ath9k_hw: add some comments for ath9k_set_power_network_sleep()
[sfrench/cifs-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "hw.h"
21 #include "hw-ops.h"
22 #include "rc.h"
23 #include "initvals.h"
24
25 #define ATH9K_CLOCK_RATE_CCK            22
26 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
27 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
28
29 static void ar9002_hw_attach_ops(struct ath_hw *ah);
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37
38 static int __init ath9k_init(void)
39 {
40         return 0;
41 }
42 module_init(ath9k_init);
43
44 static void __exit ath9k_exit(void)
45 {
46         return;
47 }
48 module_exit(ath9k_exit);
49
50 /* Private hardware callbacks */
51
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54         ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56
57 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
58 {
59         ath9k_hw_private_ops(ah)->init_mode_regs(ah);
60 }
61
62 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
63 {
64         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
65
66         return priv_ops->macversion_supported(ah->hw_version.macVersion);
67 }
68
69 /********************/
70 /* Helper Functions */
71 /********************/
72
73 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
74 {
75         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
76
77         if (!ah->curchan) /* should really check for CCK instead */
78                 return usecs *ATH9K_CLOCK_RATE_CCK;
79         if (conf->channel->band == IEEE80211_BAND_2GHZ)
80                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
81         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
82 }
83
84 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
85 {
86         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87
88         if (conf_is_ht40(conf))
89                 return ath9k_hw_mac_clks(ah, usecs) * 2;
90         else
91                 return ath9k_hw_mac_clks(ah, usecs);
92 }
93
94 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
95 {
96         int i;
97
98         BUG_ON(timeout < AH_TIME_QUANTUM);
99
100         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
101                 if ((REG_READ(ah, reg) & mask) == val)
102                         return true;
103
104                 udelay(AH_TIME_QUANTUM);
105         }
106
107         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
108                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
109                   timeout, reg, REG_READ(ah, reg), mask, val);
110
111         return false;
112 }
113 EXPORT_SYMBOL(ath9k_hw_wait);
114
115 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
116 {
117         u32 retval;
118         int i;
119
120         for (i = 0, retval = 0; i < n; i++) {
121                 retval = (retval << 1) | (val & 1);
122                 val >>= 1;
123         }
124         return retval;
125 }
126
127 bool ath9k_get_channel_edges(struct ath_hw *ah,
128                              u16 flags, u16 *low,
129                              u16 *high)
130 {
131         struct ath9k_hw_capabilities *pCap = &ah->caps;
132
133         if (flags & CHANNEL_5GHZ) {
134                 *low = pCap->low_5ghz_chan;
135                 *high = pCap->high_5ghz_chan;
136                 return true;
137         }
138         if ((flags & CHANNEL_2GHZ)) {
139                 *low = pCap->low_2ghz_chan;
140                 *high = pCap->high_2ghz_chan;
141                 return true;
142         }
143         return false;
144 }
145
146 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
147                            u8 phy, int kbps,
148                            u32 frameLen, u16 rateix,
149                            bool shortPreamble)
150 {
151         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
152
153         if (kbps == 0)
154                 return 0;
155
156         switch (phy) {
157         case WLAN_RC_PHY_CCK:
158                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
159                 if (shortPreamble)
160                         phyTime >>= 1;
161                 numBits = frameLen << 3;
162                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
163                 break;
164         case WLAN_RC_PHY_OFDM:
165                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
166                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
167                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
168                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
169                         txTime = OFDM_SIFS_TIME_QUARTER
170                                 + OFDM_PREAMBLE_TIME_QUARTER
171                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
172                 } else if (ah->curchan &&
173                            IS_CHAN_HALF_RATE(ah->curchan)) {
174                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
175                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
176                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
177                         txTime = OFDM_SIFS_TIME_HALF +
178                                 OFDM_PREAMBLE_TIME_HALF
179                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
180                 } else {
181                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
182                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
183                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
184                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
185                                 + (numSymbols * OFDM_SYMBOL_TIME);
186                 }
187                 break;
188         default:
189                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
190                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
191                 txTime = 0;
192                 break;
193         }
194
195         return txTime;
196 }
197 EXPORT_SYMBOL(ath9k_hw_computetxtime);
198
199 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
200                                   struct ath9k_channel *chan,
201                                   struct chan_centers *centers)
202 {
203         int8_t extoff;
204
205         if (!IS_CHAN_HT40(chan)) {
206                 centers->ctl_center = centers->ext_center =
207                         centers->synth_center = chan->channel;
208                 return;
209         }
210
211         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
212             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
213                 centers->synth_center =
214                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
215                 extoff = 1;
216         } else {
217                 centers->synth_center =
218                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
219                 extoff = -1;
220         }
221
222         centers->ctl_center =
223                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
224         /* 25 MHz spacing is supported by hw but not on upper layers */
225         centers->ext_center =
226                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
227 }
228
229 /******************/
230 /* Chip Revisions */
231 /******************/
232
233 static void ath9k_hw_read_revisions(struct ath_hw *ah)
234 {
235         u32 val;
236
237         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
238
239         if (val == 0xFF) {
240                 val = REG_READ(ah, AR_SREV);
241                 ah->hw_version.macVersion =
242                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
243                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
244                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
245         } else {
246                 if (!AR_SREV_9100(ah))
247                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
248
249                 ah->hw_version.macRev = val & AR_SREV_REVISION;
250
251                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
252                         ah->is_pciexpress = true;
253         }
254 }
255
256 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
257 {
258         u32 val;
259         int i;
260
261         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
262
263         for (i = 0; i < 8; i++)
264                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
265         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
266         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
267
268         return ath9k_hw_reverse_bits(val, 8);
269 }
270
271 /************************************/
272 /* HW Attach, Detach, Init Routines */
273 /************************************/
274
275 static void ath9k_hw_disablepcie(struct ath_hw *ah)
276 {
277         if (AR_SREV_9100(ah))
278                 return;
279
280         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
281         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
282         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
283         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
284         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
285         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
286         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
287         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
288         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
289
290         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
291 }
292
293 static bool ath9k_hw_chip_test(struct ath_hw *ah)
294 {
295         struct ath_common *common = ath9k_hw_common(ah);
296         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
297         u32 regHold[2];
298         u32 patternData[4] = { 0x55555555,
299                                0xaaaaaaaa,
300                                0x66666666,
301                                0x99999999 };
302         int i, j;
303
304         for (i = 0; i < 2; i++) {
305                 u32 addr = regAddr[i];
306                 u32 wrData, rdData;
307
308                 regHold[i] = REG_READ(ah, addr);
309                 for (j = 0; j < 0x100; j++) {
310                         wrData = (j << 16) | j;
311                         REG_WRITE(ah, addr, wrData);
312                         rdData = REG_READ(ah, addr);
313                         if (rdData != wrData) {
314                                 ath_print(common, ATH_DBG_FATAL,
315                                           "address test failed "
316                                           "addr: 0x%08x - wr:0x%08x != "
317                                           "rd:0x%08x\n",
318                                           addr, wrData, rdData);
319                                 return false;
320                         }
321                 }
322                 for (j = 0; j < 4; j++) {
323                         wrData = patternData[j];
324                         REG_WRITE(ah, addr, wrData);
325                         rdData = REG_READ(ah, addr);
326                         if (wrData != rdData) {
327                                 ath_print(common, ATH_DBG_FATAL,
328                                           "address test failed "
329                                           "addr: 0x%08x - wr:0x%08x != "
330                                           "rd:0x%08x\n",
331                                           addr, wrData, rdData);
332                                 return false;
333                         }
334                 }
335                 REG_WRITE(ah, regAddr[i], regHold[i]);
336         }
337         udelay(100);
338
339         return true;
340 }
341
342 static void ath9k_hw_init_config(struct ath_hw *ah)
343 {
344         int i;
345
346         ah->config.dma_beacon_response_time = 2;
347         ah->config.sw_beacon_response_time = 10;
348         ah->config.additional_swba_backoff = 0;
349         ah->config.ack_6mb = 0x0;
350         ah->config.cwm_ignore_extcca = 0;
351         ah->config.pcie_powersave_enable = 0;
352         ah->config.pcie_clock_req = 0;
353         ah->config.pcie_waen = 0;
354         ah->config.analog_shiftreg = 1;
355         ah->config.ofdm_trig_low = 200;
356         ah->config.ofdm_trig_high = 500;
357         ah->config.cck_trig_high = 200;
358         ah->config.cck_trig_low = 100;
359         ah->config.enable_ani = 1;
360
361         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
362                 ah->config.spurchans[i][0] = AR_NO_SPUR;
363                 ah->config.spurchans[i][1] = AR_NO_SPUR;
364         }
365
366         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
367                 ah->config.ht_enable = 1;
368         else
369                 ah->config.ht_enable = 0;
370
371         ah->config.rx_intr_mitigation = true;
372
373         /*
374          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
375          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
376          * This means we use it for all AR5416 devices, and the few
377          * minor PCI AR9280 devices out there.
378          *
379          * Serialization is required because these devices do not handle
380          * well the case of two concurrent reads/writes due to the latency
381          * involved. During one read/write another read/write can be issued
382          * on another CPU while the previous read/write may still be working
383          * on our hardware, if we hit this case the hardware poops in a loop.
384          * We prevent this by serializing reads and writes.
385          *
386          * This issue is not present on PCI-Express devices or pre-AR5416
387          * devices (legacy, 802.11abg).
