmp_associate.assoc_tsf_msw);
2158         tmp_associate.assoc_tsf_lsw = cpu_to_le32(tmp_associate.assoc_tsf_lsw);
2159         tmp_associate.capability = cpu_to_le16(tmp_associate.capability);
2160         tmp_associate.listen_interval =
2161             cpu_to_le16(tmp_associate.listen_interval);
2162         tmp_associate.beacon_interval =
2163             cpu_to_le16(tmp_associate.beacon_interval);
2164         tmp_associate.atim_window = cpu_to_le16(tmp_associate.atim_window);
2165
2166         return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(tmp_associate),
2167                                 &tmp_associate);
2168 }
2169
2170 static int ipw_send_supported_rates(struct ipw_priv *priv,
2171                                     struct ipw_supported_rates *rates)
2172 {
2173         if (!priv || !rates) {
2174                 IPW_ERROR("Invalid args\n");
2175                 return -1;
2176         }
2177
2178         return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2179                                 rates);
2180 }
2181
2182 static int ipw_set_random_seed(struct ipw_priv *priv)
2183 {
2184         u32 val;
2185
2186         if (!priv) {
2187                 IPW_ERROR("Invalid args\n");
2188                 return -1;
2189         }
2190
2191         get_random_bytes(&val, sizeof(val));
2192
2193         return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2194 }
2195
2196 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2197 {
2198         if (!priv) {
2199                 IPW_ERROR("Invalid args\n");
2200                 return -1;
2201         }
2202
2203         return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(phy_off),
2204                                 &phy_off);
2205 }
2206
2207 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2208 {
2209         if (!priv || !power) {
2210                 IPW_ERROR("Invalid args\n");
2211                 return -1;
2212         }
2213
2214         return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2215 }
2216
2217 static int ipw_set_tx_power(struct ipw_priv *priv)
2218 {
2219         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2220         struct ipw_tx_power tx_power;
2221         s8 max_power;
2222         int i;
2223
2224         memset(&tx_power, 0, sizeof(tx_power));
2225
2226         /* configure device for 'G' band */
2227         tx_power.ieee_mode = IPW_G_MODE;
2228         tx_power.num_channels = geo->bg_channels;
2229         for (i = 0; i < geo->bg_channels; i++) {
2230                 max_power = geo->bg[i].max_power;
2231                 tx_power.channels_tx_power[i].channel_number =
2232                     geo->bg[i].channel;
2233                 tx_power.channels_tx_power[i].tx_power = max_power ?
2234                     min(max_power, priv->tx_power) : priv->tx_power;
2235         }
2236         if (ipw_send_tx_power(priv, &tx_power))
2237                 return -EIO;
2238
2239         /* configure device to also handle 'B' band */
2240         tx_power.ieee_mode = IPW_B_MODE;
2241         if (ipw_send_tx_power(priv, &tx_power))
2242                 return -EIO;
2243
2244         /* configure device to also handle 'A' band */
2245         if (priv->ieee->abg_true) {
2246                 tx_power.ieee_mode = IPW_A_MODE;
2247                 tx_power.num_channels = geo->a_channels;
2248                 for (i = 0; i < tx_power.num_channels; i++) {
2249                         max_power = geo->a[i].max_power;
2250                         tx_power.channels_tx_power[i].channel_number =
2251                             geo->a[i].channel;
2252                         tx_power.channels_tx_power[i].tx_power = max_power ?
2253                             min(max_power, priv->tx_power) : priv->tx_power;
2254                 }
2255                 if (ipw_send_tx_power(priv, &tx_power))
2256                         return -EIO;
2257         }
2258         return 0;
2259 }
2260
2261 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2262 {
2263         struct ipw_rts_threshold rts_threshold = {
2264                 .rts_threshold = rts,
2265         };
2266
2267         if (!priv) {
2268                 IPW_ERROR("Invalid args\n");
2269                 return -1;
2270         }
2271
2272         return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2273                                 sizeof(rts_threshold), &rts_threshold);
2274 }
2275
2276 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2277 {
2278         struct ipw_frag_threshold frag_threshold = {
2279                 .frag_threshold = frag,
2280         };
2281
2282         if (!priv) {
2283                 IPW_ERROR("Invalid args\n");
2284                 return -1;
2285         }
2286
2287         return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2288                                 sizeof(frag_threshold), &frag_threshold);
2289 }
2290
2291 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2292 {
2293         u32 param;
2294
2295         if (!priv) {
2296                 IPW_ERROR("Invalid args\n");
2297                 return -1;
2298         }
2299
2300         /* If on battery, set to 3, if AC set to CAM, else user
2301          * level */
2302         switch (mode) {
2303         case IPW_POWER_BATTERY:
2304                 param = IPW_POWER_INDEX_3;
2305                 break;
2306         case IPW_POWER_AC:
2307                 param = IPW_POWER_MODE_CAM;
2308                 break;
2309         default:
2310                 param = mode;
2311                 break;
2312         }
2313
2314         return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2315                                 &param);
2316 }
2317
2318 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2319 {
2320         struct ipw_retry_limit retry_limit = {
2321                 .short_retry_limit = slimit,
2322                 .long_retry_limit = llimit
2323         };
2324
2325         if (!priv) {
2326                 IPW_ERROR("Invalid args\n");
2327                 return -1;
2328         }
2329
2330         return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2331                                 &retry_limit);
2332 }
2333
2334 /*
2335  * The IPW device contains a Microwire compatible EEPROM that stores
2336  * various data like the MAC address.  Usually the firmware has exclusive
2337  * access to the eeprom, but during device initialization (before the
2338  * device driver has sent the HostComplete command to the firmware) the
2339  * device driver has read access to the EEPROM by way of indirect addressing
2340  * through a couple of memory mapped registers.
2341  *
2342  * The following is a simplified implementation for pulling data out of the
2343  * the eeprom, along with some helper functions to find information in
2344  * the per device private data's copy of the eeprom.
2345  *
2346  * NOTE: To better understand how these functions work (i.e what is a chip
2347  *       select and why do have to keep driving the eeprom clock?), read
2348  *       just about any data sheet for a Microwire compatible EEPROM.
2349  */
2350
2351 /* write a 32 bit value into the indirect accessor register */
2352 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2353 {
2354         ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2355
2356         /* the eeprom requires some time to complete the operation */
2357         udelay(p->eeprom_delay);
2358
2359         return;
2360 }
2361
2362 /* perform a chip select operation */
2363 static void eeprom_cs(struct ipw_priv *priv)
2364 {
2365         eeprom_write_reg(priv, 0);
2366         eeprom_write_reg(priv, EEPROM_BIT_CS);
2367         eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2368         eeprom_write_reg(priv, EEPROM_BIT_CS);
2369 }
2370
2371 /* perform a chip select operation */
2372 static void eeprom_disable_cs(struct ipw_priv *priv)
2373 {
2374         eeprom_write_reg(priv, EEPROM_BIT_CS);
2375         eeprom_write_reg(priv, 0);
2376         eeprom_write_reg(priv, EEPROM_BIT_SK);
2377 }
2378
2379 /* push a single bit down to the eeprom */
2380 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2381 {
2382         int d = (bit ? EEPROM_BIT_DI : 0);
2383         eeprom_write_reg(p, EEPROM_BIT_CS | d);
2384         eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2385 }
2386
2387 /* push an opcode followed by an address down to the eeprom */
2388 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2389 {
2390         int i;
2391
2392         eeprom_cs(priv);
2393         eeprom_write_bit(priv, 1);
2394         eeprom_write_bit(priv, op & 2);
2395         eeprom_write_bit(priv, op & 1);
2396         for (i = 7; i >= 0; i--) {
2397                 eeprom_write_bit(priv, addr & (1 << i));
2398         }
2399 }
2400
2401 /* pull 16 bits off the eeprom, one bit at a time */
2402 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2403 {
2404         int i;
2405         u16 r = 0;
2406
2407         /* Send READ Opcode */
2408         eeprom_op(priv, EEPROM_CMD_READ, addr);
2409
2410         /* Send dummy bit */
2411         eeprom_write_reg(priv, EEPROM_BIT_CS);
2412
2413         /* Read the byte off the eeprom one bit at a time */
2414         for (i = 0; i < 16; i++) {
2415                 u32 data = 0;
2416                 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2417                 eeprom_write_reg(priv, EEPROM_BIT_CS);
2418                 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2419                 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2420         }
2421
2422         /* Send another dummy bit */
2423         eeprom_write_reg(priv, 0);
2424         eeprom_disable_cs(priv);
2425
2426         return r;
2427 }
2428
2429 /* helper function for pulling the mac address out of the private */
2430 /* data's copy of the eeprom data                                 */
2431 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2432 {
2433         memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2434 }
2435
2436 /*
2437  * Either the device driver (i.e. the host) or the firmware can
2438  * load eeprom data into the designated region in SRAM.  If neither
2439  * happens then the FW will shutdown with a fatal error.
2440  *
2441  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2442  * bit needs region of shared SRAM needs to be non-zero.
2443  */
2444 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2445 {
2446         int i;
2447         u16 *eeprom = (u16 *) priv->eeprom;
2448
2449         IPW_DEBUG_TRACE(">>\n");
2450
2451         /* read entire contents of eeprom into private buffer */
2452         for (i = 0; i < 128; i++)
2453                 eeprom[i] = le16_to_cpu(eeprom_read_u16(priv, (u8) i));
2454
2455         /*
2456            If the data looks correct, then copy it to our private
2457            copy.  Otherwise let the firmware know to perform the operation
2458            on its own.
2459          */
2460         if (priv->eeprom[EEPROM_VERSION] != 0) {
2461                 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2462
2463                 /* write the eeprom data to sram */
2464                 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2465                         ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2466
2467                 /* Do not load eeprom data on fatal error or suspend */
2468                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2469         } else {
2470                 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2471
2472                 /* Load eeprom data on fatal error or suspend */
2473                 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2474         }
2475
2476         IPW_DEBUG_TRACE("<<\n");
2477 }
2478
2479 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2480 {
2481         count >>= 2;
2482         if (!count)
2483                 return;
2484         _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2485         while (count--)
2486                 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2487 }
2488
2489 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2490 {
2491         ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2492                         CB_NUMBER_OF_ELEMENTS_SMALL *
2493                         sizeof(struct command_block));
2494 }
2495
2496 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2497 {                               /* start dma engine but no transfers yet */
2498
2499         IPW_DEBUG_FW(">> : \n");
2500
2501         /* Start the dma */
2502         ipw_fw_dma_reset_command_blocks(priv);
2503
2504         /* Write CB base address */
2505         ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2506
2507         IPW_DEBUG_FW("<< : \n");
2508         return 0;
2509 }
2510
2511 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2512 {
2513         u32 control = 0;
2514
2515         IPW_DEBUG_FW(">> :\n");
2516
2517         //set the Stop and Abort bit
2518         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2519         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2520         priv->sram_desc.last_cb_index = 0;
2521
2522         IPW_DEBUG_FW("<< \n");
2523 }
2524
2525 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2526                                           struct command_block *cb)
2527 {
2528         u32 address =
2529             IPW_SHARED_SRAM_DMA_CONTROL +
2530             (sizeof(struct command_block) * index);
2531         IPW_DEBUG_FW(">> :\n");
2532
2533         ipw_write_indirect(priv, address, (u8 *) cb,
2534                            (int)sizeof(struct command_block));
2535
2536         IPW_DEBUG_FW("<< :\n");
2537         return 0;
2538
2539 }
2540
2541 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2542 {
2543         u32 control = 0;
2544         u32 index = 0;
2545
2546         IPW_DEBUG_FW(">> :\n");
2547
2548         for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2549                 ipw_fw_dma_write_command_block(priv, index,
2550                                                &priv->sram_desc.cb_list[index]);
2551
2552         /* Enable the DMA in the CSR register */
2553         ipw_clear_bit(priv, IPW_RESET_REG,
2554                       IPW_RESET_REG_MASTER_DISABLED |
2555                       IPW_RESET_REG_STOP_MASTER);
2556
2557         /* Set the Start bit. */
2558         control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2559         ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2560
2561         IPW_DEBUG_FW("<< :\n");
2562         return 0;
2563 }
2564
2565 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2566 {
2567         u32 address;
2568         u32 register_value = 0;
2569         u32 cb_fields_address = 0;
2570
2571         IPW_DEBUG_FW(">> :\n");
2572         address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2573         IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2574
2575         /* Read the DMA Controlor register */
2576         register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2577         IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2578
2579         /* Print the CB values */
2580         cb_fields_address = address;
2581         register_value = ipw_read_reg32(priv, cb_fields_address);
2582         IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2583
2584         cb_fields_address += sizeof(u32);
2585         register_value = ipw_read_reg32(priv, cb_fields_address);
2586         IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2587
2588         cb_fields_address += sizeof(u32);
2589         register_value = ipw_read_reg32(priv, cb_fields_address);
2590         IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2591                           register_value);
2592
2593         cb_fields_address += sizeof(u32);
2594         register_value = ipw_read_reg32(priv, cb_fields_address);
2595         IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2596
2597         IPW_DEBUG_FW(">> :\n");
2598 }
2599
2600 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2601 {
2602         u32 current_cb_address = 0;
2603         u32 current_cb_index = 0;
2604
2605         IPW_DEBUG_FW("<< :\n");
2606         current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2607
2608         current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2609             sizeof(struct command_block);
2610
2611         IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2612                           current_cb_index, current_cb_address);
2613
2614         IPW_DEBUG_FW(">> :\n");
2615         return current_cb_index;
2616
2617 }
2618
2619 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2620                                         u32 src_address,
2621                                         u32 dest_address,
2622                                         u32 length,
2623                                         int interrupt_enabled, int is_last)
2624 {
2625
2626         u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2627             CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2628             CB_DEST_SIZE_LONG;
2629         struct command_block *cb;
2630         u32 last_cb_element = 0;
2631
2632         IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2633                           src_address, dest_address, length);
2634
2635         if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2636                 return -1;
2637
2638         last_cb_element = priv->sram_desc.last_cb_index;
2639         cb = &priv->sram_desc.cb_list[last_cb_element];
2640         priv->sram_desc.last_cb_index++;
2641
2642         /* Calculate the new CB control word */
2643         if (interrupt_enabled)
2644                 control |= CB_INT_ENABLED;
2645
2646         if (is_last)
2647                 control |= CB_LAST_VALID;
2648
2649         control |= length;
2650
2651         /* Calculate the CB Element's checksum value */
2652         cb->status = control ^ src_address ^ dest_address;
2653
2654         /* Copy the Source and Destination addresses */
2655         cb->dest_addr = dest_address;
2656         cb->source_addr = src_address;
2657
2658         /* Copy the Control Word last */
2659         cb->control = control;
2660
2661         return 0;
2662 }
2663
2664 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2665                                  u32 src_phys, u32 dest_address, u32 length)
2666 {
2667         u32 bytes_left = length;
2668         u32 src_offset = 0;
2669         u32 dest_offset = 0;
2670         int status = 0;
2671         IPW_DEBUG_FW(">> \n");
2672         IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2673                           src_phys, dest_address, length);
2674         while (bytes_left > CB_MAX_LENGTH) {
2675                 status = ipw_fw_dma_add_command_block(priv,
2676                                                       src_phys + src_offset,
2677                                                       dest_address +
2678                                                       dest_offset,
2679                                                       CB_MAX_LENGTH, 0, 0);
2680                 if (status) {
2681                         IPW_DEBUG_FW_INFO(": Failed\n");
2682                         return -1;
2683                 } else
2684                         IPW_DEBUG_FW_INFO(": Added new cb\n");
2685
2686                 src_offset += CB_MAX_LENGTH;
2687                 dest_offset += CB_MAX_LENGTH;
2688                 bytes_left -= CB_MAX_LENGTH;
2689         }
2690
2691         /* add the buffer tail */
2692         if (bytes_left > 0) {
2693                 status =
2694                     ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2695                                                  dest_address + dest_offset,
2696                                                  bytes_left, 0, 0);
2697                 if (status) {
2698                         IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2699                         return -1;
2700                 } else
2701                         IPW_DEBUG_FW_INFO
2702                             (": Adding new cb - the buffer tail\n");
2703         }
2704
2705         IPW_DEBUG_FW("<< \n");
2706         return 0;
2707 }
2708
2709 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2710 {
2711         u32 current_index = 0, previous_index;
2712         u32 watchdog = 0;
2713
2714         IPW_DEBUG_FW(">> : \n");
2715
2716         current_index = ipw_fw_dma_command_block_index(priv);
2717         IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2718                           (int)priv->sram_desc.last_cb_index);
2719
2720         while (current_index < priv->sram_desc.last_cb_index) {
2721                 udelay(50);
2722                 previous_index = current_index;
2723                 current_index = ipw_fw_dma_command_block_index(priv);
2724
2725                 if (previous_index < current_index) {
2726                         watchdog = 0;
2727                         continue;
2728                 }
2729                 if (++watchdog > 400) {
2730                         IPW_DEBUG_FW_INFO("Timeout\n");
2731                         ipw_fw_dma_dump_command_block(priv);
2732                         ipw_fw_dma_abort(priv);
2733                         return -1;
2734                 }
2735         }
2736
2737         ipw_fw_dma_abort(priv);
2738
2739         /*Disable the DMA in the CSR register */
2740         ipw_set_bit(priv, IPW_RESET_REG,
2741                     IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2742
2743         IPW_DEBUG_FW("<< dmaWaitSync \n");
2744         return 0;
2745 }
2746
2747 static void ipw_remove_current_network(struct ipw_priv *priv)
2748 {
2749         struct list_head *element, *safe;
2750         struct ieee80211_network *network = NULL;
2751         unsigned long flags;
2752
2753         spin_lock_irqsave(&priv->ieee->lock, flags);
2754         list_for_each_safe(element, safe, &priv->ieee->network_list) {
2755                 network = list_entry(element, struct ieee80211_network, list);
2756                 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2757                         list_del(element);
2758                         list_add_tail(&network->list,
2759                                       &priv->ieee->network_free_list);
2760                 }
2761         }
2762         spin_unlock_irqrestore(&priv->ieee->lock, flags);
2763 }
2764
2765 /**
2766  * Check that card is still alive.
2767  * Reads debug register from domain0.
2768  * If card is present, pre-defined value should
2769  * be found there.
2770  *
2771  * @param priv
2772  * @return 1 if card is present, 0 otherwise
2773  */
2774 static inline int ipw_alive(struct ipw_priv *priv)
2775 {
2776         return ipw_read32(priv, 0x90) == 0xd55555d5;
2777 }
2778
2779 /* timeout in msec, attempted in 10-msec quanta */
2780 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2781                                int timeout)
2782 {
2783         int i = 0;
2784
2785         do {
2786                 if ((ipw_read32(priv, addr) & mask) == mask)
2787                         return i;
2788                 mdelay(10);
2789                 i += 10;
2790         } while (i < timeout);
2791
2792         return -ETIME;
2793 }
2794
2795 /* These functions load the firmware and micro code for the operation of
2796  * the ipw hardware.  It assumes the buffer has all the bits for the
2797  * image and the caller is handling the memory allocation and clean up.
2798  */
2799
2800 static int ipw_stop_master(struct ipw_priv *priv)
2801 {
2802         int rc;
2803
2804         IPW_DEBUG_TRACE(">> \n");
2805         /* stop master. typical delay - 0 */
2806         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
2807
2808         /* timeout is in msec, polled in 10-msec quanta */
2809         rc = ipw_poll_bit(priv, IPW_RESET_REG,
2810                           IPW_RESET_REG_MASTER_DISABLED, 100);
2811         if (rc < 0) {
2812                 IPW_ERROR("wait for stop master failed after 100ms\n");
2813                 return -1;
2814         }
2815
2816         IPW_DEBUG_INFO("stop master %dms\n", rc);
2817
2818         return rc;
2819 }
2820
2821 static void ipw_arc_release(struct ipw_priv *priv)
2822 {
2823         IPW_DEBUG_TRACE(">> \n");
2824         mdelay(5);
2825
2826         ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
2827
2828         /* no one knows timing, for safety add some delay */
2829         mdelay(5);
2830 }
2831
2832 struct fw_chunk {
2833         u32 address;
2834         u32 length;
2835 };
2836
2837 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
2838 {
2839         int rc = 0, i, addr;
2840         u8 cr = 0;
2841         u16 *image;
2842
2843         image = (u16 *) data;
2844
2845         IPW_DEBUG_TRACE(">> \n");
2846
2847         rc = ipw_stop_master(priv);
2848
2849         if (rc < 0)
2850                 return rc;
2851
2852 //      spin_lock_irqsave(&priv->lock, flags);
2853
2854         for (addr = IPW_SHARED_LOWER_BOUND;
2855              addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
2856                 ipw_write32(priv, addr, 0);
2857         }
2858
2859         /* no ucode (yet) */
2860         memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
2861         /* destroy DMA queues */
2862         /* reset sequence */
2863
2864         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
2865         ipw_arc_release(priv);
2866         ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
2867         mdelay(1);
2868
2869         /* reset PHY */
2870         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
2871         mdelay(1);
2872
2873         ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
2874         mdelay(1);
2875
2876         /* enable ucode store */
2877         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
2878         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
2879         mdelay(1);
2880
2881         /* write ucode */
2882         /**
2883          * @bug
2884          * Do NOT set indirect address register once and then
2885          * store data to indirect data register in the loop.
2886          * It seems very reasonable, but in this case DINO do not
2887          * accept ucode. It is essential to set address each time.
2888          */
2889         /* load new ipw uCode */
2890         for (i = 0; i < len / 2; i++)
2891                 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
2892                                 cpu_to_le16(image[i]));
2893
2894         /* enable DINO */
2895         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2896         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
2897
2898         /* this is where the igx / win driver deveates from the VAP driver. */
2899
2900         /* wait for alive response */
2901         for (i = 0; i < 100; i++) {
2902                 /* poll for incoming data */
2903                 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
2904                 if (cr & DINO_RXFIFO_DATA)
2905                         break;
2906                 mdelay(1);
2907         }
2908
2909         if (cr & DINO_RXFIFO_DATA) {
2910                 /* alive_command_responce size is NOT multiple of 4 */
2911                 u32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
2912
2913                 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
2914                         response_buffer[i] =
2915                             le32_to_cpu(ipw_read_reg32(priv,
2916                                                        IPW_BASEBAND_RX_FIFO_READ));
2917                 memcpy(&priv->dino_alive, response_buffer,
2918                        sizeof(priv->dino_alive));
2919                 if (priv->dino_alive.alive_command == 1
2920                     && priv->dino_alive.ucode_valid == 1) {
2921                         rc = 0;
2922                         IPW_DEBUG_INFO
2923                             ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
2924                              "of %02d/%02d/%02d %02d:%02d\n",
2925                              priv->dino_alive.software_revision,
2926                              priv->dino_alive.software_revision,
2927                              priv->dino_alive.device_identifier,
2928                              priv->dino_alive.device_identifier,
2929                              priv->dino_alive.time_stamp[0],
2930                              priv->dino_alive.time_stamp[1],
2931                              priv->dino_alive.time_stamp[2],
2932                              priv->dino_alive.time_stamp[3],
2933                              priv->dino_alive.time_stamp[4]);
2934                 } else {
2935                         IPW_DEBUG_INFO("Microcode is not alive\n");
2936                         rc = -EINVAL;
2937                 }
2938         } else {
2939                 IPW_DEBUG_INFO("No alive response from DINO\n");
2940                 rc = -ETIME;
2941         }
2942
2943         /* disable DINO, otherwise for some reason
2944            firmware have problem getting alive resp. */
2945         ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
2946
2947 //      spin_unlock_irqrestore(&priv->lock, flags);
2948
2949         return rc;
2950 }
2951
2952 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
2953 {
2954         int rc = -1;
2955         int offset = 0;
2956         struct fw_chunk *chunk;
2957         dma_addr_t shared_phys;
2958         u8 *shared_virt;
2959
2960         IPW_DEBUG_TRACE("<< : \n");
2961         shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
2962
2963         if (!shared_virt)
2964                 return -ENOMEM;
2965
2966         memmove(shared_virt, data, len);
2967
2968         /* Start the Dma */
2969         rc = ipw_fw_dma_enable(priv);
2970
2971         if (priv->sram_desc.last_cb_index > 0) {
2972                 /* the DMA is already ready this would be a bug. */
2973                 BUG();
2974                 goto out;
2975         }
2976
2977         do {
2978                 chunk = (struct fw_chunk *)(data + offset);
2979                 offset += sizeof(struct fw_chunk);
2980                 /* build DMA packet and queue up for sending */
2981                 /* dma to chunk->address, the chunk->length bytes from data +
2982                  * offeset*/
2983                 /* Dma loading */
2984                 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
2985                                            le32_to_cpu(chunk->address),
2986                                            le32_to_cpu(chunk->length));
2987                 if (rc) {
2988                         IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
2989                         goto out;
2990                 }
2991
2992                 offset += le32_to_cpu(chunk->length);
2993         } while (offset < len);
2994
2995         /* Run the DMA and wait for the answer */
2996         rc = ipw_fw_dma_kick(priv);
2997         if (rc) {
2998                 IPW_ERROR("dmaKick Failed\n");
2999                 goto out;
3000         }
3001
3002         rc = ipw_fw_dma_wait(priv);
3003         if (rc) {
3004                 IPW_ERROR("dmaWaitSync Failed\n");
3005                 goto out;
3006         }
3007       out:
3008         pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3009         return rc;
3010 }
3011
3012 /* stop nic */
3013 static int ipw_stop_nic(struct ipw_priv *priv)
3014 {
3015         int rc = 0;
3016
3017         /* stop */
3018         ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3019
3020         rc = ipw_poll_bit(priv, IPW_RESET_REG,
3021                           IPW_RESET_REG_MASTER_DISABLED, 500);
3022         if (rc < 0) {
3023                 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3024                 return rc;
3025         }
3026
3027         ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3028
3029         return rc;
3030 }
3031
3032 static void ipw_start_nic(struct ipw_priv *priv)
3033 {
3034         IPW_DEBUG_TRACE(">>\n");
3035
3036         /* prvHwStartNic  release ARC */
3037         ipw_clear_bit(priv, IPW_RESET_REG,
3038                       IPW_RESET_REG_MASTER_DISABLED |
3039                       IPW_RESET_REG_STOP_MASTER |
3040                       CBD_RESET_REG_PRINCETON_RESET);
3041
3042         /* enable power management */
3043         ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3044                     IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3045
3046         IPW_DEBUG_TRACE("<<\n");
3047 }
3048
3049 static int ipw_init_nic(struct ipw_priv *priv)
3050 {
3051         int rc;
3052
3053         IPW_DEBUG_TRACE(">>\n");
3054         /* reset */
3055         /*prvHwInitNic */
3056         /* set "initialization complete" bit to move adapter to D0 state */
3057         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3058
3059         /* low-level PLL activation */
3060         ipw_write32(priv, IPW_READ_INT_REGISTER,
3061                     IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3062
3063         /* wait for clock stabilization */
3064         rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3065                           IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3066         if (rc < 0)
3067                 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3068
3069         /* assert SW reset */
3070         ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3071
3072         udelay(10);
3073
3074         /* set "initialization complete" bit to move adapter to D0 state */
3075         ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3076
3077         IPW_DEBUG_TRACE(">>\n");
3078         return 0;
3079 }
3080
3081 /* Call this function from process context, it will sleep in request_firmware.
3082  * Probe is an ok place to call this from.
3083  */
3084 static int ipw_reset_nic(struct ipw_priv *priv)
3085 {
3086         int rc = 0;
3087         unsigned long flags;
3088
3089         IPW_DEBUG_TRACE(">>\n");
3090
3091         rc = ipw_init_nic(priv);
3092
3093         spin_lock_irqsave(&priv->lock, flags);
3094         /* Clear the 'host command active' bit... */
3095         priv->status &= ~STATUS_HCMD_ACTIVE;
3096         wake_up_interruptible(&priv->wait_command_queue);
3097         priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3098         wake_up_interruptible(&priv->wait_state);
3099         spin_unlock_irqrestore(&priv->lock, flags);
3100
3101         IPW_DEBUG_TRACE("<<\n");
3102         return rc;
3103 }
3104
3105
3106 struct ipw_fw {
3107         u32 ver;
3108         u32 boot_size;
3109         u32 ucode_size;
3110         u32 fw_size;
3111         u8 data[0];
3112 };
3113
3114 static int ipw_get_fw(struct ipw_priv *priv,
3115                       const struct firmware **raw, const char *name)
3116 {
3117         struct ipw_fw *fw;
3118         int rc;
3119
3120         /* ask firmware_class module to get the boot firmware off disk */
3121         rc = request_firmware(raw, name, &priv->pci_dev->dev);
3122         if (rc < 0) {
3123                 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3124                 return rc;
3125         }
3126
3127         if ((*raw)->size < sizeof(*fw)) {
3128                 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3129                 return -EINVAL;
3130         }
3131
3132         fw = (void *)(*raw)->data;
3133
3134         if ((*raw)->size < sizeof(*fw) +
3135             fw->boot_size + fw->ucode_size + fw->fw_size) {
3136                 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3137                           name, (*raw)->size);
3138                 return -EINVAL;
3139         }
3140
3141         IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3142                        name,
3143                        le32_to_cpu(fw->ver) >> 16,
3144                        le32_to_cpu(fw->ver) & 0xff,
3145                        (*raw)->size - sizeof(*fw));
3146         return 0;
3147 }
3148
3149 #define IPW_RX_BUF_SIZE (3000)
3150
3151 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3152                                       struct ipw_rx_queue *rxq)
3153 {
3154         unsigned long flags;
3155         int i;
3156
3157         spin_lock_irqsave(&rxq->lock, flags);
3158
3159         INIT_LIST_HEAD(&rxq->rx_free);
3160         INIT_LIST_HEAD(&rxq->rx_used);
3161
3162         /* Fill the rx_used queue with _all_ of the Rx buffers */
3163         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3164                 /* In the reset function, these buffers may have been allocated
3165                  * to an SKB, so we need to unmap and free potential storage */
3166                 if (rxq->pool[i].skb != NULL) {
3167                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3168                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3169                         dev_kfree_skb(rxq->pool[i].skb);
3170                         rxq->pool[i].skb = NULL;
3171                 }
3172                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3173         }
3174
3175         /* Set us so that we have processed and used all buffers, but have
3176          * not restocked the Rx queue with fresh buffers */
3177         rxq->read = rxq->write = 0;
3178         rxq->processed = RX_QUEUE_SIZE - 1;
3179         rxq->free_count = 0;
3180         spin_unlock_irqrestore(&rxq->lock, flags);
3181 }
3182
3183 #ifdef CONFIG_PM
3184 static int fw_loaded = 0;
3185 static const struct firmware *raw = NULL;
3186
3187 static void free_firmware(void)
3188 {
3189         if (fw_loaded) {
3190                 release_firmware(raw);
3191                 raw = NULL;
3192                 fw_loaded = 0;
3193         }
3194 }
3195 #else
3196 #define free_firmware() do {} while (0)
3197 #endif
3198
3199 static int ipw_load(struct ipw_priv *priv)
3200 {
3201 #ifndef CONFIG_PM
3202         const struct firmware *raw = NULL;
3203 #endif
3204         struct ipw_fw *fw;
3205         u8 *boot_img, *ucode_img, *fw_img;
3206         u8 *name = NULL;
3207         int rc = 0, retries = 3;
3208
3209         switch (priv->ieee->iw_mode) {
3210         case IW_MODE_ADHOC:
3211                 name = "ipw2200-ibss.fw";
3212                 break;
3213 #ifdef CONFIG_IPW2200_MONITOR
3214         case IW_MODE_MONITOR:
3215                 name = "ipw2200-sniffer.fw";
3216                 break;
3217 #endif
3218         case IW_MODE_INFRA:
3219                 name = "ipw2200-bss.fw";
3220                 break;
3221         }
3222
3223         if (!name) {
3224                 rc = -EINVAL;
3225                 goto error;
3226         }
3227
3228 #ifdef CONFIG_PM
3229         if (!fw_loaded) {
3230 #endif
3231                 rc = ipw_get_fw(priv, &raw, name);
3232                 if (rc < 0)
3233                         goto error;
3234 #ifdef CONFIG_PM
3235         }
3236 #endif
3237
3238         fw = (void *)raw->data;
3239         boot_img = &fw->data[0];
3240         ucode_img = &fw->data[fw->boot_size];
3241         fw_img = &fw->data[fw->boot_size + fw->ucode_size];
3242
3243         if (rc < 0)
3244                 goto error;
3245
3246         if (!priv->rxq)
3247                 priv->rxq = ipw_rx_queue_alloc(priv);
3248         else
3249                 ipw_rx_queue_reset(priv, priv->rxq);
3250         if (!priv->rxq) {
3251                 IPW_ERROR("Unable to initialize Rx queue\n");
3252                 goto error;
3253         }
3254
3255       retry:
3256         /* Ensure interrupts are disabled */
3257         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3258         priv->status &= ~STATUS_INT_ENABLED;
3259
3260         /* ack pending interrupts */
3261         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3262
3263         ipw_stop_nic(priv);
3264
3265         rc = ipw_reset_nic(priv);
3266         if (rc < 0) {
3267                 IPW_ERROR("Unable to reset NIC\n");
3268                 goto error;
3269         }
3270
3271         ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3272                         IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3273
3274         /* DMA the initial boot firmware into the device */
3275         rc = ipw_load_firmware(priv, boot_img, fw->boot_size);
3276         if (rc < 0) {
3277                 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3278                 goto error;
3279         }
3280
3281         /* kick start the device */
3282         ipw_start_nic(priv);
3283
3284         /* wait for the device to finish its initial startup sequence */
3285         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3286                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3287         if (rc < 0) {
3288                 IPW_ERROR("device failed to boot initial fw image\n");
3289                 goto error;
3290         }
3291         IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3292
3293         /* ack fw init done interrupt */
3294         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3295
3296         /* DMA the ucode into the device */
3297         rc = ipw_load_ucode(priv, ucode_img, fw->ucode_size);
3298         if (rc < 0) {
3299                 IPW_ERROR("Unable to load ucode: %d\n", rc);
3300                 goto error;
3301         }
3302
3303         /* stop nic */
3304         ipw_stop_nic(priv);
3305
3306         /* DMA bss firmware into the device */
3307         rc = ipw_load_firmware(priv, fw_img, fw->fw_size);
3308         if (rc < 0) {
3309                 IPW_ERROR("Unable to load firmware: %d\n", rc);
3310                 goto error;
3311         }
3312 #ifdef CONFIG_PM
3313         fw_loaded = 1;
3314 #endif
3315
3316         ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3317
3318         rc = ipw_queue_reset(priv);
3319         if (rc < 0) {
3320                 IPW_ERROR("Unable to initialize queues\n");
3321                 goto error;
3322         }
3323
3324         /* Ensure interrupts are disabled */
3325         ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3326         /* ack pending interrupts */
3327         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3328
3329         /* kick start the device */
3330         ipw_start_nic(priv);
3331
3332         if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3333                 if (retries > 0) {
3334                         IPW_WARNING("Parity error.  Retrying init.\n");
3335                         retries--;
3336                         goto retry;
3337                 }
3338
3339                 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3340                 rc = -EIO;
3341                 goto error;
3342         }
3343
3344         /* wait for the device */
3345         rc = ipw_poll_bit(priv, IPW_INTA_RW,
3346                           IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3347         if (rc < 0) {
3348                 IPW_ERROR("device failed to start within 500ms\n");
3349                 goto error;
3350         }
3351         IPW_DEBUG_INFO("device response after %dms\n", rc);
3352
3353         /* ack fw init done interrupt */
3354         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3355
3356         /* read eeprom data and initialize the eeprom region of sram */
3357         priv->eeprom_delay = 1;
3358         ipw_eeprom_init_sram(priv);
3359
3360         /* enable interrupts */
3361         ipw_enable_interrupts(priv);
3362
3363         /* Ensure our queue has valid packets */
3364         ipw_rx_queue_replenish(priv);
3365
3366         ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3367
3368         /* ack pending interrupts */
3369         ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3370
3371 #ifndef CONFIG_PM
3372         release_firmware(raw);
3373 #endif
3374         return 0;
3375
3376       error:
3377         if (priv->rxq) {
3378                 ipw_rx_queue_free(priv, priv->rxq);
3379                 priv->rxq = NULL;
3380         }
3381         ipw_tx_queue_free(priv);
3382         if (raw)
3383                 release_firmware(raw);
3384 #ifdef CONFIG_PM
3385         fw_loaded = 0;
3386         raw = NULL;
3387 #endif
3388
3389         return rc;
3390 }
3391
3392 /**
3393  * DMA services
3394  *
3395  * Theory of operation
3396  *
3397  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3398  * 2 empty entries always kept in the buffer to protect from overflow.
3399  *
3400  * For Tx queue, there are low mark and high mark limits. If, after queuing
3401  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3402  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3403  * Tx queue resumed.
3404  *
3405  * The IPW operates with six queues, one receive queue in the device's
3406  * sram, one transmit queue for sending commands to the device firmware,
3407  * and four transmit queues for data.
3408  *
3409  * The four transmit queues allow for performing quality of service (qos)
3410  * transmissions as per the 802.11 protocol.  Currently Linux does not
3411  * provide a mechanism to the user for utilizing prioritized queues, so
3412  * we only utilize the first data transmit queue (queue1).
