Linux 6.10-rc4
[sfrench/cifs-2.6.git] / drivers / net / wireless / intel / iwlwifi / iwl-trans.h
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24
25 /**
26  * DOC: Transport layer - what is it ?
27  *
28  * The transport layer is the layer that deals with the HW directly. It provides
29  * an abstraction of the underlying HW to the upper layer. The transport layer
30  * doesn't provide any policy, algorithm or anything of this kind, but only
31  * mechanisms to make the HW do something. It is not completely stateless but
32  * close to it.
33  * We will have an implementation for each different supported bus.
34  */
35
36 /**
37  * DOC: Life cycle of the transport layer
38  *
39  * The transport layer has a very precise life cycle.
40  *
41  *      1) A helper function is called during the module initialization and
42  *         registers the bus driver's ops with the transport's alloc function.
43  *      2) Bus's probe calls to the transport layer's allocation functions.
44  *         Of course this function is bus specific.
45  *      3) This allocation functions will spawn the upper layer which will
46  *         register mac80211.
47  *
48  *      4) At some point (i.e. mac80211's start call), the op_mode will call
49  *         the following sequence:
50  *         start_hw
51  *         start_fw
52  *
53  *      5) Then when finished (or reset):
54  *         stop_device
55  *
56  *      6) Eventually, the free function will be called.
57  */
58
59 /* default preset 0 (start from bit 16)*/
60 #define IWL_FW_DBG_DOMAIN_POS   16
61 #define IWL_FW_DBG_DOMAIN       BIT(IWL_FW_DBG_DOMAIN_POS)
62
63 #define IWL_TRANS_FW_DBG_DOMAIN(trans)  IWL_FW_INI_DOMAIN_ALWAYS_ON
64
65 #define FH_RSCSR_FRAME_SIZE_MSK         0x00003FFF      /* bits 0-13 */
66 #define FH_RSCSR_FRAME_INVALID          0x55550000
67 #define FH_RSCSR_FRAME_ALIGN            0x40
68 #define FH_RSCSR_RPA_EN                 BIT(25)
69 #define FH_RSCSR_RADA_EN                BIT(26)
70 #define FH_RSCSR_RXQ_POS                16
71 #define FH_RSCSR_RXQ_MASK               0x3F0000
72
73 struct iwl_rx_packet {
74         /*
75          * The first 4 bytes of the RX frame header contain both the RX frame
76          * size and some flags.
77          * Bit fields:
78          * 31:    flag flush RB request
79          * 30:    flag ignore TC (terminal counter) request
80          * 29:    flag fast IRQ request
81          * 28-27: Reserved
82          * 26:    RADA enabled
83          * 25:    Offload enabled
84          * 24:    RPF enabled
85          * 23:    RSS enabled
86          * 22:    Checksum enabled
87          * 21-16: RX queue
88          * 15-14: Reserved
89          * 13-00: RX frame size
90          */
91         __le32 len_n_flags;
92         struct iwl_cmd_header hdr;
93         u8 data[];
94 } __packed;
95
96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
97 {
98         return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
99 }
100
101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
102 {
103         return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
104 }
105
106 /**
107  * enum CMD_MODE - how to send the host commands ?
108  *
109  * @CMD_ASYNC: Return right away and don't wait for the response
110  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
111  *      the response. The caller needs to call iwl_free_resp when done.
112  * @CMD_SEND_IN_RFKILL: Send the command even if the NIC is in RF-kill.
113  * @CMD_BLOCK_TXQS: Block TXQs while the comment is executing.
114  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
115  *      SUSPEND and RESUME commands. We are in D3 mode when we set
116  *      trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
117  */
118 enum CMD_MODE {
119         CMD_ASYNC               = BIT(0),
120         CMD_WANT_SKB            = BIT(1),
121         CMD_SEND_IN_RFKILL      = BIT(2),
122         CMD_BLOCK_TXQS          = BIT(3),
123         CMD_SEND_IN_D3          = BIT(4),
124 };
125
126 #define DEF_CMD_PAYLOAD_SIZE 320
127
128 /**
129  * struct iwl_device_cmd
130  *
131  * For allocation of the command and tx queues, this establishes the overall
132  * size of the largest command we send to uCode, except for commands that
133  * aren't fully copied and use other TFD space.
134  */
135 struct iwl_device_cmd {
136         union {
137                 struct {
138                         struct iwl_cmd_header hdr;      /* uCode API */
139                         u8 payload[DEF_CMD_PAYLOAD_SIZE];
140                 };
141                 struct {
142                         struct iwl_cmd_header_wide hdr_wide;
143                         u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
144                                         sizeof(struct iwl_cmd_header_wide) +
145                                         sizeof(struct iwl_cmd_header)];
146                 };
147         };
148 } __packed;
149
150 /**
151  * struct iwl_device_tx_cmd - buffer for TX command
152  * @hdr: the header
153  * @payload: the payload placeholder
154  *
155  * The actual structure is sized dynamically according to need.
156  */
157 struct iwl_device_tx_cmd {
158         struct iwl_cmd_header hdr;
159         u8 payload[];
160 } __packed;
161
162 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
163
164 /*
165  * number of transfer buffers (fragments) per transmit frame descriptor;
166  * this is just the driver's idea, the hardware supports 20
167  */
168 #define IWL_MAX_CMD_TBS_PER_TFD 2
169
170 /* We need 2 entries for the TX command and header, and another one might
171  * be needed for potential data in the SKB's head. The remaining ones can
172  * be used for frags.
173  */
174 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
175
176 /**
177  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
178  *
179  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
180  *      ring. The transport layer doesn't map the command's buffer to DMA, but
181  *      rather copies it to a previously allocated DMA buffer. This flag tells
182  *      the transport layer not to copy the command, but to map the existing
183  *      buffer (that is passed in) instead. This saves the memcpy and allows
184  *      commands that are bigger than the fixed buffer to be submitted.
185  *      Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
186  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
187  *      chunk internally and free it again after the command completes. This
188  *      can (currently) be used only once per command.
189  *      Note that a TFD entry after a DUP one cannot be a normal copied one.