388          */
389         if (num_possible_cpus() > 1)
390                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
391 }
392
393 static void ath9k_hw_init_defaults(struct ath_hw *ah)
394 {
395         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
396
397         regulatory->country_code = CTRY_DEFAULT;
398         regulatory->power_limit = MAX_RATE_POWER;
399         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
400
401         ah->hw_version.magic = AR5416_MAGIC;
402         ah->hw_version.subvendorid = 0;
403
404         ah->ah_flags = 0;
405         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
406                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
407         if (!AR_SREV_9100(ah))
408                 ah->ah_flags = AH_USE_EEPROM;
409
410         ah->atim_window = 0;
411         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
412         ah->beacon_interval = 100;
413         ah->enable_32kHz_clock = DONT_USE_32KHZ;
414         ah->slottime = (u32) -1;
415         ah->globaltxtimeout = (u32) -1;
416         ah->power_mode = ATH9K_PM_UNDEFINED;
417 }
418
419 static int ath9k_hw_rf_claim(struct ath_hw *ah)
420 {
421         u32 val;
422
423         REG_WRITE(ah, AR_PHY(0), 0x00000007);
424
425         val = ath9k_hw_get_radiorev(ah);
426         switch (val & AR_RADIO_SREV_MAJOR) {
427         case 0:
428                 val = AR_RAD5133_SREV_MAJOR;
429                 break;
430         case AR_RAD5133_SREV_MAJOR:
431         case AR_RAD5122_SREV_MAJOR:
432         case AR_RAD2133_SREV_MAJOR:
433         case AR_RAD2122_SREV_MAJOR:
434                 break;
435         default:
436                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
437                           "Radio Chip Rev 0x%02X not supported\n",
438                           val & AR_RADIO_SREV_MAJOR);
439                 return -EOPNOTSUPP;
440         }
441
442         ah->hw_version.analog5GhzRev = val;
443
444         return 0;
445 }
446
447 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
448 {
449         struct ath_common *common = ath9k_hw_common(ah);
450         u32 sum;
451         int i;
452         u16 eeval;
453
454         sum = 0;
455         for (i = 0; i < 3; i++) {
456                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
457                 sum += eeval;
458                 common->macaddr[2 * i] = eeval >> 8;
459                 common->macaddr[2 * i + 1] = eeval & 0xff;
460         }
461         if (sum == 0 || sum == 0xffff * 3)
462                 return -EADDRNOTAVAIL;
463
464         return 0;
465 }
466
467 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
468 {
469         u32 rxgain_type;
470
471         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
472                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
473
474                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
475                         INIT_INI_ARRAY(&ah->iniModesRxGain,
476                         ar9280Modes_backoff_13db_rxgain_9280_2,
477                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
478                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
479                         INIT_INI_ARRAY(&ah->iniModesRxGain,
480                         ar9280Modes_backoff_23db_rxgain_9280_2,
481                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
482                 else
483                         INIT_INI_ARRAY(&ah->iniModesRxGain,
484                         ar9280Modes_original_rxgain_9280_2,
485                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
486         } else {
487                 INIT_INI_ARRAY(&ah->iniModesRxGain,
488                         ar9280Modes_original_rxgain_9280_2,
489                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
490         }
491 }
492
493 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
494 {
495         u32 txgain_type;
496
497         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
498                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
499
500                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
501                         INIT_INI_ARRAY(&ah->iniModesTxGain,
502                         ar9280Modes_high_power_tx_gain_9280_2,
503                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
504                 else
505                         INIT_INI_ARRAY(&ah->iniModesTxGain,
506                         ar9280Modes_original_tx_gain_9280_2,
507                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
508         } else {
509                 INIT_INI_ARRAY(&ah->iniModesTxGain,
510                 ar9280Modes_original_tx_gain_9280_2,
511                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
512         }
513 }
514
515 static int ath9k_hw_post_init(struct ath_hw *ah)
516 {
517         int ecode;
518
519         if (!AR_SREV_9271(ah)) {
520                 if (!ath9k_hw_chip_test(ah))
521                         return -ENODEV;
522         }
523
524         ecode = ath9k_hw_rf_claim(ah);
525         if (ecode != 0)
526                 return ecode;
527
528         ecode = ath9k_hw_eeprom_init(ah);
529         if (ecode != 0)
530                 return ecode;
531
532         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
533                   "Eeprom VER: %d, REV: %d\n",
534                   ah->eep_ops->get_eeprom_ver(ah),
535                   ah->eep_ops->get_eeprom_rev(ah));
536
537         ecode = ath9k_hw_rf_alloc_ext_banks(ah);
538         if (ecode) {
539                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
540                           "Failed allocating banks for "
541                           "external radio\n");
542                 return ecode;
543         }
544
545         if (!AR_SREV_9100(ah)) {
546                 ath9k_hw_ani_setup(ah);
547                 ath9k_hw_ani_init(ah);
548         }
549
550         return 0;
551 }
552
553 static bool ar9002_hw_macversion_supported(u32 macversion)
554 {
555         switch (macversion) {
556         case AR_SREV_VERSION_5416_PCI:
557         case AR_SREV_VERSION_5416_PCIE:
558         case AR_SREV_VERSION_9160:
559         case AR_SREV_VERSION_9100:
560         case AR_SREV_VERSION_9280:
561         case AR_SREV_VERSION_9285:
562         case AR_SREV_VERSION_9287:
563         case AR_SREV_VERSION_9271:
564                 return true;
565         default:
566                 break;
567         }
568         return false;
569 }
570
571 static void ar9002_hw_init_cal_settings(struct ath_hw *ah)
572 {
573         if (AR_SREV_9160_10_OR_LATER(ah)) {
574                 if (AR_SREV_9280_10_OR_LATER(ah)) {
575                         ah->iq_caldata.calData = &iq_cal_single_sample;
576                         ah->adcgain_caldata.calData =
577                                 &adc_gain_cal_single_sample;
578                         ah->adcdc_caldata.calData =
579                                 &adc_dc_cal_single_sample;
580                         ah->adcdc_calinitdata.calData =
581                                 &adc_init_dc_cal;
582                 } else {
583                         ah->iq_caldata.calData = &iq_cal_multi_sample;
584                         ah->adcgain_caldata.calData =
585                                 &adc_gain_cal_multi_sample;
586                         ah->adcdc_caldata.calData =
587                                 &adc_dc_cal_multi_sample;
588                         ah->adcdc_calinitdata.calData =
589                                 &adc_init_dc_cal;
590                 }
591                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
592         }
593 }
594
595 static void ar9002_hw_init_mode_regs(struct ath_hw *ah)
596 {
597         if (AR_SREV_9271(ah)) {
598                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
599                                ARRAY_SIZE(ar9271Modes_9271), 6);
600                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
601                                ARRAY_SIZE(ar9271Common_9271), 2);
602                 INIT_INI_ARRAY(&ah->iniCommon_normal_cck_fir_coeff_9271,
603                                ar9271Common_normal_cck_fir_coeff_9271,
604                                ARRAY_SIZE(ar9271Common_normal_cck_fir_coeff_9271), 2);
605                 INIT_INI_ARRAY(&ah->iniCommon_japan_2484_cck_fir_coeff_9271,
606                                ar9271Common_japan_2484_cck_fir_coeff_9271,
607                                ARRAY_SIZE(ar9271Common_japan_2484_cck_fir_coeff_9271), 2);
608                 INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
609                                ar9271Modes_9271_1_0_only,
610                                ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
611                 INIT_INI_ARRAY(&ah->iniModes_9271_ANI_reg, ar9271Modes_9271_ANI_reg,
612                                ARRAY_SIZE(ar9271Modes_9271_ANI_reg), 6);
613                 INIT_INI_ARRAY(&ah->iniModes_high_power_tx_gain_9271,
614                                ar9271Modes_high_power_tx_gain_9271,
615                                ARRAY_SIZE(ar9271Modes_high_power_tx_gain_9271), 6);
616                 INIT_INI_ARRAY(&ah->iniModes_normal_power_tx_gain_9271,
617                                ar9271Modes_normal_power_tx_gain_9271,
618                                ARRAY_SIZE(ar9271Modes_normal_power_tx_gain_9271), 6);
619                 return;
620         }
621
622         if (AR_SREV_9287_11_OR_LATER(ah)) {
623                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
624                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
625                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
626                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
627                 if (ah->config.pcie_clock_req)
628                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
629                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
630                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
631                 else
632                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
633                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
634                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
635                                         2);
636         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
637                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
638                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
639                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
640                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
641
642                 if (ah->config.pcie_clock_req)
643                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
644                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
645                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
646                 else
647                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
648                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
649                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
650                                   2);
651         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
652
653
654                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
655                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
656                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
657                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
658
659                 if (ah->config.pcie_clock_req) {
660                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
661                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
662                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
663                 } else {
664                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
665                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
666                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
667                                   2);
668                 }
669         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
670                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
671                                ARRAY_SIZE(ar9285Modes_9285), 6);
672                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
673                                ARRAY_SIZE(ar9285Common_9285), 2);
674
675                 if (ah->config.pcie_clock_req) {
676                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
677                         ar9285PciePhy_clkreq_off_L1_9285,
678                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
679                 } else {
680                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
681                         ar9285PciePhy_clkreq_always_on_L1_9285,
682                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
683                 }
684         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
685                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
686                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
687                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
688                                ARRAY_SIZE(ar9280Common_9280_2), 2);
689
690                 if (ah->config.pcie_clock_req) {
691                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
692                                ar9280PciePhy_clkreq_off_L1_9280,
693                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
694                 } else {
695                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
696                                ar9280PciePhy_clkreq_always_on_L1_9280,
697                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
698                 }
699                 INIT_INI_ARRAY(&ah->iniModesAdditional,
700                                ar9280Modes_fast_clock_9280_2,
701                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
702         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
703                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
704                                ARRAY_SIZE(ar9280Modes_9280), 6);
705                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
706                                ARRAY_SIZE(ar9280Common_9280), 2);
707         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
708                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
709                                ARRAY_SIZE(ar5416Modes_9160), 6);
710                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
711                                ARRAY_SIZE(ar5416Common_9160), 2);
712                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
713                                ARRAY_SIZE(ar5416Bank0_9160), 2);
714                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
715                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
716                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
717                                ARRAY_SIZE(ar5416Bank1_9160), 2);
718                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
719                                ARRAY_SIZE(ar5416Bank2_9160), 2);
720                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
721                                ARRAY_SIZE(ar5416Bank3_9160), 3);
722                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
723                                ARRAY_SIZE(ar5416Bank6_9160), 3);
724                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
725                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
726                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
727                                ARRAY_SIZE(ar5416Bank7_9160), 2);
728                 if (AR_SREV_9160_11(ah)) {
729                         INIT_INI_ARRAY(&ah->iniAddac,
730                                        ar5416Addac_91601_1,
731                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
732                 } else {
733                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
734                                        ARRAY_SIZE(ar5416Addac_9160), 2);
735                 }
736         } else if (AR_SREV_9100_OR_LATER(ah)) {
737                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
738                                ARRAY_SIZE(ar5416Modes_9100), 6);
739                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
740                                ARRAY_SIZE(ar5416Common_9100), 2);
741                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
742                                ARRAY_SIZE(ar5416Bank0_9100), 2);
743                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
744                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
745                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
746                                ARRAY_SIZE(ar5416Bank1_9100), 2);
747                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
748                                ARRAY_SIZE(ar5416Bank2_9100), 2);
749                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
750                                ARRAY_SIZE(ar5416Bank3_9100), 3);
751                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
752                                ARRAY_SIZE(ar5416Bank6_9100), 3);
753                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
754                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
755                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
756                                ARRAY_SIZE(ar5416Bank7_9100), 2);
757                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
758                                ARRAY_SIZE(ar5416Addac_9100), 2);
759         } else {
760                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
761                                ARRAY_SIZE(ar5416Modes), 6);
762                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
763                                ARRAY_SIZE(ar5416Common), 2);
764                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
765                                ARRAY_SIZE(ar5416Bank0), 2);
766                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
767                                ARRAY_SIZE(ar5416BB_RfGain), 3);
768                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
769                                ARRAY_SIZE(ar5416Bank1), 2);
770                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
771                                ARRAY_SIZE(ar5416Bank2), 2);
772                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
773                                ARRAY_SIZE(ar5416Bank3), 3);
774                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
775                                ARRAY_SIZE(ar5416Bank6), 3);
776                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
777                                ARRAY_SIZE(ar5416Bank6TPC), 3);
778                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
779                                ARRAY_SIZE(ar5416Bank7), 2);
780                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
781                                ARRAY_SIZE(ar5416Addac), 2);
782         }
783 }
784
