Merge branch 'upstream-jgarzik' of git://git.tuxdriver.com/git/wireless-2.6
[sfrench/cifs-2.6.git] / drivers / net / wireless / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   James P. Ketrenos <ipw2100-admin@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <jkmaline@cc.hut.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then referrs to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/config.h>
138 #include <linux/errno.h>
139 #include <linux/if_arp.h>
140 #include <linux/in6.h>
141 #include <linux/in.h>
142 #include <linux/ip.h>
143 #include <linux/kernel.h>
144 #include <linux/kmod.h>
145 #include <linux/module.h>
146 #include <linux/netdevice.h>
147 #include <linux/ethtool.h>
148 #include <linux/pci.h>
149 #include <linux/dma-mapping.h>
150 #include <linux/proc_fs.h>
151 #include <linux/skbuff.h>
152 #include <asm/uaccess.h>
153 #include <asm/io.h>
154 #define __KERNEL_SYSCALLS__
155 #include <linux/fs.h>
156 #include <linux/mm.h>
157 #include <linux/slab.h>
158 #include <linux/unistd.h>
159 #include <linux/stringify.h>
160 #include <linux/tcp.h>
161 #include <linux/types.h>
162 #include <linux/version.h>
163 #include <linux/time.h>
164 #include <linux/firmware.h>
165 #include <linux/acpi.h>
166 #include <linux/ctype.h>
167
168 #include "ipw2100.h"
169
170 #define IPW2100_VERSION "1.1.3"
171
172 #define DRV_NAME        "ipw2100"
173 #define DRV_VERSION     IPW2100_VERSION
174 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
175 #define DRV_COPYRIGHT   "Copyright(c) 2003-2005 Intel Corporation"
176
177 /* Debugging stuff */
178 #ifdef CONFIG_IPW2100_DEBUG
179 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
180 #endif
181
182 MODULE_DESCRIPTION(DRV_DESCRIPTION);
183 MODULE_VERSION(DRV_VERSION);
184 MODULE_AUTHOR(DRV_COPYRIGHT);
185 MODULE_LICENSE("GPL");
186
187 static int debug = 0;
188 static int mode = 0;
189 static int channel = 0;
190 static int associate = 1;
191 static int disable = 0;
192 #ifdef CONFIG_PM
193 static struct ipw2100_fw ipw2100_firmware;
194 #endif
195
196 #include <linux/moduleparam.h>
197 module_param(debug, int, 0444);
198 module_param(mode, int, 0444);
199 module_param(channel, int, 0444);
200 module_param(associate, int, 0444);
201 module_param(disable, int, 0444);
202
203 MODULE_PARM_DESC(debug, "debug level");
204 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
205 MODULE_PARM_DESC(channel, "channel");
206 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
207 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208
209 static u32 ipw2100_debug_level = IPW_DL_NONE;
210
211 #ifdef CONFIG_IPW2100_DEBUG
212 #define IPW_DEBUG(level, message...) \
213 do { \
214         if (ipw2100_debug_level & (level)) { \
215                 printk(KERN_DEBUG "ipw2100: %c %s ", \
216                        in_interrupt() ? 'I' : 'U',  __FUNCTION__); \
217                 printk(message); \
218         } \
219 } while (0)
220 #else
221 #define IPW_DEBUG(level, message...) do {} while (0)
222 #endif                          /* CONFIG_IPW2100_DEBUG */
223
224 #ifdef CONFIG_IPW2100_DEBUG
225 static const char *command_types[] = {
226         "undefined",
227         "unused",               /* HOST_ATTENTION */
228         "HOST_COMPLETE",
229         "unused",               /* SLEEP */
230         "unused",               /* HOST_POWER_DOWN */
231         "unused",
232         "SYSTEM_CONFIG",
233         "unused",               /* SET_IMR */
234         "SSID",
235         "MANDATORY_BSSID",
236         "AUTHENTICATION_TYPE",
237         "ADAPTER_ADDRESS",
238         "PORT_TYPE",
239         "INTERNATIONAL_MODE",
240         "CHANNEL",
241         "RTS_THRESHOLD",
242         "FRAG_THRESHOLD",
243         "POWER_MODE",
244         "TX_RATES",
245         "BASIC_TX_RATES",
246         "WEP_KEY_INFO",
247         "unused",
248         "unused",
249         "unused",
250         "unused",
251         "WEP_KEY_INDEX",
252         "WEP_FLAGS",
253         "ADD_MULTICAST",
254         "CLEAR_ALL_MULTICAST",
255         "BEACON_INTERVAL",
256         "ATIM_WINDOW",
257         "CLEAR_STATISTICS",
258         "undefined",
259         "undefined",
260         "undefined",
261         "undefined",
262         "TX_POWER_INDEX",
263         "undefined",
264         "undefined",
265         "undefined",
266         "undefined",
267         "undefined",
268         "undefined",
269         "BROADCAST_SCAN",
270         "CARD_DISABLE",
271         "PREFERRED_BSSID",
272         "SET_SCAN_OPTIONS",
273         "SCAN_DWELL_TIME",
274         "SWEEP_TABLE",
275         "AP_OR_STATION_TABLE",
276         "GROUP_ORDINALS",
277         "SHORT_RETRY_LIMIT",
278         "LONG_RETRY_LIMIT",
279         "unused",               /* SAVE_CALIBRATION */
280         "unused",               /* RESTORE_CALIBRATION */
281         "undefined",
282         "undefined",
283         "undefined",
284         "HOST_PRE_POWER_DOWN",
285         "unused",               /* HOST_INTERRUPT_COALESCING */
286         "undefined",
287         "CARD_DISABLE_PHY_OFF",
288         "MSDU_TX_RATES" "undefined",
289         "undefined",
290         "SET_STATION_STAT_BITS",
291         "CLEAR_STATIONS_STAT_BITS",
292         "LEAP_ROGUE_MODE",
293         "SET_SECURITY_INFORMATION",
294         "DISASSOCIATION_BSSID",
295         "SET_WPA_ASS_IE"
296 };
297 #endif
298
299 /* Pre-decl until we get the code solid and then we can clean it up */
300 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
301 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
302 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303
304 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
305 static void ipw2100_queues_free(struct ipw2100_priv *priv);
306 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307
308 static int ipw2100_fw_download(struct ipw2100_priv *priv,
309                                struct ipw2100_fw *fw);
310 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
311                                 struct ipw2100_fw *fw);
312 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
313                                  size_t max);
314 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
315                                     size_t max);
316 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
317                                      struct ipw2100_fw *fw);
318 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
319                                   struct ipw2100_fw *fw);
320 static void ipw2100_wx_event_work(struct ipw2100_priv *priv);
321 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
322 static struct iw_handler_def ipw2100_wx_handler_def;
323
324 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 {
326         *val = readl((void __iomem *)(dev->base_addr + reg));
327         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
328 }
329
330 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 {
332         writel(val, (void __iomem *)(dev->base_addr + reg));
333         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
334 }
335
336 static inline void read_register_word(struct net_device *dev, u32 reg,
337                                       u16 * val)
338 {
339         *val = readw((void __iomem *)(dev->base_addr + reg));
340         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
341 }
342
343 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 {
345         *val = readb((void __iomem *)(dev->base_addr + reg));
346         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
347 }
348
349 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 {
351         writew(val, (void __iomem *)(dev->base_addr + reg));
352         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
353 }
354
355 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 {
357         writeb(val, (void __iomem *)(dev->base_addr + reg));
358         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
359 }
360
361 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 {
363         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
364                        addr & IPW_REG_INDIRECT_ADDR_MASK);
365         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
366 }
367
368 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 {
370         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
371                        addr & IPW_REG_INDIRECT_ADDR_MASK);
372         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
373 }
374
375 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 {
377         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
378                        addr & IPW_REG_INDIRECT_ADDR_MASK);
379         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
380 }
381
382 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 {
384         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
385                        addr & IPW_REG_INDIRECT_ADDR_MASK);
386         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
387 }
388
389 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 {
391         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
392                        addr & IPW_REG_INDIRECT_ADDR_MASK);
393         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
394 }
395
396 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 {
398         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
399                        addr & IPW_REG_INDIRECT_ADDR_MASK);
400         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
401 }
402
403 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 {
405         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
406                        addr & IPW_REG_INDIRECT_ADDR_MASK);
407 }
408
409 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 {
411         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
412 }
413
414 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
415                                     const u8 * buf)
416 {
417         u32 aligned_addr;
418         u32 aligned_len;
419         u32 dif_len;
420         u32 i;
421
422         /* read first nibble byte by byte */
423         aligned_addr = addr & (~0x3);
424         dif_len = addr - aligned_addr;
425         if (dif_len) {
426                 /* Start reading at aligned_addr + dif_len */
427                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
428                                aligned_addr);
429                 for (i = dif_len; i < 4; i++, buf++)
430                         write_register_byte(dev,
431                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
432                                             *buf);
433
434                 len -= dif_len;
435                 aligned_addr += 4;
436         }
437
438         /* read DWs through autoincrement registers */
439         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
440         aligned_len = len & (~0x3);
441         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
442                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443
444         /* copy the last nibble */
445         dif_len = len - aligned_len;
446         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
447         for (i = 0; i < dif_len; i++, buf++)
448                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
449                                     *buf);
450 }
451
452 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
453                                    u8 * buf)
454 {
455         u32 aligned_addr;
456         u32 aligned_len;
457         u32 dif_len;
458         u32 i;
459
460         /* read first nibble byte by byte */
461         aligned_addr = addr & (~0x3);
462         dif_len = addr - aligned_addr;
463         if (dif_len) {
464                 /* Start reading at aligned_addr + dif_len */
465                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
466                                aligned_addr);
467                 for (i = dif_len; i < 4; i++, buf++)
468                         read_register_byte(dev,
469                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
470                                            buf);
471
472                 len -= dif_len;
473                 aligned_addr += 4;
474         }
475
476         /* read DWs through autoincrement registers */
477         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
478         aligned_len = len & (~0x3);
479         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
480                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481
482         /* copy the last nibble */
483         dif_len = len - aligned_len;
484         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
485         for (i = 0; i < dif_len; i++, buf++)
486                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
487 }
488
489 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 {
491         return (dev->base_addr &&
492                 (readl
493                  ((void __iomem *)(dev->base_addr +
494                                    IPW_REG_DOA_DEBUG_AREA_START))
495                  == IPW_DATA_DOA_DEBUG_VALUE));
496 }
497
498 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
499                                void *val, u32 * len)
500 {
501         struct ipw2100_ordinals *ordinals = &priv->ordinals;
502         u32 addr;
503         u32 field_info;
504         u16 field_len;
505         u16 field_count;
506         u32 total_length;
507
508         if (ordinals->table1_addr == 0) {
509                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
510                        "before they have been loaded.\n");
511                 return -EINVAL;
512         }
513
514         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
515                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
516                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517
518                         printk(KERN_WARNING DRV_NAME
519                                ": ordinal buffer length too small, need %zd\n",
520                                IPW_ORD_TAB_1_ENTRY_SIZE);
521
522                         return -EINVAL;
523                 }
524
525                 read_nic_dword(priv->net_dev,
526                                ordinals->table1_addr + (ord << 2), &addr);
527                 read_nic_dword(priv->net_dev, addr, val);
528
529                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530
531                 return 0;
532         }
533
534         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535
536                 ord -= IPW_START_ORD_TAB_2;
537
538                 /* get the address of statistic */
539                 read_nic_dword(priv->net_dev,
540                                ordinals->table2_addr + (ord << 3), &addr);
541
542                 /* get the second DW of statistics ;
543                  * two 16-bit words - first is length, second is count */
544                 read_nic_dword(priv->net_dev,
545                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
546                                &field_info);
547
548                 /* get each entry length */
549                 field_len = *((u16 *) & field_info);
550
551                 /* get number of entries */
552                 field_count = *(((u16 *) & field_info) + 1);
553
554                 /* abort if no enought memory */
555                 total_length = field_len * field_count;
556                 if (total_length > *len) {
557                         *len = total_length;
558                         return -EINVAL;
559                 }
560
561                 *len = total_length;
562                 if (!total_length)
563                         return 0;
564
565                 /* read the ordinal data from the SRAM */
566                 read_nic_memory(priv->net_dev, addr, total_length, val);
567
568                 return 0;
569         }
570
571         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
572                "in table 2\n", ord);
573
574         return -EINVAL;
575 }
576
577 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
578                                u32 * len)
579 {
580         struct ipw2100_ordinals *ordinals = &priv->ordinals;
581         u32 addr;
582
583         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
584                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
585                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
586                         IPW_DEBUG_INFO("wrong size\n");
587                         return -EINVAL;
588                 }
589
590                 read_nic_dword(priv->net_dev,
591                                ordinals->table1_addr + (ord << 2), &addr);
592
593                 write_nic_dword(priv->net_dev, addr, *val);
594
595                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596
597                 return 0;
598         }
599
600         IPW_DEBUG_INFO("wrong table\n");
601         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
602                 return -EINVAL;
603
604         return -EINVAL;
605 }
606
607 static char *snprint_line(char *buf, size_t count,
608                           const u8 * data, u32 len, u32 ofs)
609 {
610         int out, i, j, l;
611         char c;
612
613         out = snprintf(buf, count, "%08X", ofs);
614
615         for (l = 0, i = 0; i < 2; i++) {
616                 out += snprintf(buf + out, count - out, " ");
617                 for (j = 0; j < 8 && l < len; j++, l++)
618                         out += snprintf(buf + out, count - out, "%02X ",
619                                         data[(i * 8 + j)]);
620                 for (; j < 8; j++)
621                         out += snprintf(buf + out, count - out, "   ");
622         }
623
624         out += snprintf(buf + out, count - out, " ");
625         for (l = 0, i = 0; i < 2; i++) {
626                 out += snprintf(buf + out, count - out, " ");
627                 for (j = 0; j < 8 && l < len; j++, l++) {
628                         c = data[(i * 8 + j)];
629                         if (!isascii(c) || !isprint(c))
630                                 c = '.';
631
632                         out += snprintf(buf + out, count - out, "%c", c);
633                 }
634
635                 for (; j < 8; j++)
636                         out += snprintf(buf + out, count - out, " ");
637         }
638
639         return buf;
640 }
641
642 static void printk_buf(int level, const u8 * data, u32 len)
643 {
644         char line[81];
645         u32 ofs = 0;
646         if (!(ipw2100_debug_level & level))
647                 return;
648
649         while (len) {
650                 printk(KERN_DEBUG "%s\n",
651                        snprint_line(line, sizeof(line), &data[ofs],
652                                     min(len, 16U), ofs));
653                 ofs += 16;
654                 len -= min(len, 16U);
655         }
656 }
657
658 #define MAX_RESET_BACKOFF 10
659
660 static void schedule_reset(struct ipw2100_priv *priv)
661 {
662         unsigned long now = get_seconds();
663
664         /* If we haven't received a reset request within the backoff period,
665          * then we can reset the backoff interval so this reset occurs
666          * immediately */
667         if (priv->reset_backoff &&
668             (now - priv->last_reset > priv->reset_backoff))
669                 priv->reset_backoff = 0;
670
671         priv->last_reset = get_seconds();
672
673         if (!(priv->status & STATUS_RESET_PENDING)) {
674                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
675                                priv->net_dev->name, priv->reset_backoff);
676                 netif_carrier_off(priv->net_dev);
677                 netif_stop_queue(priv->net_dev);
678                 priv->status |= STATUS_RESET_PENDING;
679                 if (priv->reset_backoff)
680                         queue_delayed_work(priv->workqueue, &priv->reset_work,
681                                            priv->reset_backoff * HZ);
682                 else
683                         queue_work(priv->workqueue, &priv->reset_work);
684
685                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686                         priv->reset_backoff++;
687
688                 wake_up_interruptible(&priv->wait_command_queue);
689         } else
690                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691                                priv->net_dev->name);
692
693 }
694
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697                                    struct host_command *cmd)
698 {
699         struct list_head *element;
700         struct ipw2100_tx_packet *packet;
701         unsigned long flags;
702         int err = 0;
703
704         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705                      command_types[cmd->host_command], cmd->host_command,
706                      cmd->host_command_length);
707         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708                    cmd->host_command_length);
709
710         spin_lock_irqsave(&priv->low_lock, flags);
711
712         if (priv->fatal_error) {
713                 IPW_DEBUG_INFO
714                     ("Attempt to send command while hardware in fatal error condition.\n");
715                 err = -EIO;
716                 goto fail_unlock;
717         }
718
719         if (!(priv->status & STATUS_RUNNING)) {
720                 IPW_DEBUG_INFO
721                     ("Attempt to send command while hardware is not running.\n");
722                 err = -EIO;
723                 goto fail_unlock;
724         }
725
726         if (priv->status & STATUS_CMD_ACTIVE) {
727                 IPW_DEBUG_INFO
728                     ("Attempt to send command while another command is pending.\n");
729                 err = -EBUSY;
730                 goto fail_unlock;
731         }
732
733         if (list_empty(&priv->msg_free_list)) {
734                 IPW_DEBUG_INFO("no available msg buffers\n");
735                 goto fail_unlock;
736         }
737
738         priv->status |= STATUS_CMD_ACTIVE;
739         priv->messages_sent++;
740
741         element = priv->msg_free_list.next;
742
743         packet = list_entry(element, struct ipw2100_tx_packet, list);
744         packet->jiffy_start = jiffies;
745
746         /* initialize the firmware command packet */
747         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749         packet->info.c_struct.cmd->host_command_len_reg =
750             cmd->host_command_length;
751         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
752
753         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754                cmd->host_command_parameters,
755                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
756
757         list_del(element);
758         DEC_STAT(&priv->msg_free_stat);
759
760         list_add_tail(element, &priv->msg_pend_list);
761         INC_STAT(&priv->msg_pend_stat);
762
763         ipw2100_tx_send_commands(priv);
764         ipw2100_tx_send_data(priv);
765
766         spin_unlock_irqrestore(&priv->low_lock, flags);
767
768         /*
769          * We must wait for this command to complete before another
770          * command can be sent...  but if we wait more than 3 seconds
771          * then there is a problem.
772          */
773
774         err =
775             wait_event_interruptible_timeout(priv->wait_command_queue,
776                                              !(priv->
777                                                status & STATUS_CMD_ACTIVE),
778                                              HOST_COMPLETE_TIMEOUT);
779
780         if (err == 0) {
781                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784                 priv->status &= ~STATUS_CMD_ACTIVE;
785                 schedule_reset(priv);
786                 return -EIO;
787         }
788
789         if (priv->fatal_error) {
790                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791                        priv->net_dev->name);
792                 return -EIO;
793         }
794
795         /* !!!!! HACK TEST !!!!!
796          * When lots of debug trace statements are enabled, the driver
797          * doesn't seem to have as many firmware restart cycles...
798          *
799          * As a test, we're sticking in a 1/100s delay here */
800         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
801
802         return 0;
803
804       fail_unlock:
805         spin_unlock_irqrestore(&priv->low_lock, flags);
806
807         return err;
808 }
809
810 /*
811  * Verify the values and data access of the hardware
812  * No locks needed or used.  No functions called.
813  */
814 static int ipw2100_verify(struct ipw2100_priv *priv)
815 {
816         u32 data1, data2;
817         u32 address;
818
819         u32 val1 = 0x76543210;
820         u32 val2 = 0xFEDCBA98;
821
822         /* Domain 0 check - all values should be DOA_DEBUG */
823         for (address = IPW_REG_DOA_DEBUG_AREA_START;
824              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825                 read_register(priv->net_dev, address, &data1);
826                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827                         return -EIO;
828         }
829
830         /* Domain 1 check - use arbitrary read/write compare  */
831         for (address = 0; address < 5; address++) {
832                 /* The memory area is not used now */
833                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834                                val1);
835                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836                                val2);
837                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838                               &data1);
839                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840                               &data2);
841                 if (val1 == data1 && val2 == data2)
842                         return 0;
843         }
844
845         return -EIO;
846 }
847
848 /*
849  *
850  * Loop until the CARD_DISABLED bit is the same value as the
851  * supplied parameter
852  *
853  * TODO: See if it would be more efficient to do a wait/wake
854  *       cycle and have the completion event trigger the wakeup
855  *
856  */
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
859 {
860         int i;
861         u32 card_state;
862         u32 len = sizeof(card_state);
863         int err;
864
865         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867                                           &card_state, &len);
868                 if (err) {
869                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870                                        "failed.\n");
871                         return 0;
872                 }
873
874                 /* We'll break out if either the HW state says it is
875                  * in the state we want, or if HOST_COMPLETE command
876                  * finishes */
877                 if ((card_state == state) ||
878                     ((priv->status & STATUS_ENABLED) ?
879                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880                         if (state == IPW_HW_STATE_ENABLED)
881                                 priv->status |= STATUS_ENABLED;
882                         else
883                                 priv->status &= ~STATUS_ENABLED;
884
885                         return 0;
886                 }
887
888                 udelay(50);
889         }
890
891         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892                        state ? "DISABLED" : "ENABLED");
893         return -EIO;
894 }
895
896 /*********************************************************************
897     Procedure   :   sw_reset_and_clock
898     Purpose     :   Asserts s/w reset, asserts clock initialization
899                     and waits for clock stabilization
900  ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
902 {
903         int i;
904         u32 r;
905
906         // assert s/w reset
907         write_register(priv->net_dev, IPW_REG_RESET_REG,
908                        IPW_AUX_HOST_RESET_REG_SW_RESET);
909
910         // wait for clock stabilization
911         for (i = 0; i < 1000; i++) {
912                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
913
914                 // check clock ready bit
915                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917                         break;
918         }
919
920         if (i == 1000)
921                 return -EIO;    // TODO: better error value
922
923         /* set "initialization complete" bit to move adapter to
924          * D0 state */
925         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
927
928         /* wait for clock stabilization */
929         for (i = 0; i < 10000; i++) {
930                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
931
932                 /* check clock ready bit */
933                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935                         break;
936         }
937
938         if (i == 10000)
939                 return -EIO;    /* TODO: better error value */
940
941         /* set D0 standby bit */
942         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
945
946         return 0;
947 }
948
949 /*********************************************************************
950     Procedure   :   ipw2100_download_firmware
951     Purpose     :   Initiaze adapter after power on.
952                     The sequence is:
953                     1. assert s/w reset first!
954                     2. awake clocks & wait for clock stabilization
955                     3. hold ARC (don't ask me why...)
956                     4. load Dino ucode and reset/clock init again
957                     5. zero-out shared mem
958                     6. download f/w
959  *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
961 {
962         u32 address;
963         int err;
964
965 #ifndef CONFIG_PM
966         /* Fetch the firmware and microcode */
967         struct ipw2100_fw ipw2100_firmware;
968 #endif
969
970         if (priv->fatal_error) {
971                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972                                 "fatal error %d.  Interface must be brought down.\n",
973                                 priv->net_dev->name, priv->fatal_error);
974                 return -EINVAL;
975         }
976 #ifdef CONFIG_PM
977         if (!ipw2100_firmware.version) {
978                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979                 if (err) {
980                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981                                         priv->net_dev->name, err);
982                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
983                         goto fail;
984                 }
985         }
986 #else
987         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988         if (err) {
989                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990                                 priv->net_dev->name, err);
991                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992                 goto fail;
993         }
994 #endif
995         priv->firmware_version = ipw2100_firmware.version;
996
997         /* s/w reset and clock stabilization */
998         err = sw_reset_and_clock(priv);
999         if (err) {
1000                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001                                 priv->net_dev->name, err);
1002                 goto fail;
1003         }
1004
1005         err = ipw2100_verify(priv);
1006         if (err) {
1007                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008                                 priv->net_dev->name, err);
1009                 goto fail;
1010         }
1011
1012         /* Hold ARC */
1013         write_nic_dword(priv->net_dev,
1014                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1015
1016         /* allow ARC to run */
1017         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1018
1019         /* load microcode */
1020         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021         if (err) {
1022                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023                        priv->net_dev->name, err);
1024                 goto fail;
1025         }
1026
1027         /* release ARC */
1028         write_nic_dword(priv->net_dev,
1029                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1030
1031         /* s/w reset and clock stabilization (again!!!) */
1032         err = sw_reset_and_clock(priv);
1033         if (err) {
1034                 printk(KERN_ERR DRV_NAME
1035                        ": %s: sw_reset_and_clock failed: %d\n",
1036                        priv->net_dev->name, err);
1037                 goto fail;
1038         }
1039
1040         /* load f/w */
1041         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042         if (err) {
1043                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044                                 priv->net_dev->name, err);
1045                 goto fail;
1046         }
1047 #ifndef CONFIG_PM
1048         /*
1049          * When the .resume method of the driver is called, the other
1050          * part of the system, i.e. the ide driver could still stay in
1051          * the suspend stage. This prevents us from loading the firmware
1052          * from the disk.  --YZ
1053          */
1054
1055         /* free any storage allocated for firmware image */
1056         ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1058
1059         /* zero out Domain 1 area indirectly (Si requirement) */
1060         for (address = IPW_HOST_FW_SHARED_AREA0;
1061              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062                 write_nic_dword(priv->net_dev, address, 0);
1063         for (address = IPW_HOST_FW_SHARED_AREA1;
1064              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065                 write_nic_dword(priv->net_dev, address, 0);
1066         for (address = IPW_HOST_FW_SHARED_AREA2;
1067              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068                 write_nic_dword(priv->net_dev, address, 0);
1069         for (address = IPW_HOST_FW_SHARED_AREA3;
1070              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071                 write_nic_dword(priv->net_dev, address, 0);
1072         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074                 write_nic_dword(priv->net_dev, address, 0);
1075
1076         return 0;
1077
1078       fail:
1079         ipw2100_release_firmware(priv, &ipw2100_firmware);
1080         return err;
1081 }
1082
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1084 {
1085         if (priv->status & STATUS_INT_ENABLED)
1086                 return;
1087         priv->status |= STATUS_INT_ENABLED;
1088         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1089 }
1090
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1092 {
1093         if (!(priv->status & STATUS_INT_ENABLED))
1094                 return;
1095         priv->status &= ~STATUS_INT_ENABLED;
1096         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1097 }
1098
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1100 {
1101         struct ipw2100_ordinals *ord = &priv->ordinals;
1102
1103         IPW_DEBUG_INFO("enter\n");
1104
1105         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106                       &ord->table1_addr);
1107
1108         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109                       &ord->table2_addr);
1110
1111         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1113
1114         ord->table2_size &= 0x0000FFFF;
1115
1116         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118         IPW_DEBUG_INFO("exit\n");
1119 }
1120
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1122 {
1123         u32 reg = 0;
1124         /*
1125          * Set GPIO 3 writable by FW; GPIO 1 writable
1126          * by driver and enable clock
1127          */
1128         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129                IPW_BIT_GPIO_LED_OFF);
1130         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1131 }
1132
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1134 {
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1137
1138         unsigned short value = 0;
1139         u32 reg = 0;
1140         int i;
1141
1142         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143                 priv->status &= ~STATUS_RF_KILL_HW;
1144                 return 0;
1145         }
1146
1147         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148                 udelay(RF_KILL_CHECK_DELAY);
1149                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1151         }
1152
1153         if (value == 0)
1154                 priv->status |= STATUS_RF_KILL_HW;
1155         else
1156                 priv->status &= ~STATUS_RF_KILL_HW;
1157
1158         return (value == 0);
1159 }
1160
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1162 {
1163         u32 addr, len;
1164         u32 val;
1165
1166         /*
1167          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1168          */
1169         len = sizeof(addr);
1170         if (ipw2100_get_ordinal
1171             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173                                __LINE__);
1174                 return -EIO;
1175         }
1176
1177         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1178
1179         /*
1180          * EEPROM version is the byte at offset 0xfd in firmware
1181          * We read 4 bytes, then shift out the byte we actually want */
1182         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183         priv->eeprom_version = (val >> 24) & 0xFF;
1184         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1185
1186         /*
1187          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1188          *
1189          *  notice that the EEPROM bit is reverse polarity, i.e.
1190          *     bit = 0  signifies HW RF kill switch is supported
1191          *     bit = 1  signifies HW RF kill switch is NOT supported
1192          */
1193         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194         if (!((val >> 24) & 0x01))
1195                 priv->hw_features |= HW_FEATURE_RFKILL;
1196
1197         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1199
1200         return 0;
1201 }
1202
1203 /*
1204  * Start firmware execution after power on and intialization
1205  * The sequence is:
1206  *  1. Release ARC
1207  *  2. Wait for f/w initialization completes;
1208  */
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1210 {
1211         int i;
1212         u32 inta, inta_mask, gpio;
1213
1214         IPW_DEBUG_INFO("enter\n");
1215
1216         if (priv->status & STATUS_RUNNING)
1217                 return 0;
1218
1219         /*
1220          * Initialize the hw - drive adapter to DO state by setting
1221          * init_done bit. Wait for clk_ready bit and Download
1222          * fw & dino ucode
1223          */
1224         if (ipw2100_download_firmware(priv)) {
1225                 printk(KERN_ERR DRV_NAME
1226                        ": %s: Failed to power on the adapter.\n",
1227                        priv->net_dev->name);
1228                 return -EIO;
1229         }
1230
1231         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232          * in the firmware RBD and TBD ring queue */
1233         ipw2100_queues_initialize(priv);
1234
1235         ipw2100_hw_set_gpio(priv);
1236
1237         /* TODO -- Look at disabling interrupts here to make sure none
1238          * get fired during FW initialization */
1239
1240         /* Release ARC - clear reset bit */
1241         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1242
1243         /* wait for f/w intialization complete */
1244         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245         i = 5000;
1246         do {
1247                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248                 /* Todo... wait for sync command ... */
1249
1250                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1251
1252                 /* check "init done" bit */
1253                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254                         /* reset "init done" bit */
1255                         write_register(priv->net_dev, IPW_REG_INTA,
1256                                        IPW2100_INTA_FW_INIT_DONE);
1257                         break;
1258                 }
1259
1260                 /* check error conditions : we check these after the firmware
1261                  * check so that if there is an error, the interrupt handler
1262                  * will see it and the adapter will be reset */
1263                 if (inta &
1264                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265                         /* clear error conditions */
1266                         write_register(priv->net_dev, IPW_REG_INTA,
1267                                        IPW2100_INTA_FATAL_ERROR |
1268                                        IPW2100_INTA_PARITY_ERROR);
1269                 }
1270         } while (i--);
1271
1272         /* Clear out any pending INTAs since we aren't supposed to have
1273          * interrupts enabled at this point... */
1274         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276         inta &= IPW_INTERRUPT_MASK;
1277         /* Clear out any pending interrupts */
1278         if (inta & inta_mask)
1279                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1280
1281         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282                      i ? "SUCCESS" : "FAILED");
1283
1284         if (!i) {
1285                 printk(KERN_WARNING DRV_NAME
1286                        ": %s: Firmware did not initialize.\n",
1287                        priv->net_dev->name);
1288                 return -EIO;
1289         }
1290
1291         /* allow firmware to write to GPIO1 & GPIO3 */
1292         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1293
1294         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1295
1296         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1297
1298         /* Ready to receive commands */
1299         priv->status |= STATUS_RUNNING;
1300
1301         /* The adapter has been reset; we are not associated */
1302         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1303
1304         IPW_DEBUG_INFO("exit\n");
1305
1306         return 0;
1307 }
1308
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1310 {
1311         if (!priv->fatal_error)
1312                 return;
1313
1314         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316         priv->fatal_error = 0;
1317 }
1318
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1321 {
1322         u32 reg;
1323         int i;
1324
1325         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1326
1327         ipw2100_hw_set_gpio(priv);
1328
1329         /* Step 1. Stop Master Assert */
1330         write_register(priv->net_dev, IPW_REG_RESET_REG,
1331                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1332
1333         /* Step 2. Wait for stop Master Assert
1334          *         (not more then 50us, otherwise ret error */
1335         i = 5;
1336         do {
1337                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1339
1340                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341                         break;
1342         } while (i--);
1343
1344         priv->status &= ~STATUS_RESET_PENDING;
1345
1346         if (!i) {
1347                 IPW_DEBUG_INFO
1348                     ("exit - waited too long for master assert stop\n");
1349                 return -EIO;
1350         }
1351
1352         write_register(priv->net_dev, IPW_REG_RESET_REG,
1353                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1354
1355         /* Reset any fatal_error conditions */
1356         ipw2100_reset_fatalerror(priv);
1357
1358         /* At this point, the adapter is now stopped and disabled */
1359         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360                           STATUS_ASSOCIATED | STATUS_ENABLED);
1361
1362         return 0;
1363 }
1364
1365 /*
1366  * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1367  *
1368  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1369  *
1370  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371  * if STATUS_ASSN_LOST is sent.