190  */
191 enum iwl_hcmd_dataflag {
192         IWL_HCMD_DFL_NOCOPY     = BIT(0),
193         IWL_HCMD_DFL_DUP        = BIT(1),
194 };
195
196 enum iwl_error_event_table_status {
197         IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
198         IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
199         IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
200         IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
201         IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
202         IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
203         IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
204 };
205
206 /**
207  * struct iwl_host_cmd - Host command to the uCode
208  *
209  * @data: array of chunks that composes the data of the host command
210  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
211  * @_rx_page_order: (internally used to free response packet)
212  * @_rx_page_addr: (internally used to free response packet)
213  * @flags: can be CMD_*
214  * @len: array of the lengths of the chunks in data
215  * @dataflags: IWL_HCMD_DFL_*
216  * @id: command id of the host command, for wide commands encoding the
217  *      version and group as well
218  */
219 struct iwl_host_cmd {
220         const void *data[IWL_MAX_CMD_TBS_PER_TFD];
221         struct iwl_rx_packet *resp_pkt;
222         unsigned long _rx_page_addr;
223         u32 _rx_page_order;
224
225         u32 flags;
226         u32 id;
227         u16 len[IWL_MAX_CMD_TBS_PER_TFD];
228         u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
229 };
230
231 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
232 {
233         free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
234 }
235
236 struct iwl_rx_cmd_buffer {
237         struct page *_page;
238         int _offset;
239         bool _page_stolen;
240         u32 _rx_page_order;
241         unsigned int truesize;
242 };
243
244 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
245 {
246         return (void *)((unsigned long)page_address(r->_page) + r->_offset);
247 }
248
249 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
250 {
251         return r->_offset;
252 }
253
254 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
255 {
256         r->_page_stolen = true;
257         get_page(r->_page);
258         return r->_page;
259 }
260
261 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
262 {
263         __free_pages(r->_page, r->_rx_page_order);
264 }
265
266 #define MAX_NO_RECLAIM_CMDS     6
267
268 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
269
270 /*
271  * Maximum number of HW queues the transport layer
272  * currently supports
273  */
274 #define IWL_MAX_HW_QUEUES               32
275 #define IWL_MAX_TVQM_QUEUES             512
276
277 #define IWL_MAX_TID_COUNT       8
278 #define IWL_MGMT_TID            15
279 #define IWL_FRAME_LIMIT 64
280 #define IWL_MAX_RX_HW_QUEUES    16
281 #define IWL_9000_MAX_RX_HW_QUEUES       1
282
283 /**
284  * enum iwl_wowlan_status - WoWLAN image/device status
285  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
286  * @IWL_D3_STATUS_RESET: device was reset while suspended
287  */
288 enum iwl_d3_status {
289         IWL_D3_STATUS_ALIVE,
290         IWL_D3_STATUS_RESET,
291 };
292
293 /**
294  * enum iwl_trans_status: transport status flags
295  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
296  * @STATUS_DEVICE_ENABLED: APM is enabled
297  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
298  * @STATUS_INT_ENABLED: interrupts are enabled
299  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
300  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
301  * @STATUS_FW_ERROR: the fw is in error state
302  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
303  *      are sent
304  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
305  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
306  * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
307  *      e.g. for testing
308  */
309 enum iwl_trans_status {
310         STATUS_SYNC_HCMD_ACTIVE,
311         STATUS_DEVICE_ENABLED,
312         STATUS_TPOWER_PMI,
313         STATUS_INT_ENABLED,
314         STATUS_RFKILL_HW,
315         STATUS_RFKILL_OPMODE,
316         STATUS_FW_ERROR,
317         STATUS_TRANS_GOING_IDLE,
318         STATUS_TRANS_IDLE,
319         STATUS_TRANS_DEAD,
320         STATUS_SUPPRESS_CMD_ERROR_ONCE,
321 };
322
323 static inline int
324 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
325 {
326         switch (rb_size) {
327         case IWL_AMSDU_2K:
328                 return get_order(2 * 1024);
329         case IWL_AMSDU_4K:
330                 return get_order(4 * 1024);
331         case IWL_AMSDU_8K:
332                 return get_order(8 * 1024);
333         case IWL_AMSDU_12K:
334                 return get_order(16 * 1024);
335         default:
336                 WARN_ON(1);
337                 return -1;
338         }
339 }
340
341 static inline int
342 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
343 {
344         switch (rb_size) {
345         case IWL_AMSDU_2K:
346                 return 2 * 1024;
347         case IWL_AMSDU_4K:
348                 return 4 * 1024;
349         case IWL_AMSDU_8K:
350                 return 8 * 1024;
351         case IWL_AMSDU_12K:
352                 return 16 * 1024;
353         default:
354                 WARN_ON(1);
355                 return 0;
356         }
357 }
358
359 struct iwl_hcmd_names {
360         u8 cmd_id;
361         const char *const cmd_name;
362 };
363
364 #define HCMD_NAME(x)    \
365         { .cmd_id = x, .cmd_name = #x }
366
367 struct iwl_hcmd_arr {
368         const struct iwl_hcmd_names *arr;
369         int size;
370 };
371
372 #define HCMD_ARR(x)     \
373         { .arr = x, .size = ARRAY_SIZE(x) }
374
375 /**
376  * struct iwl_dump_sanitize_ops - dump sanitization operations
377  * @frob_txf: Scrub the TX FIFO data
378  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
379  *      but that might be short or long (&struct iwl_cmd_header or
380  *      &struct iwl_cmd_header_wide)
381  * @frob_mem: Scrub memory data
382  */
383 struct iwl_dump_sanitize_ops {
384         void (*frob_txf)(void *ctx, void *buf, size_t buflen);
385         void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
386         void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
387 };
388
389 /**
390  * struct iwl_trans_config - transport configuration
391  *
392  * @op_mode: pointer to the upper layer.
393  * @cmd_queue: the index of the command queue.
394  *      Must be set before start_fw.
395  * @cmd_fifo: the fifo for host commands
396  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
397  * @no_reclaim_cmds: Some devices erroneously don't set the
398  *      SEQ_RX_FRAME bit on some notifications, this is the
399  *      list of such notifications to filter. Max length is
400  *      %MAX_NO_RECLAIM_CMDS.
401  * @n_no_reclaim_cmds: # of commands in list
402  * @rx_buf_size: RX buffer size needed for A-MSDUs
403  *      if unset 4k will be the RX buffer size
404  * @bc_table_dword: set to true if the BC table expects the byte count to be
405  *      in DWORD (as opposed to bytes)
406  * @scd_set_active: should the transport configure the SCD for HCMD queue
407  * @command_groups: array of command groups, each member is an array of the
408  *      commands in the group; for debugging only
409  * @command_groups_size: number of command groups, to avoid illegal access
410  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
411  *      space for at least two pointers
412  * @fw_reset_handshake: firmware supports reset flow handshake
413  * @queue_alloc_cmd_ver: queue allocation command version, set to 0
414  *      for using the older SCD_QUEUE_CFG, set to the version of
415  *      SCD_QUEUE_CONFIG_CMD otherwise.