785 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
786 {
787         if (AR_SREV_9287_11_OR_LATER(ah))
788                 INIT_INI_ARRAY(&ah->iniModesRxGain,
789                 ar9287Modes_rx_gain_9287_1_1,
790                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
791         else if (AR_SREV_9287_10(ah))
792                 INIT_INI_ARRAY(&ah->iniModesRxGain,
793                 ar9287Modes_rx_gain_9287_1_0,
794                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
795         else if (AR_SREV_9280_20(ah))
796                 ath9k_hw_init_rxgain_ini(ah);
797
798         if (AR_SREV_9287_11_OR_LATER(ah)) {
799                 INIT_INI_ARRAY(&ah->iniModesTxGain,
800                 ar9287Modes_tx_gain_9287_1_1,
801                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
802         } else if (AR_SREV_9287_10(ah)) {
803                 INIT_INI_ARRAY(&ah->iniModesTxGain,
804                 ar9287Modes_tx_gain_9287_1_0,
805                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
806         } else if (AR_SREV_9280_20(ah)) {
807                 ath9k_hw_init_txgain_ini(ah);
808         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
809                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
810
811                 /* txgain table */
812                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
813                         if (AR_SREV_9285E_20(ah)) {
814                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
815                                 ar9285Modes_XE2_0_high_power,
816                                 ARRAY_SIZE(
817                                   ar9285Modes_XE2_0_high_power), 6);
818                         } else {
819                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
820                                 ar9285Modes_high_power_tx_gain_9285_1_2,
821                                 ARRAY_SIZE(
822                                   ar9285Modes_high_power_tx_gain_9285_1_2), 6);
823                         }
824                 } else {
825                         if (AR_SREV_9285E_20(ah)) {
826                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
827                                 ar9285Modes_XE2_0_normal_power,
828                                 ARRAY_SIZE(
829                                   ar9285Modes_XE2_0_normal_power), 6);
830                         } else {
831                                 INIT_INI_ARRAY(&ah->iniModesTxGain,
832                                 ar9285Modes_original_tx_gain_9285_1_2,
833                                 ARRAY_SIZE(
834                                   ar9285Modes_original_tx_gain_9285_1_2), 6);
835                         }
836                 }
837         }
838 }
839
840 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
841 {
842         struct base_eep_header *pBase = &(ah->eeprom.def.baseEepHeader);
843         struct ath_common *common = ath9k_hw_common(ah);
844
845         ah->need_an_top2_fixup = (ah->hw_version.devid == AR9280_DEVID_PCI) &&
846                                  (ah->eep_map != EEP_MAP_4KBITS) &&
847                                  ((pBase->version & 0xff) > 0x0a) &&
848                                  (pBase->pwdclkind == 0);
849
850         if (ah->need_an_top2_fixup)
851                 ath_print(common, ATH_DBG_EEPROM,
852                           "needs fixup for AR_AN_TOP2 register\n");
853 }
854
855 /* Called for all hardware families */
856 static int __ath9k_hw_init(struct ath_hw *ah)
857 {
858         struct ath_common *common = ath9k_hw_common(ah);
859         int r = 0;
860
861         ath9k_hw_init_defaults(ah);
862         ath9k_hw_init_config(ah);
863
864         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
865                 ath_print(common, ATH_DBG_FATAL,
866                           "Couldn't reset chip\n");
867                 return -EIO;
868         }
869
870         ar9002_hw_attach_ops(ah);
871
872         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
873                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
874                 return -EIO;
875         }
876
877         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
878                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
879                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
880                         ah->config.serialize_regmode =
881                                 SER_REG_MODE_ON;
882                 } else {
883                         ah->config.serialize_regmode =
884                                 SER_REG_MODE_OFF;
885                 }
886         }
887
888         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
889                 ah->config.serialize_regmode);
890
891         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
892                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
893         else
894                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
895
896         if (!ath9k_hw_macversion_supported(ah)) {
897                 ath_print(common, ATH_DBG_FATAL,
898                           "Mac Chip Rev 0x%02x.%x is not supported by "
899                           "this driver\n", ah->hw_version.macVersion,
900                           ah->hw_version.macRev);
901                 return -EOPNOTSUPP;
902         }
903
904         if (AR_SREV_9100(ah)) {
905                 ah->iq_caldata.calData = &iq_cal_multi_sample;
906                 ah->supp_cals = IQ_MISMATCH_CAL;
907                 ah->is_pciexpress = false;
908         }
909
910         if (AR_SREV_9271(ah))
911                 ah->is_pciexpress = false;
912
913         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
914         ath9k_hw_init_cal_settings(ah);
915
916         ah->ani_function = ATH9K_ANI_ALL;
917         if (AR_SREV_9280_10_OR_LATER(ah))
918                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
919
920         ath9k_hw_init_mode_regs(ah);
921
922         if (ah->is_pciexpress)
923                 ath9k_hw_configpcipowersave(ah, 0, 0);
924         else
925                 ath9k_hw_disablepcie(ah);
926
927         /* Support for Japan ch.14 (2484) spread */
928         if (AR_SREV_9287_11_OR_LATER(ah)) {
929                 INIT_INI_ARRAY(&ah->iniCckfirNormal,
930                        ar9287Common_normal_cck_fir_coeff_92871_1,
931                        ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
932                 INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
933                        ar9287Common_japan_2484_cck_fir_coeff_92871_1,
934                        ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
935         }
936
937         r = ath9k_hw_post_init(ah);
938         if (r)
939                 return r;
940
941         ath9k_hw_init_mode_gain_regs(ah);
942         r = ath9k_hw_fill_cap_info(ah);
943         if (r)
944                 return r;
945
946         ath9k_hw_init_eeprom_fix(ah);
947
948         r = ath9k_hw_init_macaddr(ah);
949         if (r) {
950                 ath_print(common, ATH_DBG_FATAL,
951                           "Failed to initialize MAC address\n");
952                 return r;
953         }
954
955         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
956                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
957         else
958                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
959
960         ath9k_init_nfcal_hist_buffer(ah);
961
962         common->state = ATH_HW_INITIALIZED;
963
964         return 0;
965 }
966
967 int ath9k_hw_init(struct ath_hw *ah)
968 {
969         int ret;
970         struct ath_common *common = ath9k_hw_common(ah);
971
972         /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
973         switch (ah->hw_version.devid) {
974         case AR5416_DEVID_PCI:
975         case AR5416_DEVID_PCIE:
976         case AR5416_AR9100_DEVID:
977         case AR9160_DEVID_PCI:
978         case AR9280_DEVID_PCI:
979         case AR9280_DEVID_PCIE:
980         case AR9285_DEVID_PCIE:
981         case AR5416_DEVID_AR9287_PCI:
982         case AR5416_DEVID_AR9287_PCIE:
983         case AR2427_DEVID_PCIE:
984                 break;
985         default:
986                 if (common->bus_ops->ath_bus_type == ATH_USB)
987                         break;
988                 ath_print(common, ATH_DBG_FATAL,
989                           "Hardware device ID 0x%04x not supported\n",
990                           ah->hw_version.devid);
991                 return -EOPNOTSUPP;
992         }
993
994         ret = __ath9k_hw_init(ah);
995         if (ret) {
996                 ath_print(common, ATH_DBG_FATAL,
997                           "Unable to initialize hardware; "
998                           "initialization status: %d\n", ret);
999                 return ret;
1000         }
1001
1002         return 0;
1003 }
1004 EXPORT_SYMBOL(ath9k_hw_init);
1005
1006 static void ath9k_hw_init_qos(struct ath_hw *ah)
1007 {
1008         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1009         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1010
1011         REG_WRITE(ah, AR_QOS_NO_ACK,
1012                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1013                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1014                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1015
1016         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1017         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1018         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1019         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1020         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1021 }
1022
1023 static void ath9k_hw_init_pll(struct ath_hw *ah,
1024                               struct ath9k_channel *chan)
1025 {
1026         u32 pll;
1027
1028         if (AR_SREV_9100(ah)) {
1029                 if (chan && IS_CHAN_5GHZ(chan))
1030                         pll = 0x1450;
1031                 else
1032                         pll = 0x1458;
1033         } else {
1034                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1035                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1036
1037                         if (chan && IS_CHAN_HALF_RATE(chan))
1038                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1039                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1040                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1041
1042                         if (chan && IS_CHAN_5GHZ(chan)) {
1043                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1044
1045
1046                                 if (AR_SREV_9280_20(ah)) {
1047                                         if (((chan->channel % 20) == 0)
1048                                             || ((chan->channel % 10) == 0))
1049                                                 pll = 0x2850;
1050                                         else
1051                                                 pll = 0x142c;
1052                                 }
1053                         } else {
1054                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1055                         }
1056
1057                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1058
1059                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1060
1061                         if (chan && IS_CHAN_HALF_RATE(chan))
1062                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1063                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1064                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1065
1066                         if (chan && IS_CHAN_5GHZ(chan))
1067                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1068                         else
1069                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1070                 } else {
1071                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1072
1073                         if (chan && IS_CHAN_HALF_RATE(chan))
1074                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1075                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1076                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1077
1078                         if (chan && IS_CHAN_5GHZ(chan))
1079                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1080                         else
1081                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1082                 }
1083         }
1084         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1085
1086         /* Switch the core clock for ar9271 to 117Mhz */
1087         if (AR_SREV_9271(ah)) {
1088                 udelay(500);
1089                 REG_WRITE(ah, 0x50040, 0x304);
1090         }
1091
1092         udelay(RTC_PLL_SETTLE_DELAY);
1093
1094         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1095 }
1096
1097 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1098                                           enum nl80211_iftype opmode)
1099 {
1100         u32 imr_reg = AR_IMR_TXERR |
1101                 AR_IMR_TXURN |
1102                 AR_IMR_RXERR |
1103                 AR_IMR_RXORN |
1104                 AR_IMR_BCNMISC;
1105
1106         if (ah->config.rx_intr_mitigation)
1107                 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1108         else
1109                 imr_reg |= AR_IMR_RXOK;
1110
1111         imr_reg |= AR_IMR_TXOK;
1112
1113         if (opmode == NL80211_IFTYPE_AP)
1114                 imr_reg |= AR_IMR_MIB;
1115
1116         REG_WRITE(ah, AR_IMR, imr_reg);
1117         ah->imrs2_reg |= AR_IMR_S2_GTT;
1118         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1119
1120         if (!AR_SREV_9100(ah)) {
1121                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1122                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1123                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1124         }
1125 }
1126
1127 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1128 {
1129         u32 val = ath9k_hw_mac_to_clks(ah, us);
1130         val = min(val, (u32) 0xFFFF);
1131         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1132 }
1133
1134 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1135 {
1136         u32 val = ath9k_hw_mac_to_clks(ah, us);
1137         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1138         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1139 }
1140
1141 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1142 {
1143         u32 val = ath9k_hw_mac_to_clks(ah, us);
1144         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1145         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1146 }
1147
1148 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1149 {
1150         if (tu > 0xFFFF) {
1151                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1152                           "bad global tx timeout %u\n", tu);
1153                 ah->globaltxtimeout = (u32) -1;
1154                 return false;
1155         } else {
1156                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1157                 ah->globaltxtimeout = tu;
1158                 return true;
1159         }
1160 }
1161
1162 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1163 {
1164         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1165         int acktimeout;
1166         int slottime;
1167         int sifstime;
1168
1169         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1170                   ah->misc_mode);
1171
1172         if (ah->misc_mode != 0)
1173                 REG_WRITE(ah, AR_PCU_MISC,
1174                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1175
1176         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1177                 sifstime = 16;
1178         else
1179                 sifstime = 10;
1180
1181         /* As defined by IEEE 802.11-2007 17.3.8.6 */
1182         slottime = ah->slottime + 3 * ah->coverage_class;
1183         acktimeout = slottime + sifstime;
1184
1185         /*
1186          * Workaround for early ACK timeouts, add an offset to match the
1187          * initval's 64us ack timeout value.
1188          * This was initially only meant to work around an issue with delayed
1189          * BA frames in some implementations, but it has been found to fix ACK
1190          * timeout issues in other cases as well.
1191          */
1192         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1193                 acktimeout += 64 - sifstime - ah->slottime;
1194
1195         ath9k_hw_setslottime(ah, slottime);
1196         ath9k_hw_set_ack_timeout(ah, acktimeout);
1197         ath9k_hw_set_cts_timeout(ah, acktimeout);
1198         if (ah->globaltxtimeout != (u32) -1)
1199                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1200 }
1201 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1202
1203 void ath9k_hw_deinit(struct ath_hw *ah)
1204 {
1205         struct ath_common *common = ath9k_hw_common(ah);
1206
1207         if (common->state < ATH_HW_INITIALIZED)
1208                 goto free_hw;
1209
1210         if (!AR_SREV_9100(ah))
1211                 ath9k_hw_ani_disable(ah);
1212
1213         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1214
1215 free_hw:
1216         ath9k_hw_rf_free_ext_banks(ah);
1217 }
1218 EXPORT_SYMBOL(ath9k_hw_deinit);
1219
1220 /*******/
1221 /* INI */
1222 /*******/
1223
1224 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1225 {
1226         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1227
1228         if (IS_CHAN_B(chan))
1229                 ctl |= CTL_11B;
1230         else if (IS_CHAN_G(chan))
1231                 ctl |= CTL_11G;
1232         else
1233                 ctl |= CTL_11A;
1234
1235         return ctl;
1236 }
1237
1238 /****************************************/
1239 /* Reset and Channel Switching Routines */
1240 /****************************************/
1241
1242 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1243 {
1244         u32 regval;
1245
1246         /*
1247          * set AHB_MODE not to do cacheline prefetches
1248         */
1249         regval = REG_READ(ah, AR_AHB_MODE);
1250         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1251
1252         /*
1253          * let mac dma reads be in 128 byte chunks
1254          */
1255         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1256         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1257
1258         /*
1259          * Restore TX Trigger Level to its pre-reset value.
1260          * The initial value depends on whether aggregation is enabled, and is
1261          * adjusted whenever underruns are detected.
1262          */
1263         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1264
1265         /*
1266          * let mac dma writes be in 128 byte chunks
1267          */
1268         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1269         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1270
1271         /*
1272          * Setup receive FIFO threshold to hold off TX activities
1273          */
1274         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1275
1276         /*
1277          * reduce the number of usable entries in PCU TXBUF to avoid
1278          * wrap around issues.
1279          */
1280         if (AR_SREV_9285(ah)) {
1281                 /* For AR9285 the number of Fifos are reduced to half.