1372  */
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1374 {
1375
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1377
1378         struct host_command cmd = {
1379                 .host_command = CARD_DISABLE_PHY_OFF,
1380                 .host_command_sequence = 0,
1381                 .host_command_length = 0,
1382         };
1383         int err, i;
1384         u32 val1, val2;
1385
1386         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1387
1388         /* Turn off the radio */
1389         err = ipw2100_hw_send_command(priv, &cmd);
1390         if (err)
1391                 return err;
1392
1393         for (i = 0; i < 2500; i++) {
1394                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1396
1397                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398                     (val2 & IPW2100_COMMAND_PHY_OFF))
1399                         return 0;
1400
1401                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1402         }
1403
1404         return -EIO;
1405 }
1406
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1408 {
1409         struct host_command cmd = {
1410                 .host_command = HOST_COMPLETE,
1411                 .host_command_sequence = 0,
1412                 .host_command_length = 0
1413         };
1414         int err = 0;
1415
1416         IPW_DEBUG_HC("HOST_COMPLETE\n");
1417
1418         if (priv->status & STATUS_ENABLED)
1419                 return 0;
1420
1421         down(&priv->adapter_sem);
1422
1423         if (rf_kill_active(priv)) {
1424                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425                 goto fail_up;
1426         }
1427
1428         err = ipw2100_hw_send_command(priv, &cmd);
1429         if (err) {
1430                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431                 goto fail_up;
1432         }
1433
1434         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435         if (err) {
1436                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437                                priv->net_dev->name);
1438                 goto fail_up;
1439         }
1440
1441         if (priv->stop_hang_check) {
1442                 priv->stop_hang_check = 0;
1443                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1444         }
1445
1446       fail_up:
1447         up(&priv->adapter_sem);
1448         return err;
1449 }
1450
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1452 {
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1454
1455         struct host_command cmd = {
1456                 .host_command = HOST_PRE_POWER_DOWN,
1457                 .host_command_sequence = 0,
1458                 .host_command_length = 0,
1459         };
1460         int err, i;
1461         u32 reg;
1462
1463         if (!(priv->status & STATUS_RUNNING))
1464                 return 0;
1465
1466         priv->status |= STATUS_STOPPING;
1467
1468         /* We can only shut down the card if the firmware is operational.  So,
1469          * if we haven't reset since a fatal_error, then we can not send the
1470          * shutdown commands. */
1471         if (!priv->fatal_error) {
1472                 /* First, make sure the adapter is enabled so that the PHY_OFF
1473                  * command can shut it down */
1474                 ipw2100_enable_adapter(priv);
1475
1476                 err = ipw2100_hw_phy_off(priv);
1477                 if (err)
1478                         printk(KERN_WARNING DRV_NAME
1479                                ": Error disabling radio %d\n", err);
1480
1481                 /*
1482                  * If in D0-standby mode going directly to D3 may cause a
1483                  * PCI bus violation.  Therefore we must change out of the D0
1484                  * state.
1485                  *
1486                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487                  * hardware from going into standby mode and will transition
1488                  * out of D0-standy if it is already in that state.
1489                  *
1490                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491                  * driver upon completion.  Once received, the driver can
1492                  * proceed to the D3 state.
1493                  *
1494                  * Prepare for power down command to fw.  This command would
1495                  * take HW out of D0-standby and prepare it for D3 state.
1496                  *
1497                  * Currently FW does not support event notification for this
1498                  * event. Therefore, skip waiting for it.  Just wait a fixed
1499                  * 100ms
1500                  */
1501                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1502
1503                 err = ipw2100_hw_send_command(priv, &cmd);
1504                 if (err)
1505                         printk(KERN_WARNING DRV_NAME ": "
1506                                "%s: Power down command failed: Error %d\n",
1507                                priv->net_dev->name, err);
1508                 else
1509                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1510         }
1511
1512         priv->status &= ~STATUS_ENABLED;
1513
1514         /*
1515          * Set GPIO 3 writable by FW; GPIO 1 writable
1516          * by driver and enable clock
1517          */
1518         ipw2100_hw_set_gpio(priv);
1519
1520         /*
1521          * Power down adapter.  Sequence:
1522          * 1. Stop master assert (RESET_REG[9]=1)
1523          * 2. Wait for stop master (RESET_REG[8]==1)
1524          * 3. S/w reset assert (RESET_REG[7] = 1)
1525          */
1526
1527         /* Stop master assert */
1528         write_register(priv->net_dev, IPW_REG_RESET_REG,
1529                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1530
1531         /* wait stop master not more than 50 usec.
1532          * Otherwise return error. */
1533         for (i = 5; i > 0; i--) {
1534                 udelay(10);
1535
1536                 /* Check master stop bit */
1537                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1538
1539                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540                         break;
1541         }
1542
1543         if (i == 0)
1544                 printk(KERN_WARNING DRV_NAME
1545                        ": %s: Could now power down adapter.\n",
1546                        priv->net_dev->name);
1547
1548         /* assert s/w reset */
1549         write_register(priv->net_dev, IPW_REG_RESET_REG,
1550                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1551
1552         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1553
1554         return 0;
1555 }
1556
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1558 {
1559         struct host_command cmd = {
1560                 .host_command = CARD_DISABLE,
1561                 .host_command_sequence = 0,
1562                 .host_command_length = 0
1563         };
1564         int err = 0;
1565
1566         IPW_DEBUG_HC("CARD_DISABLE\n");
1567
1568         if (!(priv->status & STATUS_ENABLED))
1569                 return 0;
1570
1571         /* Make sure we clear the associated state */
1572         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1573
1574         if (!priv->stop_hang_check) {
1575                 priv->stop_hang_check = 1;
1576                 cancel_delayed_work(&priv->hang_check);
1577         }
1578
1579         down(&priv->adapter_sem);
1580
1581         err = ipw2100_hw_send_command(priv, &cmd);
1582         if (err) {
1583                 printk(KERN_WARNING DRV_NAME
1584                        ": exit - failed to send CARD_DISABLE command\n");
1585                 goto fail_up;
1586         }
1587
1588         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589         if (err) {
1590                 printk(KERN_WARNING DRV_NAME
1591                        ": exit - card failed to change to DISABLED\n");
1592                 goto fail_up;
1593         }
1594
1595         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1596
1597       fail_up:
1598         up(&priv->adapter_sem);
1599         return err;
1600 }
1601
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1603 {
1604         struct host_command cmd = {
1605                 .host_command = SET_SCAN_OPTIONS,
1606                 .host_command_sequence = 0,
1607                 .host_command_length = 8
1608         };
1609         int err;
1610
1611         IPW_DEBUG_INFO("enter\n");
1612
1613         IPW_DEBUG_SCAN("setting scan options\n");
1614
1615         cmd.host_command_parameters[0] = 0;
1616
1617         if (!(priv->config & CFG_ASSOCIATE))
1618                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621         if (priv->config & CFG_PASSIVE_SCAN)
1622                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1623
1624         cmd.host_command_parameters[1] = priv->channel_mask;
1625
1626         err = ipw2100_hw_send_command(priv, &cmd);
1627
1628         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629                      cmd.host_command_parameters[0]);
1630
1631         return err;
1632 }
1633
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1635 {
1636         struct host_command cmd = {
1637                 .host_command = BROADCAST_SCAN,
1638                 .host_command_sequence = 0,
1639                 .host_command_length = 4
1640         };
1641         int err;
1642
1643         IPW_DEBUG_HC("START_SCAN\n");
1644
1645         cmd.host_command_parameters[0] = 0;
1646
1647         /* No scanning if in monitor mode */
1648         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649                 return 1;
1650
1651         if (priv->status & STATUS_SCANNING) {
1652                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653                 return 0;
1654         }
1655
1656         IPW_DEBUG_INFO("enter\n");
1657
1658         /* Not clearing here; doing so makes iwlist always return nothing...
1659          *
1660          * We should modify the table logic to use aging tables vs. clearing
1661          * the table on each scan start.
1662          */
1663         IPW_DEBUG_SCAN("starting scan\n");
1664
1665         priv->status |= STATUS_SCANNING;
1666         err = ipw2100_hw_send_command(priv, &cmd);
1667         if (err)
1668                 priv->status &= ~STATUS_SCANNING;
1669
1670         IPW_DEBUG_INFO("exit\n");
1671
1672         return err;
1673 }
1674
1675 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1676 {
1677         unsigned long flags;
1678         int rc = 0;
1679         u32 lock;
1680         u32 ord_len = sizeof(lock);
1681
1682         /* Quite if manually disabled. */
1683         if (priv->status & STATUS_RF_KILL_SW) {
1684                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1685                                "switch\n", priv->net_dev->name);
1686                 return 0;
1687         }
1688
1689         /* If the interrupt is enabled, turn it off... */
1690         spin_lock_irqsave(&priv->low_lock, flags);
1691         ipw2100_disable_interrupts(priv);
1692
1693         /* Reset any fatal_error conditions */
1694         ipw2100_reset_fatalerror(priv);
1695         spin_unlock_irqrestore(&priv->low_lock, flags);
1696
1697         if (priv->status & STATUS_POWERED ||
1698             (priv->status & STATUS_RESET_PENDING)) {
1699                 /* Power cycle the card ... */
1700                 if (ipw2100_power_cycle_adapter(priv)) {
1701                         printk(KERN_WARNING DRV_NAME
1702                                ": %s: Could not cycle adapter.\n",
1703                                priv->net_dev->name);
1704                         rc = 1;
1705                         goto exit;
1706                 }
1707         } else
1708                 priv->status |= STATUS_POWERED;
1709
1710         /* Load the firmware, start the clocks, etc. */
1711         if (ipw2100_start_adapter(priv)) {
1712                 printk(KERN_ERR DRV_NAME
1713                        ": %s: Failed to start the firmware.\n",
1714                        priv->net_dev->name);
1715                 rc = 1;
1716                 goto exit;
1717         }
1718
1719         ipw2100_initialize_ordinals(priv);
1720
1721         /* Determine capabilities of this particular HW configuration */
1722         if (ipw2100_get_hw_features(priv)) {
1723                 printk(KERN_ERR DRV_NAME
1724                        ": %s: Failed to determine HW features.\n",
1725                        priv->net_dev->name);
1726                 rc = 1;
1727                 goto exit;
1728         }
1729
1730         lock = LOCK_NONE;
1731         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1732                 printk(KERN_ERR DRV_NAME
1733                        ": %s: Failed to clear ordinal lock.\n",
1734                        priv->net_dev->name);
1735                 rc = 1;
1736                 goto exit;
1737         }
1738
1739         priv->status &= ~STATUS_SCANNING;
1740
1741         if (rf_kill_active(priv)) {
1742                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1743                        priv->net_dev->name);
1744
1745                 if (priv->stop_rf_kill) {
1746                         priv->stop_rf_kill = 0;
1747                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1748                 }
1749
1750                 deferred = 1;
1751         }
1752
1753         /* Turn on the interrupt so that commands can be processed */
1754         ipw2100_enable_interrupts(priv);
1755
1756         /* Send all of the commands that must be sent prior to
1757          * HOST_COMPLETE */
1758         if (ipw2100_adapter_setup(priv)) {
1759                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1760                        priv->net_dev->name);
1761                 rc = 1;
1762                 goto exit;
1763         }
1764
1765         if (!deferred) {
1766                 /* Enable the adapter - sends HOST_COMPLETE */
1767                 if (ipw2100_enable_adapter(priv)) {
1768                         printk(KERN_ERR DRV_NAME ": "
1769                                "%s: failed in call to enable adapter.\n",
1770                                priv->net_dev->name);
1771                         ipw2100_hw_stop_adapter(priv);
1772                         rc = 1;
1773                         goto exit;
1774                 }
1775
1776                 /* Start a scan . . . */
1777                 ipw2100_set_scan_options(priv);
1778                 ipw2100_start_scan(priv);
1779         }
1780
1781       exit:
1782         return rc;
1783 }
1784
1785 /* Called by register_netdev() */
1786 static int ipw2100_net_init(struct net_device *dev)
1787 {
1788         struct ipw2100_priv *priv = ieee80211_priv(dev);
1789         return ipw2100_up(priv, 1);
1790 }
1791
1792 static void ipw2100_down(struct ipw2100_priv *priv)
1793 {
1794         unsigned long flags;
1795         union iwreq_data wrqu = {
1796                 .ap_addr = {
1797                             .sa_family = ARPHRD_ETHER}
1798         };
1799         int associated = priv->status & STATUS_ASSOCIATED;
1800
1801         /* Kill the RF switch timer */
1802         if (!priv->stop_rf_kill) {
1803                 priv->stop_rf_kill = 1;
1804                 cancel_delayed_work(&priv->rf_kill);
1805         }
1806
1807         /* Kill the firmare hang check timer */
1808         if (!priv->stop_hang_check) {
1809                 priv->stop_hang_check = 1;
1810                 cancel_delayed_work(&priv->hang_check);
1811         }
1812
1813         /* Kill any pending resets */
1814         if (priv->status & STATUS_RESET_PENDING)
1815                 cancel_delayed_work(&priv->reset_work);
1816
1817         /* Make sure the interrupt is on so that FW commands will be
1818          * processed correctly */
1819         spin_lock_irqsave(&priv->low_lock, flags);
1820         ipw2100_enable_interrupts(priv);
1821         spin_unlock_irqrestore(&priv->low_lock, flags);
1822
1823         if (ipw2100_hw_stop_adapter(priv))
1824                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1825                        priv->net_dev->name);
1826
1827         /* Do not disable the interrupt until _after_ we disable
1828          * the adaptor.  Otherwise the CARD_DISABLE command will never
1829          * be ack'd by the firmware */
1830         spin_lock_irqsave(&priv->low_lock, flags);
1831         ipw2100_disable_interrupts(priv);
1832         spin_unlock_irqrestore(&priv->low_lock, flags);
1833
1834 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1835         if (priv->config & CFG_C3_DISABLED) {
1836                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1837                 acpi_set_cstate_limit(priv->cstate_limit);
1838                 priv->config &= ~CFG_C3_DISABLED;
1839         }
1840 #endif
1841
1842         /* We have to signal any supplicant if we are disassociating */
1843         if (associated)
1844                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1845
1846         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1847         netif_carrier_off(priv->net_dev);
1848         netif_stop_queue(priv->net_dev);
1849 }
1850
1851 static void ipw2100_reset_adapter(struct ipw2100_priv *priv)
1852 {
1853         unsigned long flags;
1854         union iwreq_data wrqu = {
1855                 .ap_addr = {
1856                             .sa_family = ARPHRD_ETHER}
1857         };
1858         int associated = priv->status & STATUS_ASSOCIATED;
1859
1860         spin_lock_irqsave(&priv->low_lock, flags);
1861         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1862         priv->resets++;
1863         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1864         priv->status |= STATUS_SECURITY_UPDATED;
1865
1866         /* Force a power cycle even if interface hasn't been opened
1867          * yet */
1868         cancel_delayed_work(&priv->reset_work);
1869         priv->status |= STATUS_RESET_PENDING;
1870         spin_unlock_irqrestore(&priv->low_lock, flags);
1871
1872         down(&priv->action_sem);
1873         /* stop timed checks so that they don't interfere with reset */
1874         priv->stop_hang_check = 1;
1875         cancel_delayed_work(&priv->hang_check);
1876
1877         /* We have to signal any supplicant if we are disassociating */
1878         if (associated)
1879                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1880
1881         ipw2100_up(priv, 0);
1882         up(&priv->action_sem);
1883
1884 }
1885
1886 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1887 {
1888
1889 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1890         int ret, len, essid_len;
1891         char essid[IW_ESSID_MAX_SIZE];
1892         u32 txrate;
1893         u32 chan;
1894         char *txratename;
1895         u8 bssid[ETH_ALEN];
1896
1897         /*
1898          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1899          *      an actual MAC of the AP. Seems like FW sets this
1900          *      address too late. Read it later and expose through
1901          *      /proc or schedule a later task to query and update
1902          */
1903
1904         essid_len = IW_ESSID_MAX_SIZE;
1905         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1906                                   essid, &essid_len);
1907         if (ret) {
1908                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1909                                __LINE__);
1910                 return;
1911         }
1912
1913         len = sizeof(u32);
1914         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1915         if (ret) {
1916                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1917                                __LINE__);
1918                 return;
1919         }
1920
1921         len = sizeof(u32);
1922         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1923         if (ret) {
1924                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1925                                __LINE__);
1926                 return;
1927         }
1928         len = ETH_ALEN;
1929         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1930         if (ret) {
1931                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1932                                __LINE__);
1933                 return;
1934         }
1935         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1936
1937         switch (txrate) {
1938         case TX_RATE_1_MBIT:
1939                 txratename = "1Mbps";
1940                 break;
1941         case TX_RATE_2_MBIT:
1942                 txratename = "2Mbsp";
1943                 break;
1944         case TX_RATE_5_5_MBIT:
1945                 txratename = "5.5Mbps";
1946                 break;
1947         case TX_RATE_11_MBIT:
1948                 txratename = "11Mbps";
1949                 break;
1950         default:
1951                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1952                 txratename = "unknown rate";
1953                 break;
1954         }
1955
1956         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1957                        MAC_FMT ")\n",
1958                        priv->net_dev->name, escape_essid(essid, essid_len),
1959                        txratename, chan, MAC_ARG(bssid));
1960
1961         /* now we copy read ssid into dev */
1962         if (!(priv->config & CFG_STATIC_ESSID)) {
1963                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1964                 memcpy(priv->essid, essid, priv->essid_len);
1965         }
1966         priv->channel = chan;
1967         memcpy(priv->bssid, bssid, ETH_ALEN);
1968
1969         priv->status |= STATUS_ASSOCIATING;
1970         priv->connect_start = get_seconds();
1971
1972         queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
1973 }
1974
1975 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
1976                              int length, int batch_mode)
1977 {
1978         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
1979         struct host_command cmd = {
1980                 .host_command = SSID,
1981                 .host_command_sequence = 0,
1982                 .host_command_length = ssid_len
1983         };
1984         int err;
1985
1986         IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
1987
1988         if (ssid_len)
1989                 memcpy(cmd.host_command_parameters, essid, ssid_len);
1990
1991         if (!batch_mode) {
1992                 err = ipw2100_disable_adapter(priv);
1993                 if (err)
1994                         return err;
1995         }
1996
1997         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
1998          * disable auto association -- so we cheat by setting a bogus SSID */
1999         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2000                 int i;
2001                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2002                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2003                         bogus[i] = 0x18 + i;
2004                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2005         }
2006
2007         /* NOTE:  We always send the SSID command even if the provided ESSID is
2008          * the same as what we currently think is set. */
2009
2010         err = ipw2100_hw_send_command(priv, &cmd);
2011         if (!err) {
2012                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2013                 memcpy(priv->essid, essid, ssid_len);
2014                 priv->essid_len = ssid_len;
2015         }
2016
2017         if (!batch_mode) {
2018                 if (ipw2100_enable_adapter(priv))
2019                         err = -EIO;
2020         }
2021
2022         return err;
2023 }
2024
2025 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2026 {
2027         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2028                   "disassociated: '%s' " MAC_FMT " \n",
2029                   escape_essid(priv->essid, priv->essid_len),
2030                   MAC_ARG(priv->bssid));
2031
2032         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2033
2034         if (priv->status & STATUS_STOPPING) {
2035                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2036                 return;
2037         }
2038
2039         memset(priv->bssid, 0, ETH_ALEN);
2040         memset(priv->ieee->bssid, 0, ETH_ALEN);
2041
2042         netif_carrier_off(priv->net_dev);
2043         netif_stop_queue(priv->net_dev);
2044
2045         if (!(priv->status & STATUS_RUNNING))
2046                 return;
2047
2048         if (priv->status & STATUS_SECURITY_UPDATED)
2049                 queue_work(priv->workqueue, &priv->security_work);
2050
2051         queue_work(priv->workqueue, &priv->wx_event_work);
2052 }
2053
2054 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2055 {
2056         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2057                        priv->net_dev->name);
2058
2059         /* RF_KILL is now enabled (else we wouldn't be here) */
2060         priv->status |= STATUS_RF_KILL_HW;
2061
2062 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2063         if (priv->config & CFG_C3_DISABLED) {
2064                 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2065                 acpi_set_cstate_limit(priv->cstate_limit);
2066                 priv->config &= ~CFG_C3_DISABLED;
2067         }
2068 #endif
2069
2070         /* Make sure the RF Kill check timer is running */
2071         priv->stop_rf_kill = 0;
2072         cancel_delayed_work(&priv->rf_kill);
2073         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2074 }
2075
2076 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2077 {
2078         IPW_DEBUG_SCAN("scan complete\n");
2079         /* Age the scan results... */
2080         priv->ieee->scans++;
2081         priv->status &= ~STATUS_SCANNING;
2082 }
2083
2084 #ifdef CONFIG_IPW2100_DEBUG
2085 #define IPW2100_HANDLER(v, f) { v, f, # v }
2086 struct ipw2100_status_indicator {
2087         int status;
2088         void (*cb) (struct ipw2100_priv * priv, u32 status);
2089         char *name;
2090 };
2091 #else
2092 #define IPW2100_HANDLER(v, f) { v, f }
2093 struct ipw2100_status_indicator {
2094         int status;
2095         void (*cb) (struct ipw2100_priv * priv, u32 status);
2096 };
2097 #endif                          /* CONFIG_IPW2100_DEBUG */
2098
2099 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2100 {
2101         IPW_DEBUG_SCAN("Scanning...\n");
2102         priv->status |= STATUS_SCANNING;
2103 }
2104
2105 static const struct ipw2100_status_indicator status_handlers[] = {
2106         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2107         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2108         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2109         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2110         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2111         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2112         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2113         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2114         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2115         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2116         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2117         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2118         IPW2100_HANDLER(-1, NULL)
2119 };
2120
2121 static void isr_status_change(struct ipw2100_priv *priv, int status)
2122 {
2123         int i;
2124
2125         if (status == IPW_STATE_SCANNING &&
2126             priv->status & STATUS_ASSOCIATED &&
2127             !(priv->status & STATUS_SCANNING)) {
2128                 IPW_DEBUG_INFO("Scan detected while associated, with "
2129                                "no scan request.  Restarting firmware.\n");
2130
2131                 /* Wake up any sleeping jobs */
2132                 schedule_reset(priv);
2133         }
2134
2135         for (i = 0; status_handlers[i].status != -1; i++) {
2136                 if (status == status_handlers[i].status) {
2137                         IPW_DEBUG_NOTIF("Status change: %s\n",
2138                                         status_handlers[i].name);
2139                         if (status_handlers[i].cb)
2140                                 status_handlers[i].cb(priv, status);
2141                         priv->wstats.status = status;
2142                         return;
2143                 }
2144         }
2145
2146         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2147 }
2148
2149 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2150                                     struct ipw2100_cmd_header *cmd)
2151 {
2152 #ifdef CONFIG_IPW2100_DEBUG
2153         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2154                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2155                              command_types[cmd->host_command_reg],
2156                              cmd->host_command_reg);
2157         }
2158 #endif
2159         if (cmd->host_command_reg == HOST_COMPLETE)
2160                 priv->status |= STATUS_ENABLED;
2161
2162         if (cmd->host_command_reg == CARD_DISABLE)
2163                 priv->status &= ~STATUS_ENABLED;
2164
2165         priv->status &= ~STATUS_CMD_ACTIVE;
2166
2167         wake_up_interruptible(&priv->wait_command_queue);
2168 }
2169
2170 #ifdef CONFIG_IPW2100_DEBUG
2171 static const char *frame_types[] = {
2172         "COMMAND_STATUS_VAL",
2173         "STATUS_CHANGE_VAL",
2174         "P80211_DATA_VAL",
2175         "P8023_DATA_VAL",
2176         "HOST_NOTIFICATION_VAL"
2177 };
2178 #endif
2179
2180 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2181                                     struct ipw2100_rx_packet *packet)
2182 {
2183         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2184         if (!packet->skb)
2185                 return -ENOMEM;
2186
2187         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2188         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2189                                           sizeof(struct ipw2100_rx),
2190                                           PCI_DMA_FROMDEVICE);
2191         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2192          *       dma_addr */
2193
2194         return 0;
2195 }
2196
2197 #define SEARCH_ERROR   0xffffffff
2198 #define SEARCH_FAIL    0xfffffffe
2199 #define SEARCH_SUCCESS 0xfffffff0
2200 #define SEARCH_DISCARD 0
2201 #define SEARCH_SNAPSHOT 1
2202
2203 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2204 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2205 {
2206         int i;
2207         if (priv->snapshot[0])
2208                 return 1;
2209         for (i = 0; i < 0x30; i++) {
2210                 priv->snapshot[i] = (u8 *) kmalloc(0x1000, GFP_ATOMIC);
2211                 if (!priv->snapshot[i]) {
2212                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2213                                        "buffer %d\n", priv->net_dev->name, i);
2214                         while (i > 0)
2215                                 kfree(priv->snapshot[--i]);
2216                         priv->snapshot[0] = NULL;
2217                         return 0;
2218                 }
2219         }
2220
2221         return 1;
2222 }
2223
2224 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2225 {
2226         int i;
2227         if (!priv->snapshot[0])
2228                 return;
2229         for (i = 0; i < 0x30; i++)
2230                 kfree(priv->snapshot[i]);
2231         priv->snapshot[0] = NULL;
2232 }
2233
2234 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2235                                     size_t len, int mode)
2236 {
2237         u32 i, j;
2238         u32 tmp;
2239         u8 *s, *d;
2240         u32 ret;
2241
2242         s = in_buf;
2243         if (mode == SEARCH_SNAPSHOT) {
2244                 if (!ipw2100_snapshot_alloc(priv))
2245                         mode = SEARCH_DISCARD;
2246         }
2247
2248         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2249                 read_nic_dword(priv->net_dev, i, &tmp);
2250                 if (mode == SEARCH_SNAPSHOT)
2251                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2252                 if (ret == SEARCH_FAIL) {
2253                         d = (u8 *) & tmp;
2254                         for (j = 0; j < 4; j++) {
2255                                 if (*s != *d) {
2256                                         s = in_buf;
2257                                         continue;
2258                                 }
2259
2260                                 s++;
2261                                 d++;
2262
2263                                 if ((s - in_buf) == len)
2264                                         ret = (i + j) - len + 1;
2265                         }
2266                 } else if (mode == SEARCH_DISCARD)
2267                         return ret;
2268         }
2269
2270         return ret;
2271 }
2272
2273 /*
2274  *
2275  * 0) Disconnect the SKB from the firmware (just unmap)
2276  * 1) Pack the ETH header into the SKB
2277  * 2) Pass the SKB to the network stack
2278  *
2279  * When packet is provided by the firmware, it contains the following:
2280  *
2281  * .  ieee80211_hdr
2282  * .  ieee80211_snap_hdr
2283  *
2284  * The size of the constructed ethernet
2285  *
2286  */
2287 #ifdef CONFIG_IPW2100_RX_DEBUG
2288 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2289 #endif
2290
2291 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2292 {
2293 #ifdef CONFIG_IPW2100_DEBUG_C3
2294         struct ipw2100_status *status = &priv->status_queue.drv[i];
2295         u32 match, reg;
2296         int j;
2297 #endif
2298 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2299         int limit;
2300 #endif
2301
2302         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2303                        i * sizeof(struct ipw2100_status));
2304
2305 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2306         IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2307         limit = acpi_get_cstate_limit();
2308         if (limit > 2) {
2309                 priv->cstate_limit = limit;
2310                 acpi_set_cstate_limit(2);
2311                 priv->config |= CFG_C3_DISABLED;
2312         }
2313 #endif
2314
2315 #ifdef CONFIG_IPW2100_DEBUG_C3
2316         /* Halt the fimrware so we can get a good image */
2317         write_register(priv->net_dev, IPW_REG_RESET_REG,
2318                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2319         j = 5;
2320         do {
2321                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2322                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2323
2324                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2325                         break;
2326         } while (j--);
2327
2328         match = ipw2100_match_buf(priv, (u8 *) status,
2329                                   sizeof(struct ipw2100_status),
2330                                   SEARCH_SNAPSHOT);
2331         if (match < SEARCH_SUCCESS)
2332                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2333                                "offset 0x%06X, length %d:\n",
2334                                priv->net_dev->name, match,
2335                                sizeof(struct ipw2100_status));
2336         else
2337                 IPW_DEBUG_INFO("%s: No DMA status match in "
2338                                "Firmware.\n", priv->net_dev->name);
2339
2340         printk_buf((u8 *) priv->status_queue.drv,
2341                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2342 #endif
2343
2344         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2345         priv->ieee->stats.rx_errors++;
2346         schedule_reset(priv);
2347 }
2348
2349 static void isr_rx(struct ipw2100_priv *priv, int i,
2350                           struct ieee80211_rx_stats *stats)
2351 {
2352         struct ipw2100_status *status = &priv->status_queue.drv[i];
2353         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2354
2355         IPW_DEBUG_RX("Handler...\n");
2356
2357         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2358                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2359                                "  Dropping.\n",
2360                                priv->net_dev->name,
2361                                status->frame_size, skb_tailroom(packet->skb));
2362                 priv->ieee->stats.rx_errors++;
2363                 return;
2364         }
2365
2366         if (unlikely(!netif_running(priv->net_dev))) {
2367                 priv->ieee->stats.rx_errors++;
2368                 priv->wstats.discard.misc++;
2369                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2370                 return;
2371         }
2372 #ifdef CONFIG_IPW2100_MONITOR
2373         if (unlikely(priv->ieee->iw_mode == IW_MODE_MONITOR &&
2374                      priv->config & CFG_CRC_CHECK &&
2375                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2376                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2377                 priv->ieee->stats.rx_errors++;
2378                 return;
2379         }
2380 #endif
2381
2382         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2383                      !(priv->status & STATUS_ASSOCIATED))) {
2384                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2385                 priv->wstats.discard.misc++;
2386                 return;
2387         }
2388
2389         pci_unmap_single(priv->pci_dev,
2390                          packet->dma_addr,
2391                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2392
2393         skb_put(packet->skb, status->frame_size);
2394
2395 #ifdef CONFIG_IPW2100_RX_DEBUG
2396         /* Make a copy of the frame so we can dump it to the logs if
2397          * ieee80211_rx fails */
2398         memcpy(packet_data, packet->skb->data,
2399                min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2400 #endif
2401
2402         if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2403 #ifdef CONFIG_IPW2100_RX_DEBUG
2404                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2405                                priv->net_dev->name);
2406                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2407 #endif
2408                 priv->ieee->stats.rx_errors++;
2409
2410                 /* ieee80211_rx failed, so it didn't free the SKB */
2411                 dev_kfree_skb_any(packet->skb);
2412                 packet->skb = NULL;
2413         }
2414
2415         /* We need to allocate a new SKB and attach it to the RDB. */
2416         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2417                 printk(KERN_WARNING DRV_NAME ": "
2418                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2419                        "adapter.\n", priv->net_dev->name);
2420                 /* TODO: schedule adapter shutdown */
2421                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2422         }
2423
2424         /* Update the RDB entry */
2425         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2426 }
2427
2428 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2429 {
2430         struct ipw2100_status *status = &priv->status_queue.drv[i];
2431         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2432         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2433
2434         switch (frame_type) {
2435         case COMMAND_STATUS_VAL:
2436                 return (status->frame_size != sizeof(u->rx_data.command));
2437         case STATUS_CHANGE_VAL:
2438                 return (status->frame_size != sizeof(u->rx_data.status));
2439         case HOST_NOTIFICATION_VAL:
2440                 return (status->frame_size < sizeof(u->rx_data.notification));
2441         case P80211_DATA_VAL:
2442         case P8023_DATA_VAL:
2443 #ifdef CONFIG_IPW2100_MONITOR
2444                 return 0;
2445 #else
2446                 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2447                 case IEEE80211_FTYPE_MGMT:
2448                 case IEEE80211_FTYPE_CTL:
2449                         return 0;
2450                 case IEEE80211_FTYPE_DATA:
2451                         return (status->frame_size >
2452                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2453                 }
2454 #endif
2455         }
2456
2457         return 1;
2458 }
2459
2460 /*
2461  * ipw2100 interrupts are disabled at this point, and the ISR
2462  * is the only code that calls this method.  So, we do not need
2463  * to play with any locks.