416  */
417 struct iwl_trans_config {
418         struct iwl_op_mode *op_mode;
419
420         u8 cmd_queue;
421         u8 cmd_fifo;
422         unsigned int cmd_q_wdg_timeout;
423         const u8 *no_reclaim_cmds;
424         unsigned int n_no_reclaim_cmds;
425
426         enum iwl_amsdu_size rx_buf_size;
427         bool bc_table_dword;
428         bool scd_set_active;
429         const struct iwl_hcmd_arr *command_groups;
430         int command_groups_size;
431
432         u8 cb_data_offs;
433         bool fw_reset_handshake;
434         u8 queue_alloc_cmd_ver;
435 };
436
437 struct iwl_trans_dump_data {
438         u32 len;
439         u8 data[];
440 };
441
442 struct iwl_trans;
443
444 struct iwl_trans_txq_scd_cfg {
445         u8 fifo;
446         u8 sta_id;
447         u8 tid;
448         bool aggregate;
449         int frame_limit;
450 };
451
452 /**
453  * struct iwl_trans_rxq_dma_data - RX queue DMA data
454  * @fr_bd_cb: DMA address of free BD cyclic buffer
455  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
456  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
457  * @ur_bd_cb: DMA address of used BD cyclic buffer
458  */
459 struct iwl_trans_rxq_dma_data {
460         u64 fr_bd_cb;
461         u32 fr_bd_wid;
462         u64 urbd_stts_wrptr;
463         u64 ur_bd_cb;
464 };
465
466 /* maximal number of DRAM MAP entries supported by FW */
467 #define IPC_DRAM_MAP_ENTRY_NUM_MAX 64
468
469 /**
470  * struct iwl_pnvm_image - contains info about the parsed pnvm image
471  * @chunks: array of pointers to pnvm payloads and their sizes
472  * @n_chunks: the number of the pnvm payloads.
473  * @version: the version of the loaded PNVM image
474  */
475 struct iwl_pnvm_image {
476         struct {
477                 const void *data;
478                 u32 len;
479         } chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX];
480         u32 n_chunks;
481         u32 version;
482 };
483
484 /**
485  * struct iwl_trans_ops - transport specific operations
486  *
487  * All the handlers MUST be implemented
488  *
489  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
490  *      May sleep.
491  * @op_mode_leave: Turn off the HW RF kill indication if on
492  *      May sleep
493  * @start_fw: allocates and inits all the resources for the transport
494  *      layer. Also kick a fw image.
495  *      May sleep
496  * @fw_alive: called when the fw sends alive notification. If the fw provides
497  *      the SCD base address in SRAM, then provide it here, or 0 otherwise.
498  *      May sleep
499  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
500  *      the HW. From that point on, the HW will be stopped but will still issue
501  *      an interrupt if the HW RF kill switch is triggered.
502  *      This callback must do the right thing and not crash even if %start_hw()
503  *      was called but not &start_fw(). May sleep.
504  * @d3_suspend: put the device into the correct mode for WoWLAN during
505  *      suspend. This is optional, if not implemented WoWLAN will not be
506  *      supported. This callback may sleep.
507  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
508  *      talk to the WoWLAN image to get its status. This is optional, if not
509  *      implemented WoWLAN will not be supported. This callback may sleep.
510  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
511  *      If RFkill is asserted in the middle of a SYNC host command, it must
512  *      return -ERFKILL straight away.
513  *      May sleep only if CMD_ASYNC is not set
514  * @tx: send an skb. The transport relies on the op_mode to zero the
515  *      the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
516  *      the CSUM will be taken care of (TCP CSUM and IP header in case of
517  *      IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
518  *      header if it is IPv4.
519  *      Must be atomic
520  * @reclaim: free packet until ssn. Returns a list of freed packets.
521  *      Must be atomic
522  * @set_q_ptrs: set queue pointers internally, after D3 when HW state changed
523  * @txq_enable: setup a queue. To setup an AC queue, use the
524  *      iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
525  *      this one. The op_mode must not configure the HCMD queue. The scheduler
526  *      configuration may be %NULL, in which case the hardware will not be
527  *      configured. If true is returned, the operation mode needs to increment
528  *      the sequence number of the packets routed to this queue because of a
529  *      hardware scheduler bug. May sleep.
530  * @txq_disable: de-configure a Tx queue to send AMPDUs
531  *      Must be atomic
532  * @txq_alloc: Allocate a new TX queue, may sleep.
533  * @txq_free: Free a previously allocated TX queue.
534  * @txq_set_shared_mode: change Tx queue shared/unshared marking
535  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
536  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
537  * @freeze_txq_timer: prevents the timer of the queue from firing until the
538  *      queue is set to awake. Must be atomic.
539  * @write8: write a u8 to a register at offset ofs from the BAR
540  * @write32: write a u32 to a register at offset ofs from the BAR
541  * @read32: read a u32 register at offset ofs from the BAR
542  * @read_prph: read a DWORD from a periphery register
543  * @write_prph: write a DWORD to a periphery register
544  * @read_mem: read device's SRAM in DWORD
545  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
546  *      will be zeroed.
547  * @read_config32: read a u32 value from the device's config space at
548  *      the given offset.
549  * @configure: configure parameters required by the transport layer from
550  *      the op_mode. May be called several times before start_fw, can't be
551  *      called after that.
552  * @set_pmi: set the power pmi state
553  * @sw_reset: trigger software reset of the NIC
554  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
555  *      Sleeping is not allowed between grab_nic_access and
556  *      release_nic_access.
557  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
558  *      must be the same one that was sent before to the grab_nic_access.
559  * @set_bits_mask: set SRAM register according to value and mask.
560  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
561  *      TX'ed commands and similar. The buffer will be vfree'd by the caller.
562  *      Note that the transport must fill in the proper file headers.
563  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
564  *      of the trans debugfs
565  * @sync_nmi: trigger a firmware NMI and wait for it to complete
566  * @load_pnvm: save the pnvm data in DRAM
567  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
568  *      context info.