1282                  * So set the usable tx buf size also to half to
1283                  * avoid data/delimiter underruns
1284                  */
1285                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1286                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1287         } else if (!AR_SREV_9271(ah)) {
1288                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1289                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1290         }
1291 }
1292
1293 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1294 {
1295         u32 val;
1296
1297         val = REG_READ(ah, AR_STA_ID1);
1298         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1299         switch (opmode) {
1300         case NL80211_IFTYPE_AP:
1301                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1302                           | AR_STA_ID1_KSRCH_MODE);
1303                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1304                 break;
1305         case NL80211_IFTYPE_ADHOC:
1306         case NL80211_IFTYPE_MESH_POINT:
1307                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1308                           | AR_STA_ID1_KSRCH_MODE);
1309                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1310                 break;
1311         case NL80211_IFTYPE_STATION:
1312         case NL80211_IFTYPE_MONITOR:
1313                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1314                 break;
1315         }
1316 }
1317
1318 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1319                                    u32 *coef_mantissa, u32 *coef_exponent)
1320 {
1321         u32 coef_exp, coef_man;
1322
1323         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1324                 if ((coef_scaled >> coef_exp) & 0x1)
1325                         break;
1326
1327         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1328
1329         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1330
1331         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1332         *coef_exponent = coef_exp - 16;
1333 }
1334
1335 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1336 {
1337         u32 rst_flags;
1338         u32 tmpReg;
1339
1340         if (AR_SREV_9100(ah)) {
1341                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1342                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1343                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1344                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1345                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1346         }
1347
1348         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1349                   AR_RTC_FORCE_WAKE_ON_INT);
1350
1351         if (AR_SREV_9100(ah)) {
1352                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1353                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1354         } else {
1355                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1356                 if (tmpReg &
1357                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1358                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1359                         u32 val;
1360                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1361
1362                         val = AR_RC_HOSTIF;
1363                         if (!AR_SREV_9300_20_OR_LATER(ah))
1364                                 val |= AR_RC_AHB;
1365                         REG_WRITE(ah, AR_RC, val);
1366
1367                 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1368                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1369
1370                 rst_flags = AR_RTC_RC_MAC_WARM;
1371                 if (type == ATH9K_RESET_COLD)
1372                         rst_flags |= AR_RTC_RC_MAC_COLD;
1373         }
1374
1375         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1376         udelay(50);
1377
1378         REG_WRITE(ah, AR_RTC_RC, 0);
1379         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1380                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1381                           "RTC stuck in MAC reset\n");
1382                 return false;
1383         }
1384
1385         if (!AR_SREV_9100(ah))
1386                 REG_WRITE(ah, AR_RC, 0);
1387
1388         if (AR_SREV_9100(ah))
1389                 udelay(50);
1390
1391         return true;
1392 }
1393
1394 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1395 {
1396         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1397                   AR_RTC_FORCE_WAKE_ON_INT);
1398
1399         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1400                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1401
1402         REG_WRITE(ah, AR_RTC_RESET, 0);
1403         udelay(2);
1404
1405         if (!AR_SREV_9100(ah))
1406                 REG_WRITE(ah, AR_RC, 0);
1407
1408         REG_WRITE(ah, AR_RTC_RESET, 1);
1409
1410         if (!ath9k_hw_wait(ah,
1411                            AR_RTC_STATUS,
1412                            AR_RTC_STATUS_M,
1413                            AR_RTC_STATUS_ON,
1414                            AH_WAIT_TIMEOUT)) {
1415                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1416                           "RTC not waking up\n");
1417                 return false;
1418         }
1419
1420         ath9k_hw_read_revisions(ah);
1421
1422         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1423 }
1424
1425 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1426 {
1427         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1428                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1429
1430         switch (type) {
1431         case ATH9K_RESET_POWER_ON:
1432                 return ath9k_hw_set_reset_power_on(ah);
1433         case ATH9K_RESET_WARM:
1434         case ATH9K_RESET_COLD:
1435                 return ath9k_hw_set_reset(ah, type);
1436         default:
1437                 return false;
1438         }
1439 }
1440
1441 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1442                                 struct ath9k_channel *chan)
1443 {
1444         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1445                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1446                         return false;
1447         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1448                 return false;
1449
1450         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1451                 return false;
1452
1453         ah->chip_fullsleep = false;
1454         ath9k_hw_init_pll(ah, chan);
1455         ath9k_hw_set_rfmode(ah, chan);
1456
1457         return true;
1458 }
1459
1460 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1461                                     struct ath9k_channel *chan)
1462 {
1463         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1464         struct ath_common *common = ath9k_hw_common(ah);
1465         struct ieee80211_channel *channel = chan->chan;
1466         u32 qnum;
1467         int r;
1468
1469         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1470                 if (ath9k_hw_numtxpending(ah, qnum)) {
1471                         ath_print(common, ATH_DBG_QUEUE,
1472                                   "Transmit frames pending on "
1473                                   "queue %d\n", qnum);
1474                         return false;
1475                 }
1476         }
1477
1478         if (!ath9k_hw_rfbus_req(ah)) {
1479                 ath_print(common, ATH_DBG_FATAL,
1480                           "Could not kill baseband RX\n");
1481                 return false;
1482         }
1483
1484         ath9k_hw_set_channel_regs(ah, chan);
1485
1486         r = ath9k_hw_rf_set_freq(ah, chan);
1487         if (r) {
1488                 ath_print(common, ATH_DBG_FATAL,
1489                           "Failed to set channel\n");
1490                 return false;
1491         }
1492
1493         ah->eep_ops->set_txpower(ah, chan,
1494                              ath9k_regd_get_ctl(regulatory, chan),
1495                              channel->max_antenna_gain * 2,
1496                              channel->max_power * 2,
1497                              min((u32) MAX_RATE_POWER,
1498                              (u32) regulatory->power_limit));
1499
1500         ath9k_hw_rfbus_done(ah);
1501
1502         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1503                 ath9k_hw_set_delta_slope(ah, chan);
1504
1505         ath9k_hw_spur_mitigate_freq(ah, chan);
1506
1507         if (!chan->oneTimeCalsDone)
1508                 chan->oneTimeCalsDone = true;
1509
1510         return true;
1511 }
1512
1513 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1514                     bool bChannelChange)
1515 {
1516         struct ath_common *common = ath9k_hw_common(ah);
1517         u32 saveLedState;
1518         struct ath9k_channel *curchan = ah->curchan;
1519         u32 saveDefAntenna;
1520         u32 macStaId1;
1521         u64 tsf = 0;
1522         int i, r;
1523
1524         ah->txchainmask = common->tx_chainmask;
1525         ah->rxchainmask = common->rx_chainmask;
1526
1527         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1528                 return -EIO;
1529
1530         if (curchan && !ah->chip_fullsleep)
1531                 ath9k_hw_getnf(ah, curchan);
1532
1533         if (bChannelChange &&
1534             (ah->chip_fullsleep != true) &&
1535             (ah->curchan != NULL) &&
1536             (chan->channel != ah->curchan->channel) &&
1537             ((chan->channelFlags & CHANNEL_ALL) ==
1538              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1539              !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1540              IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1541
1542                 if (ath9k_hw_channel_change(ah, chan)) {
1543                         ath9k_hw_loadnf(ah, ah->curchan);
1544                         ath9k_hw_start_nfcal(ah);
1545                         return 0;
1546                 }
1547         }
1548
1549         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1550         if (saveDefAntenna == 0)
1551                 saveDefAntenna = 1;
1552
1553         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1554
1555         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1556         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1557                 tsf = ath9k_hw_gettsf64(ah);
1558
1559         saveLedState = REG_READ(ah, AR_CFG_LED) &
1560                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1561                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1562
1563         ath9k_hw_mark_phy_inactive(ah);
1564
1565         /* Only required on the first reset */
1566         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1567                 REG_WRITE(ah,
1568                           AR9271_RESET_POWER_DOWN_CONTROL,
1569                           AR9271_RADIO_RF_RST);
1570                 udelay(50);
1571         }
1572
1573         if (!ath9k_hw_chip_reset(ah, chan)) {
1574                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1575                 return -EINVAL;
1576         }
1577
1578         /* Only required on the first reset */
1579         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1580                 ah->htc_reset_init = false;
1581                 REG_WRITE(ah,
1582                           AR9271_RESET_POWER_DOWN_CONTROL,
1583                           AR9271_GATE_MAC_CTL);
1584                 udelay(50);
1585         }
1586
1587         /* Restore TSF */
1588         if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1589                 ath9k_hw_settsf64(ah, tsf);
1590
1591         if (AR_SREV_9280_10_OR_LATER(ah))
1592                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1593
1594         r = ath9k_hw_process_ini(ah, chan);
1595         if (r)
1596                 return r;
1597
1598         /* Setup MFP options for CCMP */
1599         if (AR_SREV_9280_20_OR_LATER(ah)) {
1600                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1601                  * frames when constructing CCMP AAD. */
1602                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1603                               0xc7ff);
1604                 ah->sw_mgmt_crypto = false;
1605         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1606                 /* Disable hardware crypto for management frames */
1607                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1608                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1609                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1610                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1611                 ah->sw_mgmt_crypto = true;
1612         } else
1613                 ah->sw_mgmt_crypto = true;
1614
1615         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1616                 ath9k_hw_set_delta_slope(ah, chan);
1617
1618         ath9k_hw_spur_mitigate_freq(ah, chan);
1619         ah->eep_ops->set_board_values(ah, chan);
1620
1621         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1622         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1623                   | macStaId1
1624                   | AR_STA_ID1_RTS_USE_DEF
1625                   | (ah->config.