3413  */
3414
3415 /**
3416  * Driver allocates buffers of this size for Rx
3417  */
3418
3419 static inline int ipw_queue_space(const struct clx2_queue *q)
3420 {
3421         int s = q->last_used - q->first_empty;
3422         if (s <= 0)
3423                 s += q->n_bd;
3424         s -= 2;                 /* keep some reserve to not confuse empty and full situations */
3425         if (s < 0)
3426                 s = 0;
3427         return s;
3428 }
3429
3430 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3431 {
3432         return (++index == n_bd) ? 0 : index;
3433 }
3434
3435 /**
3436  * Initialize common DMA queue structure
3437  *
3438  * @param q                queue to init
3439  * @param count            Number of BD's to allocate. Should be power of 2
3440  * @param read_register    Address for 'read' register
3441  *                         (not offset within BAR, full address)
3442  * @param write_register   Address for 'write' register
3443  *                         (not offset within BAR, full address)
3444  * @param base_register    Address for 'base' register
3445  *                         (not offset within BAR, full address)
3446  * @param size             Address for 'size' register
3447  *                         (not offset within BAR, full address)
3448  */
3449 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3450                            int count, u32 read, u32 write, u32 base, u32 size)
3451 {
3452         q->n_bd = count;
3453
3454         q->low_mark = q->n_bd / 4;
3455         if (q->low_mark < 4)
3456                 q->low_mark = 4;
3457
3458         q->high_mark = q->n_bd / 8;
3459         if (q->high_mark < 2)
3460                 q->high_mark = 2;
3461
3462         q->first_empty = q->last_used = 0;
3463         q->reg_r = read;
3464         q->reg_w = write;
3465
3466         ipw_write32(priv, base, q->dma_addr);
3467         ipw_write32(priv, size, count);
3468         ipw_write32(priv, read, 0);
3469         ipw_write32(priv, write, 0);
3470
3471         _ipw_read32(priv, 0x90);
3472 }
3473
3474 static int ipw_queue_tx_init(struct ipw_priv *priv,
3475                              struct clx2_tx_queue *q,
3476                              int count, u32 read, u32 write, u32 base, u32 size)
3477 {
3478         struct pci_dev *dev = priv->pci_dev;
3479
3480         q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3481         if (!q->txb) {
3482                 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3483                 return -ENOMEM;
3484         }
3485
3486         q->bd =
3487             pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3488         if (!q->bd) {
3489                 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3490                           sizeof(q->bd[0]) * count);
3491                 kfree(q->txb);
3492                 q->txb = NULL;
3493                 return -ENOMEM;
3494         }
3495
3496         ipw_queue_init(priv, &q->q, count, read, write, base, size);
3497         return 0;
3498 }
3499
3500 /**
3501  * Free one TFD, those at index [txq->q.last_used].
3502  * Do NOT advance any indexes
3503  *
3504  * @param dev
3505  * @param txq
3506  */
3507 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3508                                   struct clx2_tx_queue *txq)
3509 {
3510         struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3511         struct pci_dev *dev = priv->pci_dev;
3512         int i;
3513
3514         /* classify bd */
3515         if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3516                 /* nothing to cleanup after for host commands */
3517                 return;
3518
3519         /* sanity check */
3520         if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3521                 IPW_ERROR("Too many chunks: %i\n",
3522                           le32_to_cpu(bd->u.data.num_chunks));
3523                 /** @todo issue fatal error, it is quite serious situation */
3524                 return;
3525         }
3526
3527         /* unmap chunks if any */
3528         for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3529                 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3530                                  le16_to_cpu(bd->u.data.chunk_len[i]),
3531                                  PCI_DMA_TODEVICE);
3532                 if (txq->txb[txq->q.last_used]) {
3533                         ieee80211_txb_free(txq->txb[txq->q.last_used]);
3534                         txq->txb[txq->q.last_used] = NULL;
3535                 }
3536         }
3537 }
3538
3539 /**
3540  * Deallocate DMA queue.
3541  *
3542  * Empty queue by removing and destroying all BD's.
3543  * Free all buffers.
3544  *
3545  * @param dev
3546  * @param q
3547  */
3548 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3549 {
3550         struct clx2_queue *q = &txq->q;
3551         struct pci_dev *dev = priv->pci_dev;
3552
3553         if (q->n_bd == 0)
3554                 return;
3555
3556         /* first, empty all BD's */
3557         for (; q->first_empty != q->last_used;
3558              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3559                 ipw_queue_tx_free_tfd(priv, txq);
3560         }
3561
3562         /* free buffers belonging to queue itself */
3563         pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3564                             q->dma_addr);
3565         kfree(txq->txb);
3566
3567         /* 0 fill whole structure */
3568         memset(txq, 0, sizeof(*txq));
3569 }
3570
3571 /**
3572  * Destroy all DMA queues and structures
3573  *
3574  * @param priv
3575  */
3576 static void ipw_tx_queue_free(struct ipw_priv *priv)
3577 {
3578         /* Tx CMD queue */
3579         ipw_queue_tx_free(priv, &priv->txq_cmd);
3580
3581         /* Tx queues */
3582         ipw_queue_tx_free(priv, &priv->txq[0]);
3583         ipw_queue_tx_free(priv, &priv->txq[1]);
3584         ipw_queue_tx_free(priv, &priv->txq[2]);
3585         ipw_queue_tx_free(priv, &priv->txq[3]);
3586 }
3587
3588 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3589 {
3590         /* First 3 bytes are manufacturer */
3591         bssid[0] = priv->mac_addr[0];
3592         bssid[1] = priv->mac_addr[1];
3593         bssid[2] = priv->mac_addr[2];
3594
3595         /* Last bytes are random */
3596         get_random_bytes(&bssid[3], ETH_ALEN - 3);
3597
3598         bssid[0] &= 0xfe;       /* clear multicast bit */
3599         bssid[0] |= 0x02;       /* set local assignment bit (IEEE802) */
3600 }
3601
3602 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3603 {
3604         struct ipw_station_entry entry;
3605         int i;
3606
3607         for (i = 0; i < priv->num_stations; i++) {
3608                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3609                         /* Another node is active in network */
3610                         priv->missed_adhoc_beacons = 0;
3611                         if (!(priv->config & CFG_STATIC_CHANNEL))
3612                                 /* when other nodes drop out, we drop out */
3613                                 priv->config &= ~CFG_ADHOC_PERSIST;
3614
3615                         return i;
3616                 }
3617         }
3618
3619         if (i == MAX_STATIONS)
3620                 return IPW_INVALID_STATION;
3621
3622         IPW_DEBUG_SCAN("Adding AdHoc station: " MAC_FMT "\n", MAC_ARG(bssid));
3623
3624         entry.reserved = 0;
3625         entry.support_mode = 0;
3626         memcpy(entry.mac_addr, bssid, ETH_ALEN);
3627         memcpy(priv->stations[i], bssid, ETH_ALEN);
3628         ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3629                          &entry, sizeof(entry));
3630         priv->num_stations++;
3631
3632         return i;
3633 }
3634
3635 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3636 {
3637         int i;
3638
3639         for (i = 0; i < priv->num_stations; i++)
3640                 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3641                         return i;
3642
3643         return IPW_INVALID_STATION;
3644 }
3645
3646 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3647 {
3648         int err;
3649
3650         if (priv->status & STATUS_ASSOCIATING) {
3651                 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3652                 queue_work(priv->workqueue, &priv->disassociate);
3653                 return;
3654         }
3655
3656         if (!(priv->status & STATUS_ASSOCIATED)) {
3657                 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3658                 return;
3659         }
3660
3661         IPW_DEBUG_ASSOC("Disassocation attempt from " MAC_FMT " "
3662                         "on channel %d.\n",
3663                         MAC_ARG(priv->assoc_request.bssid),
3664                         priv->assoc_request.channel);
3665
3666         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3667         priv->status |= STATUS_DISASSOCIATING;
3668
3669         if (quiet)
3670                 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3671         else
3672                 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3673
3674         err = ipw_send_associate(priv, &priv->assoc_request);
3675         if (err) {
3676                 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3677                              "failed.\n");
3678                 return;
3679         }
3680
3681 }
3682
3683 static int ipw_disassociate(void *data)
3684 {
3685         struct ipw_priv *priv = data;
3686         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3687                 return 0;
3688         ipw_send_disassociate(data, 0);
3689         return 1;
3690 }
3691
3692 static void ipw_bg_disassociate(void *data)
3693 {
3694         struct ipw_priv *priv = data;
3695         mutex_lock(&priv->mutex);
3696         ipw_disassociate(data);
3697         mutex_unlock(&priv->mutex);
3698 }
3699
3700 static void ipw_system_config(void *data)
3701 {
3702         struct ipw_priv *priv = data;
3703         ipw_send_system_config(priv, &priv->sys_config);
3704 }
3705
3706 struct ipw_status_code {
3707         u16 status;
3708         const char *reason;
3709 };
3710
3711 static const struct ipw_status_code ipw_status_codes[] = {
3712         {0x00, "Successful"},
3713         {0x01, "Unspecified failure"},
3714         {0x0A, "Cannot support all requested capabilities in the "
3715          "Capability information field"},
3716         {0x0B, "Reassociation denied due to inability to confirm that "
3717          "association exists"},
3718         {0x0C, "Association denied due to reason outside the scope of this "
3719          "standard"},
3720         {0x0D,
3721          "Responding station does not support the specified authentication "
3722          "algorithm"},
3723         {0x0E,
3724          "Received an Authentication frame with authentication sequence "
3725          "transaction sequence number out of expected sequence"},
3726         {0x0F, "Authentication rejected because of challenge failure"},
3727         {0x10, "Authentication rejected due to timeout waiting for next "
3728          "frame in sequence"},
3729         {0x11, "Association denied because AP is unable to handle additional "
3730          "associated stations"},
3731         {0x12,
3732          "Association denied due to requesting station not supporting all "
3733          "of the datarates in the BSSBasicServiceSet Parameter"},
3734         {0x13,
3735          "Association denied due to requesting station not supporting "
3736          "short preamble operation"},
3737         {0x14,
3738          "Association denied due to requesting station not supporting "
3739          "PBCC encoding"},
3740         {0x15,
3741          "Association denied due to requesting station not supporting "
3742          "channel agility"},
3743         {0x19,
3744          "Association denied due to requesting station not supporting "
3745          "short slot operation"},
3746         {0x1A,
3747          "Association denied due to requesting station not supporting "
3748          "DSSS-OFDM operation"},
3749         {0x28, "Invalid Information Element"},
3750         {0x29, "Group Cipher is not valid"},
3751         {0x2A, "Pairwise Cipher is not valid"},
3752         {0x2B, "AKMP is not valid"},
3753         {0x2C, "Unsupported RSN IE version"},
3754         {0x2D, "Invalid RSN IE Capabilities"},
3755         {0x2E, "Cipher suite is rejected per security policy"},
3756 };
3757
3758 #ifdef CONFIG_IPW2200_DEBUG
3759 static const char *ipw_get_status_code(u16 status)
3760 {
3761         int i;
3762         for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3763                 if (ipw_status_codes[i].status == (status & 0xff))
3764                         return ipw_status_codes[i].reason;
3765         return "Unknown status value.";
3766 }
3767 #endif
3768
3769 static void inline average_init(struct average *avg)
3770 {
3771         memset(avg, 0, sizeof(*avg));
3772 }
3773
3774 static void average_add(struct average *avg, s16 val)
3775 {
3776         avg->sum -= avg->entries[avg->pos];
3777         avg->sum += val;
3778         avg->entries[avg->pos++] = val;
3779         if (unlikely(avg->pos == AVG_ENTRIES)) {
3780                 avg->init = 1;
3781                 avg->pos = 0;
3782         }
3783 }
3784
3785 static s16 average_value(struct average *avg)
3786 {
3787         if (!unlikely(avg->init)) {
3788                 if (avg->pos)
3789                         return avg->sum / avg->pos;
3790                 return 0;
3791         }
3792
3793         return avg->sum / AVG_ENTRIES;
3794 }
3795
3796 static void ipw_reset_stats(struct ipw_priv *priv)
3797 {
3798         u32 len = sizeof(u32);
3799
3800         priv->quality = 0;
3801
3802         average_init(&priv->average_missed_beacons);
3803         average_init(&priv->average_rssi);
3804         average_init(&priv->average_noise);
3805
3806         priv->last_rate = 0;
3807         priv->last_missed_beacons = 0;
3808         priv->last_rx_packets = 0;
3809         priv->last_tx_packets = 0;
3810         priv->last_tx_failures = 0;
3811
3812         /* Firmware managed, reset only when NIC is restarted, so we have to
3813          * normalize on the current value */
3814         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
3815                         &priv->last_rx_err, &len);
3816         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
3817                         &priv->last_tx_failures, &len);
3818
3819         /* Driver managed, reset with each association */
3820         priv->missed_adhoc_beacons = 0;
3821         priv->missed_beacons = 0;
3822         priv->tx_packets = 0;
3823         priv->rx_packets = 0;
3824
3825 }
3826
3827 static u32 ipw_get_max_rate(struct ipw_priv *priv)
3828 {
3829         u32 i = 0x80000000;
3830         u32 mask = priv->rates_mask;
3831         /* If currently associated in B mode, restrict the maximum
3832          * rate match to B rates */
3833         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
3834                 mask &= IEEE80211_CCK_RATES_MASK;
3835
3836         /* TODO: Verify that the rate is supported by the current rates
3837          * list. */
3838
3839         while (i && !(mask & i))
3840                 i >>= 1;
3841         switch (i) {
3842         case IEEE80211_CCK_RATE_1MB_MASK:
3843                 return 1000000;
3844         case IEEE80211_CCK_RATE_2MB_MASK:
3845                 return 2000000;
3846         case IEEE80211_CCK_RATE_5MB_MASK:
3847                 return 5500000;
3848         case IEEE80211_OFDM_RATE_6MB_MASK:
3849                 return 6000000;
3850         case IEEE80211_OFDM_RATE_9MB_MASK:
3851                 return 9000000;
3852         case IEEE80211_CCK_RATE_11MB_MASK:
3853                 return 11000000;
3854         case IEEE80211_OFDM_RATE_12MB_MASK:
3855                 return 12000000;
3856         case IEEE80211_OFDM_RATE_18MB_MASK:
3857                 return 18000000;
3858         case IEEE80211_OFDM_RATE_24MB_MASK:
3859                 return 24000000;
3860         case IEEE80211_OFDM_RATE_36MB_MASK:
3861                 return 36000000;
3862         case IEEE80211_OFDM_RATE_48MB_MASK:
3863                 return 48000000;
3864         case IEEE80211_OFDM_RATE_54MB_MASK:
3865                 return 54000000;
3866         }
3867
3868         if (priv->ieee->mode == IEEE_B)
3869                 return 11000000;
3870         else
3871                 return 54000000;
3872 }
3873
3874 static u32 ipw_get_current_rate(struct ipw_priv *priv)
3875 {
3876         u32 rate, len = sizeof(rate);
3877         int err;
3878
3879         if (!(priv->status & STATUS_ASSOCIATED))
3880                 return 0;
3881
3882         if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
3883                 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
3884                                       &len);
3885                 if (err) {
3886                         IPW_DEBUG_INFO("failed querying ordinals.\n");
3887                         return 0;
3888                 }
3889         } else
3890                 return ipw_get_max_rate(priv);
3891
3892         switch (rate) {
3893         case IPW_TX_RATE_1MB:
3894                 return 1000000;
3895         case IPW_TX_RATE_2MB:
3896                 return 2000000;
3897         case IPW_TX_RATE_5MB:
3898                 return 5500000;
3899         case IPW_TX_RATE_6MB:
3900                 return 6000000;
3901         case IPW_TX_RATE_9MB:
3902                 return 9000000;
3903         case IPW_TX_RATE_11MB:
3904                 return 11000000;
3905         case IPW_TX_RATE_12MB:
3906                 return 12000000;
3907         case IPW_TX_RATE_18MB:
3908                 return 18000000;
3909         case IPW_TX_RATE_24MB:
3910                 return 24000000;
3911         case IPW_TX_RATE_36MB:
3912                 return 36000000;
3913         case IPW_TX_RATE_48MB:
3914                 return 48000000;
3915         case IPW_TX_RATE_54MB:
3916                 return 54000000;
3917         }
3918
3919         return 0;
3920 }
3921
3922 #define IPW_STATS_INTERVAL (2 * HZ)
3923 static void ipw_gather_stats(struct ipw_priv *priv)
3924 {
3925         u32 rx_err, rx_err_delta, rx_packets_delta;
3926         u32 tx_failures, tx_failures_delta, tx_packets_delta;
3927         u32 missed_beacons_percent, missed_beacons_delta;
3928         u32 quality = 0;
3929         u32 len = sizeof(u32);
3930         s16 rssi;
3931         u32 beacon_quality, signal_quality, tx_quality, rx_quality,
3932             rate_quality;
3933         u32 max_rate;
3934
3935         if (!(priv->status & STATUS_ASSOCIATED)) {
3936                 priv->quality = 0;
3937                 return;
3938         }
3939
3940         /* Update the statistics */
3941         ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
3942                         &priv->missed_beacons, &len);
3943         missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
3944         priv->last_missed_beacons = priv->missed_beacons;
3945         if (priv->assoc_request.beacon_interval) {
3946                 missed_beacons_percent = missed_beacons_delta *
3947                     (HZ * priv->assoc_request.beacon_interval) /
3948                     (IPW_STATS_INTERVAL * 10);
3949         } else {
3950                 missed_beacons_percent = 0;
3951         }
3952         average_add(&priv->average_missed_beacons, missed_beacons_percent);
3953
3954         ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
3955         rx_err_delta = rx_err - priv->last_rx_err;
3956         priv->last_rx_err = rx_err;
3957
3958         ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
3959         tx_failures_delta = tx_failures - priv->last_tx_failures;
3960         priv->last_tx_failures = tx_failures;
3961
3962         rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
3963         priv->last_rx_packets = priv->rx_packets;
3964
3965         tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
3966         priv->last_tx_packets = priv->tx_packets;
3967
3968         /* Calculate quality based on the following:
3969          *
3970          * Missed beacon: 100% = 0, 0% = 70% missed
3971          * Rate: 60% = 1Mbs, 100% = Max
3972          * Rx and Tx errors represent a straight % of total Rx/Tx
3973          * RSSI: 100% = > -50,  0% = < -80
3974          * Rx errors: 100% = 0, 0% = 50% missed
3975          *
3976          * The lowest computed quality is used.
3977          *
3978          */
3979 #define BEACON_THRESHOLD 5
3980         beacon_quality = 100 - missed_beacons_percent;
3981         if (beacon_quality < BEACON_THRESHOLD)
3982                 beacon_quality = 0;
3983         else
3984                 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
3985                     (100 - BEACON_THRESHOLD);
3986         IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
3987                         beacon_quality, missed_beacons_percent);
3988
3989         priv->last_rate = ipw_get_current_rate(priv);
3990         max_rate = ipw_get_max_rate(priv);
3991         rate_quality = priv->last_rate * 40 / max_rate + 60;
3992         IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
3993                         rate_quality, priv->last_rate / 1000000);
3994
3995         if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
3996                 rx_quality = 100 - (rx_err_delta * 100) /
3997                     (rx_packets_delta + rx_err_delta);
3998         else
3999                 rx_quality = 100;
4000         IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4001                         rx_quality, rx_err_delta, rx_packets_delta);
4002
4003         if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4004                 tx_quality = 100 - (tx_failures_delta * 100) /
4005                     (tx_packets_delta + tx_failures_delta);
4006         else
4007                 tx_quality = 100;
4008         IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4009                         tx_quality, tx_failures_delta, tx_packets_delta);
4010
4011         rssi = average_value(&priv->average_rssi);
4012         signal_quality =
4013             (100 *
4014              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4015              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4016              (priv->ieee->perfect_rssi - rssi) *
4017              (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4018               62 * (priv->ieee->perfect_rssi - rssi))) /
4019             ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4020              (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4021         if (signal_quality > 100)
4022                 signal_quality = 100;
4023         else if (signal_quality < 1)
4024                 signal_quality = 0;
4025
4026         IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4027                         signal_quality, rssi);
4028
4029         quality = min(beacon_quality,
4030                       min(rate_quality,
4031                           min(tx_quality, min(rx_quality, signal_quality))));
4032         if (quality == beacon_quality)
4033                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4034                                 quality);
4035         if (quality == rate_quality)
4036                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4037                                 quality);
4038         if (quality == tx_quality)
4039                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4040                                 quality);
4041         if (quality == rx_quality)
4042                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4043                                 quality);
4044         if (quality == signal_quality)
4045                 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4046                                 quality);
4047
4048         priv->quality = quality;
4049
4050         queue_delayed_work(priv->workqueue, &priv->gather_stats,
4051                            IPW_STATS_INTERVAL);
4052 }
4053
4054 static void ipw_bg_gather_stats(void *data)
4055 {
4056         struct ipw_priv *priv = data;
4057         mutex_lock(&priv->mutex);
4058         ipw_gather_stats(data);
4059         mutex_unlock(&priv->mutex);
4060 }
4061
4062 /* Missed beacon behavior:
4063  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4064  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4065  * Above disassociate threshold, give up and stop scanning.
4066  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
4067 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4068                                             int missed_count)
4069 {
4070         priv->notif_missed_beacons = missed_count;
4071
4072         if (missed_count > priv->disassociate_threshold &&
4073             priv->status & STATUS_ASSOCIATED) {
4074                 /* If associated and we've hit the missed
4075                  * beacon threshold, disassociate, turn
4076                  * off roaming, and abort any active scans */
4077                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4078                           IPW_DL_STATE | IPW_DL_ASSOC,
4079                           "Missed beacon: %d - disassociate\n", missed_count);
4080                 priv->status &= ~STATUS_ROAMING;
4081                 if (priv->status & STATUS_SCANNING) {
4082                         IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4083                                   IPW_DL_STATE,
4084                                   "Aborting scan with missed beacon.\n");
4085                         queue_work(priv->workqueue, &priv->abort_scan);
4086                 }
4087
4088                 queue_work(priv->workqueue, &priv->disassociate);
4089                 return;
4090         }
4091
4092         if (priv->status & STATUS_ROAMING) {
4093                 /* If we are currently roaming, then just
4094                  * print a debug statement... */
4095                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4096                           "Missed beacon: %d - roam in progress\n",
4097                           missed_count);
4098                 return;
4099         }
4100
4101         if (roaming &&
4102             (missed_count > priv->roaming_threshold &&
4103              missed_count <= priv->disassociate_threshold)) {
4104                 /* If we are not already roaming, set the ROAM
4105                  * bit in the status and kick off a scan.
4106                  * This can happen several times before we reach
4107                  * disassociate_threshold. */
4108                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4109                           "Missed beacon: %d - initiate "
4110                           "roaming\n", missed_count);
4111                 if (!(priv->status & STATUS_ROAMING)) {
4112                         priv->status |= STATUS_ROAMING;
4113                         if (!(priv->status & STATUS_SCANNING))
4114                                 queue_work(priv->workqueue,
4115                                            &priv->request_scan);
4116                 }
4117                 return;
4118         }
4119
4120         if (priv->status & STATUS_SCANNING) {
4121                 /* Stop scan to keep fw from getting
4122                  * stuck (only if we aren't roaming --
4123                  * otherwise we'll never scan more than 2 or 3
4124                  * channels..) */
4125                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4126                           "Aborting scan with missed beacon.\n");
4127                 queue_work(priv->workqueue, &priv->abort_scan);
4128         }
4129
4130         IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4131 }
4132
4133 /**
4134  * Handle host notification packet.
4135  * Called from interrupt routine
4136  */
4137 static void ipw_rx_notification(struct ipw_priv *priv,
4138                                        struct ipw_rx_notification *notif)
4139 {
4140         notif->size = le16_to_cpu(notif->size);
4141
4142         IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, notif->size);
4143
4144         switch (notif->subtype) {
4145         case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4146                         struct notif_association *assoc = &notif->u.assoc;
4147
4148                         switch (assoc->state) {
4149                         case CMAS_ASSOCIATED:{
4150                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4151                                                   IPW_DL_ASSOC,
4152                                                   "associated: '%s' " MAC_FMT
4153                                                   " \n",
4154                                                   escape_essid(priv->essid,
4155                                                                priv->essid_len),
4156                                                   MAC_ARG(priv->bssid));
4157
4158                                         switch (priv->ieee->iw_mode) {
4159                                         case IW_MODE_INFRA:
4160                                                 memcpy(priv->ieee->bssid,
4161                                                        priv->bssid, ETH_ALEN);
4162                                                 break;
4163
4164                                         case IW_MODE_ADHOC:
4165                                                 memcpy(priv->ieee->bssid,
4166                                                        priv->bssid, ETH_ALEN);
4167
4168                                                 /* clear out the station table */
4169                                                 priv->num_stations = 0;
4170
4171                                                 IPW_DEBUG_ASSOC
4172                                                     ("queueing adhoc check\n");
4173                                                 queue_delayed_work(priv->
4174                                                                    workqueue,
4175                                                                    &priv->
4176                                                                    adhoc_check,
4177                                                                    priv->
4178                                                                    assoc_request.
4179                                                                    beacon_interval);
4180                                                 break;
4181                                         }
4182
4183                                         priv->status &= ~STATUS_ASSOCIATING;
4184                                         priv->status |= STATUS_ASSOCIATED;
4185                                         queue_work(priv->workqueue,
4186                                                    &priv->system_config);
4187
4188 #ifdef CONFIG_IPW_QOS
4189 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4190                          le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_ctl))
4191                                         if ((priv->status & STATUS_AUTH) &&
4192                                             (IPW_GET_PACKET_STYPE(&notif->u.raw)
4193                                              == IEEE80211_STYPE_ASSOC_RESP)) {
4194                                                 if ((sizeof
4195                                                      (struct
4196                                                       ieee80211_assoc_response)
4197                                                      <= notif->size)
4198                                                     && (notif->size <= 2314)) {
4199                                                         struct
4200                                                         ieee80211_rx_stats
4201                                                             stats = {
4202                                                                 .len =
4203                                                                     notif->
4204                                                                     size - 1,
4205                                                         };
4206
4207                                                         IPW_DEBUG_QOS
4208                                                             ("QoS Associate "
4209                                                              "size %d\n",
4210                                                              notif->size);
4211                                                         ieee80211_rx_mgt(priv->
4212                                                                          ieee,
4213                                                                          (struct
4214                                                                           ieee80211_hdr_4addr
4215                                                                           *)
4216                                                                          &notif->u.raw, &stats);
4217                                                 }
4218                                         }
4219 #endif
4220
4221                                         schedule_work(&priv->link_up);
4222
4223                                         break;
4224                                 }
4225
4226                         case CMAS_AUTHENTICATED:{
4227                                         if (priv->
4228                                             status & (STATUS_ASSOCIATED |
4229                                                       STATUS_AUTH)) {
4230 #ifdef CONFIG_IPW2200_DEBUG
4231                                                 struct notif_authenticate *auth
4232                                                     = &notif->u.auth;
4233                                                 IPW_DEBUG(IPW_DL_NOTIF |
4234                                                           IPW_DL_STATE |
4235                                                           IPW_DL_ASSOC,
4236                                                           "deauthenticated: '%s' "
4237                                                           MAC_FMT
4238                                                           ": (0x%04X) - %s \n",
4239                                                           escape_essid(priv->
4240                                                                        essid,
4241                                                                        priv->
4242                                                                        essid_len),
4243                                                           MAC_ARG(priv->bssid),
4244                                                           ntohs(auth->status),
4245                                                           ipw_get_status_code
4246                                                           (ntohs
4247                                                            (auth->status)));
4248 #endif
4249
4250                                                 priv->status &=
4251                                                     ~(STATUS_ASSOCIATING |
4252                                                       STATUS_AUTH |
4253                                                       STATUS_ASSOCIATED);
4254
4255                                                 schedule_work(&priv->link_down);
4256                                                 break;
4257                                         }
4258
4259                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4260                                                   IPW_DL_ASSOC,
4261                                                   "authenticated: '%s' " MAC_FMT
4262                                                   "\n",
4263                                                   escape_essid(priv->essid,
4264                                                                priv->essid_len),
4265                                                   MAC_ARG(priv->bssid));
4266                                         break;
4267                                 }
4268
4269                         case CMAS_INIT:{
4270                                         if (priv->status & STATUS_AUTH) {
4271                                                 struct
4272                                                     ieee80211_assoc_response
4273                                                 *resp;
4274                                                 resp =
4275                                                     (struct
4276                                                      ieee80211_assoc_response
4277                                                      *)&notif->u.raw;
4278                                                 IPW_DEBUG(IPW_DL_NOTIF |
4279                                                           IPW_DL_STATE |
4280                                                           IPW_DL_ASSOC,
4281                                                           "association failed (0x%04X): %s\n",
4282                                                           ntohs(resp->status),
4283                                                           ipw_get_status_code
4284                                                           (ntohs
4285                                                            (resp->status)));
4286                                         }
4287
4288                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4289                                                   IPW_DL_ASSOC,
4290                                                   "disassociated: '%s' " MAC_FMT
4291                                                   " \n",
4292                                                   escape_essid(priv->essid,
4293                                                                priv->essid_len),
4294                                                   MAC_ARG(priv->bssid));
4295
4296                                         priv->status &=
4297                                             ~(STATUS_DISASSOCIATING |
4298                                               STATUS_ASSOCIATING |
4299                                               STATUS_ASSOCIATED | STATUS_AUTH);
4300                                         if (priv->assoc_network
4301                                             && (priv->assoc_network->
4302                                                 capability &
4303                                                 WLAN_CAPABILITY_IBSS))
4304                                                 ipw_remove_current_network
4305                                                     (priv);
4306
4307                                         schedule_work(&priv->link_down);
4308
4309                                         break;
4310                                 }
4311
4312                         case CMAS_RX_ASSOC_RESP:
4313                                 break;
4314
4315                         default:
4316                                 IPW_ERROR("assoc: unknown (%d)\n",
4317                                           assoc->state);
4318                                 break;
4319                         }
4320
4321                         break;
4322                 }
4323
4324         case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4325                         struct notif_authenticate *auth = &notif->u.auth;
4326                         switch (auth->state) {
4327                         case CMAS_AUTHENTICATED:
4328                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4329                                           "authenticated: '%s' " MAC_FMT " \n",
4330                                           escape_essid(priv->essid,
4331                                                        priv->essid_len),
4332                                           MAC_ARG(priv->bssid));
4333                                 priv->status |= STATUS_AUTH;
4334                                 break;
4335
4336                         case CMAS_INIT:
4337                                 if (priv->status & STATUS_AUTH) {
4338                                         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4339                                                   IPW_DL_ASSOC,
4340                                                   "authentication failed (0x%04X): %s\n",
4341                                                   ntohs(auth->status),
4342                                                   ipw_get_status_code(ntohs
4343                                                                       (auth->
4344                                                                        status)));
4345                                 }
4346                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4347                                           IPW_DL_ASSOC,
4348                                           "deauthenticated: '%s' " MAC_FMT "\n",
4349                                           escape_essid(priv->essid,
4350                                                        priv->essid_len),
4351                                           MAC_ARG(priv->bssid));
4352
4353                                 priv->status &= ~(STATUS_ASSOCIATING |
4354                                                   STATUS_AUTH |
4355                                                   STATUS_ASSOCIATED);
4356
4357                                 schedule_work(&priv->link_down);
4358                                 break;
4359
4360                         case CMAS_TX_AUTH_SEQ_1:
4361                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4362                                           IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4363                                 break;
4364                         case CMAS_RX_AUTH_SEQ_2:
4365                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4366                                           IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4367                                 break;
4368                         case CMAS_AUTH_SEQ_1_PASS:
4369                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4370                                           IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4371                                 break;
4372                         case CMAS_AUTH_SEQ_1_FAIL:
4373                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4374                                           IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4375                                 break;
4376                         case CMAS_TX_AUTH_SEQ_3:
4377                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4378                                           IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4379                                 break;
4380                         case CMAS_RX_AUTH_SEQ_4:
4381                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4382                                           IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4383                                 break;
4384                         case CMAS_AUTH_SEQ_2_PASS:
4385                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4386                                           IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4387                                 break;
4388                         case CMAS_AUTH_SEQ_2_FAIL:
4389                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4390                                           IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4391                                 break;
4392                         case CMAS_TX_ASSOC:
4393                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4394                                           IPW_DL_ASSOC, "TX_ASSOC\n");
4395                                 break;
4396                         case CMAS_RX_ASSOC_RESP:
4397                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4398                                           IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4399
4400                                 break;
4401                         case CMAS_ASSOCIATED:
4402                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4403                                           IPW_DL_ASSOC, "ASSOCIATED\n");
4404                                 break;
4405                         default:
4406                                 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4407                                                 auth->state);
4408                                 break;
4409                         }
4410                         break;
4411                 }
4412
4413         case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4414                         struct notif_channel_result *x =
4415                             &notif->u.channel_result;
4416
4417                         if (notif->size == sizeof(*x)) {
4418                                 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4419                                                x->channel_num);
4420                         } else {
4421                                 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4422                                                "(should be %zd)\n",
4423                                                notif->size, sizeof(*x));
4424                         }
4425                         break;
4426                 }
4427
4428         case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4429                         struct notif_scan_complete *x = &notif->u.scan_complete;
4430                         if (notif->size == sizeof(*x)) {
4431                                 IPW_DEBUG_SCAN
4432                                     ("Scan completed: type %d, %d channels, "
4433                                      "%d status\n", x->scan_type,
4434                                      x->num_channels, x->status);
4435                         } else {
4436                                 IPW_ERROR("Scan completed of wrong size %d "
4437                                           "(should be %zd)\n",
4438                                           notif->size, sizeof(*x));
4439                         }
4440
4441                         priv->status &=
4442                             ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4443
4444                         wake_up_interruptible(&priv->wait_state);
4445                         cancel_delayed_work(&priv->scan_check);
4446
4447                         if (priv->status & STATUS_EXIT_PENDING)
4448                                 break;
4449
4450                         priv->ieee->scans++;
4451
4452 #ifdef CONFIG_IPW2200_MONITOR
4453                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4454                                 priv->status |= STATUS_SCAN_FORCED;
4455                                 queue_work(priv->workqueue,
4456                                            &priv->request_scan);
4457                                 break;
4458                         }
4459                         priv->status &= ~STATUS_SCAN_FORCED;
4460 #endif                          /* CONFIG_IPW2200_MONITOR */
4461
4462                         if (!(priv->status & (STATUS_ASSOCIATED |
4463                                               STATUS_ASSOCIATING |
4464                                               STATUS_ROAMING |
4465                                               STATUS_DISASSOCIATING)))
4466                                 queue_work(priv->workqueue, &priv->associate);
4467                         else if (priv->status & STATUS_ROAMING) {
4468                                 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4469                                         /* If a scan completed and we are in roam mode, then
4470                                          * the scan that completed was the one requested as a
4471                                          * result of entering roam... so, schedule the
4472                                          * roam work */
4473                                         queue_work(priv->workqueue,
4474                                                    &priv->roam);
4475                                 else
4476                                         /* Don't schedule if we aborted the scan */
4477                                         priv->status &= ~STATUS_ROAMING;
4478                         } else if (priv->status & STATUS_SCAN_PENDING)
4479                                 queue_work(priv->workqueue,
4480                                            &priv->request_scan);
4481                         else if (priv->config & CFG_BACKGROUND_SCAN
4482                                  && priv->status & STATUS_ASSOCIATED)
4483                                 queue_delayed_work(priv->workqueue,
4484                                                    &priv->request_scan, HZ);
4485                         break;
4486                 }
4487
4488         case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4489                         struct notif_frag_length *x = &notif->u.frag_len;
4490
4491                         if (notif->size == sizeof(*x))
4492                                 IPW_ERROR("Frag length: %d\n",
4493                                           le16_to_cpu(x->frag_length));
4494                         else
4495                                 IPW_ERROR("Frag length of wrong size %d "
4496                                           "(should be %zd)\n",
4497                                           notif->size, sizeof(*x));
4498                         break;
4499                 }
4500
4501         case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4502                         struct notif_link_deterioration *x =
4503                             &notif->u.link_deterioration;
4504
4505                         if (notif->size == sizeof(*x)) {
4506                                 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4507                                         "link deterioration: type %d, cnt %d\n",
4508                                         x->silence_notification_type,
4509                                         x->silence_count);
4510                                 memcpy(&priv->last_link_deterioration, x,
4511                                        sizeof(*x));
4512                         } else {
4513                                 IPW_ERROR("Link Deterioration of wrong size %d "
4514                                           "(should be %zd)\n",
4515                                           notif->size, sizeof(*x));
4516                         }
4517                         break;
4518                 }
4519
4520         case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4521                         IPW_ERROR("Dino config\n");
4522                         if (priv->hcmd
4523                             && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4524                                 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4525
4526                         break;
4527                 }
4528
4529         case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4530                         struct notif_beacon_state *x = &notif->u.beacon_state;
4531                         if (notif->size != sizeof(*x)) {
4532                                 IPW_ERROR
4533                                     ("Beacon state of wrong size %d (should "
4534                                      "be %zd)\n", notif->size, sizeof(*x));
4535                                 break;
4536                         }
4537
4538                         if (le32_to_cpu(x->state) ==
4539                             HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4540                                 ipw_handle_missed_beacon(priv,
4541                                                          le32_to_cpu(x->
4542                                                                      number));
4543
4544                         break;
4545                 }
4546
4547         case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4548                         struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4549                         if (notif->size == sizeof(*x)) {
4550                                 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4551                                           "0x%02x station %d\n",
4552                                           x->key_state, x->security_type,
4553                                           x->station_index);
4554                                 break;
4555                         }
4556
4557                         IPW_ERROR
4558                             ("TGi Tx Key of wrong size %d (should be %zd)\n",
4559                              notif->size, sizeof(*x));
4560                         break;
4561                 }
4562
4563         case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4564                         struct notif_calibration *x = &notif->u.calibration;
4565
4566                         if (notif->size == sizeof(*x)) {
4567                                 memcpy(&priv->calib, x, sizeof(*x));
4568                                 IPW_DEBUG_INFO("TODO: Calibration\n");
4569                                 break;
4570                         }
4571
4572                         IPW_ERROR
4573                             ("Calibration of wrong size %d (should be %zd)\n",
4574                              notif->size, sizeof(*x));
4575                         break;
4576                 }
4577
4578         case HOST_NOTIFICATION_NOISE_STATS:{
4579                         if (notif->size == sizeof(u32)) {
4580                                 priv->last_noise =
4581                                     (u8) (le32_to_cpu(notif->u.noise.value) &
4582                                           0xff);
4583                                 average_add(&priv->average_noise,
4584                                             priv->last_noise);
4585                                 break;
4586                         }
4587
4588                         IPW_ERROR
4589                             ("Noise stat is wrong size %d (should be %zd)\n",
4590                              notif->size, sizeof(u32));
4591                         break;
4592                 }
4593
4594         default:
4595                 IPW_DEBUG_NOTIF("Unknown notification: "
4596                                 "subtype=%d,flags=0x%2x,size=%d\n",
4597                                 notif->subtype, notif->flags, notif->size);
4598         }
4599 }
4600
4601 /**
4602  * Destroys all DMA structures and initialise them again
4603  *
4604  * @param priv
4605  * @return error code
4606  */
4607 static int ipw_queue_reset(struct ipw_priv *priv)
4608 {
4609         int rc = 0;
4610         /** @todo customize queue sizes */
4611         int nTx = 64, nTxCmd = 8;
4612         ipw_tx_queue_free(priv);
4613         /* Tx CMD queue */
4614         rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4615                                IPW_TX_CMD_QUEUE_READ_INDEX,
4616                                IPW_TX_CMD_QUEUE_WRITE_INDEX,
4617                                IPW_TX_CMD_QUEUE_BD_BASE,
4618                                IPW_TX_CMD_QUEUE_BD_SIZE);
4619         if (rc) {
4620                 IPW_ERROR("Tx Cmd queue init failed\n");
4621                 goto error;
4622         }
4623         /* Tx queue(s) */
4624         rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4625                                IPW_TX_QUEUE_0_READ_INDEX,
4626                                IPW_TX_QUEUE_0_WRITE_INDEX,
4627                                IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4628         if (rc) {
4629                 IPW_ERROR("Tx 0 queue init failed\n");
4630                 goto error;
4631         }
4632         rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4633                                IPW_TX_QUEUE_1_READ_INDEX,
4634                                IPW_TX_QUEUE_1_WRITE_INDEX,
4635                                IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4636         if (rc) {
4637                 IPW_ERROR("Tx 1 queue init failed\n");
4638                 goto error;
4639         }
4640         rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4641                                IPW_TX_QUEUE_2_READ_INDEX,
4642                                IPW_TX_QUEUE_2_WRITE_INDEX,
4643                                IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4644         if (rc) {
4645                 IPW_ERROR("Tx 2 queue init failed\n");
4646                 goto error;
4647         }
4648         rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4649                                IPW_TX_QUEUE_3_READ_INDEX,
4650                                IPW_TX_QUEUE_3_WRITE_INDEX,
4651                                IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4652         if (rc) {
4653                 IPW_ERROR("Tx 3 queue init failed\n");
4654                 goto error;
4655         }
4656         /* statistics */
4657         priv->rx_bufs_min = 0;
4658         priv->rx_pend_max = 0;
4659         return rc;
4660
4661       error:
4662         ipw_tx_queue_free(priv);
4663         return rc;
4664 }
4665
4666 /**
4667  * Reclaim Tx queue entries no more used by NIC.