569  * @load_reduce_power: copy reduce power table to the corresponding DRAM memory
570  * @set_reduce_power: set reduce power table addresses in the sratch buffer
571  * @interrupts: disable/enable interrupts to transport
572  * @imr_dma_data: set up IMR DMA
573  * @rxq_dma_data: retrieve RX queue DMA data, see @struct iwl_trans_rxq_dma_data
574  */
575 struct iwl_trans_ops {
576
577         int (*start_hw)(struct iwl_trans *iwl_trans);
578         void (*op_mode_leave)(struct iwl_trans *iwl_trans);
579         int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
580                         bool run_in_rfkill);
581         void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
582         void (*stop_device)(struct iwl_trans *trans);
583
584         int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
585         int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
586                          bool test, bool reset);
587
588         int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
589
590         int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
591                   struct iwl_device_tx_cmd *dev_cmd, int queue);
592         void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
593                         struct sk_buff_head *skbs, bool is_flush);
594
595         void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
596
597         bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
598                            const struct iwl_trans_txq_scd_cfg *cfg,
599                            unsigned int queue_wdg_timeout);
600         void (*txq_disable)(struct iwl_trans *trans, int queue,
601                             bool configure_scd);
602         /* 22000 functions */
603         int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
604                          u32 sta_mask, u8 tid,
605                          int size, unsigned int queue_wdg_timeout);
606         void (*txq_free)(struct iwl_trans *trans, int queue);
607         int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
608                             struct iwl_trans_rxq_dma_data *data);
609
610         void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
611                                     bool shared);
612
613         int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
614         int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
615         void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
616                                  bool freeze);
617
618         void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
619         void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
620         u32 (*read32)(struct iwl_trans *trans, u32 ofs);
621         u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
622         void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
623         int (*read_mem)(struct iwl_trans *trans, u32 addr,
624                         void *buf, int dwords);
625         int (*write_mem)(struct iwl_trans *trans, u32 addr,
626                          const void *buf, int dwords);
627         int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
628         void (*configure)(struct iwl_trans *trans,
629                           const struct iwl_trans_config *trans_cfg);
630         void (*set_pmi)(struct iwl_trans *trans, bool state);
631         int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
632         bool (*grab_nic_access)(struct iwl_trans *trans);
633         void (*release_nic_access)(struct iwl_trans *trans);
634         void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
635                               u32 value);
636
637         struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
638                                                  u32 dump_mask,
639                                                  const struct iwl_dump_sanitize_ops *sanitize_ops,
640                                                  void *sanitize_ctx);
641         void (*debugfs_cleanup)(struct iwl_trans *trans);
642         void (*sync_nmi)(struct iwl_trans *trans);
643         int (*load_pnvm)(struct iwl_trans *trans,
644                          const struct iwl_pnvm_image *pnvm_payloads,
645                          const struct iwl_ucode_capabilities *capa);
646         void (*set_pnvm)(struct iwl_trans *trans,
647                          const struct iwl_ucode_capabilities *capa);
648         int (*load_reduce_power)(struct iwl_trans *trans,
649                                  const struct iwl_pnvm_image *payloads,
650                                  const struct iwl_ucode_capabilities *capa);
651         void (*set_reduce_power)(struct iwl_trans *trans,
652                                  const struct iwl_ucode_capabilities *capa);
653
654         void (*interrupts)(struct iwl_trans *trans, bool enable);
655         int (*imr_dma_data)(struct iwl_trans *trans,
656                             u32 dst_addr, u64 src_addr,
657                             u32 byte_cnt);
658
659 };
660
661 /**
662  * enum iwl_trans_state - state of the transport layer
663  *
664  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
665  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
666  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
667  */
668 enum iwl_trans_state {
669         IWL_TRANS_NO_FW,
670         IWL_TRANS_FW_STARTED,
671         IWL_TRANS_FW_ALIVE,
672 };
673
674 /**
675  * DOC: Platform power management
676  *
677  * In system-wide power management the entire platform goes into a low
678  * power state (e.g. idle or suspend to RAM) at the same time and the
679  * device is configured as a wakeup source for the entire platform.
680  * This is usually triggered by userspace activity (e.g. the user
681  * presses the suspend button or a power management daemon decides to
682  * put the platform in low power mode).  The device's behavior in this
683  * mode is dictated by the wake-on-WLAN configuration.
684  *
685  * The terms used for the device's behavior are as follows:
686  *
687  *      - D0: the device is fully powered and the host is awake;
688  *      - D3: the device is in low power mode and only reacts to
689  *              specific events (e.g. magic-packet received or scan
690  *              results found);
691  *
692  * These terms reflect the power modes in the firmware and are not to
693  * be confused with the physical device power state.
694  */
695
696 /**
697  * enum iwl_plat_pm_mode - platform power management mode
698  *
699  * This enumeration describes the device's platform power management
700  * behavior when in system-wide suspend (i.e WoWLAN).
701  *
702  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
703  *      device.  In system-wide suspend mode, it means that the all
704  *      connections will be closed automatically by mac80211 before
705  *      the platform is suspended.
706  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
707  */
708 enum iwl_plat_pm_mode {
709         IWL_PLAT_PM_MODE_DISABLED,
710         IWL_PLAT_PM_MODE_D3,
711 };
712
713 /**
714  * enum iwl_ini_cfg_state
715  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
716  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
717  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
718  *      are corrupted. The rest of the debug TLVs will still be used
719  */
720 enum iwl_ini_cfg_state {
721         IWL_INI_CFG_STATE_NOT_LOADED,
722         IWL_INI_CFG_STATE_LOADED,
723         IWL_INI_CFG_STATE_CORRUPTED,
724 };
725
726 /* Max time to wait for nmi interrupt */
727 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
728
729 /**
730  * struct iwl_dram_data
731  * @physical: page phy pointer
732  * @block: pointer to the allocated block/page
733  * @size: size of the block/page
734  */
735 struct iwl_dram_data {
736         dma_addr_t physical;
737         void *block;
738         int size;
739 };
740
741 /**
742  * struct iwl_dram_regions - DRAM regions container structure
743  * @drams: array of several DRAM areas that contains the pnvm and power
744  *      reduction table payloads.
745  * @n_regions: number of DRAM regions that were allocated
746  * @prph_scratch_mem_desc: points to a structure allocated in dram,
747  *      designed to show FW where all the payloads are.