1626                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1627                   | ah->sta_id1_defaults);
1628         ath9k_hw_set_operating_mode(ah, ah->opmode);
1629
1630         ath_hw_setbssidmask(common);
1631
1632         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1633
1634         ath9k_hw_write_associd(ah);
1635
1636         REG_WRITE(ah, AR_ISR, ~0);
1637
1638         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1639
1640         r = ath9k_hw_rf_set_freq(ah, chan);
1641         if (r)
1642                 return r;
1643
1644         for (i = 0; i < AR_NUM_DCU; i++)
1645                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1646
1647         ah->intr_txqs = 0;
1648         for (i = 0; i < ah->caps.total_queues; i++)
1649                 ath9k_hw_resettxqueue(ah, i);
1650
1651         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1652         ath9k_hw_init_qos(ah);
1653
1654         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1655                 ath9k_enable_rfkill(ah);
1656
1657         ath9k_hw_init_global_settings(ah);
1658
1659         if (AR_SREV_9287_12_OR_LATER(ah)) {
1660                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
1661                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
1662                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
1663                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
1664                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
1665                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
1666
1667                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
1668                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
1669
1670                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1671                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1672                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1673                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1674         }
1675         if (AR_SREV_9287_12_OR_LATER(ah)) {
1676                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1677                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1678         }
1679
1680         REG_WRITE(ah, AR_STA_ID1,
1681                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1682
1683         ath9k_hw_set_dma(ah);
1684
1685         REG_WRITE(ah, AR_OBS, 8);
1686
1687         if (ah->config.rx_intr_mitigation) {
1688                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1689                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1690         }
1691
1692         ath9k_hw_init_bb(ah, chan);
1693
1694         if (!ath9k_hw_init_cal(ah, chan))
1695                 return -EIO;
1696
1697         ath9k_hw_restore_chainmask(ah);
1698         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1699
1700         /*
1701          * For big endian systems turn on swapping for descriptors
1702          */
1703         if (AR_SREV_9100(ah)) {
1704                 u32 mask;
1705                 mask = REG_READ(ah, AR_CFG);
1706                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1707                         ath_print(common, ATH_DBG_RESET,
1708                                 "CFG Byte Swap Set 0x%x\n", mask);
1709                 } else {
1710                         mask =
1711                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1712                         REG_WRITE(ah, AR_CFG, mask);
1713                         ath_print(common, ATH_DBG_RESET,
1714                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1715                 }
1716         } else {
1717                 /* Configure AR9271 target WLAN */
1718                 if (AR_SREV_9271(ah))
1719                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1720 #ifdef __BIG_ENDIAN
1721                 else
1722                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1723 #endif
1724         }
1725
1726         if (ah->btcoex_hw.enabled)
1727                 ath9k_hw_btcoex_enable(ah);
1728
1729         return 0;
1730 }
1731 EXPORT_SYMBOL(ath9k_hw_reset);
1732
1733 /************************/
1734 /* Key Cache Management */
1735 /************************/
1736
1737 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1738 {
1739         u32 keyType;
1740
1741         if (entry >= ah->caps.keycache_size) {
1742                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1743                           "keychache entry %u out of range\n", entry);
1744                 return false;
1745         }
1746
1747         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1748
1749         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1750         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1751         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1752         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1753         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1754         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1755         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1756         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1757
1758         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1759                 u16 micentry = entry + 64;
1760
1761                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1762                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1763                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1764                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1765
1766         }
1767
1768         return true;
1769 }
1770 EXPORT_SYMBOL(ath9k_hw_keyreset);
1771
1772 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1773 {
1774         u32 macHi, macLo;
1775
1776         if (entry >= ah->caps.keycache_size) {
1777                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1778                           "keychache entry %u out of range\n", entry);
1779                 return false;
1780         }
1781
1782         if (mac != NULL) {
1783                 macHi = (mac[5] << 8) | mac[4];
1784                 macLo = (mac[3] << 24) |
1785                         (mac[2] << 16) |
1786                         (mac[1] << 8) |
1787                         mac[0];
1788                 macLo >>= 1;
1789                 macLo |= (macHi & 1) << 31;
1790                 macHi >>= 1;
1791         } else {
1792                 macLo = macHi = 0;
1793         }
1794         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1795         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
1796
1797         return true;
1798 }
1799 EXPORT_SYMBOL(ath9k_hw_keysetmac);
1800
1801 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1802                                  const struct ath9k_keyval *k,
1803                                  const u8 *mac)
1804 {
1805         const struct ath9k_hw_capabilities *pCap = &ah->caps;
1806         struct ath_common *common = ath9k_hw_common(ah);
1807         u32 key0, key1, key2, key3, key4;
1808         u32 keyType;
1809
1810         if (entry >= pCap->keycache_size) {
1811                 ath_print(common, ATH_DBG_FATAL,
1812                           "keycache entry %u out of range\n", entry);
1813                 return false;
1814         }
1815
1816         switch (k->kv_type) {
1817         case ATH9K_CIPHER_AES_OCB:
1818                 keyType = AR_KEYTABLE_TYPE_AES;
1819                 break;
1820         case ATH9K_CIPHER_AES_CCM:
1821                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1822                         ath_print(common, ATH_DBG_ANY,
1823                                   "AES-CCM not supported by mac rev 0x%x\n",
1824                                   ah->hw_version.macRev);
1825                         return false;
1826                 }
1827                 keyType = AR_KEYTABLE_TYPE_CCM;
1828                 break;
1829         case ATH9K_CIPHER_TKIP:
1830                 keyType = AR_KEYTABLE_TYPE_TKIP;
1831                 if (ATH9K_IS_MIC_ENABLED(ah)
1832                     && entry + 64 >= pCap->keycache_size) {
1833                         ath_print(common, ATH_DBG_ANY,
1834                                   "entry %u inappropriate for TKIP\n", entry);
1835                         return false;
1836                 }
1837                 break;
1838         case ATH9K_CIPHER_WEP:
1839                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1840                         ath_print(common, ATH_DBG_ANY,
1841                                   "WEP key length %u too small\n", k->kv_len);
1842                         return false;
1843                 }
1844                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1845                         keyType = AR_KEYTABLE_TYPE_40;
1846                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1847                         keyType = AR_KEYTABLE_TYPE_104;
1848                 else
1849                         keyType = AR_KEYTABLE_TYPE_128;
1850                 break;
1851         case ATH9K_CIPHER_CLR:
1852                 keyType = AR_KEYTABLE_TYPE_CLR;
1853                 break;
1854         default:
1855                 ath_print(common, ATH_DBG_FATAL,
1856                           "cipher %u not supported\n", k->kv_type);
1857                 return false;
1858         }
1859
1860         key0 = get_unaligned_le32(k->kv_val + 0);
1861         key1 = get_unaligned_le16(k->kv_val + 4);
1862         key2 = get_unaligned_le32(k->kv_val + 6);
1863         key3 = get_unaligned_le16(k->kv_val + 10);
1864         key4 = get_unaligned_le32(k->kv_val + 12);
1865         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1866                 key4 &= 0xff;
1867
1868         /*
1869          * Note: Key cache registers access special memory area that requires
1870          * two 32-bit writes to actually update the values in the internal
1871          * memory. Consequently, the exact order and pairs used here must be
1872          * maintained.
1873          */
1874
1875         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1876                 u16 micentry = entry + 64;
1877
1878                 /*
1879                  * Write inverted key[47:0] first to avoid Michael MIC errors
1880                  * on frames that could be sent or received at the same time.
1881                  * The correct key will be written in the end once everything
1882                  * else is ready.
1883                  */
1884                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1885                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1886
1887                 /* Write key[95:48] */
1888                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1889                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1890
1891                 /* Write key[127:96] and key type */
1892                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1893                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1894
1895                 /* Write MAC address for the entry */
1896                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1897
1898                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1899                         /*
1900                          * TKIP uses two key cache entries:
1901                          * Michael MIC TX/RX keys in the same key cache entry
1902                          * (idx = main index + 64):
1903                          * key0 [31:0] = RX key [31:0]
1904                          * key1 [15:0] = TX key [31:16]
1905                          * key1 [31:16] = reserved
1906                          * key2 [31:0] = RX key [63:32]
1907                          * key3 [15:0] = TX key [15:0]
1908                          * key3 [31:16] = reserved
1909                          * key4 [31:0] = TX key [63:32]
1910                          */
1911                         u32 mic0, mic1, mic2, mic3, mic4;
1912
1913                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1914                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1915                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1916                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1917                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
1918
1919                         /* Write RX[31:0] and TX[31:16] */
1920                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1921                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1922
1923                         /* Write RX[63:32] and TX[15:0] */
1924                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1925                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1926
1927                         /* Write TX[63:32] and keyType(reserved) */
1928                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1929                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1930                                   AR_KEYTABLE_TYPE_CLR);
1931
1932                 } else {
1933                         /*
1934                          * TKIP uses four key cache entries (two for group
1935                          * keys):
1936                          * Michael MIC TX/RX keys are in different key cache
1937                          * entries (idx = main index + 64 for TX and
1938                          * main index + 32 + 96 for RX):
1939                          * key0 [31:0] = TX/RX MIC key [31:0]
1940                          * key1 [31:0] = reserved
1941                          * key2 [31:0] = TX/RX MIC key [63:32]
1942                          * key3 [31:0] = reserved
1943                          * key4 [31:0] = reserved
1944                          *
1945                          * Upper layer code will call this function separately
1946                          * for TX and RX keys when these registers offsets are
1947                          * used.
1948                          */
1949                         u32 mic0, mic2;
1950
1951                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1952                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1953
1954                         /* Write MIC key[31:0] */
1955                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1956                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1957
1958                         /* Write MIC key[63:32] */
1959                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1960                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1961
1962                         /* Write TX[63:32] and keyType(reserved) */
1963                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1964                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1965                                   AR_KEYTABLE_TYPE_CLR);
1966                 }
1967
1968                 /* MAC address registers are reserved for the MIC entry */
1969                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1970                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1971
1972                 /*
1973                  * Write the correct (un-inverted) key[47:0] last to enable
1974                  * TKIP now that all other registers are set with correct
1975                  * values.
1976                  */
1977                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1978                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1979         } else {
1980                 /* Write key[47:0] */
1981                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1982                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1983
1984                 /* Write key[95:48] */
1985                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1986                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1987
1988                 /* Write key[127:96] and key type */
1989                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1990                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1991
1992                 /* Write MAC address for the entry */
1993                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1994         }
1995
1996         return true;
1997 }
1998 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1999
2000 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2001 {
2002         if (entry < ah->caps.keycache_size) {
2003                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2004                 if (val & AR_KEYTABLE_VALID)
2005                         return true;
2006         }
2007         return false;
2008 }
2009 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2010
2011 /******************************/
2012 /* Power Management (Chipset) */
2013 /******************************/
2014
2015 /*
2016  * Notify Power Mgt is disabled in self-generated frames.
2017  * If requested, force chip to sleep.
2018  */
2019 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2020 {
2021         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2022         if (setChip) {
2023                 /*
2024                  * Clear the RTC force wake bit to allow the
2025                  * mac to go to sleep.
2026                  */
2027                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2028                             AR_RTC_FORCE_WAKE_EN);
2029                 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2030                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2031
2032                 /* Shutdown chip. Active low */
2033                 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
2034                         REG_CLR_BIT(ah, (AR_RTC_RESET),
2035                                     AR_RTC_RESET_EN);
2036         }
2037 }
2038
2039 /*
2040  * Notify Power Management is enabled in self-generating
2041  * frames. If request, set power mode of chip to
2042  * auto/normal.  Duration in units of 128us (1/8 TU).
2043  */
2044 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2045 {
2046         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2047         if (setChip) {
2048                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2049
2050                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2051                         /* Set WakeOnInterrupt bit; clear ForceWake bit */
2052                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2053                                   AR_RTC_FORCE_WAKE_ON_INT);
2054                 } else {
2055                         /*
2056                          * Clear the RTC force wake bit to allow the
2057                          * mac to go to sleep.
2058                          */
2059                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2060                                     AR_RTC_FORCE_WAKE_EN);
2061                 }
2062         }
2063 }
2064
2065 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2066 {
2067         u32 val;
2068         int i;
2069
2070         if (setChip) {
2071                 if ((REG_READ(ah, AR_RTC_STATUS) &
2072                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2073                         if (ath9k_hw_set_reset_reg(ah,
2074                                            ATH9K_RESET_POWER_ON) != true) {
2075                                 return false;
2076                         }
2077                         if (!AR_SREV_9300_20_OR_LATER(ah))
2078                                 ath9k_hw_init_pll(ah, NULL);
2079                 }
2080                 if (AR_SREV_9100(ah))
2081                         REG_SET_BIT(ah, AR_RTC_RESET,
2082                                     AR_RTC_RESET_EN);
2083
2084                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2085                             AR_RTC_FORCE_WAKE_EN);
2086                 udelay(50);
2087
2088                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2089                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2090                         if (val == AR_RTC_STATUS_ON)
2091                                 break;
2092                         udelay(50);
2093                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2094                                     AR_RTC_FORCE_WAKE_EN);
2095                 }
2096                 if (i == 0) {
2097                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2098                                   "Failed to wakeup in %uus\n",
2099                                   POWER_UP_TIME / 20);
2100                         return false;
2101                 }
2102         }
2103
2104         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2105
2106         return true;
2107 }
2108
2109 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2110 {
2111         struct ath_common *common = ath9k_hw_common(ah);
2112         int status = true, setChip = true;
2113         static const char *modes[] = {
2114                 "AWAKE",
2115                 "FULL-SLEEP",
2116                 "NETWORK SLEEP",
2117                 "UNDEFINED"
2118         };
2119
2120         if (ah->power_mode == mode)
2121                 return status;
2122
2123         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2124                   modes[ah->power_mode], modes[mode]);
2125
2126         switch (mode) {
2127         case ATH9K_PM_AWAKE:
2128                 status = ath9k_hw_set_power_awake(ah, setChip);
2129                 break;
2130         case ATH9K_PM_FULL_SLEEP:
2131                 ath9k_set_power_sleep(ah, setChip);
2132                 ah->chip_fullsleep = true;
2133                 break;
2134         case ATH9K_PM_NETWORK_SLEEP:
2135                 ath9k_set_power_network_sleep(ah, setChip);
2136                 break;
2137         default:
2138                 ath_print(common, ATH_DBG_FATAL,
2139                           "Unknown power mode %u\n", mode);
2140                 return false;
2141         }
2142         ah->power_mode = mode;
2143
2144         return status;
2145 }
2146 EXPORT_SYMBOL(ath9k_hw_setpower);
2147
2148 /*
2149  * Helper for ASPM support.
2150  *
2151  * Disable PLL when in L0s as well as receiver clock when in L1.
2152  * This power saving option must be enabled through the SerDes.
2153  *
2154  * Programming the SerDes must go through the same 288 bit serial shift
2155  * register as the other analog registers.  Hence the 9 writes.