2464  *
2465  * RX Queue works as follows:
2466  *
2467  * Read index - firmware places packet in entry identified by the
2468  *              Read index and advances Read index.  In this manner,
2469  *              Read index will always point to the next packet to
2470  *              be filled--but not yet valid.
2471  *
2472  * Write index - driver fills this entry with an unused RBD entry.
2473  *               This entry has not filled by the firmware yet.
2474  *
2475  * In between the W and R indexes are the RBDs that have been received
2476  * but not yet processed.
2477  *
2478  * The process of handling packets will start at WRITE + 1 and advance
2479  * until it reaches the READ index.
2480  *
2481  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2482  *
2483  */
2484 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2485 {
2486         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2487         struct ipw2100_status_queue *sq = &priv->status_queue;
2488         struct ipw2100_rx_packet *packet;
2489         u16 frame_type;
2490         u32 r, w, i, s;
2491         struct ipw2100_rx *u;
2492         struct ieee80211_rx_stats stats = {
2493                 .mac_time = jiffies,
2494         };
2495
2496         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2497         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2498
2499         if (r >= rxq->entries) {
2500                 IPW_DEBUG_RX("exit - bad read index\n");
2501                 return;
2502         }
2503
2504         i = (rxq->next + 1) % rxq->entries;
2505         s = i;
2506         while (i != r) {
2507                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2508                    r, rxq->next, i); */
2509
2510                 packet = &priv->rx_buffers[i];
2511
2512                 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2513                  * the correct values */
2514                 pci_dma_sync_single_for_cpu(priv->pci_dev,
2515                                             sq->nic +
2516                                             sizeof(struct ipw2100_status) * i,
2517                                             sizeof(struct ipw2100_status),
2518                                             PCI_DMA_FROMDEVICE);
2519
2520                 /* Sync the DMA for the RX buffer so CPU is sure to get
2521                  * the correct values */
2522                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2523                                             sizeof(struct ipw2100_rx),
2524                                             PCI_DMA_FROMDEVICE);
2525
2526                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2527                         ipw2100_corruption_detected(priv, i);
2528                         goto increment;
2529                 }
2530
2531                 u = packet->rxp;
2532                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2533                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2534                 stats.len = sq->drv[i].frame_size;
2535
2536                 stats.mask = 0;
2537                 if (stats.rssi != 0)
2538                         stats.mask |= IEEE80211_STATMASK_RSSI;
2539                 stats.freq = IEEE80211_24GHZ_BAND;
2540
2541                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2542                              priv->net_dev->name, frame_types[frame_type],
2543                              stats.len);
2544
2545                 switch (frame_type) {
2546                 case COMMAND_STATUS_VAL:
2547                         /* Reset Rx watchdog */
2548                         isr_rx_complete_command(priv, &u->rx_data.command);
2549                         break;
2550
2551                 case STATUS_CHANGE_VAL:
2552                         isr_status_change(priv, u->rx_data.status);
2553                         break;
2554
2555                 case P80211_DATA_VAL:
2556                 case P8023_DATA_VAL:
2557 #ifdef CONFIG_IPW2100_MONITOR
2558                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2559                                 isr_rx(priv, i, &stats);
2560                                 break;
2561                         }
2562 #endif
2563                         if (stats.len < sizeof(u->rx_data.header))
2564                                 break;
2565                         switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2566                         case IEEE80211_FTYPE_MGMT:
2567                                 ieee80211_rx_mgt(priv->ieee,
2568                                                  &u->rx_data.header, &stats);
2569                                 break;
2570
2571                         case IEEE80211_FTYPE_CTL:
2572                                 break;
2573
2574                         case IEEE80211_FTYPE_DATA:
2575                                 isr_rx(priv, i, &stats);
2576                                 break;
2577
2578                         }
2579                         break;
2580                 }
2581
2582               increment:
2583                 /* clear status field associated with this RBD */
2584                 rxq->drv[i].status.info.field = 0;
2585
2586                 i = (i + 1) % rxq->entries;
2587         }
2588
2589         if (i != s) {
2590                 /* backtrack one entry, wrapping to end if at 0 */
2591                 rxq->next = (i ? i : rxq->entries) - 1;
2592
2593                 write_register(priv->net_dev,
2594                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2595         }
2596 }
2597
2598 /*
2599  * __ipw2100_tx_process
2600  *
2601  * This routine will determine whether the next packet on
2602  * the fw_pend_list has been processed by the firmware yet.
2603  *
2604  * If not, then it does nothing and returns.
2605  *
2606  * If so, then it removes the item from the fw_pend_list, frees
2607  * any associated storage, and places the item back on the
2608  * free list of its source (either msg_free_list or tx_free_list)
2609  *
2610  * TX Queue works as follows:
2611  *
2612  * Read index - points to the next TBD that the firmware will
2613  *              process.  The firmware will read the data, and once
2614  *              done processing, it will advance the Read index.
2615  *
2616  * Write index - driver fills this entry with an constructed TBD
2617  *               entry.  The Write index is not advanced until the
2618  *               packet has been configured.
2619  *
2620  * In between the W and R indexes are the TBDs that have NOT been
2621  * processed.  Lagging behind the R index are packets that have
2622  * been processed but have not been freed by the driver.
2623  *
2624  * In order to free old storage, an internal index will be maintained
2625  * that points to the next packet to be freed.  When all used
2626  * packets have been freed, the oldest index will be the same as the
2627  * firmware's read index.
2628  *
2629  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2630  *
2631  * Because the TBD structure can not contain arbitrary data, the
2632  * driver must keep an internal queue of cached allocations such that
2633  * it can put that data back into the tx_free_list and msg_free_list
2634  * for use by future command and data packets.
2635  *
2636  */
2637 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2638 {
2639         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2640         struct ipw2100_bd *tbd;
2641         struct list_head *element;
2642         struct ipw2100_tx_packet *packet;
2643         int descriptors_used;
2644         int e, i;
2645         u32 r, w, frag_num = 0;
2646
2647         if (list_empty(&priv->fw_pend_list))
2648                 return 0;
2649
2650         element = priv->fw_pend_list.next;
2651
2652         packet = list_entry(element, struct ipw2100_tx_packet, list);
2653         tbd = &txq->drv[packet->index];
2654
2655         /* Determine how many TBD entries must be finished... */
2656         switch (packet->type) {
2657         case COMMAND:
2658                 /* COMMAND uses only one slot; don't advance */
2659                 descriptors_used = 1;
2660                 e = txq->oldest;
2661                 break;
2662
2663         case DATA:
2664                 /* DATA uses two slots; advance and loop position. */
2665                 descriptors_used = tbd->num_fragments;
2666                 frag_num = tbd->num_fragments - 1;
2667                 e = txq->oldest + frag_num;
2668                 e %= txq->entries;
2669                 break;
2670
2671         default:
2672                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2673                        priv->net_dev->name);
2674                 return 0;
2675         }
2676
2677         /* if the last TBD is not done by NIC yet, then packet is
2678          * not ready to be released.
2679          *
2680          */
2681         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2682                       &r);
2683         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2684                       &w);
2685         if (w != txq->next)
2686                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2687                        priv->net_dev->name);
2688
2689         /*
2690          * txq->next is the index of the last packet written txq->oldest is
2691          * the index of the r is the index of the next packet to be read by
2692          * firmware
2693          */
2694
2695         /*
2696          * Quick graphic to help you visualize the following
2697          * if / else statement
2698          *
2699          * ===>|                     s---->|===============
2700          *                               e>|
2701          * | a | b | c | d | e | f | g | h | i | j | k | l
2702          *       r---->|
2703          *               w
2704          *
2705          * w - updated by driver
2706          * r - updated by firmware
2707          * s - start of oldest BD entry (txq->oldest)
2708          * e - end of oldest BD entry
2709          *
2710          */
2711         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2712                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2713                 return 0;
2714         }
2715
2716         list_del(element);
2717         DEC_STAT(&priv->fw_pend_stat);
2718
2719 #ifdef CONFIG_IPW2100_DEBUG
2720         {
2721                 int i = txq->oldest;
2722                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2723                              &txq->drv[i],
2724                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2725                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2726
2727                 if (packet->type == DATA) {
2728                         i = (i + 1) % txq->entries;
2729
2730                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2731                                      &txq->drv[i],
2732                                      (u32) (txq->nic + i *
2733                                             sizeof(struct ipw2100_bd)),
2734                                      (u32) txq->drv[i].host_addr,
2735                                      txq->drv[i].buf_length);
2736                 }
2737         }
2738 #endif
2739
2740         switch (packet->type) {
2741         case DATA:
2742                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2743                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2744                                "Expecting DATA TBD but pulled "
2745                                "something else: ids %d=%d.\n",
2746                                priv->net_dev->name, txq->oldest, packet->index);
2747
2748                 /* DATA packet; we have to unmap and free the SKB */
2749                 for (i = 0; i < frag_num; i++) {
2750                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2751
2752                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2753                                      (packet->index + 1 + i) % txq->entries,
2754                                      tbd->host_addr, tbd->buf_length);
2755
2756                         pci_unmap_single(priv->pci_dev,
2757                                          tbd->host_addr,
2758                                          tbd->buf_length, PCI_DMA_TODEVICE);
2759                 }
2760
2761                 ieee80211_txb_free(packet->info.d_struct.txb);
2762                 packet->info.d_struct.txb = NULL;
2763
2764                 list_add_tail(element, &priv->tx_free_list);
2765                 INC_STAT(&priv->tx_free_stat);
2766
2767                 /* We have a free slot in the Tx queue, so wake up the
2768                  * transmit layer if it is stopped. */
2769                 if (priv->status & STATUS_ASSOCIATED)
2770                         netif_wake_queue(priv->net_dev);
2771
2772                 /* A packet was processed by the hardware, so update the
2773                  * watchdog */
2774                 priv->net_dev->trans_start = jiffies;
2775
2776                 break;
2777
2778         case COMMAND:
2779                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2780                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2781                                "Expecting COMMAND TBD but pulled "
2782                                "something else: ids %d=%d.\n",
2783                                priv->net_dev->name, txq->oldest, packet->index);
2784
2785 #ifdef CONFIG_IPW2100_DEBUG
2786                 if (packet->info.c_struct.cmd->host_command_reg <
2787                     sizeof(command_types) / sizeof(*command_types))
2788                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2789                                      command_types[packet->info.c_struct.cmd->
2790                                                    host_command_reg],
2791                                      packet->info.c_struct.cmd->
2792                                      host_command_reg,
2793                                      packet->info.c_struct.cmd->cmd_status_reg);
2794 #endif
2795
2796                 list_add_tail(element, &priv->msg_free_list);
2797                 INC_STAT(&priv->msg_free_stat);
2798                 break;
2799         }
2800
2801         /* advance oldest used TBD pointer to start of next entry */
2802         txq->oldest = (e + 1) % txq->entries;
2803         /* increase available TBDs number */
2804         txq->available += descriptors_used;
2805         SET_STAT(&priv->txq_stat, txq->available);
2806
2807         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2808                      jiffies - packet->jiffy_start);
2809
2810         return (!list_empty(&priv->fw_pend_list));
2811 }
2812
2813 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2814 {
2815         int i = 0;
2816
2817         while (__ipw2100_tx_process(priv) && i < 200)
2818                 i++;
2819
2820         if (i == 200) {
2821                 printk(KERN_WARNING DRV_NAME ": "
2822                        "%s: Driver is running slow (%d iters).\n",
2823                        priv->net_dev->name, i);
2824         }
2825 }
2826
2827 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2828 {
2829         struct list_head *element;
2830         struct ipw2100_tx_packet *packet;
2831         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2832         struct ipw2100_bd *tbd;
2833         int next = txq->next;
2834
2835         while (!list_empty(&priv->msg_pend_list)) {
2836                 /* if there isn't enough space in TBD queue, then
2837                  * don't stuff a new one in.
2838                  * NOTE: 3 are needed as a command will take one,
2839                  *       and there is a minimum of 2 that must be
2840                  *       maintained between the r and w indexes
2841                  */
2842                 if (txq->available <= 3) {
2843                         IPW_DEBUG_TX("no room in tx_queue\n");
2844                         break;
2845                 }
2846
2847                 element = priv->msg_pend_list.next;
2848                 list_del(element);
2849                 DEC_STAT(&priv->msg_pend_stat);
2850
2851                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2852
2853                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2854                              &txq->drv[txq->next],
2855                              (void *)(txq->nic + txq->next *
2856                                       sizeof(struct ipw2100_bd)));
2857
2858                 packet->index = txq->next;
2859
2860                 tbd = &txq->drv[txq->next];
2861
2862                 /* initialize TBD */
2863                 tbd->host_addr = packet->info.c_struct.cmd_phys;
2864                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2865                 /* not marking number of fragments causes problems
2866                  * with f/w debug version */
2867                 tbd->num_fragments = 1;
2868                 tbd->status.info.field =
2869                     IPW_BD_STATUS_TX_FRAME_COMMAND |
2870                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2871
2872                 /* update TBD queue counters */
2873                 txq->next++;
2874                 txq->next %= txq->entries;
2875                 txq->available--;
2876                 DEC_STAT(&priv->txq_stat);
2877
2878                 list_add_tail(element, &priv->fw_pend_list);
2879                 INC_STAT(&priv->fw_pend_stat);
2880         }
2881
2882         if (txq->next != next) {
2883                 /* kick off the DMA by notifying firmware the
2884                  * write index has moved; make sure TBD stores are sync'd */
2885                 wmb();
2886                 write_register(priv->net_dev,
2887                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2888                                txq->next);
2889         }
2890 }
2891
2892 /*
2893  * ipw2100_tx_send_data
2894  *
2895  */
2896 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
2897 {
2898         struct list_head *element;
2899         struct ipw2100_tx_packet *packet;
2900         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2901         struct ipw2100_bd *tbd;
2902         int next = txq->next;
2903         int i = 0;
2904         struct ipw2100_data_header *ipw_hdr;
2905         struct ieee80211_hdr_3addr *hdr;
2906
2907         while (!list_empty(&priv->tx_pend_list)) {
2908                 /* if there isn't enough space in TBD queue, then
2909                  * don't stuff a new one in.
2910                  * NOTE: 4 are needed as a data will take two,
2911                  *       and there is a minimum of 2 that must be
2912                  *       maintained between the r and w indexes
2913                  */
2914                 element = priv->tx_pend_list.next;
2915                 packet = list_entry(element, struct ipw2100_tx_packet, list);
2916
2917                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
2918                              IPW_MAX_BDS)) {
2919                         /* TODO: Support merging buffers if more than
2920                          * IPW_MAX_BDS are used */
2921                         IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded.  "
2922                                        "Increase fragmentation level.\n",
2923                                        priv->net_dev->name);
2924                 }
2925
2926                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
2927                         IPW_DEBUG_TX("no room in tx_queue\n");
2928                         break;
2929                 }
2930
2931                 list_del(element);
2932                 DEC_STAT(&priv->tx_pend_stat);
2933
2934                 tbd = &txq->drv[txq->next];
2935
2936                 packet->index = txq->next;
2937
2938                 ipw_hdr = packet->info.d_struct.data;
2939                 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
2940                     fragments[0]->data;
2941
2942                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
2943                         /* To DS: Addr1 = BSSID, Addr2 = SA,
2944                            Addr3 = DA */
2945                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2946                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
2947                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
2948                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
2949                            Addr3 = BSSID */
2950                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
2951                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
2952                 }
2953
2954                 ipw_hdr->host_command_reg = SEND;
2955                 ipw_hdr->host_command_reg1 = 0;
2956
2957                 /* For now we only support host based encryption */
2958                 ipw_hdr->needs_encryption = 0;
2959                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
2960                 if (packet->info.d_struct.txb->nr_frags > 1)
2961                         ipw_hdr->fragment_size =
2962                             packet->info.d_struct.txb->frag_size -
2963                             IEEE80211_3ADDR_LEN;
2964                 else
2965                         ipw_hdr->fragment_size = 0;
2966
2967                 tbd->host_addr = packet->info.d_struct.data_phys;
2968                 tbd->buf_length = sizeof(struct ipw2100_data_header);
2969                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
2970                 tbd->status.info.field =
2971                     IPW_BD_STATUS_TX_FRAME_802_3 |
2972                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2973                 txq->next++;
2974                 txq->next %= txq->entries;
2975
2976                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
2977                              packet->index, tbd->host_addr, tbd->buf_length);
2978 #ifdef CONFIG_IPW2100_DEBUG
2979                 if (packet->info.d_struct.txb->nr_frags > 1)
2980                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
2981                                        packet->info.d_struct.txb->nr_frags);
2982 #endif
2983
2984                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
2985                         tbd = &txq->drv[txq->next];
2986                         if (i == packet->info.d_struct.txb->nr_frags - 1)
2987                                 tbd->status.info.field =
2988                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2989                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2990                         else
2991                                 tbd->status.info.field =
2992                                     IPW_BD_STATUS_TX_FRAME_802_3 |
2993                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
2994
2995                         tbd->buf_length = packet->info.d_struct.txb->
2996                             fragments[i]->len - IEEE80211_3ADDR_LEN;
2997
2998                         tbd->host_addr = pci_map_single(priv->pci_dev,
2999                                                         packet->info.d_struct.
3000                                                         txb->fragments[i]->
3001                                                         data +
3002                                                         IEEE80211_3ADDR_LEN,
3003                                                         tbd->buf_length,
3004                                                         PCI_DMA_TODEVICE);
3005
3006                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3007                                      txq->next, tbd->host_addr,
3008                                      tbd->buf_length);
3009
3010                         pci_dma_sync_single_for_device(priv->pci_dev,
3011                                                        tbd->host_addr,
3012                                                        tbd->buf_length,
3013                                                        PCI_DMA_TODEVICE);
3014
3015                         txq->next++;
3016                         txq->next %= txq->entries;
3017                 }
3018
3019                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3020                 SET_STAT(&priv->txq_stat, txq->available);
3021
3022                 list_add_tail(element, &priv->fw_pend_list);
3023                 INC_STAT(&priv->fw_pend_stat);
3024         }
3025
3026         if (txq->next != next) {
3027                 /* kick off the DMA by notifying firmware the
3028                  * write index has moved; make sure TBD stores are sync'd */
3029                 write_register(priv->net_dev,
3030                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3031                                txq->next);
3032         }
3033         return;
3034 }
3035
3036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3037 {
3038         struct net_device *dev = priv->net_dev;
3039         unsigned long flags;
3040         u32 inta, tmp;
3041
3042         spin_lock_irqsave(&priv->low_lock, flags);
3043         ipw2100_disable_interrupts(priv);
3044
3045         read_register(dev, IPW_REG_INTA, &inta);
3046
3047         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3048                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3049
3050         priv->in_isr++;
3051         priv->interrupts++;
3052
3053         /* We do not loop and keep polling for more interrupts as this
3054          * is frowned upon and doesn't play nicely with other potentially
3055          * chained IRQs */
3056         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3057                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3058
3059         if (inta & IPW2100_INTA_FATAL_ERROR) {
3060                 printk(KERN_WARNING DRV_NAME
3061                        ": Fatal interrupt. Scheduling firmware restart.\n");
3062                 priv->inta_other++;
3063                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3064
3065                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3066                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3067                                priv->net_dev->name, priv->fatal_error);
3068
3069                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3070                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3071                                priv->net_dev->name, tmp);
3072
3073                 /* Wake up any sleeping jobs */
3074                 schedule_reset(priv);
3075         }
3076
3077         if (inta & IPW2100_INTA_PARITY_ERROR) {
3078                 printk(KERN_ERR DRV_NAME
3079                        ": ***** PARITY ERROR INTERRUPT !!!! \n");
3080                 priv->inta_other++;
3081                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3082         }
3083
3084         if (inta & IPW2100_INTA_RX_TRANSFER) {
3085                 IPW_DEBUG_ISR("RX interrupt\n");
3086
3087                 priv->rx_interrupts++;
3088
3089                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3090
3091                 __ipw2100_rx_process(priv);
3092                 __ipw2100_tx_complete(priv);
3093         }
3094
3095         if (inta & IPW2100_INTA_TX_TRANSFER) {
3096                 IPW_DEBUG_ISR("TX interrupt\n");
3097
3098                 priv->tx_interrupts++;
3099
3100                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3101
3102                 __ipw2100_tx_complete(priv);
3103                 ipw2100_tx_send_commands(priv);
3104                 ipw2100_tx_send_data(priv);
3105         }
3106
3107         if (inta & IPW2100_INTA_TX_COMPLETE) {
3108                 IPW_DEBUG_ISR("TX complete\n");
3109                 priv->inta_other++;
3110                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3111
3112                 __ipw2100_tx_complete(priv);
3113         }
3114
3115         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3116                 /* ipw2100_handle_event(dev); */
3117                 priv->inta_other++;
3118                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3119         }
3120
3121         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3122                 IPW_DEBUG_ISR("FW init done interrupt\n");
3123                 priv->inta_other++;
3124
3125                 read_register(dev, IPW_REG_INTA, &tmp);
3126                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3127                            IPW2100_INTA_PARITY_ERROR)) {
3128                         write_register(dev, IPW_REG_INTA,
3129                                        IPW2100_INTA_FATAL_ERROR |
3130                                        IPW2100_INTA_PARITY_ERROR);
3131                 }
3132
3133                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3134         }
3135
3136         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3137                 IPW_DEBUG_ISR("Status change interrupt\n");
3138                 priv->inta_other++;
3139                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3140         }
3141
3142         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3143                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3144                 priv->inta_other++;
3145                 write_register(dev, IPW_REG_INTA,
3146                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3147         }
3148
3149         priv->in_isr--;
3150         ipw2100_enable_interrupts(priv);
3151
3152         spin_unlock_irqrestore(&priv->low_lock, flags);
3153
3154         IPW_DEBUG_ISR("exit\n");
3155 }
3156
3157 static irqreturn_t ipw2100_interrupt(int irq, void *data, struct pt_regs *regs)
3158 {
3159         struct ipw2100_priv *priv = data;
3160         u32 inta, inta_mask;
3161
3162         if (!data)
3163                 return IRQ_NONE;
3164
3165         spin_lock(&priv->low_lock);
3166
3167         /* We check to see if we should be ignoring interrupts before
3168          * we touch the hardware.  During ucode load if we try and handle
3169          * an interrupt we can cause keyboard problems as well as cause
3170          * the ucode to fail to initialize */
3171         if (!(priv->status & STATUS_INT_ENABLED)) {
3172                 /* Shared IRQ */
3173                 goto none;
3174         }
3175
3176         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3177         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3178
3179         if (inta == 0xFFFFFFFF) {
3180                 /* Hardware disappeared */
3181                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3182                 goto none;
3183         }
3184
3185         inta &= IPW_INTERRUPT_MASK;
3186
3187         if (!(inta & inta_mask)) {
3188                 /* Shared interrupt */
3189                 goto none;
3190         }
3191
3192         /* We disable the hardware interrupt here just to prevent unneeded
3193          * calls to be made.  We disable this again within the actual
3194          * work tasklet, so if another part of the code re-enables the
3195          * interrupt, that is fine */
3196         ipw2100_disable_interrupts(priv);
3197
3198         tasklet_schedule(&priv->irq_tasklet);
3199         spin_unlock(&priv->low_lock);
3200
3201         return IRQ_HANDLED;
3202       none:
3203         spin_unlock(&priv->low_lock);
3204         return IRQ_NONE;
3205 }
3206
3207 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3208                       int pri)
3209 {
3210         struct ipw2100_priv *priv = ieee80211_priv(dev);
3211         struct list_head *element;
3212         struct ipw2100_tx_packet *packet;
3213         unsigned long flags;
3214
3215         spin_lock_irqsave(&priv->low_lock, flags);
3216
3217         if (!(priv->status & STATUS_ASSOCIATED)) {
3218                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3219                 priv->ieee->stats.tx_carrier_errors++;
3220                 netif_stop_queue(dev);
3221                 goto fail_unlock;
3222         }
3223
3224         if (list_empty(&priv->tx_free_list))
3225                 goto fail_unlock;
3226
3227         element = priv->tx_free_list.next;
3228         packet = list_entry(element, struct ipw2100_tx_packet, list);
3229
3230         packet->info.d_struct.txb = txb;
3231
3232         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3233         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3234
3235         packet->jiffy_start = jiffies;
3236
3237         list_del(element);
3238         DEC_STAT(&priv->tx_free_stat);
3239
3240         list_add_tail(element, &priv->tx_pend_list);
3241         INC_STAT(&priv->tx_pend_stat);
3242
3243         ipw2100_tx_send_data(priv);
3244
3245         spin_unlock_irqrestore(&priv->low_lock, flags);
3246         return 0;
3247
3248       fail_unlock:
3249         netif_stop_queue(dev);
3250         spin_unlock_irqrestore(&priv->low_lock, flags);
3251         return 1;
3252 }
3253
3254 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3255 {
3256         int i, j, err = -EINVAL;
3257         void *v;
3258         dma_addr_t p;
3259
3260         priv->msg_buffers =
3261             (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3262                                                 sizeof(struct
3263                                                        ipw2100_tx_packet),
3264                                                 GFP_KERNEL);
3265         if (!priv->msg_buffers) {
3266                 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3267                        "buffers.\n", priv->net_dev->name);
3268                 return -ENOMEM;
3269         }
3270
3271         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3272                 v = pci_alloc_consistent(priv->pci_dev,
3273                                          sizeof(struct ipw2100_cmd_header), &p);
3274                 if (!v) {
3275                         printk(KERN_ERR DRV_NAME ": "
3276                                "%s: PCI alloc failed for msg "
3277                                "buffers.\n", priv->net_dev->name);
3278                         err = -ENOMEM;
3279                         break;
3280                 }
3281
3282                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3283
3284                 priv->msg_buffers[i].type = COMMAND;
3285                 priv->msg_buffers[i].info.c_struct.cmd =
3286                     (struct ipw2100_cmd_header *)v;
3287                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3288         }
3289
3290         if (i == IPW_COMMAND_POOL_SIZE)
3291                 return 0;
3292
3293         for (j = 0; j < i; j++) {
3294                 pci_free_consistent(priv->pci_dev,
3295                                     sizeof(struct ipw2100_cmd_header),
3296                                     priv->msg_buffers[j].info.c_struct.cmd,
3297                                     priv->msg_buffers[j].info.c_struct.
3298                                     cmd_phys);
3299         }
3300
3301         kfree(priv->msg_buffers);
3302         priv->msg_buffers = NULL;
3303
3304         return err;
3305 }
3306
3307 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3308 {
3309         int i;
3310
3311         INIT_LIST_HEAD(&priv->msg_free_list);
3312         INIT_LIST_HEAD(&priv->msg_pend_list);
3313
3314         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3315                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3316         SET_STAT(&priv->msg_free_stat, i);
3317
3318         return 0;
3319 }
3320
3321 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3322 {
3323         int i;
3324
3325         if (!priv->msg_buffers)
3326                 return;
3327
3328         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3329                 pci_free_consistent(priv->pci_dev,
3330                                     sizeof(struct ipw2100_cmd_header),
3331                                     priv->msg_buffers[i].info.c_struct.cmd,
3332                                     priv->msg_buffers[i].info.c_struct.