4668  *
4669  * When FW adwances 'R' index, all entries between old and
4670  * new 'R' index need to be reclaimed. As result, some free space
4671  * forms. If there is enough free space (> low mark), wake Tx queue.
4672  *
4673  * @note Need to protect against garbage in 'R' index
4674  * @param priv
4675  * @param txq
4676  * @param qindex
4677  * @return Number of used entries remains in the queue
4678  */
4679 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4680                                 struct clx2_tx_queue *txq, int qindex)
4681 {
4682         u32 hw_tail;
4683         int used;
4684         struct clx2_queue *q = &txq->q;
4685
4686         hw_tail = ipw_read32(priv, q->reg_r);
4687         if (hw_tail >= q->n_bd) {
4688                 IPW_ERROR
4689                     ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4690                      hw_tail, q->n_bd);
4691                 goto done;
4692         }
4693         for (; q->last_used != hw_tail;
4694              q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4695                 ipw_queue_tx_free_tfd(priv, txq);
4696                 priv->tx_packets++;
4697         }
4698       done:
4699         if ((ipw_queue_space(q) > q->low_mark) &&
4700             (qindex >= 0) &&
4701             (priv->status & STATUS_ASSOCIATED) && netif_running(priv->net_dev))
4702                 netif_wake_queue(priv->net_dev);
4703         used = q->first_empty - q->last_used;
4704         if (used < 0)
4705                 used += q->n_bd;
4706
4707         return used;
4708 }
4709
4710 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4711                              int len, int sync)
4712 {
4713         struct clx2_tx_queue *txq = &priv->txq_cmd;
4714         struct clx2_queue *q = &txq->q;
4715         struct tfd_frame *tfd;
4716
4717         if (ipw_queue_space(q) < (sync ? 1 : 2)) {
4718                 IPW_ERROR("No space for Tx\n");
4719                 return -EBUSY;
4720         }
4721
4722         tfd = &txq->bd[q->first_empty];
4723         txq->txb[q->first_empty] = NULL;
4724
4725         memset(tfd, 0, sizeof(*tfd));
4726         tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4727         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
4728         priv->hcmd_seq++;
4729         tfd->u.cmd.index = hcmd;
4730         tfd->u.cmd.length = len;
4731         memcpy(tfd->u.cmd.payload, buf, len);
4732         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
4733         ipw_write32(priv, q->reg_w, q->first_empty);
4734         _ipw_read32(priv, 0x90);
4735
4736         return 0;
4737 }
4738
4739 /*
4740  * Rx theory of operation
4741  *
4742  * The host allocates 32 DMA target addresses and passes the host address
4743  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
4744  * 0 to 31
4745  *
4746  * Rx Queue Indexes
4747  * The host/firmware share two index registers for managing the Rx buffers.
4748  *
4749  * The READ index maps to the first position that the firmware may be writing
4750  * to -- the driver can read up to (but not including) this position and get
4751  * good data.
4752  * The READ index is managed by the firmware once the card is enabled.
4753  *
4754  * The WRITE index maps to the last position the driver has read from -- the
4755  * position preceding WRITE is the last slot the firmware can place a packet.
4756  *
4757  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
4758  * WRITE = READ.
4759  *
4760  * During initialization the host sets up the READ queue position to the first
4761  * INDEX position, and WRITE to the last (READ - 1 wrapped)
4762  *
4763  * When the firmware places a packet in a buffer it will advance the READ index
4764  * and fire the RX interrupt.  The driver can then query the READ index and
4765  * process as many packets as possible, moving the WRITE index forward as it
4766  * resets the Rx queue buffers with new memory.
4767  *
4768  * The management in the driver is as follows:
4769  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
4770  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
4771  *   to replensish the ipw->rxq->rx_free.
4772  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
4773  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
4774  *   'processed' and 'read' driver indexes as well)
4775  * + A received packet is processed and handed to the kernel network stack,
4776  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
4777  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
4778  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
4779  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
4780  *   were enough free buffers and RX_STALLED is set it is cleared.
4781  *
4782  *
4783  * Driver sequence:
4784  *
4785  * ipw_rx_queue_alloc()       Allocates rx_free
4786  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
4787  *                            ipw_rx_queue_restock
4788  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
4789  *                            queue, updates firmware pointers, and updates
4790  *                            the WRITE index.  If insufficient rx_free buffers
4791  *                            are available, schedules ipw_rx_queue_replenish
4792  *
4793  * -- enable interrupts --
4794  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
4795  *                            READ INDEX, detaching the SKB from the pool.
4796  *                            Moves the packet buffer from queue to rx_used.
4797  *                            Calls ipw_rx_queue_restock to refill any empty
4798  *                            slots.
4799  * ...
4800  *
4801  */
4802
4803 /*
4804  * If there are slots in the RX queue that  need to be restocked,
4805  * and we have free pre-allocated buffers, fill the ranks as much
4806  * as we can pulling from rx_free.
4807  *
4808  * This moves the 'write' index forward to catch up with 'processed', and
4809  * also updates the memory address in the firmware to reference the new
4810  * target buffer.
4811  */
4812 static void ipw_rx_queue_restock(struct ipw_priv *priv)
4813 {
4814         struct ipw_rx_queue *rxq = priv->rxq;
4815         struct list_head *element;
4816         struct ipw_rx_mem_buffer *rxb;
4817         unsigned long flags;
4818         int write;
4819
4820         spin_lock_irqsave(&rxq->lock, flags);
4821         write = rxq->write;
4822         while ((rxq->write != rxq->processed) && (rxq->free_count)) {
4823                 element = rxq->rx_free.next;
4824                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4825                 list_del(element);
4826
4827                 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
4828                             rxb->dma_addr);
4829                 rxq->queue[rxq->write] = rxb;
4830                 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
4831                 rxq->free_count--;
4832         }
4833         spin_unlock_irqrestore(&rxq->lock, flags);
4834
4835         /* If the pre-allocated buffer pool is dropping low, schedule to
4836          * refill it */
4837         if (rxq->free_count <= RX_LOW_WATERMARK)
4838                 queue_work(priv->workqueue, &priv->rx_replenish);
4839
4840         /* If we've added more space for the firmware to place data, tell it */
4841         if (write != rxq->write)
4842                 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
4843 }
4844
4845 /*
4846  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
4847  * Also restock the Rx queue via ipw_rx_queue_restock.
4848  *
4849  * This is called as a scheduled work item (except for during intialization)
4850  */
4851 static void ipw_rx_queue_replenish(void *data)
4852 {
4853         struct ipw_priv *priv = data;
4854         struct ipw_rx_queue *rxq = priv->rxq;
4855         struct list_head *element;
4856         struct ipw_rx_mem_buffer *rxb;
4857         unsigned long flags;
4858
4859         spin_lock_irqsave(&rxq->lock, flags);
4860         while (!list_empty(&rxq->rx_used)) {
4861                 element = rxq->rx_used.next;
4862                 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
4863                 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
4864                 if (!rxb->skb) {
4865                         printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
4866                                priv->net_dev->name);
4867                         /* We don't reschedule replenish work here -- we will
4868                          * call the restock method and if it still needs
4869                          * more buffers it will schedule replenish */
4870                         break;
4871                 }
4872                 list_del(element);
4873
4874                 rxb->rxb = (struct ipw_rx_buffer *)rxb->skb->data;
4875                 rxb->dma_addr =
4876                     pci_map_single(priv->pci_dev, rxb->skb->data,
4877                                    IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4878
4879                 list_add_tail(&rxb->list, &rxq->rx_free);
4880                 rxq->free_count++;
4881         }
4882         spin_unlock_irqrestore(&rxq->lock, flags);
4883
4884         ipw_rx_queue_restock(priv);
4885 }
4886
4887 static void ipw_bg_rx_queue_replenish(void *data)
4888 {
4889         struct ipw_priv *priv = data;
4890         mutex_lock(&priv->mutex);
4891         ipw_rx_queue_replenish(data);
4892         mutex_unlock(&priv->mutex);
4893 }
4894
4895 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
4896  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
4897  * This free routine walks the list of POOL entries and if SKB is set to
4898  * non NULL it is unmapped and freed
4899  */
4900 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
4901 {
4902         int i;
4903
4904         if (!rxq)
4905                 return;
4906
4907         for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
4908                 if (rxq->pool[i].skb != NULL) {
4909                         pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
4910                                          IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
4911                         dev_kfree_skb(rxq->pool[i].skb);
4912                 }
4913         }
4914
4915         kfree(rxq);
4916 }
4917
4918 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
4919 {
4920         struct ipw_rx_queue *rxq;
4921         int i;
4922
4923         rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
4924         if (unlikely(!rxq)) {
4925                 IPW_ERROR("memory allocation failed\n");
4926                 return NULL;
4927         }
4928         spin_lock_init(&rxq->lock);
4929         INIT_LIST_HEAD(&rxq->rx_free);
4930         INIT_LIST_HEAD(&rxq->rx_used);
4931
4932         /* Fill the rx_used queue with _all_ of the Rx buffers */
4933         for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
4934                 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
4935
4936         /* Set us so that we have processed and used all buffers, but have
4937          * not restocked the Rx queue with fresh buffers */
4938         rxq->read = rxq->write = 0;
4939         rxq->processed = RX_QUEUE_SIZE - 1;
4940         rxq->free_count = 0;
4941
4942         return rxq;
4943 }
4944
4945 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
4946 {
4947         rate &= ~IEEE80211_BASIC_RATE_MASK;
4948         if (ieee_mode == IEEE_A) {
4949                 switch (rate) {
4950                 case IEEE80211_OFDM_RATE_6MB:
4951                         return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
4952                             1 : 0;
4953                 case IEEE80211_OFDM_RATE_9MB:
4954                         return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
4955                             1 : 0;
4956                 case IEEE80211_OFDM_RATE_12MB:
4957                         return priv->
4958                             rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
4959                 case IEEE80211_OFDM_RATE_18MB:
4960                         return priv->
4961                             rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
4962                 case IEEE80211_OFDM_RATE_24MB:
4963                         return priv->
4964                             rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
4965                 case IEEE80211_OFDM_RATE_36MB:
4966                         return priv->
4967                             rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
4968                 case IEEE80211_OFDM_RATE_48MB:
4969                         return priv->
4970                             rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
4971                 case IEEE80211_OFDM_RATE_54MB:
4972                         return priv->
4973                             rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
4974                 default:
4975                         return 0;
4976                 }
4977         }
4978
4979         /* B and G mixed */
4980         switch (rate) {
4981         case IEEE80211_CCK_RATE_1MB:
4982                 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
4983         case IEEE80211_CCK_RATE_2MB:
4984                 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
4985         case IEEE80211_CCK_RATE_5MB:
4986                 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
4987         case IEEE80211_CCK_RATE_11MB:
4988                 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
4989         }
4990
4991         /* If we are limited to B modulations, bail at this point */
4992         if (ieee_mode == IEEE_B)
4993                 return 0;
4994
4995         /* G */
4996         switch (rate) {
4997         case IEEE80211_OFDM_RATE_6MB:
4998                 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
4999         case IEEE80211_OFDM_RATE_9MB:
5000                 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5001         case IEEE80211_OFDM_RATE_12MB:
5002                 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5003         case IEEE80211_OFDM_RATE_18MB:
5004                 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5005         case IEEE80211_OFDM_RATE_24MB:
5006                 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5007         case IEEE80211_OFDM_RATE_36MB:
5008                 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5009         case IEEE80211_OFDM_RATE_48MB:
5010                 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5011         case IEEE80211_OFDM_RATE_54MB:
5012                 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5013         }
5014
5015         return 0;
5016 }
5017
5018 static int ipw_compatible_rates(struct ipw_priv *priv,
5019                                 const struct ieee80211_network *network,
5020                                 struct ipw_supported_rates *rates)
5021 {
5022         int num_rates, i;
5023
5024         memset(rates, 0, sizeof(*rates));
5025         num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5026         rates->num_rates = 0;
5027         for (i = 0; i < num_rates; i++) {
5028                 if (!ipw_is_rate_in_mask(priv, network->mode,
5029                                          network->rates[i])) {
5030
5031                         if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5032                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5033                                                "rate %02X\n",
5034                                                network->rates[i]);
5035                                 rates->supported_rates[rates->num_rates++] =
5036                                     network->rates[i];
5037                                 continue;
5038                         }
5039
5040                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5041                                        network->rates[i], priv->rates_mask);
5042                         continue;
5043                 }
5044
5045                 rates->supported_rates[rates->num_rates++] = network->rates[i];
5046         }
5047
5048         num_rates = min(network->rates_ex_len,
5049                         (u8) (IPW_MAX_RATES - num_rates));
5050         for (i = 0; i < num_rates; i++) {
5051                 if (!ipw_is_rate_in_mask(priv, network->mode,
5052                                          network->rates_ex[i])) {
5053                         if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5054                                 IPW_DEBUG_SCAN("Adding masked mandatory "
5055                                                "rate %02X\n",
5056                                                network->rates_ex[i]);
5057                                 rates->supported_rates[rates->num_rates++] =
5058                                     network->rates[i];
5059                                 continue;
5060                         }
5061
5062                         IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5063                                        network->rates_ex[i], priv->rates_mask);
5064                         continue;
5065                 }
5066
5067                 rates->supported_rates[rates->num_rates++] =
5068                     network->rates_ex[i];
5069         }
5070
5071         return 1;
5072 }
5073
5074 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5075                                   const struct ipw_supported_rates *src)
5076 {
5077         u8 i;
5078         for (i = 0; i < src->num_rates; i++)
5079                 dest->supported_rates[i] = src->supported_rates[i];
5080         dest->num_rates = src->num_rates;
5081 }
5082
5083 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5084  * mask should ever be used -- right now all callers to add the scan rates are
5085  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5086 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5087                                    u8 modulation, u32 rate_mask)
5088 {
5089         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5090             IEEE80211_BASIC_RATE_MASK : 0;
5091
5092         if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5093                 rates->supported_rates[rates->num_rates++] =
5094                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5095
5096         if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5097                 rates->supported_rates[rates->num_rates++] =
5098                     IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5099
5100         if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5101                 rates->supported_rates[rates->num_rates++] = basic_mask |
5102                     IEEE80211_CCK_RATE_5MB;
5103
5104         if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5105                 rates->supported_rates[rates->num_rates++] = basic_mask |
5106                     IEEE80211_CCK_RATE_11MB;
5107 }
5108
5109 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5110                                     u8 modulation, u32 rate_mask)
5111 {
5112         u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5113             IEEE80211_BASIC_RATE_MASK : 0;
5114
5115         if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5116                 rates->supported_rates[rates->num_rates++] = basic_mask |
5117                     IEEE80211_OFDM_RATE_6MB;
5118
5119         if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5120                 rates->supported_rates[rates->num_rates++] =
5121                     IEEE80211_OFDM_RATE_9MB;
5122
5123         if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5124                 rates->supported_rates[rates->num_rates++] = basic_mask |
5125                     IEEE80211_OFDM_RATE_12MB;
5126
5127         if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5128                 rates->supported_rates[rates->num_rates++] =
5129                     IEEE80211_OFDM_RATE_18MB;
5130
5131         if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5132                 rates->supported_rates[rates->num_rates++] = basic_mask |
5133                     IEEE80211_OFDM_RATE_24MB;
5134
5135         if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5136                 rates->supported_rates[rates->num_rates++] =
5137                     IEEE80211_OFDM_RATE_36MB;
5138
5139         if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5140                 rates->supported_rates[rates->num_rates++] =
5141                     IEEE80211_OFDM_RATE_48MB;
5142
5143         if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5144                 rates->supported_rates[rates->num_rates++] =
5145                     IEEE80211_OFDM_RATE_54MB;
5146 }
5147
5148 struct ipw_network_match {
5149         struct ieee80211_network *network;
5150         struct ipw_supported_rates rates;
5151 };
5152
5153 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5154                                   struct ipw_network_match *match,
5155                                   struct ieee80211_network *network,
5156                                   int roaming)
5157 {
5158         struct ipw_supported_rates rates;
5159
5160         /* Verify that this network's capability is compatible with the
5161          * current mode (AdHoc or Infrastructure) */
5162         if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5163              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5164                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded due to "
5165                                 "capability mismatch.\n",
5166                                 escape_essid(network->ssid, network->ssid_len),
5167                                 MAC_ARG(network->bssid));
5168                 return 0;
5169         }
5170
5171         /* If we do not have an ESSID for this AP, we can not associate with
5172          * it */
5173         if (network->flags & NETWORK_EMPTY_ESSID) {
5174                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5175                                 "because of hidden ESSID.\n",
5176                                 escape_essid(network->ssid, network->ssid_len),
5177                                 MAC_ARG(network->bssid));
5178                 return 0;
5179         }
5180
5181         if (unlikely(roaming)) {
5182                 /* If we are roaming, then ensure check if this is a valid
5183                  * network to try and roam to */
5184                 if ((network->ssid_len != match->network->ssid_len) ||
5185                     memcmp(network->ssid, match->network->ssid,
5186                            network->ssid_len)) {
5187                         IPW_DEBUG_MERGE("Netowrk '%s (" MAC_FMT ")' excluded "
5188                                         "because of non-network ESSID.\n",
5189                                         escape_essid(network->ssid,
5190                                                      network->ssid_len),
5191                                         MAC_ARG(network->bssid));
5192                         return 0;
5193                 }
5194         } else {
5195                 /* If an ESSID has been configured then compare the broadcast
5196                  * ESSID to ours */
5197                 if ((priv->config & CFG_STATIC_ESSID) &&
5198                     ((network->ssid_len != priv->essid_len) ||
5199                      memcmp(network->ssid, priv->essid,
5200                             min(network->ssid_len, priv->essid_len)))) {
5201                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5202
5203                         strncpy(escaped,
5204                                 escape_essid(network->ssid, network->ssid_len),
5205                                 sizeof(escaped));
5206                         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5207                                         "because of ESSID mismatch: '%s'.\n",
5208                                         escaped, MAC_ARG(network->bssid),
5209                                         escape_essid(priv->essid,
5210                                                      priv->essid_len));
5211                         return 0;
5212                 }
5213         }
5214
5215         /* If the old network rate is better than this one, don't bother
5216          * testing everything else. */
5217
5218         if (network->time_stamp[0] < match->network->time_stamp[0]) {
5219                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5220                                 "current network.\n",
5221                                 escape_essid(match->network->ssid,
5222                                              match->network->ssid_len));
5223                 return 0;
5224         } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5225                 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5226                                 "current network.\n",
5227                                 escape_essid(match->network->ssid,
5228                                              match->network->ssid_len));
5229                 return 0;
5230         }
5231
5232         /* Now go through and see if the requested network is valid... */
5233         if (priv->ieee->scan_age != 0 &&
5234             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5235                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5236                                 "because of age: %ums.\n",
5237                                 escape_essid(network->ssid, network->ssid_len),
5238                                 MAC_ARG(network->bssid),
5239                                 jiffies_to_msecs(jiffies -
5240                                                  network->last_scanned));
5241                 return 0;
5242         }
5243
5244         if ((priv->config & CFG_STATIC_CHANNEL) &&
5245             (network->channel != priv->channel)) {
5246                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5247                                 "because of channel mismatch: %d != %d.\n",
5248                                 escape_essid(network->ssid, network->ssid_len),
5249                                 MAC_ARG(network->bssid),
5250                                 network->channel, priv->channel);
5251                 return 0;
5252         }
5253
5254         /* Verify privacy compatability */
5255         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5256             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5257                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5258                                 "because of privacy mismatch: %s != %s.\n",
5259                                 escape_essid(network->ssid, network->ssid_len),
5260                                 MAC_ARG(network->bssid),
5261                                 priv->
5262                                 capability & CAP_PRIVACY_ON ? "on" : "off",
5263                                 network->
5264                                 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5265                                 "off");
5266                 return 0;
5267         }
5268
5269         if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5270                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5271                                 "because of the same BSSID match: " MAC_FMT
5272                                 ".\n", escape_essid(network->ssid,
5273                                                     network->ssid_len),
5274                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5275                 return 0;
5276         }
5277
5278         /* Filter out any incompatible freq / mode combinations */
5279         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5280                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5281                                 "because of invalid frequency/mode "
5282                                 "combination.\n",
5283                                 escape_essid(network->ssid, network->ssid_len),
5284                                 MAC_ARG(network->bssid));
5285                 return 0;
5286         }
5287
5288         /* Ensure that the rates supported by the driver are compatible with
5289          * this AP, including verification of basic rates (mandatory) */
5290         if (!ipw_compatible_rates(priv, network, &rates)) {
5291                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5292                                 "because configured rate mask excludes "
5293                                 "AP mandatory rate.\n",
5294                                 escape_essid(network->ssid, network->ssid_len),
5295                                 MAC_ARG(network->bssid));
5296                 return 0;
5297         }
5298
5299         if (rates.num_rates == 0) {
5300                 IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' excluded "
5301                                 "because of no compatible rates.\n",
5302                                 escape_essid(network->ssid, network->ssid_len),
5303                                 MAC_ARG(network->bssid));
5304                 return 0;
5305         }
5306
5307         /* TODO: Perform any further minimal comparititive tests.  We do not
5308          * want to put too much policy logic here; intelligent scan selection
5309          * should occur within a generic IEEE 802.11 user space tool.  */
5310
5311         /* Set up 'new' AP to this network */
5312         ipw_copy_rates(&match->rates, &rates);
5313         match->network = network;
5314         IPW_DEBUG_MERGE("Network '%s (" MAC_FMT ")' is a viable match.\n",
5315                         escape_essid(network->ssid, network->ssid_len),
5316                         MAC_ARG(network->bssid));
5317
5318         return 1;
5319 }
5320
5321 static void ipw_merge_adhoc_network(void *data)
5322 {
5323         struct ipw_priv *priv = data;
5324         struct ieee80211_network *network = NULL;
5325         struct ipw_network_match match = {
5326                 .network = priv->assoc_network
5327         };
5328
5329         if ((priv->status & STATUS_ASSOCIATED) &&
5330             (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5331                 /* First pass through ROAM process -- look for a better
5332                  * network */
5333                 unsigned long flags;
5334
5335                 spin_lock_irqsave(&priv->ieee->lock, flags);
5336                 list_for_each_entry(network, &priv->ieee->network_list, list) {
5337                         if (network != priv->assoc_network)
5338                                 ipw_find_adhoc_network(priv, &match, network,
5339                                                        1);
5340                 }
5341                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5342
5343                 if (match.network == priv->assoc_network) {
5344                         IPW_DEBUG_MERGE("No better ADHOC in this network to "
5345                                         "merge to.\n");
5346                         return;
5347                 }
5348
5349                 mutex_lock(&priv->mutex);
5350                 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5351                         IPW_DEBUG_MERGE("remove network %s\n",
5352                                         escape_essid(priv->essid,
5353                                                      priv->essid_len));
5354                         ipw_remove_current_network(priv);
5355                 }
5356
5357                 ipw_disassociate(priv);
5358                 priv->assoc_network = match.network;
5359                 mutex_unlock(&priv->mutex);
5360                 return;
5361         }
5362 }
5363
5364 static int ipw_best_network(struct ipw_priv *priv,
5365                             struct ipw_network_match *match,
5366                             struct ieee80211_network *network, int roaming)
5367 {
5368         struct ipw_supported_rates rates;
5369
5370         /* Verify that this network's capability is compatible with the
5371          * current mode (AdHoc or Infrastructure) */
5372         if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5373              !(network->capability & WLAN_CAPABILITY_ESS)) ||
5374             (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5375              !(network->capability & WLAN_CAPABILITY_IBSS))) {
5376                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded due to "
5377                                 "capability mismatch.\n",
5378                                 escape_essid(network->ssid, network->ssid_len),
5379                                 MAC_ARG(network->bssid));
5380                 return 0;
5381         }
5382
5383         /* If we do not have an ESSID for this AP, we can not associate with
5384          * it */
5385         if (network->flags & NETWORK_EMPTY_ESSID) {
5386                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5387                                 "because of hidden ESSID.\n",
5388                                 escape_essid(network->ssid, network->ssid_len),
5389                                 MAC_ARG(network->bssid));
5390                 return 0;
5391         }
5392
5393         if (unlikely(roaming)) {
5394                 /* If we are roaming, then ensure check if this is a valid
5395                  * network to try and roam to */
5396                 if ((network->ssid_len != match->network->ssid_len) ||
5397                     memcmp(network->ssid, match->network->ssid,
5398                            network->ssid_len)) {
5399                         IPW_DEBUG_ASSOC("Netowrk '%s (" MAC_FMT ")' excluded "
5400                                         "because of non-network ESSID.\n",
5401                                         escape_essid(network->ssid,
5402                                                      network->ssid_len),
5403                                         MAC_ARG(network->bssid));
5404                         return 0;
5405                 }
5406         } else {
5407                 /* If an ESSID has been configured then compare the broadcast
5408                  * ESSID to ours */
5409                 if ((priv->config & CFG_STATIC_ESSID) &&
5410                     ((network->ssid_len != priv->essid_len) ||
5411                      memcmp(network->ssid, priv->essid,
5412                             min(network->ssid_len, priv->essid_len)))) {
5413                         char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5414                         strncpy(escaped,
5415                                 escape_essid(network->ssid, network->ssid_len),
5416                                 sizeof(escaped));
5417                         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5418                                         "because of ESSID mismatch: '%s'.\n",
5419                                         escaped, MAC_ARG(network->bssid),
5420                                         escape_essid(priv->essid,
5421                                                      priv->essid_len));
5422                         return 0;
5423                 }
5424         }
5425
5426         /* If the old network rate is better than this one, don't bother
5427          * testing everything else. */
5428         if (match->network && match->network->stats.rssi > network->stats.rssi) {
5429                 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5430                 strncpy(escaped,
5431                         escape_essid(network->ssid, network->ssid_len),
5432                         sizeof(escaped));
5433                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded because "
5434                                 "'%s (" MAC_FMT ")' has a stronger signal.\n",
5435                                 escaped, MAC_ARG(network->bssid),
5436                                 escape_essid(match->network->ssid,
5437                                              match->network->ssid_len),
5438                                 MAC_ARG(match->network->bssid));
5439                 return 0;
5440         }
5441
5442         /* If this network has already had an association attempt within the
5443          * last 3 seconds, do not try and associate again... */
5444         if (network->last_associate &&
5445             time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5446                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5447                                 "because of storming (%ums since last "
5448                                 "assoc attempt).\n",
5449                                 escape_essid(network->ssid, network->ssid_len),
5450                                 MAC_ARG(network->bssid),
5451                                 jiffies_to_msecs(jiffies -
5452                                                  network->last_associate));
5453                 return 0;
5454         }
5455
5456         /* Now go through and see if the requested network is valid... */
5457         if (priv->ieee->scan_age != 0 &&
5458             time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5459                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5460                                 "because of age: %ums.\n",
5461                                 escape_essid(network->ssid, network->ssid_len),
5462                                 MAC_ARG(network->bssid),
5463                                 jiffies_to_msecs(jiffies -
5464                                                  network->last_scanned));
5465                 return 0;
5466         }
5467
5468         if ((priv->config & CFG_STATIC_CHANNEL) &&
5469             (network->channel != priv->channel)) {
5470                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5471                                 "because of channel mismatch: %d != %d.\n",
5472                                 escape_essid(network->ssid, network->ssid_len),
5473                                 MAC_ARG(network->bssid),
5474                                 network->channel, priv->channel);
5475                 return 0;
5476         }
5477
5478         /* Verify privacy compatability */
5479         if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5480             ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5481                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5482                                 "because of privacy mismatch: %s != %s.\n",
5483                                 escape_essid(network->ssid, network->ssid_len),
5484                                 MAC_ARG(network->bssid),
5485                                 priv->capability & CAP_PRIVACY_ON ? "on" :
5486                                 "off",
5487                                 network->capability &
5488                                 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5489                 return 0;
5490         }
5491
5492         if ((priv->config & CFG_STATIC_BSSID) &&
5493             memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5494                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5495                                 "because of BSSID mismatch: " MAC_FMT ".\n",
5496                                 escape_essid(network->ssid, network->ssid_len),
5497                                 MAC_ARG(network->bssid), MAC_ARG(priv->bssid));
5498                 return 0;
5499         }
5500
5501         /* Filter out any incompatible freq / mode combinations */
5502         if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5503                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5504                                 "because of invalid frequency/mode "
5505                                 "combination.\n",
5506                                 escape_essid(network->ssid, network->ssid_len),
5507                                 MAC_ARG(network->bssid));
5508                 return 0;
5509         }
5510
5511         /* Filter out invalid channel in current GEO */
5512         if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5513                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5514                                 "because of invalid channel in current GEO\n",
5515                                 escape_essid(network->ssid, network->ssid_len),
5516                                 MAC_ARG(network->bssid));
5517                 return 0;
5518         }
5519
5520         /* Ensure that the rates supported by the driver are compatible with
5521          * this AP, including verification of basic rates (mandatory) */
5522         if (!ipw_compatible_rates(priv, network, &rates)) {
5523                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5524                                 "because configured rate mask excludes "
5525                                 "AP mandatory rate.\n",
5526                                 escape_essid(network->ssid, network->ssid_len),
5527                                 MAC_ARG(network->bssid));
5528                 return 0;
5529         }
5530
5531         if (rates.num_rates == 0) {
5532                 IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' excluded "
5533                                 "because of no compatible rates.\n",
5534                                 escape_essid(network->ssid, network->ssid_len),
5535                                 MAC_ARG(network->bssid));
5536                 return 0;
5537         }
5538
5539         /* TODO: Perform any further minimal comparititive tests.  We do not
5540          * want to put too much policy logic here; intelligent scan selection
5541          * should occur within a generic IEEE 802.11 user space tool.  */
5542
5543         /* Set up 'new' AP to this network */
5544         ipw_copy_rates(&match->rates, &rates);
5545         match->network = network;
5546
5547         IPW_DEBUG_ASSOC("Network '%s (" MAC_FMT ")' is a viable match.\n",
5548                         escape_essid(network->ssid, network->ssid_len),
5549                         MAC_ARG(network->bssid));
5550
5551         return 1;
5552 }
5553
5554 static void ipw_adhoc_create(struct ipw_priv *priv,
5555                              struct ieee80211_network *network)
5556 {
5557         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5558         int i;
5559
5560         /*
5561          * For the purposes of scanning, we can set our wireless mode
5562          * to trigger scans across combinations of bands, but when it
5563          * comes to creating a new ad-hoc network, we have tell the FW
5564          * exactly which band to use.
5565          *
5566          * We also have the possibility of an invalid channel for the
5567          * chossen band.  Attempting to create a new ad-hoc network
5568          * with an invalid channel for wireless mode will trigger a
5569          * FW fatal error.
5570          *
5571          */
5572         switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5573         case IEEE80211_52GHZ_BAND:
5574                 network->mode = IEEE_A;
5575                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5576                 if (i == -1)
5577                         BUG();
5578                 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5579                         IPW_WARNING("Overriding invalid channel\n");
5580                         priv->channel = geo->a[0].channel;
5581                 }
5582                 break;
5583
5584         case IEEE80211_24GHZ_BAND:
5585                 if (priv->ieee->mode & IEEE_G)
5586                         network->mode = IEEE_G;
5587                 else
5588                         network->mode = IEEE_B;
5589                 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5590                 if (i == -1)
5591                         BUG();
5592                 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5593                         IPW_WARNING("Overriding invalid channel\n");
5594                         priv->channel = geo->bg[0].channel;
5595                 }
5596                 break;
5597
5598         default:
5599                 IPW_WARNING("Overriding invalid channel\n");
5600                 if (priv->ieee->mode & IEEE_A) {
5601                         network->mode = IEEE_A;
5602                         priv->channel = geo->a[0].channel;
5603                 } else if (priv->ieee->mode & IEEE_G) {
5604                         network->mode = IEEE_G;
5605                         priv->channel = geo->bg[0].channel;
5606                 } else {
5607                         network->mode = IEEE_B;
5608                         priv->channel = geo->bg[0].channel;
5609                 }
5610                 break;
5611         }
5612
5613         network->channel = priv->channel;
5614         priv->config |= CFG_ADHOC_PERSIST;
5615         ipw_create_bssid(priv, network->bssid);
5616         network->ssid_len = priv->essid_len;
5617         memcpy(network->ssid, priv->essid, priv->essid_len);
5618         memset(&network->stats, 0, sizeof(network->stats));
5619         network->capability = WLAN_CAPABILITY_IBSS;
5620         if (!(priv->config & CFG_PREAMBLE_LONG))
5621                 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5622         if (priv->capability & CAP_PRIVACY_ON)
5623                 network->capability |= WLAN_CAPABILITY_PRIVACY;
5624         network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5625         memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5626         network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5627         memcpy(network->rates_ex,
5628                &priv->rates.supported_rates[network->rates_len],
5629                network->rates_ex_len);
5630         network->last_scanned = 0;
5631         network->flags = 0;
5632         network->last_associate = 0;
5633         network->time_stamp[0] = 0;
5634         network->time_stamp[1] = 0;
5635         network->beacon_interval = 100; /* Default */
5636         network->listen_interval = 10;  /* Default */
5637         network->atim_window = 0;       /* Default */
5638         network->wpa_ie_len = 0;
5639         network->rsn_ie_len = 0;
5640 }
5641
5642 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5643 {
5644         struct ipw_tgi_tx_key key;
5645
5646         if (!(priv->ieee->sec.flags & (1 << index)))
5647                 return;
5648
5649         key.key_id = index;
5650         memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5651         key.security_type = type;
5652         key.station_index = 0;  /* always 0 for BSS */
5653         key.flags = 0;
5654         /* 0 for new key; previous value of counter (after fatal error) */
5655         key.tx_counter[0] = 0;
5656         key.tx_counter[1] = 0;
5657
5658         ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5659 }
5660
5661 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5662 {
5663         struct ipw_wep_key key;
5664         int i;
5665
5666         key.cmd_id = DINO_CMD_WEP_KEY;
5667         key.seq_num = 0;
5668
5669         /* Note: AES keys cannot be set for multiple times.