2156  */
2157 static void ar9002_hw_configpcipowersave(struct ath_hw *ah,
2158                                          int restore,
2159                                          int power_off)
2160 {
2161         u8 i;
2162         u32 val;
2163
2164         if (ah->is_pciexpress != true)
2165                 return;
2166
2167         /* Do not touch SerDes registers */
2168         if (ah->config.pcie_powersave_enable == 2)
2169                 return;
2170
2171         /* Nothing to do on restore for 11N */
2172         if (!restore) {
2173                 if (AR_SREV_9280_20_OR_LATER(ah)) {
2174                         /*
2175                          * AR9280 2.0 or later chips use SerDes values from the
2176                          * initvals.h initialized depending on chipset during
2177                          * __ath9k_hw_init()
2178                          */
2179                         for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2180                                 REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2181                                           INI_RA(&ah->iniPcieSerdes, i, 1));
2182                         }
2183                 } else if (AR_SREV_9280(ah) &&
2184                            (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2185                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2186                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2187
2188                         /* RX shut off when elecidle is asserted */
2189                         REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2190                         REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2191                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2192
2193                         /* Shut off CLKREQ active in L1 */
2194                         if (ah->config.pcie_clock_req)
2195                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2196                         else
2197                                 REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2198
2199                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2200                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2201                         REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2202
2203                         /* Load the new settings */
2204                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2205
2206                 } else {
2207                         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2208                         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2209
2210                         /* RX shut off when elecidle is asserted */
2211                         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2212                         REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2213                         REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2214
2215                         /*
2216                          * Ignore ah->ah_config.pcie_clock_req setting for
2217                          * pre-AR9280 11n
2218                          */
2219                         REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2220
2221                         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2222                         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2223                         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2224
2225                         /* Load the new settings */
2226                         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2227                 }
2228
2229                 udelay(1000);
2230
2231                 /* set bit 19 to allow forcing of pcie core into L1 state */
2232                 REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2233
2234                 /* Several PCIe massages to ensure proper behaviour */
2235                 if (ah->config.pcie_waen) {
2236                         val = ah->config.pcie_waen;
2237                         if (!power_off)
2238                                 val &= (~AR_WA_D3_L1_DISABLE);
2239                 } else {
2240                         if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2241                             AR_SREV_9287(ah)) {
2242                                 val = AR9285_WA_DEFAULT;
2243                                 if (!power_off)
2244                                         val &= (~AR_WA_D3_L1_DISABLE);
2245                         } else if (AR_SREV_9280(ah)) {
2246                                 /*
2247                                  * On AR9280 chips bit 22 of 0x4004 needs to be
2248                                  * set otherwise card may disappear.
2249                                  */
2250                                 val = AR9280_WA_DEFAULT;
2251                                 if (!power_off)
2252                                         val &= (~AR_WA_D3_L1_DISABLE);
2253                         } else
2254                                 val = AR_WA_DEFAULT;
2255                 }
2256
2257                 REG_WRITE(ah, AR_WA, val);
2258         }
2259
2260         if (power_off) {
2261                 /*
2262                  * Set PCIe workaround bits
2263                  * bit 14 in WA register (disable L1) should only
2264                  * be set when device enters D3 and be cleared
2265                  * when device comes back to D0.
2266                  */
2267                 if (ah->config.pcie_waen) {
2268                         if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2269                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2270                 } else {
2271                         if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2272                               AR_SREV_9287(ah)) &&
2273                              (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2274                             (AR_SREV_9280(ah) &&
2275                              (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2276                                 REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2277                         }
2278                 }
2279         }
2280 }
2281
2282 /**********************/
2283 /* Interrupt Handling */
2284 /**********************/
2285
2286 bool ath9k_hw_intrpend(struct ath_hw *ah)
2287 {
2288         u32 host_isr;
2289
2290         if (AR_SREV_9100(ah))
2291                 return true;
2292
2293         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2294         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2295                 return true;
2296
2297         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2298         if ((host_isr & AR_INTR_SYNC_DEFAULT)
2299             && (host_isr != AR_INTR_SPURIOUS))
2300                 return true;
2301
2302         return false;
2303 }
2304 EXPORT_SYMBOL(ath9k_hw_intrpend);
2305
2306 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2307 {
2308         u32 isr = 0;
2309         u32 mask2 = 0;
2310         struct ath9k_hw_capabilities *pCap = &ah->caps;
2311         u32 sync_cause = 0;
2312         bool fatal_int = false;
2313         struct ath_common *common = ath9k_hw_common(ah);
2314
2315         if (!AR_SREV_9100(ah)) {
2316                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2317                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2318                             == AR_RTC_STATUS_ON) {
2319                                 isr = REG_READ(ah, AR_ISR);
2320                         }
2321                 }
2322
2323                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2324                         AR_INTR_SYNC_DEFAULT;
2325
2326                 *masked = 0;
2327
2328                 if (!isr && !sync_cause)
2329                         return false;
2330         } else {
2331                 *masked = 0;
2332                 isr = REG_READ(ah, AR_ISR);
2333         }
2334
2335         if (isr) {
2336                 if (isr & AR_ISR_BCNMISC) {
2337                         u32 isr2;
2338                         isr2 = REG_READ(ah, AR_ISR_S2);
2339                         if (isr2 & AR_ISR_S2_TIM)
2340                                 mask2 |= ATH9K_INT_TIM;
2341                         if (isr2 & AR_ISR_S2_DTIM)
2342                                 mask2 |= ATH9K_INT_DTIM;
2343                         if (isr2 & AR_ISR_S2_DTIMSYNC)
2344                                 mask2 |= ATH9K_INT_DTIMSYNC;
2345                         if (isr2 & (AR_ISR_S2_CABEND))
2346                                 mask2 |= ATH9K_INT_CABEND;
2347                         if (isr2 & AR_ISR_S2_GTT)
2348                                 mask2 |= ATH9K_INT_GTT;
2349                         if (isr2 & AR_ISR_S2_CST)
2350                                 mask2 |= ATH9K_INT_CST;
2351                         if (isr2 & AR_ISR_S2_TSFOOR)
2352                                 mask2 |= ATH9K_INT_TSFOOR;
2353                 }
2354
2355                 isr = REG_READ(ah, AR_ISR_RAC);
2356                 if (isr == 0xffffffff) {
2357                         *masked = 0;
2358                         return false;
2359                 }
2360
2361                 *masked = isr & ATH9K_INT_COMMON;
2362
2363                 if (ah->config.rx_intr_mitigation) {
2364                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2365                                 *masked |= ATH9K_INT_RX;
2366                 }
2367
2368                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2369                         *masked |= ATH9K_INT_RX;
2370                 if (isr &
2371                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2372                      AR_ISR_TXEOL)) {
2373                         u32 s0_s, s1_s;
2374
2375                         *masked |= ATH9K_INT_TX;
2376
2377                         s0_s = REG_READ(ah, AR_ISR_S0_S);
2378                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2379                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2380
2381                         s1_s = REG_READ(ah, AR_ISR_S1_S);
2382                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2383                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2384                 }
2385
2386                 if (isr & AR_ISR_RXORN) {
2387                         ath_print(common, ATH_DBG_INTERRUPT,
2388                                   "receive FIFO overrun interrupt\n");
2389                 }
2390
2391                 if (!AR_SREV_9100(ah)) {
2392                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2393                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2394                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
2395                                         *masked |= ATH9K_INT_TIM_TIMER;
2396                         }
2397                 }
2398
2399                 *masked |= mask2;
2400         }
2401
2402         if (AR_SREV_9100(ah))
2403                 return true;
2404
2405         if (isr & AR_ISR_GENTMR) {
2406                 u32 s5_s;
2407
2408                 s5_s = REG_READ(ah, AR_ISR_S5_S);
2409                 if (isr & AR_ISR_GENTMR) {
2410                         ah->intr_gen_timer_trigger =
2411                                 MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2412
2413                         ah->intr_gen_timer_thresh =
2414                                 MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2415
2416                         if (ah->intr_gen_timer_trigger)
2417                                 *masked |= ATH9K_INT_GENTIMER;
2418
2419                 }
2420         }
2421
2422         if (sync_cause) {
2423                 fatal_int =
2424                         (sync_cause &
2425                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2426                         ? true : false;
2427
2428                 if (fatal_int) {
2429                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2430                                 ath_print(common, ATH_DBG_ANY,
2431                                           "received PCI FATAL interrupt\n");
2432                         }
2433                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2434                                 ath_print(common, ATH_DBG_ANY,
2435                                           "received PCI PERR interrupt\n");
2436                         }
2437                         *masked |= ATH9K_INT_FATAL;
2438                 }
2439                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2440                         ath_print(common, ATH_DBG_INTERRUPT,
2441                                   "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2442                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2443                         REG_WRITE(ah, AR_RC, 0);
2444                         *masked |= ATH9K_INT_FATAL;
2445                 }
2446                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2447                         ath_print(common, ATH_DBG_INTERRUPT,
2448                                   "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2449                 }
2450
2451                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2452                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2453         }
2454
2455         return true;
2456 }
2457 EXPORT_SYMBOL(ath9k_hw_getisr);
2458
2459 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2460 {
2461         enum ath9k_int omask = ah->imask;
2462         u32 mask, mask2;
2463         struct ath9k_hw_capabilities *pCap = &ah->caps;
2464         struct ath_common *common = ath9k_hw_common(ah);
2465
2466         ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2467
2468         if (omask & ATH9K_INT_GLOBAL) {
2469                 ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2470                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2471                 (void) REG_READ(ah, AR_IER);
2472                 if (!AR_SREV_9100(ah)) {
2473                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2474                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2475
2476                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2477                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2478                 }
2479         }
2480
2481         mask = ints & ATH9K_INT_COMMON;
2482         mask2 = 0;
2483
2484         if (ints & ATH9K_INT_TX) {
2485                 if (ah->txok_interrupt_mask)
2486                         mask |= AR_IMR_TXOK;
2487                 if (ah->txdesc_interrupt_mask)
2488                         mask |= AR_IMR_TXDESC;
2489                 if (ah->txerr_interrupt_mask)
2490                         mask |= AR_IMR_TXERR;
2491                 if (ah->txeol_interrupt_mask)
2492                         mask |= AR_IMR_TXEOL;
2493         }
2494         if (ints & ATH9K_INT_RX) {
2495                 mask |= AR_IMR_RXERR;
2496                 if (ah->config.rx_intr_mitigation)
2497                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2498                 else
2499                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2500                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2501                         mask |= AR_IMR_GENTMR;
2502         }
2503
2504         if (ints & (ATH9K_INT_BMISC)) {
2505                 mask |= AR_IMR_BCNMISC;
2506                 if (ints & ATH9K_INT_TIM)
2507                         mask2 |= AR_IMR_S2_TIM;
2508                 if (ints & ATH9K_INT_DTIM)
2509                         mask2 |= AR_IMR_S2_DTIM;
2510                 if (ints & ATH9K_INT_DTIMSYNC)
2511                         mask2 |= AR_IMR_S2_DTIMSYNC;
2512                 if (ints & ATH9K_INT_CABEND)
2513                         mask2 |= AR_IMR_S2_CABEND;
2514                 if (ints & ATH9K_INT_TSFOOR)
2515                         mask2 |= AR_IMR_S2_TSFOOR;
2516         }
2517
2518         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2519                 mask |= AR_IMR_BCNMISC;
2520                 if (ints & ATH9K_INT_GTT)
2521                         mask2 |= AR_IMR_S2_GTT;
2522                 if (ints & ATH9K_INT_CST)
2523                         mask2 |= AR_IMR_S2_CST;
2524         }
2525
2526         ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2527         REG_WRITE(ah, AR_IMR, mask);
2528         ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
2529                            AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
2530                            AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
2531         ah->imrs2_reg |= mask2;
2532         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
2533
2534         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2535                 if (ints & ATH9K_INT_TIM_TIMER)
2536                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2537                 else
2538                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2539         }
2540
2541         if (ints & ATH9K_INT_GLOBAL) {
2542                 ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2543                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2544                 if (!AR_SREV_9100(ah)) {
2545                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2546                                   AR_INTR_MAC_IRQ);
2547                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2548
2549
2550                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2551                                   AR_INTR_SYNC_DEFAULT);
2552                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
2553                                   AR_INTR_SYNC_DEFAULT);
2554                 }
2555                 ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2556                           REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2557         }
2558
2559         return omask;
2560 }
2561 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2562
2563 /*******************/
2564 /* Beacon Handling */
2565 /*******************/
2566
2567 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2568 {
2569         int flags = 0;
2570
2571         ah->beacon_interval = beacon_period;
2572
2573         switch (ah->opmode) {
2574         case NL80211_IFTYPE_STATION:
2575         case NL80211_IFTYPE_MONITOR:
2576                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2577                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2578                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2579                 flags |= AR_TBTT_TIMER_EN;
2580                 break;
2581         case NL80211_IFTYPE_ADHOC:
2582         case NL80211_IFTYPE_MESH_POINT:
2583                 REG_SET_BIT(ah, AR_TXCFG,
2584                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2585                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2586                           TU_TO_USEC(next_beacon +
2587                                      (ah->atim_window ? ah->
2588                                       atim_window : 1)));
2589                 flags |= AR_NDP_TIMER_EN;
2590         case NL80211_IFTYPE_AP:
2591                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2592                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2593                           TU_TO_USEC(next_beacon -
2594                                      ah->config.