3333                                     cmd_phys);
3334         }
3335
3336         kfree(priv->msg_buffers);
3337         priv->msg_buffers = NULL;
3338 }
3339
3340 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3341                         char *buf)
3342 {
3343         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3344         char *out = buf;
3345         int i, j;
3346         u32 val;
3347
3348         for (i = 0; i < 16; i++) {
3349                 out += sprintf(out, "[%08X] ", i * 16);
3350                 for (j = 0; j < 16; j += 4) {
3351                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3352                         out += sprintf(out, "%08X ", val);
3353                 }
3354                 out += sprintf(out, "\n");
3355         }
3356
3357         return out - buf;
3358 }
3359
3360 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3361
3362 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3363                         char *buf)
3364 {
3365         struct ipw2100_priv *p = d->driver_data;
3366         return sprintf(buf, "0x%08x\n", (int)p->config);
3367 }
3368
3369 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3370
3371 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3372                            char *buf)
3373 {
3374         struct ipw2100_priv *p = d->driver_data;
3375         return sprintf(buf, "0x%08x\n", (int)p->status);
3376 }
3377
3378 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3379
3380 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3381                                char *buf)
3382 {
3383         struct ipw2100_priv *p = d->driver_data;
3384         return sprintf(buf, "0x%08x\n", (int)p->capability);
3385 }
3386
3387 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3388
3389 #define IPW2100_REG(x) { IPW_ ##x, #x }
3390 static const struct {
3391         u32 addr;
3392         const char *name;
3393 } hw_data[] = {
3394 IPW2100_REG(REG_GP_CNTRL),
3395             IPW2100_REG(REG_GPIO),
3396             IPW2100_REG(REG_INTA),
3397             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3398 #define IPW2100_NIC(x, s) { x, #x, s }
3399 static const struct {
3400         u32 addr;
3401         const char *name;
3402         size_t size;
3403 } nic_data[] = {
3404 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3405             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3406 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3407 static const struct {
3408         u8 index;
3409         const char *name;
3410         const char *desc;
3411 } ord_data[] = {
3412 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3413             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3414                                 "successful Host Tx's (MSDU)"),
3415             IPW2100_ORD(STAT_TX_DIR_DATA,
3416                                 "successful Directed Tx's (MSDU)"),
3417             IPW2100_ORD(STAT_TX_DIR_DATA1,
3418                                 "successful Directed Tx's (MSDU) @ 1MB"),
3419             IPW2100_ORD(STAT_TX_DIR_DATA2,
3420                                 "successful Directed Tx's (MSDU) @ 2MB"),
3421             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3422                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3423             IPW2100_ORD(STAT_TX_DIR_DATA11,
3424                                 "successful Directed Tx's (MSDU) @ 11MB"),
3425             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3426                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3427             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3428                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3429             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3430                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3431             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3432                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3433             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3434             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3435             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3436             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3437             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3438             IPW2100_ORD(STAT_TX_ASSN_RESP,
3439                                 "successful Association response Tx's"),
3440             IPW2100_ORD(STAT_TX_REASSN,
3441                                 "successful Reassociation Tx's"),
3442             IPW2100_ORD(STAT_TX_REASSN_RESP,
3443                                 "successful Reassociation response Tx's"),
3444             IPW2100_ORD(STAT_TX_PROBE,
3445                                 "probes successfully transmitted"),
3446             IPW2100_ORD(STAT_TX_PROBE_RESP,
3447                                 "probe responses successfully transmitted"),
3448             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3449             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3450             IPW2100_ORD(STAT_TX_DISASSN,
3451                                 "successful Disassociation TX"),
3452             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3453             IPW2100_ORD(STAT_TX_DEAUTH,
3454                                 "successful Deauthentication TX"),
3455             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3456                                 "Total successful Tx data bytes"),
3457             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3458             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3459             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3460             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3461             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3462             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3463             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3464                                 "times max tries in a hop failed"),
3465             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3466                                 "times disassociation failed"),
3467             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3468             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3469             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3470             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3471             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3472             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3473             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3474                                 "directed packets at 5.5MB"),
3475             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3476             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3477             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3478                                 "nondirected packets at 1MB"),
3479             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3480                                 "nondirected packets at 2MB"),
3481             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3482                                 "nondirected packets at 5.5MB"),
3483             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3484                                 "nondirected packets at 11MB"),
3485             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3486             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3487                                                                     "Rx CTS"),
3488             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3489             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3490             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3491             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3492             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3493             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3494             IPW2100_ORD(STAT_RX_REASSN_RESP,
3495                                 "Reassociation response Rx's"),
3496             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3497             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3498             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3499             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3500             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3501             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3502             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3503             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3504                                 "Total rx data bytes received"),
3505             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3506             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3507             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3508             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3509             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3510             IPW2100_ORD(STAT_RX_DUPLICATE1,
3511                                 "duplicate rx packets at 1MB"),
3512             IPW2100_ORD(STAT_RX_DUPLICATE2,
3513                                 "duplicate rx packets at 2MB"),
3514             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3515                                 "duplicate rx packets at 5.5MB"),
3516             IPW2100_ORD(STAT_RX_DUPLICATE11,
3517                                 "duplicate rx packets at 11MB"),
3518             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3519             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3520             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3521             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3522             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3523                                 "rx frames with invalid protocol"),
3524             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3525             IPW2100_ORD(STAT_RX_NO_BUFFER,
3526                                 "rx frames rejected due to no buffer"),
3527             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3528                                 "rx frames dropped due to missing fragment"),
3529             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3530                                 "rx frames dropped due to non-sequential fragment"),
3531             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3532                                 "rx frames dropped due to unmatched 1st frame"),
3533             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3534                                 "rx frames dropped due to uncompleted frame"),
3535             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3536                                 "ICV errors during decryption"),
3537             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3538             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3539             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3540                                 "poll response timeouts"),
3541             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3542                                 "timeouts waiting for last {broad,multi}cast pkt"),
3543             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3544             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3545             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3546             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3547             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3548                                 "current calculation of % missed beacons"),
3549             IPW2100_ORD(STAT_PERCENT_RETRIES,
3550                                 "current calculation of % missed tx retries"),
3551             IPW2100_ORD(ASSOCIATED_AP_PTR,
3552                                 "0 if not associated, else pointer to AP table entry"),
3553             IPW2100_ORD(AVAILABLE_AP_CNT,
3554                                 "AP's decsribed in the AP table"),
3555             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3556             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3557             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3558             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3559                                 "failures due to response fail"),
3560             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3561             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3562             IPW2100_ORD(STAT_ROAM_INHIBIT,
3563                                 "times roaming was inhibited due to activity"),
3564             IPW2100_ORD(RSSI_AT_ASSN,
3565                                 "RSSI of associated AP at time of association"),
3566             IPW2100_ORD(STAT_ASSN_CAUSE1,
3567                                 "reassociation: no probe response or TX on hop"),
3568             IPW2100_ORD(STAT_ASSN_CAUSE2,
3569                                 "reassociation: poor tx/rx quality"),
3570             IPW2100_ORD(STAT_ASSN_CAUSE3,
3571                                 "reassociation: tx/rx quality (excessive AP load"),
3572             IPW2100_ORD(STAT_ASSN_CAUSE4,
3573                                 "reassociation: AP RSSI level"),
3574             IPW2100_ORD(STAT_ASSN_CAUSE5,
3575                                 "reassociations due to load leveling"),
3576             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3577             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3578                                 "times authentication response failed"),
3579             IPW2100_ORD(STATION_TABLE_CNT,
3580                                 "entries in association table"),
3581             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3582             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3583             IPW2100_ORD(COUNTRY_CODE,
3584                                 "IEEE country code as recv'd from beacon"),
3585             IPW2100_ORD(COUNTRY_CHANNELS,
3586                                 "channels suported by country"),
3587             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3588             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3589             IPW2100_ORD(ANTENNA_DIVERSITY,
3590                                 "TRUE if antenna diversity is disabled"),
3591             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3592             IPW2100_ORD(OUR_FREQ,
3593                                 "current radio freq lower digits - channel ID"),
3594             IPW2100_ORD(RTC_TIME, "current RTC time"),
3595             IPW2100_ORD(PORT_TYPE, "operating mode"),
3596             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3597             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3598             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3599             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3600             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3601             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3602             IPW2100_ORD(CAPABILITIES,
3603                                 "Management frame capability field"),
3604             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3605             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3606             IPW2100_ORD(RTS_THRESHOLD,
3607                                 "Min packet length for RTS handshaking"),
3608             IPW2100_ORD(INT_MODE, "International mode"),
3609             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3610                                 "protocol frag threshold"),
3611             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3612                                 "EEPROM offset in SRAM"),
3613             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3614                                 "EEPROM size in SRAM"),
3615             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3616             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3617                                 "EEPROM IBSS 11b channel set"),
3618             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3619             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3620             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3621             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3622             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3623
3624 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3625                               char *buf)
3626 {
3627         int i;
3628         struct ipw2100_priv *priv = dev_get_drvdata(d);
3629         struct net_device *dev = priv->net_dev;
3630         char *out = buf;
3631         u32 val = 0;
3632
3633         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3634
3635         for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3636                 read_register(dev, hw_data[i].addr, &val);
3637                 out += sprintf(out, "%30s [%08X] : %08X\n",
3638                                hw_data[i].name, hw_data[i].addr, val);
3639         }
3640
3641         return out - buf;
3642 }
3643
3644 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3645
3646 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3647                              char *buf)
3648 {
3649         struct ipw2100_priv *priv = dev_get_drvdata(d);
3650         struct net_device *dev = priv->net_dev;
3651         char *out = buf;
3652         int i;
3653
3654         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3655
3656         for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3657                 u8 tmp8;
3658                 u16 tmp16;
3659                 u32 tmp32;
3660
3661                 switch (nic_data[i].size) {
3662                 case 1:
3663                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3664                         out += sprintf(out, "%30s [%08X] : %02X\n",
3665                                        nic_data[i].name, nic_data[i].addr,
3666                                        tmp8);
3667                         break;
3668                 case 2:
3669                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3670                         out += sprintf(out, "%30s [%08X] : %04X\n",
3671                                        nic_data[i].name, nic_data[i].addr,
3672                                        tmp16);
3673                         break;
3674                 case 4:
3675                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3676                         out += sprintf(out, "%30s [%08X] : %08X\n",
3677                                        nic_data[i].name, nic_data[i].addr,
3678                                        tmp32);
3679                         break;
3680                 }
3681         }
3682         return out - buf;
3683 }
3684
3685 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3686
3687 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3688                            char *buf)
3689 {
3690         struct ipw2100_priv *priv = dev_get_drvdata(d);
3691         struct net_device *dev = priv->net_dev;
3692         static unsigned long loop = 0;
3693         int len = 0;
3694         u32 buffer[4];
3695         int i;
3696         char line[81];
3697
3698         if (loop >= 0x30000)
3699                 loop = 0;
3700
3701         /* sysfs provides us PAGE_SIZE buffer */
3702         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3703
3704                 if (priv->snapshot[0])
3705                         for (i = 0; i < 4; i++)
3706                                 buffer[i] =
3707                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3708                 else
3709                         for (i = 0; i < 4; i++)
3710                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3711
3712                 if (priv->dump_raw)
3713                         len += sprintf(buf + len,
3714                                        "%c%c%c%c"
3715                                        "%c%c%c%c"
3716                                        "%c%c%c%c"
3717                                        "%c%c%c%c",
3718                                        ((u8 *) buffer)[0x0],
3719                                        ((u8 *) buffer)[0x1],
3720                                        ((u8 *) buffer)[0x2],
3721                                        ((u8 *) buffer)[0x3],
3722                                        ((u8 *) buffer)[0x4],
3723                                        ((u8 *) buffer)[0x5],
3724                                        ((u8 *) buffer)[0x6],
3725                                        ((u8 *) buffer)[0x7],
3726                                        ((u8 *) buffer)[0x8],
3727                                        ((u8 *) buffer)[0x9],
3728                                        ((u8 *) buffer)[0xa],
3729                                        ((u8 *) buffer)[0xb],
3730                                        ((u8 *) buffer)[0xc],
3731                                        ((u8 *) buffer)[0xd],
3732                                        ((u8 *) buffer)[0xe],
3733                                        ((u8 *) buffer)[0xf]);
3734                 else
3735                         len += sprintf(buf + len, "%s\n",
3736                                        snprint_line(line, sizeof(line),
3737                                                     (u8 *) buffer, 16, loop));
3738                 loop += 16;
3739         }
3740
3741         return len;
3742 }
3743
3744 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3745                             const char *buf, size_t count)
3746 {
3747         struct ipw2100_priv *priv = dev_get_drvdata(d);
3748         struct net_device *dev = priv->net_dev;
3749         const char *p = buf;
3750
3751         (void) dev; /* kill unused-var warning for debug-only code */
3752
3753         if (count < 1)
3754                 return count;
3755
3756         if (p[0] == '1' ||
3757             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3758                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3759                                dev->name);
3760                 priv->dump_raw = 1;
3761
3762         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3763                                    tolower(p[1]) == 'f')) {
3764                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3765                                dev->name);
3766                 priv->dump_raw = 0;
3767
3768         } else if (tolower(p[0]) == 'r') {
3769                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3770                 ipw2100_snapshot_free(priv);
3771
3772         } else
3773                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3774                                "reset = clear memory snapshot\n", dev->name);
3775
3776         return count;
3777 }
3778
3779 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3780
3781 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3782                              char *buf)
3783 {
3784         struct ipw2100_priv *priv = dev_get_drvdata(d);
3785         u32 val = 0;
3786         int len = 0;
3787         u32 val_len;
3788         static int loop = 0;
3789
3790         if (priv->status & STATUS_RF_KILL_MASK)
3791                 return 0;
3792
3793         if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3794                 loop = 0;
3795
3796         /* sysfs provides us PAGE_SIZE buffer */
3797         while (len < PAGE_SIZE - 128 &&
3798                loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3799
3800                 val_len = sizeof(u32);
3801
3802                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3803                                         &val_len))
3804                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3805                                        ord_data[loop].index,
3806                                        ord_data[loop].desc);
3807                 else
3808                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3809                                        ord_data[loop].index, val,
3810                                        ord_data[loop].desc);
3811                 loop++;
3812         }
3813
3814         return len;
3815 }
3816
3817 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3818
3819 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3820                           char *buf)
3821 {
3822         struct ipw2100_priv *priv = dev_get_drvdata(d);
3823         char *out = buf;
3824
3825         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3826                        priv->interrupts, priv->tx_interrupts,
3827                        priv->rx_interrupts, priv->inta_other);
3828         out += sprintf(out, "firmware resets: %d\n", priv->resets);
3829         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3830 #ifdef CONFIG_IPW2100_DEBUG
3831         out += sprintf(out, "packet mismatch image: %s\n",
3832                        priv->snapshot[0] ? "YES" : "NO");
3833 #endif
3834
3835         return out - buf;
3836 }
3837
3838 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3839
3840 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3841 {
3842         int err;
3843
3844         if (mode == priv->ieee->iw_mode)
3845                 return 0;
3846
3847         err = ipw2100_disable_adapter(priv);
3848         if (err) {
3849                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3850                        priv->net_dev->name, err);
3851                 return err;
3852         }
3853
3854         switch (mode) {
3855         case IW_MODE_INFRA:
3856                 priv->net_dev->type = ARPHRD_ETHER;
3857                 break;
3858         case IW_MODE_ADHOC:
3859                 priv->net_dev->type = ARPHRD_ETHER;
3860                 break;
3861 #ifdef CONFIG_IPW2100_MONITOR
3862         case IW_MODE_MONITOR:
3863                 priv->last_mode = priv->ieee->iw_mode;
3864                 priv->net_dev->type = ARPHRD_IEEE80211;
3865                 break;
3866 #endif                          /* CONFIG_IPW2100_MONITOR */
3867         }
3868
3869         priv->ieee->iw_mode = mode;
3870
3871 #ifdef CONFIG_PM
3872         /* Indicate ipw2100_download_firmware download firmware
3873          * from disk instead of memory. */
3874         ipw2100_firmware.version = 0;
3875 #endif
3876
3877         printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3878         priv->reset_backoff = 0;
3879         schedule_reset(priv);
3880
3881         return 0;
3882 }
3883
3884 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3885                               char *buf)
3886 {
3887         struct ipw2100_priv *priv = dev_get_drvdata(d);
3888         int len = 0;
3889
3890 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3891
3892         if (priv->status & STATUS_ASSOCIATED)
3893                 len += sprintf(buf + len, "connected: %lu\n",
3894                                get_seconds() - priv->connect_start);
3895         else
3896                 len += sprintf(buf + len, "not connected\n");
3897
3898         DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
3899         DUMP_VAR(status, "08lx");
3900         DUMP_VAR(config, "08lx");
3901         DUMP_VAR(capability, "08lx");
3902
3903         len +=
3904             sprintf(buf + len, "last_rtc: %lu\n",
3905                     (unsigned long)priv->last_rtc);
3906
3907         DUMP_VAR(fatal_error, "d");
3908         DUMP_VAR(stop_hang_check, "d");
3909         DUMP_VAR(stop_rf_kill, "d");
3910         DUMP_VAR(messages_sent, "d");
3911
3912         DUMP_VAR(tx_pend_stat.value, "d");
3913         DUMP_VAR(tx_pend_stat.hi, "d");
3914
3915         DUMP_VAR(tx_free_stat.value, "d");
3916         DUMP_VAR(tx_free_stat.lo, "d");
3917
3918         DUMP_VAR(msg_free_stat.value, "d");
3919         DUMP_VAR(msg_free_stat.lo, "d");
3920
3921         DUMP_VAR(msg_pend_stat.value, "d");
3922         DUMP_VAR(msg_pend_stat.hi, "d");
3923
3924         DUMP_VAR(fw_pend_stat.value, "d");
3925         DUMP_VAR(fw_pend_stat.hi, "d");
3926
3927         DUMP_VAR(txq_stat.value, "d");
3928         DUMP_VAR(txq_stat.lo, "d");
3929
3930         DUMP_VAR(ieee->scans, "d");
3931         DUMP_VAR(reset_backoff, "d");
3932
3933         return len;
3934 }
3935
3936 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
3937
3938 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
3939                             char *buf)
3940 {
3941         struct ipw2100_priv *priv = dev_get_drvdata(d);
3942         char essid[IW_ESSID_MAX_SIZE + 1];
3943         u8 bssid[ETH_ALEN];
3944         u32 chan = 0;
3945         char *out = buf;
3946         int length;
3947         int ret;
3948
3949         if (priv->status & STATUS_RF_KILL_MASK)
3950                 return 0;
3951
3952         memset(essid, 0, sizeof(essid));
3953         memset(bssid, 0, sizeof(bssid));
3954
3955         length = IW_ESSID_MAX_SIZE;
3956         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
3957         if (ret)
3958                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3959                                __LINE__);
3960
3961         length = sizeof(bssid);
3962         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
3963                                   bssid, &length);
3964         if (ret)
3965                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3966                                __LINE__);
3967
3968         length = sizeof(u32);
3969         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
3970         if (ret)
3971                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
3972                                __LINE__);
3973
3974         out += sprintf(out, "ESSID: %s\n", essid);
3975         out += sprintf(out, "BSSID:   %02x:%02x:%02x:%02x:%02x:%02x\n",
3976                        bssid[0], bssid[1], bssid[2],
3977                        bssid[3], bssid[4], bssid[5]);
3978         out += sprintf(out, "Channel: %d\n", chan);
3979
3980         return out - buf;
3981 }
3982
3983 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
3984
3985 #ifdef CONFIG_IPW2100_DEBUG
3986 static ssize_t show_debug_level(struct device_driver *d, char *buf)
3987 {
3988         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
3989 }
3990
3991 static ssize_t store_debug_level(struct device_driver *d,
3992                                  const char *buf, size_t count)
3993 {
3994         char *p = (char *)buf;
3995         u32 val;
3996
3997         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
3998                 p++;
3999                 if (p[0] == 'x' || p[0] == 'X')
4000                         p++;
4001                 val = simple_strtoul(p, &p, 16);
4002         } else
4003                 val = simple_strtoul(p, &p, 10);
4004         if (p == buf)
4005                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4006         else
4007                 ipw2100_debug_level = val;
4008
4009         return strnlen(buf, count);
4010 }
4011
4012 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4013                    store_debug_level);
4014 #endif                          /* CONFIG_IPW2100_DEBUG */
4015
4016 static ssize_t show_fatal_error(struct device *d,
4017                                 struct device_attribute *attr, char *buf)
4018 {
4019         struct ipw2100_priv *priv = dev_get_drvdata(d);
4020         char *out = buf;
4021         int i;
4022
4023         if (priv->fatal_error)
4024                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4025         else
4026                 out += sprintf(out, "0\n");
4027
4028         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4029                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4030                                         IPW2100_ERROR_QUEUE])
4031                         continue;
4032
4033                 out += sprintf(out, "%d. 0x%08X\n", i,
4034                                priv->fatal_errors[(priv->fatal_index - i) %
4035                                                   IPW2100_ERROR_QUEUE]);
4036         }
4037
4038         return out - buf;
4039 }
4040
4041 static ssize_t store_fatal_error(struct device *d,
4042                                  struct device_attribute *attr, const char *buf,
4043                                  size_t count)
4044 {
4045         struct ipw2100_priv *priv = dev_get_drvdata(d);
4046         schedule_reset(priv);
4047         return count;
4048 }
4049
4050 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4051                    store_fatal_error);
4052
4053 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4054                              char *buf)
4055 {
4056         struct ipw2100_priv *priv = dev_get_drvdata(d);
4057         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4058 }
4059
4060 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4061                               const char *buf, size_t count)
4062 {
4063         struct ipw2100_priv *priv = dev_get_drvdata(d);
4064         struct net_device *dev = priv->net_dev;
4065         char buffer[] = "00000000";
4066         unsigned long len =
4067             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4068         unsigned long val;
4069         char *p = buffer;
4070
4071         (void) dev; /* kill unused-var warning for debug-only code */
4072
4073         IPW_DEBUG_INFO("enter\n");
4074
4075         strncpy(buffer, buf, len);
4076         buffer[len] = 0;
4077
4078         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4079                 p++;
4080                 if (p[0] == 'x' || p[0] == 'X')
4081                         p++;
4082                 val = simple_strtoul(p, &p, 16);
4083         } else
4084                 val = simple_strtoul(p, &p, 10);
4085         if (p == buffer) {
4086                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4087         } else {
4088                 priv->ieee->scan_age = val;
4089                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4090         }
4091
4092         IPW_DEBUG_INFO("exit\n");
4093         return len;
4094 }
4095
4096 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4097
4098 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4099                             char *buf)
4100 {
4101         /* 0 - RF kill not enabled
4102            1 - SW based RF kill active (sysfs)
4103            2 - HW based RF kill active
4104            3 - Both HW and SW baed RF kill active */
4105         struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4106         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4107             (rf_kill_active(priv) ? 0x2 : 0x0);
4108         return sprintf(buf, "%i\n", val);
4109 }
4110
4111 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4112 {
4113         if ((disable_radio ? 1 : 0) ==
4114             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4115                 return 0;
4116
4117         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4118                           disable_radio ? "OFF" : "ON");
4119
4120         down(&priv->action_sem);
4121
4122         if (disable_radio) {
4123                 priv->status |= STATUS_RF_KILL_SW;
4124                 ipw2100_down(priv);
4125         } else {
4126                 priv->status &= ~STATUS_RF_KILL_SW;
4127                 if (rf_kill_active(priv)) {
4128                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4129                                           "disabled by HW switch\n");
4130                         /* Make sure the RF_KILL check timer is running */
4131                         priv->stop_rf_kill = 0;
4132                         cancel_delayed_work(&priv->rf_kill);
4133                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4134                 } else
4135                         schedule_reset(priv);
4136         }
4137
4138         up(&priv->action_sem);
4139         return 1;
4140 }
4141
4142 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4143                              const char *buf, size_t count)
4144 {
4145         struct ipw2100_priv *priv = dev_get_drvdata(d);
4146         ipw_radio_kill_sw(priv, buf[0] == '1');
4147         return count;
4148 }
4149
4150 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4151
4152 static struct attribute *ipw2100_sysfs_entries[] = {
4153         &dev_attr_hardware.attr,
4154         &dev_attr_registers.attr,
4155         &dev_attr_ordinals.attr,
4156         &dev_attr_pci.attr,
4157         &dev_attr_stats.attr,
4158         &dev_attr_internals.attr,
4159         &dev_attr_bssinfo.attr,
4160         &dev_attr_memory.attr,
4161         &dev_attr_scan_age.attr,
4162         &dev_attr_fatal_error.attr,
4163         &dev_attr_rf_kill.attr,
4164         &dev_attr_cfg.attr,
4165         &dev_attr_status.attr,
4166         &dev_attr_capability.attr,
4167         NULL,
4168 };
4169
4170 static struct attribute_group ipw2100_attribute_group = {
4171         .attrs = ipw2100_sysfs_entries,
4172 };
4173
4174 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4175 {
4176         struct ipw2100_status_queue *q = &priv->status_queue;
4177
4178         IPW_DEBUG_INFO("enter\n");
4179
4180         q->size = entries * sizeof(struct ipw2100_status);
4181         q->drv =
4182             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4183                                                           q->size, &q->nic);
4184         if (!q->drv) {
4185                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4186                 return -ENOMEM;
4187         }
4188
4189         memset(q->drv, 0, q->size);
4190
4191         IPW_DEBUG_INFO("exit\n");
4192
4193         return 0;
4194 }
4195
4196 static void status_queue_free(struct ipw2100_priv *priv)
4197 {
4198         IPW_DEBUG_INFO("enter\n");
4199
4200         if (priv->status_queue.drv) {
4201                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4202                                     priv->status_queue.drv,
4203                                     priv->status_queue.nic);
4204                 priv->status_queue.drv = NULL;
4205         }
4206
4207         IPW_DEBUG_INFO("exit\n");
4208 }
4209
4210 static int bd_queue_allocate(struct ipw2100_priv *priv,
4211                              struct ipw2100_bd_queue *q, int entries)
4212 {
4213         IPW_DEBUG_INFO("enter\n");
4214
4215         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4216
4217         q->entries = entries;
4218         q->size = entries * sizeof(struct ipw2100_bd);
4219         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4220         if (!q->drv) {
4221                 IPW_DEBUG_INFO
4222                     ("can't allocate shared memory for buffer descriptors\n");
4223                 return -ENOMEM;
4224         }
4225         memset(q->drv, 0, q->size);
4226
4227         IPW_DEBUG_INFO("exit\n");
4228
4229         return 0;
4230 }
4231
4232 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4233 {
4234         IPW_DEBUG_INFO("enter\n");
4235
4236         if (!q)
4237                 return;
4238
4239         if (q->drv) {
4240                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4241                 q->drv = NULL;
4242         }
4243
4244         IPW_DEBUG_INFO("exit\n");
4245 }
4246
4247 static void bd_queue_initialize(struct ipw2100_priv *priv,
4248                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4249                                 u32 r, u32 w)
4250 {
4251         IPW_DEBUG_INFO("enter\n");
4252
4253         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4254                        (u32) q->nic);
4255
4256         write_register(priv->net_dev, base, q->nic);
4257         write_register(priv->net_dev, size, q->entries);
4258         write_register(priv->net_dev, r, q->oldest);
4259         write_register(priv->net_dev, w, q->next);
4260
4261         IPW_DEBUG_INFO("exit\n");
4262 }
4263
4264 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4265 {
4266         if (priv->workqueue) {
4267                 priv->stop_rf_kill = 1;
4268                 priv->stop_hang_check = 1;
4269                 cancel_delayed_work(&priv->reset_work);
4270                 cancel_delayed_work(&priv->security_work);
4271                 cancel_delayed_work(&priv->wx_event_work);
4272                 cancel_delayed_work(&priv->hang_check);
4273                 cancel_delayed_work(&priv->rf_kill);
4274                 destroy_workqueue(priv->workqueue);
4275                 priv->workqueue = NULL;
4276         }
4277 }
4278
4279 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4280 {
4281         int i, j, err = -EINVAL;
4282         void *v;
4283         dma_addr_t p;
4284
4285         IPW_DEBUG_INFO("enter\n");
4286
4287         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4288         if (err) {
4289                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4290                                 priv->net_dev->name);
4291                 return err;
4292         }
4293
4294         priv->tx_buffers =
4295             (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4296                                                 sizeof(struct
4297                                                        ipw2100_tx_packet),
4298                                                 GFP_ATOMIC);
4299         if (!priv->tx_buffers) {
4300                 printk(KERN_ERR DRV_NAME
4301                        ": %s: alloc failed form tx buffers.\n",
4302                        priv->net_dev->name);
4303                 bd_queue_free(priv, &priv->tx_queue);
4304                 return -ENOMEM;
4305         }
4306
4307         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4308                 v = pci_alloc_consistent(priv->pci_dev,
4309                                          sizeof(struct ipw2100_data_header),
4310                                          &p);
4311                 if (!v) {
4312                         printk(KERN_ERR DRV_NAME
4313                                ": %s: PCI alloc failed for tx " "buffers.\n",
4314                                priv->net_dev->name);
4315                         err = -ENOMEM;
4316                         break;
4317                 }
4318
4319                 priv->tx_buffers[i].type = DATA;
4320                 priv->tx_buffers[i].info.d_struct.data =
4321                     (struct ipw2100_data_header *)v;
4322                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4323                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4324         }
4325
4326         if (i == TX_PENDED_QUEUE_LENGTH)
4327                 return 0;
4328
4329         for (j = 0; j < i; j++) {
4330                 pci_free_consistent(priv->pci_dev,
4331                                     sizeof(struct ipw2100_data_header),
4332                                     priv->tx_buffers[j].info.d_struct.data,
4333                                     priv->tx_buffers[j].info.d_struct.
4334                                     data_phys);
4335         }
4336
4337         kfree(priv->tx_buffers);
4338         priv->tx_buffers = NULL;
4339
4340         return err;
4341 }
4342
4343 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4344 {
4345         int i;
4346
4347         IPW_DEBUG_INFO("enter\n");
4348
4349         /*
4350          * reinitialize packet info lists
4351          */
4352         INIT_LIST_HEAD(&priv->fw_pend_list);
4353         INIT_STAT(&priv->fw_pend_stat);
4354
4355         /*
4356          * reinitialize lists
4357          */
4358         INIT_LIST_HEAD(&priv->tx_pend_list);
4359         INIT_LIST_HEAD(&priv->tx_free_list);
4360         INIT_STAT(&priv->tx_pend_stat);
4361         INIT_STAT(&priv->tx_free_stat);
4362
4363         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4364                 /* We simply drop any SKBs that have been queued for
4365                  * transmit */
4366                 if (priv->tx_buffers[i].info.d_struct.txb) {
4367                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4368                                            txb);
4369                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4370                 }
4371
4372                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4373         }
4374
4375         SET_STAT(&priv->tx_free_stat, i);
4376
4377         priv->tx_queue.oldest = 0;
4378         priv->tx_queue.available = priv->tx_queue.entries;
4379         priv->tx_queue.next = 0;
4380         INIT_STAT(&priv->txq_stat);
4381         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4382
4383         bd_queue_initialize(priv, &priv->tx_queue,
4384                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4385                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4386                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4387                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4388
4389         IPW_DEBUG_INFO("exit\n");
4390
4391 }
4392
4393 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4394 {
4395         int i;
4396
4397         IPW_DEBUG_INFO("enter\n");
4398
4399         bd_queue_free(priv, &priv->tx_queue);
4400
4401         if (!priv->tx_buffers)
4402                 return;
4403
4404         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4405                 if (priv->tx_buffers[i].info.d_struct.txb) {
4406                         ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4407                                            txb);
4408                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4409                 }
4410                 if (priv->tx_buffers[i].info.d_struct.data)
4411                         pci_free_consistent(priv->pci_dev,
4412                                             sizeof(struct ipw2100_data_header),
4413                                             priv->tx_buffers[i].info.d_struct.