5670          * Only set it at the first time. */
5671         for (i = 0; i < 4; i++) {
5672                 key.key_index = i | type;
5673                 if (!(priv->ieee->sec.flags & (1 << i))) {
5674                         key.key_size = 0;
5675                         continue;
5676                 }
5677
5678                 key.key_size = priv->ieee->sec.key_sizes[i];
5679                 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5680
5681                 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5682         }
5683 }
5684
5685 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5686 {
5687         if (priv->ieee->host_encrypt)
5688                 return;
5689
5690         switch (level) {
5691         case SEC_LEVEL_3:
5692                 priv->sys_config.disable_unicast_decryption = 0;
5693                 priv->ieee->host_decrypt = 0;
5694                 break;
5695         case SEC_LEVEL_2:
5696                 priv->sys_config.disable_unicast_decryption = 1;
5697                 priv->ieee->host_decrypt = 1;
5698                 break;
5699         case SEC_LEVEL_1:
5700                 priv->sys_config.disable_unicast_decryption = 0;
5701                 priv->ieee->host_decrypt = 0;
5702                 break;
5703         case SEC_LEVEL_0:
5704                 priv->sys_config.disable_unicast_decryption = 1;
5705                 break;
5706         default:
5707                 break;
5708         }
5709 }
5710
5711 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5712 {
5713         if (priv->ieee->host_encrypt)
5714                 return;
5715
5716         switch (level) {
5717         case SEC_LEVEL_3:
5718                 priv->sys_config.disable_multicast_decryption = 0;
5719                 break;
5720         case SEC_LEVEL_2:
5721                 priv->sys_config.disable_multicast_decryption = 1;
5722                 break;
5723         case SEC_LEVEL_1:
5724                 priv->sys_config.disable_multicast_decryption = 0;
5725                 break;
5726         case SEC_LEVEL_0:
5727                 priv->sys_config.disable_multicast_decryption = 1;
5728                 break;
5729         default:
5730                 break;
5731         }
5732 }
5733
5734 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
5735 {
5736         switch (priv->ieee->sec.level) {
5737         case SEC_LEVEL_3:
5738                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5739                         ipw_send_tgi_tx_key(priv,
5740                                             DCT_FLAG_EXT_SECURITY_CCM,
5741                                             priv->ieee->sec.active_key);
5742
5743                 if (!priv->ieee->host_mc_decrypt)
5744                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
5745                 break;
5746         case SEC_LEVEL_2:
5747                 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
5748                         ipw_send_tgi_tx_key(priv,
5749                                             DCT_FLAG_EXT_SECURITY_TKIP,
5750                                             priv->ieee->sec.active_key);
5751                 break;
5752         case SEC_LEVEL_1:
5753                 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
5754                 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
5755                 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
5756                 break;
5757         case SEC_LEVEL_0:
5758         default:
5759                 break;
5760         }
5761 }
5762
5763 static void ipw_adhoc_check(void *data)
5764 {
5765         struct ipw_priv *priv = data;
5766
5767         if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
5768             !(priv->config & CFG_ADHOC_PERSIST)) {
5769                 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
5770                           IPW_DL_STATE | IPW_DL_ASSOC,
5771                           "Missed beacon: %d - disassociate\n",
5772                           priv->missed_adhoc_beacons);
5773                 ipw_remove_current_network(priv);
5774                 ipw_disassociate(priv);
5775                 return;
5776         }
5777
5778         queue_delayed_work(priv->workqueue, &priv->adhoc_check,
5779                            priv->assoc_request.beacon_interval);
5780 }
5781
5782 static void ipw_bg_adhoc_check(void *data)
5783 {
5784         struct ipw_priv *priv = data;
5785         mutex_lock(&priv->mutex);
5786         ipw_adhoc_check(data);
5787         mutex_unlock(&priv->mutex);
5788 }
5789
5790 #ifdef CONFIG_IPW2200_DEBUG
5791 static void ipw_debug_config(struct ipw_priv *priv)
5792 {
5793         IPW_DEBUG_INFO("Scan completed, no valid APs matched "
5794                        "[CFG 0x%08X]\n", priv->config);
5795         if (priv->config & CFG_STATIC_CHANNEL)
5796                 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
5797         else
5798                 IPW_DEBUG_INFO("Channel unlocked.\n");
5799         if (priv->config & CFG_STATIC_ESSID)
5800                 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
5801                                escape_essid(priv->essid, priv->essid_len));
5802         else
5803                 IPW_DEBUG_INFO("ESSID unlocked.\n");
5804         if (priv->config & CFG_STATIC_BSSID)
5805                 IPW_DEBUG_INFO("BSSID locked to " MAC_FMT "\n",
5806                                MAC_ARG(priv->bssid));
5807         else
5808                 IPW_DEBUG_INFO("BSSID unlocked.\n");
5809         if (priv->capability & CAP_PRIVACY_ON)
5810                 IPW_DEBUG_INFO("PRIVACY on\n");
5811         else
5812                 IPW_DEBUG_INFO("PRIVACY off\n");
5813         IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
5814 }
5815 #else
5816 #define ipw_debug_config(x) do {} while (0)
5817 #endif
5818
5819 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
5820 {
5821         /* TODO: Verify that this works... */
5822         struct ipw_fixed_rate fr = {
5823                 .tx_rates = priv->rates_mask
5824         };
5825         u32 reg;
5826         u16 mask = 0;
5827
5828         /* Identify 'current FW band' and match it with the fixed
5829          * Tx rates */
5830
5831         switch (priv->ieee->freq_band) {
5832         case IEEE80211_52GHZ_BAND:      /* A only */
5833                 /* IEEE_A */
5834                 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
5835                         /* Invalid fixed rate mask */
5836                         IPW_DEBUG_WX
5837                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5838                         fr.tx_rates = 0;
5839                         break;
5840                 }
5841
5842                 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
5843                 break;
5844
5845         default:                /* 2.4Ghz or Mixed */
5846                 /* IEEE_B */
5847                 if (mode == IEEE_B) {
5848                         if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
5849                                 /* Invalid fixed rate mask */
5850                                 IPW_DEBUG_WX
5851                                     ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5852                                 fr.tx_rates = 0;
5853                         }
5854                         break;
5855                 }
5856
5857                 /* IEEE_G */
5858                 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
5859                                     IEEE80211_OFDM_RATES_MASK)) {
5860                         /* Invalid fixed rate mask */
5861                         IPW_DEBUG_WX
5862                             ("invalid fixed rate mask in ipw_set_fixed_rate\n");
5863                         fr.tx_rates = 0;
5864                         break;
5865                 }
5866
5867                 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
5868                         mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
5869                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
5870                 }
5871
5872                 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
5873                         mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
5874                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
5875                 }
5876
5877                 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
5878                         mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
5879                         fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
5880                 }
5881
5882                 fr.tx_rates |= mask;
5883                 break;
5884         }
5885
5886         reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
5887         ipw_write_reg32(priv, reg, *(u32 *) & fr);
5888 }
5889
5890 static void ipw_abort_scan(struct ipw_priv *priv)
5891 {
5892         int err;
5893
5894         if (priv->status & STATUS_SCAN_ABORTING) {
5895                 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
5896                 return;
5897         }
5898         priv->status |= STATUS_SCAN_ABORTING;
5899
5900         err = ipw_send_scan_abort(priv);
5901         if (err)
5902                 IPW_DEBUG_HC("Request to abort scan failed.\n");
5903 }
5904
5905 static void ipw_add_scan_channels(struct ipw_priv *priv,
5906                                   struct ipw_scan_request_ext *scan,
5907                                   int scan_type)
5908 {
5909         int channel_index = 0;
5910         const struct ieee80211_geo *geo;
5911         int i;
5912
5913         geo = ieee80211_get_geo(priv->ieee);
5914
5915         if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
5916                 int start = channel_index;
5917                 for (i = 0; i < geo->a_channels; i++) {
5918                         if ((priv->status & STATUS_ASSOCIATED) &&
5919                             geo->a[i].channel == priv->channel)
5920                                 continue;
5921                         channel_index++;
5922                         scan->channels_list[channel_index] = geo->a[i].channel;
5923                         ipw_set_scan_type(scan, channel_index,
5924                                           geo->a[i].
5925                                           flags & IEEE80211_CH_PASSIVE_ONLY ?
5926                                           IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
5927                                           scan_type);
5928                 }
5929
5930                 if (start != channel_index) {
5931                         scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
5932                             (channel_index - start);
5933                         channel_index++;
5934                 }
5935         }
5936
5937         if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
5938                 int start = channel_index;
5939                 if (priv->config & CFG_SPEED_SCAN) {
5940                         int index;
5941                         u8 channels[IEEE80211_24GHZ_CHANNELS] = {
5942                                 /* nop out the list */
5943                                 [0] = 0
5944                         };
5945
5946                         u8 channel;
5947                         while (channel_index < IPW_SCAN_CHANNELS) {
5948                                 channel =
5949                                     priv->speed_scan[priv->speed_scan_pos];
5950                                 if (channel == 0) {
5951                                         priv->speed_scan_pos = 0;
5952                                         channel = priv->speed_scan[0];
5953                                 }
5954                                 if ((priv->status & STATUS_ASSOCIATED) &&
5955                                     channel == priv->channel) {
5956                                         priv->speed_scan_pos++;
5957                                         continue;
5958                                 }
5959
5960                                 /* If this channel has already been
5961                                  * added in scan, break from loop
5962                                  * and this will be the first channel
5963                                  * in the next scan.
5964                                  */
5965                                 if (channels[channel - 1] != 0)
5966                                         break;
5967
5968                                 channels[channel - 1] = 1;
5969                                 priv->speed_scan_pos++;
5970                                 channel_index++;
5971                                 scan->channels_list[channel_index] = channel;
5972                                 index =
5973                                     ieee80211_channel_to_index(priv->ieee, channel);
5974                                 ipw_set_scan_type(scan, channel_index,
5975                                                   geo->bg[index].
5976                                                   flags &
5977                                                   IEEE80211_CH_PASSIVE_ONLY ?
5978                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
5979                                                   : scan_type);
5980                         }
5981                 } else {
5982                         for (i = 0; i < geo->bg_channels; i++) {
5983                                 if ((priv->status & STATUS_ASSOCIATED) &&
5984                                     geo->bg[i].channel == priv->channel)
5985                                         continue;
5986                                 channel_index++;
5987                                 scan->channels_list[channel_index] =
5988                                     geo->bg[i].channel;
5989                                 ipw_set_scan_type(scan, channel_index,
5990                                                   geo->bg[i].
5991                                                   flags &
5992                                                   IEEE80211_CH_PASSIVE_ONLY ?
5993                                                   IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
5994                                                   : scan_type);
5995                         }
5996                 }
5997
5998                 if (start != channel_index) {
5999                         scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6000                             (channel_index - start);
6001                 }
6002         }
6003 }
6004
6005 static int ipw_request_scan(struct ipw_priv *priv)
6006 {
6007         struct ipw_scan_request_ext scan;
6008         int err = 0, scan_type;
6009
6010         if (!(priv->status & STATUS_INIT) ||
6011             (priv->status & STATUS_EXIT_PENDING))
6012                 return 0;
6013
6014         mutex_lock(&priv->mutex);
6015
6016         if (priv->status & STATUS_SCANNING) {
6017                 IPW_DEBUG_HC("Concurrent scan requested.  Ignoring.\n");
6018                 priv->status |= STATUS_SCAN_PENDING;
6019                 goto done;
6020         }
6021
6022         if (!(priv->status & STATUS_SCAN_FORCED) &&
6023             priv->status & STATUS_SCAN_ABORTING) {
6024                 IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6025                 priv->status |= STATUS_SCAN_PENDING;
6026                 goto done;
6027         }
6028
6029         if (priv->status & STATUS_RF_KILL_MASK) {
6030                 IPW_DEBUG_HC("Aborting scan due to RF Kill activation\n");
6031                 priv->status |= STATUS_SCAN_PENDING;
6032                 goto done;
6033         }
6034
6035         memset(&scan, 0, sizeof(scan));
6036
6037         if (priv->config & CFG_SPEED_SCAN)
6038                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6039                     cpu_to_le16(30);
6040         else
6041                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6042                     cpu_to_le16(20);
6043
6044         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6045             cpu_to_le16(20);
6046         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
6047
6048         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6049
6050 #ifdef CONFIG_IPW2200_MONITOR
6051         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6052                 u8 channel;
6053                 u8 band = 0;
6054
6055                 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6056                 case IEEE80211_52GHZ_BAND:
6057                         band = (u8) (IPW_A_MODE << 6) | 1;
6058                         channel = priv->channel;
6059                         break;
6060
6061                 case IEEE80211_24GHZ_BAND:
6062                         band = (u8) (IPW_B_MODE << 6) | 1;
6063                         channel = priv->channel;
6064                         break;
6065
6066                 default:
6067                         band = (u8) (IPW_B_MODE << 6) | 1;
6068                         channel = 9;
6069                         break;
6070                 }
6071
6072                 scan.channels_list[0] = band;
6073                 scan.channels_list[1] = channel;
6074                 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6075
6076                 /* NOTE:  The card will sit on this channel for this time
6077                  * period.  Scan aborts are timing sensitive and frequently
6078                  * result in firmware restarts.  As such, it is best to
6079                  * set a small dwell_time here and just keep re-issuing
6080                  * scans.  Otherwise fast channel hopping will not actually
6081                  * hop channels.
6082                  *
6083                  * TODO: Move SPEED SCAN support to all modes and bands */
6084                 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6085                     cpu_to_le16(2000);
6086         } else {
6087 #endif                          /* CONFIG_IPW2200_MONITOR */
6088                 /* If we are roaming, then make this a directed scan for the
6089                  * current network.  Otherwise, ensure that every other scan
6090                  * is a fast channel hop scan */
6091                 if ((priv->status & STATUS_ROAMING)
6092                     || (!(priv->status & STATUS_ASSOCIATED)
6093                         && (priv->config & CFG_STATIC_ESSID)
6094                         && (le32_to_cpu(scan.full_scan_index) % 2))) {
6095                         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6096                         if (err) {
6097                                 IPW_DEBUG_HC("Attempt to send SSID command "
6098                                              "failed.\n");
6099                                 goto done;
6100                         }
6101
6102                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6103                 } else
6104                         scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6105
6106                 ipw_add_scan_channels(priv, &scan, scan_type);
6107 #ifdef CONFIG_IPW2200_MONITOR
6108         }
6109 #endif
6110
6111         err = ipw_send_scan_request_ext(priv, &scan);
6112         if (err) {
6113                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6114                 goto done;
6115         }
6116
6117         priv->status |= STATUS_SCANNING;
6118         priv->status &= ~STATUS_SCAN_PENDING;
6119         queue_delayed_work(priv->workqueue, &priv->scan_check,
6120                            IPW_SCAN_CHECK_WATCHDOG);
6121       done:
6122         mutex_unlock(&priv->mutex);
6123         return err;
6124 }
6125
6126 static void ipw_bg_abort_scan(void *data)
6127 {
6128         struct ipw_priv *priv = data;
6129         mutex_lock(&priv->mutex);
6130         ipw_abort_scan(data);
6131         mutex_unlock(&priv->mutex);
6132 }
6133
6134 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6135 {
6136         /* This is called when wpa_supplicant loads and closes the driver
6137          * interface. */
6138         priv->ieee->wpa_enabled = value;
6139         return 0;
6140 }
6141
6142 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6143 {
6144         struct ieee80211_device *ieee = priv->ieee;
6145         struct ieee80211_security sec = {
6146                 .flags = SEC_AUTH_MODE,
6147         };
6148         int ret = 0;
6149
6150         if (value & IW_AUTH_ALG_SHARED_KEY) {
6151                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6152                 ieee->open_wep = 0;
6153         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6154                 sec.auth_mode = WLAN_AUTH_OPEN;
6155                 ieee->open_wep = 1;
6156         } else if (value & IW_AUTH_ALG_LEAP) {
6157                 sec.auth_mode = WLAN_AUTH_LEAP;
6158                 ieee->open_wep = 1;
6159         } else
6160                 return -EINVAL;
6161
6162         if (ieee->set_security)
6163                 ieee->set_security(ieee->dev, &sec);
6164         else
6165                 ret = -EOPNOTSUPP;
6166
6167         return ret;
6168 }
6169
6170 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6171                                 int wpa_ie_len)
6172 {
6173         /* make sure WPA is enabled */
6174         ipw_wpa_enable(priv, 1);
6175
6176         ipw_disassociate(priv);
6177 }
6178
6179 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6180                             char *capabilities, int length)
6181 {
6182         IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6183
6184         return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6185                                 capabilities);
6186 }
6187
6188 /*
6189  * WE-18 support
6190  */
6191
6192 /* SIOCSIWGENIE */
6193 static int ipw_wx_set_genie(struct net_device *dev,
6194                             struct iw_request_info *info,
6195                             union iwreq_data *wrqu, char *extra)
6196 {
6197         struct ipw_priv *priv = ieee80211_priv(dev);
6198         struct ieee80211_device *ieee = priv->ieee;
6199         u8 *buf;
6200         int err = 0;
6201
6202         if (wrqu->data.length > MAX_WPA_IE_LEN ||
6203             (wrqu->data.length && extra == NULL))
6204                 return -EINVAL;
6205
6206         //mutex_lock(&priv->mutex);
6207
6208         //if (!ieee->wpa_enabled) {
6209         //      err = -EOPNOTSUPP;
6210         //      goto out;
6211         //}
6212
6213         if (wrqu->data.length) {
6214                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6215                 if (buf == NULL) {
6216                         err = -ENOMEM;
6217                         goto out;
6218                 }
6219
6220                 memcpy(buf, extra, wrqu->data.length);
6221                 kfree(ieee->wpa_ie);
6222                 ieee->wpa_ie = buf;
6223                 ieee->wpa_ie_len = wrqu->data.length;
6224         } else {
6225                 kfree(ieee->wpa_ie);
6226                 ieee->wpa_ie = NULL;
6227                 ieee->wpa_ie_len = 0;
6228         }
6229
6230         ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6231       out:
6232         //mutex_unlock(&priv->mutex);
6233         return err;
6234 }
6235
6236 /* SIOCGIWGENIE */
6237 static int ipw_wx_get_genie(struct net_device *dev,
6238                             struct iw_request_info *info,
6239                             union iwreq_data *wrqu, char *extra)
6240 {
6241         struct ipw_priv *priv = ieee80211_priv(dev);
6242         struct ieee80211_device *ieee = priv->ieee;
6243         int err = 0;
6244
6245         //mutex_lock(&priv->mutex);
6246
6247         //if (!ieee->wpa_enabled) {
6248         //      err = -EOPNOTSUPP;
6249         //      goto out;
6250         //}
6251
6252         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6253                 wrqu->data.length = 0;
6254                 goto out;
6255         }
6256
6257         if (wrqu->data.length < ieee->wpa_ie_len) {
6258                 err = -E2BIG;
6259                 goto out;
6260         }
6261
6262         wrqu->data.length = ieee->wpa_ie_len;
6263         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6264
6265       out:
6266         //mutex_unlock(&priv->mutex);
6267         return err;
6268 }
6269
6270 static int wext_cipher2level(int cipher)
6271 {
6272         switch (cipher) {
6273         case IW_AUTH_CIPHER_NONE:
6274                 return SEC_LEVEL_0;
6275         case IW_AUTH_CIPHER_WEP40:
6276         case IW_AUTH_CIPHER_WEP104:
6277                 return SEC_LEVEL_1;
6278         case IW_AUTH_CIPHER_TKIP:
6279                 return SEC_LEVEL_2;
6280         case IW_AUTH_CIPHER_CCMP:
6281                 return SEC_LEVEL_3;
6282         default:
6283                 return -1;
6284         }
6285 }
6286
6287 /* SIOCSIWAUTH */
6288 static int ipw_wx_set_auth(struct net_device *dev,
6289                            struct iw_request_info *info,
6290                            union iwreq_data *wrqu, char *extra)
6291 {
6292         struct ipw_priv *priv = ieee80211_priv(dev);
6293         struct ieee80211_device *ieee = priv->ieee;
6294         struct iw_param *param = &wrqu->param;
6295         struct ieee80211_crypt_data *crypt;
6296         unsigned long flags;
6297         int ret = 0;
6298
6299         switch (param->flags & IW_AUTH_INDEX) {
6300         case IW_AUTH_WPA_VERSION:
6301                 break;
6302         case IW_AUTH_CIPHER_PAIRWISE:
6303                 ipw_set_hw_decrypt_unicast(priv,
6304                                            wext_cipher2level(param->value));
6305                 break;
6306         case IW_AUTH_CIPHER_GROUP:
6307                 ipw_set_hw_decrypt_multicast(priv,
6308                                              wext_cipher2level(param->value));
6309                 break;
6310         case IW_AUTH_KEY_MGMT:
6311                 /*
6312                  * ipw2200 does not use these parameters
6313                  */
6314                 break;
6315
6316         case IW_AUTH_TKIP_COUNTERMEASURES:
6317                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6318                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6319                         break;
6320
6321                 flags = crypt->ops->get_flags(crypt->priv);
6322
6323                 if (param->value)
6324                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6325                 else
6326                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6327
6328                 crypt->ops->set_flags(flags, crypt->priv);
6329
6330                 break;
6331
6332         case IW_AUTH_DROP_UNENCRYPTED:{
6333                         /* HACK:
6334                          *
6335                          * wpa_supplicant calls set_wpa_enabled when the driver
6336                          * is loaded and unloaded, regardless of if WPA is being
6337                          * used.  No other calls are made which can be used to
6338                          * determine if encryption will be used or not prior to
6339                          * association being expected.  If encryption is not being
6340                          * used, drop_unencrypted is set to false, else true -- we
6341                          * can use this to determine if the CAP_PRIVACY_ON bit should
6342                          * be set.
6343                          */
6344                         struct ieee80211_security sec = {
6345                                 .flags = SEC_ENABLED,
6346                                 .enabled = param->value,
6347                         };
6348                         priv->ieee->drop_unencrypted = param->value;
6349                         /* We only change SEC_LEVEL for open mode. Others
6350                          * are set by ipw_wpa_set_encryption.
6351                          */
6352                         if (!param->value) {
6353                                 sec.flags |= SEC_LEVEL;
6354                                 sec.level = SEC_LEVEL_0;
6355                         } else {
6356                                 sec.flags |= SEC_LEVEL;
6357                                 sec.level = SEC_LEVEL_1;
6358                         }
6359                         if (priv->ieee->set_security)
6360                                 priv->ieee->set_security(priv->ieee->dev, &sec);
6361                         break;
6362                 }
6363
6364         case IW_AUTH_80211_AUTH_ALG:
6365                 ret = ipw_wpa_set_auth_algs(priv, param->value);
6366                 break;
6367
6368         case IW_AUTH_WPA_ENABLED:
6369                 ret = ipw_wpa_enable(priv, param->value);
6370                 break;
6371
6372         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6373                 ieee->ieee802_1x = param->value;
6374                 break;
6375
6376                 //case IW_AUTH_ROAMING_CONTROL:
6377         case IW_AUTH_PRIVACY_INVOKED:
6378                 ieee->privacy_invoked = param->value;
6379                 break;
6380
6381         default:
6382                 return -EOPNOTSUPP;
6383         }
6384         return ret;
6385 }
6386
6387 /* SIOCGIWAUTH */
6388 static int ipw_wx_get_auth(struct net_device *dev,
6389                            struct iw_request_info *info,
6390                            union iwreq_data *wrqu, char *extra)
6391 {
6392         struct ipw_priv *priv = ieee80211_priv(dev);
6393         struct ieee80211_device *ieee = priv->ieee;
6394         struct ieee80211_crypt_data *crypt;
6395         struct iw_param *param = &wrqu->param;
6396         int ret = 0;
6397
6398         switch (param->flags & IW_AUTH_INDEX) {
6399         case IW_AUTH_WPA_VERSION:
6400         case IW_AUTH_CIPHER_PAIRWISE:
6401         case IW_AUTH_CIPHER_GROUP:
6402         case IW_AUTH_KEY_MGMT:
6403                 /*
6404                  * wpa_supplicant will control these internally
6405                  */
6406                 ret = -EOPNOTSUPP;
6407                 break;
6408
6409         case IW_AUTH_TKIP_COUNTERMEASURES:
6410                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
6411                 if (!crypt || !crypt->ops->get_flags)
6412                         break;
6413
6414                 param->value = (crypt->ops->get_flags(crypt->priv) &
6415                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6416
6417                 break;
6418
6419         case IW_AUTH_DROP_UNENCRYPTED:
6420                 param->value = ieee->drop_unencrypted;
6421                 break;
6422
6423         case IW_AUTH_80211_AUTH_ALG:
6424                 param->value = ieee->sec.auth_mode;
6425                 break;
6426
6427         case IW_AUTH_WPA_ENABLED:
6428                 param->value = ieee->wpa_enabled;
6429                 break;
6430
6431         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6432                 param->value = ieee->ieee802_1x;
6433                 break;
6434
6435         case IW_AUTH_ROAMING_CONTROL:
6436         case IW_AUTH_PRIVACY_INVOKED:
6437                 param->value = ieee->privacy_invoked;
6438                 break;
6439
6440         default:
6441                 return -EOPNOTSUPP;
6442         }
6443         return 0;
6444 }
6445
6446 /* SIOCSIWENCODEEXT */
6447 static int ipw_wx_set_encodeext(struct net_device *dev,
6448                                 struct iw_request_info *info,
6449                                 union iwreq_data *wrqu, char *extra)
6450 {
6451         struct ipw_priv *priv = ieee80211_priv(dev);
6452         struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6453
6454         if (hwcrypto) {
6455                 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6456                         /* IPW HW can't build TKIP MIC,
6457                            host decryption still needed */
6458                         if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6459                                 priv->ieee->host_mc_decrypt = 1;
6460                         else {
6461                                 priv->ieee->host_encrypt = 0;
6462                                 priv->ieee->host_encrypt_msdu = 1;
6463                                 priv->ieee->host_decrypt = 1;
6464                         }
6465                 } else {
6466                         priv->ieee->host_encrypt = 0;
6467                         priv->ieee->host_encrypt_msdu = 0;
6468                         priv->ieee->host_decrypt = 0;
6469                         priv->ieee->host_mc_decrypt = 0;
6470                 }
6471         }
6472
6473         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6474 }
6475
6476 /* SIOCGIWENCODEEXT */
6477 static int ipw_wx_get_encodeext(struct net_device *dev,
6478                                 struct iw_request_info *info,
6479                                 union iwreq_data *wrqu, char *extra)
6480 {
6481         struct ipw_priv *priv = ieee80211_priv(dev);
6482         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6483 }
6484
6485 /* SIOCSIWMLME */
6486 static int ipw_wx_set_mlme(struct net_device *dev,
6487                            struct iw_request_info *info,
6488                            union iwreq_data *wrqu, char *extra)
6489 {
6490         struct ipw_priv *priv = ieee80211_priv(dev);
6491         struct iw_mlme *mlme = (struct iw_mlme *)extra;
6492         u16 reason;
6493
6494         reason = cpu_to_le16(mlme->reason_code);
6495
6496         switch (mlme->cmd) {
6497         case IW_MLME_DEAUTH:
6498                 // silently ignore
6499                 break;
6500
6501         case IW_MLME_DISASSOC:
6502                 ipw_disassociate(priv);
6503                 break;
6504
6505         default:
6506                 return -EOPNOTSUPP;
6507         }
6508         return 0;
6509 }
6510
6511 #ifdef CONFIG_IPW_QOS
6512
6513 /* QoS */
6514 /*
6515 * get the modulation type of the current network or
6516 * the card current mode
6517 */
6518 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6519 {
6520         u8 mode = 0;
6521
6522         if (priv->status & STATUS_ASSOCIATED) {
6523                 unsigned long flags;
6524
6525                 spin_lock_irqsave(&priv->ieee->lock, flags);
6526                 mode = priv->assoc_network->mode;
6527                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6528         } else {
6529                 mode = priv->ieee->mode;
6530         }
6531         IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6532         return mode;
6533 }
6534
6535 /*
6536 * Handle management frame beacon and probe response
6537 */
6538 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6539                                          int active_network,
6540                                          struct ieee80211_network *network)
6541 {
6542         u32 size = sizeof(struct ieee80211_qos_parameters);
6543
6544         if (network->capability & WLAN_CAPABILITY_IBSS)
6545                 network->qos_data.active = network->qos_data.supported;
6546
6547         if (network->flags & NETWORK_HAS_QOS_MASK) {
6548                 if (active_network &&
6549                     (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6550                         network->qos_data.active = network->qos_data.supported;
6551
6552                 if ((network->qos_data.active == 1) && (active_network == 1) &&
6553                     (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6554                     (network->qos_data.old_param_count !=
6555                      network->qos_data.param_count)) {
6556                         network->qos_data.old_param_count =
6557                             network->qos_data.param_count;
6558                         schedule_work(&priv->qos_activate);
6559                         IPW_DEBUG_QOS("QoS parameters change call "
6560                                       "qos_activate\n");
6561                 }
6562         } else {
6563                 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6564                         memcpy(&network->qos_data.parameters,
6565                                &def_parameters_CCK, size);
6566                 else
6567                         memcpy(&network->qos_data.parameters,
6568                                &def_parameters_OFDM, size);
6569
6570                 if ((network->qos_data.active == 1) && (active_network == 1)) {
6571                         IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6572                         schedule_work(&priv->qos_activate);
6573                 }
6574
6575                 network->qos_data.active = 0;
6576                 network->qos_data.supported = 0;
6577         }
6578         if ((priv->status & STATUS_ASSOCIATED) &&
6579             (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6580                 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6581                         if ((network->capability & WLAN_CAPABILITY_IBSS) &&
6582                             !(network->flags & NETWORK_EMPTY_ESSID))
6583                                 if ((network->ssid_len ==
6584                                      priv->assoc_network->ssid_len) &&
6585                                     !memcmp(network->ssid,
6586                                             priv->assoc_network->ssid,
6587                                             network->ssid_len)) {
6588                                         queue_work(priv->workqueue,
6589                                                    &priv->merge_networks);
6590                                 }
6591         }
6592
6593         return 0;
6594 }
6595
6596 /*
6597 * This function set up the firmware to support QoS. It sends
6598 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6599 */
6600 static int ipw_qos_activate(struct ipw_priv *priv,
6601                             struct ieee80211_qos_data *qos_network_data)
6602 {
6603         int err;
6604         struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6605         struct ieee80211_qos_parameters *active_one = NULL;
6606         u32 size = sizeof(struct ieee80211_qos_parameters);
6607         u32 burst_duration;
6608         int i;
6609         u8 type;
6610
6611         type = ipw_qos_current_mode(priv);
6612
6613         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6614         memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6615         active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6616         memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6617
6618         if (qos_network_data == NULL) {
6619                 if (type == IEEE_B) {
6620                         IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6621                         active_one = &def_parameters_CCK;
6622                 } else
6623                         active_one = &def_parameters_OFDM;
6624
6625                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6626                 burst_duration = ipw_qos_get_burst_duration(priv);
6627                 for (i = 0; i < QOS_QUEUE_NUM; i++)
6628                         qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6629                             (u16) burst_duration;
6630         } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6631                 if (type == IEEE_B) {
6632                         IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6633                                       type);
6634                         if (priv->qos_data.qos_enable == 0)
6635                                 active_one = &def_parameters_CCK;
6636                         else
6637                                 active_one = priv->qos_data.def_qos_parm_CCK;
6638                 } else {
6639                         if (priv->qos_data.qos_enable == 0)
6640                                 active_one = &def_parameters_OFDM;
6641                         else
6642                                 active_one = priv->qos_data.def_qos_parm_OFDM;
6643                 }
6644                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6645         } else {
6646                 unsigned long flags;
6647                 int active;
6648
6649                 spin_lock_irqsave(&priv->ieee->lock, flags);
6650                 active_one = &(qos_network_data->parameters);
6651                 qos_network_data->old_param_count =
6652                     qos_network_data->param_count;
6653                 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6654                 active = qos_network_data->supported;
6655                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6656
6657                 if (active == 0) {
6658                         burst_duration = ipw_qos_get_burst_duration(priv);
6659                         for (i = 0; i < QOS_QUEUE_NUM; i++)
6660                                 qos_parameters[QOS_PARAM_SET_ACTIVE].