2595                                      dma_beacon_response_time));
2596                 REG_WRITE(ah, AR_NEXT_SWBA,
2597                           TU_TO_USEC(next_beacon -
2598                                      ah->config.
2599                                      sw_beacon_response_time));
2600                 flags |=
2601                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2602                 break;
2603         default:
2604                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
2605                           "%s: unsupported opmode: %d\n",
2606                           __func__, ah->opmode);
2607                 return;
2608                 break;
2609         }
2610
2611         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2612         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
2613         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
2614         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
2615
2616         beacon_period &= ~ATH9K_BEACON_ENA;
2617         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
2618                 ath9k_hw_reset_tsf(ah);
2619         }
2620
2621         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2622 }
2623 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2624
2625 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2626                                     const struct ath9k_beacon_state *bs)
2627 {
2628         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2629         struct ath9k_hw_capabilities *pCap = &ah->caps;
2630         struct ath_common *common = ath9k_hw_common(ah);
2631
2632         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2633
2634         REG_WRITE(ah, AR_BEACON_PERIOD,
2635                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
2636         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2637                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
2638
2639         REG_RMW_FIELD(ah, AR_RSSI_THR,
2640                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2641
2642         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
2643
2644         if (bs->bs_sleepduration > beaconintval)
2645                 beaconintval = bs->bs_sleepduration;
2646
2647         dtimperiod = bs->bs_dtimperiod;
2648         if (bs->bs_sleepduration > dtimperiod)
2649                 dtimperiod = bs->bs_sleepduration;
2650
2651         if (beaconintval == dtimperiod)
2652                 nextTbtt = bs->bs_nextdtim;
2653         else
2654                 nextTbtt = bs->bs_nexttbtt;
2655
2656         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2657         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2658         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2659         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2660
2661         REG_WRITE(ah, AR_NEXT_DTIM,
2662                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2663         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2664
2665         REG_WRITE(ah, AR_SLEEP1,
2666                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2667                   | AR_SLEEP1_ASSUME_DTIM);
2668
2669         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2670                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2671         else
2672                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2673
2674         REG_WRITE(ah, AR_SLEEP2,
2675                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2676
2677         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2678         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2679
2680         REG_SET_BIT(ah, AR_TIMER_MODE,
2681                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2682                     AR_DTIM_TIMER_EN);
2683
2684         /* TSF Out of Range Threshold */
2685         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2686 }
2687 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2688
2689 /*******************/
2690 /* HW Capabilities */
2691 /*******************/
2692
2693 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2694 {
2695         struct ath9k_hw_capabilities *pCap = &ah->caps;
2696         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2697         struct ath_common *common = ath9k_hw_common(ah);
2698         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2699
2700         u16 capField = 0, eeval;
2701
2702         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2703         regulatory->current_rd = eeval;
2704
2705         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2706         if (AR_SREV_9285_10_OR_LATER(ah))
2707                 eeval |= AR9285_RDEXT_DEFAULT;
2708         regulatory->current_rd_ext = eeval;
2709
2710         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2711
2712         if (ah->opmode != NL80211_IFTYPE_AP &&
2713             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2714                 if (regulatory->current_rd == 0x64 ||
2715                     regulatory->current_rd == 0x65)
2716                         regulatory->current_rd += 5;
2717                 else if (regulatory->current_rd == 0x41)
2718                         regulatory->current_rd = 0x43;
2719                 ath_print(common, ATH_DBG_REGULATORY,
2720                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
2721         }
2722
2723         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2724         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2725                 ath_print(common, ATH_DBG_FATAL,
2726                           "no band has been marked as supported in EEPROM.\n");
2727                 return -EINVAL;
2728         }
2729
2730         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2731
2732         if (eeval & AR5416_OPFLAGS_11A) {
2733                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2734                 if (ah->config.ht_enable) {
2735                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2736                                 set_bit(ATH9K_MODE_11NA_HT20,
2737                                         pCap->wireless_modes);
2738                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2739                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2740                                         pCap->wireless_modes);
2741                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2742                                         pCap->wireless_modes);
2743                         }
2744                 }
2745         }
2746
2747         if (eeval & AR5416_OPFLAGS_11G) {
2748                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2749                 if (ah->config.ht_enable) {
2750                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2751                                 set_bit(ATH9K_MODE_11NG_HT20,
2752                                         pCap->wireless_modes);
2753                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2754                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2755                                         pCap->wireless_modes);
2756                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2757                                         pCap->wireless_modes);
2758                         }
2759                 }
2760         }
2761
2762         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2763         /*
2764          * For AR9271 we will temporarilly uses the rx chainmax as read from
2765          * the EEPROM.
2766          */
2767         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2768             !(eeval & AR5416_OPFLAGS_11A) &&
2769             !(AR_SREV_9271(ah)))
2770                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2771                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2772         else
2773                 /* Use rx_chainmask from EEPROM. */
2774                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2775
2776         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2777                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2778
2779         pCap->low_2ghz_chan = 2312;
2780         pCap->high_2ghz_chan = 2732;
2781
2782         pCap->low_5ghz_chan = 4920;
2783         pCap->high_5ghz_chan = 6100;
2784
2785         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2786         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2787         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2788
2789         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2790         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2791         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2792
2793         if (ah->config.ht_enable)
2794                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2795         else
2796                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2797
2798         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2799         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2800         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2801         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2802
2803         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2804                 pCap->total_queues =
2805                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2806         else
2807                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2808
2809         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2810                 pCap->keycache_size =
2811                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2812         else
2813                 pCap->keycache_size = AR_KEYTABLE_SIZE;
2814
2815         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2816
2817         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2818                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2819         else
2820                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2821
2822         if (AR_SREV_9271(ah))
2823                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2824         else if (AR_SREV_9285_10_OR_LATER(ah))
2825                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2826         else if (AR_SREV_9280_10_OR_LATER(ah))
2827                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2828         else
2829                 pCap->num_gpio_pins = AR_NUM_GPIO;
2830
2831         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2832                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2833                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2834         } else {
2835                 pCap->rts_aggr_limit = (8 * 1024);
2836         }
2837
2838         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2839
2840 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2841         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2842         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2843                 ah->rfkill_gpio =
2844                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2845                 ah->rfkill_polarity =
2846                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2847
2848                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2849         }
2850 #endif
2851         if (AR_SREV_9271(ah))
2852                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2853         else
2854                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2855
2856         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2857                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2858         else
2859                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2860
2861         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2862                 pCap->reg_cap =
2863                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2864                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2865                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
2866                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2867         } else {
2868                 pCap->reg_cap =
2869                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2870                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2871         }
2872
2873         /* Advertise midband for AR5416 with FCC midband set in eeprom */
2874         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2875             AR_SREV_5416(ah))
2876                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2877
2878         pCap->num_antcfg_5ghz =
2879                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2880         pCap->num_antcfg_2ghz =
2881                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2882
2883         if (AR_SREV_9280_10_OR_LATER(ah) &&
2884             ath9k_hw_btcoex_supported(ah)) {
2885                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2886                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2887
2888                 if (AR_SREV_9285(ah)) {
2889                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2890                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2891                 } else {
2892                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2893                 }
2894         } else {
2895                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2896         }
2897
2898         return 0;
2899 }
2900
2901 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2902                             u32 capability, u32 *result)
2903 {
2904         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2905         switch (type) {
2906         case ATH9K_CAP_CIPHER:
2907                 switch (capability) {
2908                 case ATH9K_CIPHER_AES_CCM:
2909                 case ATH9K_CIPHER_AES_OCB:
2910                 case ATH9K_CIPHER_TKIP:
2911                 case ATH9K_CIPHER_WEP:
2912                 case ATH9K_CIPHER_MIC:
2913                 case ATH9K_CIPHER_CLR:
2914                         return true;
2915                 default:
2916                         return false;
2917                 }
2918         case ATH9K_CAP_TKIP_MIC:
2919                 switch (capability) {
2920                 case 0:
2921                         return true;
2922                 case 1:
2923                         return (ah->sta_id1_defaults &
2924                                 AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
2925                         false;
2926                 }
2927         case ATH9K_CAP_TKIP_SPLIT:
2928                 return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
2929                         false : true;
2930         case ATH9K_CAP_MCAST_KEYSRCH:
2931                 switch (capability) {
2932                 case 0:
2933                         return true;
2934                 case 1:
2935                         if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
2936                                 return false;
2937                         } else {
2938                                 return (ah->sta_id1_defaults &
2939                                         AR_STA_ID1_MCAST_KSRCH) ? true :
2940                                         false;
2941                         }
2942                 }
2943                 return false;
2944         case ATH9K_CAP_TXPOW:
2945                 switch (capability) {
2946                 case 0:
2947                         return 0;
2948                 case 1:
2949                         *result = regulatory->power_limit;
2950                         return 0;
2951                 case 2:
2952                         *result = regulatory->max_power_level;
2953                         return 0;
2954                 case 3:
2955                         *result = regulatory->tp_scale;
2956                         return 0;
2957                 }
2958                 return false;
2959         case ATH9K_CAP_DS:
2960                 return (AR_SREV_9280_20_OR_LATER(ah) &&
2961                         (ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
2962                         ? false : true;
2963         default:
2964                 return false;
2965         }
2966 }
2967 EXPORT_SYMBOL(ath9k_hw_getcapability);
2968
2969 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
2970                             u32 capability, u32 setting, int *status)
2971 {
2972         switch (type) {
2973         case ATH9K_CAP_TKIP_MIC:
2974                 if (setting)
2975                         ah->sta_id1_defaults |=
2976                                 AR_STA_ID1_CRPT_MIC_ENABLE;
2977                 else
2978                         ah->sta_id1_defaults &=
2979                                 ~AR_STA_ID1_CRPT_MIC_ENABLE;
2980                 return true;
2981         case ATH9K_CAP_MCAST_KEYSRCH:
2982                 if (setting)
2983                         ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
2984                 else
2985                         ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
2986                 return true;
2987         default:
2988                 return false;
2989         }
2990 }
2991 EXPORT_SYMBOL(ath9k_hw_setcapability);
2992
2993 /****************************/
2994 /* GPIO / RFKILL / Antennae */
2995 /****************************/
2996
2997 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2998                                          u32 gpio, u32 type)
2999 {
3000         int addr;
3001         u32 gpio_shift, tmp;
3002
3003         if (gpio > 11)
3004                 addr = AR_GPIO_OUTPUT_MUX3;
3005         else if (gpio > 5)
3006                 addr = AR_GPIO_OUTPUT_MUX2;
3007         else
3008                 addr = AR_GPIO_OUTPUT_MUX1;
3009
3010         gpio_shift = (gpio % 6) * 5;