4414                                             data,
4415                                             priv->tx_buffers[i].info.d_struct.
4416                                             data_phys);
4417         }
4418
4419         kfree(priv->tx_buffers);
4420         priv->tx_buffers = NULL;
4421
4422         IPW_DEBUG_INFO("exit\n");
4423 }
4424
4425 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4426 {
4427         int i, j, err = -EINVAL;
4428
4429         IPW_DEBUG_INFO("enter\n");
4430
4431         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4432         if (err) {
4433                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4434                 return err;
4435         }
4436
4437         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4438         if (err) {
4439                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4440                 bd_queue_free(priv, &priv->rx_queue);
4441                 return err;
4442         }
4443
4444         /*
4445          * allocate packets
4446          */
4447         priv->rx_buffers = (struct ipw2100_rx_packet *)
4448             kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4449                     GFP_KERNEL);
4450         if (!priv->rx_buffers) {
4451                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4452
4453                 bd_queue_free(priv, &priv->rx_queue);
4454
4455                 status_queue_free(priv);
4456
4457                 return -ENOMEM;
4458         }
4459
4460         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4461                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4462
4463                 err = ipw2100_alloc_skb(priv, packet);
4464                 if (unlikely(err)) {
4465                         err = -ENOMEM;
4466                         break;
4467                 }
4468
4469                 /* The BD holds the cache aligned address */
4470                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4471                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4472                 priv->status_queue.drv[i].status_fields = 0;
4473         }
4474
4475         if (i == RX_QUEUE_LENGTH)
4476                 return 0;
4477
4478         for (j = 0; j < i; j++) {
4479                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4480                                  sizeof(struct ipw2100_rx_packet),
4481                                  PCI_DMA_FROMDEVICE);
4482                 dev_kfree_skb(priv->rx_buffers[j].skb);
4483         }
4484
4485         kfree(priv->rx_buffers);
4486         priv->rx_buffers = NULL;
4487
4488         bd_queue_free(priv, &priv->rx_queue);
4489
4490         status_queue_free(priv);
4491
4492         return err;
4493 }
4494
4495 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4496 {
4497         IPW_DEBUG_INFO("enter\n");
4498
4499         priv->rx_queue.oldest = 0;
4500         priv->rx_queue.available = priv->rx_queue.entries - 1;
4501         priv->rx_queue.next = priv->rx_queue.entries - 1;
4502
4503         INIT_STAT(&priv->rxq_stat);
4504         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4505
4506         bd_queue_initialize(priv, &priv->rx_queue,
4507                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4508                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4509                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4510                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4511
4512         /* set up the status queue */
4513         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4514                        priv->status_queue.nic);
4515
4516         IPW_DEBUG_INFO("exit\n");
4517 }
4518
4519 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4520 {
4521         int i;
4522
4523         IPW_DEBUG_INFO("enter\n");
4524
4525         bd_queue_free(priv, &priv->rx_queue);
4526         status_queue_free(priv);
4527
4528         if (!priv->rx_buffers)
4529                 return;
4530
4531         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4532                 if (priv->rx_buffers[i].rxp) {
4533                         pci_unmap_single(priv->pci_dev,
4534                                          priv->rx_buffers[i].dma_addr,
4535                                          sizeof(struct ipw2100_rx),
4536                                          PCI_DMA_FROMDEVICE);
4537                         dev_kfree_skb(priv->rx_buffers[i].skb);
4538                 }
4539         }
4540
4541         kfree(priv->rx_buffers);
4542         priv->rx_buffers = NULL;
4543
4544         IPW_DEBUG_INFO("exit\n");
4545 }
4546
4547 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4548 {
4549         u32 length = ETH_ALEN;
4550         u8 mac[ETH_ALEN];
4551
4552         int err;
4553
4554         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4555         if (err) {
4556                 IPW_DEBUG_INFO("MAC address read failed\n");
4557                 return -EIO;
4558         }
4559         IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4560                        mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4561
4562         memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4563
4564         return 0;
4565 }
4566
4567 /********************************************************************
4568  *
4569  * Firmware Commands
4570  *
4571  ********************************************************************/
4572
4573 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4574 {
4575         struct host_command cmd = {
4576                 .host_command = ADAPTER_ADDRESS,
4577                 .host_command_sequence = 0,
4578                 .host_command_length = ETH_ALEN
4579         };
4580         int err;
4581
4582         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4583
4584         IPW_DEBUG_INFO("enter\n");
4585
4586         if (priv->config & CFG_CUSTOM_MAC) {
4587                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4588                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4589         } else
4590                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4591                        ETH_ALEN);
4592
4593         err = ipw2100_hw_send_command(priv, &cmd);
4594
4595         IPW_DEBUG_INFO("exit\n");
4596         return err;
4597 }
4598
4599 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4600                                  int batch_mode)
4601 {
4602         struct host_command cmd = {
4603                 .host_command = PORT_TYPE,
4604                 .host_command_sequence = 0,
4605                 .host_command_length = sizeof(u32)
4606         };
4607         int err;
4608
4609         switch (port_type) {
4610         case IW_MODE_INFRA:
4611                 cmd.host_command_parameters[0] = IPW_BSS;
4612                 break;
4613         case IW_MODE_ADHOC:
4614                 cmd.host_command_parameters[0] = IPW_IBSS;
4615                 break;
4616         }
4617
4618         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4619                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4620
4621         if (!batch_mode) {
4622                 err = ipw2100_disable_adapter(priv);
4623                 if (err) {
4624                         printk(KERN_ERR DRV_NAME
4625                                ": %s: Could not disable adapter %d\n",
4626                                priv->net_dev->name, err);
4627                         return err;
4628                 }
4629         }
4630
4631         /* send cmd to firmware */
4632         err = ipw2100_hw_send_command(priv, &cmd);
4633
4634         if (!batch_mode)
4635                 ipw2100_enable_adapter(priv);
4636
4637         return err;
4638 }
4639
4640 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4641                                int batch_mode)
4642 {
4643         struct host_command cmd = {
4644                 .host_command = CHANNEL,
4645                 .host_command_sequence = 0,
4646                 .host_command_length = sizeof(u32)
4647         };
4648         int err;
4649
4650         cmd.host_command_parameters[0] = channel;
4651
4652         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4653
4654         /* If BSS then we don't support channel selection */
4655         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4656                 return 0;
4657
4658         if ((channel != 0) &&
4659             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4660                 return -EINVAL;
4661
4662         if (!batch_mode) {
4663                 err = ipw2100_disable_adapter(priv);
4664                 if (err)
4665                         return err;
4666         }
4667
4668         err = ipw2100_hw_send_command(priv, &cmd);
4669         if (err) {
4670                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4671                 return err;
4672         }
4673
4674         if (channel)
4675                 priv->config |= CFG_STATIC_CHANNEL;
4676         else
4677                 priv->config &= ~CFG_STATIC_CHANNEL;
4678
4679         priv->channel = channel;
4680
4681         if (!batch_mode) {
4682                 err = ipw2100_enable_adapter(priv);
4683                 if (err)
4684                         return err;
4685         }
4686
4687         return 0;
4688 }
4689
4690 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4691 {
4692         struct host_command cmd = {
4693                 .host_command = SYSTEM_CONFIG,
4694                 .host_command_sequence = 0,
4695                 .host_command_length = 12,
4696         };
4697         u32 ibss_mask, len = sizeof(u32);
4698         int err;
4699
4700         /* Set system configuration */
4701
4702         if (!batch_mode) {
4703                 err = ipw2100_disable_adapter(priv);
4704                 if (err)
4705                         return err;
4706         }
4707
4708         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4709                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4710
4711         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4712             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4713
4714         if (!(priv->config & CFG_LONG_PREAMBLE))
4715                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4716
4717         err = ipw2100_get_ordinal(priv,
4718                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4719                                   &ibss_mask, &len);
4720         if (err)
4721                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4722
4723         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4724         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4725
4726         /* 11b only */
4727         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4728
4729         err = ipw2100_hw_send_command(priv, &cmd);
4730         if (err)
4731                 return err;
4732
4733 /* If IPv6 is configured in the kernel then we don't want to filter out all
4734  * of the multicast packets as IPv6 needs some. */
4735 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4736         cmd.host_command = ADD_MULTICAST;
4737         cmd.host_command_sequence = 0;
4738         cmd.host_command_length = 0;
4739
4740         ipw2100_hw_send_command(priv, &cmd);
4741 #endif
4742         if (!batch_mode) {
4743                 err = ipw2100_enable_adapter(priv);
4744                 if (err)
4745                         return err;
4746         }
4747
4748         return 0;
4749 }
4750
4751 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4752                                 int batch_mode)
4753 {
4754         struct host_command cmd = {
4755                 .host_command = BASIC_TX_RATES,
4756                 .host_command_sequence = 0,
4757                 .host_command_length = 4
4758         };
4759         int err;
4760
4761         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4762
4763         if (!batch_mode) {
4764                 err = ipw2100_disable_adapter(priv);
4765                 if (err)
4766                         return err;
4767         }
4768
4769         /* Set BASIC TX Rate first */
4770         ipw2100_hw_send_command(priv, &cmd);
4771
4772         /* Set TX Rate */
4773         cmd.host_command = TX_RATES;
4774         ipw2100_hw_send_command(priv, &cmd);
4775
4776         /* Set MSDU TX Rate */
4777         cmd.host_command = MSDU_TX_RATES;
4778         ipw2100_hw_send_command(priv, &cmd);
4779
4780         if (!batch_mode) {
4781                 err = ipw2100_enable_adapter(priv);
4782                 if (err)
4783                         return err;
4784         }
4785
4786         priv->tx_rates = rate;
4787
4788         return 0;
4789 }
4790
4791 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4792 {
4793         struct host_command cmd = {
4794                 .host_command = POWER_MODE,
4795                 .host_command_sequence = 0,
4796                 .host_command_length = 4
4797         };
4798         int err;
4799
4800         cmd.host_command_parameters[0] = power_level;
4801
4802         err = ipw2100_hw_send_command(priv, &cmd);
4803         if (err)
4804                 return err;
4805
4806         if (power_level == IPW_POWER_MODE_CAM)
4807                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4808         else
4809                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4810
4811 #ifdef CONFIG_IPW2100_TX_POWER
4812         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4813                 /* Set beacon interval */
4814                 cmd.host_command = TX_POWER_INDEX;
4815                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4816
4817                 err = ipw2100_hw_send_command(priv, &cmd);
4818                 if (err)
4819                         return err;
4820         }
4821 #endif
4822
4823         return 0;
4824 }
4825
4826 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4827 {
4828         struct host_command cmd = {
4829                 .host_command = RTS_THRESHOLD,
4830                 .host_command_sequence = 0,
4831                 .host_command_length = 4
4832         };
4833         int err;
4834
4835         if (threshold & RTS_DISABLED)
4836                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4837         else
4838                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4839
4840         err = ipw2100_hw_send_command(priv, &cmd);
4841         if (err)
4842                 return err;
4843
4844         priv->rts_threshold = threshold;
4845
4846         return 0;
4847 }
4848
4849 #if 0
4850 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4851                                         u32 threshold, int batch_mode)
4852 {
4853         struct host_command cmd = {
4854                 .host_command = FRAG_THRESHOLD,
4855                 .host_command_sequence = 0,
4856                 .host_command_length = 4,
4857                 .host_command_parameters[0] = 0,
4858         };
4859         int err;
4860
4861         if (!batch_mode) {
4862                 err = ipw2100_disable_adapter(priv);
4863                 if (err)
4864                         return err;
4865         }
4866
4867         if (threshold == 0)
4868                 threshold = DEFAULT_FRAG_THRESHOLD;
4869         else {
4870                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4871                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4872         }
4873
4874         cmd.host_command_parameters[0] = threshold;
4875
4876         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4877
4878         err = ipw2100_hw_send_command(priv, &cmd);
4879
4880         if (!batch_mode)
4881                 ipw2100_enable_adapter(priv);
4882
4883         if (!err)
4884                 priv->frag_threshold = threshold;
4885
4886         return err;
4887 }
4888 #endif
4889
4890 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4891 {
4892         struct host_command cmd = {
4893                 .host_command = SHORT_RETRY_LIMIT,
4894                 .host_command_sequence = 0,
4895                 .host_command_length = 4
4896         };
4897         int err;
4898
4899         cmd.host_command_parameters[0] = retry;
4900
4901         err = ipw2100_hw_send_command(priv, &cmd);
4902         if (err)
4903                 return err;
4904
4905         priv->short_retry_limit = retry;
4906
4907         return 0;
4908 }
4909
4910 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
4911 {
4912         struct host_command cmd = {
4913                 .host_command = LONG_RETRY_LIMIT,
4914                 .host_command_sequence = 0,
4915                 .host_command_length = 4
4916         };
4917         int err;
4918
4919         cmd.host_command_parameters[0] = retry;
4920
4921         err = ipw2100_hw_send_command(priv, &cmd);
4922         if (err)
4923                 return err;
4924
4925         priv->long_retry_limit = retry;
4926
4927         return 0;
4928 }
4929
4930 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
4931                                        int batch_mode)
4932 {
4933         struct host_command cmd = {
4934                 .host_command = MANDATORY_BSSID,
4935                 .host_command_sequence = 0,
4936                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
4937         };
4938         int err;
4939
4940 #ifdef CONFIG_IPW2100_DEBUG
4941         if (bssid != NULL)
4942                 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
4943                              bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
4944                              bssid[5]);
4945         else
4946                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
4947 #endif
4948         /* if BSSID is empty then we disable mandatory bssid mode */
4949         if (bssid != NULL)
4950                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
4951
4952         if (!batch_mode) {
4953                 err = ipw2100_disable_adapter(priv);
4954                 if (err)
4955                         return err;
4956         }
4957
4958         err = ipw2100_hw_send_command(priv, &cmd);
4959
4960         if (!batch_mode)
4961                 ipw2100_enable_adapter(priv);
4962
4963         return err;
4964 }
4965
4966 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
4967 {
4968         struct host_command cmd = {
4969                 .host_command = DISASSOCIATION_BSSID,
4970                 .host_command_sequence = 0,
4971                 .host_command_length = ETH_ALEN
4972         };
4973         int err;
4974         int len;
4975
4976         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
4977
4978         len = ETH_ALEN;
4979         /* The Firmware currently ignores the BSSID and just disassociates from
4980          * the currently associated AP -- but in the off chance that a future
4981          * firmware does use the BSSID provided here, we go ahead and try and
4982          * set it to the currently associated AP's BSSID */
4983         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
4984
4985         err = ipw2100_hw_send_command(priv, &cmd);
4986
4987         return err;
4988 }
4989
4990 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
4991                               struct ipw2100_wpa_assoc_frame *, int)
4992     __attribute__ ((unused));
4993
4994 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
4995                               struct ipw2100_wpa_assoc_frame *wpa_frame,
4996                               int batch_mode)
4997 {
4998         struct host_command cmd = {
4999                 .host_command = SET_WPA_IE,
5000                 .host_command_sequence = 0,
5001                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5002         };
5003         int err;
5004
5005         IPW_DEBUG_HC("SET_WPA_IE\n");
5006
5007         if (!batch_mode) {
5008                 err = ipw2100_disable_adapter(priv);
5009                 if (err)
5010                         return err;
5011         }
5012
5013         memcpy(cmd.host_command_parameters, wpa_frame,
5014                sizeof(struct ipw2100_wpa_assoc_frame));
5015
5016         err = ipw2100_hw_send_command(priv, &cmd);
5017
5018         if (!batch_mode) {
5019                 if (ipw2100_enable_adapter(priv))
5020                         err = -EIO;
5021         }
5022
5023         return err;
5024 }
5025
5026 struct security_info_params {
5027         u32 allowed_ciphers;
5028         u16 version;
5029         u8 auth_mode;
5030         u8 replay_counters_number;
5031         u8 unicast_using_group;
5032 } __attribute__ ((packed));
5033
5034 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5035                                             int auth_mode,
5036                                             int security_level,
5037                                             int unicast_using_group,
5038                                             int batch_mode)
5039 {
5040         struct host_command cmd = {
5041                 .host_command = SET_SECURITY_INFORMATION,
5042                 .host_command_sequence = 0,
5043                 .host_command_length = sizeof(struct security_info_params)
5044         };
5045         struct security_info_params *security =
5046             (struct security_info_params *)&cmd.host_command_parameters;
5047         int err;
5048         memset(security, 0, sizeof(*security));
5049
5050         /* If shared key AP authentication is turned on, then we need to
5051          * configure the firmware to try and use it.
5052          *
5053          * Actual data encryption/decryption is handled by the host. */
5054         security->auth_mode = auth_mode;
5055         security->unicast_using_group = unicast_using_group;
5056
5057         switch (security_level) {
5058         default:
5059         case SEC_LEVEL_0:
5060                 security->allowed_ciphers = IPW_NONE_CIPHER;
5061                 break;
5062         case SEC_LEVEL_1:
5063                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5064                     IPW_WEP104_CIPHER;
5065                 break;
5066         case SEC_LEVEL_2:
5067                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5068                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5069                 break;
5070         case SEC_LEVEL_2_CKIP:
5071                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5072                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5073                 break;
5074         case SEC_LEVEL_3:
5075                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5076                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5077                 break;
5078         }
5079
5080         IPW_DEBUG_HC
5081             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5082              security->auth_mode, security->allowed_ciphers, security_level);
5083
5084         security->replay_counters_number = 0;
5085
5086         if (!batch_mode) {
5087                 err = ipw2100_disable_adapter(priv);
5088                 if (err)
5089                         return err;
5090         }
5091
5092         err = ipw2100_hw_send_command(priv, &cmd);
5093
5094         if (!batch_mode)
5095                 ipw2100_enable_adapter(priv);
5096
5097         return err;
5098 }
5099
5100 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5101 {
5102         struct host_command cmd = {
5103                 .host_command = TX_POWER_INDEX,
5104                 .host_command_sequence = 0,
5105                 .host_command_length = 4
5106         };
5107         int err = 0;
5108
5109         if (tx_power != IPW_TX_POWER_DEFAULT)
5110                 tx_power = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5111                     (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5112
5113         cmd.host_command_parameters[0] = tx_power;
5114
5115         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5116                 err = ipw2100_hw_send_command(priv, &cmd);
5117         if (!err)
5118                 priv->tx_power = tx_power;
5119
5120         return 0;
5121 }
5122
5123 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5124                                             u32 interval, int batch_mode)
5125 {
5126         struct host_command cmd = {
5127                 .host_command = BEACON_INTERVAL,
5128                 .host_command_sequence = 0,
5129                 .host_command_length = 4
5130         };
5131         int err;
5132
5133         cmd.host_command_parameters[0] = interval;
5134
5135         IPW_DEBUG_INFO("enter\n");
5136
5137         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5138                 if (!batch_mode) {
5139                         err = ipw2100_disable_adapter(priv);
5140                         if (err)
5141                                 return err;
5142                 }
5143
5144                 ipw2100_hw_send_command(priv, &cmd);
5145
5146                 if (!batch_mode) {
5147                         err = ipw2100_enable_adapter(priv);
5148                         if (err)
5149                                 return err;
5150                 }
5151         }
5152
5153         IPW_DEBUG_INFO("exit\n");
5154
5155         return 0;
5156 }
5157
5158 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5159 {
5160         ipw2100_tx_initialize(priv);
5161         ipw2100_rx_initialize(priv);
5162         ipw2100_msg_initialize(priv);
5163 }
5164
5165 void ipw2100_queues_free(struct ipw2100_priv *priv)
5166 {
5167         ipw2100_tx_free(priv);
5168         ipw2100_rx_free(priv);
5169         ipw2100_msg_free(priv);
5170 }
5171
5172 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5173 {
5174         if (ipw2100_tx_allocate(priv) ||
5175             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5176                 goto fail;
5177
5178         return 0;
5179
5180       fail:
5181         ipw2100_tx_free(priv);
5182         ipw2100_rx_free(priv);
5183         ipw2100_msg_free(priv);
5184         return -ENOMEM;
5185 }
5186
5187 #define IPW_PRIVACY_CAPABLE 0x0008
5188
5189 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5190                                  int batch_mode)
5191 {
5192         struct host_command cmd = {
5193                 .host_command = WEP_FLAGS,
5194                 .host_command_sequence = 0,
5195                 .host_command_length = 4
5196         };
5197         int err;
5198
5199         cmd.host_command_parameters[0] = flags;
5200
5201         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5202
5203         if (!batch_mode) {
5204                 err = ipw2100_disable_adapter(priv);
5205                 if (err) {
5206                         printk(KERN_ERR DRV_NAME
5207                                ": %s: Could not disable adapter %d\n",
5208                                priv->net_dev->name, err);
5209                         return err;
5210                 }
5211         }
5212
5213         /* send cmd to firmware */
5214         err = ipw2100_hw_send_command(priv, &cmd);
5215
5216         if (!batch_mode)
5217                 ipw2100_enable_adapter(priv);
5218
5219         return err;
5220 }
5221
5222 struct ipw2100_wep_key {
5223         u8 idx;
5224         u8 len;
5225         u8 key[13];
5226 };
5227
5228 /* Macros to ease up priting WEP keys */
5229 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5230 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5231 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5232 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5233
5234 /**
5235  * Set a the wep key
5236  *
5237  * @priv: struct to work on
5238  * @idx: index of the key we want to set
5239  * @key: ptr to the key data to set
5240  * @len: length of the buffer at @key
5241  * @batch_mode: FIXME perform the operation in batch mode, not
5242  *              disabling the device.
5243  *
5244  * @returns 0 if OK, < 0 errno code on error.
5245  *
5246  * Fill out a command structure with the new wep key, length an
5247  * index and send it down the wire.
5248  */
5249 static int ipw2100_set_key(struct ipw2100_priv *priv,
5250                            int idx, char *key, int len, int batch_mode)
5251 {
5252         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5253         struct host_command cmd = {
5254                 .host_command = WEP_KEY_INFO,
5255                 .host_command_sequence = 0,
5256                 .host_command_length = sizeof(struct ipw2100_wep_key),
5257         };
5258         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5259         int err;
5260
5261         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5262                      idx, keylen, len);
5263
5264         /* NOTE: We don't check cached values in case the firmware was reset
5265          * or some other problem is occuring.  If the user is setting the key,
5266          * then we push the change */
5267
5268         wep_key->idx = idx;
5269         wep_key->len = keylen;
5270
5271         if (keylen) {
5272                 memcpy(wep_key->key, key, len);
5273                 memset(wep_key->key + len, 0, keylen - len);
5274         }
5275
5276         /* Will be optimized out on debug not being configured in */
5277         if (keylen == 0)
5278                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5279                               priv->net_dev->name, wep_key->idx);
5280         else if (keylen == 5)
5281                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5282                               priv->net_dev->name, wep_key->idx, wep_key->len,
5283                               WEP_STR_64(wep_key->key));
5284         else
5285                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5286                               "\n",
5287                               priv->net_dev->name, wep_key->idx, wep_key->len,
5288                               WEP_STR_128(wep_key->key));
5289
5290         if (!batch_mode) {
5291                 err = ipw2100_disable_adapter(priv);
5292                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5293                 if (err) {
5294                         printk(KERN_ERR DRV_NAME
5295                                ": %s: Could not disable adapter %d\n",
5296                                priv->net_dev->name, err);
5297                         return err;
5298                 }
5299         }
5300
5301         /* send cmd to firmware */
5302         err = ipw2100_hw_send_command(priv, &cmd);
5303
5304         if (!batch_mode) {
5305                 int err2 = ipw2100_enable_adapter(priv);
5306                 if (err == 0)
5307                         err = err2;
5308         }
5309         return err;
5310 }
5311
5312 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5313                                  int idx, int batch_mode)
5314 {
5315         struct host_command cmd = {
5316                 .host_command = WEP_KEY_INDEX,
5317                 .host_command_sequence = 0,
5318                 .host_command_length = 4,
5319                 .host_command_parameters = {idx},
5320         };
5321         int err;
5322
5323         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5324
5325         if (idx < 0 || idx > 3)
5326                 return -EINVAL;
5327
5328         if (!batch_mode) {
5329                 err = ipw2100_disable_adapter(priv);
5330                 if (err) {
5331                         printk(KERN_ERR DRV_NAME
5332                                ": %s: Could not disable adapter %d\n",
5333                                priv->net_dev->name, err);
5334                         return err;
5335                 }
5336         }
5337
5338         /* send cmd to firmware */
5339         err = ipw2100_hw_send_command(priv, &cmd);
5340
5341         if (!batch_mode)
5342                 ipw2100_enable_adapter(priv);
5343
5344         return err;
5345 }
5346
5347 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5348 {
5349         int i, err, auth_mode, sec_level, use_group;
5350
5351         if (!(priv->status & STATUS_RUNNING))
5352                 return 0;
5353
5354         if (!batch_mode) {
5355                 err = ipw2100_disable_adapter(priv);
5356                 if (err)
5357                         return err;
5358         }
5359
5360         if (!priv->ieee->sec.enabled) {
5361                 err =
5362                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5363                                                      SEC_LEVEL_0, 0, 1);
5364         } else {
5365                 auth_mode = IPW_AUTH_OPEN;
5366                 if ((priv->ieee->sec.flags & SEC_AUTH_MODE) &&
5367                     (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY))
5368                         auth_mode = IPW_AUTH_SHARED;
5369
5370                 sec_level = SEC_LEVEL_0;
5371                 if (priv->ieee->sec.flags & SEC_LEVEL)
5372                         sec_level = priv->ieee->sec.level;
5373
5374                 use_group = 0;
5375                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5376                         use_group = priv->ieee->sec.unicast_uses_group;
5377
5378                 err =
5379                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5380                                                      use_group, 1);
5381         }
5382
5383         if (err)
5384                 goto exit;
5385
5386         if (priv->ieee->sec.enabled) {
5387                 for (i = 0; i < 4; i++) {
5388                         if (!(priv->ieee->sec.flags & (1 << i))) {
5389                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5390                                 priv->ieee->sec.key_sizes[i] = 0;
5391                         } else {
5392                                 err = ipw2100_set_key(priv, i,
5393                                                       priv->ieee->sec.keys[i],
5394                                                       priv->ieee->sec.
5395                                                       key_sizes[i], 1);
5396                                 if (err)
5397                                         goto exit;
5398                         }
5399                 }
5400
5401                 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5402         }
5403
5404         /* Always enable privacy so the Host can filter WEP packets if
5405          * encrypted data is sent up */
5406         err =
5407             ipw2100_set_wep_flags(priv,
5408                                   priv->ieee->sec.
5409                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5410         if (err)
5411                 goto exit;
5412
5413         priv->status &= ~STATUS_SECURITY_UPDATED;
5414
5415       exit:
5416         if (!batch_mode)
5417                 ipw2100_enable_adapter(priv);
5418
5419         return err;
5420 }
5421
5422 static void ipw2100_security_work(struct ipw2100_priv *priv)
5423 {
5424         /* If we happen to have reconnected before we get a chance to
5425          * process this, then update the security settings--which causes
5426          * a disassociation to occur */
5427         if (!(priv->status & STATUS_ASSOCIATED) &&
5428             priv->status & STATUS_SECURITY_UPDATED)
5429                 ipw2100_configure_security(priv, 0);
5430 }
5431
5432 static void shim__set_security(struct net_device *dev,
5433                                struct ieee80211_security *sec)
5434 {
5435         struct ipw2100_priv *priv = ieee80211_priv(dev);
5436         int i, force_update = 0;
5437
5438         down(&priv->action_sem);
5439         if (!(priv->status & STATUS_INITIALIZED))
5440                 goto done;
5441
5442         for (i = 0; i < 4; i++) {
5443                 if (sec->flags & (1 << i)) {
5444                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5445                         if (sec->key_sizes[i] == 0)
5446                                 priv->ieee->sec.flags &= ~(1 << i);
5447                         else
5448                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5449                                        sec->key_sizes[i]);
5450                         if (sec->level == SEC_LEVEL_1) {
5451                                 priv->ieee->sec.flags |= (1 << i);
5452                                 priv->status |= STATUS_SECURITY_UPDATED;
5453                         } else
5454                                 priv->ieee->sec.flags &= ~(1 << i);
5455                 }
5456         }
5457
5458         if ((sec->flags & SEC_ACTIVE_KEY) &&
5459             priv->ieee->sec.active_key != sec->active_key) {
5460                 if (sec->active_key <= 3) {
5461                         priv->ieee->sec.active_key = sec->active_key;
5462                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5463                 } else
5464                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5465
5466                 priv->status |= STATUS_SECURITY_UPDATED;
5467         }
5468
5469         if ((sec->flags & SEC_AUTH_MODE) &&
5470             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5471                 priv->ieee->sec.auth_mode = sec->auth_mode;
5472                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5473                 priv->status |= STATUS_SECURITY_UPDATED;
5474         }
5475
5476         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5477                 priv->ieee->sec.flags |= SEC_ENABLED;
5478                 priv->ieee->sec.enabled = sec->enabled;
5479                 priv->status |= STATUS_SECURITY_UPDATED;
5480                 force_update = 1;
5481         }
5482
5483         if (sec->flags & SEC_ENCRYPT)
5484                 priv->ieee->sec.encrypt = sec->encrypt;
5485
5486         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5487                 priv->ieee->sec.level = sec->level;
5488                 priv->ieee->sec.flags |= SEC_LEVEL;
5489                 priv->status |= STATUS_SECURITY_UPDATED;
5490         }
5491
5492         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5493                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5494                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5495                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5496                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5497                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5498                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5499                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5500                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5501                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5502
5503 /* As a temporary work around to enable WPA until we figure out why
5504  * wpa_supplicant toggles the security capability of the driver, which
5505  * forces a disassocation with force_update...