6661                                     tx_op_limit[i] = (u16) burst_duration;
6662                 }
6663         }
6664
6665         IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6666         err = ipw_send_qos_params_command(priv,
6667                                           (struct ieee80211_qos_parameters *)
6668                                           &(qos_parameters[0]));
6669         if (err)
6670                 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6671
6672         return err;
6673 }
6674
6675 /*
6676 * send IPW_CMD_WME_INFO to the firmware
6677 */
6678 static int ipw_qos_set_info_element(struct ipw_priv *priv)
6679 {
6680         int ret = 0;
6681         struct ieee80211_qos_information_element qos_info;
6682
6683         if (priv == NULL)
6684                 return -1;
6685
6686         qos_info.elementID = QOS_ELEMENT_ID;
6687         qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
6688
6689         qos_info.version = QOS_VERSION_1;
6690         qos_info.ac_info = 0;
6691
6692         memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
6693         qos_info.qui_type = QOS_OUI_TYPE;
6694         qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
6695
6696         ret = ipw_send_qos_info_command(priv, &qos_info);
6697         if (ret != 0) {
6698                 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
6699         }
6700         return ret;
6701 }
6702
6703 /*
6704 * Set the QoS parameter with the association request structure
6705 */
6706 static int ipw_qos_association(struct ipw_priv *priv,
6707                                struct ieee80211_network *network)
6708 {
6709         int err = 0;
6710         struct ieee80211_qos_data *qos_data = NULL;
6711         struct ieee80211_qos_data ibss_data = {
6712                 .supported = 1,
6713                 .active = 1,
6714         };
6715
6716         switch (priv->ieee->iw_mode) {
6717         case IW_MODE_ADHOC:
6718                 if (!(network->capability & WLAN_CAPABILITY_IBSS))
6719                         BUG();
6720
6721                 qos_data = &ibss_data;
6722                 break;
6723
6724         case IW_MODE_INFRA:
6725                 qos_data = &network->qos_data;
6726                 break;
6727
6728         default:
6729                 BUG();
6730                 break;
6731         }
6732
6733         err = ipw_qos_activate(priv, qos_data);
6734         if (err) {
6735                 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
6736                 return err;
6737         }
6738
6739         if (priv->qos_data.qos_enable && qos_data->supported) {
6740                 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
6741                 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
6742                 return ipw_qos_set_info_element(priv);
6743         }
6744
6745         return 0;
6746 }
6747
6748 /*
6749 * handling the beaconing responces. if we get different QoS setting
6750 * of the network from the the associated setting adjust the QoS
6751 * setting
6752 */
6753 static int ipw_qos_association_resp(struct ipw_priv *priv,
6754                                     struct ieee80211_network *network)
6755 {
6756         int ret = 0;
6757         unsigned long flags;
6758         u32 size = sizeof(struct ieee80211_qos_parameters);
6759         int set_qos_param = 0;
6760
6761         if ((priv == NULL) || (network == NULL) ||
6762             (priv->assoc_network == NULL))
6763                 return ret;
6764
6765         if (!(priv->status & STATUS_ASSOCIATED))
6766                 return ret;
6767
6768         if ((priv->ieee->iw_mode != IW_MODE_INFRA))
6769                 return ret;
6770
6771         spin_lock_irqsave(&priv->ieee->lock, flags);
6772         if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
6773                 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
6774                        sizeof(struct ieee80211_qos_data));
6775                 priv->assoc_network->qos_data.active = 1;
6776                 if ((network->qos_data.old_param_count !=
6777                      network->qos_data.param_count)) {
6778                         set_qos_param = 1;
6779                         network->qos_data.old_param_count =
6780                             network->qos_data.param_count;
6781                 }
6782
6783         } else {
6784                 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
6785                         memcpy(&priv->assoc_network->qos_data.parameters,
6786                                &def_parameters_CCK, size);
6787                 else
6788                         memcpy(&priv->assoc_network->qos_data.parameters,
6789                                &def_parameters_OFDM, size);
6790                 priv->assoc_network->qos_data.active = 0;
6791                 priv->assoc_network->qos_data.supported = 0;
6792                 set_qos_param = 1;
6793         }
6794
6795         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6796
6797         if (set_qos_param == 1)
6798                 schedule_work(&priv->qos_activate);
6799
6800         return ret;
6801 }
6802
6803 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
6804 {
6805         u32 ret = 0;
6806
6807         if ((priv == NULL))
6808                 return 0;
6809
6810         if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
6811                 ret = priv->qos_data.burst_duration_CCK;
6812         else
6813                 ret = priv->qos_data.burst_duration_OFDM;
6814
6815         return ret;
6816 }
6817
6818 /*
6819 * Initialize the setting of QoS global
6820 */
6821 static void ipw_qos_init(struct ipw_priv *priv, int enable,
6822                          int burst_enable, u32 burst_duration_CCK,
6823                          u32 burst_duration_OFDM)
6824 {
6825         priv->qos_data.qos_enable = enable;
6826
6827         if (priv->qos_data.qos_enable) {
6828                 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
6829                 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
6830                 IPW_DEBUG_QOS("QoS is enabled\n");
6831         } else {
6832                 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
6833                 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
6834                 IPW_DEBUG_QOS("QoS is not enabled\n");
6835         }
6836
6837         priv->qos_data.burst_enable = burst_enable;
6838
6839         if (burst_enable) {
6840                 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
6841                 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
6842         } else {
6843                 priv->qos_data.burst_duration_CCK = 0;
6844                 priv->qos_data.burst_duration_OFDM = 0;
6845         }
6846 }
6847
6848 /*
6849 * map the packet priority to the right TX Queue
6850 */
6851 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
6852 {
6853         if (priority > 7 || !priv->qos_data.qos_enable)
6854                 priority = 0;
6855
6856         return from_priority_to_tx_queue[priority] - 1;
6857 }
6858
6859 /*
6860 * add QoS parameter to the TX command
6861 */
6862 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
6863                                         u16 priority,
6864                                         struct tfd_data *tfd, u8 unicast)
6865 {
6866         int ret = 0;
6867         int tx_queue_id = 0;
6868         struct ieee80211_qos_data *qos_data = NULL;
6869         int active, supported;
6870         unsigned long flags;
6871
6872         if (!(priv->status & STATUS_ASSOCIATED))
6873                 return 0;
6874
6875         qos_data = &priv->assoc_network->qos_data;
6876
6877         spin_lock_irqsave(&priv->ieee->lock, flags);
6878
6879         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6880                 if (unicast == 0)
6881                         qos_data->active = 0;
6882                 else
6883                         qos_data->active = qos_data->supported;
6884         }
6885
6886         active = qos_data->active;
6887         supported = qos_data->supported;
6888
6889         spin_unlock_irqrestore(&priv->ieee->lock, flags);
6890
6891         IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
6892                       "unicast %d\n",
6893                       priv->qos_data.qos_enable, active, supported, unicast);
6894         if (active && priv->qos_data.qos_enable) {
6895                 ret = from_priority_to_tx_queue[priority];
6896                 tx_queue_id = ret - 1;
6897                 IPW_DEBUG_QOS("QoS packet priority is %d \n", priority);
6898                 if (priority <= 7) {
6899                         tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
6900                         tfd->tfd.tfd_26.mchdr.qos_ctrl = priority;
6901                         tfd->tfd.tfd_26.mchdr.frame_ctl |=
6902                             IEEE80211_STYPE_QOS_DATA;
6903
6904                         if (priv->qos_data.qos_no_ack_mask &
6905                             (1UL << tx_queue_id)) {
6906                                 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
6907                                 tfd->tfd.tfd_26.mchdr.qos_ctrl |=
6908                                     CTRL_QOS_NO_ACK;
6909                         }
6910                 }
6911         }
6912
6913         return ret;
6914 }
6915
6916 /*
6917 * background support to run QoS activate functionality
6918 */
6919 static void ipw_bg_qos_activate(void *data)
6920 {
6921         struct ipw_priv *priv = data;
6922
6923         if (priv == NULL)
6924                 return;
6925
6926         mutex_lock(&priv->mutex);
6927
6928         if (priv->status & STATUS_ASSOCIATED)
6929                 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
6930
6931         mutex_unlock(&priv->mutex);
6932 }
6933
6934 static int ipw_handle_probe_response(struct net_device *dev,
6935                                      struct ieee80211_probe_response *resp,
6936                                      struct ieee80211_network *network)
6937 {
6938         struct ipw_priv *priv = ieee80211_priv(dev);
6939         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6940                               (network == priv->assoc_network));
6941
6942         ipw_qos_handle_probe_response(priv, active_network, network);
6943
6944         return 0;
6945 }
6946
6947 static int ipw_handle_beacon(struct net_device *dev,
6948                              struct ieee80211_beacon *resp,
6949                              struct ieee80211_network *network)
6950 {
6951         struct ipw_priv *priv = ieee80211_priv(dev);
6952         int active_network = ((priv->status & STATUS_ASSOCIATED) &&
6953                               (network == priv->assoc_network));
6954
6955         ipw_qos_handle_probe_response(priv, active_network, network);
6956
6957         return 0;
6958 }
6959
6960 static int ipw_handle_assoc_response(struct net_device *dev,
6961                                      struct ieee80211_assoc_response *resp,
6962                                      struct ieee80211_network *network)
6963 {
6964         struct ipw_priv *priv = ieee80211_priv(dev);
6965         ipw_qos_association_resp(priv, network);
6966         return 0;
6967 }
6968
6969 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
6970                                        *qos_param)
6971 {
6972         return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
6973                                 sizeof(*qos_param) * 3, qos_param);
6974 }
6975
6976 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
6977                                      *qos_param)
6978 {
6979         return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
6980                                 qos_param);
6981 }
6982
6983 #endif                          /* CONFIG_IPW_QOS */
6984
6985 static int ipw_associate_network(struct ipw_priv *priv,
6986                                  struct ieee80211_network *network,
6987                                  struct ipw_supported_rates *rates, int roaming)
6988 {
6989         int err;
6990
6991         if (priv->config & CFG_FIXED_RATE)
6992                 ipw_set_fixed_rate(priv, network->mode);
6993
6994         if (!(priv->config & CFG_STATIC_ESSID)) {
6995                 priv->essid_len = min(network->ssid_len,
6996                                       (u8) IW_ESSID_MAX_SIZE);
6997                 memcpy(priv->essid, network->ssid, priv->essid_len);
6998         }
6999
7000         network->last_associate = jiffies;
7001
7002         memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7003         priv->assoc_request.channel = network->channel;
7004         priv->assoc_request.auth_key = 0;
7005
7006         if ((priv->capability & CAP_PRIVACY_ON) &&
7007             (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7008                 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7009                 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7010
7011                 if (priv->ieee->sec.level == SEC_LEVEL_1)
7012                         ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7013
7014         } else if ((priv->capability & CAP_PRIVACY_ON) &&
7015                    (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7016                 priv->assoc_request.auth_type = AUTH_LEAP;
7017         else
7018                 priv->assoc_request.auth_type = AUTH_OPEN;
7019
7020         if (priv->ieee->wpa_ie_len) {
7021                 priv->assoc_request.policy_support = 0x02;      /* RSN active */
7022                 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7023                                  priv->ieee->wpa_ie_len);
7024         }
7025
7026         /*
7027          * It is valid for our ieee device to support multiple modes, but
7028          * when it comes to associating to a given network we have to choose
7029          * just one mode.
7030          */
7031         if (network->mode & priv->ieee->mode & IEEE_A)
7032                 priv->assoc_request.ieee_mode = IPW_A_MODE;
7033         else if (network->mode & priv->ieee->mode & IEEE_G)
7034                 priv->assoc_request.ieee_mode = IPW_G_MODE;
7035         else if (network->mode & priv->ieee->mode & IEEE_B)
7036                 priv->assoc_request.ieee_mode = IPW_B_MODE;
7037
7038         priv->assoc_request.capability = network->capability;
7039         if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7040             && !(priv->config & CFG_PREAMBLE_LONG)) {
7041                 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7042         } else {
7043                 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7044
7045                 /* Clear the short preamble if we won't be supporting it */
7046                 priv->assoc_request.capability &=
7047                     ~WLAN_CAPABILITY_SHORT_PREAMBLE;
7048         }
7049
7050         /* Clear capability bits that aren't used in Ad Hoc */
7051         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7052                 priv->assoc_request.capability &=
7053                     ~WLAN_CAPABILITY_SHORT_SLOT_TIME;
7054
7055         IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7056                         "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7057                         roaming ? "Rea" : "A",
7058                         escape_essid(priv->essid, priv->essid_len),
7059                         network->channel,
7060                         ipw_modes[priv->assoc_request.ieee_mode],
7061                         rates->num_rates,
7062                         (priv->assoc_request.preamble_length ==
7063                          DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7064                         network->capability &
7065                         WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7066                         priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7067                         priv->capability & CAP_PRIVACY_ON ?
7068                         (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7069                          "(open)") : "",
7070                         priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7071                         priv->capability & CAP_PRIVACY_ON ?
7072                         '1' + priv->ieee->sec.active_key : '.',
7073                         priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7074
7075         priv->assoc_request.beacon_interval = network->beacon_interval;
7076         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7077             (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7078                 priv->assoc_request.assoc_type = HC_IBSS_START;
7079                 priv->assoc_request.assoc_tsf_msw = 0;
7080                 priv->assoc_request.assoc_tsf_lsw = 0;
7081         } else {
7082                 if (unlikely(roaming))
7083                         priv->assoc_request.assoc_type = HC_REASSOCIATE;
7084                 else
7085                         priv->assoc_request.assoc_type = HC_ASSOCIATE;
7086                 priv->assoc_request.assoc_tsf_msw = network->time_stamp[1];
7087                 priv->assoc_request.assoc_tsf_lsw = network->time_stamp[0];
7088         }
7089
7090         memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7091
7092         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7093                 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7094                 priv->assoc_request.atim_window = network->atim_window;
7095         } else {
7096                 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7097                 priv->assoc_request.atim_window = 0;
7098         }
7099
7100         priv->assoc_request.listen_interval = network->listen_interval;
7101
7102         err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7103         if (err) {
7104                 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7105                 return err;
7106         }
7107
7108         rates->ieee_mode = priv->assoc_request.ieee_mode;
7109         rates->purpose = IPW_RATE_CONNECT;
7110         ipw_send_supported_rates(priv, rates);
7111
7112         if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7113                 priv->sys_config.dot11g_auto_detection = 1;
7114         else
7115                 priv->sys_config.dot11g_auto_detection = 0;
7116
7117         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7118                 priv->sys_config.answer_broadcast_ssid_probe = 1;
7119         else
7120                 priv->sys_config.answer_broadcast_ssid_probe = 0;
7121
7122         err = ipw_send_system_config(priv, &priv->sys_config);
7123         if (err) {
7124                 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7125                 return err;
7126         }
7127
7128         IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7129         err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7130         if (err) {
7131                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7132                 return err;
7133         }
7134
7135         /*
7136          * If preemption is enabled, it is possible for the association
7137          * to complete before we return from ipw_send_associate.  Therefore
7138          * we have to be sure and update our priviate data first.
7139          */
7140         priv->channel = network->channel;
7141         memcpy(priv->bssid, network->bssid, ETH_ALEN);
7142         priv->status |= STATUS_ASSOCIATING;
7143         priv->status &= ~STATUS_SECURITY_UPDATED;
7144
7145         priv->assoc_network = network;
7146
7147 #ifdef CONFIG_IPW_QOS
7148         ipw_qos_association(priv, network);
7149 #endif
7150
7151         err = ipw_send_associate(priv, &priv->assoc_request);
7152         if (err) {
7153                 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7154                 return err;
7155         }
7156
7157         IPW_DEBUG(IPW_DL_STATE, "associating: '%s' " MAC_FMT " \n",
7158                   escape_essid(priv->essid, priv->essid_len),
7159                   MAC_ARG(priv->bssid));
7160
7161         return 0;
7162 }
7163
7164 static void ipw_roam(void *data)
7165 {
7166         struct ipw_priv *priv = data;
7167         struct ieee80211_network *network = NULL;
7168         struct ipw_network_match match = {
7169                 .network = priv->assoc_network
7170         };
7171
7172         /* The roaming process is as follows:
7173          *
7174          * 1.  Missed beacon threshold triggers the roaming process by
7175          *     setting the status ROAM bit and requesting a scan.
7176          * 2.  When the scan completes, it schedules the ROAM work
7177          * 3.  The ROAM work looks at all of the known networks for one that
7178          *     is a better network than the currently associated.  If none
7179          *     found, the ROAM process is over (ROAM bit cleared)
7180          * 4.  If a better network is found, a disassociation request is
7181          *     sent.
7182          * 5.  When the disassociation completes, the roam work is again
7183          *     scheduled.  The second time through, the driver is no longer
7184          *     associated, and the newly selected network is sent an
7185          *     association request.
7186          * 6.  At this point ,the roaming process is complete and the ROAM
7187          *     status bit is cleared.
7188          */
7189
7190         /* If we are no longer associated, and the roaming bit is no longer
7191          * set, then we are not actively roaming, so just return */
7192         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7193                 return;
7194
7195         if (priv->status & STATUS_ASSOCIATED) {
7196                 /* First pass through ROAM process -- look for a better
7197                  * network */
7198                 unsigned long flags;
7199                 u8 rssi = priv->assoc_network->stats.rssi;
7200                 priv->assoc_network->stats.rssi = -128;
7201                 spin_lock_irqsave(&priv->ieee->lock, flags);
7202                 list_for_each_entry(network, &priv->ieee->network_list, list) {
7203                         if (network != priv->assoc_network)
7204                                 ipw_best_network(priv, &match, network, 1);
7205                 }
7206                 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7207                 priv->assoc_network->stats.rssi = rssi;
7208
7209                 if (match.network == priv->assoc_network) {
7210                         IPW_DEBUG_ASSOC("No better APs in this network to "
7211                                         "roam to.\n");
7212                         priv->status &= ~STATUS_ROAMING;
7213                         ipw_debug_config(priv);
7214                         return;
7215                 }
7216
7217                 ipw_send_disassociate(priv, 1);
7218                 priv->assoc_network = match.network;
7219
7220                 return;
7221         }
7222
7223         /* Second pass through ROAM process -- request association */
7224         ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7225         ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7226         priv->status &= ~STATUS_ROAMING;
7227 }
7228
7229 static void ipw_bg_roam(void *data)
7230 {
7231         struct ipw_priv *priv = data;
7232         mutex_lock(&priv->mutex);
7233         ipw_roam(data);
7234         mutex_unlock(&priv->mutex);
7235 }
7236
7237 static int ipw_associate(void *data)
7238 {
7239         struct ipw_priv *priv = data;
7240
7241         struct ieee80211_network *network = NULL;
7242         struct ipw_network_match match = {
7243                 .network = NULL
7244         };
7245         struct ipw_supported_rates *rates;
7246         struct list_head *element;
7247         unsigned long flags;
7248
7249         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7250                 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7251                 return 0;
7252         }
7253
7254         if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7255                 IPW_DEBUG_ASSOC("Not attempting association (already in "
7256                                 "progress)\n");
7257                 return 0;
7258         }
7259
7260         if (priv->status & STATUS_DISASSOCIATING) {
7261                 IPW_DEBUG_ASSOC("Not attempting association (in "
7262                                 "disassociating)\n ");
7263                 queue_work(priv->workqueue, &priv->associate);
7264                 return 0;
7265         }
7266
7267         if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7268                 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7269                                 "initialized)\n");
7270                 return 0;
7271         }
7272
7273         if (!(priv->config & CFG_ASSOCIATE) &&
7274             !(priv->config & (CFG_STATIC_ESSID |
7275                               CFG_STATIC_CHANNEL | CFG_STATIC_BSSID))) {
7276                 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7277                 return 0;
7278         }
7279
7280         /* Protect our use of the network_list */
7281         spin_lock_irqsave(&priv->ieee->lock, flags);
7282         list_for_each_entry(network, &priv->ieee->network_list, list)
7283             ipw_best_network(priv, &match, network, 0);
7284
7285         network = match.network;
7286         rates = &match.rates;
7287
7288         if (network == NULL &&
7289             priv->ieee->iw_mode == IW_MODE_ADHOC &&
7290             priv->config & CFG_ADHOC_CREATE &&
7291             priv->config & CFG_STATIC_ESSID &&
7292             priv->config & CFG_STATIC_CHANNEL &&
7293             !list_empty(&priv->ieee->network_free_list)) {
7294                 element = priv->ieee->network_free_list.next;
7295                 network = list_entry(element, struct ieee80211_network, list);
7296                 ipw_adhoc_create(priv, network);
7297                 rates = &priv->rates;
7298                 list_del(element);
7299                 list_add_tail(&network->list, &priv->ieee->network_list);
7300         }
7301         spin_unlock_irqrestore(&priv->ieee->lock, flags);
7302
7303         /* If we reached the end of the list, then we don't have any valid
7304          * matching APs */
7305         if (!network) {
7306                 ipw_debug_config(priv);
7307
7308                 if (!(priv->status & STATUS_SCANNING)) {
7309                         if (!(priv->config & CFG_SPEED_SCAN))
7310                                 queue_delayed_work(priv->workqueue,
7311                                                    &priv->request_scan,
7312                                                    SCAN_INTERVAL);
7313                         else
7314                                 queue_work(priv->workqueue,
7315                                            &priv->request_scan);
7316                 }
7317
7318                 return 0;
7319         }
7320
7321         ipw_associate_network(priv, network, rates, 0);
7322
7323         return 1;
7324 }
7325
7326 static void ipw_bg_associate(void *data)
7327 {
7328         struct ipw_priv *priv = data;
7329         mutex_lock(&priv->mutex);
7330         ipw_associate(data);
7331         mutex_unlock(&priv->mutex);
7332 }
7333
7334 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7335                                       struct sk_buff *skb)
7336 {
7337         struct ieee80211_hdr *hdr;
7338         u16 fc;
7339
7340         hdr = (struct ieee80211_hdr *)skb->data;
7341         fc = le16_to_cpu(hdr->frame_ctl);
7342         if (!(fc & IEEE80211_FCTL_PROTECTED))
7343                 return;
7344
7345         fc &= ~IEEE80211_FCTL_PROTECTED;
7346         hdr->frame_ctl = cpu_to_le16(fc);
7347         switch (priv->ieee->sec.level) {
7348         case SEC_LEVEL_3:
7349                 /* Remove CCMP HDR */
7350                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7351                         skb->data + IEEE80211_3ADDR_LEN + 8,
7352                         skb->len - IEEE80211_3ADDR_LEN - 8);
7353                 skb_trim(skb, skb->len - 16);   /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7354                 break;
7355         case SEC_LEVEL_2:
7356                 break;
7357         case SEC_LEVEL_1:
7358                 /* Remove IV */
7359                 memmove(skb->data + IEEE80211_3ADDR_LEN,
7360                         skb->data + IEEE80211_3ADDR_LEN + 4,
7361                         skb->len - IEEE80211_3ADDR_LEN - 4);
7362                 skb_trim(skb, skb->len - 8);    /* IV + ICV */
7363                 break;
7364         case SEC_LEVEL_0:
7365                 break;
7366         default:
7367                 printk(KERN_ERR "Unknow security level %d\n",
7368                        priv->ieee->sec.level);
7369                 break;
7370         }
7371 }
7372
7373 static void ipw_handle_data_packet(struct ipw_priv *priv,
7374                                    struct ipw_rx_mem_buffer *rxb,
7375                                    struct ieee80211_rx_stats *stats)
7376 {
7377         struct ieee80211_hdr_4addr *hdr;
7378         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7379
7380         /* We received data from the HW, so stop the watchdog */
7381         priv->net_dev->trans_start = jiffies;
7382
7383         /* We only process data packets if the
7384          * interface is open */
7385         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7386                      skb_tailroom(rxb->skb))) {
7387                 priv->ieee->stats.rx_errors++;
7388                 priv->wstats.discard.misc++;
7389                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7390                 return;
7391         } else if (unlikely(!netif_running(priv->net_dev))) {
7392                 priv->ieee->stats.rx_dropped++;
7393                 priv->wstats.discard.misc++;
7394                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7395                 return;
7396         }
7397
7398         /* Advance skb->data to the start of the actual payload */
7399         skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7400
7401         /* Set the size of the skb to the size of the frame */
7402         skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7403
7404         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7405
7406         /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7407         hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7408         if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7409             (is_multicast_ether_addr(hdr->addr1) ?
7410              !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7411                 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7412
7413         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7414                 priv->ieee->stats.rx_errors++;
7415         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7416                 rxb->skb = NULL;
7417                 __ipw_led_activity_on(priv);
7418         }
7419 }
7420
7421 #ifdef CONFIG_IEEE80211_RADIOTAP
7422 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7423                                            struct ipw_rx_mem_buffer *rxb,
7424                                            struct ieee80211_rx_stats *stats)
7425 {
7426         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7427         struct ipw_rx_frame *frame = &pkt->u.frame;
7428
7429         /* initial pull of some data */
7430         u16 received_channel = frame->received_channel;
7431         u8 antennaAndPhy = frame->antennaAndPhy;
7432         s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;       /* call it signed anyhow */
7433         u16 pktrate = frame->rate;
7434
7435         /* Magic struct that slots into the radiotap header -- no reason
7436          * to build this manually element by element, we can write it much
7437          * more efficiently than we can parse it. ORDER MATTERS HERE */
7438         struct ipw_rt_hdr {
7439                 struct ieee80211_radiotap_header rt_hdr;
7440                 u8 rt_flags;    /* radiotap packet flags */
7441                 u8 rt_rate;     /* rate in 500kb/s */
7442                 u16 rt_channel; /* channel in mhz */
7443                 u16 rt_chbitmask;       /* channel bitfield */
7444                 s8 rt_dbmsignal;        /* signal in dbM, kluged to signed */
7445                 u8 rt_antenna;  /* antenna number */
7446         } *ipw_rt;
7447
7448         short len = le16_to_cpu(pkt->u.frame.length);
7449
7450         /* We received data from the HW, so stop the watchdog */
7451         priv->net_dev->trans_start = jiffies;
7452
7453         /* We only process data packets if the
7454          * interface is open */
7455         if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7456                      skb_tailroom(rxb->skb))) {
7457                 priv->ieee->stats.rx_errors++;
7458                 priv->wstats.discard.misc++;
7459                 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7460                 return;
7461         } else if (unlikely(!netif_running(priv->net_dev))) {
7462                 priv->ieee->stats.rx_dropped++;
7463                 priv->wstats.discard.misc++;
7464                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7465                 return;
7466         }
7467
7468         /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7469          * that now */
7470         if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7471                 /* FIXME: Should alloc bigger skb instead */
7472                 priv->ieee->stats.rx_dropped++;
7473                 priv->wstats.discard.misc++;
7474                 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7475                 return;
7476         }
7477
7478         /* copy the frame itself */
7479         memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7480                 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7481
7482         /* Zero the radiotap static buffer  ...  We only need to zero the bytes NOT
7483          * part of our real header, saves a little time.
7484          *
7485          * No longer necessary since we fill in all our data.  Purge before merging
7486          * patch officially.
7487          * memset(rxb->skb->data + sizeof(struct ipw_rt_hdr), 0,
7488          *        IEEE80211_RADIOTAP_HDRLEN - sizeof(struct ipw_rt_hdr));
7489          */
7490
7491         ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7492
7493         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7494         ipw_rt->rt_hdr.it_pad = 0;      /* always good to zero */
7495         ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr);      /* total header+data */
7496
7497         /* Big bitfield of all the fields we provide in radiotap */
7498         ipw_rt->rt_hdr.it_present =
7499             ((1 << IEEE80211_RADIOTAP_FLAGS) |
7500              (1 << IEEE80211_RADIOTAP_RATE) |
7501              (1 << IEEE80211_RADIOTAP_CHANNEL) |
7502              (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7503              (1 << IEEE80211_RADIOTAP_ANTENNA));
7504
7505         /* Zero the flags, we'll add to them as we go */
7506         ipw_rt->rt_flags = 0;
7507
7508         /* Convert signal to DBM */
7509         ipw_rt->rt_dbmsignal = antsignal;
7510
7511         /* Convert the channel data and set the flags */
7512         ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7513         if (received_channel > 14) {    /* 802.11a */
7514                 ipw_rt->rt_chbitmask =
7515                     cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7516         } else if (antennaAndPhy & 32) {        /* 802.11b */
7517                 ipw_rt->rt_chbitmask =
7518                     cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7519         } else {                /* 802.11g */
7520                 ipw_rt->rt_chbitmask =
7521                     (IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7522         }
7523
7524         /* set the rate in multiples of 500k/s */
7525         switch (pktrate) {
7526         case IPW_TX_RATE_1MB:
7527                 ipw_rt->rt_rate = 2;
7528                 break;
7529         case IPW_TX_RATE_2MB:
7530                 ipw_rt->rt_rate = 4;
7531                 break;
7532         case IPW_TX_RATE_5MB:
7533                 ipw_rt->rt_rate = 10;
7534                 break;
7535         case IPW_TX_RATE_6MB:
7536                 ipw_rt->rt_rate = 12;
7537                 break;
7538         case IPW_TX_RATE_9MB:
7539                 ipw_rt->rt_rate = 18;
7540                 break;
7541         case IPW_TX_RATE_11MB:
7542                 ipw_rt->rt_rate = 22;
7543                 break;
7544         case IPW_TX_RATE_12MB:
7545                 ipw_rt->rt_rate = 24;
7546                 break;
7547         case IPW_TX_RATE_18MB:
7548                 ipw_rt->rt_rate = 36;
7549                 break;
7550         case IPW_TX_RATE_24MB:
7551                 ipw_rt->rt_rate = 48;
7552                 break;
7553         case IPW_TX_RATE_36MB:
7554                 ipw_rt->rt_rate = 72;
7555                 break;
7556         case IPW_TX_RATE_48MB:
7557                 ipw_rt->rt_rate = 96;
7558                 break;
7559         case IPW_TX_RATE_54MB:
7560                 ipw_rt->rt_rate = 108;
7561                 break;
7562         default:
7563                 ipw_rt->rt_rate = 0;
7564                 break;
7565         }
7566
7567         /* antenna number */
7568         ipw_rt->rt_antenna = (antennaAndPhy & 3);       /* Is this right? */
7569
7570         /* set the preamble flag if we have it */
7571         if ((antennaAndPhy & 64))
7572                 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7573
7574         /* Set the size of the skb to the size of the frame */
7575         skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7576
7577         IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7578
7579         if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7580                 priv->ieee->stats.rx_errors++;
7581         else {                  /* ieee80211_rx succeeded, so it now owns the SKB */
7582                 rxb->skb = NULL;
7583                 /* no LED during capture */
7584         }
7585 }
7586 #endif
7587
7588 static int is_network_packet(struct ipw_priv *priv,
7589                                     struct ieee80211_hdr_4addr *header)
7590 {
7591         /* Filter incoming packets to determine if they are targetted toward
7592          * this network, discarding packets coming from ourselves */
7593         switch (priv->ieee->iw_mode) {
7594         case IW_MODE_ADHOC:     /* Header: Dest. | Source    | BSSID */
7595                 /* packets from our adapter are dropped (echo) */
7596                 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
7597                         return 0;
7598
7599                 /* {broad,multi}cast packets to our BSSID go through */
7600                 if (is_multicast_ether_addr(header->addr1))
7601                         return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
7602
7603                 /* packets to our adapter go through */
7604                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7605                                ETH_ALEN);
7606
7607         case IW_MODE_INFRA:     /* Header: Dest. | BSSID | Source */
7608                 /* packets from our adapter are dropped (echo) */
7609                 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
7610                         return 0;
7611
7612                 /* {broad,multi}cast packets to our BSS go through */
7613                 if (is_multicast_ether_addr(header->addr1))
7614                         return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
7615
7616                 /* packets to our adapter go through */
7617                 return !memcmp(header->addr1, priv->net_dev->dev_addr,
7618                                ETH_ALEN);
7619         }
7620
7621         return 1;
7622 }
7623
7624 #define IPW_PACKET_RETRY_TIME HZ
7625
7626 static  int is_duplicate_packet(struct ipw_priv *priv,
7627                                       struct ieee80211_hdr_4addr *header)
7628 {
7629         u16 sc = le16_to_cpu(header->seq_ctl);
7630         u16 seq = WLAN_GET_SEQ_SEQ(sc);
7631         u16 frag = WLAN_GET_SEQ_FRAG(sc);
7632         u16 *last_seq, *last_frag;
7633         unsigned long *last_time;
7634
7635         switch (priv->ieee->iw_mode) {
7636         case IW_MODE_ADHOC:
7637                 {
7638                         struct list_head *p;
7639                         struct ipw_ibss_seq *entry = NULL;
7640                         u8 *mac = header->addr2;
7641                         int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
7642
7643                         __list_for_each(p, &priv->ibss_mac_hash[index]) {
7644                                 entry =
7645                                     list_entry(p, struct ipw_ibss_seq, list);
7646                                 if (!memcmp(entry->mac, mac, ETH_ALEN))
7647                                         break;
7648                         }
7649                         if (p == &priv->ibss_mac_hash[index]) {
7650                                 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
7651                                 if (!entry) {
7652                                         IPW_ERROR
7653                                             ("Cannot malloc new mac entry\n");
7654                                         return 0;
7655                                 }
7656                                 memcpy(entry->mac, mac, ETH_ALEN);
7657                                 entry->seq_num = seq;
7658                                 entry->frag_num = frag;
7659                                 entry->packet_time = jiffies;
7660                                 list_add(&entry->list,
7661                                          &priv->ibss_mac_hash[index]);
7662                                 return 0;
7663                         }
7664                         last_seq = &entry->seq_num;
7665                         last_frag = &entry->frag_num;
7666                         last_time = &entry->packet_time;
7667                         break;
7668                 }
7669         case IW_MODE_INFRA:
7670                 last_seq = &priv->last_seq_num;
7671                 last_frag = &priv->last_frag_num;
7672                 last_time = &priv->last_packet_time;
7673                 break;
7674         default:
7675                 return 0;
7676         }
7677         if ((*last_seq == seq) &&
7678             time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
7679                 if (*last_frag == frag)
7680                         goto drop;
7681                 if (*last_frag + 1 != frag)
7682                         /* out-of-order fragment */
7683                         goto drop;
7684         } else
7685                 *last_seq = seq;
7686
7687         *last_frag = frag;
7688         *last_time = jiffies;
7689         return 0;
7690
7691       drop:
7692         /* Comment this line now since we observed the card receives
7693          * duplicate packets but the FCTL_RETRY bit is not set in the
7694          * IBSS mode with fragmentation enabled.
7695          BUG_ON(!(le16_to_cpu(header->frame_ctl) & IEEE80211_FCTL_RETRY)); */
7696         return 1;
7697 }
7698
7699 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
7700                                    struct ipw_rx_mem_buffer *rxb,
7701                                    struct ieee80211_rx_stats *stats)
7702 {
7703         struct sk_buff *skb = rxb->skb;
7704         struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
7705         struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
7706             (skb->data + IPW_RX_FRAME_SIZE);
7707
7708         ieee80211_rx_mgt(priv->ieee, header, stats);
7709
7710         if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
7711             ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7712               IEEE80211_STYPE_PROBE_RESP) ||
7713              (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
7714               IEEE80211_STYPE_BEACON))) {
7715                 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
7716                         ipw_add_station(priv, header->addr2);
7717         }
7718
7719         if (priv->config & CFG_NET_STATS) {
7720                 IPW_DEBUG_HC("sending stat packet\n");
7721
7722                 /* Set the size of the skb to the size of the full
7723                  * ipw header and 802.11 frame */
7724                 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
7725                         IPW_RX_FRAME_SIZE);
7726
7727                 /* Advance past the ipw packet header to the 802.11 frame */
7728                 skb_pull(skb, IPW_RX_FRAME_SIZE);
7729
7730                 /* Push the ieee80211_rx_stats before the 802.11 frame */
7731                 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
7732
7733                 skb->dev = priv->ieee->dev;
7734
7735                 /* Point raw at the ieee80211_stats */
7736                 skb->mac.raw = skb->data;
7737
7738                 skb->pkt_type = PACKET_OTHERHOST;
7739                 skb->protocol = __constant_htons(ETH_P_80211_STATS);
7740                 memset(skb->cb, 0, sizeof(rxb->skb->cb));
7741                 netif_rx(skb);
7742                 rxb->skb = NULL;
7743         }
7744 }
7745
7746 /*
7747  * Main entry function for recieving a packet with 80211 headers.  This
7748  * should be called when ever the FW has notified us that there is a new
7749  * skb in the recieve queue.
7750  */
7751 static void ipw_rx(struct ipw_priv *priv)
7752 {
7753         struct ipw_rx_mem_buffer *rxb;
7754         struct ipw_rx_packet *pkt;
7755         struct ieee80211_hdr_4addr *header;
7756         u32 r, w, i;
7757         u8 network_packet;
7758
7759         r = ipw_read32(priv, IPW_RX_READ_INDEX);
7760         w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
7761         i = (priv->rxq->processed + 1) % RX_QUEUE_SIZE;
7762
7763         while (i != r) {
7764                 rxb = priv->rxq->queue[i];
7765                 if (unlikely(rxb == NULL)) {
7766                         printk(KERN_CRIT "Queue not allocated!\n");
7767                         break;
7768                 }
7769                 priv->rxq->queue[i] = NULL;
7770
7771                 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
7772                                             IPW_RX_BUF_SIZE,
7773                                             PCI_DMA_FROMDEVICE);
7774
7775                 pkt = (struct ipw_rx_packet *)rxb->skb->data;
7776                 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
7777                              pkt->header.message_type,
7778                              pkt->header.rx_seq_num, pkt->header.control_bits);
7779
7780                 switch (pkt->header.message_type) {
7781                 case RX_FRAME_TYPE:     /* 802.11 frame */  {
7782                                 struct ieee80211_rx_stats stats = {
7783                                         .rssi =
7784                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7785                                             IPW_RSSI_TO_DBM,
7786                                         .signal =
7787                                             le16_to_cpu(pkt->u.frame.rssi_dbm) -
7788                                             IPW_RSSI_TO_DBM + 0x100,
7789                                         .noise =
7790                                             le16_to_cpu(pkt->u.frame.noise),
7791                                         .rate = pkt->u.frame.rate,
7792                                         .mac_time = jiffies,
7793                                         .received_channel =
7794                                             pkt->u.frame.received_channel,
7795                                         .freq =
7796                                             (pkt->u.frame.
7797                                              control & (1 << 0)) ?