748  */
749 struct iwl_dram_regions {
750         struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX];
751         struct iwl_dram_data prph_scratch_mem_desc;
752         u8 n_regions;
753 };
754
755 /**
756  * struct iwl_fw_mon - fw monitor per allocation id
757  * @num_frags: number of fragments
758  * @frags: an array of DRAM buffer fragments
759  */
760 struct iwl_fw_mon {
761         u32 num_frags;
762         struct iwl_dram_data *frags;
763 };
764
765 /**
766  * struct iwl_self_init_dram - dram data used by self init process
767  * @fw: lmac and umac dram data
768  * @fw_cnt: total number of items in array
769  * @paging: paging dram data
770  * @paging_cnt: total number of items in array
771  */
772 struct iwl_self_init_dram {
773         struct iwl_dram_data *fw;
774         int fw_cnt;
775         struct iwl_dram_data *paging;
776         int paging_cnt;
777 };
778
779 /**
780  * struct iwl_imr_data - imr dram data used during debug process
781  * @imr_enable: imr enable status received from fw
782  * @imr_size: imr dram size received from fw
783  * @sram_addr: sram address from debug tlv
784  * @sram_size: sram size from debug tlv
785  * @imr2sram_remainbyte: size remained after each dma transfer
786  * @imr_curr_addr: current dst address used during dma transfer
787  * @imr_base_addr: imr address received from fw
788  */
789 struct iwl_imr_data {
790         u32 imr_enable;
791         u32 imr_size;
792         u32 sram_addr;
793         u32 sram_size;
794         u32 imr2sram_remainbyte;
795         u64 imr_curr_addr;
796         __le64 imr_base_addr;
797 };
798
799 #define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES      32
800
801 /**
802  * struct iwl_pc_data - program counter details
803  * @pc_name: cpu name
804  * @pc_address: cpu program counter
805  */
806 struct iwl_pc_data {
807         u8  pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES];
808         u32 pc_address;
809 };
810
811 /**
812  * struct iwl_trans_debug - transport debug related data
813  *
814  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
815  * @rec_on: true iff there is a fw debug recording currently active
816  * @dest_tlv: points to the destination TLV for debug
817  * @conf_tlv: array of pointers to configuration TLVs for debug
818  * @trigger_tlv: array of pointers to triggers TLVs for debug
819  * @lmac_error_event_table: addrs of lmacs error tables
820  * @umac_error_event_table: addr of umac error table
821  * @tcm_error_event_table: address(es) of TCM error table(s)
822  * @rcm_error_event_table: address(es) of RCM error table(s)
823  * @error_event_table_tlv_status: bitmap that indicates what error table
824  *      pointers was recevied via TLV. uses enum &iwl_error_event_table_status
825  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
826  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
827  * @fw_mon_cfg: debug buffer allocation configuration
828  * @fw_mon_ini: DRAM buffer fragments per allocation id
829  * @fw_mon: DRAM buffer for firmware monitor
830  * @hw_error: equals true if hw error interrupt was received from the FW
831  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
832  * @unsupported_region_msk: unsupported regions out of active_regions
833  * @active_regions: active regions
834  * @debug_info_tlv_list: list of debug info TLVs
835  * @time_point: array of debug time points
836  * @periodic_trig_list: periodic triggers list
837  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
838  * @ucode_preset: preset based on ucode
839  * @restart_required: indicates debug restart is required
840  * @last_tp_resetfw: last handling of reset during debug timepoint
841  * @imr_data: IMR debug data allocation
842  * @dump_file_name_ext: dump file name extension
843  * @dump_file_name_ext_valid: dump file name extension if valid or not
844  * @num_pc: number of program counter for cpu
845  * @pc_data: details of the program counter
846  * @yoyo_bin_loaded: tells if a yoyo debug file has been loaded
847  */
848 struct iwl_trans_debug {
849         u8 n_dest_reg;
850         bool rec_on;
851
852         const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
853         const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
854         struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
855
856         u32 lmac_error_event_table[2];
857         u32 umac_error_event_table;
858         u32 tcm_error_event_table[2];
859         u32 rcm_error_event_table[2];
860         unsigned int error_event_table_tlv_status;
861
862         enum iwl_ini_cfg_state internal_ini_cfg;
863         enum iwl_ini_cfg_state external_ini_cfg;
864
865         struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
866         struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
867
868         struct iwl_dram_data fw_mon;
869
870         bool hw_error;
871         enum iwl_fw_ini_buffer_location ini_dest;
872
873         u64 unsupported_region_msk;
874         struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
875         struct list_head debug_info_tlv_list;
876         struct iwl_dbg_tlv_time_point_data time_point[IWL_FW_INI_TIME_POINT_NUM];
877         struct list_head periodic_trig_list;
878
879         u32 domains_bitmap;
880         u32 ucode_preset;
881         bool restart_required;
882         u32 last_tp_resetfw;
883         struct iwl_imr_data imr_data;
884         u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME];
885         bool dump_file_name_ext_valid;
886         u32 num_pc;
887         struct iwl_pc_data *pc_data;
888         bool yoyo_bin_loaded;
889 };
890
891 struct iwl_dma_ptr {
892         dma_addr_t dma;
893         void *addr;
894         size_t size;
895 };
896
897 struct iwl_cmd_meta {
898         /* only for SYNC commands, iff the reply skb is wanted */
899         struct iwl_host_cmd *source;
900         u32 flags;
901         u32 tbs;
902 };
903
904 /*
905  * The FH will write back to the first TB only, so we need to copy some data
906  * into the buffer regardless of whether it should be mapped or not.
907  * This indicates how big the first TB must be to include the scratch buffer
908  * and the assigned PN.
909  * Since PN location is 8 bytes at offset 12, it's 20 now.
910  * If we make it bigger then allocations will be bigger and copy slower, so
911  * that's probably not useful.
912  */
913 #define IWL_FIRST_TB_SIZE       20
914 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
915
916 struct iwl_pcie_txq_entry {
917         void *cmd;
918         struct sk_buff *skb;
919         /* buffer to free after command completes */
920         const void *free_buf;
921         struct iwl_cmd_meta meta;
922 };
923
924 struct iwl_pcie_first_tb_buf {
925         u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
926 };
927
928 /**
929  * struct iwl_txq - Tx Queue for DMA
930  * @tfds: transmit frame descriptors (DMA memory)
931  * @first_tb_bufs: start of command headers, including scratch buffers, for
932  *      the writeback -- this is DMA memory and an array holding one buffer
933  *      for each command on the queue
934  * @first_tb_dma: DMA address for the first_tb_bufs start
935  * @entries: transmit entries (driver state)
936  * @lock: queue lock
937  * @stuck_timer: timer that fires if queue gets stuck
938  * @trans: pointer back to transport (for timer)
939  * @need_update: indicates need to update read/write index
940  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
941  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
942  * @frozen: tx stuck queue timer is frozen
943  * @frozen_expiry_remainder: remember how long until the timer fires
944  * @block: queue is blocked
945  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
946  * @write_ptr: 1-st empty entry (index) host_w
947  * @read_ptr: last used entry (index) host_r
948  * @dma_addr:  physical addr for BD's
949  * @n_window: safe queue window
950  * @id: queue id
951  * @low_mark: low watermark, resume queue if free space more than this
952  * @high_mark: high watermark, stop queue if free space less than this
953  * @overflow_q: overflow queue for handling frames that didn't fit on HW queue
954  * @overflow_tx: need to transmit from overflow
955  *
956  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
957  * descriptors) and required locking structures.
958  *
959  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
960  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
961  * there might be HW changes in the future). For the normal TX
962  * queues, n_window, which is the size of the software queue data
963  * is also 256; however, for the command queue, n_window is only
964  * 32 since we don't need so many commands pending. Since the HW
965  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
966  * This means that we end up with the following:
967  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
968  *  SW entries:           | 0      | ... | 31          |
969  * where N is a number between 0 and 7. This means that the SW
970  * data is a window overlayed over the HW queue.