5506  *
5507  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5508         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5509                 ipw2100_configure_security(priv, 0);
5510       done:
5511         up(&priv->action_sem);
5512 }
5513
5514 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5515 {
5516         int err;
5517         int batch_mode = 1;
5518         u8 *bssid;
5519
5520         IPW_DEBUG_INFO("enter\n");
5521
5522         err = ipw2100_disable_adapter(priv);
5523         if (err)
5524                 return err;
5525 #ifdef CONFIG_IPW2100_MONITOR
5526         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5527                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5528                 if (err)
5529                         return err;
5530
5531                 IPW_DEBUG_INFO("exit\n");
5532
5533                 return 0;
5534         }
5535 #endif                          /* CONFIG_IPW2100_MONITOR */
5536
5537         err = ipw2100_read_mac_address(priv);
5538         if (err)
5539                 return -EIO;
5540
5541         err = ipw2100_set_mac_address(priv, batch_mode);
5542         if (err)
5543                 return err;
5544
5545         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5546         if (err)
5547                 return err;
5548
5549         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5550                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5551                 if (err)
5552                         return err;
5553         }
5554
5555         err = ipw2100_system_config(priv, batch_mode);
5556         if (err)
5557                 return err;
5558
5559         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5560         if (err)
5561                 return err;
5562
5563         /* Default to power mode OFF */
5564         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5565         if (err)
5566                 return err;
5567
5568         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5569         if (err)
5570                 return err;
5571
5572         if (priv->config & CFG_STATIC_BSSID)
5573                 bssid = priv->bssid;
5574         else
5575                 bssid = NULL;
5576         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5577         if (err)
5578                 return err;
5579
5580         if (priv->config & CFG_STATIC_ESSID)
5581                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5582                                         batch_mode);
5583         else
5584                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5585         if (err)
5586                 return err;
5587
5588         err = ipw2100_configure_security(priv, batch_mode);
5589         if (err)
5590                 return err;
5591
5592         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5593                 err =
5594                     ipw2100_set_ibss_beacon_interval(priv,
5595                                                      priv->beacon_interval,
5596                                                      batch_mode);
5597                 if (err)
5598                         return err;
5599
5600                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5601                 if (err)
5602                         return err;
5603         }
5604
5605         /*
5606            err = ipw2100_set_fragmentation_threshold(
5607            priv, priv->frag_threshold, batch_mode);
5608            if (err)
5609            return err;
5610          */
5611
5612         IPW_DEBUG_INFO("exit\n");
5613
5614         return 0;
5615 }
5616
5617 /*************************************************************************
5618  *
5619  * EXTERNALLY CALLED METHODS
5620  *
5621  *************************************************************************/
5622
5623 /* This method is called by the network layer -- not to be confused with
5624  * ipw2100_set_mac_address() declared above called by this driver (and this
5625  * method as well) to talk to the firmware */
5626 static int ipw2100_set_address(struct net_device *dev, void *p)
5627 {
5628         struct ipw2100_priv *priv = ieee80211_priv(dev);
5629         struct sockaddr *addr = p;
5630         int err = 0;
5631
5632         if (!is_valid_ether_addr(addr->sa_data))
5633                 return -EADDRNOTAVAIL;
5634
5635         down(&priv->action_sem);
5636
5637         priv->config |= CFG_CUSTOM_MAC;
5638         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5639
5640         err = ipw2100_set_mac_address(priv, 0);
5641         if (err)
5642                 goto done;
5643
5644         priv->reset_backoff = 0;
5645         up(&priv->action_sem);
5646         ipw2100_reset_adapter(priv);
5647         return 0;
5648
5649       done:
5650         up(&priv->action_sem);
5651         return err;
5652 }
5653
5654 static int ipw2100_open(struct net_device *dev)
5655 {
5656         struct ipw2100_priv *priv = ieee80211_priv(dev);
5657         unsigned long flags;
5658         IPW_DEBUG_INFO("dev->open\n");
5659
5660         spin_lock_irqsave(&priv->low_lock, flags);
5661         if (priv->status & STATUS_ASSOCIATED) {
5662                 netif_carrier_on(dev);
5663                 netif_start_queue(dev);
5664         }
5665         spin_unlock_irqrestore(&priv->low_lock, flags);
5666
5667         return 0;
5668 }
5669
5670 static int ipw2100_close(struct net_device *dev)
5671 {
5672         struct ipw2100_priv *priv = ieee80211_priv(dev);
5673         unsigned long flags;
5674         struct list_head *element;
5675         struct ipw2100_tx_packet *packet;
5676
5677         IPW_DEBUG_INFO("enter\n");
5678
5679         spin_lock_irqsave(&priv->low_lock, flags);
5680
5681         if (priv->status & STATUS_ASSOCIATED)
5682                 netif_carrier_off(dev);
5683         netif_stop_queue(dev);
5684
5685         /* Flush the TX queue ... */
5686         while (!list_empty(&priv->tx_pend_list)) {
5687                 element = priv->tx_pend_list.next;
5688                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5689
5690                 list_del(element);
5691                 DEC_STAT(&priv->tx_pend_stat);
5692
5693                 ieee80211_txb_free(packet->info.d_struct.txb);
5694                 packet->info.d_struct.txb = NULL;
5695
5696                 list_add_tail(element, &priv->tx_free_list);
5697                 INC_STAT(&priv->tx_free_stat);
5698         }
5699         spin_unlock_irqrestore(&priv->low_lock, flags);
5700
5701         IPW_DEBUG_INFO("exit\n");
5702
5703         return 0;
5704 }
5705
5706 /*
5707  * TODO:  Fix this function... its just wrong
5708  */
5709 static void ipw2100_tx_timeout(struct net_device *dev)
5710 {
5711         struct ipw2100_priv *priv = ieee80211_priv(dev);
5712
5713         priv->ieee->stats.tx_errors++;
5714
5715 #ifdef CONFIG_IPW2100_MONITOR
5716         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5717                 return;
5718 #endif
5719
5720         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5721                        dev->name);
5722         schedule_reset(priv);
5723 }
5724
5725 /*
5726  * TODO: reimplement it so that it reads statistics
5727  *       from the adapter using ordinal tables
5728  *       instead of/in addition to collecting them
5729  *       in the driver
5730  */
5731 static struct net_device_stats *ipw2100_stats(struct net_device *dev)
5732 {
5733         struct ipw2100_priv *priv = ieee80211_priv(dev);
5734
5735         return &priv->ieee->stats;
5736 }
5737
5738 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5739 {
5740         /* This is called when wpa_supplicant loads and closes the driver
5741          * interface. */
5742         priv->ieee->wpa_enabled = value;
5743         return 0;
5744 }
5745
5746 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5747 {
5748
5749         struct ieee80211_device *ieee = priv->ieee;
5750         struct ieee80211_security sec = {
5751                 .flags = SEC_AUTH_MODE,
5752         };
5753         int ret = 0;
5754
5755         if (value & IW_AUTH_ALG_SHARED_KEY) {
5756                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5757                 ieee->open_wep = 0;
5758         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5759                 sec.auth_mode = WLAN_AUTH_OPEN;
5760                 ieee->open_wep = 1;
5761         } else
5762                 return -EINVAL;
5763
5764         if (ieee->set_security)
5765                 ieee->set_security(ieee->dev, &sec);
5766         else
5767                 ret = -EOPNOTSUPP;
5768
5769         return ret;
5770 }
5771
5772 void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5773                              char *wpa_ie, int wpa_ie_len)
5774 {
5775
5776         struct ipw2100_wpa_assoc_frame frame;
5777
5778         frame.fixed_ie_mask = 0;
5779
5780         /* copy WPA IE */
5781         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5782         frame.var_ie_len = wpa_ie_len;
5783
5784         /* make sure WPA is enabled */
5785         ipw2100_wpa_enable(priv, 1);
5786         ipw2100_set_wpa_ie(priv, &frame, 0);
5787 }
5788
5789 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5790                                     struct ethtool_drvinfo *info)
5791 {
5792         struct ipw2100_priv *priv = ieee80211_priv(dev);
5793         char fw_ver[64], ucode_ver[64];
5794
5795         strcpy(info->driver, DRV_NAME);
5796         strcpy(info->version, DRV_VERSION);
5797
5798         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5799         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5800
5801         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5802                  fw_ver, priv->eeprom_version, ucode_ver);
5803
5804         strcpy(info->bus_info, pci_name(priv->pci_dev));
5805 }
5806
5807 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5808 {
5809         struct ipw2100_priv *priv = ieee80211_priv(dev);
5810         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5811 }
5812
5813 static struct ethtool_ops ipw2100_ethtool_ops = {
5814         .get_link = ipw2100_ethtool_get_link,
5815         .get_drvinfo = ipw_ethtool_get_drvinfo,
5816 };
5817
5818 static void ipw2100_hang_check(void *adapter)
5819 {
5820         struct ipw2100_priv *priv = adapter;
5821         unsigned long flags;
5822         u32 rtc = 0xa5a5a5a5;
5823         u32 len = sizeof(rtc);
5824         int restart = 0;
5825
5826         spin_lock_irqsave(&priv->low_lock, flags);
5827
5828         if (priv->fatal_error != 0) {
5829                 /* If fatal_error is set then we need to restart */
5830                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5831                                priv->net_dev->name);
5832
5833                 restart = 1;
5834         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5835                    (rtc == priv->last_rtc)) {
5836                 /* Check if firmware is hung */
5837                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5838                                priv->net_dev->name);
5839
5840                 restart = 1;
5841         }
5842
5843         if (restart) {
5844                 /* Kill timer */
5845                 priv->stop_hang_check = 1;
5846                 priv->hangs++;
5847
5848                 /* Restart the NIC */
5849                 schedule_reset(priv);
5850         }
5851
5852         priv->last_rtc = rtc;
5853
5854         if (!priv->stop_hang_check)
5855                 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5856
5857         spin_unlock_irqrestore(&priv->low_lock, flags);
5858 }
5859
5860 static void ipw2100_rf_kill(void *adapter)
5861 {
5862         struct ipw2100_priv *priv = adapter;
5863         unsigned long flags;
5864
5865         spin_lock_irqsave(&priv->low_lock, flags);
5866
5867         if (rf_kill_active(priv)) {
5868                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5869                 if (!priv->stop_rf_kill)
5870                         queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5871                 goto exit_unlock;
5872         }
5873
5874         /* RF Kill is now disabled, so bring the device back up */
5875
5876         if (!(priv->status & STATUS_RF_KILL_MASK)) {
5877                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5878                                   "device\n");
5879                 schedule_reset(priv);
5880         } else
5881                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
5882                                   "enabled\n");
5883
5884       exit_unlock:
5885         spin_unlock_irqrestore(&priv->low_lock, flags);
5886 }
5887
5888 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5889
5890 /* Look into using netdev destructor to shutdown ieee80211? */
5891
5892 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5893                                                void __iomem * base_addr,
5894                                                unsigned long mem_start,
5895                                                unsigned long mem_len)
5896 {
5897         struct ipw2100_priv *priv;
5898         struct net_device *dev;
5899
5900         dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
5901         if (!dev)
5902                 return NULL;
5903         priv = ieee80211_priv(dev);
5904         priv->ieee = netdev_priv(dev);
5905         priv->pci_dev = pci_dev;
5906         priv->net_dev = dev;
5907
5908         priv->ieee->hard_start_xmit = ipw2100_tx;
5909         priv->ieee->set_security = shim__set_security;
5910
5911         priv->ieee->perfect_rssi = -20;
5912         priv->ieee->worst_rssi = -85;
5913
5914         dev->open = ipw2100_open;
5915         dev->stop = ipw2100_close;
5916         dev->init = ipw2100_net_init;
5917         dev->get_stats = ipw2100_stats;
5918         dev->ethtool_ops = &ipw2100_ethtool_ops;
5919         dev->tx_timeout = ipw2100_tx_timeout;
5920         dev->wireless_handlers = &ipw2100_wx_handler_def;
5921         priv->wireless_data.ieee80211 = priv->ieee;
5922         dev->wireless_data = &priv->wireless_data;
5923         dev->set_mac_address = ipw2100_set_address;
5924         dev->watchdog_timeo = 3 * HZ;
5925         dev->irq = 0;
5926
5927         dev->base_addr = (unsigned long)base_addr;
5928         dev->mem_start = mem_start;
5929         dev->mem_end = dev->mem_start + mem_len - 1;
5930
5931         /* NOTE: We don't use the wireless_handlers hook
5932          * in dev as the system will start throwing WX requests
5933          * to us before we're actually initialized and it just
5934          * ends up causing problems.  So, we just handle
5935          * the WX extensions through the ipw2100_ioctl interface */
5936
5937         /* memset() puts everything to 0, so we only have explicitely set
5938          * those values that need to be something else */
5939
5940         /* If power management is turned on, default to AUTO mode */
5941         priv->power_mode = IPW_POWER_AUTO;
5942
5943 #ifdef CONFIG_IPW2100_MONITOR
5944         priv->config |= CFG_CRC_CHECK;
5945 #endif
5946         priv->ieee->wpa_enabled = 0;
5947         priv->ieee->drop_unencrypted = 0;
5948         priv->ieee->privacy_invoked = 0;
5949         priv->ieee->ieee802_1x = 1;
5950
5951         /* Set module parameters */
5952         switch (mode) {
5953         case 1:
5954                 priv->ieee->iw_mode = IW_MODE_ADHOC;
5955                 break;
5956 #ifdef CONFIG_IPW2100_MONITOR
5957         case 2:
5958                 priv->ieee->iw_mode = IW_MODE_MONITOR;
5959                 break;
5960 #endif
5961         default:
5962         case 0:
5963                 priv->ieee->iw_mode = IW_MODE_INFRA;
5964                 break;
5965         }
5966
5967         if (disable == 1)
5968                 priv->status |= STATUS_RF_KILL_SW;
5969
5970         if (channel != 0 &&
5971             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
5972                 priv->config |= CFG_STATIC_CHANNEL;
5973                 priv->channel = channel;
5974         }
5975
5976         if (associate)
5977                 priv->config |= CFG_ASSOCIATE;
5978
5979         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
5980         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
5981         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
5982         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
5983         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
5984         priv->tx_power = IPW_TX_POWER_DEFAULT;
5985         priv->tx_rates = DEFAULT_TX_RATES;
5986
5987         strcpy(priv->nick, "ipw2100");
5988
5989         spin_lock_init(&priv->low_lock);
5990         sema_init(&priv->action_sem, 1);
5991         sema_init(&priv->adapter_sem, 1);
5992
5993         init_waitqueue_head(&priv->wait_command_queue);
5994
5995         netif_carrier_off(dev);
5996
5997         INIT_LIST_HEAD(&priv->msg_free_list);
5998         INIT_LIST_HEAD(&priv->msg_pend_list);
5999         INIT_STAT(&priv->msg_free_stat);
6000         INIT_STAT(&priv->msg_pend_stat);
6001
6002         INIT_LIST_HEAD(&priv->tx_free_list);
6003         INIT_LIST_HEAD(&priv->tx_pend_list);
6004         INIT_STAT(&priv->tx_free_stat);
6005         INIT_STAT(&priv->tx_pend_stat);
6006
6007         INIT_LIST_HEAD(&priv->fw_pend_list);
6008         INIT_STAT(&priv->fw_pend_stat);
6009
6010         priv->workqueue = create_workqueue(DRV_NAME);
6011
6012         INIT_WORK(&priv->reset_work,
6013                   (void (*)(void *))ipw2100_reset_adapter, priv);
6014         INIT_WORK(&priv->security_work,
6015                   (void (*)(void *))ipw2100_security_work, priv);
6016         INIT_WORK(&priv->wx_event_work,
6017                   (void (*)(void *))ipw2100_wx_event_work, priv);
6018         INIT_WORK(&priv->hang_check, ipw2100_hang_check, priv);
6019         INIT_WORK(&priv->rf_kill, ipw2100_rf_kill, priv);
6020
6021         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6022                      ipw2100_irq_tasklet, (unsigned long)priv);
6023
6024         /* NOTE:  We do not start the deferred work for status checks yet */
6025         priv->stop_rf_kill = 1;
6026         priv->stop_hang_check = 1;
6027
6028         return dev;
6029 }
6030
6031 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6032                                 const struct pci_device_id *ent)
6033 {
6034         unsigned long mem_start, mem_len, mem_flags;
6035         void __iomem *base_addr = NULL;
6036         struct net_device *dev = NULL;
6037         struct ipw2100_priv *priv = NULL;
6038         int err = 0;
6039         int registered = 0;
6040         u32 val;
6041
6042         IPW_DEBUG_INFO("enter\n");
6043
6044         mem_start = pci_resource_start(pci_dev, 0);
6045         mem_len = pci_resource_len(pci_dev, 0);
6046         mem_flags = pci_resource_flags(pci_dev, 0);
6047
6048         if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6049                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6050                 err = -ENODEV;
6051                 goto fail;
6052         }
6053
6054         base_addr = ioremap_nocache(mem_start, mem_len);
6055         if (!base_addr) {
6056                 printk(KERN_WARNING DRV_NAME
6057                        "Error calling ioremap_nocache.\n");
6058                 err = -EIO;
6059                 goto fail;
6060         }
6061
6062         /* allocate and initialize our net_device */
6063         dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6064         if (!dev) {
6065                 printk(KERN_WARNING DRV_NAME
6066                        "Error calling ipw2100_alloc_device.\n");
6067                 err = -ENOMEM;
6068                 goto fail;
6069         }
6070
6071         /* set up PCI mappings for device */
6072         err = pci_enable_device(pci_dev);
6073         if (err) {
6074                 printk(KERN_WARNING DRV_NAME
6075                        "Error calling pci_enable_device.\n");
6076                 return err;
6077         }
6078
6079         priv = ieee80211_priv(dev);
6080
6081         pci_set_master(pci_dev);
6082         pci_set_drvdata(pci_dev, priv);
6083
6084         err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6085         if (err) {
6086                 printk(KERN_WARNING DRV_NAME
6087                        "Error calling pci_set_dma_mask.\n");
6088                 pci_disable_device(pci_dev);
6089                 return err;
6090         }
6091
6092         err = pci_request_regions(pci_dev, DRV_NAME);
6093         if (err) {
6094                 printk(KERN_WARNING DRV_NAME
6095                        "Error calling pci_request_regions.\n");
6096                 pci_disable_device(pci_dev);
6097                 return err;
6098         }
6099
6100         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6101          * PCI Tx retries from interfering with C3 CPU state */
6102         pci_read_config_dword(pci_dev, 0x40, &val);
6103         if ((val & 0x0000ff00) != 0)
6104                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6105
6106         pci_set_power_state(pci_dev, PCI_D0);
6107
6108         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6109                 printk(KERN_WARNING DRV_NAME
6110                        "Device not found via register read.\n");
6111                 err = -ENODEV;
6112                 goto fail;
6113         }
6114
6115         SET_NETDEV_DEV(dev, &pci_dev->dev);
6116
6117         /* Force interrupts to be shut off on the device */
6118         priv->status |= STATUS_INT_ENABLED;
6119         ipw2100_disable_interrupts(priv);
6120
6121         /* Allocate and initialize the Tx/Rx queues and lists */
6122         if (ipw2100_queues_allocate(priv)) {
6123                 printk(KERN_WARNING DRV_NAME
6124                        "Error calilng ipw2100_queues_allocate.\n");
6125                 err = -ENOMEM;
6126                 goto fail;
6127         }
6128         ipw2100_queues_initialize(priv);
6129
6130         err = request_irq(pci_dev->irq,
6131                           ipw2100_interrupt, SA_SHIRQ, dev->name, priv);
6132         if (err) {
6133                 printk(KERN_WARNING DRV_NAME
6134                        "Error calling request_irq: %d.\n", pci_dev->irq);
6135                 goto fail;
6136         }
6137         dev->irq = pci_dev->irq;
6138
6139         IPW_DEBUG_INFO("Attempting to register device...\n");
6140
6141         SET_MODULE_OWNER(dev);
6142
6143         printk(KERN_INFO DRV_NAME
6144                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6145
6146         /* Bring up the interface.  Pre 0.46, after we registered the
6147          * network device we would call ipw2100_up.  This introduced a race
6148          * condition with newer hotplug configurations (network was coming
6149          * up and making calls before the device was initialized).
6150          *
6151          * If we called ipw2100_up before we registered the device, then the
6152          * device name wasn't registered.  So, we instead use the net_dev->init
6153          * member to call a function that then just turns and calls ipw2100_up.
6154          * net_dev->init is called after name allocation but before the
6155          * notifier chain is called */
6156         down(&priv->action_sem);
6157         err = register_netdev(dev);
6158         if (err) {
6159                 printk(KERN_WARNING DRV_NAME
6160                        "Error calling register_netdev.\n");
6161                 goto fail_unlock;
6162         }
6163         registered = 1;
6164
6165         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6166
6167         /* perform this after register_netdev so that dev->name is set */
6168         sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6169
6170         /* If the RF Kill switch is disabled, go ahead and complete the
6171          * startup sequence */
6172         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6173                 /* Enable the adapter - sends HOST_COMPLETE */
6174                 if (ipw2100_enable_adapter(priv)) {
6175                         printk(KERN_WARNING DRV_NAME
6176                                ": %s: failed in call to enable adapter.\n",
6177                                priv->net_dev->name);
6178                         ipw2100_hw_stop_adapter(priv);
6179                         err = -EIO;
6180                         goto fail_unlock;
6181                 }
6182
6183                 /* Start a scan . . . */
6184                 ipw2100_set_scan_options(priv);
6185                 ipw2100_start_scan(priv);
6186         }
6187
6188         IPW_DEBUG_INFO("exit\n");
6189
6190         priv->status |= STATUS_INITIALIZED;
6191
6192         up(&priv->action_sem);
6193
6194         return 0;
6195
6196       fail_unlock:
6197         up(&priv->action_sem);
6198
6199       fail:
6200         if (dev) {
6201                 if (registered)
6202                         unregister_netdev(dev);
6203
6204                 ipw2100_hw_stop_adapter(priv);
6205
6206                 ipw2100_disable_interrupts(priv);
6207
6208                 if (dev->irq)
6209                         free_irq(dev->irq, priv);
6210
6211                 ipw2100_kill_workqueue(priv);
6212
6213                 /* These are safe to call even if they weren't allocated */
6214                 ipw2100_queues_free(priv);
6215                 sysfs_remove_group(&pci_dev->dev.kobj,
6216                                    &ipw2100_attribute_group);
6217
6218                 free_ieee80211(dev);
6219                 pci_set_drvdata(pci_dev, NULL);
6220         }
6221
6222         if (base_addr)
6223                 iounmap(base_addr);
6224
6225         pci_release_regions(pci_dev);
6226         pci_disable_device(pci_dev);
6227
6228         return err;
6229 }
6230
6231 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6232 {
6233         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6234         struct net_device *dev;
6235
6236         if (priv) {
6237                 down(&priv->action_sem);
6238
6239                 priv->status &= ~STATUS_INITIALIZED;
6240
6241                 dev = priv->net_dev;
6242                 sysfs_remove_group(&pci_dev->dev.kobj,
6243                                    &ipw2100_attribute_group);
6244
6245 #ifdef CONFIG_PM
6246                 if (ipw2100_firmware.version)
6247                         ipw2100_release_firmware(priv, &ipw2100_firmware);
6248 #endif
6249                 /* Take down the hardware */
6250                 ipw2100_down(priv);
6251
6252                 /* Release the semaphore so that the network subsystem can
6253                  * complete any needed calls into the driver... */
6254                 up(&priv->action_sem);
6255
6256                 /* Unregister the device first - this results in close()
6257                  * being called if the device is open.  If we free storage
6258                  * first, then close() will crash. */
6259                 unregister_netdev(dev);
6260
6261                 /* ipw2100_down will ensure that there is no more pending work
6262                  * in the workqueue's, so we can safely remove them now. */
6263                 ipw2100_kill_workqueue(priv);
6264
6265                 ipw2100_queues_free(priv);
6266
6267                 /* Free potential debugging firmware snapshot */
6268                 ipw2100_snapshot_free(priv);
6269
6270                 if (dev->irq)
6271                         free_irq(dev->irq, priv);
6272
6273                 if (dev->base_addr)
6274                         iounmap((void __iomem *)dev->base_addr);
6275
6276                 free_ieee80211(dev);
6277         }
6278
6279         pci_release_regions(pci_dev);
6280         pci_disable_device(pci_dev);
6281
6282         IPW_DEBUG_INFO("exit\n");
6283 }
6284
6285 #ifdef CONFIG_PM
6286 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6287 {
6288         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6289         struct net_device *dev = priv->net_dev;
6290
6291         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6292
6293         down(&priv->action_sem);
6294         if (priv->status & STATUS_INITIALIZED) {
6295                 /* Take down the device; powers it off, etc. */
6296                 ipw2100_down(priv);
6297         }
6298
6299         /* Remove the PRESENT state of the device */
6300         netif_device_detach(dev);
6301
6302         pci_save_state(pci_dev);
6303         pci_disable_device(pci_dev);
6304         pci_set_power_state(pci_dev, PCI_D3hot);
6305
6306         up(&priv->action_sem);
6307
6308         return 0;
6309 }
6310
6311 static int ipw2100_resume(struct pci_dev *pci_dev)
6312 {
6313         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6314         struct net_device *dev = priv->net_dev;
6315         u32 val;
6316
6317         if (IPW2100_PM_DISABLED)
6318                 return 0;
6319
6320         down(&priv->action_sem);
6321
6322         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6323
6324         pci_set_power_state(pci_dev, PCI_D0);
6325         pci_enable_device(pci_dev);
6326         pci_restore_state(pci_dev);
6327
6328         /*
6329          * Suspend/Resume resets the PCI configuration space, so we have to
6330          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6331          * from interfering with C3 CPU state. pci_restore_state won't help
6332          * here since it only restores the first 64 bytes pci config header.
6333          */
6334         pci_read_config_dword(pci_dev, 0x40, &val);
6335         if ((val & 0x0000ff00) != 0)
6336                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6337
6338         /* Set the device back into the PRESENT state; this will also wake
6339          * the queue of needed */
6340         netif_device_attach(dev);
6341
6342         /* Bring the device back up */
6343         if (!(priv->status & STATUS_RF_KILL_SW))
6344                 ipw2100_up(priv, 0);
6345
6346         up(&priv->action_sem);
6347
6348         return 0;
6349 }
6350 #endif
6351
6352 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6353
6354 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6355         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6356         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6357         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6358         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6359         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6360         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6361         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6362         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6363         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6364         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6365         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6366         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6367         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6368
6369         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6370         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6371         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6372         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6373         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6374
6375         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6376         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6377         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6378         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6379         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6380         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6381         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6382
6383         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6384
6385         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6386         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6387         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6388         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6389         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6390         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6391         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6392
6393         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6394         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6395         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6396         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6397         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6398         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6399
6400         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6401         {0,},
6402 };
6403
6404 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6405
6406 static struct pci_driver ipw2100_pci_driver = {
6407         .name = DRV_NAME,
6408         .id_table = ipw2100_pci_id_table,
6409         .probe = ipw2100_pci_init_one,
6410         .remove = __devexit_p(ipw2100_pci_remove_one),
6411 #ifdef CONFIG_PM
6412         .suspend = ipw2100_suspend,
6413         .resume = ipw2100_resume,
6414 #endif
6415 };
6416
6417 /**
6418  * Initialize the ipw2100 driver/module
6419  *
6420  * @returns 0 if ok, < 0 errno node con error.
6421  *
6422  * Note: we cannot init the /proc stuff until the PCI driver is there,
6423  * or we risk an unlikely race condition on someone accessing
6424  * uninitialized data in the PCI dev struct through /proc.
6425  */
6426 static int __init ipw2100_init(void)
6427 {
6428         int ret;
6429
6430         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6431         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6432
6433         ret = pci_module_init(&ipw2100_pci_driver);
6434
6435 #ifdef CONFIG_IPW2100_DEBUG
6436         ipw2100_debug_level = debug;
6437         driver_create_file(&ipw2100_pci_driver.driver,
6438                            &driver_attr_debug_level);
6439 #endif
6440
6441         return ret;
6442 }
6443
6444 /**
6445  * Cleanup ipw2100 driver registration
6446  */
6447 static void __exit ipw2100_exit(void)
6448 {
6449         /* FIXME: IPG: check that we have no instances of the devices open */
6450 #ifdef CONFIG_IPW2100_DEBUG
6451         driver_remove_file(&ipw2100_pci_driver.driver,
6452                            &driver_attr_debug_level);
6453 #endif
6454         pci_unregister_driver(&ipw2100_pci_driver);
6455 }
6456
6457 module_init(ipw2100_init);
6458 module_exit(ipw2100_exit);
6459
6460 #define WEXT_USECHANNELS 1
6461
6462 static const long ipw2100_frequencies[] = {
6463         2412, 2417, 2422, 2427,
6464         2432, 2437, 2442, 2447,
6465         2452, 2457, 2462, 2467,
6466         2472, 2484
6467 };
6468
6469 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6470                     sizeof(ipw2100_frequencies[0]))
6471
6472 static const long ipw2100_rates_11b[] = {
6473         1000000,
6474         2000000,
6475         5500000,
6476         11000000
6477 };
6478
6479 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6480
6481 static int ipw2100_wx_get_name(struct net_device *dev,
6482                                struct iw_request_info *info,
6483                                union iwreq_data *wrqu, char *extra)
6484 {
6485         /*
6486          * This can be called at any time.  No action lock required
6487          */
6488
6489         struct ipw2100_priv *priv = ieee80211_priv(dev);
6490         if (!(priv->status & STATUS_ASSOCIATED))
6491                 strcpy(wrqu->name, "unassociated");
6492         else
6493                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6494
6495         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6496         return 0;
6497 }
6498
6499 static int ipw2100_wx_set_freq(struct net_device *dev,
6500                                struct iw_request_info *info,
6501                                union iwreq_data *wrqu, char *extra)
6502 {
6503         struct ipw2100_priv *priv = ieee80211_priv(dev);
6504         struct iw_freq *fwrq = &wrqu->freq;
6505         int err = 0;
6506
6507         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6508                 return -EOPNOTSUPP;
6509
6510         down(&priv->action_sem);
6511         if (!(priv->status & STATUS_INITIALIZED)) {
6512                 err = -EIO;
6513                 goto done;
6514         }
6515
6516         /* if setting by freq convert to channel */
6517         if (fwrq->e == 1) {
6518                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6519                         int f = fwrq->m / 100000;
6520                         int c = 0;
6521
6522                         while ((c < REG_MAX_CHANNEL) &&
6523                                (f != ipw2100_frequencies[c]))
6524                                 c++;
6525
6526                         /* hack to fall through */
6527                         fwrq->e = 0;
6528                         fwrq->m = c + 1;
6529                 }
6530         }
6531
6532         if (fwrq->e > 0 || fwrq->m > 1000) {
6533                 err = -EOPNOTSUPP;
6534                 goto done;
6535         } else {                /* Set the channel */
6536                 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6537                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6538         }
6539
6540       done:
6541         up(&priv->action_sem);
6542         return err;
6543 }
6544
6545 static int ipw2100_wx_get_freq(struct net_device *dev,
6546                                struct iw_request_info *info,
6547                                union iwreq_data *wrqu, char *extra)
6548 {
6549         /*
6550          * This can be called at any time.  No action lock required
6551          */
6552
6553         struct ipw2100_priv *priv = ieee80211_priv(dev);
6554
6555         wrqu->freq.e = 0;
6556
6557         /* If we are associated, trying to associate, or have a statically
6558          * configured CHANNEL then return that; otherwise return ANY */
6559         if (priv->config & CFG_STATIC_CHANNEL ||
6560             priv->status & STATUS_ASSOCIATED)
6561                 wrqu->freq.m = priv->channel;
6562         else
6563                 wrqu->freq.m = 0;
6564
6565         IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6566         return 0;
6567
6568 }
6569
6570 static int ipw2100_wx_set_mode(struct net_device *dev,
6571                                struct iw_request_info *info,
6572                                union iwreq_data *wrqu, char *extra)
6573 {
6574         struct ipw2100_priv *priv = ieee80211_priv(dev);
6575         int err = 0;
6576
6577         IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6578
6579         if (wrqu->mode == priv->ieee->iw_mode)
6580                 return 0;
6581
6582         down(&priv->action_sem);
6583         if (!(priv->status & STATUS_INITIALIZED)) {
6584                 err = -EIO;
6585                 goto done;
6586         }
6587
6588         switch (wrqu->mode) {
6589 #ifdef CONFIG_IPW2100_MONITOR
6590         case IW_MODE_MONITOR:
6591                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6592                 break;
6593 #endif                          /* CONFIG_IPW2100_MONITOR */
6594         case IW_MODE_ADHOC:
6595                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6596                 break;
6597         case IW_MODE_INFRA:
6598         case IW_MODE_AUTO:
6599         default:
6600                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6601                 break;
6602         }
6603
6604       done:
6605         up(&priv->action_sem);
6606         return err;
6607 }
6608
6609 static int ipw2100_wx_get_mode(struct net_device *dev,
6610                                struct iw_request_info *info,
6611                                union iwreq_data *wrqu, char *extra)
6612 {
6613         /*
6614          * This can be called at any time.  No action lock required
6615          */
6616
6617         struct ipw2100_priv *priv = ieee80211_priv(dev);
6618
6619         wrqu->mode = priv->ieee->iw_mode;
6620         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6621
6622         return 0;
6623 }
6624
6625 #define POWER_MODES 5
6626
6627 /* Values are in microsecond */
6628 static const s32 timeout_duration[POWER_MODES] = {
6629         350000,
6630         250000,
6631         75000,
6632         37000,
6633         25000,
6634 };
6635
6636 static const s32 period_duration[POWER_MODES] = {
6637         400000,
6638         700000,
6639         1000000,
6640         1000000,
6641         1000000
6642 };
6643
6644 static int ipw2100_wx_get_range(struct net_device *dev,
6645                                 struct iw_request_info *info,
6646                                 union iwreq_data *wrqu, char *extra)
6647 {
6648         /*
6649          * This can be called at any time.  No action lock required
6650          */
6651
6652         struct ipw2100_priv *priv = ieee80211_priv(dev);
6653         struct iw_range *range = (struct iw_range *)extra;
6654         u16 val;
6655         int i, level;
6656
6657         wrqu->data.length = sizeof(*range);
6658         memset(range, 0, sizeof(*range));
6659
6660         /* Let's try to keep this struct in the same order as in
6661          * linux/include/wireless.h
6662          */
6663
6664         /* TODO: See what values we can set, and remove the ones we can't
6665          * set, or fill them with some default data.