7798                                             IEEE80211_24GHZ_BAND :
7799                                             IEEE80211_52GHZ_BAND,
7800                                         .len = le16_to_cpu(pkt->u.frame.length),
7801                                 };
7802
7803                                 if (stats.rssi != 0)
7804                                         stats.mask |= IEEE80211_STATMASK_RSSI;
7805                                 if (stats.signal != 0)
7806                                         stats.mask |= IEEE80211_STATMASK_SIGNAL;
7807                                 if (stats.noise != 0)
7808                                         stats.mask |= IEEE80211_STATMASK_NOISE;
7809                                 if (stats.rate != 0)
7810                                         stats.mask |= IEEE80211_STATMASK_RATE;
7811
7812                                 priv->rx_packets++;
7813
7814 #ifdef CONFIG_IPW2200_MONITOR
7815                                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7816 #ifdef CONFIG_IEEE80211_RADIOTAP
7817                                         ipw_handle_data_packet_monitor(priv,
7818                                                                        rxb,
7819                                                                        &stats);
7820 #else
7821                                         ipw_handle_data_packet(priv, rxb,
7822                                                                &stats);
7823 #endif
7824                                         break;
7825                                 }
7826 #endif
7827
7828                                 header =
7829                                     (struct ieee80211_hdr_4addr *)(rxb->skb->
7830                                                                    data +
7831                                                                    IPW_RX_FRAME_SIZE);
7832                                 /* TODO: Check Ad-Hoc dest/source and make sure
7833                                  * that we are actually parsing these packets
7834                                  * correctly -- we should probably use the
7835                                  * frame control of the packet and disregard
7836                                  * the current iw_mode */
7837
7838                                 network_packet =
7839                                     is_network_packet(priv, header);
7840                                 if (network_packet && priv->assoc_network) {
7841                                         priv->assoc_network->stats.rssi =
7842                                             stats.rssi;
7843                                         average_add(&priv->average_rssi,
7844                                                     stats.rssi);
7845                                         priv->last_rx_rssi = stats.rssi;
7846                                 }
7847
7848                                 IPW_DEBUG_RX("Frame: len=%u\n",
7849                                              le16_to_cpu(pkt->u.frame.length));
7850
7851                                 if (le16_to_cpu(pkt->u.frame.length) <
7852                                     ieee80211_get_hdrlen(le16_to_cpu(
7853                                                     header->frame_ctl))) {
7854                                         IPW_DEBUG_DROP
7855                                             ("Received packet is too small. "
7856                                              "Dropping.\n");
7857                                         priv->ieee->stats.rx_errors++;
7858                                         priv->wstats.discard.misc++;
7859                                         break;
7860                                 }
7861
7862                                 switch (WLAN_FC_GET_TYPE
7863                                         (le16_to_cpu(header->frame_ctl))) {
7864
7865                                 case IEEE80211_FTYPE_MGMT:
7866                                         ipw_handle_mgmt_packet(priv, rxb,
7867                                                                &stats);
7868                                         break;
7869
7870                                 case IEEE80211_FTYPE_CTL:
7871                                         break;
7872
7873                                 case IEEE80211_FTYPE_DATA:
7874                                         if (unlikely(!network_packet ||
7875                                                      is_duplicate_packet(priv,
7876                                                                          header)))
7877                                         {
7878                                                 IPW_DEBUG_DROP("Dropping: "
7879                                                                MAC_FMT ", "
7880                                                                MAC_FMT ", "
7881                                                                MAC_FMT "\n",
7882                                                                MAC_ARG(header->
7883                                                                        addr1),
7884                                                                MAC_ARG(header->
7885                                                                        addr2),
7886                                                                MAC_ARG(header->
7887                                                                        addr3));
7888                                                 break;
7889                                         }
7890
7891                                         ipw_handle_data_packet(priv, rxb,
7892                                                                &stats);
7893
7894                                         break;
7895                                 }
7896                                 break;
7897                         }
7898
7899                 case RX_HOST_NOTIFICATION_TYPE:{
7900                                 IPW_DEBUG_RX
7901                                     ("Notification: subtype=%02X flags=%02X size=%d\n",
7902                                      pkt->u.notification.subtype,
7903                                      pkt->u.notification.flags,
7904                                      pkt->u.notification.size);
7905                                 ipw_rx_notification(priv, &pkt->u.notification);
7906                                 break;
7907                         }
7908
7909                 default:
7910                         IPW_DEBUG_RX("Bad Rx packet of type %d\n",
7911                                      pkt->header.message_type);
7912                         break;
7913                 }
7914
7915                 /* For now we just don't re-use anything.  We can tweak this
7916                  * later to try and re-use notification packets and SKBs that
7917                  * fail to Rx correctly */
7918                 if (rxb->skb != NULL) {
7919                         dev_kfree_skb_any(rxb->skb);
7920                         rxb->skb = NULL;
7921                 }
7922
7923                 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
7924                                  IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
7925                 list_add_tail(&rxb->list, &priv->rxq->rx_used);
7926
7927                 i = (i + 1) % RX_QUEUE_SIZE;
7928         }
7929
7930         /* Backtrack one entry */
7931         priv->rxq->processed = (i ? i : RX_QUEUE_SIZE) - 1;
7932
7933         ipw_rx_queue_restock(priv);
7934 }
7935
7936 #define DEFAULT_RTS_THRESHOLD     2304U
7937 #define MIN_RTS_THRESHOLD         1U
7938 #define MAX_RTS_THRESHOLD         2304U
7939 #define DEFAULT_BEACON_INTERVAL   100U
7940 #define DEFAULT_SHORT_RETRY_LIMIT 7U
7941 #define DEFAULT_LONG_RETRY_LIMIT  4U
7942
7943 /**
7944  * ipw_sw_reset
7945  * @option: options to control different reset behaviour
7946  *          0 = reset everything except the 'disable' module_param
7947  *          1 = reset everything and print out driver info (for probe only)
7948  *          2 = reset everything
7949  */
7950 static int ipw_sw_reset(struct ipw_priv *priv, int option)
7951 {
7952         int band, modulation;
7953         int old_mode = priv->ieee->iw_mode;
7954
7955         /* Initialize module parameter values here */
7956         priv->config = 0;
7957
7958         /* We default to disabling the LED code as right now it causes
7959          * too many systems to lock up... */
7960         if (!led)
7961                 priv->config |= CFG_NO_LED;
7962
7963         if (associate)
7964                 priv->config |= CFG_ASSOCIATE;
7965         else
7966                 IPW_DEBUG_INFO("Auto associate disabled.\n");
7967
7968         if (auto_create)
7969                 priv->config |= CFG_ADHOC_CREATE;
7970         else
7971                 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
7972
7973         priv->config &= ~CFG_STATIC_ESSID;
7974         priv->essid_len = 0;
7975         memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
7976
7977         if (disable && option) {
7978                 priv->status |= STATUS_RF_KILL_SW;
7979                 IPW_DEBUG_INFO("Radio disabled.\n");
7980         }
7981
7982         if (channel != 0) {
7983                 priv->config |= CFG_STATIC_CHANNEL;
7984                 priv->channel = channel;
7985                 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
7986                 /* TODO: Validate that provided channel is in range */
7987         }
7988 #ifdef CONFIG_IPW_QOS
7989         ipw_qos_init(priv, qos_enable, qos_burst_enable,
7990                      burst_duration_CCK, burst_duration_OFDM);
7991 #endif                          /* CONFIG_IPW_QOS */
7992
7993         switch (mode) {
7994         case 1:
7995                 priv->ieee->iw_mode = IW_MODE_ADHOC;
7996                 priv->net_dev->type = ARPHRD_ETHER;
7997
7998                 break;
7999 #ifdef CONFIG_IPW2200_MONITOR
8000         case 2:
8001                 priv->ieee->iw_mode = IW_MODE_MONITOR;
8002 #ifdef CONFIG_IEEE80211_RADIOTAP
8003                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8004 #else
8005                 priv->net_dev->type = ARPHRD_IEEE80211;
8006 #endif
8007                 break;
8008 #endif
8009         default:
8010         case 0:
8011                 priv->net_dev->type = ARPHRD_ETHER;
8012                 priv->ieee->iw_mode = IW_MODE_INFRA;
8013                 break;
8014         }
8015
8016         if (hwcrypto) {
8017                 priv->ieee->host_encrypt = 0;
8018                 priv->ieee->host_encrypt_msdu = 0;
8019                 priv->ieee->host_decrypt = 0;
8020                 priv->ieee->host_mc_decrypt = 0;
8021         }
8022         IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8023
8024         /* IPW2200/2915 is abled to do hardware fragmentation. */
8025         priv->ieee->host_open_frag = 0;
8026
8027         if ((priv->pci_dev->device == 0x4223) ||
8028             (priv->pci_dev->device == 0x4224)) {
8029                 if (option == 1)
8030                         printk(KERN_INFO DRV_NAME
8031                                ": Detected Intel PRO/Wireless 2915ABG Network "
8032                                "Connection\n");
8033                 priv->ieee->abg_true = 1;
8034                 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8035                 modulation = IEEE80211_OFDM_MODULATION |
8036                     IEEE80211_CCK_MODULATION;
8037                 priv->adapter = IPW_2915ABG;
8038                 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8039         } else {
8040                 if (option == 1)
8041                         printk(KERN_INFO DRV_NAME
8042                                ": Detected Intel PRO/Wireless 2200BG Network "
8043                                "Connection\n");
8044
8045                 priv->ieee->abg_true = 0;
8046                 band = IEEE80211_24GHZ_BAND;
8047                 modulation = IEEE80211_OFDM_MODULATION |
8048                     IEEE80211_CCK_MODULATION;
8049                 priv->adapter = IPW_2200BG;
8050                 priv->ieee->mode = IEEE_G | IEEE_B;
8051         }
8052
8053         priv->ieee->freq_band = band;
8054         priv->ieee->modulation = modulation;
8055
8056         priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8057
8058         priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8059         priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8060
8061         priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8062         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8063         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8064
8065         /* If power management is turned on, default to AC mode */
8066         priv->power_mode = IPW_POWER_AC;
8067         priv->tx_power = IPW_TX_POWER_DEFAULT;
8068
8069         return old_mode == priv->ieee->iw_mode;
8070 }
8071
8072 /*
8073  * This file defines the Wireless Extension handlers.  It does not
8074  * define any methods of hardware manipulation and relies on the
8075  * functions defined in ipw_main to provide the HW interaction.
8076  *
8077  * The exception to this is the use of the ipw_get_ordinal()
8078  * function used to poll the hardware vs. making unecessary calls.
8079  *
8080  */
8081
8082 static int ipw_wx_get_name(struct net_device *dev,
8083                            struct iw_request_info *info,
8084                            union iwreq_data *wrqu, char *extra)
8085 {
8086         struct ipw_priv *priv = ieee80211_priv(dev);
8087         mutex_lock(&priv->mutex);
8088         if (priv->status & STATUS_RF_KILL_MASK)
8089                 strcpy(wrqu->name, "radio off");
8090         else if (!(priv->status & STATUS_ASSOCIATED))
8091                 strcpy(wrqu->name, "unassociated");
8092         else
8093                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8094                          ipw_modes[priv->assoc_request.ieee_mode]);
8095         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8096         mutex_unlock(&priv->mutex);
8097         return 0;
8098 }
8099
8100 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8101 {
8102         if (channel == 0) {
8103                 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8104                 priv->config &= ~CFG_STATIC_CHANNEL;
8105                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8106                                 "parameters.\n");
8107                 ipw_associate(priv);
8108                 return 0;
8109         }
8110
8111         priv->config |= CFG_STATIC_CHANNEL;
8112
8113         if (priv->channel == channel) {
8114                 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8115                                channel);
8116                 return 0;
8117         }
8118
8119         IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8120         priv->channel = channel;
8121
8122 #ifdef CONFIG_IPW2200_MONITOR
8123         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8124                 int i;
8125                 if (priv->status & STATUS_SCANNING) {
8126                         IPW_DEBUG_SCAN("Scan abort triggered due to "
8127                                        "channel change.\n");
8128                         ipw_abort_scan(priv);
8129                 }
8130
8131                 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8132                         udelay(10);
8133
8134                 if (priv->status & STATUS_SCANNING)
8135                         IPW_DEBUG_SCAN("Still scanning...\n");
8136                 else
8137                         IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8138                                        1000 - i);
8139
8140                 return 0;
8141         }
8142 #endif                          /* CONFIG_IPW2200_MONITOR */
8143
8144         /* Network configuration changed -- force [re]association */
8145         IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8146         if (!ipw_disassociate(priv))
8147                 ipw_associate(priv);
8148
8149         return 0;
8150 }
8151
8152 static int ipw_wx_set_freq(struct net_device *dev,
8153                            struct iw_request_info *info,
8154                            union iwreq_data *wrqu, char *extra)
8155 {
8156         struct ipw_priv *priv = ieee80211_priv(dev);
8157         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8158         struct iw_freq *fwrq = &wrqu->freq;
8159         int ret = 0, i;
8160         u8 channel, flags;
8161         int band;
8162
8163         if (fwrq->m == 0) {
8164                 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8165                 mutex_lock(&priv->mutex);
8166                 ret = ipw_set_channel(priv, 0);
8167                 mutex_unlock(&priv->mutex);
8168                 return ret;
8169         }
8170         /* if setting by freq convert to channel */
8171         if (fwrq->e == 1) {
8172                 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8173                 if (channel == 0)
8174                         return -EINVAL;
8175         } else
8176                 channel = fwrq->m;
8177
8178         if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8179                 return -EINVAL;
8180
8181         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8182                 i = ieee80211_channel_to_index(priv->ieee, channel);
8183                 if (i == -1)
8184                         return -EINVAL;
8185
8186                 flags = (band == IEEE80211_24GHZ_BAND) ?
8187                     geo->bg[i].flags : geo->a[i].flags;
8188                 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8189                         IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8190                         return -EINVAL;
8191                 }
8192         }
8193
8194         IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8195         mutex_lock(&priv->mutex);
8196         ret = ipw_set_channel(priv, channel);
8197         mutex_unlock(&priv->mutex);
8198         return ret;
8199 }
8200
8201 static int ipw_wx_get_freq(struct net_device *dev,
8202                            struct iw_request_info *info,
8203                            union iwreq_data *wrqu, char *extra)
8204 {
8205         struct ipw_priv *priv = ieee80211_priv(dev);
8206
8207         wrqu->freq.e = 0;
8208
8209         /* If we are associated, trying to associate, or have a statically
8210          * configured CHANNEL then return that; otherwise return ANY */
8211         mutex_lock(&priv->mutex);
8212         if (priv->config & CFG_STATIC_CHANNEL ||
8213             priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED))
8214                 wrqu->freq.m = priv->channel;
8215         else
8216                 wrqu->freq.m = 0;
8217
8218         mutex_unlock(&priv->mutex);
8219         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8220         return 0;
8221 }
8222
8223 static int ipw_wx_set_mode(struct net_device *dev,
8224                            struct iw_request_info *info,
8225                            union iwreq_data *wrqu, char *extra)
8226 {
8227         struct ipw_priv *priv = ieee80211_priv(dev);
8228         int err = 0;
8229
8230         IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8231
8232         switch (wrqu->mode) {
8233 #ifdef CONFIG_IPW2200_MONITOR
8234         case IW_MODE_MONITOR:
8235 #endif
8236         case IW_MODE_ADHOC:
8237         case IW_MODE_INFRA:
8238                 break;
8239         case IW_MODE_AUTO:
8240                 wrqu->mode = IW_MODE_INFRA;
8241                 break;
8242         default:
8243                 return -EINVAL;
8244         }
8245         if (wrqu->mode == priv->ieee->iw_mode)
8246                 return 0;
8247
8248         mutex_lock(&priv->mutex);
8249
8250         ipw_sw_reset(priv, 0);
8251
8252 #ifdef CONFIG_IPW2200_MONITOR
8253         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8254                 priv->net_dev->type = ARPHRD_ETHER;
8255
8256         if (wrqu->mode == IW_MODE_MONITOR)
8257 #ifdef CONFIG_IEEE80211_RADIOTAP
8258                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8259 #else
8260                 priv->net_dev->type = ARPHRD_IEEE80211;
8261 #endif
8262 #endif                          /* CONFIG_IPW2200_MONITOR */
8263
8264         /* Free the existing firmware and reset the fw_loaded
8265          * flag so ipw_load() will bring in the new firmawre */
8266         free_firmware();
8267
8268         priv->ieee->iw_mode = wrqu->mode;
8269
8270         queue_work(priv->workqueue, &priv->adapter_restart);
8271         mutex_unlock(&priv->mutex);
8272         return err;
8273 }
8274
8275 static int ipw_wx_get_mode(struct net_device *dev,
8276                            struct iw_request_info *info,
8277                            union iwreq_data *wrqu, char *extra)
8278 {
8279         struct ipw_priv *priv = ieee80211_priv(dev);
8280         mutex_lock(&priv->mutex);
8281         wrqu->mode = priv->ieee->iw_mode;
8282         IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8283         mutex_unlock(&priv->mutex);
8284         return 0;
8285 }
8286
8287 /* Values are in microsecond */
8288 static const s32 timeout_duration[] = {
8289         350000,
8290         250000,
8291         75000,
8292         37000,
8293         25000,
8294 };
8295
8296 static const s32 period_duration[] = {
8297         400000,
8298         700000,
8299         1000000,
8300         1000000,
8301         1000000
8302 };
8303
8304 static int ipw_wx_get_range(struct net_device *dev,
8305                             struct iw_request_info *info,
8306                             union iwreq_data *wrqu, char *extra)
8307 {
8308         struct ipw_priv *priv = ieee80211_priv(dev);
8309         struct iw_range *range = (struct iw_range *)extra;
8310         const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8311         int i = 0, j;
8312
8313         wrqu->data.length = sizeof(*range);
8314         memset(range, 0, sizeof(*range));
8315
8316         /* 54Mbs == ~27 Mb/s real (802.11g) */
8317         range->throughput = 27 * 1000 * 1000;
8318
8319         range->max_qual.qual = 100;
8320         /* TODO: Find real max RSSI and stick here */
8321         range->max_qual.level = 0;
8322         range->max_qual.noise = 0;
8323         range->max_qual.updated = 7;    /* Updated all three */
8324
8325         range->avg_qual.qual = 70;
8326         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8327         range->avg_qual.level = 0;      /* FIXME to real average level */
8328         range->avg_qual.noise = 0;
8329         range->avg_qual.updated = 7;    /* Updated all three */
8330         mutex_lock(&priv->mutex);
8331         range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8332
8333         for (i = 0; i < range->num_bitrates; i++)
8334                 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8335                     500000;
8336
8337         range->max_rts = DEFAULT_RTS_THRESHOLD;
8338         range->min_frag = MIN_FRAG_THRESHOLD;
8339         range->max_frag = MAX_FRAG_THRESHOLD;
8340
8341         range->encoding_size[0] = 5;
8342         range->encoding_size[1] = 13;
8343         range->num_encoding_sizes = 2;
8344         range->max_encoding_tokens = WEP_KEYS;
8345
8346         /* Set the Wireless Extension versions */
8347         range->we_version_compiled = WIRELESS_EXT;
8348         range->we_version_source = 18;
8349
8350         i = 0;
8351         if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8352                 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8353                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8354                             (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8355                                 continue;
8356
8357                         range->freq[i].i = geo->bg[j].channel;
8358                         range->freq[i].m = geo->bg[j].freq * 100000;
8359                         range->freq[i].e = 1;
8360                         i++;
8361                 }
8362         }
8363
8364         if (priv->ieee->mode & IEEE_A) {
8365                 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8366                         if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8367                             (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8368                                 continue;
8369
8370                         range->freq[i].i = geo->a[j].channel;
8371                         range->freq[i].m = geo->a[j].freq * 100000;
8372                         range->freq[i].e = 1;
8373                         i++;
8374                 }
8375         }
8376
8377         range->num_channels = i;
8378         range->num_frequency = i;
8379
8380         mutex_unlock(&priv->mutex);
8381
8382         /* Event capability (kernel + driver) */
8383         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8384                                 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8385                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
8386         range->event_capa[1] = IW_EVENT_CAPA_K_1;
8387
8388         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8389                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8390
8391         IPW_DEBUG_WX("GET Range\n");
8392         return 0;
8393 }
8394
8395 static int ipw_wx_set_wap(struct net_device *dev,
8396                           struct iw_request_info *info,
8397                           union iwreq_data *wrqu, char *extra)
8398 {
8399         struct ipw_priv *priv = ieee80211_priv(dev);
8400
8401         static const unsigned char any[] = {
8402                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8403         };
8404         static const unsigned char off[] = {
8405                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8406         };
8407
8408         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8409                 return -EINVAL;
8410         mutex_lock(&priv->mutex);
8411         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8412             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8413                 /* we disable mandatory BSSID association */
8414                 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8415                 priv->config &= ~CFG_STATIC_BSSID;
8416                 IPW_DEBUG_ASSOC("Attempting to associate with new "
8417                                 "parameters.\n");
8418                 ipw_associate(priv);
8419                 mutex_unlock(&priv->mutex);
8420                 return 0;
8421         }
8422
8423         priv->config |= CFG_STATIC_BSSID;
8424         if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8425                 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8426                 mutex_unlock(&priv->mutex);
8427                 return 0;
8428         }
8429
8430         IPW_DEBUG_WX("Setting mandatory BSSID to " MAC_FMT "\n",
8431                      MAC_ARG(wrqu->ap_addr.sa_data));
8432
8433         memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
8434
8435         /* Network configuration changed -- force [re]association */
8436         IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
8437         if (!ipw_disassociate(priv))
8438                 ipw_associate(priv);
8439
8440         mutex_unlock(&priv->mutex);
8441         return 0;
8442 }
8443
8444 static int ipw_wx_get_wap(struct net_device *dev,
8445                           struct iw_request_info *info,
8446                           union iwreq_data *wrqu, char *extra)
8447 {
8448         struct ipw_priv *priv = ieee80211_priv(dev);
8449         /* If we are associated, trying to associate, or have a statically
8450          * configured BSSID then return that; otherwise return ANY */
8451         mutex_lock(&priv->mutex);
8452         if (priv->config & CFG_STATIC_BSSID ||
8453             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8454                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
8455                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
8456         } else
8457                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
8458
8459         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
8460                      MAC_ARG(wrqu->ap_addr.sa_data));
8461         mutex_unlock(&priv->mutex);
8462         return 0;
8463 }
8464
8465 static int ipw_wx_set_essid(struct net_device *dev,
8466                             struct iw_request_info *info,
8467                             union iwreq_data *wrqu, char *extra)
8468 {
8469         struct ipw_priv *priv = ieee80211_priv(dev);
8470         char *essid = "";       /* ANY */
8471         int length = 0;
8472         mutex_lock(&priv->mutex);
8473         if (wrqu->essid.flags && wrqu->essid.length) {
8474                 length = wrqu->essid.length - 1;
8475                 essid = extra;
8476         }
8477         if (length == 0) {
8478                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
8479                 if ((priv->config & CFG_STATIC_ESSID) &&
8480                     !(priv->status & (STATUS_ASSOCIATED |
8481                                       STATUS_ASSOCIATING))) {
8482                         IPW_DEBUG_ASSOC("Attempting to associate with new "
8483                                         "parameters.\n");
8484                         priv->config &= ~CFG_STATIC_ESSID;
8485                         ipw_associate(priv);
8486                 }
8487                 mutex_unlock(&priv->mutex);
8488                 return 0;
8489         }
8490
8491         length = min(length, IW_ESSID_MAX_SIZE);
8492
8493         priv->config |= CFG_STATIC_ESSID;
8494
8495         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
8496                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
8497                 mutex_unlock(&priv->mutex);
8498                 return 0;
8499         }
8500
8501         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
8502                      length);
8503
8504         priv->essid_len = length;
8505         memcpy(priv->essid, essid, priv->essid_len);
8506
8507         /* Network configuration changed -- force [re]association */
8508         IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
8509         if (!ipw_disassociate(priv))
8510                 ipw_associate(priv);
8511
8512         mutex_unlock(&priv->mutex);
8513         return 0;
8514 }
8515
8516 static int ipw_wx_get_essid(struct net_device *dev,
8517                             struct iw_request_info *info,
8518                             union iwreq_data *wrqu, char *extra)
8519 {
8520         struct ipw_priv *priv = ieee80211_priv(dev);
8521
8522         /* If we are associated, trying to associate, or have a statically
8523          * configured ESSID then return that; otherwise return ANY */
8524         mutex_lock(&priv->mutex);
8525         if (priv->config & CFG_STATIC_ESSID ||
8526             priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
8527                 IPW_DEBUG_WX("Getting essid: '%s'\n",
8528                              escape_essid(priv->essid, priv->essid_len));
8529                 memcpy(extra, priv->essid, priv->essid_len);
8530                 wrqu->essid.length = priv->essid_len;
8531                 wrqu->essid.flags = 1;  /* active */
8532         } else {
8533                 IPW_DEBUG_WX("Getting essid: ANY\n");
8534                 wrqu->essid.length = 0;
8535                 wrqu->essid.flags = 0;  /* active */
8536         }
8537         mutex_unlock(&priv->mutex);
8538         return 0;
8539 }
8540
8541 static int ipw_wx_set_nick(struct net_device *dev,
8542                            struct iw_request_info *info,
8543                            union iwreq_data *wrqu, char *extra)
8544 {
8545         struct ipw_priv *priv = ieee80211_priv(dev);
8546
8547         IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
8548         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
8549                 return -E2BIG;
8550         mutex_lock(&priv->mutex);
8551         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
8552         memset(priv->nick, 0, sizeof(priv->nick));
8553         memcpy(priv->nick, extra, wrqu->data.length);
8554         IPW_DEBUG_TRACE("<<\n");
8555         mutex_unlock(&priv->mutex);
8556         return 0;
8557
8558 }
8559
8560 static int ipw_wx_get_nick(struct net_device *dev,
8561                            struct iw_request_info *info,
8562                            union iwreq_data *wrqu, char *extra)
8563 {
8564         struct ipw_priv *priv = ieee80211_priv(dev);
8565         IPW_DEBUG_WX("Getting nick\n");
8566         mutex_lock(&priv->mutex);
8567         wrqu->data.length = strlen(priv->nick) + 1;
8568         memcpy(extra, priv->nick, wrqu->data.length);
8569         wrqu->data.flags = 1;   /* active */
8570         mutex_unlock(&priv->mutex);
8571         return 0;
8572 }
8573
8574 static int ipw_wx_set_sens(struct net_device *dev,
8575                             struct iw_request_info *info,
8576                             union iwreq_data *wrqu, char *extra)
8577 {
8578         struct ipw_priv *priv = ieee80211_priv(dev);
8579         int err = 0;
8580
8581         IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
8582         IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
8583         mutex_lock(&priv->mutex);
8584
8585         if (wrqu->sens.fixed == 0)
8586         {
8587                 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8588                 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8589                 goto out;
8590         }
8591         if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
8592             (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
8593                 err = -EINVAL;
8594                 goto out;
8595         }
8596
8597         priv->roaming_threshold = wrqu->sens.value;
8598         priv->disassociate_threshold = 3*wrqu->sens.value;
8599       out:
8600         mutex_unlock(&priv->mutex);
8601         return err;
8602 }
8603
8604 static int ipw_wx_get_sens(struct net_device *dev,
8605                             struct iw_request_info *info,
8606                             union iwreq_data *wrqu, char *extra)
8607 {
8608         struct ipw_priv *priv = ieee80211_priv(dev);
8609         mutex_lock(&priv->mutex);
8610         wrqu->sens.fixed = 1;
8611         wrqu->sens.value = priv->roaming_threshold;
8612         mutex_unlock(&priv->mutex);
8613
8614         IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
8615                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8616
8617         return 0;
8618 }
8619
8620 static int ipw_wx_set_rate(struct net_device *dev,
8621                            struct iw_request_info *info,
8622                            union iwreq_data *wrqu, char *extra)
8623 {
8624         /* TODO: We should use semaphores or locks for access to priv */
8625         struct ipw_priv *priv = ieee80211_priv(dev);
8626         u32 target_rate = wrqu->bitrate.value;
8627         u32 fixed, mask;
8628
8629         /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
8630         /* value = X, fixed = 1 means only rate X */
8631         /* value = X, fixed = 0 means all rates lower equal X */
8632
8633         if (target_rate == -1) {
8634                 fixed = 0;
8635                 mask = IEEE80211_DEFAULT_RATES_MASK;
8636                 /* Now we should reassociate */
8637                 goto apply;
8638         }
8639
8640         mask = 0;
8641         fixed = wrqu->bitrate.fixed;
8642
8643         if (target_rate == 1000000 || !fixed)
8644                 mask |= IEEE80211_CCK_RATE_1MB_MASK;
8645         if (target_rate == 1000000)
8646                 goto apply;
8647
8648         if (target_rate == 2000000 || !fixed)
8649                 mask |= IEEE80211_CCK_RATE_2MB_MASK;
8650         if (target_rate == 2000000)
8651                 goto apply;
8652
8653         if (target_rate == 5500000 || !fixed)
8654                 mask |= IEEE80211_CCK_RATE_5MB_MASK;
8655         if (target_rate == 5500000)
8656                 goto apply;
8657
8658         if (target_rate == 6000000 || !fixed)
8659                 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
8660         if (target_rate == 6000000)
8661                 goto apply;
8662
8663         if (target_rate == 9000000 || !fixed)
8664                 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
8665         if (target_rate == 9000000)
8666                 goto apply;
8667
8668         if (target_rate == 11000000 || !fixed)
8669                 mask |= IEEE80211_CCK_RATE_11MB_MASK;
8670         if (target_rate == 11000000)
8671                 goto apply;
8672
8673         if (target_rate == 12000000 || !fixed)
8674                 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
8675         if (target_rate == 12000000)
8676                 goto apply;
8677
8678         if (target_rate == 18000000 || !fixed)
8679                 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
8680         if (target_rate == 18000000)
8681                 goto apply;
8682
8683         if (target_rate == 24000000 || !fixed)
8684                 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
8685         if (target_rate == 24000000)
8686                 goto apply;
8687
8688         if (target_rate == 36000000 || !fixed)
8689                 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
8690         if (target_rate == 36000000)
8691                 goto apply;
8692
8693         if (target_rate == 48000000 || !fixed)
8694                 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
8695         if (target_rate == 48000000)
8696                 goto apply;
8697
8698         if (target_rate == 54000000 || !fixed)
8699                 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
8700         if (target_rate == 54000000)
8701                 goto apply;
8702
8703         IPW_DEBUG_WX("invalid rate specified, returning error\n");
8704         return -EINVAL;
8705
8706       apply:
8707         IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
8708                      mask, fixed ? "fixed" : "sub-rates");
8709         mutex_lock(&priv->mutex);
8710         if (mask == IEEE80211_DEFAULT_RATES_MASK) {
8711                 priv->config &= ~CFG_FIXED_RATE;
8712                 ipw_set_fixed_rate(priv, priv->ieee->mode);
8713         } else
8714                 priv->config |= CFG_FIXED_RATE;
8715
8716         if (priv->rates_mask == mask) {
8717                 IPW_DEBUG_WX("Mask set to current mask.\n");
8718                 mutex_unlock(&priv->mutex);
8719                 return 0;
8720         }
8721
8722         priv->rates_mask = mask;
8723
8724         /* Network configuration changed -- force [re]association */
8725         IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
8726         if (!ipw_disassociate(priv))
8727                 ipw_associate(priv);
8728
8729         mutex_unlock(&priv->mutex);
8730         return 0;
8731 }
8732
8733 static int ipw_wx_get_rate(struct net_device *dev,
8734                            struct iw_request_info *info,
8735                            union iwreq_data *wrqu, char *extra)
8736 {
8737         struct ipw_priv *priv = ieee80211_priv(dev);
8738         mutex_lock(&priv->mutex);
8739         wrqu->bitrate.value = priv->last_rate;
8740         mutex_unlock(&priv->mutex);
8741         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
8742         return 0;
8743 }
8744
8745 static int ipw_wx_set_rts(struct net_device *dev,
8746                           struct iw_request_info *info,
8747                           union iwreq_data *wrqu, char *extra)
8748 {
8749         struct ipw_priv *priv = ieee80211_priv(dev);
8750         mutex_lock(&priv->mutex);
8751         if (wrqu->rts.disabled)
8752                 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8753         else {
8754                 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
8755                     wrqu->rts.value > MAX_RTS_THRESHOLD) {
8756                         mutex_unlock(&priv->mutex);
8757                         return -EINVAL;
8758                 }
8759                 priv->rts_threshold = wrqu->rts.value;
8760         }
8761
8762         ipw_send_rts_threshold(priv, priv->rts_threshold);
8763         mutex_unlock(&priv->mutex);
8764         IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
8765         return 0;
8766 }
8767
8768 static int ipw_wx_get_rts(struct net_device *dev,
8769                           struct iw_request_info *info,
8770                           union iwreq_data *wrqu, char *extra)
8771 {
8772         struct ipw_priv *priv = ieee80211_priv(dev);
8773         mutex_lock(&priv->mutex);
8774         wrqu->rts.value = priv->rts_threshold;
8775         wrqu->rts.fixed = 0;    /* no auto select */
8776         wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
8777         mutex_unlock(&priv->mutex);
8778         IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
8779         return 0;
8780 }
8781
8782 static int ipw_wx_set_txpow(struct net_device *dev,
8783                             struct iw_request_info *info,
8784                             union iwreq_data *wrqu, char *extra)
8785 {
8786         struct ipw_priv *priv = ieee80211_priv(dev);
8787         int err = 0;
8788
8789         mutex_lock(&priv->mutex);
8790         if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
8791                 err = -EINPROGRESS;
8792                 goto out;
8793         }
8794
8795         if (!wrqu->power.fixed)
8796                 wrqu->power.value = IPW_TX_POWER_DEFAULT;
8797
8798         if (wrqu->power.flags != IW_TXPOW_DBM) {
8799                 err = -EINVAL;
8800                 goto out;
8801         }
8802
8803         if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
8804             (wrqu->power.value < IPW_TX_POWER_MIN)) {
8805                 err = -EINVAL;
8806                 goto out;
8807         }
8808
8809         priv->tx_power = wrqu->power.value;
8810         err = ipw_set_tx_power(priv);
8811       out:
8812         mutex_unlock(&priv->mutex);
8813         return err;
8814 }
8815
8816 static int ipw_wx_get_txpow(struct net_device *dev,
8817                             struct iw_request_info *info,
8818                             union iwreq_data *wrqu, char *extra)
8819 {
8820         struct ipw_priv *priv = ieee80211_priv(dev);
8821         mutex_lock(&priv->mutex);
8822         wrqu->power.value = priv->tx_power;
8823         wrqu->power.fixed = 1;
8824         wrqu->power.flags = IW_TXPOW_DBM;
8825         wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
8826         mutex_unlock(&priv->mutex);
8827
8828         IPW_DEBUG_WX("GET TX Power -> %s %d \n",
8829                      wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
8830
8831         return 0;
8832 }
8833
8834 static int ipw_wx_set_frag(struct net_device *dev,
8835                            struct iw_request_info *info,
8836                            union iwreq_data *wrqu, char *extra)
8837 {
8838         struct ipw_priv *priv = ieee80211_priv(dev);
8839         mutex_lock(&priv->mutex);
8840         if (wrqu->frag.disabled)
8841                 priv->ieee->fts = DEFAULT_FTS;
8842         else {
8843                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
8844                     wrqu->frag.value > MAX_FRAG_THRESHOLD) {
8845                         mutex_unlock(&priv->mutex);
8846                         return -EINVAL;
8847                 }
8848
8849                 priv->ieee->fts = wrqu->frag.value & ~0x1;
8850         }
8851
8852         ipw_send_frag_threshold(priv, wrqu->frag.value);
8853         mutex_unlock(&priv->mutex);
8854         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
8855         return 0;
8856 }
8857
8858 static int ipw_wx_get_frag(struct net_device *dev,
8859                            struct iw_request_info *info,
8860                            union iwreq_data *wrqu, char *extra)
8861 {
8862         struct ipw_priv *priv = ieee80211_priv(dev);
8863         mutex_lock(&priv->mutex);
8864         wrqu->frag.value = priv->ieee->fts;
8865         wrqu->frag.fixed = 0;   /* no auto select */
8866         wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
8867         mutex_unlock(&priv->mutex);
8868         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
8869
8870         return 0;
8871 }
8872
8873 static int ipw_wx_set_retry(struct net_device *dev,
8874                             struct iw_request_info *info,
8875                             union iwreq_data *wrqu, char *extra)
8876 {
8877         struct ipw_priv *priv = ieee80211_priv(dev);
8878
8879         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
8880                 return -EINVAL;
8881
8882         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
8883                 return 0;
8884
8885         if (wrqu->retry.value < 0 || wrqu->retry.value > 255)
8886                 return -EINVAL;
8887
8888         mutex_lock(&priv->mutex);
8889         if (wrqu->retry.flags & IW_RETRY_MIN)
8890                 priv->short_retry_limit = (u8) wrqu->retry.value;
8891         else if (wrqu->retry.flags & IW_RETRY_MAX)
8892                 priv->long_retry_limit = (u8) wrqu->retry.value;
8893         else {
8894                 priv->short_retry_limit = (u8) wrqu->retry.value;
8895                 priv->long_retry_limit = (u8) wrqu->retry.value;
8896         }
8897
8898         ipw_send_retry_limit(priv, priv->short_retry_limit,
8899                              priv->long_retry_limit);
8900         mutex_unlock(&priv->mutex);
8901         IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
8902                      priv->short_retry_limit, priv->long_retry_limit);
8903         return 0;
8904 }
8905
8906 static int ipw_wx_get_retry(struct net_device *dev,
8907                             struct iw_request_info *info,
8908                             union iwreq_data *wrqu, char *extra)
8909 {
8910         struct ipw_priv *priv = ieee80211_priv(dev);
8911
8912         mutex_lock(&priv->mutex);
8913         wrqu->retry.disabled = 0;
8914
8915         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
8916                 mutex_unlock(&priv->mutex);
8917                 return -EINVAL;
8918         }
8919
8920         if (wrqu->retry.flags & IW_RETRY_MAX) {
8921                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
8922                 wrqu->retry.value = priv->long_retry_limit;
8923         } else if (wrqu->retry.flags & IW_RETRY_MIN) {
8924                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MIN;
8925                 wrqu->retry.value = priv->short_retry_limit;
8926         } else {
8927                 wrqu->retry.flags = IW_RETRY_LIMIT;
8928                 wrqu->retry.value = priv->short_retry_limit;
8929         }
8930         mutex_unlock(&priv->mutex);
8931
8932         IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
8933
8934         return 0;
8935 }
8936
8937 static int ipw_request_direct_scan(struct ipw_priv *priv, char *essid,
8938                                    int essid_len)
8939 {
8940         struct ipw_scan_request_ext scan;
8941         int err = 0, scan_type;
8942
8943         if (!(priv->status & STATUS_INIT) ||
8944             (priv->status & STATUS_EXIT_PENDING))
8945                 return 0;
8946
8947         mutex_lock(&priv->mutex);
8948
8949         if (priv->status & STATUS_RF_KILL_MASK) {
8950                 IPW_DEBUG_HC("Aborting scan due to RF kill activation\n");
8951                 priv->status |= STATUS_SCAN_PENDING;
8952                 goto done;
8953         }
8954
8955         IPW_DEBUG_HC("starting request direct scan!\n");
8956
8957         if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
8958                 /* We should not sleep here; otherwise we will block most
8959                  * of the system (for instance, we hold rtnl_lock when we
8960                  * get here).