971  */
972 struct iwl_txq {
973         void *tfds;
974         struct iwl_pcie_first_tb_buf *first_tb_bufs;
975         dma_addr_t first_tb_dma;
976         struct iwl_pcie_txq_entry *entries;
977         /* lock for syncing changes on the queue */
978         spinlock_t lock;
979         unsigned long frozen_expiry_remainder;
980         struct timer_list stuck_timer;
981         struct iwl_trans *trans;
982         bool need_update;
983         bool frozen;
984         bool ampdu;
985         int block;
986         unsigned long wd_timeout;
987         struct sk_buff_head overflow_q;
988         struct iwl_dma_ptr bc_tbl;
989
990         int write_ptr;
991         int read_ptr;
992         dma_addr_t dma_addr;
993         int n_window;
994         u32 id;
995         int low_mark;
996         int high_mark;
997
998         bool overflow_tx;
999 };
1000
1001 /**
1002  * struct iwl_trans_txqs - transport tx queues data
1003  *
1004  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
1005  * @page_offs: offset from skb->cb to mac header page pointer
1006  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
1007  * @queue_used: bit mask of used queues
1008  * @queue_stopped: bit mask of stopped queues
1009  * @txq: array of TXQ data structures representing the TXQs
1010  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
1011  * @queue_alloc_cmd_ver: queue allocation command version
1012  * @bc_pool: bytecount DMA allocations pool
1013  * @bc_tbl_size: bytecount table size
1014  * @tso_hdr_page: page allocated (per CPU) for A-MSDU headers when doing TSO
1015  *      (and similar usage)
1016  * @tfd: TFD data
1017  * @tfd.max_tbs: max number of buffers per TFD
1018  * @tfd.size: TFD size
1019  * @tfd.addr_size: TFD/TB address size
1020  */
1021 struct iwl_trans_txqs {
1022         unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1023         unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1024         struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
1025         struct dma_pool *bc_pool;
1026         size_t bc_tbl_size;
1027         bool bc_table_dword;
1028         u8 page_offs;
1029         u8 dev_cmd_offs;
1030         struct iwl_tso_hdr_page __percpu *tso_hdr_page;
1031
1032         struct {
1033                 u8 fifo;
1034                 u8 q_id;
1035                 unsigned int wdg_timeout;
1036         } cmd;
1037
1038         struct {
1039                 u8 max_tbs;
1040                 u16 size;
1041                 u8 addr_size;
1042         } tfd;
1043
1044         struct iwl_dma_ptr scd_bc_tbls;
1045
1046         u8 queue_alloc_cmd_ver;
1047 };
1048
1049 /**
1050  * struct iwl_trans - transport common data
1051  *
1052  * @csme_own: true if we couldn't get ownership on the device
1053  * @ops: pointer to iwl_trans_ops
1054  * @op_mode: pointer to the op_mode
1055  * @trans_cfg: the trans-specific configuration part
1056  * @cfg: pointer to the configuration
1057  * @drv: pointer to iwl_drv
1058  * @state: current device state
1059  * @status: a bit-mask of transport status flags
1060  * @dev: pointer to struct device * that represents the device
1061  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
1062  *      0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
1063  * @hw_rf_id: a u32 with the device RF ID
1064  * @hw_cnv_id: a u32 with the device CNV ID
1065  * @hw_crf_id: a u32 with the device CRF ID
1066  * @hw_wfpm_id: a u32 with the device wfpm ID
1067  * @hw_id: a u32 with the ID of the device / sub-device.
1068  *      Set during transport allocation.
1069  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
1070  * @sku_id: the SKU identifier (for PNVM matching)
1071  * @pnvm_loaded: indicates PNVM was loaded
1072  * @hw_rev: the revision data of the HW
1073  * @hw_rev_step: The mac step of the HW
1074  * @pm_support: set to true in start_hw if link pm is supported
1075  * @ltr_enabled: set to true if the LTR is enabled
1076  * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed
1077  * @reduce_power_loaded: indicates reduced power section was loaded
1078  * @failed_to_load_reduce_power_image: set to true if pnvm loading failed
1079  * @command_groups: pointer to command group name list array
1080  * @command_groups_size: array size of @command_groups
1081  * @wide_cmd_header: true when ucode supports wide command header format
1082  * @wait_command_queue: wait queue for sync commands
1083  * @num_rx_queues: number of RX queues allocated by the transport;
1084  *      the transport must set this before calling iwl_drv_start()
1085  * @iml_len: the length of the image loader
1086  * @iml: a pointer to the image loader itself
1087  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
1088  *      The user should use iwl_trans_{alloc,free}_tx_cmd.
1089  * @dev_cmd_pool_name: name for the TX command allocation pool
1090  * @dbgfs_dir: iwlwifi debugfs base dir for this device
1091  * @sync_cmd_lockdep_map: lockdep map for checking sync commands
1092  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
1093  *      starting the firmware, used for tracing
1094  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1095  *      start of the 802.11 header in the @rx_mpdu_cmd
1096  * @dbg: additional debug data, see &struct iwl_trans_debug
1097  * @init_dram: FW initialization DMA data
1098  * @system_pm_mode: the system-wide power management mode in use.
1099  *      This mode is set dynamically, depending on the WoWLAN values
1100  *      configured from the userspace at runtime.
1101  * @name: the device name
1102  * @txqs: transport tx queues data.