6666          */
6667
6668         /* ~5 Mb/s real (802.11b) */
6669         range->throughput = 5 * 1000 * 1000;
6670
6671 //      range->sensitivity;     /* signal level threshold range */
6672
6673         range->max_qual.qual = 100;
6674         /* TODO: Find real max RSSI and stick here */
6675         range->max_qual.level = 0;
6676         range->max_qual.noise = 0;
6677         range->max_qual.updated = 7;    /* Updated all three */
6678
6679         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6680         /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6681         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6682         range->avg_qual.noise = 0;
6683         range->avg_qual.updated = 7;    /* Updated all three */
6684
6685         range->num_bitrates = RATE_COUNT;
6686
6687         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6688                 range->bitrate[i] = ipw2100_rates_11b[i];
6689         }
6690
6691         range->min_rts = MIN_RTS_THRESHOLD;
6692         range->max_rts = MAX_RTS_THRESHOLD;
6693         range->min_frag = MIN_FRAG_THRESHOLD;
6694         range->max_frag = MAX_FRAG_THRESHOLD;
6695
6696         range->min_pmp = period_duration[0];    /* Minimal PM period */
6697         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6698         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6699         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6700
6701         /* How to decode max/min PM period */
6702         range->pmp_flags = IW_POWER_PERIOD;
6703         /* How to decode max/min PM period */
6704         range->pmt_flags = IW_POWER_TIMEOUT;
6705         /* What PM options are supported */
6706         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6707
6708         range->encoding_size[0] = 5;
6709         range->encoding_size[1] = 13;   /* Different token sizes */
6710         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6711         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6712 //      range->encoding_login_index;            /* token index for login token */
6713
6714         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6715                 range->txpower_capa = IW_TXPOW_DBM;
6716                 range->num_txpower = IW_MAX_TXPOWER;
6717                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6718                      i < IW_MAX_TXPOWER;
6719                      i++, level -=
6720                      ((IPW_TX_POWER_MAX_DBM -
6721                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6722                         range->txpower[i] = level / 16;
6723         } else {
6724                 range->txpower_capa = 0;
6725                 range->num_txpower = 0;
6726         }
6727
6728         /* Set the Wireless Extension versions */
6729         range->we_version_compiled = WIRELESS_EXT;
6730         range->we_version_source = 18;
6731
6732 //      range->retry_capa;      /* What retry options are supported */
6733 //      range->retry_flags;     /* How to decode max/min retry limit */
6734 //      range->r_time_flags;    /* How to decode max/min retry life */
6735 //      range->min_retry;       /* Minimal number of retries */
6736 //      range->max_retry;       /* Maximal number of retries */
6737 //      range->min_r_time;      /* Minimal retry lifetime */
6738 //      range->max_r_time;      /* Maximal retry lifetime */
6739
6740         range->num_channels = FREQ_COUNT;
6741
6742         val = 0;
6743         for (i = 0; i < FREQ_COUNT; i++) {
6744                 // TODO: Include only legal frequencies for some countries
6745 //              if (local->channel_mask & (1 << i)) {
6746                 range->freq[val].i = i + 1;
6747                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6748                 range->freq[val].e = 1;
6749                 val++;
6750 //              }
6751                 if (val == IW_MAX_FREQUENCIES)
6752                         break;
6753         }
6754         range->num_frequency = val;
6755
6756         /* Event capability (kernel + driver) */
6757         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6758                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6759         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6760
6761         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6762                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6763
6764         IPW_DEBUG_WX("GET Range\n");
6765
6766         return 0;
6767 }
6768
6769 static int ipw2100_wx_set_wap(struct net_device *dev,
6770                               struct iw_request_info *info,
6771                               union iwreq_data *wrqu, char *extra)
6772 {
6773         struct ipw2100_priv *priv = ieee80211_priv(dev);
6774         int err = 0;
6775
6776         static const unsigned char any[] = {
6777                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6778         };
6779         static const unsigned char off[] = {
6780                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6781         };
6782
6783         // sanity checks
6784         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6785                 return -EINVAL;
6786
6787         down(&priv->action_sem);
6788         if (!(priv->status & STATUS_INITIALIZED)) {
6789                 err = -EIO;
6790                 goto done;
6791         }
6792
6793         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6794             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6795                 /* we disable mandatory BSSID association */
6796                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6797                 priv->config &= ~CFG_STATIC_BSSID;
6798                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6799                 goto done;
6800         }
6801
6802         priv->config |= CFG_STATIC_BSSID;
6803         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6804
6805         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6806
6807         IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6808                      wrqu->ap_addr.sa_data[0] & 0xff,
6809                      wrqu->ap_addr.sa_data[1] & 0xff,
6810                      wrqu->ap_addr.sa_data[2] & 0xff,
6811                      wrqu->ap_addr.sa_data[3] & 0xff,
6812                      wrqu->ap_addr.sa_data[4] & 0xff,
6813                      wrqu->ap_addr.sa_data[5] & 0xff);
6814
6815       done:
6816         up(&priv->action_sem);
6817         return err;
6818 }
6819
6820 static int ipw2100_wx_get_wap(struct net_device *dev,
6821                               struct iw_request_info *info,
6822                               union iwreq_data *wrqu, char *extra)
6823 {
6824         /*
6825          * This can be called at any time.  No action lock required
6826          */
6827
6828         struct ipw2100_priv *priv = ieee80211_priv(dev);
6829
6830         /* If we are associated, trying to associate, or have a statically
6831          * configured BSSID then return that; otherwise return ANY */
6832         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6833                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6834                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6835         } else
6836                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6837
6838         IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6839                      MAC_ARG(wrqu->ap_addr.sa_data));
6840         return 0;
6841 }
6842
6843 static int ipw2100_wx_set_essid(struct net_device *dev,
6844                                 struct iw_request_info *info,
6845                                 union iwreq_data *wrqu, char *extra)
6846 {
6847         struct ipw2100_priv *priv = ieee80211_priv(dev);
6848         char *essid = "";       /* ANY */
6849         int length = 0;
6850         int err = 0;
6851
6852         down(&priv->action_sem);
6853         if (!(priv->status & STATUS_INITIALIZED)) {
6854                 err = -EIO;
6855                 goto done;
6856         }
6857
6858         if (wrqu->essid.flags && wrqu->essid.length) {
6859                 length = wrqu->essid.length - 1;
6860                 essid = extra;
6861         }
6862
6863         if (length == 0) {
6864                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6865                 priv->config &= ~CFG_STATIC_ESSID;
6866                 err = ipw2100_set_essid(priv, NULL, 0, 0);
6867                 goto done;
6868         }
6869
6870         length = min(length, IW_ESSID_MAX_SIZE);
6871
6872         priv->config |= CFG_STATIC_ESSID;
6873
6874         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6875                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6876                 err = 0;
6877                 goto done;
6878         }
6879
6880         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6881                      length);
6882
6883         priv->essid_len = length;
6884         memcpy(priv->essid, essid, priv->essid_len);
6885
6886         err = ipw2100_set_essid(priv, essid, length, 0);
6887
6888       done:
6889         up(&priv->action_sem);
6890         return err;
6891 }
6892
6893 static int ipw2100_wx_get_essid(struct net_device *dev,
6894                                 struct iw_request_info *info,
6895                                 union iwreq_data *wrqu, char *extra)
6896 {
6897         /*
6898          * This can be called at any time.  No action lock required
6899          */
6900
6901         struct ipw2100_priv *priv = ieee80211_priv(dev);
6902
6903         /* If we are associated, trying to associate, or have a statically
6904          * configured ESSID then return that; otherwise return ANY */
6905         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
6906                 IPW_DEBUG_WX("Getting essid: '%s'\n",
6907                              escape_essid(priv->essid, priv->essid_len));
6908                 memcpy(extra, priv->essid, priv->essid_len);
6909                 wrqu->essid.length = priv->essid_len;
6910                 wrqu->essid.flags = 1;  /* active */
6911         } else {
6912                 IPW_DEBUG_WX("Getting essid: ANY\n");
6913                 wrqu->essid.length = 0;
6914                 wrqu->essid.flags = 0;  /* active */
6915         }
6916
6917         return 0;
6918 }
6919
6920 static int ipw2100_wx_set_nick(struct net_device *dev,
6921                                struct iw_request_info *info,
6922                                union iwreq_data *wrqu, char *extra)
6923 {
6924         /*
6925          * This can be called at any time.  No action lock required
6926          */
6927
6928         struct ipw2100_priv *priv = ieee80211_priv(dev);
6929
6930         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
6931                 return -E2BIG;
6932
6933         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
6934         memset(priv->nick, 0, sizeof(priv->nick));
6935         memcpy(priv->nick, extra, wrqu->data.length);
6936
6937         IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
6938
6939         return 0;
6940 }
6941
6942 static int ipw2100_wx_get_nick(struct net_device *dev,
6943                                struct iw_request_info *info,
6944                                union iwreq_data *wrqu, char *extra)
6945 {
6946         /*
6947          * This can be called at any time.  No action lock required
6948          */
6949
6950         struct ipw2100_priv *priv = ieee80211_priv(dev);
6951
6952         wrqu->data.length = strlen(priv->nick) + 1;
6953         memcpy(extra, priv->nick, wrqu->data.length);
6954         wrqu->data.flags = 1;   /* active */
6955
6956         IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
6957
6958         return 0;
6959 }
6960
6961 static int ipw2100_wx_set_rate(struct net_device *dev,
6962                                struct iw_request_info *info,
6963                                union iwreq_data *wrqu, char *extra)
6964 {
6965         struct ipw2100_priv *priv = ieee80211_priv(dev);
6966         u32 target_rate = wrqu->bitrate.value;
6967         u32 rate;
6968         int err = 0;
6969
6970         down(&priv->action_sem);
6971         if (!(priv->status & STATUS_INITIALIZED)) {
6972                 err = -EIO;
6973                 goto done;
6974         }
6975
6976         rate = 0;
6977
6978         if (target_rate == 1000000 ||
6979             (!wrqu->bitrate.fixed && target_rate > 1000000))
6980                 rate |= TX_RATE_1_MBIT;
6981         if (target_rate == 2000000 ||
6982             (!wrqu->bitrate.fixed && target_rate > 2000000))
6983                 rate |= TX_RATE_2_MBIT;
6984         if (target_rate == 5500000 ||
6985             (!wrqu->bitrate.fixed && target_rate > 5500000))
6986                 rate |= TX_RATE_5_5_MBIT;
6987         if (target_rate == 11000000 ||
6988             (!wrqu->bitrate.fixed && target_rate > 11000000))
6989                 rate |= TX_RATE_11_MBIT;
6990         if (rate == 0)
6991                 rate = DEFAULT_TX_RATES;
6992
6993         err = ipw2100_set_tx_rates(priv, rate, 0);
6994
6995         IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
6996       done:
6997         up(&priv->action_sem);
6998         return err;
6999 }
7000
7001 static int ipw2100_wx_get_rate(struct net_device *dev,
7002                                struct iw_request_info *info,
7003                                union iwreq_data *wrqu, char *extra)
7004 {
7005         struct ipw2100_priv *priv = ieee80211_priv(dev);
7006         int val;
7007         int len = sizeof(val);
7008         int err = 0;
7009
7010         if (!(priv->status & STATUS_ENABLED) ||
7011             priv->status & STATUS_RF_KILL_MASK ||
7012             !(priv->status & STATUS_ASSOCIATED)) {
7013                 wrqu->bitrate.value = 0;
7014                 return 0;
7015         }
7016
7017         down(&priv->action_sem);
7018         if (!(priv->status & STATUS_INITIALIZED)) {
7019                 err = -EIO;
7020                 goto done;
7021         }
7022
7023         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7024         if (err) {
7025                 IPW_DEBUG_WX("failed querying ordinals.\n");
7026                 return err;
7027         }
7028
7029         switch (val & TX_RATE_MASK) {
7030         case TX_RATE_1_MBIT:
7031                 wrqu->bitrate.value = 1000000;
7032                 break;
7033         case TX_RATE_2_MBIT:
7034                 wrqu->bitrate.value = 2000000;
7035                 break;
7036         case TX_RATE_5_5_MBIT:
7037                 wrqu->bitrate.value = 5500000;
7038                 break;
7039         case TX_RATE_11_MBIT:
7040                 wrqu->bitrate.value = 11000000;
7041                 break;
7042         default:
7043                 wrqu->bitrate.value = 0;
7044         }
7045
7046         IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7047
7048       done:
7049         up(&priv->action_sem);
7050         return err;
7051 }
7052
7053 static int ipw2100_wx_set_rts(struct net_device *dev,
7054                               struct iw_request_info *info,
7055                               union iwreq_data *wrqu, char *extra)
7056 {
7057         struct ipw2100_priv *priv = ieee80211_priv(dev);
7058         int value, err;
7059
7060         /* Auto RTS not yet supported */
7061         if (wrqu->rts.fixed == 0)
7062                 return -EINVAL;
7063
7064         down(&priv->action_sem);
7065         if (!(priv->status & STATUS_INITIALIZED)) {
7066                 err = -EIO;
7067                 goto done;
7068         }
7069
7070         if (wrqu->rts.disabled)
7071                 value = priv->rts_threshold | RTS_DISABLED;
7072         else {
7073                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7074                         err = -EINVAL;
7075                         goto done;
7076                 }
7077                 value = wrqu->rts.value;
7078         }
7079
7080         err = ipw2100_set_rts_threshold(priv, value);
7081
7082         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7083       done:
7084         up(&priv->action_sem);
7085         return err;
7086 }
7087
7088 static int ipw2100_wx_get_rts(struct net_device *dev,
7089                               struct iw_request_info *info,
7090                               union iwreq_data *wrqu, char *extra)
7091 {
7092         /*
7093          * This can be called at any time.  No action lock required
7094          */
7095
7096         struct ipw2100_priv *priv = ieee80211_priv(dev);
7097
7098         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7099         wrqu->rts.fixed = 1;    /* no auto select */
7100
7101         /* If RTS is set to the default value, then it is disabled */
7102         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7103
7104         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7105
7106         return 0;
7107 }
7108
7109 static int ipw2100_wx_set_txpow(struct net_device *dev,
7110                                 struct iw_request_info *info,
7111                                 union iwreq_data *wrqu, char *extra)
7112 {
7113         struct ipw2100_priv *priv = ieee80211_priv(dev);
7114         int err = 0, value;
7115
7116         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7117                 return -EINVAL;
7118
7119         if (wrqu->txpower.disabled == 1 || wrqu->txpower.fixed == 0)
7120                 value = IPW_TX_POWER_DEFAULT;
7121         else {
7122                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7123                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7124                         return -EINVAL;
7125
7126                 value = wrqu->txpower.value;
7127         }
7128
7129         down(&priv->action_sem);
7130         if (!(priv->status & STATUS_INITIALIZED)) {
7131                 err = -EIO;
7132                 goto done;
7133         }
7134
7135         err = ipw2100_set_tx_power(priv, value);
7136
7137         IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7138
7139       done:
7140         up(&priv->action_sem);
7141         return err;
7142 }
7143
7144 static int ipw2100_wx_get_txpow(struct net_device *dev,
7145                                 struct iw_request_info *info,
7146                                 union iwreq_data *wrqu, char *extra)
7147 {
7148         /*
7149          * This can be called at any time.  No action lock required
7150          */
7151
7152         struct ipw2100_priv *priv = ieee80211_priv(dev);
7153
7154         if (priv->ieee->iw_mode != IW_MODE_ADHOC) {
7155                 wrqu->power.disabled = 1;
7156                 return 0;
7157         }
7158
7159         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7160                 wrqu->power.fixed = 0;
7161                 wrqu->power.value = IPW_TX_POWER_MAX_DBM;
7162                 wrqu->power.disabled = 1;
7163         } else {
7164                 wrqu->power.disabled = 0;
7165                 wrqu->power.fixed = 1;
7166                 wrqu->power.value = priv->tx_power;
7167         }
7168
7169         wrqu->power.flags = IW_TXPOW_DBM;
7170
7171         IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->power.value);
7172
7173         return 0;
7174 }
7175
7176 static int ipw2100_wx_set_frag(struct net_device *dev,
7177                                struct iw_request_info *info,
7178                                union iwreq_data *wrqu, char *extra)
7179 {
7180         /*
7181          * This can be called at any time.  No action lock required
7182          */
7183
7184         struct ipw2100_priv *priv = ieee80211_priv(dev);
7185
7186         if (!wrqu->frag.fixed)
7187                 return -EINVAL;
7188
7189         if (wrqu->frag.disabled) {
7190                 priv->frag_threshold |= FRAG_DISABLED;
7191                 priv->ieee->fts = DEFAULT_FTS;
7192         } else {
7193                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7194                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7195                         return -EINVAL;
7196
7197                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7198                 priv->frag_threshold = priv->ieee->fts;
7199         }
7200
7201         IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7202
7203         return 0;
7204 }
7205
7206 static int ipw2100_wx_get_frag(struct net_device *dev,
7207                                struct iw_request_info *info,
7208                                union iwreq_data *wrqu, char *extra)
7209 {
7210         /*
7211          * This can be called at any time.  No action lock required
7212          */
7213
7214         struct ipw2100_priv *priv = ieee80211_priv(dev);
7215         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7216         wrqu->frag.fixed = 0;   /* no auto select */
7217         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7218
7219         IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7220
7221         return 0;
7222 }
7223
7224 static int ipw2100_wx_set_retry(struct net_device *dev,
7225                                 struct iw_request_info *info,
7226                                 union iwreq_data *wrqu, char *extra)
7227 {
7228         struct ipw2100_priv *priv = ieee80211_priv(dev);
7229         int err = 0;
7230
7231         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7232                 return -EINVAL;
7233
7234         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7235                 return 0;
7236
7237         down(&priv->action_sem);
7238         if (!(priv->status & STATUS_INITIALIZED)) {
7239                 err = -EIO;
7240                 goto done;
7241         }
7242
7243         if (wrqu->retry.flags & IW_RETRY_MIN) {
7244                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7245                 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7246                              wrqu->retry.value);
7247                 goto done;
7248         }
7249
7250         if (wrqu->retry.flags & IW_RETRY_MAX) {
7251                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7252                 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7253                              wrqu->retry.value);
7254                 goto done;
7255         }
7256
7257         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7258         if (!err)
7259                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7260
7261         IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7262
7263       done:
7264         up(&priv->action_sem);
7265         return err;
7266 }
7267
7268 static int ipw2100_wx_get_retry(struct net_device *dev,
7269                                 struct iw_request_info *info,
7270                                 union iwreq_data *wrqu, char *extra)
7271 {
7272         /*
7273          * This can be called at any time.  No action lock required
7274          */
7275
7276         struct ipw2100_priv *priv = ieee80211_priv(dev);
7277
7278         wrqu->retry.disabled = 0;       /* can't be disabled */
7279
7280         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7281                 return -EINVAL;
7282
7283         if (wrqu->retry.flags & IW_RETRY_MAX) {
7284                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
7285                 wrqu->retry.value = priv->long_retry_limit;
7286         } else {
7287                 wrqu->retry.flags =
7288                     (priv->short_retry_limit !=
7289                      priv->long_retry_limit) ?
7290                     IW_RETRY_LIMIT | IW_RETRY_MIN : IW_RETRY_LIMIT;
7291
7292                 wrqu->retry.value = priv->short_retry_limit;
7293         }
7294
7295         IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7296
7297         return 0;
7298 }
7299
7300 static int ipw2100_wx_set_scan(struct net_device *dev,
7301                                struct iw_request_info *info,
7302                                union iwreq_data *wrqu, char *extra)
7303 {
7304         struct ipw2100_priv *priv = ieee80211_priv(dev);
7305         int err = 0;
7306
7307         down(&priv->action_sem);
7308         if (!(priv->status & STATUS_INITIALIZED)) {
7309                 err = -EIO;
7310                 goto done;
7311         }
7312
7313         IPW_DEBUG_WX("Initiating scan...\n");
7314         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7315                 IPW_DEBUG_WX("Start scan failed.\n");
7316
7317                 /* TODO: Mark a scan as pending so when hardware initialized
7318                  *       a scan starts */
7319         }
7320
7321       done:
7322         up(&priv->action_sem);
7323         return err;
7324 }
7325
7326 static int ipw2100_wx_get_scan(struct net_device *dev,
7327                                struct iw_request_info *info,
7328                                union iwreq_data *wrqu, char *extra)
7329 {
7330         /*
7331          * This can be called at any time.  No action lock required
7332          */
7333
7334         struct ipw2100_priv *priv = ieee80211_priv(dev);
7335         return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7336 }
7337
7338 /*
7339  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7340  */
7341 static int ipw2100_wx_set_encode(struct net_device *dev,
7342                                  struct iw_request_info *info,
7343                                  union iwreq_data *wrqu, char *key)
7344 {
7345         /*
7346          * No check of STATUS_INITIALIZED required
7347          */
7348
7349         struct ipw2100_priv *priv = ieee80211_priv(dev);
7350         return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7351 }
7352
7353 static int ipw2100_wx_get_encode(struct net_device *dev,
7354                                  struct iw_request_info *info,
7355                                  union iwreq_data *wrqu, char *key)
7356 {
7357         /*
7358          * This can be called at any time.  No action lock required
7359          */
7360
7361         struct ipw2100_priv *priv = ieee80211_priv(dev);
7362         return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7363 }
7364
7365 static int ipw2100_wx_set_power(struct net_device *dev,
7366                                 struct iw_request_info *info,
7367                                 union iwreq_data *wrqu, char *extra)
7368 {
7369         struct ipw2100_priv *priv = ieee80211_priv(dev);
7370         int err = 0;
7371
7372         down(&priv->action_sem);
7373         if (!(priv->status & STATUS_INITIALIZED)) {
7374                 err = -EIO;
7375                 goto done;
7376         }
7377
7378         if (wrqu->power.disabled) {
7379                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7380                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7381                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7382                 goto done;
7383         }
7384
7385         switch (wrqu->power.flags & IW_POWER_MODE) {
7386         case IW_POWER_ON:       /* If not specified */
7387         case IW_POWER_MODE:     /* If set all mask */
7388         case IW_POWER_ALL_R:    /* If explicitely state all */
7389                 break;
7390         default:                /* Otherwise we don't support it */
7391                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7392                              wrqu->power.flags);
7393                 err = -EOPNOTSUPP;
7394                 goto done;
7395         }
7396
7397         /* If the user hasn't specified a power management mode yet, default
7398          * to BATTERY */
7399         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7400         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7401
7402         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7403
7404       done:
7405         up(&priv->action_sem);
7406         return err;
7407
7408 }
7409
7410 static int ipw2100_wx_get_power(struct net_device *dev,
7411                                 struct iw_request_info *info,
7412                                 union iwreq_data *wrqu, char *extra)
7413 {
7414         /*
7415          * This can be called at any time.  No action lock required
7416          */
7417
7418         struct ipw2100_priv *priv = ieee80211_priv(dev);
7419
7420         if (!(priv->power_mode & IPW_POWER_ENABLED))
7421                 wrqu->power.disabled = 1;
7422         else {
7423                 wrqu->power.disabled = 0;
7424                 wrqu->power.flags = 0;
7425         }
7426
7427         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7428
7429         return 0;
7430 }
7431
7432 /*
7433  * WE-18 WPA support
7434  */
7435
7436 /* SIOCSIWGENIE */
7437 static int ipw2100_wx_set_genie(struct net_device *dev,
7438                                 struct iw_request_info *info,
7439                                 union iwreq_data *wrqu, char *extra)
7440 {
7441
7442         struct ipw2100_priv *priv = ieee80211_priv(dev);
7443         struct ieee80211_device *ieee = priv->ieee;
7444         u8 *buf;
7445
7446         if (!ieee->wpa_enabled)
7447                 return -EOPNOTSUPP;
7448
7449         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7450             (wrqu->data.length && extra == NULL))
7451                 return -EINVAL;
7452
7453         if (wrqu->data.length) {
7454                 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
7455                 if (buf == NULL)
7456                         return -ENOMEM;
7457
7458                 memcpy(buf, extra, wrqu->data.length);
7459                 kfree(ieee->wpa_ie);
7460                 ieee->wpa_ie = buf;
7461                 ieee->wpa_ie_len = wrqu->data.length;
7462         } else {
7463                 kfree(ieee->wpa_ie);
7464                 ieee->wpa_ie = NULL;
7465                 ieee->wpa_ie_len = 0;
7466         }
7467
7468         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7469
7470         return 0;
7471 }
7472
7473 /* SIOCGIWGENIE */
7474 static int ipw2100_wx_get_genie(struct net_device *dev,
7475                                 struct iw_request_info *info,
7476                                 union iwreq_data *wrqu, char *extra)
7477 {
7478         struct ipw2100_priv *priv = ieee80211_priv(dev);
7479         struct ieee80211_device *ieee = priv->ieee;
7480
7481         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7482                 wrqu->data.length = 0;
7483                 return 0;
7484         }
7485
7486         if (wrqu->data.length < ieee->wpa_ie_len)
7487                 return -E2BIG;
7488
7489         wrqu->data.length = ieee->wpa_ie_len;
7490         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7491
7492         return 0;
7493 }
7494
7495 /* SIOCSIWAUTH */
7496 static int ipw2100_wx_set_auth(struct net_device *dev,
7497                                struct iw_request_info *info,
7498                                union iwreq_data *wrqu, char *extra)
7499 {
7500         struct ipw2100_priv *priv = ieee80211_priv(dev);
7501         struct ieee80211_device *ieee = priv->ieee;
7502         struct iw_param *param = &wrqu->param;
7503         struct ieee80211_crypt_data *crypt;
7504         unsigned long flags;
7505         int ret = 0;
7506
7507         switch (param->flags & IW_AUTH_INDEX) {
7508         case IW_AUTH_WPA_VERSION:
7509         case IW_AUTH_CIPHER_PAIRWISE:
7510         case IW_AUTH_CIPHER_GROUP:
7511         case IW_AUTH_KEY_MGMT:
7512                 /*
7513                  * ipw2200 does not use these parameters
7514                  */
7515                 break;
7516
7517         case IW_AUTH_TKIP_COUNTERMEASURES:
7518                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7519                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7520                         break;
7521
7522                 flags = crypt->ops->get_flags(crypt->priv);
7523
7524                 if (param->value)
7525                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7526                 else
7527                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7528
7529                 crypt->ops->set_flags(flags, crypt->priv);
7530
7531                 break;
7532
7533         case IW_AUTH_DROP_UNENCRYPTED:{
7534                         /* HACK:
7535                          *
7536                          * wpa_supplicant calls set_wpa_enabled when the driver
7537                          * is loaded and unloaded, regardless of if WPA is being
7538                          * used.  No other calls are made which can be used to
7539                          * determine if encryption will be used or not prior to
7540                          * association being expected.  If encryption is not being
7541                          * used, drop_unencrypted is set to false, else true -- we
7542                          * can use this to determine if the CAP_PRIVACY_ON bit should
7543                          * be set.
7544                          */
7545                         struct ieee80211_security sec = {
7546                                 .flags = SEC_ENABLED,
7547                                 .enabled = param->value,
7548                         };
7549                         priv->ieee->drop_unencrypted = param->value;
7550                         /* We only change SEC_LEVEL for open mode. Others
7551                          * are set by ipw_wpa_set_encryption.