8961                  */
8962                 err = -EAGAIN;
8963                 goto done;
8964         }
8965         memset(&scan, 0, sizeof(scan));
8966
8967         if (priv->config & CFG_SPEED_SCAN)
8968                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8969                     cpu_to_le16(30);
8970         else
8971                 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
8972                     cpu_to_le16(20);
8973
8974         scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
8975             cpu_to_le16(20);
8976         scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] = cpu_to_le16(120);
8977         scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
8978
8979         scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
8980
8981         err = ipw_send_ssid(priv, essid, essid_len);
8982         if (err) {
8983                 IPW_DEBUG_HC("Attempt to send SSID command failed\n");
8984                 goto done;
8985         }
8986         scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
8987
8988         ipw_add_scan_channels(priv, &scan, scan_type);
8989
8990         err = ipw_send_scan_request_ext(priv, &scan);
8991         if (err) {
8992                 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
8993                 goto done;
8994         }
8995
8996         priv->status |= STATUS_SCANNING;
8997
8998       done:
8999         mutex_unlock(&priv->mutex);
9000         return err;
9001 }
9002
9003 static int ipw_wx_set_scan(struct net_device *dev,
9004                            struct iw_request_info *info,
9005                            union iwreq_data *wrqu, char *extra)
9006 {
9007         struct ipw_priv *priv = ieee80211_priv(dev);
9008         struct iw_scan_req *req = NULL;
9009         if (wrqu->data.length
9010             && wrqu->data.length == sizeof(struct iw_scan_req)) {
9011                 req = (struct iw_scan_req *)extra;
9012                 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9013                         ipw_request_direct_scan(priv, req->essid,
9014                                                 req->essid_len);
9015                         return 0;
9016                 }
9017         }
9018
9019         IPW_DEBUG_WX("Start scan\n");
9020
9021         queue_work(priv->workqueue, &priv->request_scan);
9022
9023         return 0;
9024 }
9025
9026 static int ipw_wx_get_scan(struct net_device *dev,
9027                            struct iw_request_info *info,
9028                            union iwreq_data *wrqu, char *extra)
9029 {
9030         struct ipw_priv *priv = ieee80211_priv(dev);
9031         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9032 }
9033
9034 static int ipw_wx_set_encode(struct net_device *dev,
9035                              struct iw_request_info *info,
9036                              union iwreq_data *wrqu, char *key)
9037 {
9038         struct ipw_priv *priv = ieee80211_priv(dev);
9039         int ret;
9040         u32 cap = priv->capability;
9041
9042         mutex_lock(&priv->mutex);
9043         ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9044
9045         /* In IBSS mode, we need to notify the firmware to update
9046          * the beacon info after we changed the capability. */
9047         if (cap != priv->capability &&
9048             priv->ieee->iw_mode == IW_MODE_ADHOC &&
9049             priv->status & STATUS_ASSOCIATED)
9050                 ipw_disassociate(priv);
9051
9052         mutex_unlock(&priv->mutex);
9053         return ret;
9054 }
9055
9056 static int ipw_wx_get_encode(struct net_device *dev,
9057                              struct iw_request_info *info,
9058                              union iwreq_data *wrqu, char *key)
9059 {
9060         struct ipw_priv *priv = ieee80211_priv(dev);
9061         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9062 }
9063
9064 static int ipw_wx_set_power(struct net_device *dev,
9065                             struct iw_request_info *info,
9066                             union iwreq_data *wrqu, char *extra)
9067 {
9068         struct ipw_priv *priv = ieee80211_priv(dev);
9069         int err;
9070         mutex_lock(&priv->mutex);
9071         if (wrqu->power.disabled) {
9072                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9073                 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9074                 if (err) {
9075                         IPW_DEBUG_WX("failed setting power mode.\n");
9076                         mutex_unlock(&priv->mutex);
9077                         return err;
9078                 }
9079                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9080                 mutex_unlock(&priv->mutex);
9081                 return 0;
9082         }
9083
9084         switch (wrqu->power.flags & IW_POWER_MODE) {
9085         case IW_POWER_ON:       /* If not specified */
9086         case IW_POWER_MODE:     /* If set all mask */
9087         case IW_POWER_ALL_R:    /* If explicitely state all */
9088                 break;
9089         default:                /* Otherwise we don't support it */
9090                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9091                              wrqu->power.flags);
9092                 mutex_unlock(&priv->mutex);
9093                 return -EOPNOTSUPP;
9094         }
9095
9096         /* If the user hasn't specified a power management mode yet, default
9097          * to BATTERY */
9098         if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9099                 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9100         else
9101                 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9102         err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9103         if (err) {
9104                 IPW_DEBUG_WX("failed setting power mode.\n");
9105                 mutex_unlock(&priv->mutex);
9106                 return err;
9107         }
9108
9109         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9110         mutex_unlock(&priv->mutex);
9111         return 0;
9112 }
9113
9114 static int ipw_wx_get_power(struct net_device *dev,
9115                             struct iw_request_info *info,
9116                             union iwreq_data *wrqu, char *extra)
9117 {
9118         struct ipw_priv *priv = ieee80211_priv(dev);
9119         mutex_lock(&priv->mutex);
9120         if (!(priv->power_mode & IPW_POWER_ENABLED))
9121                 wrqu->power.disabled = 1;
9122         else
9123                 wrqu->power.disabled = 0;
9124
9125         mutex_unlock(&priv->mutex);
9126         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9127
9128         return 0;
9129 }
9130
9131 static int ipw_wx_set_powermode(struct net_device *dev,
9132                                 struct iw_request_info *info,
9133                                 union iwreq_data *wrqu, char *extra)
9134 {
9135         struct ipw_priv *priv = ieee80211_priv(dev);
9136         int mode = *(int *)extra;
9137         int err;
9138         mutex_lock(&priv->mutex);
9139         if ((mode < 1) || (mode > IPW_POWER_LIMIT)) {
9140                 mode = IPW_POWER_AC;
9141                 priv->power_mode = mode;
9142         } else {
9143                 priv->power_mode = IPW_POWER_ENABLED | mode;
9144         }
9145
9146         if (priv->power_mode != mode) {
9147                 err = ipw_send_power_mode(priv, mode);
9148
9149                 if (err) {
9150                         IPW_DEBUG_WX("failed setting power mode.\n");
9151                         mutex_unlock(&priv->mutex);
9152                         return err;
9153                 }
9154         }
9155         mutex_unlock(&priv->mutex);
9156         return 0;
9157 }
9158
9159 #define MAX_WX_STRING 80
9160 static int ipw_wx_get_powermode(struct net_device *dev,
9161                                 struct iw_request_info *info,
9162                                 union iwreq_data *wrqu, char *extra)
9163 {
9164         struct ipw_priv *priv = ieee80211_priv(dev);
9165         int level = IPW_POWER_LEVEL(priv->power_mode);
9166         char *p = extra;
9167
9168         p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9169
9170         switch (level) {
9171         case IPW_POWER_AC:
9172                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9173                 break;
9174         case IPW_POWER_BATTERY:
9175                 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9176                 break;
9177         default:
9178                 p += snprintf(p, MAX_WX_STRING - (p - extra),
9179                               "(Timeout %dms, Period %dms)",
9180                               timeout_duration[level - 1] / 1000,
9181                               period_duration[level - 1] / 1000);
9182         }
9183
9184         if (!(priv->power_mode & IPW_POWER_ENABLED))
9185                 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9186
9187         wrqu->data.length = p - extra + 1;
9188
9189         return 0;
9190 }
9191
9192 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9193                                     struct iw_request_info *info,
9194                                     union iwreq_data *wrqu, char *extra)
9195 {
9196         struct ipw_priv *priv = ieee80211_priv(dev);
9197         int mode = *(int *)extra;
9198         u8 band = 0, modulation = 0;
9199
9200         if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9201                 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9202                 return -EINVAL;
9203         }
9204         mutex_lock(&priv->mutex);
9205         if (priv->adapter == IPW_2915ABG) {
9206                 priv->ieee->abg_true = 1;
9207                 if (mode & IEEE_A) {
9208                         band |= IEEE80211_52GHZ_BAND;
9209                         modulation |= IEEE80211_OFDM_MODULATION;
9210                 } else
9211                         priv->ieee->abg_true = 0;
9212         } else {
9213                 if (mode & IEEE_A) {
9214                         IPW_WARNING("Attempt to set 2200BG into "
9215                                     "802.11a mode\n");
9216                         mutex_unlock(&priv->mutex);
9217                         return -EINVAL;
9218                 }
9219
9220                 priv->ieee->abg_true = 0;
9221         }
9222
9223         if (mode & IEEE_B) {
9224                 band |= IEEE80211_24GHZ_BAND;
9225                 modulation |= IEEE80211_CCK_MODULATION;
9226         } else
9227                 priv->ieee->abg_true = 0;
9228
9229         if (mode & IEEE_G) {
9230                 band |= IEEE80211_24GHZ_BAND;
9231                 modulation |= IEEE80211_OFDM_MODULATION;
9232         } else
9233                 priv->ieee->abg_true = 0;
9234
9235         priv->ieee->mode = mode;
9236         priv->ieee->freq_band = band;
9237         priv->ieee->modulation = modulation;
9238         init_supported_rates(priv, &priv->rates);
9239
9240         /* Network configuration changed -- force [re]association */
9241         IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9242         if (!ipw_disassociate(priv)) {
9243                 ipw_send_supported_rates(priv, &priv->rates);
9244                 ipw_associate(priv);
9245         }
9246
9247         /* Update the band LEDs */
9248         ipw_led_band_on(priv);
9249
9250         IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9251                      mode & IEEE_A ? 'a' : '.',
9252                      mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9253         mutex_unlock(&priv->mutex);
9254         return 0;
9255 }
9256
9257 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9258                                     struct iw_request_info *info,
9259                                     union iwreq_data *wrqu, char *extra)
9260 {
9261         struct ipw_priv *priv = ieee80211_priv(dev);
9262         mutex_lock(&priv->mutex);
9263         switch (priv->ieee->mode) {
9264         case IEEE_A:
9265                 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9266                 break;
9267         case IEEE_B:
9268                 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9269                 break;
9270         case IEEE_A | IEEE_B:
9271                 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9272                 break;
9273         case IEEE_G:
9274                 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9275                 break;
9276         case IEEE_A | IEEE_G:
9277                 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9278                 break;
9279         case IEEE_B | IEEE_G:
9280                 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9281                 break;
9282         case IEEE_A | IEEE_B | IEEE_G:
9283                 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9284                 break;
9285         default:
9286                 strncpy(extra, "unknown", MAX_WX_STRING);
9287                 break;
9288         }
9289
9290         IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9291
9292         wrqu->data.length = strlen(extra) + 1;
9293         mutex_unlock(&priv->mutex);
9294
9295         return 0;
9296 }
9297
9298 static int ipw_wx_set_preamble(struct net_device *dev,
9299                                struct iw_request_info *info,
9300                                union iwreq_data *wrqu, char *extra)
9301 {
9302         struct ipw_priv *priv = ieee80211_priv(dev);
9303         int mode = *(int *)extra;
9304         mutex_lock(&priv->mutex);
9305         /* Switching from SHORT -> LONG requires a disassociation */
9306         if (mode == 1) {
9307                 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9308                         priv->config |= CFG_PREAMBLE_LONG;
9309
9310                         /* Network configuration changed -- force [re]association */
9311                         IPW_DEBUG_ASSOC
9312                             ("[re]association triggered due to preamble change.\n");
9313                         if (!ipw_disassociate(priv))
9314                                 ipw_associate(priv);
9315                 }
9316                 goto done;
9317         }
9318
9319         if (mode == 0) {
9320                 priv->config &= ~CFG_PREAMBLE_LONG;
9321                 goto done;
9322         }
9323         mutex_unlock(&priv->mutex);
9324         return -EINVAL;
9325
9326       done:
9327         mutex_unlock(&priv->mutex);
9328         return 0;
9329 }
9330
9331 static int ipw_wx_get_preamble(struct net_device *dev,
9332                                struct iw_request_info *info,
9333                                union iwreq_data *wrqu, char *extra)
9334 {
9335         struct ipw_priv *priv = ieee80211_priv(dev);
9336         mutex_lock(&priv->mutex);
9337         if (priv->config & CFG_PREAMBLE_LONG)
9338                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9339         else
9340                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9341         mutex_unlock(&priv->mutex);
9342         return 0;
9343 }
9344
9345 #ifdef CONFIG_IPW2200_MONITOR
9346 static int ipw_wx_set_monitor(struct net_device *dev,
9347                               struct iw_request_info *info,
9348                               union iwreq_data *wrqu, char *extra)
9349 {
9350         struct ipw_priv *priv = ieee80211_priv(dev);
9351         int *parms = (int *)extra;
9352         int enable = (parms[0] > 0);
9353         mutex_lock(&priv->mutex);
9354         IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9355         if (enable) {
9356                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9357 #ifdef CONFIG_IEEE80211_RADIOTAP
9358                         priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9359 #else
9360                         priv->net_dev->type = ARPHRD_IEEE80211;
9361 #endif
9362                         queue_work(priv->workqueue, &priv->adapter_restart);
9363                 }
9364
9365                 ipw_set_channel(priv, parms[1]);
9366         } else {
9367                 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9368                         mutex_unlock(&priv->mutex);
9369                         return 0;
9370                 }
9371                 priv->net_dev->type = ARPHRD_ETHER;
9372                 queue_work(priv->workqueue, &priv->adapter_restart);
9373         }
9374         mutex_unlock(&priv->mutex);
9375         return 0;
9376 }
9377
9378 #endif                          // CONFIG_IPW2200_MONITOR
9379
9380 static int ipw_wx_reset(struct net_device *dev,
9381                         struct iw_request_info *info,
9382                         union iwreq_data *wrqu, char *extra)
9383 {
9384         struct ipw_priv *priv = ieee80211_priv(dev);
9385         IPW_DEBUG_WX("RESET\n");
9386         queue_work(priv->workqueue, &priv->adapter_restart);
9387         return 0;
9388 }
9389
9390 static int ipw_wx_sw_reset(struct net_device *dev,
9391                            struct iw_request_info *info,
9392                            union iwreq_data *wrqu, char *extra)
9393 {
9394         struct ipw_priv *priv = ieee80211_priv(dev);
9395         union iwreq_data wrqu_sec = {
9396                 .encoding = {
9397                              .flags = IW_ENCODE_DISABLED,
9398                              },
9399         };
9400         int ret;
9401
9402         IPW_DEBUG_WX("SW_RESET\n");
9403
9404         mutex_lock(&priv->mutex);
9405
9406         ret = ipw_sw_reset(priv, 2);
9407         if (!ret) {
9408                 free_firmware();
9409                 ipw_adapter_restart(priv);
9410         }
9411
9412         /* The SW reset bit might have been toggled on by the 'disable'
9413          * module parameter, so take appropriate action */
9414         ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9415
9416         mutex_unlock(&priv->mutex);
9417         ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9418         mutex_lock(&priv->mutex);
9419
9420         if (!(priv->status & STATUS_RF_KILL_MASK)) {
9421                 /* Configuration likely changed -- force [re]association */
9422                 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9423                                 "reset.\n");
9424                 if (!ipw_disassociate(priv))
9425                         ipw_associate(priv);
9426         }
9427
9428         mutex_unlock(&priv->mutex);
9429
9430         return 0;
9431 }
9432
9433 /* Rebase the WE IOCTLs to zero for the handler array */
9434 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9435 static iw_handler ipw_wx_handlers[] = {
9436         IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9437         IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9438         IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9439         IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9440         IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9441         IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9442         IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9443         IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9444         IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9445         IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9446         IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9447         IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9448         IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9449         IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9450         IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9451         IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9452         IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9453         IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9454         IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9455         IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9456         IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9457         IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9458         IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9459         IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9460         IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9461         IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9462         IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9463         IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9464         IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9465         IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9466         IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9467         IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9468         IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9469         IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9470         IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9471         IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9472         IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9473         IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9474         IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9475         IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9476         IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9477 };
9478
9479 enum {
9480         IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9481         IPW_PRIV_GET_POWER,
9482         IPW_PRIV_SET_MODE,
9483         IPW_PRIV_GET_MODE,
9484         IPW_PRIV_SET_PREAMBLE,
9485         IPW_PRIV_GET_PREAMBLE,
9486         IPW_PRIV_RESET,
9487         IPW_PRIV_SW_RESET,
9488 #ifdef CONFIG_IPW2200_MONITOR
9489         IPW_PRIV_SET_MONITOR,
9490 #endif
9491 };
9492
9493 static struct iw_priv_args ipw_priv_args[] = {
9494         {
9495          .cmd = IPW_PRIV_SET_POWER,
9496          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9497          .name = "set_power"},
9498         {
9499          .cmd = IPW_PRIV_GET_POWER,
9500          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9501          .name = "get_power"},
9502         {
9503          .cmd = IPW_PRIV_SET_MODE,
9504          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9505          .name = "set_mode"},
9506         {
9507          .cmd = IPW_PRIV_GET_MODE,
9508          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
9509          .name = "get_mode"},
9510         {
9511          .cmd = IPW_PRIV_SET_PREAMBLE,
9512          .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
9513          .name = "set_preamble"},
9514         {
9515          .cmd = IPW_PRIV_GET_PREAMBLE,
9516          .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
9517          .name = "get_preamble"},
9518         {
9519          IPW_PRIV_RESET,
9520          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
9521         {
9522          IPW_PRIV_SW_RESET,
9523          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
9524 #ifdef CONFIG_IPW2200_MONITOR
9525         {
9526          IPW_PRIV_SET_MONITOR,
9527          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
9528 #endif                          /* CONFIG_IPW2200_MONITOR */
9529 };
9530
9531 static iw_handler ipw_priv_handler[] = {
9532         ipw_wx_set_powermode,
9533         ipw_wx_get_powermode,
9534         ipw_wx_set_wireless_mode,
9535         ipw_wx_get_wireless_mode,
9536         ipw_wx_set_preamble,
9537         ipw_wx_get_preamble,
9538         ipw_wx_reset,
9539         ipw_wx_sw_reset,
9540 #ifdef CONFIG_IPW2200_MONITOR
9541         ipw_wx_set_monitor,
9542 #endif
9543 };
9544
9545 static struct iw_handler_def ipw_wx_handler_def = {
9546         .standard = ipw_wx_handlers,
9547         .num_standard = ARRAY_SIZE(ipw_wx_handlers),
9548         .num_private = ARRAY_SIZE(ipw_priv_handler),
9549         .num_private_args = ARRAY_SIZE(ipw_priv_args),
9550         .private = ipw_priv_handler,
9551         .private_args = ipw_priv_args,
9552         .get_wireless_stats = ipw_get_wireless_stats,
9553 };
9554
9555 /*
9556  * Get wireless statistics.
9557  * Called by /proc/net/wireless
9558  * Also called by SIOCGIWSTATS
9559  */
9560 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
9561 {
9562         struct ipw_priv *priv = ieee80211_priv(dev);
9563         struct iw_statistics *wstats;
9564
9565         wstats = &priv->wstats;
9566
9567         /* if hw is disabled, then ipw_get_ordinal() can't be called.
9568          * netdev->get_wireless_stats seems to be called before fw is
9569          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
9570          * and associated; if not associcated, the values are all meaningless
9571          * anyway, so set them all to NULL and INVALID */
9572         if (!(priv->status & STATUS_ASSOCIATED)) {
9573                 wstats->miss.beacon = 0;
9574                 wstats->discard.retries = 0;
9575                 wstats->qual.qual = 0;
9576                 wstats->qual.level = 0;
9577                 wstats->qual.noise = 0;
9578                 wstats->qual.updated = 7;
9579                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
9580                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
9581                 return wstats;
9582         }
9583
9584         wstats->qual.qual = priv->quality;
9585         wstats->qual.level = average_value(&priv->average_rssi);
9586         wstats->qual.noise = average_value(&priv->average_noise);
9587         wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
9588             IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
9589
9590         wstats->miss.beacon = average_value(&priv->average_missed_beacons);
9591         wstats->discard.retries = priv->last_tx_failures;
9592         wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
9593
9594 /*      if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
9595         goto fail_get_ordinal;
9596         wstats->discard.retries += tx_retry; */
9597
9598         return wstats;
9599 }
9600
9601 /* net device stuff */
9602
9603 static  void init_sys_config(struct ipw_sys_config *sys_config)
9604 {
9605         memset(sys_config, 0, sizeof(struct ipw_sys_config));
9606         sys_config->bt_coexistence = 0;
9607         sys_config->answer_broadcast_ssid_probe = 0;
9608         sys_config->accept_all_data_frames = 0;
9609         sys_config->accept_non_directed_frames = 1;
9610         sys_config->exclude_unicast_unencrypted = 0;
9611         sys_config->disable_unicast_decryption = 1;
9612         sys_config->exclude_multicast_unencrypted = 0;
9613         sys_config->disable_multicast_decryption = 1;
9614         sys_config->antenna_diversity = CFG_SYS_ANTENNA_SLOW_DIV;
9615         sys_config->pass_crc_to_host = 0;       /* TODO: See if 1 gives us FCS */
9616         sys_config->dot11g_auto_detection = 0;
9617         sys_config->enable_cts_to_self = 0;
9618         sys_config->bt_coexist_collision_thr = 0;
9619         sys_config->pass_noise_stats_to_host = 1;       //1 -- fix for 256
9620         sys_config->silence_threshold = 0x1e;
9621 }
9622
9623 static int ipw_net_open(struct net_device *dev)
9624 {
9625         struct ipw_priv *priv = ieee80211_priv(dev);
9626         IPW_DEBUG_INFO("dev->open\n");
9627         /* we should be verifying the device is ready to be opened */
9628         mutex_lock(&priv->mutex);
9629         if (!(priv->status & STATUS_RF_KILL_MASK) &&
9630             (priv->status & STATUS_ASSOCIATED))
9631                 netif_start_queue(dev);
9632         mutex_unlock(&priv->mutex);
9633         return 0;
9634 }
9635
9636 static int ipw_net_stop(struct net_device *dev)
9637 {
9638         IPW_DEBUG_INFO("dev->close\n");
9639         netif_stop_queue(dev);
9640         return 0;
9641 }
9642
9643 /*
9644 todo:
9645
9646 modify to send one tfd per fragment instead of using chunking.  otherwise
9647 we need to heavily modify the ieee80211_skb_to_txb.
9648 */
9649
9650 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
9651                              int pri)
9652 {
9653         struct ieee80211_hdr_3addr *hdr = (struct ieee80211_hdr_3addr *)
9654             txb->fragments[0]->data;
9655         int i = 0;
9656         struct tfd_frame *tfd;
9657 #ifdef CONFIG_IPW_QOS
9658         int tx_id = ipw_get_tx_queue_number(priv, pri);
9659         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9660 #else
9661         struct clx2_tx_queue *txq = &priv->txq[0];
9662 #endif
9663         struct clx2_queue *q = &txq->q;
9664         u8 id, hdr_len, unicast;
9665         u16 remaining_bytes;
9666         int fc;
9667
9668         switch (priv->ieee->iw_mode) {
9669         case IW_MODE_ADHOC:
9670                 hdr_len = IEEE80211_3ADDR_LEN;
9671                 unicast = !is_multicast_ether_addr(hdr->addr1);
9672                 id = ipw_find_station(priv, hdr->addr1);
9673                 if (id == IPW_INVALID_STATION) {
9674                         id = ipw_add_station(priv, hdr->addr1);
9675                         if (id == IPW_INVALID_STATION) {
9676                                 IPW_WARNING("Attempt to send data to "
9677                                             "invalid cell: " MAC_FMT "\n",
9678                                             MAC_ARG(hdr->addr1));
9679                                 goto drop;
9680                         }
9681                 }
9682                 break;
9683
9684         case IW_MODE_INFRA:
9685         default:
9686                 unicast = !is_multicast_ether_addr(hdr->addr3);
9687                 hdr_len = IEEE80211_3ADDR_LEN;
9688                 id = 0;
9689                 break;
9690         }
9691
9692         tfd = &txq->bd[q->first_empty];
9693         txq->txb[q->first_empty] = txb;
9694         memset(tfd, 0, sizeof(*tfd));
9695         tfd->u.data.station_number = id;
9696
9697         tfd->control_flags.message_type = TX_FRAME_TYPE;
9698         tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
9699
9700         tfd->u.data.cmd_id = DINO_CMD_TX;
9701         tfd->u.data.len = cpu_to_le16(txb->payload_size);
9702         remaining_bytes = txb->payload_size;
9703
9704         if (priv->assoc_request.ieee_mode == IPW_B_MODE)
9705                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
9706         else
9707                 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
9708
9709         if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
9710                 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
9711
9712         fc = le16_to_cpu(hdr->frame_ctl);
9713         hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
9714
9715         memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
9716
9717         if (likely(unicast))
9718                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9719
9720         if (txb->encrypted && !priv->ieee->host_encrypt) {
9721                 switch (priv->ieee->sec.level) {
9722                 case SEC_LEVEL_3:
9723                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9724                             IEEE80211_FCTL_PROTECTED;
9725                         /* XXX: ACK flag must be set for CCMP even if it
9726                          * is a multicast/broadcast packet, because CCMP
9727                          * group communication encrypted by GTK is
9728                          * actually done by the AP. */
9729                         if (!unicast)
9730                                 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
9731
9732                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9733                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
9734                         tfd->u.data.key_index = 0;
9735                         tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
9736                         break;
9737                 case SEC_LEVEL_2:
9738                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9739                             IEEE80211_FCTL_PROTECTED;
9740                         tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
9741                         tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
9742                         tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
9743                         break;
9744                 case SEC_LEVEL_1:
9745                         tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
9746                             IEEE80211_FCTL_PROTECTED;
9747                         tfd->u.data.key_index = priv->ieee->tx_keyidx;
9748                         if (priv->ieee->sec.key_sizes[priv->ieee->tx_keyidx] <=
9749                             40)
9750                                 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
9751                         else
9752                                 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
9753                         break;
9754                 case SEC_LEVEL_0:
9755                         break;
9756                 default:
9757                         printk(KERN_ERR "Unknow security level %d\n",
9758                                priv->ieee->sec.level);
9759                         break;
9760                 }
9761         } else
9762                 /* No hardware encryption */
9763                 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
9764
9765 #ifdef CONFIG_IPW_QOS
9766         ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data), unicast);
9767 #endif                          /* CONFIG_IPW_QOS */
9768
9769         /* payload */
9770         tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
9771                                                  txb->nr_frags));
9772         IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
9773                        txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
9774         for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
9775                 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
9776                                i, le32_to_cpu(tfd->u.data.num_chunks),
9777                                txb->fragments[i]->len - hdr_len);
9778                 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
9779                              i, tfd->u.data.num_chunks,
9780                              txb->fragments[i]->len - hdr_len);
9781                 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
9782                            txb->fragments[i]->len - hdr_len);
9783
9784                 tfd->u.data.chunk_ptr[i] =
9785                     cpu_to_le32(pci_map_single
9786                                 (priv->pci_dev,
9787                                  txb->fragments[i]->data + hdr_len,
9788                                  txb->fragments[i]->len - hdr_len,
9789                                  PCI_DMA_TODEVICE));
9790                 tfd->u.data.chunk_len[i] =
9791                     cpu_to_le16(txb->fragments[i]->len - hdr_len);
9792         }
9793
9794         if (i != txb->nr_frags) {
9795                 struct sk_buff *skb;
9796                 u16 remaining_bytes = 0;
9797                 int j;
9798
9799                 for (j = i; j < txb->nr_frags; j++)
9800                         remaining_bytes += txb->fragments[j]->len - hdr_len;
9801
9802                 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
9803                        remaining_bytes);
9804                 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
9805                 if (skb != NULL) {
9806                         tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
9807                         for (j = i; j < txb->nr_frags; j++) {
9808                                 int size = txb->fragments[j]->len - hdr_len;
9809
9810                                 printk(KERN_INFO "Adding frag %d %d...\n",
9811                                        j, size);
9812                                 memcpy(skb_put(skb, size),
9813                                        txb->fragments[j]->data + hdr_len, size);
9814                         }
9815                         dev_kfree_skb_any(txb->fragments[i]);
9816                         txb->fragments[i] = skb;
9817                         tfd->u.data.chunk_ptr[i] =
9818                             cpu_to_le32(pci_map_single
9819                                         (priv->pci_dev, skb->data,
9820                                          tfd->u.data.chunk_len[i],
9821                                          PCI_DMA_TODEVICE));
9822
9823                         tfd->u.data.num_chunks =
9824                             cpu_to_le32(le32_to_cpu(tfd->u.data.num_chunks) +
9825                                         1);
9826                 }
9827         }
9828
9829         /* kick DMA */
9830         q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
9831         ipw_write32(priv, q->reg_w, q->first_empty);
9832
9833         if (ipw_queue_space(q) < q->high_mark)
9834                 netif_stop_queue(priv->net_dev);
9835
9836         return NETDEV_TX_OK;
9837
9838       drop:
9839         IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
9840         ieee80211_txb_free(txb);
9841         return NETDEV_TX_OK;
9842 }
9843
9844 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
9845 {
9846         struct ipw_priv *priv = ieee80211_priv(dev);
9847 #ifdef CONFIG_IPW_QOS
9848         int tx_id = ipw_get_tx_queue_number(priv, pri);
9849         struct clx2_tx_queue *txq = &priv->txq[tx_id];
9850 #else
9851         struct clx2_tx_queue *txq = &priv->txq[0];
9852 #endif                          /* CONFIG_IPW_QOS */
9853
9854         if (ipw_queue_space(&txq->q) < txq->q.high_mark)
9855                 return 1;
9856
9857         return 0;
9858 }
9859
9860 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
9861                                    struct net_device *dev, int pri)
9862 {
9863         struct ipw_priv *priv = ieee80211_priv(dev);
9864         unsigned long flags;
9865         int ret;
9866
9867         IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
9868         spin_lock_irqsave(&priv->lock, flags);
9869
9870         if (!(priv->status & STATUS_ASSOCIATED)) {
9871                 IPW_DEBUG_INFO("Tx attempt while not associated.\n");
9872                 priv->ieee->stats.tx_carrier_errors++;
9873                 netif_stop_queue(dev);
9874                 goto fail_unlock;
9875         }
9876
9877         ret = ipw_tx_skb(priv, txb, pri);
9878         if (ret == NETDEV_TX_OK)
9879                 __ipw_led_activity_on(priv);
9880         spin_unlock_irqrestore(&priv->lock, flags);
9881
9882         return ret;
9883
9884       fail_unlock:
9885         spin_unlock_irqrestore(&priv->lock, flags);
9886         return 1;
9887 }
9888
9889 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
9890 {
9891         struct ipw_priv *priv = ieee80211_priv(dev);
9892
9893         priv->ieee->stats.tx_packets = priv->tx_packets;
9894         priv->ieee->stats.rx_packets = priv->rx_packets;
9895         return &priv->ieee->stats;
9896 }
9897
9898 static void ipw_net_set_multicast_list(struct net_device *dev)
9899 {
9900
9901 }
9902
9903 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
9904 {
9905         struct ipw_priv *priv = ieee80211_priv(dev);
9906         struct sockaddr *addr = p;
9907         if (!is_valid_ether_addr(addr->sa_data))
9908                 return -EADDRNOTAVAIL;
9909         mutex_lock(&priv->mutex);
9910         priv->config |= CFG_CUSTOM_MAC;
9911         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
9912         printk(KERN_INFO "%s: Setting MAC to " MAC_FMT "\n",
9913                priv->net_dev->name, MAC_ARG(priv->mac_addr));
9914         queue_work(priv->workqueue, &priv->adapter_restart);
9915         mutex_unlock(&priv->mutex);
9916         return 0;
9917 }
9918
9919 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
9920                                     struct ethtool_drvinfo *info)
9921 {
9922         struct ipw_priv *p = ieee80211_priv(dev);
9923         char vers[64];
9924         char date[32];
9925         u32 len;
9926
9927         strcpy(info->driver, DRV_NAME);
9928         strcpy(info->version, DRV_VERSION);
9929
9930         len = sizeof(vers);
9931         ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
9932         len = sizeof(date);
9933         ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
9934
9935         snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
9936                  vers, date);
9937         strcpy(info->bus_info, pci_name(p->pci_dev));
9938         info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
9939 }
9940
9941 static u32 ipw_ethtool_get_link(struct net_device *dev)
9942 {
9943         struct ipw_priv *priv = ieee80211_priv(dev);
9944         return (priv->status & STATUS_ASSOCIATED) != 0;
9945 }
9946
9947 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
9948 {
9949         return IPW_EEPROM_IMAGE_SIZE;
9950 }
9951
9952 static int ipw_ethtool_get_eeprom(struct net_device *dev,
9953                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9954 {
9955         struct ipw_priv *p = ieee80211_priv(dev);
9956
9957         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9958                 return -EINVAL;
9959         mutex_lock(&p->mutex);
9960         memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
9961         mutex_unlock(&p->mutex);
9962         return 0;
9963 }
9964
9965 static int ipw_ethtool_set_eeprom(struct net_device *dev,
9966                                   struct ethtool_eeprom *eeprom, u8 * bytes)
9967 {
9968         struct ipw_priv *p = ieee80211_priv(dev);
9969         int i;
9970
9971         if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
9972                 return -EINVAL;
9973         mutex_lock(&p->mutex);
9974         memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
9975         for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
9976                 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
9977         mutex_unlock(&p->mutex);
9978         return 0;
9979 }
9980
9981 static struct ethtool_ops ipw_ethtool_ops = {
9982         .get_link = ipw_ethtool_get_link,
9983         .get_drvinfo = ipw_ethtool_get_drvinfo,
9984         .get_eeprom_len = ipw_ethtool_get_eeprom_len,
9985         .get_eeprom = ipw_ethtool_get_eeprom,
9986         .set_eeprom = ipw_ethtool_set_eeprom,
9987 };
9988
9989 static irqreturn_t ipw_isr(int irq, void *data, struct pt_regs *regs)
9990 {
9991         struct ipw_priv *priv = data;
9992         u32 inta, inta_mask;
9993
9994         if (!priv)
9995                 return IRQ_NONE;
9996
9997         spin_lock(&priv->lock);
9998
9999         if (!(priv->status & STATUS_INT_ENABLED)) {
10000                 /* Shared IRQ */
10001                 goto none;
10002         }
10003
10004         inta = ipw_read32(priv, IPW_INTA_RW);
10005         inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10006
10007         if (inta == 0xFFFFFFFF) {
10008                 /* Hardware disappeared */
10009                 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10010                 goto none;
10011         }
10012
10013         if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10014                 /* Shared interrupt */
10015                 goto none;
10016         }
10017
10018         /* tell the device to stop sending interrupts */
10019         ipw_disable_interrupts(priv);
10020
10021         /* ack current interrupts */
10022         inta &= (IPW_INTA_MASK_ALL & inta_mask);
10023         ipw_write32(priv, IPW_INTA_RW, inta);
10024
10025         /* Cache INTA value for our tasklet */
10026         priv->isr_inta = inta;
10027
10028         tasklet_schedule(&priv->irq_tasklet);
10029
10030         spin_unlock(&priv->lock);
10031
10032         return IRQ_HANDLED;
10033       none:
10034         spin_unlock(&priv->lock);
10035         return IRQ_NONE;
10036 }
10037
10038 static void ipw_rf_kill(void *adapter)
10039 {
10040         struct ipw_priv *priv = adapter;
10041         unsigned long flags;
10042
10043         spin_lock_irqsave(&priv->lock, flags);
10044
10045         if (rf_kill_active(priv)) {
10046                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10047                 if (priv->workqueue)
10048                         queue_delayed_work(priv->workqueue,
10049                                            &priv->rf_kill, 2 * HZ);
10050                 goto exit_unlock;
10051         }
10052
10053         /* RF Kill is now disabled, so bring the device back up */
10054
10055         if (!(priv->status & STATUS_RF_KILL_MASK)) {
10056                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10057                                   "device\n");
10058
10059                 /* we can not do an adapter restart while inside an irq lock */
10060                 queue_work(priv->workqueue, &priv->adapter_restart);
10061         } else
10062                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10063                                   "enabled\n");
10064
10065       exit_unlock:
10066         spin_unlock_irqrestore(&priv->lock, flags);
10067 }
10068
10069 static void ipw_bg_rf_kill(void *data)
10070 {
10071         struct ipw_priv *priv = data;
10072         mutex_lock(&priv->mutex);
10073         ipw_rf_kill(data);
10074         mutex_unlock(&priv->mutex);
10075 }
10076
10077 static void ipw_link_up(struct ipw_priv *priv)
10078 {
10079         priv->last_seq_num = -1;
10080         priv->last_frag_num = -1;
10081         priv->last_packet_time = 0;
10082
10083         netif_carrier_on(priv->net_dev);
10084         if (netif_queue_stopped(priv->net_dev)) {
10085                 IPW_DEBUG_NOTIF("waking queue\n");
10086                 netif_wake_queue(priv->net_dev);
10087         } else {
10088                 IPW_DEBUG_NOTIF("starting queue\n");
10089                 netif_start_queue(priv->net_dev);
10090         }
10091
10092         cancel_delayed_work(&priv->request_scan);
10093         ipw_reset_stats(priv);
10094         /* Ensure the rate is updated immediately */
10095         priv->last_rate = ipw_get_current_rate(priv);
10096         ipw_gather_stats(priv);
10097         ipw_led_link_up(priv);
10098         notify_wx_assoc_event(priv);
10099
10100         if (priv->config & CFG_BACKGROUND_SCAN)
10101                 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10102 }
10103
10104 static void ipw_bg_link_up(void *data)
10105 {
10106         struct ipw_priv *priv = data;
10107         mutex_lock(&priv->mutex);
10108         ipw_link_up(data);
10109         mutex_unlock(&priv->mutex);
10110 }
10111
10112 static void ipw_link_down(struct ipw_priv *priv)
10113 {
10114         ipw_led_link_down(priv);
10115         netif_carrier_off(priv->net_dev);
10116         netif_stop_queue(priv->net_dev);
10117         notify_wx_assoc_event(priv);
10118
10119         /* Cancel any queued work ... */
10120         cancel_delayed_work(&priv->request_scan);
10121         cancel_delayed_work(&priv->adhoc_check);
10122         cancel_delayed_work(&priv->gather_stats);
10123
10124         ipw_reset_stats(priv);
10125
10126         if (!(priv->status & STATUS_EXIT_PENDING)) {
10127                 /* Queue up another scan... */
10128                 queue_work(priv->workqueue, &priv->request_scan);
10129         }
10130 }
10131
10132 static void ipw_bg_link_down(void *data)
10133 {
10134         struct ipw_priv *priv = data;
10135         mutex_lock(&priv->mutex);
10136         ipw_link_down(data);
10137         mutex_unlock(&priv->mutex);
10138 }
10139
10140 static int ipw_setup_deferred_work(struct ipw_priv *priv)
10141 {
10142         int ret = 0;
10143
10144         priv->workqueue = create_workqueue(DRV_NAME);
10145         init_waitqueue_head(&priv->wait_command_queue);
10146         init_waitqueue_head(&priv->wait_state);
10147
10148         INIT_WORK(&priv->adhoc_check, ipw_bg_adhoc_check, priv);
10149         INIT_WORK(&priv->associate, ipw_bg_associate, priv);
10150         INIT_WORK(&priv->disassociate, ipw_bg_disassociate, priv);
10151         INIT_WORK(&priv->system_config, ipw_system_config, priv);
10152         INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish, priv);
10153         INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart, priv);
10154         INIT_WORK(&priv->rf_kill, ipw_bg_rf_kill, priv);
10155         INIT_WORK(&priv->up, (void (*)(void *))ipw_bg_up, priv);
10156         INIT_WORK(&priv->down, (void (*)(void *))ipw_bg_down, priv);
10157         INIT_WORK(&priv->request_scan,
10158                   (void (*)(void *))ipw_request_scan, priv);
10159         INIT_WORK(&priv->gather_stats,
10160                   (void (*)(void *))ipw_bg_gather_stats, priv);
10161         INIT_WORK(&priv->abort_scan, (void (*)(void *))ipw_bg_abort_scan, priv);
10162         INIT_WORK(&priv->roam, ipw_bg_roam, priv);
10163         INIT_WORK(&priv->scan_check, ipw_bg_scan_check, priv);
10164         INIT_WORK(&priv->link_up, (void (*)(void *))ipw_bg_link_up, priv);
10165         INIT_WORK(&priv->link_down, (void (*)(void *))ipw_bg_link_down, priv);
10166         INIT_WORK(&priv->led_link_on, (void (*)(void *))ipw_bg_led_link_on,
10167                   priv);
10168         INIT_WORK(&priv->led_link_off, (void (*)(void *))ipw_bg_led_link_off,
10169                   priv);
10170         INIT_WORK(&priv->led_act_off, (void (*)(void *))ipw_bg_led_activity_off,
10171                   priv);
10172         INIT_WORK(&priv->merge_networks,
10173                   (void (*)(void *))ipw_merge_adhoc_network, priv);
10174
10175 #ifdef CONFIG_IPW_QOS
10176         INIT_WORK(&priv->qos_activate, (void (*)(void *))ipw_bg_qos_activate,
10177                   priv);
10178 #endif                          /* CONFIG_IPW_QOS */
10179
10180         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10181                      ipw_irq_tasklet, (unsigned long)priv);
10182
10183         return ret;
10184 }
10185
10186 static void shim__set_security(struct net_device *dev,
10187                                struct ieee80211_security *sec)
10188 {
10189         struct ipw_priv *priv = ieee80211_priv(dev);
10190         int i;
10191         for (i = 0; i < 4; i++) {
10192                 if (sec->flags & (1 << i)) {
10193                         priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10194                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10195                         if (sec->key_sizes[i] == 0)
10196                                 priv->ieee->sec.flags &= ~(1 << i);
10197                         else {
10198                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10199                                        sec->key_sizes[i]);
10200                                 priv->ieee->sec.flags |= (1 << i);
10201                         }
10202                         priv->status |= STATUS_SECURITY_UPDATED;
10203                 } else if (sec->level != SEC_LEVEL_1)
10204                         priv->ieee->sec.flags &= ~(1 << i);
10205         }
10206
10207         if (sec->flags & SEC_ACTIVE_KEY) {
10208                 if (sec->active_key <= 3) {
10209                         priv->ieee->sec.active_key = sec->active_key;
10210                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10211                 } else
10212                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10213                 priv->status |= STATUS_SECURITY_UPDATED;
10214         } else
10215                 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10216
10217         if ((sec->flags & SEC_AUTH_MODE) &&
10218             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10219                 priv->ieee->sec.auth_mode = sec->auth_mode;
10220                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10221                 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10222                         priv->capability |= CAP_SHARED_KEY;
10223                 else
10224                         priv->capability &= ~CAP_SHARED_KEY;
10225                 priv->status |= STATUS_SECURITY_UPDATED;
10226         }
10227
10228         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10229                 priv->ieee->sec.flags |= SEC_ENABLED;
10230                 priv->ieee->sec.enabled = sec->enabled;
10231                 priv->status |= STATUS_SECURITY_UPDATED;
10232                 if (sec->enabled)
10233                         priv->capability |= CAP_PRIVACY_ON;
10234                 else
10235                         priv->capability &= ~CAP_PRIVACY_ON;
10236         }
10237
10238         if (sec->flags & SEC_ENCRYPT)
10239                 priv->ieee->sec.encrypt = sec->encrypt;
10240
10241         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10242                 priv->ieee->sec.level = sec->level;
10243                 priv->ieee->sec.flags |= SEC_LEVEL;
10244                 priv->status |= STATUS_SECURITY_UPDATED;
10245         }
10246
10247         if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10248                 ipw_set_hwcrypto_keys(priv);
10249
10250         /* To match current functionality of ipw2100 (which works well w/
10251          * various supplicants, we don't force a disassociate if the
10252          * privacy capability changes ... */
10253 #if 0
10254         if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10255             (((priv->assoc_request.capability &
10256                WLAN_CAPABILITY_PRIVACY) && !sec->enabled) ||
10257              (!(priv->assoc_request.capability &
10258                 WLAN_CAPABILITY_PRIVACY) && sec->enabled))) {
10259                 IPW_DEBUG_ASSOC("Disassociating due to capability "
10260                                 "change.\n");
10261                 ipw_disassociate(priv);
10262         }
10263 #endif
10264 }
10265
10266 static int init_supported_rates(struct ipw_priv *priv,
10267                                 struct ipw_supported_rates *rates)
10268 {
10269         /* TODO: Mask out rates based on priv->rates_mask */
10270
10271         memset(rates, 0, sizeof(*rates));
10272         /* configure supported rates */
10273         switch (priv->ieee->freq_band) {
10274         case IEEE80211_52GHZ_BAND:
10275                 rates->ieee_mode = IPW_A_MODE;
10276                 rates->purpose = IPW_RATE_CAPABILITIES;
10277                 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10278                                         IEEE80211_OFDM_DEFAULT_RATES_MASK);
10279                 break;
10280
10281         default:                /* Mixed or 2.4Ghz */
10282                 rates->ieee_mode = IPW_G_MODE;
10283                 rates->purpose = IPW_RATE_CAPABILITIES;
10284                 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10285                                        IEEE80211_CCK_DEFAULT_RATES_MASK);
10286                 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10287                         ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10288                                                 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10289                 }
10290                 break;
10291         }
10292
10293         return 0;
10294 }
10295
10296 static int ipw_config(struct ipw_priv *priv)
10297 {
10298         /* This is only called from ipw_up, which resets/reloads the firmware
10299            so, we don't need to first disable the card before we configure
10300            it */
10301         if (ipw_set_tx_power(priv))
10302                 goto error;
10303
10304         /* initialize adapter address */
10305         if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10306                 goto error;
10307
10308         /* set basic system config settings */
10309         init_sys_config(&priv->sys_config);
10310
10311         /* Support Bluetooth if we have BT h/w on board, and user wants to.