1103  * @mbx_addr_0_step: step address data 0
1104  * @mbx_addr_1_step: step address data 1
1105  * @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*),
1106  *      only valid for discrete (not integrated) NICs
1107  * @invalid_tx_cmd: invalid TX command buffer
1108  * @reduced_cap_sku: reduced capability supported SKU
1109  * @no_160: device not supporting 160 MHz
1110  * @step_urm: STEP is in URM, no support for MCS>9 in 320 MHz
1111  * @trans_specific: data for the specific transport this is allocated for/with
1112  */
1113 struct iwl_trans {
1114         bool csme_own;
1115         const struct iwl_trans_ops *ops;
1116         struct iwl_op_mode *op_mode;
1117         const struct iwl_cfg_trans_params *trans_cfg;
1118         const struct iwl_cfg *cfg;
1119         struct iwl_drv *drv;
1120         enum iwl_trans_state state;
1121         unsigned long status;
1122
1123         struct device *dev;
1124         u32 max_skb_frags;
1125         u32 hw_rev;
1126         u32 hw_rev_step;
1127         u32 hw_rf_id;
1128         u32 hw_crf_id;
1129         u32 hw_cnv_id;
1130         u32 hw_wfpm_id;
1131         u32 hw_id;
1132         char hw_id_str[52];
1133         u32 sku_id[3];
1134         bool reduced_cap_sku;
1135         u8 no_160:1, step_urm:1;
1136
1137         u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1138
1139         bool pm_support;
1140         bool ltr_enabled;
1141         u8 pnvm_loaded:1;
1142         u8 fail_to_parse_pnvm_image:1;
1143         u8 reduce_power_loaded:1;
1144         u8 failed_to_load_reduce_power_image:1;
1145
1146         const struct iwl_hcmd_arr *command_groups;
1147         int command_groups_size;
1148         bool wide_cmd_header;
1149
1150         wait_queue_head_t wait_command_queue;
1151         u8 num_rx_queues;
1152
1153         size_t iml_len;
1154         u8 *iml;
1155
1156         /* The following fields are internal only */
1157         struct kmem_cache *dev_cmd_pool;
1158         char dev_cmd_pool_name[50];
1159
1160         struct dentry *dbgfs_dir;
1161
1162 #ifdef CONFIG_LOCKDEP
1163         struct lockdep_map sync_cmd_lockdep_map;
1164 #endif
1165
1166         struct iwl_trans_debug dbg;
1167         struct iwl_self_init_dram init_dram;
1168
1169         enum iwl_plat_pm_mode system_pm_mode;
1170
1171         const char *name;
1172         struct iwl_trans_txqs txqs;
1173         u32 mbx_addr_0_step;
1174         u32 mbx_addr_1_step;
1175
1176         u8 pcie_link_speed;
1177
1178         struct iwl_dma_ptr invalid_tx_cmd;
1179
1180         /* pointer to trans specific struct */
1181         /*Ensure that this pointer will always be aligned to sizeof pointer */
1182         char trans_specific[] __aligned(sizeof(void *));
1183 };
1184
1185 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1186 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1187
1188 static inline void iwl_trans_configure(struct iwl_trans *trans,
1189                                        const struct iwl_trans_config *trans_cfg)
1190 {
1191         trans->op_mode = trans_cfg->op_mode;
1192
1193         trans->ops->configure(trans, trans_cfg);
1194         WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1195 }
1196
1197 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1198 {
1199         might_sleep();
1200
1201         return trans->ops->start_hw(trans);
1202 }
1203
1204 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1205 {
1206         might_sleep();
1207
1208         if (trans->ops->op_mode_leave)
1209                 trans->ops->op_mode_leave(trans);
1210
1211         trans->op_mode = NULL;
1212
1213         trans->state = IWL_TRANS_NO_FW;
1214 }
1215
1216 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1217 {
1218         might_sleep();
1219
1220         trans->state = IWL_TRANS_FW_ALIVE;
1221
1222         trans->ops->fw_alive(trans, scd_addr);
1223 }
1224
1225 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1226                                      const struct fw_img *fw,
1227                                      bool run_in_rfkill)
1228 {
1229         int ret;
1230
1231         might_sleep();
1232
1233         WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1234
1235         clear_bit(STATUS_FW_ERROR, &trans->status);
1236         ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1237         if (ret == 0)
1238                 trans->state = IWL_TRANS_FW_STARTED;
1239
1240         return ret;
1241 }
1242
1243 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1244 {
1245         might_sleep();
1246
1247         trans->ops->stop_device(trans);
1248
1249         trans->state = IWL_TRANS_NO_FW;
1250 }
1251
1252 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1253                                        bool reset)
1254 {
1255         might_sleep();
1256         if (!trans->ops->d3_suspend)
1257                 return -EOPNOTSUPP;
1258
1259         return trans->ops->d3_suspend(trans, test, reset);
1260 }
1261
1262 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1263                                       enum iwl_d3_status *status,
1264                                       bool test, bool reset)
1265 {
1266         might_sleep();
1267         if (!trans->ops->d3_resume)
1268                 return -EOPNOTSUPP;
1269
1270         return trans->ops->d3_resume(trans, status, test, reset);
1271 }
1272
1273 static inline struct iwl_trans_dump_data *
1274 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1275                     const struct iwl_dump_sanitize_ops *sanitize_ops,
1276                     void *sanitize_ctx)
1277 {
1278         if (!trans->ops->dump_data)
1279                 return NULL;
1280         return trans->ops->dump_data(trans, dump_mask,
1281                                      sanitize_ops, sanitize_ctx);
1282 }
1283
1284 static inline struct iwl_device_tx_cmd *
1285 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1286 {
1287         return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1288 }
1289
1290 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1291
1292 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1293                                          struct iwl_device_tx_cmd *dev_cmd)
1294 {
1295         kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1296 }
1297
1298 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1299                                struct iwl_device_tx_cmd *dev_cmd, int queue)
1300 {
1301         if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1302                 return -EIO;
1303
1304         if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1305                 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1306                 return -EIO;
1307         }
1308
1309         return trans->ops->tx(trans, skb, dev_cmd, queue);
1310 }
1311
1312 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1313                                      int ssn, struct sk_buff_head *skbs,
1314                                      bool is_flush)
1315 {
1316         if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1317                 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1318                 return;
1319         }
1320
1321         trans->ops->reclaim(trans, queue, ssn, skbs, is_flush);
1322 }
1323
1324 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1325                                         int ptr)
1326 {
1327         if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1328                 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1329                 return;
1330         }
1331
1332         trans->ops->set_q_ptrs(trans, queue, ptr);
1333 }
1334
1335 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1336                                          bool configure_scd)
1337 {
1338         trans->ops->txq_disable(trans, queue, configure_scd);
1339 }
1340
1341 static inline bool
1342 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1343                          const struct iwl_trans_txq_scd_cfg *cfg,
1344                          unsigned int queue_wdg_timeout)
1345 {
1346         might_sleep();
1347
1348         if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1349                 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1350                 return false;
1351         }
1352
1353         return trans->ops->txq_enable(trans, queue, ssn,
1354                                       cfg, queue_wdg_timeout);
1355 }
1356
1357 static inline int
1358 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1359                            struct iwl_trans_rxq_dma_data *data)
1360 {
1361         if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1362                 return -EOPNOTSUPP;
1363
1364         return trans->ops->rxq_dma_data(trans, queue, data);
1365 }
1366
1367 static inline void
1368 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1369 {
1370         if (WARN_ON_ONCE(!trans->ops->txq_free))
1371                 return;
1372
1373         trans->ops->txq_free(trans, queue);
1374 }
1375
1376 static inline int
1377 iwl_trans_txq_alloc(struct iwl_trans *trans,
1378                     u32 flags, u32 sta_mask, u8 tid,
1379                     int size, unsigned int wdg_timeout)
1380 {
1381         might_sleep();
1382
1383         if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1384                 return -EOPNOTSUPP;
1385
1386         if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1387                 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1388                 return -EIO;
1389         }
1390
1391         return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1392                                      size, wdg_timeout);
1393 }
1394