7552                          */
7553                         if (!param->value) {
7554                                 sec.flags |= SEC_LEVEL;
7555                                 sec.level = SEC_LEVEL_0;
7556                         } else {
7557                                 sec.flags |= SEC_LEVEL;
7558                                 sec.level = SEC_LEVEL_1;
7559                         }
7560                         if (priv->ieee->set_security)
7561                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7562                         break;
7563                 }
7564
7565         case IW_AUTH_80211_AUTH_ALG:
7566                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7567                 break;
7568
7569         case IW_AUTH_WPA_ENABLED:
7570                 ret = ipw2100_wpa_enable(priv, param->value);
7571                 break;
7572
7573         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7574                 ieee->ieee802_1x = param->value;
7575                 break;
7576
7577                 //case IW_AUTH_ROAMING_CONTROL:
7578         case IW_AUTH_PRIVACY_INVOKED:
7579                 ieee->privacy_invoked = param->value;
7580                 break;
7581
7582         default:
7583                 return -EOPNOTSUPP;
7584         }
7585         return ret;
7586 }
7587
7588 /* SIOCGIWAUTH */
7589 static int ipw2100_wx_get_auth(struct net_device *dev,
7590                                struct iw_request_info *info,
7591                                union iwreq_data *wrqu, char *extra)
7592 {
7593         struct ipw2100_priv *priv = ieee80211_priv(dev);
7594         struct ieee80211_device *ieee = priv->ieee;
7595         struct ieee80211_crypt_data *crypt;
7596         struct iw_param *param = &wrqu->param;
7597         int ret = 0;
7598
7599         switch (param->flags & IW_AUTH_INDEX) {
7600         case IW_AUTH_WPA_VERSION:
7601         case IW_AUTH_CIPHER_PAIRWISE:
7602         case IW_AUTH_CIPHER_GROUP:
7603         case IW_AUTH_KEY_MGMT:
7604                 /*
7605                  * wpa_supplicant will control these internally
7606                  */
7607                 ret = -EOPNOTSUPP;
7608                 break;
7609
7610         case IW_AUTH_TKIP_COUNTERMEASURES:
7611                 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7612                 if (!crypt || !crypt->ops->get_flags) {
7613                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7614                                           "crypt not set!\n");
7615                         break;
7616                 }
7617
7618                 param->value = (crypt->ops->get_flags(crypt->priv) &
7619                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7620
7621                 break;
7622
7623         case IW_AUTH_DROP_UNENCRYPTED:
7624                 param->value = ieee->drop_unencrypted;
7625                 break;
7626
7627         case IW_AUTH_80211_AUTH_ALG:
7628                 param->value = priv->ieee->sec.auth_mode;
7629                 break;
7630
7631         case IW_AUTH_WPA_ENABLED:
7632                 param->value = ieee->wpa_enabled;
7633                 break;
7634
7635         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7636                 param->value = ieee->ieee802_1x;
7637                 break;
7638
7639         case IW_AUTH_ROAMING_CONTROL:
7640         case IW_AUTH_PRIVACY_INVOKED:
7641                 param->value = ieee->privacy_invoked;
7642                 break;
7643
7644         default:
7645                 return -EOPNOTSUPP;
7646         }
7647         return 0;
7648 }
7649
7650 /* SIOCSIWENCODEEXT */
7651 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7652                                     struct iw_request_info *info,
7653                                     union iwreq_data *wrqu, char *extra)
7654 {
7655         struct ipw2100_priv *priv = ieee80211_priv(dev);
7656         return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7657 }
7658
7659 /* SIOCGIWENCODEEXT */
7660 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7661                                     struct iw_request_info *info,
7662                                     union iwreq_data *wrqu, char *extra)
7663 {
7664         struct ipw2100_priv *priv = ieee80211_priv(dev);
7665         return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7666 }
7667
7668 /* SIOCSIWMLME */
7669 static int ipw2100_wx_set_mlme(struct net_device *dev,
7670                                struct iw_request_info *info,
7671                                union iwreq_data *wrqu, char *extra)
7672 {
7673         struct ipw2100_priv *priv = ieee80211_priv(dev);
7674         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7675         u16 reason;
7676
7677         reason = cpu_to_le16(mlme->reason_code);
7678
7679         switch (mlme->cmd) {
7680         case IW_MLME_DEAUTH:
7681                 // silently ignore
7682                 break;
7683
7684         case IW_MLME_DISASSOC:
7685                 ipw2100_disassociate_bssid(priv);
7686                 break;
7687
7688         default:
7689                 return -EOPNOTSUPP;
7690         }
7691         return 0;
7692 }
7693
7694 /*
7695  *
7696  * IWPRIV handlers
7697  *
7698  */
7699 #ifdef CONFIG_IPW2100_MONITOR
7700 static int ipw2100_wx_set_promisc(struct net_device *dev,
7701                                   struct iw_request_info *info,
7702                                   union iwreq_data *wrqu, char *extra)
7703 {
7704         struct ipw2100_priv *priv = ieee80211_priv(dev);
7705         int *parms = (int *)extra;
7706         int enable = (parms[0] > 0);
7707         int err = 0;
7708
7709         down(&priv->action_sem);
7710         if (!(priv->status & STATUS_INITIALIZED)) {
7711                 err = -EIO;
7712                 goto done;
7713         }
7714
7715         if (enable) {
7716                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7717                         err = ipw2100_set_channel(priv, parms[1], 0);
7718                         goto done;
7719                 }
7720                 priv->channel = parms[1];
7721                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7722         } else {
7723                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7724                         err = ipw2100_switch_mode(priv, priv->last_mode);
7725         }
7726       done:
7727         up(&priv->action_sem);
7728         return err;
7729 }
7730
7731 static int ipw2100_wx_reset(struct net_device *dev,
7732                             struct iw_request_info *info,
7733                             union iwreq_data *wrqu, char *extra)
7734 {
7735         struct ipw2100_priv *priv = ieee80211_priv(dev);
7736         if (priv->status & STATUS_INITIALIZED)
7737                 schedule_reset(priv);
7738         return 0;
7739 }
7740
7741 #endif
7742
7743 static int ipw2100_wx_set_powermode(struct net_device *dev,
7744                                     struct iw_request_info *info,
7745                                     union iwreq_data *wrqu, char *extra)
7746 {
7747         struct ipw2100_priv *priv = ieee80211_priv(dev);
7748         int err = 0, mode = *(int *)extra;
7749
7750         down(&priv->action_sem);
7751         if (!(priv->status & STATUS_INITIALIZED)) {
7752                 err = -EIO;
7753                 goto done;
7754         }
7755
7756         if ((mode < 1) || (mode > POWER_MODES))
7757                 mode = IPW_POWER_AUTO;
7758
7759         if (priv->power_mode != mode)
7760                 err = ipw2100_set_power_mode(priv, mode);
7761       done:
7762         up(&priv->action_sem);
7763         return err;
7764 }
7765
7766 #define MAX_POWER_STRING 80
7767 static int ipw2100_wx_get_powermode(struct net_device *dev,
7768                                     struct iw_request_info *info,
7769                                     union iwreq_data *wrqu, char *extra)
7770 {
7771         /*
7772          * This can be called at any time.  No action lock required
7773          */
7774
7775         struct ipw2100_priv *priv = ieee80211_priv(dev);
7776         int level = IPW_POWER_LEVEL(priv->power_mode);
7777         s32 timeout, period;
7778
7779         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7780                 snprintf(extra, MAX_POWER_STRING,
7781                          "Power save level: %d (Off)", level);
7782         } else {
7783                 switch (level) {
7784                 case IPW_POWER_MODE_CAM:
7785                         snprintf(extra, MAX_POWER_STRING,
7786                                  "Power save level: %d (None)", level);
7787                         break;
7788                 case IPW_POWER_AUTO:
7789                         snprintf(extra, MAX_POWER_STRING,
7790                                  "Power save level: %d (Auto)", 0);
7791                         break;
7792                 default:
7793                         timeout = timeout_duration[level - 1] / 1000;
7794                         period = period_duration[level - 1] / 1000;
7795                         snprintf(extra, MAX_POWER_STRING,
7796                                  "Power save level: %d "
7797                                  "(Timeout %dms, Period %dms)",
7798                                  level, timeout, period);
7799                 }
7800         }
7801
7802         wrqu->data.length = strlen(extra) + 1;
7803
7804         return 0;
7805 }
7806
7807 static int ipw2100_wx_set_preamble(struct net_device *dev,
7808                                    struct iw_request_info *info,
7809                                    union iwreq_data *wrqu, char *extra)
7810 {
7811         struct ipw2100_priv *priv = ieee80211_priv(dev);
7812         int err, mode = *(int *)extra;
7813
7814         down(&priv->action_sem);
7815         if (!(priv->status & STATUS_INITIALIZED)) {
7816                 err = -EIO;
7817                 goto done;
7818         }
7819
7820         if (mode == 1)
7821                 priv->config |= CFG_LONG_PREAMBLE;
7822         else if (mode == 0)
7823                 priv->config &= ~CFG_LONG_PREAMBLE;
7824         else {
7825                 err = -EINVAL;
7826                 goto done;
7827         }
7828
7829         err = ipw2100_system_config(priv, 0);
7830
7831       done:
7832         up(&priv->action_sem);
7833         return err;
7834 }
7835
7836 static int ipw2100_wx_get_preamble(struct net_device *dev,
7837                                    struct iw_request_info *info,
7838                                    union iwreq_data *wrqu, char *extra)
7839 {
7840         /*
7841          * This can be called at any time.  No action lock required
7842          */
7843
7844         struct ipw2100_priv *priv = ieee80211_priv(dev);
7845
7846         if (priv->config & CFG_LONG_PREAMBLE)
7847                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7848         else
7849                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7850
7851         return 0;
7852 }
7853
7854 #ifdef CONFIG_IPW2100_MONITOR
7855 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7856                                     struct iw_request_info *info,
7857                                     union iwreq_data *wrqu, char *extra)
7858 {
7859         struct ipw2100_priv *priv = ieee80211_priv(dev);
7860         int err, mode = *(int *)extra;
7861
7862         down(&priv->action_sem);
7863         if (!(priv->status & STATUS_INITIALIZED)) {
7864                 err = -EIO;
7865                 goto done;
7866         }
7867
7868         if (mode == 1)
7869                 priv->config |= CFG_CRC_CHECK;
7870         else if (mode == 0)
7871                 priv->config &= ~CFG_CRC_CHECK;
7872         else {
7873                 err = -EINVAL;
7874                 goto done;
7875         }
7876         err = 0;
7877
7878       done:
7879         up(&priv->action_sem);
7880         return err;
7881 }
7882
7883 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7884                                     struct iw_request_info *info,
7885                                     union iwreq_data *wrqu, char *extra)
7886 {
7887         /*
7888          * This can be called at any time.  No action lock required
7889          */
7890
7891         struct ipw2100_priv *priv = ieee80211_priv(dev);
7892
7893         if (priv->config & CFG_CRC_CHECK)
7894                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
7895         else
7896                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
7897
7898         return 0;
7899 }
7900 #endif                          /* CONFIG_IPW2100_MONITOR */
7901
7902 static iw_handler ipw2100_wx_handlers[] = {
7903         NULL,                   /* SIOCSIWCOMMIT */
7904         ipw2100_wx_get_name,    /* SIOCGIWNAME */
7905         NULL,                   /* SIOCSIWNWID */
7906         NULL,                   /* SIOCGIWNWID */
7907         ipw2100_wx_set_freq,    /* SIOCSIWFREQ */
7908         ipw2100_wx_get_freq,    /* SIOCGIWFREQ */
7909         ipw2100_wx_set_mode,    /* SIOCSIWMODE */
7910         ipw2100_wx_get_mode,    /* SIOCGIWMODE */
7911         NULL,                   /* SIOCSIWSENS */
7912         NULL,                   /* SIOCGIWSENS */
7913         NULL,                   /* SIOCSIWRANGE */
7914         ipw2100_wx_get_range,   /* SIOCGIWRANGE */
7915         NULL,                   /* SIOCSIWPRIV */
7916         NULL,                   /* SIOCGIWPRIV */
7917         NULL,                   /* SIOCSIWSTATS */
7918         NULL,                   /* SIOCGIWSTATS */
7919         NULL,                   /* SIOCSIWSPY */
7920         NULL,                   /* SIOCGIWSPY */
7921         NULL,                   /* SIOCGIWTHRSPY */
7922         NULL,                   /* SIOCWIWTHRSPY */
7923         ipw2100_wx_set_wap,     /* SIOCSIWAP */
7924         ipw2100_wx_get_wap,     /* SIOCGIWAP */
7925         ipw2100_wx_set_mlme,    /* SIOCSIWMLME */
7926         NULL,                   /* SIOCGIWAPLIST -- deprecated */
7927         ipw2100_wx_set_scan,    /* SIOCSIWSCAN */
7928         ipw2100_wx_get_scan,    /* SIOCGIWSCAN */
7929         ipw2100_wx_set_essid,   /* SIOCSIWESSID */
7930         ipw2100_wx_get_essid,   /* SIOCGIWESSID */
7931         ipw2100_wx_set_nick,    /* SIOCSIWNICKN */
7932         ipw2100_wx_get_nick,    /* SIOCGIWNICKN */
7933         NULL,                   /* -- hole -- */
7934         NULL,                   /* -- hole -- */
7935         ipw2100_wx_set_rate,    /* SIOCSIWRATE */
7936         ipw2100_wx_get_rate,    /* SIOCGIWRATE */
7937         ipw2100_wx_set_rts,     /* SIOCSIWRTS */
7938         ipw2100_wx_get_rts,     /* SIOCGIWRTS */
7939         ipw2100_wx_set_frag,    /* SIOCSIWFRAG */
7940         ipw2100_wx_get_frag,    /* SIOCGIWFRAG */
7941         ipw2100_wx_set_txpow,   /* SIOCSIWTXPOW */
7942         ipw2100_wx_get_txpow,   /* SIOCGIWTXPOW */
7943         ipw2100_wx_set_retry,   /* SIOCSIWRETRY */
7944         ipw2100_wx_get_retry,   /* SIOCGIWRETRY */
7945         ipw2100_wx_set_encode,  /* SIOCSIWENCODE */
7946         ipw2100_wx_get_encode,  /* SIOCGIWENCODE */
7947         ipw2100_wx_set_power,   /* SIOCSIWPOWER */
7948         ipw2100_wx_get_power,   /* SIOCGIWPOWER */
7949         NULL,                   /* -- hole -- */
7950         NULL,                   /* -- hole -- */
7951         ipw2100_wx_set_genie,   /* SIOCSIWGENIE */
7952         ipw2100_wx_get_genie,   /* SIOCGIWGENIE */
7953         ipw2100_wx_set_auth,    /* SIOCSIWAUTH */
7954         ipw2100_wx_get_auth,    /* SIOCGIWAUTH */
7955         ipw2100_wx_set_encodeext,       /* SIOCSIWENCODEEXT */
7956         ipw2100_wx_get_encodeext,       /* SIOCGIWENCODEEXT */
7957         NULL,                   /* SIOCSIWPMKSA */
7958 };
7959
7960 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
7961 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
7962 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
7963 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
7964 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
7965 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
7966 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
7967 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
7968
7969 static const struct iw_priv_args ipw2100_private_args[] = {
7970
7971 #ifdef CONFIG_IPW2100_MONITOR
7972         {
7973          IPW2100_PRIV_SET_MONITOR,
7974          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
7975         {
7976          IPW2100_PRIV_RESET,
7977          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
7978 #endif                          /* CONFIG_IPW2100_MONITOR */
7979
7980         {
7981          IPW2100_PRIV_SET_POWER,
7982          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
7983         {
7984          IPW2100_PRIV_GET_POWER,
7985          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
7986          "get_power"},
7987         {
7988          IPW2100_PRIV_SET_LONGPREAMBLE,
7989          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
7990         {
7991          IPW2100_PRIV_GET_LONGPREAMBLE,
7992          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
7993 #ifdef CONFIG_IPW2100_MONITOR
7994         {
7995          IPW2100_PRIV_SET_CRC_CHECK,
7996          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
7997         {
7998          IPW2100_PRIV_GET_CRC_CHECK,
7999          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8000 #endif                          /* CONFIG_IPW2100_MONITOR */
8001 };
8002
8003 static iw_handler ipw2100_private_handler[] = {
8004 #ifdef CONFIG_IPW2100_MONITOR
8005         ipw2100_wx_set_promisc,
8006         ipw2100_wx_reset,
8007 #else                           /* CONFIG_IPW2100_MONITOR */
8008         NULL,
8009         NULL,
8010 #endif                          /* CONFIG_IPW2100_MONITOR */
8011         ipw2100_wx_set_powermode,
8012         ipw2100_wx_get_powermode,
8013         ipw2100_wx_set_preamble,
8014         ipw2100_wx_get_preamble,
8015 #ifdef CONFIG_IPW2100_MONITOR
8016         ipw2100_wx_set_crc_check,
8017         ipw2100_wx_get_crc_check,
8018 #else                           /* CONFIG_IPW2100_MONITOR */
8019         NULL,
8020         NULL,
8021 #endif                          /* CONFIG_IPW2100_MONITOR */
8022 };
8023
8024 /*
8025  * Get wireless statistics.
8026  * Called by /proc/net/wireless
8027  * Also called by SIOCGIWSTATS
8028  */
8029 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8030 {
8031         enum {
8032                 POOR = 30,
8033                 FAIR = 60,
8034                 GOOD = 80,
8035                 VERY_GOOD = 90,
8036                 EXCELLENT = 95,
8037                 PERFECT = 100
8038         };
8039         int rssi_qual;
8040         int tx_qual;
8041         int beacon_qual;
8042
8043         struct ipw2100_priv *priv = ieee80211_priv(dev);
8044         struct iw_statistics *wstats;
8045         u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8046         u32 ord_len = sizeof(u32);
8047
8048         if (!priv)
8049                 return (struct iw_statistics *)NULL;
8050
8051         wstats = &priv->wstats;
8052
8053         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8054          * ipw2100_wx_wireless_stats seems to be called before fw is
8055          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8056          * and associated; if not associcated, the values are all meaningless
8057          * anyway, so set them all to NULL and INVALID */
8058         if (!(priv->status & STATUS_ASSOCIATED)) {
8059                 wstats->miss.beacon = 0;
8060                 wstats->discard.retries = 0;
8061                 wstats->qual.qual = 0;
8062                 wstats->qual.level = 0;
8063                 wstats->qual.noise = 0;
8064                 wstats->qual.updated = 7;
8065                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8066                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8067                 return wstats;
8068         }
8069
8070         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8071                                 &missed_beacons, &ord_len))
8072                 goto fail_get_ordinal;
8073
8074         /* If we don't have a connection the quality and level is 0 */
8075         if (!(priv->status & STATUS_ASSOCIATED)) {
8076                 wstats->qual.qual = 0;
8077                 wstats->qual.level = 0;
8078         } else {
8079                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8080                                         &rssi, &ord_len))
8081                         goto fail_get_ordinal;
8082                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8083                 if (rssi < 10)
8084                         rssi_qual = rssi * POOR / 10;
8085                 else if (rssi < 15)
8086                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8087                 else if (rssi < 20)
8088                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8089                 else if (rssi < 30)
8090                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8091                             10 + GOOD;
8092                 else
8093                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8094                             10 + VERY_GOOD;
8095
8096                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8097                                         &tx_retries, &ord_len))
8098                         goto fail_get_ordinal;
8099
8100                 if (tx_retries > 75)
8101                         tx_qual = (90 - tx_retries) * POOR / 15;
8102                 else if (tx_retries > 70)
8103                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8104                 else if (tx_retries > 65)
8105                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8106                 else if (tx_retries > 50)
8107                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8108                             15 + GOOD;
8109                 else
8110                         tx_qual = (50 - tx_retries) *
8111                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8112
8113                 if (missed_beacons > 50)
8114                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8115                 else if (missed_beacons > 40)
8116                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8117                             10 + POOR;
8118                 else if (missed_beacons > 32)
8119                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8120                             18 + FAIR;
8121                 else if (missed_beacons > 20)
8122                         beacon_qual = (32 - missed_beacons) *
8123                             (VERY_GOOD - GOOD) / 20 + GOOD;
8124                 else
8125                         beacon_qual = (20 - missed_beacons) *
8126                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8127
8128                 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8129
8130 #ifdef CONFIG_IPW2100_DEBUG
8131                 if (beacon_qual == quality)
8132                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8133                 else if (tx_qual == quality)
8134                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8135                 else if (quality != 100)
8136                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8137                 else
8138                         IPW_DEBUG_WX("Quality not clamped.\n");
8139 #endif
8140
8141                 wstats->qual.qual = quality;
8142                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8143         }
8144
8145         wstats->qual.noise = 0;
8146         wstats->qual.updated = 7;
8147         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8148
8149         /* FIXME: this is percent and not a # */
8150         wstats->miss.beacon = missed_beacons;
8151
8152         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8153                                 &tx_failures, &ord_len))
8154                 goto fail_get_ordinal;
8155         wstats->discard.retries = tx_failures;
8156
8157         return wstats;
8158
8159       fail_get_ordinal:
8160         IPW_DEBUG_WX("failed querying ordinals.\n");
8161
8162         return (struct iw_statistics *)NULL;
8163 }
8164
8165 static struct iw_handler_def ipw2100_wx_handler_def = {
8166         .standard = ipw2100_wx_handlers,
8167         .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8168         .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8169         .num_private_args = sizeof(ipw2100_private_args) /
8170             sizeof(struct iw_priv_args),
8171         .private = (iw_handler *) ipw2100_private_handler,
8172         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8173         .get_wireless_stats = ipw2100_wx_wireless_stats,
8174 };
8175
8176 static void ipw2100_wx_event_work(struct ipw2100_priv *priv)
8177 {
8178         union iwreq_data wrqu;
8179         int len = ETH_ALEN;
8180
8181         if (priv->status & STATUS_STOPPING)
8182                 return;
8183
8184         down(&priv->action_sem);
8185
8186         IPW_DEBUG_WX("enter\n");
8187
8188         up(&priv->action_sem);
8189
8190         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8191
8192         /* Fetch BSSID from the hardware */
8193         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8194             priv->status & STATUS_RF_KILL_MASK ||
8195             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8196                                 &priv->bssid, &len)) {
8197                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8198         } else {
8199                 /* We now have the BSSID, so can finish setting to the full
8200                  * associated state */
8201                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8202                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8203                 priv->status &= ~STATUS_ASSOCIATING;
8204                 priv->status |= STATUS_ASSOCIATED;
8205                 netif_carrier_on(priv->net_dev);
8206                 netif_wake_queue(priv->net_dev);
8207         }
8208
8209         if (!(priv->status & STATUS_ASSOCIATED)) {
8210                 IPW_DEBUG_WX("Configuring ESSID\n");
8211                 down(&priv->action_sem);
8212                 /* This is a disassociation event, so kick the firmware to
8213                  * look for another AP */
8214                 if (priv->config & CFG_STATIC_ESSID)
8215                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8216                                           0);
8217                 else
8218                         ipw2100_set_essid(priv, NULL, 0, 0);
8219                 up(&priv->action_sem);
8220         }
8221
8222         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8223 }
8224
8225 #define IPW2100_FW_MAJOR_VERSION 1
8226 #define IPW2100_FW_MINOR_VERSION 3
8227
8228 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8229 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8230
8231 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8232                              IPW2100_FW_MAJOR_VERSION)
8233
8234 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8235 "." __stringify(IPW2100_FW_MINOR_VERSION)
8236
8237 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8238
8239 /*
8240
8241 BINARY FIRMWARE HEADER FORMAT
8242
8243 offset      length   desc
8244 0           2        version
8245 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8246 4           4        fw_len
8247 8           4        uc_len
8248 C           fw_len   firmware data
8249 12 + fw_len uc_len   microcode data
8250
8251 */
8252
8253 struct ipw2100_fw_header {
8254         short version;
8255         short mode;
8256         unsigned int fw_size;
8257         unsigned int uc_size;
8258 } __attribute__ ((packed));
8259
8260 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8261 {
8262         struct ipw2100_fw_header *h =
8263             (struct ipw2100_fw_header *)fw->fw_entry->data;
8264
8265         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8266                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8267                        "(detected version id of %u). "
8268                        "See Documentation/networking/README.ipw2100\n",
8269                        h->version);
8270                 return 1;
8271         }
8272
8273         fw->version = h->version;
8274         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8275         fw->fw.size = h->fw_size;
8276         fw->uc.data = fw->fw.data + h->fw_size;
8277         fw->uc.size = h->uc_size;
8278
8279         return 0;
8280 }
8281
8282 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8283                                 struct ipw2100_fw *fw)
8284 {
8285         char *fw_name;
8286         int rc;
8287
8288         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8289                        priv->net_dev->name);
8290
8291         switch (priv->ieee->iw_mode) {
8292         case IW_MODE_ADHOC:
8293                 fw_name = IPW2100_FW_NAME("-i");
8294                 break;
8295 #ifdef CONFIG_IPW2100_MONITOR
8296         case IW_MODE_MONITOR:
8297                 fw_name = IPW2100_FW_NAME("-p");
8298                 break;
8299 #endif
8300         case IW_MODE_INFRA:
8301         default:
8302                 fw_name = IPW2100_FW_NAME("");
8303                 break;
8304         }
8305
8306         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8307
8308         if (rc < 0) {
8309                 printk(KERN_ERR DRV_NAME ": "
8310                        "%s: Firmware '%s' not available or load failed.\n",
8311                        priv->net_dev->name, fw_name);
8312                 return rc;
8313         }
8314         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8315                        fw->fw_entry->size);
8316
8317         ipw2100_mod_firmware_load(fw);
8318
8319         return 0;
8320 }
8321
8322 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8323                                      struct ipw2100_fw *fw)
8324 {
8325         fw->version = 0;
8326         if (fw->fw_entry)
8327                 release_firmware(fw->fw_entry);
8328         fw->fw_entry = NULL;
8329 }
8330
8331 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8332                                  size_t max)
8333 {
8334         char ver[MAX_FW_VERSION_LEN];
8335         u32 len = MAX_FW_VERSION_LEN;
8336         u32 tmp;
8337         int i;
8338         /* firmware version is an ascii string (max len of 14) */
8339         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8340                 return -EIO;
8341         tmp = max;
8342         if (len >= max)
8343                 len = max - 1;
8344         for (i = 0; i < len; i++)
8345                 buf[i] = ver[i];
8346         buf[i] = '\0';
8347         return tmp;
8348 }
8349
8350 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8351                                     size_t max)
8352 {
8353         u32 ver;
8354         u32 len = sizeof(ver);
8355         /* microcode version is a 32 bit integer */
8356         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8357                 return -EIO;
8358         return snprintf(buf, max, "%08X", ver);
8359 }
8360
8361 /*
8362  * On exit, the firmware will have been freed from the fw list
8363  */
8364 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8365 {
8366         /* firmware is constructed of N contiguous entries, each entry is
8367          * structured as:
8368          *
8369          * offset    sie         desc
8370          * 0         4           address to write to
8371          * 4         2           length of data run
8372          * 6         length      data
8373          */
8374         unsigned int addr;
8375         unsigned short len;
8376
8377         const unsigned char *firmware_data = fw->fw.data;
8378         unsigned int firmware_data_left = fw->fw.size;
8379
8380         while (firmware_data_left > 0) {
8381                 addr = *(u32 *) (firmware_data);
8382                 firmware_data += 4;
8383                 firmware_data_left -= 4;
8384
8385                 len = *(u16 *) (firmware_data);
8386                 firmware_data += 2;
8387                 firmware_data_left -= 2;
8388
8389                 if (len > 32) {
8390                         printk(KERN_ERR DRV_NAME ": "
8391                                "Invalid firmware run-length of %d bytes\n",
8392                                len);
8393                         return -EINVAL;
8394                 }
8395
8396                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8397                 firmware_data += len;
8398                 firmware_data_left -= len;
8399         }
8400
8401         return 0;
8402 }
8403
8404 struct symbol_alive_response {
8405         u8 cmd_id;
8406         u8 seq_num;
8407         u8 ucode_rev;
8408         u8 eeprom_valid;
8409         u16 valid_flags;
8410         u8 IEEE_addr[6];
8411         u16 flags;
8412         u16 pcb_rev;
8413         u16 clock_settle_time;  // 1us LSB
8414         u16 powerup_settle_time;        // 1us LSB
8415         u16 hop_settle_time;    // 1us LSB
8416         u8 date[3];             // month, day, year
8417         u8 time[2];             // hours, minutes
8418         u8 ucode_valid;
8419 };
8420
8421 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8422                                   struct ipw2100_fw *fw)
8423 {
8424         struct net_device *dev = priv->net_dev;
8425         const unsigned char *microcode_data = fw->uc.data;
8426         unsigned int microcode_data_left = fw->uc.size;
8427         void __iomem *reg = (void __iomem *)dev->base_addr;
8428
8429         struct symbol_alive_response response;
8430         int i, j;
8431         u8 data;
8432
8433         /* Symbol control */
8434         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8435         readl(reg);
8436         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8437         readl(reg);
8438
8439         /* HW config */
8440         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8441         readl(reg);
8442         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8443         readl(reg);
8444
8445         /* EN_CS_ACCESS bit to reset control store pointer */
8446         write_nic_byte(dev, 0x210000, 0x40);
8447         readl(reg);
8448         write_nic_byte(dev, 0x210000, 0x0);
8449         readl(reg);
8450         write_nic_byte(dev, 0x210000, 0x40);
8451         readl(reg);
8452
8453         /* copy microcode from buffer into Symbol */
8454
8455         while (microcode_data_left > 0) {
8456                 write_nic_byte(dev, 0x210010, *microcode_data++);
8457                 write_nic_byte(dev, 0x210010, *microcode_data++);
8458                 microcode_data_left -= 2;
8459         }
8460
8461         /* EN_CS_ACCESS bit to reset the control store pointer */
8462         write_nic_byte(dev, 0x210000, 0x0);
8463         readl(reg);
8464
8465         /* Enable System (Reg 0)
8466          * first enable causes garbage in RX FIFO */
8467         write_nic_byte(dev, 0x210000, 0x0);
8468         readl(reg);
8469         write_nic_byte(dev, 0x210000, 0x80);
8470         readl(reg);
8471
8472         /* Reset External Baseband Reg */
8473         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8474         readl(reg);
8475         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8476         readl(reg);
8477
8478         /* HW Config (Reg 5) */
8479         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8480         readl(reg);
8481         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8482         readl(reg);
8483
8484         /* Enable System (Reg 0)
8485          * second enable should be OK */
8486         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8487         readl(reg);
8488         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8489
8490         /* check Symbol is enabled - upped this from 5 as it wasn't always
8491          * catching the update */
8492         for (i = 0; i < 10; i++) {
8493                 udelay(10);
8494
8495                 /* check Dino is enabled bit */
8496                 read_nic_byte(dev, 0x210000, &data);
8497                 if (data & 0x1)
8498                         break;
8499         }
8500
8501         if (i == 10) {
8502                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8503                        dev->name);
8504                 return -EIO;
8505         }
8506
8507         /* Get Symbol alive response */
8508         for (i = 0; i < 30; i++) {
8509                 /* Read alive response structure */
8510                 for (j = 0;
8511                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8512                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8513
8514                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8515                         break;
8516                 udelay(10);
8517         }
8518
8519         if (i == 30) {
8520                 printk(KERN_ERR DRV_NAME
8521                        ": %s: No response from Symbol - hw not alive\n",
8522                        dev->name);
8523                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8524                 return -EIO;
8525         }
8526
8527         return 0;
8528 }