10312          * Does not support BT priority yet (don't abort or defer our Tx) */
10313         if (bt_coexist) {
10314                 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10315
10316                 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10317                         priv->sys_config.bt_coexistence
10318                             |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10319                 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10320                         priv->sys_config.bt_coexistence
10321                             |= CFG_BT_COEXISTENCE_OOB;
10322         }
10323
10324         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10325                 priv->sys_config.answer_broadcast_ssid_probe = 1;
10326         else
10327                 priv->sys_config.answer_broadcast_ssid_probe = 0;
10328
10329         if (ipw_send_system_config(priv, &priv->sys_config))
10330                 goto error;
10331
10332         init_supported_rates(priv, &priv->rates);
10333         if (ipw_send_supported_rates(priv, &priv->rates))
10334                 goto error;
10335
10336         /* Set request-to-send threshold */
10337         if (priv->rts_threshold) {
10338                 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10339                         goto error;
10340         }
10341 #ifdef CONFIG_IPW_QOS
10342         IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10343         ipw_qos_activate(priv, NULL);
10344 #endif                          /* CONFIG_IPW_QOS */
10345
10346         if (ipw_set_random_seed(priv))
10347                 goto error;
10348
10349         /* final state transition to the RUN state */
10350         if (ipw_send_host_complete(priv))
10351                 goto error;
10352
10353         priv->status |= STATUS_INIT;
10354
10355         ipw_led_init(priv);
10356         ipw_led_radio_on(priv);
10357         priv->notif_missed_beacons = 0;
10358
10359         /* Set hardware WEP key if it is configured. */
10360         if ((priv->capability & CAP_PRIVACY_ON) &&
10361             (priv->ieee->sec.level == SEC_LEVEL_1) &&
10362             !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10363                 ipw_set_hwcrypto_keys(priv);
10364
10365         return 0;
10366
10367       error:
10368         return -EIO;
10369 }
10370
10371 /*
10372  * NOTE:
10373  *
10374  * These tables have been tested in conjunction with the
10375  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10376  *
10377  * Altering this values, using it on other hardware, or in geographies
10378  * not intended for resale of the above mentioned Intel adapters has
10379  * not been tested.
10380  *
10381  * Remember to update the table in README.ipw2200 when changing this
10382  * table.
10383  *
10384  */
10385 static const struct ieee80211_geo ipw_geos[] = {
10386         {                       /* Restricted */
10387          "---",
10388          .bg_channels = 11,
10389          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10390                 {2427, 4}, {2432, 5}, {2437, 6},
10391                 {2442, 7}, {2447, 8}, {2452, 9},
10392                 {2457, 10}, {2462, 11}},
10393          },
10394
10395         {                       /* Custom US/Canada */
10396          "ZZF",
10397          .bg_channels = 11,
10398          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10399                 {2427, 4}, {2432, 5}, {2437, 6},
10400                 {2442, 7}, {2447, 8}, {2452, 9},
10401                 {2457, 10}, {2462, 11}},
10402          .a_channels = 8,
10403          .a = {{5180, 36},
10404                {5200, 40},
10405                {5220, 44},
10406                {5240, 48},
10407                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10408                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10409                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10410                {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
10411          },
10412
10413         {                       /* Rest of World */
10414          "ZZD",
10415          .bg_channels = 13,
10416          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10417                 {2427, 4}, {2432, 5}, {2437, 6},
10418                 {2442, 7}, {2447, 8}, {2452, 9},
10419                 {2457, 10}, {2462, 11}, {2467, 12},
10420                 {2472, 13}},
10421          },
10422
10423         {                       /* Custom USA & Europe & High */
10424          "ZZA",
10425          .bg_channels = 11,
10426          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10427                 {2427, 4}, {2432, 5}, {2437, 6},
10428                 {2442, 7}, {2447, 8}, {2452, 9},
10429                 {2457, 10}, {2462, 11}},
10430          .a_channels = 13,
10431          .a = {{5180, 36},
10432                {5200, 40},
10433                {5220, 44},
10434                {5240, 48},
10435                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10436                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10437                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10438                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10439                {5745, 149},
10440                {5765, 153},
10441                {5785, 157},
10442                {5805, 161},
10443                {5825, 165}},
10444          },
10445
10446         {                       /* Custom NA & Europe */
10447          "ZZB",
10448          .bg_channels = 11,
10449          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10450                 {2427, 4}, {2432, 5}, {2437, 6},
10451                 {2442, 7}, {2447, 8}, {2452, 9},
10452                 {2457, 10}, {2462, 11}},
10453          .a_channels = 13,
10454          .a = {{5180, 36},
10455                {5200, 40},
10456                {5220, 44},
10457                {5240, 48},
10458                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10459                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10460                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10461                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10462                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10463                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10464                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10465                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10466                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10467          },
10468
10469         {                       /* Custom Japan */
10470          "ZZC",
10471          .bg_channels = 11,
10472          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10473                 {2427, 4}, {2432, 5}, {2437, 6},
10474                 {2442, 7}, {2447, 8}, {2452, 9},
10475                 {2457, 10}, {2462, 11}},
10476          .a_channels = 4,
10477          .a = {{5170, 34}, {5190, 38},
10478                {5210, 42}, {5230, 46}},
10479          },
10480
10481         {                       /* Custom */
10482          "ZZM",
10483          .bg_channels = 11,
10484          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10485                 {2427, 4}, {2432, 5}, {2437, 6},
10486                 {2442, 7}, {2447, 8}, {2452, 9},
10487                 {2457, 10}, {2462, 11}},
10488          },
10489
10490         {                       /* Europe */
10491          "ZZE",
10492          .bg_channels = 13,
10493          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10494                 {2427, 4}, {2432, 5}, {2437, 6},
10495                 {2442, 7}, {2447, 8}, {2452, 9},
10496                 {2457, 10}, {2462, 11}, {2467, 12},
10497                 {2472, 13}},
10498          .a_channels = 19,
10499          .a = {{5180, 36},
10500                {5200, 40},
10501                {5220, 44},
10502                {5240, 48},
10503                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10504                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10505                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10506                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10507                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10508                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10509                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10510                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10511                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10512                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10513                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10514                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10515                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10516                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10517                {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
10518          },
10519
10520         {                       /* Custom Japan */
10521          "ZZJ",
10522          .bg_channels = 14,
10523          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10524                 {2427, 4}, {2432, 5}, {2437, 6},
10525                 {2442, 7}, {2447, 8}, {2452, 9},
10526                 {2457, 10}, {2462, 11}, {2467, 12},
10527                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
10528          .a_channels = 4,
10529          .a = {{5170, 34}, {5190, 38},
10530                {5210, 42}, {5230, 46}},
10531          },
10532
10533         {                       /* Rest of World */
10534          "ZZR",
10535          .bg_channels = 14,
10536          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10537                 {2427, 4}, {2432, 5}, {2437, 6},
10538                 {2442, 7}, {2447, 8}, {2452, 9},
10539                 {2457, 10}, {2462, 11}, {2467, 12},
10540                 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
10541                              IEEE80211_CH_PASSIVE_ONLY}},
10542          },
10543
10544         {                       /* High Band */
10545          "ZZH",
10546          .bg_channels = 13,
10547          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10548                 {2427, 4}, {2432, 5}, {2437, 6},
10549                 {2442, 7}, {2447, 8}, {2452, 9},
10550                 {2457, 10}, {2462, 11},
10551                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10552                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10553          .a_channels = 4,
10554          .a = {{5745, 149}, {5765, 153},
10555                {5785, 157}, {5805, 161}},
10556          },
10557
10558         {                       /* Custom Europe */
10559          "ZZG",
10560          .bg_channels = 13,
10561          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10562                 {2427, 4}, {2432, 5}, {2437, 6},
10563                 {2442, 7}, {2447, 8}, {2452, 9},
10564                 {2457, 10}, {2462, 11},
10565                 {2467, 12}, {2472, 13}},
10566          .a_channels = 4,
10567          .a = {{5180, 36}, {5200, 40},
10568                {5220, 44}, {5240, 48}},
10569          },
10570
10571         {                       /* Europe */
10572          "ZZK",
10573          .bg_channels = 13,
10574          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10575                 {2427, 4}, {2432, 5}, {2437, 6},
10576                 {2442, 7}, {2447, 8}, {2452, 9},
10577                 {2457, 10}, {2462, 11},
10578                 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
10579                 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
10580          .a_channels = 24,
10581          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10582                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10583                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10584                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10585                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10586                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10587                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10588                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10589                {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
10590                {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
10591                {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
10592                {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
10593                {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
10594                {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
10595                {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
10596                {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
10597                {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
10598                {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
10599                {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
10600                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10601                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10602                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10603                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10604                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10605          },
10606
10607         {                       /* Europe */
10608          "ZZL",
10609          .bg_channels = 11,
10610          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10611                 {2427, 4}, {2432, 5}, {2437, 6},
10612                 {2442, 7}, {2447, 8}, {2452, 9},
10613                 {2457, 10}, {2462, 11}},
10614          .a_channels = 13,
10615          .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
10616                {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
10617                {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
10618                {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
10619                {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10620                {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
10621                {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
10622                {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
10623                {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
10624                {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
10625                {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
10626                {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
10627                {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
10628          }
10629 };
10630
10631 #define MAX_HW_RESTARTS 5
10632 static int ipw_up(struct ipw_priv *priv)
10633 {
10634         int rc, i, j;
10635
10636         if (priv->status & STATUS_EXIT_PENDING)
10637                 return -EIO;
10638
10639         if (cmdlog && !priv->cmdlog) {
10640                 priv->cmdlog = kmalloc(sizeof(*priv->cmdlog) * cmdlog,
10641                                        GFP_KERNEL);
10642                 if (priv->cmdlog == NULL) {
10643                         IPW_ERROR("Error allocating %d command log entries.\n",
10644                                   cmdlog);
10645                 } else {
10646                         memset(priv->cmdlog, 0, sizeof(*priv->cmdlog) * cmdlog);
10647                         priv->cmdlog_len = cmdlog;
10648                 }
10649         }
10650
10651         for (i = 0; i < MAX_HW_RESTARTS; i++) {
10652                 /* Load the microcode, firmware, and eeprom.
10653                  * Also start the clocks. */
10654                 rc = ipw_load(priv);
10655                 if (rc) {
10656                         IPW_ERROR("Unable to load firmware: %d\n", rc);
10657                         return rc;
10658                 }
10659
10660                 ipw_init_ordinals(priv);
10661                 if (!(priv->config & CFG_CUSTOM_MAC))
10662                         eeprom_parse_mac(priv, priv->mac_addr);
10663                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
10664
10665                 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
10666                         if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
10667                                     ipw_geos[j].name, 3))
10668                                 break;
10669                 }
10670                 if (j == ARRAY_SIZE(ipw_geos)) {
10671                         IPW_WARNING("SKU [%c%c%c] not recognized.\n",
10672                                     priv->eeprom[EEPROM_COUNTRY_CODE + 0],
10673                                     priv->eeprom[EEPROM_COUNTRY_CODE + 1],
10674                                     priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
10675                         j = 0;
10676                 }
10677                 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
10678                         IPW_WARNING("Could not set geography.");
10679                         return 0;
10680                 }
10681
10682                 if (priv->status & STATUS_RF_KILL_SW) {
10683                         IPW_WARNING("Radio disabled by module parameter.\n");
10684                         return 0;
10685                 } else if (rf_kill_active(priv)) {
10686                         IPW_WARNING("Radio Frequency Kill Switch is On:\n"
10687                                     "Kill switch must be turned off for "
10688                                     "wireless networking to work.\n");
10689                         queue_delayed_work(priv->workqueue, &priv->rf_kill,
10690                                            2 * HZ);
10691                         return 0;
10692                 }
10693
10694                 rc = ipw_config(priv);
10695                 if (!rc) {
10696                         IPW_DEBUG_INFO("Configured device on count %i\n", i);
10697
10698                         /* If configure to try and auto-associate, kick
10699                          * off a scan. */
10700                         queue_work(priv->workqueue, &priv->request_scan);
10701
10702                         return 0;
10703                 }
10704
10705                 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
10706                 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
10707                                i, MAX_HW_RESTARTS);
10708
10709                 /* We had an error bringing up the hardware, so take it
10710                  * all the way back down so we can try again */
10711                 ipw_down(priv);
10712         }
10713
10714         /* tried to restart and config the device for as long as our
10715          * patience could withstand */
10716         IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
10717
10718         return -EIO;
10719 }
10720
10721 static void ipw_bg_up(void *data)
10722 {
10723         struct ipw_priv *priv = data;
10724         mutex_lock(&priv->mutex);
10725         ipw_up(data);
10726         mutex_unlock(&priv->mutex);
10727 }
10728
10729 static void ipw_deinit(struct ipw_priv *priv)
10730 {
10731         int i;
10732
10733         if (priv->status & STATUS_SCANNING) {
10734                 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
10735                 ipw_abort_scan(priv);
10736         }
10737
10738         if (priv->status & STATUS_ASSOCIATED) {
10739                 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
10740                 ipw_disassociate(priv);
10741         }
10742
10743         ipw_led_shutdown(priv);
10744
10745         /* Wait up to 1s for status to change to not scanning and not
10746          * associated (disassociation can take a while for a ful 802.11
10747          * exchange */
10748         for (i = 1000; i && (priv->status &
10749                              (STATUS_DISASSOCIATING |
10750                               STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
10751                 udelay(10);
10752
10753         if (priv->status & (STATUS_DISASSOCIATING |
10754                             STATUS_ASSOCIATED | STATUS_SCANNING))
10755                 IPW_DEBUG_INFO("Still associated or scanning...\n");
10756         else
10757                 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
10758
10759         /* Attempt to disable the card */
10760         ipw_send_card_disable(priv, 0);
10761
10762         priv->status &= ~STATUS_INIT;
10763 }
10764
10765 static void ipw_down(struct ipw_priv *priv)
10766 {
10767         int exit_pending = priv->status & STATUS_EXIT_PENDING;
10768
10769         priv->status |= STATUS_EXIT_PENDING;
10770
10771         if (ipw_is_init(priv))
10772                 ipw_deinit(priv);
10773
10774         /* Wipe out the EXIT_PENDING status bit if we are not actually
10775          * exiting the module */
10776         if (!exit_pending)
10777                 priv->status &= ~STATUS_EXIT_PENDING;
10778
10779         /* tell the device to stop sending interrupts */
10780         ipw_disable_interrupts(priv);
10781
10782         /* Clear all bits but the RF Kill */
10783         priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
10784         netif_carrier_off(priv->net_dev);
10785         netif_stop_queue(priv->net_dev);
10786
10787         ipw_stop_nic(priv);
10788
10789         ipw_led_radio_off(priv);
10790 }
10791
10792 static void ipw_bg_down(void *data)
10793 {
10794         struct ipw_priv *priv = data;
10795         mutex_lock(&priv->mutex);
10796         ipw_down(data);
10797         mutex_unlock(&priv->mutex);
10798 }
10799
10800 /* Called by register_netdev() */
10801 static int ipw_net_init(struct net_device *dev)
10802 {
10803         struct ipw_priv *priv = ieee80211_priv(dev);
10804         mutex_lock(&priv->mutex);
10805
10806         if (ipw_up(priv)) {
10807                 mutex_unlock(&priv->mutex);
10808                 return -EIO;
10809         }
10810
10811         mutex_unlock(&priv->mutex);
10812         return 0;
10813 }
10814
10815 /* PCI driver stuff */
10816 static struct pci_device_id card_ids[] = {
10817         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
10818         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
10819         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
10820         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
10821         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
10822         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
10823         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
10824         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
10825         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
10826         {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
10827         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
10828         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
10829         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
10830         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
10831         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
10832         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
10833         {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
10834         {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
10835         {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10836         {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
10837         {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10838         {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
10839
10840         /* required last entry */
10841         {0,}
10842 };
10843
10844 MODULE_DEVICE_TABLE(pci, card_ids);
10845
10846 static struct attribute *ipw_sysfs_entries[] = {
10847         &dev_attr_rf_kill.attr,
10848         &dev_attr_direct_dword.attr,
10849         &dev_attr_indirect_byte.attr,
10850         &dev_attr_indirect_dword.attr,
10851         &dev_attr_mem_gpio_reg.attr,
10852         &dev_attr_command_event_reg.attr,
10853         &dev_attr_nic_type.attr,
10854         &dev_attr_status.attr,
10855         &dev_attr_cfg.attr,
10856         &dev_attr_error.attr,
10857         &dev_attr_event_log.attr,
10858         &dev_attr_cmd_log.attr,
10859         &dev_attr_eeprom_delay.attr,
10860         &dev_attr_ucode_version.attr,
10861         &dev_attr_rtc.attr,
10862         &dev_attr_scan_age.attr,
10863         &dev_attr_led.attr,
10864         &dev_attr_speed_scan.attr,
10865         &dev_attr_net_stats.attr,
10866         NULL
10867 };
10868
10869 static struct attribute_group ipw_attribute_group = {
10870         .name = NULL,           /* put in device directory */
10871         .attrs = ipw_sysfs_entries,
10872 };
10873
10874 static int ipw_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
10875 {
10876         int err = 0;
10877         struct net_device *net_dev;
10878         void __iomem *base;
10879         u32 length, val;
10880         struct ipw_priv *priv;
10881         int i;
10882
10883         net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
10884         if (net_dev == NULL) {
10885                 err = -ENOMEM;
10886                 goto out;
10887         }
10888
10889         priv = ieee80211_priv(net_dev);
10890         priv->ieee = netdev_priv(net_dev);
10891
10892         priv->net_dev = net_dev;
10893         priv->pci_dev = pdev;
10894 #ifdef CONFIG_IPW2200_DEBUG
10895         ipw_debug_level = debug;
10896 #endif
10897         spin_lock_init(&priv->lock);
10898         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
10899                 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
10900
10901         mutex_init(&priv->mutex);
10902         if (pci_enable_device(pdev)) {
10903                 err = -ENODEV;
10904                 goto out_free_ieee80211;
10905         }
10906
10907         pci_set_master(pdev);
10908
10909         err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
10910         if (!err)
10911                 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
10912         if (err) {
10913                 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
10914                 goto out_pci_disable_device;
10915         }
10916
10917         pci_set_drvdata(pdev, priv);
10918
10919         err = pci_request_regions(pdev, DRV_NAME);
10920         if (err)
10921                 goto out_pci_disable_device;
10922
10923         /* We disable the RETRY_TIMEOUT register (0x41) to keep
10924          * PCI Tx retries from interfering with C3 CPU state */
10925         pci_read_config_dword(pdev, 0x40, &val);
10926         if ((val & 0x0000ff00) != 0)
10927                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
10928
10929         length = pci_resource_len(pdev, 0);
10930         priv->hw_len = length;
10931
10932         base = ioremap_nocache(pci_resource_start(pdev, 0), length);
10933         if (!base) {
10934                 err = -ENODEV;
10935                 goto out_pci_release_regions;
10936         }
10937
10938         priv->hw_base = base;
10939         IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
10940         IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
10941
10942         err = ipw_setup_deferred_work(priv);
10943         if (err) {
10944                 IPW_ERROR("Unable to setup deferred work\n");
10945                 goto out_iounmap;
10946         }
10947
10948         ipw_sw_reset(priv, 1);
10949
10950         err = request_irq(pdev->irq, ipw_isr, SA_SHIRQ, DRV_NAME, priv);
10951         if (err) {
10952                 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
10953                 goto out_destroy_workqueue;
10954         }
10955
10956         SET_MODULE_OWNER(net_dev);
10957         SET_NETDEV_DEV(net_dev, &pdev->dev);
10958
10959         mutex_lock(&priv->mutex);
10960
10961         priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
10962         priv->ieee->set_security = shim__set_security;
10963         priv->ieee->is_queue_full = ipw_net_is_queue_full;
10964
10965 #ifdef CONFIG_IPW_QOS
10966         priv->ieee->handle_probe_response = ipw_handle_beacon;
10967         priv->ieee->handle_beacon = ipw_handle_probe_response;
10968         priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
10969 #endif                          /* CONFIG_IPW_QOS */
10970
10971         priv->ieee->perfect_rssi = -20;
10972         priv->ieee->worst_rssi = -85;
10973
10974         net_dev->open = ipw_net_open;
10975         net_dev->stop = ipw_net_stop;
10976         net_dev->init = ipw_net_init;
10977         net_dev->get_stats = ipw_net_get_stats;
10978         net_dev->set_multicast_list = ipw_net_set_multicast_list;
10979         net_dev->set_mac_address = ipw_net_set_mac_address;
10980         priv->wireless_data.spy_data = &priv->ieee->spy_data;
10981         net_dev->wireless_data = &priv->wireless_data;
10982         net_dev->wireless_handlers = &ipw_wx_handler_def;
10983         net_dev->ethtool_ops = &ipw_ethtool_ops;
10984         net_dev->irq = pdev->irq;
10985         net_dev->base_addr = (unsigned long)priv->hw_base;
10986         net_dev->mem_start = pci_resource_start(pdev, 0);
10987         net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
10988
10989         err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
10990         if (err) {
10991                 IPW_ERROR("failed to create sysfs device attributes\n");
10992                 mutex_unlock(&priv->mutex);
10993                 goto out_release_irq;
10994         }
10995
10996         mutex_unlock(&priv->mutex);
10997         err = register_netdev(net_dev);
10998         if (err) {
10999                 IPW_ERROR("failed to register network device\n");
11000                 goto out_remove_sysfs;
11001         }
11002
11003         printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11004                "channels, %d 802.11a channels)\n",
11005                priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11006                priv->ieee->geo.a_channels);
11007
11008         return 0;
11009
11010       out_remove_sysfs:
11011         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11012       out_release_irq:
11013         free_irq(pdev->irq, priv);
11014       out_destroy_workqueue:
11015         destroy_workqueue(priv->workqueue);
11016         priv->workqueue = NULL;
11017       out_iounmap:
11018         iounmap(priv->hw_base);
11019       out_pci_release_regions:
11020         pci_release_regions(pdev);
11021       out_pci_disable_device:
11022         pci_disable_device(pdev);
11023         pci_set_drvdata(pdev, NULL);
11024       out_free_ieee80211:
11025         free_ieee80211(priv->net_dev);
11026       out:
11027         return err;
11028 }
11029
11030 static void ipw_pci_remove(struct pci_dev *pdev)
11031 {
11032         struct ipw_priv *priv = pci_get_drvdata(pdev);
11033         struct list_head *p, *q;
11034         int i;
11035
11036         if (!priv)
11037                 return;
11038
11039         mutex_lock(&priv->mutex);
11040
11041         priv->status |= STATUS_EXIT_PENDING;
11042         ipw_down(priv);
11043         sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11044
11045         mutex_unlock(&priv->mutex);
11046
11047         unregister_netdev(priv->net_dev);
11048
11049         if (priv->rxq) {
11050                 ipw_rx_queue_free(priv, priv->rxq);
11051                 priv->rxq = NULL;
11052         }
11053         ipw_tx_queue_free(priv);
11054
11055         if (priv->cmdlog) {
11056                 kfree(priv->cmdlog);
11057                 priv->cmdlog = NULL;
11058         }
11059         /* ipw_down will ensure that there is no more pending work
11060          * in the workqueue's, so we can safely remove them now. */
11061         cancel_delayed_work(&priv->adhoc_check);
11062         cancel_delayed_work(&priv->gather_stats);
11063         cancel_delayed_work(&priv->request_scan);
11064         cancel_delayed_work(&priv->rf_kill);
11065         cancel_delayed_work(&priv->scan_check);
11066         destroy_workqueue(priv->workqueue);
11067         priv->workqueue = NULL;
11068
11069         /* Free MAC hash list for ADHOC */
11070         for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11071                 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11072                         list_del(p);
11073                         kfree(list_entry(p, struct ipw_ibss_seq, list));
11074                 }
11075         }
11076
11077         if (priv->error) {
11078                 ipw_free_error_log(priv->error);
11079                 priv->error = NULL;
11080         }
11081
11082         free_irq(pdev->irq, priv);
11083         iounmap(priv->hw_base);
11084         pci_release_regions(pdev);
11085         pci_disable_device(pdev);
11086         pci_set_drvdata(pdev, NULL);
11087         free_ieee80211(priv->net_dev);
11088         free_firmware();
11089 }
11090
11091 #ifdef CONFIG_PM
11092 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11093 {
11094         struct ipw_priv *priv = pci_get_drvdata(pdev);
11095         struct net_device *dev = priv->net_dev;
11096
11097         printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11098
11099         /* Take down the device; powers it off, etc. */
11100         ipw_down(priv);
11101
11102         /* Remove the PRESENT state of the device */
11103         netif_device_detach(dev);
11104
11105         pci_save_state(pdev);
11106         pci_disable_device(pdev);
11107         pci_set_power_state(pdev, pci_choose_state(pdev, state));
11108
11109         return 0;
11110 }
11111
11112 static int ipw_pci_resume(struct pci_dev *pdev)
11113 {
11114         struct ipw_priv *priv = pci_get_drvdata(pdev);
11115         struct net_device *dev = priv->net_dev;
11116         u32 val;
11117
11118         printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11119
11120         pci_set_power_state(pdev, PCI_D0);
11121         pci_enable_device(pdev);
11122         pci_restore_state(pdev);
11123
11124         /*
11125          * Suspend/Resume resets the PCI configuration space, so we have to
11126          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11127          * from interfering with C3 CPU state. pci_restore_state won't help
11128          * here since it only restores the first 64 bytes pci config header.
11129          */
11130         pci_read_config_dword(pdev, 0x40, &val);
11131         if ((val & 0x0000ff00) != 0)
11132                 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11133
11134         /* Set the device back into the PRESENT state; this will also wake
11135          * the queue of needed */
11136         netif_device_attach(dev);
11137
11138         /* Bring the device back up */
11139         queue_work(priv->workqueue, &priv->up);
11140
11141         return 0;
11142 }
11143 #endif
11144
11145 /* driver initialization stuff */
11146 static struct pci_driver ipw_driver = {
11147         .name = DRV_NAME,
11148         .id_table = card_ids,
11149         .probe = ipw_pci_probe,
11150         .remove = __devexit_p(ipw_pci_remove),
11151 #ifdef CONFIG_PM
11152         .suspend = ipw_pci_suspend,
11153         .resume = ipw_pci_resume,
11154 #endif
11155 };
11156
11157 static int __init ipw_init(void)
11158 {
11159         int ret;
11160
11161         printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11162         printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11163
11164         ret = pci_module_init(&ipw_driver);
11165         if (ret) {
11166                 IPW_ERROR("Unable to initialize PCI module\n");
11167                 return ret;
11168         }
11169
11170         ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11171         if (ret) {
11172                 IPW_ERROR("Unable to create driver sysfs file\n");
11173                 pci_unregister_driver(&ipw_driver);
11174                 return ret;
11175         }
11176
11177         return ret;
11178 }
11179
11180 static void __exit ipw_exit(void)
11181 {
11182         driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11183         pci_unregister_driver(&ipw_driver);
11184 }
11185
11186 module_param(disable, int, 0444);
11187 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11188
11189 module_param(associate, int, 0444);
11190 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
11191
11192 module_param(auto_create, int, 0444);
11193 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11194
11195 module_param(led, int, 0444);
11196 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)\n");
11197
11198 #ifdef CONFIG_IPW2200_DEBUG
11199 module_param(debug, int, 0444);
11200 MODULE_PARM_DESC(debug, "debug output mask");
11201 #endif
11202
11203 module_param(channel, int, 0444);
11204 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11205
11206 #ifdef CONFIG_IPW_QOS
11207 module_param(qos_enable, int, 0444);
11208 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11209
11210 module_param(qos_burst_enable, int, 0444);
11211 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11212
11213 module_param(qos_no_ack_mask, int, 0444);
11214 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11215
11216 module_param(burst_duration_CCK, int, 0444);
11217 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11218
11219 module_param(burst_duration_OFDM, int, 0444);
11220 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11221 #endif                          /* CONFIG_IPW_QOS */
11222
11223 #ifdef CONFIG_IPW2200_MONITOR
11224 module_param(mode, int, 0444);
11225 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11226 #else
11227 module_param(mode, int, 0444);
11228 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11229 #endif
11230
11231 module_param(bt_coexist, int, 0444);
11232 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11233
11234 module_param(hwcrypto, int, 0444);
11235 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11236
11237 module_param(cmdlog, int, 0444);
11238 MODULE_PARM_DESC(cmdlog,
11239                  "allocate a ring buffer for logging firmware commands");
11240
11241 module_param(roaming, int, 0444);
11242 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11243
11244 module_exit(ipw_exit);
11245 module_init(ipw_init);