1395 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1396                                                  int queue, bool shared_mode)
1397 {
1398         if (trans->ops->txq_set_shared_mode)
1399                 trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1400 }
1401
1402 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1403                                         int fifo, int sta_id, int tid,
1404                                         int frame_limit, u16 ssn,
1405                                         unsigned int queue_wdg_timeout)
1406 {
1407         struct iwl_trans_txq_scd_cfg cfg = {
1408                 .fifo = fifo,
1409                 .sta_id = sta_id,
1410                 .tid = tid,
1411                 .frame_limit = frame_limit,
1412                 .aggregate = sta_id >= 0,
1413         };
1414
1415         iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1416 }
1417
1418 static inline
1419 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1420                              unsigned int queue_wdg_timeout)
1421 {
1422         struct iwl_trans_txq_scd_cfg cfg = {
1423                 .fifo = fifo,
1424                 .sta_id = -1,
1425                 .tid = IWL_MAX_TID_COUNT,
1426                 .frame_limit = IWL_FRAME_LIMIT,
1427                 .aggregate = false,
1428         };
1429
1430         iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1431 }
1432
1433 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1434                                               unsigned long txqs,
1435                                               bool freeze)
1436 {
1437         if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1438                 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1439                 return;
1440         }
1441
1442         if (trans->ops->freeze_txq_timer)
1443                 trans->ops->freeze_txq_timer(trans, txqs, freeze);
1444 }
1445
1446 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1447                                                  u32 txqs)
1448 {
1449         if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1450                 return -EOPNOTSUPP;
1451
1452         /* No need to wait if the firmware is not alive */
1453         if (trans->state != IWL_TRANS_FW_ALIVE) {
1454                 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1455                 return -EIO;
1456         }
1457
1458         return trans->ops->wait_tx_queues_empty(trans, txqs);
1459 }
1460
1461 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1462 {
1463         if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1464                 return -EOPNOTSUPP;
1465
1466         if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1467                 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1468                 return -EIO;
1469         }
1470
1471         return trans->ops->wait_txq_empty(trans, queue);
1472 }
1473
1474 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1475 {
1476         trans->ops->write8(trans, ofs, val);
1477 }
1478
1479 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1480 {
1481         trans->ops->write32(trans, ofs, val);
1482 }
1483
1484 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1485 {
1486         return trans->ops->read32(trans, ofs);
1487 }
1488
1489 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1490 {
1491         return trans->ops->read_prph(trans, ofs);
1492 }
1493
1494 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1495                                         u32 val)
1496 {
1497         return trans->ops->write_prph(trans, ofs, val);
1498 }
1499
1500 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1501                                      void *buf, int dwords)
1502 {
1503         return trans->ops->read_mem(trans, addr, buf, dwords);
1504 }
1505
1506 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)                   \
1507         do {                                                                  \
1508                 if (__builtin_constant_p(bufsize))                            \
1509                         BUILD_BUG_ON((bufsize) % sizeof(u32));                \
1510                 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1511         } while (0)
1512
1513 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1514                                           u32 dst_addr, u64 src_addr,
1515                                           u32 byte_cnt)
1516 {
1517         if (trans->ops->imr_dma_data)
1518                 return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1519         return 0;
1520 }
1521
1522 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1523 {
1524         u32 value;
1525
1526         if (iwl_trans_read_mem(trans, addr, &value, 1))
1527                 return 0xa5a5a5a5;
1528
1529         return value;
1530 }
1531
1532 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1533                                       const void *buf, int dwords)
1534 {
1535         return trans->ops->write_mem(trans, addr, buf, dwords);
1536 }
1537
1538 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1539                                         u32 val)
1540 {
1541         return iwl_trans_write_mem(trans, addr, &val, 1);
1542 }
1543
1544 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1545 {
1546         if (trans->ops->set_pmi)
1547                 trans->ops->set_pmi(trans, state);
1548 }
1549
1550 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1551                                      bool retake_ownership)
1552 {
1553         if (trans->ops->sw_reset)
1554                 return trans->ops->sw_reset(trans, retake_ownership);
1555         return 0;
1556 }
1557
1558 static inline void
1559 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1560 {
1561         trans->ops->set_bits_mask(trans, reg, mask, value);
1562 }
1563
1564 #define iwl_trans_grab_nic_access(trans)                \
1565         __cond_lock(nic_access,                         \
1566                     likely((trans)->ops->grab_nic_access(trans)))
1567
1568 static inline void __releases(nic_access)
1569 iwl_trans_release_nic_access(struct iwl_trans *trans)
1570 {
1571         trans->ops->release_nic_access(trans);
1572         __release(nic_access);
1573 }
1574
1575 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1576 {
1577         if (WARN_ON_ONCE(!trans->op_mode))
1578                 return;
1579
1580         /* prevent double restarts due to the same erroneous FW */
1581         if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1582                 iwl_op_mode_nic_error(trans->op_mode, sync);
1583                 trans->state = IWL_TRANS_NO_FW;
1584         }
1585 }
1586
1587 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1588 {
1589         return trans->state == IWL_TRANS_FW_ALIVE;
1590 }
1591
1592 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1593 {
1594         if (trans->ops->sync_nmi)
1595                 trans->ops->sync_nmi(trans);
1596 }
1597
1598 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1599                                   u32 sw_err_bit);
1600
1601 static inline int iwl_trans_load_pnvm(struct iwl_trans *trans,
1602                                       const struct iwl_pnvm_image *pnvm_data,
1603                                       const struct iwl_ucode_capabilities *capa)
1604 {
1605         return trans->ops->load_pnvm(trans, pnvm_data, capa);
1606 }
1607
1608 static inline void iwl_trans_set_pnvm(struct iwl_trans *trans,
1609                                       const struct iwl_ucode_capabilities *capa)
1610 {
1611         if (trans->ops->set_pnvm)
1612                 trans->ops->set_pnvm(trans, capa);
1613 }
1614
1615 static inline int iwl_trans_load_reduce_power
1616                                 (struct iwl_trans *trans,
1617                                  const struct iwl_pnvm_image *payloads,
1618                                  const struct iwl_ucode_capabilities *capa)
1619 {
1620         return trans->ops->load_reduce_power(trans, payloads, capa);
1621 }
1622
1623 static inline void
1624 iwl_trans_set_reduce_power(struct iwl_trans *trans,
1625                            const struct iwl_ucode_capabilities *capa)
1626 {
1627         if (trans->ops->set_reduce_power)
1628                 trans->ops->set_reduce_power(trans, capa);
1629 }
1630
1631 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1632 {
1633         return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1634                 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1635 }
1636
1637 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1638 {
1639         if (trans->ops->interrupts)
1640                 trans->ops->interrupts(trans, enable);
1641 }
1642
1643 /*****************************************************
1644  * transport helper functions
1645  *****************************************************/
1646 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1647                           struct device *dev,
1648                           const struct iwl_trans_ops *ops,
1649                           const struct iwl_cfg_trans_params *cfg_trans);
1650 int iwl_trans_init(struct iwl_trans *trans);
1651 void iwl_trans_free(struct iwl_trans *trans);
1652
1653 static inline bool iwl_trans_is_hw_error_value(u32 val)
1654 {
1655         return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50);
1656 }
1657
1658 /*****************************************************
1659 * driver (transport) register/unregister functions
1660 ******************************************************/
1661 int __must_check iwl_pci_register_driver(void);
1662 void iwl_pci_unregister_driver(void);
1663 void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan);
1664
1665 #endif /* __iwl_trans_h__ */