3011
3012         if (AR_SREV_9280_20_OR_LATER(ah)
3013             || (addr != AR_GPIO_OUTPUT_MUX1)) {
3014                 REG_RMW(ah, addr, (type << gpio_shift),
3015                         (0x1f << gpio_shift));
3016         } else {
3017                 tmp = REG_READ(ah, addr);
3018                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3019                 tmp &= ~(0x1f << gpio_shift);
3020                 tmp |= (type << gpio_shift);
3021                 REG_WRITE(ah, addr, tmp);
3022         }
3023 }
3024
3025 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3026 {
3027         u32 gpio_shift;
3028
3029         BUG_ON(gpio >= ah->caps.num_gpio_pins);
3030
3031         gpio_shift = gpio << 1;
3032
3033         REG_RMW(ah,
3034                 AR_GPIO_OE_OUT,
3035                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3036                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3037 }
3038 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3039
3040 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3041 {
3042 #define MS_REG_READ(x, y) \
3043         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3044
3045         if (gpio >= ah->caps.num_gpio_pins)
3046                 return 0xffffffff;
3047
3048         if (AR_SREV_9300_20_OR_LATER(ah))
3049                 return MS_REG_READ(AR9300, gpio) != 0;
3050         else if (AR_SREV_9271(ah))
3051                 return MS_REG_READ(AR9271, gpio) != 0;
3052         else if (AR_SREV_9287_10_OR_LATER(ah))
3053                 return MS_REG_READ(AR9287, gpio) != 0;
3054         else if (AR_SREV_9285_10_OR_LATER(ah))
3055                 return MS_REG_READ(AR9285, gpio) != 0;
3056         else if (AR_SREV_9280_10_OR_LATER(ah))
3057                 return MS_REG_READ(AR928X, gpio) != 0;
3058         else
3059                 return MS_REG_READ(AR, gpio) != 0;
3060 }
3061 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3062
3063 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3064                          u32 ah_signal_type)
3065 {
3066         u32 gpio_shift;
3067
3068         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3069
3070         gpio_shift = 2 * gpio;
3071
3072         REG_RMW(ah,
3073                 AR_GPIO_OE_OUT,
3074                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3075                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
3076 }
3077 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3078
3079 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3080 {
3081         if (AR_SREV_9271(ah))
3082                 val = ~val;
3083
3084         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3085                 AR_GPIO_BIT(gpio));
3086 }
3087 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3088
3089 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3090 {
3091         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3092 }
3093 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3094
3095 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3096 {
3097         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3098 }
3099 EXPORT_SYMBOL(ath9k_hw_setantenna);
3100
3101 /*********************/
3102 /* General Operation */
3103 /*********************/
3104
3105 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3106 {
3107         u32 bits = REG_READ(ah, AR_RX_FILTER);
3108         u32 phybits = REG_READ(ah, AR_PHY_ERR);
3109
3110         if (phybits & AR_PHY_ERR_RADAR)
3111                 bits |= ATH9K_RX_FILTER_PHYRADAR;
3112         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3113                 bits |= ATH9K_RX_FILTER_PHYERR;
3114
3115         return bits;
3116 }
3117 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3118
3119 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3120 {
3121         u32 phybits;
3122
3123         REG_WRITE(ah, AR_RX_FILTER, bits);
3124
3125         phybits = 0;
3126         if (bits & ATH9K_RX_FILTER_PHYRADAR)
3127                 phybits |= AR_PHY_ERR_RADAR;
3128         if (bits & ATH9K_RX_FILTER_PHYERR)
3129                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3130         REG_WRITE(ah, AR_PHY_ERR, phybits);
3131
3132         if (phybits)
3133                 REG_WRITE(ah, AR_RXCFG,
3134                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3135         else
3136                 REG_WRITE(ah, AR_RXCFG,
3137                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3138 }
3139 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3140
3141 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3142 {
3143         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3144                 return false;
3145
3146         ath9k_hw_init_pll(ah, NULL);
3147         return true;
3148 }
3149 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3150
3151 bool ath9k_hw_disable(struct ath_hw *ah)
3152 {
3153         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3154                 return false;
3155
3156         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3157                 return false;
3158
3159         ath9k_hw_init_pll(ah, NULL);
3160         return true;
3161 }
3162 EXPORT_SYMBOL(ath9k_hw_disable);
3163
3164 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3165 {
3166         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3167         struct ath9k_channel *chan = ah->curchan;
3168         struct ieee80211_channel *channel = chan->chan;
3169
3170         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3171
3172         ah->eep_ops->set_txpower(ah, chan,
3173                                  ath9k_regd_get_ctl(regulatory, chan),
3174                                  channel->max_antenna_gain * 2,
3175                                  channel->max_power * 2,
3176                                  min((u32) MAX_RATE_POWER,
3177                                  (u32) regulatory->power_limit));
3178 }
3179 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3180
3181 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3182 {
3183         memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3184 }
3185 EXPORT_SYMBOL(ath9k_hw_setmac);
3186
3187 void ath9k_hw_setopmode(struct ath_hw *ah)
3188 {
3189         ath9k_hw_set_operating_mode(ah, ah->opmode);
3190 }
3191 EXPORT_SYMBOL(ath9k_hw_setopmode);
3192
3193 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3194 {
3195         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3196         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3197 }
3198 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3199
3200 void ath9k_hw_write_associd(struct ath_hw *ah)
3201 {
3202         struct ath_common *common = ath9k_hw_common(ah);
3203
3204         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3205         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3206                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3207 }
3208 EXPORT_SYMBOL(ath9k_hw_write_associd);
3209
3210 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3211 {
3212         u64 tsf;
3213
3214         tsf = REG_READ(ah, AR_TSF_U32);
3215         tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3216
3217         return tsf;
3218 }
3219 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3220
3221 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3222 {
3223         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3224         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3225 }
3226 EXPORT_SYMBOL(ath9k_hw_settsf64);
3227
3228 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3229 {
3230         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3231                            AH_TSF_WRITE_TIMEOUT))
3232                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3233                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3234
3235         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3236 }
3237 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3238
3239 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3240 {
3241         if (setting)
3242                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3243         else
3244                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3245 }
3246 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3247
3248 /*
3249  *  Extend 15-bit time stamp from rx descriptor to
3250  *  a full 64-bit TSF using the current h/w TSF.
3251 */
3252 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3253 {
3254         u64 tsf;
3255
3256         tsf = ath9k_hw_gettsf64(ah);
3257         if ((tsf & 0x7fff) < rstamp)
3258                 tsf -= 0x8000;
3259         return (tsf & ~0x7fff) | rstamp;
3260 }
3261 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3262
3263 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3264 {
3265         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3266         u32 macmode;
3267
3268         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3269                 macmode = AR_2040_JOINED_RX_CLEAR;
3270         else
3271                 macmode = 0;
3272
3273         REG_WRITE(ah, AR_2040_MODE, macmode);
3274 }
3275
3276 /* HW Generic timers configuration */
3277
3278 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3279 {
3280         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3281         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3282         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3283         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3284         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3285         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3286         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3287         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3288         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3289         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3290                                 AR_NDP2_TIMER_MODE, 0x0002},
3291         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3292                                 AR_NDP2_TIMER_MODE, 0x0004},
3293         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3294                                 AR_NDP2_TIMER_MODE, 0x0008},
3295         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3296                                 AR_NDP2_TIMER_MODE, 0x0010},
3297         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3298                                 AR_NDP2_TIMER_MODE, 0x0020},
3299         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3300                                 AR_NDP2_TIMER_MODE, 0x0040},
3301         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3302                                 AR_NDP2_TIMER_MODE, 0x0080}
3303 };
3304
3305 /* HW generic timer primitives */
3306
3307 /* compute and clear index of rightmost 1 */
3308 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3309 {
3310         u32 b;
3311
3312         b = *mask;
3313         b &= (0-b);
3314         *mask &= ~b;
3315         b *= debruijn32;
3316         b >>= 27;
3317
3318         return timer_table->gen_timer_index[b];
3319 }
3320
3321 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3322 {
3323         return REG_READ(ah, AR_TSF_L32);
3324 }
3325 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3326
3327 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3328                                           void (*trigger)(void *),
3329                                           void (*overflow)(void *),
3330                                           void *arg,
3331                                           u8 timer_index)
3332 {
3333         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3334         struct ath_gen_timer *timer;
3335
3336         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3337
3338         if (timer == NULL) {
3339                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3340                           "Failed to allocate memory"
3341                           "for hw timer[%d]\n", timer_index);
3342                 return NULL;
3343         }
3344
3345         /* allocate a hardware generic timer slot */
3346         timer_table->timers[timer_index] = timer;
3347         timer->index = timer_index;
3348         timer->trigger = trigger;
3349         timer->overflow = overflow;
3350         timer->arg = arg;
3351
3352         return timer;
3353 }
3354 EXPORT_SYMBOL(ath_gen_timer_alloc);
3355
3356 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3357                               struct ath_gen_timer *timer,
3358                               u32 timer_next,
3359                               u32 timer_period)
3360 {
3361         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3362         u32 tsf;
3363
3364         BUG_ON(!timer_period);
3365
3366         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3367
3368         tsf = ath9k_hw_gettsf32(ah);
3369
3370         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3371                   "curent tsf %x period %x"
3372                   "timer_next %x\n", tsf, timer_period, timer_next);
3373
3374         /*
3375          * Pull timer_next forward if the current TSF already passed it
3376          * because of software latency
3377          */
3378         if (timer_next < tsf)
3379                 timer_next = tsf + timer_period;
3380
3381         /*
3382          * Program generic timer registers
3383          */
3384         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3385                  timer_next);
3386         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3387                   timer_period);
3388         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3389                     gen_tmr_configuration[timer->index].mode_mask);
3390
3391         /* Enable both trigger and thresh interrupt masks */
3392         REG_SET_BIT(ah, AR_IMR_S5,
3393                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3394                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3395 }
3396 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3397
3398 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3399 {
3400         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3401
3402         if ((timer->index < AR_FIRST_NDP_TIMER) ||
3403                 (timer->index >= ATH_MAX_GEN_TIMER)) {
3404                 return;
3405         }
3406
3407         /* Clear generic timer enable bits. */
3408         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3409                         gen_tmr_configuration[timer->index].mode_mask);
3410
3411         /* Disable both trigger and thresh interrupt masks */
3412         REG_CLR_BIT(ah, AR_IMR_S5,
3413                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3414                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3415
3416         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3417 }
3418 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3419
3420 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3421 {
3422         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3423
3424         /* free the hardware generic timer slot */
3425         timer_table->timers[timer->index] = NULL;
3426         kfree(timer);
3427 }
3428 EXPORT_SYMBOL(ath_gen_timer_free);
3429
3430 /*
3431  * Generic Timer Interrupts handling
3432  */
3433 void ath_gen_timer_isr(struct ath_hw *ah)
3434 {
3435         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3436         struct ath_gen_timer *timer;
3437         struct ath_common *common = ath9k_hw_common(ah);
3438         u32 trigger_mask, thresh_mask, index;
3439
3440         /* get hardware generic timer interrupt status */
3441         trigger_mask = ah->intr_gen_timer_trigger;
3442         thresh_mask = ah->intr_gen_timer_thresh;
3443         trigger_mask &= timer_table->timer_mask.val;
3444         thresh_mask &= timer_table->timer_mask.val;
3445
3446         trigger_mask &= ~thresh_mask;
3447
3448         while (thresh_mask) {
3449                 index = rightmost_index(timer_table, &thresh_mask);
3450                 timer = timer_table->timers[index];
3451                 BUG_ON(!timer);
3452                 ath_print(common, ATH_DBG_HWTIMER,
3453                           "TSF overflow for Gen timer %d\n", index);
3454                 timer->overflow(timer->arg);
3455         }
3456
3457         while (trigger_mask) {
3458                 index = rightmost_index(timer_table, &trigger_mask);
3459                 timer = timer_table->timers[index];
3460                 BUG_ON(!timer);
3461                 ath_print(common, ATH_DBG_HWTIMER,
3462                           "Gen timer[%d] trigger\n", index);
3463                 timer->trigger(timer->arg);
3464         }
3465 }
3466 EXPORT_SYMBOL(ath_gen_timer_isr);
3467
3468 /********/
3469 /* HTC  */
3470 /********/
3471
3472 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
3473 {
3474         ah->htc_reset_init = true;
3475 }
3476 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
3477
3478 static struct {
3479         u32 version;
3480         const char * name;
3481 } ath_mac_bb_names[] = {
3482         /* Devices with external radios */
3483         { AR_SREV_VERSION_5416_PCI,     "5416" },
3484         { AR_SREV_VERSION_5416_PCIE,    "5418" },
3485         { AR_SREV_VERSION_9100,         "9100" },
3486         { AR_SREV_VERSION_9160,         "9160" },
3487         /* Single-chip solutions */
3488         { AR_SREV_VERSION_9280,         "9280" },
3489         { AR_SREV_VERSION_9285,         "9285" },
3490         { AR_SREV_VERSION_9287,         "9287" },
3491         { AR_SREV_VERSION_9271,         "9271" },
3492 };
3493
3494 /* For devices with external radios */
3495 static struct {
3496         u16 version;
3497         const char * name;
3498 } ath_rf_names[] = {
3499         { 0,                            "5133" },
3500         { AR_RAD5133_SREV_MAJOR,        "5133" },
3501         { AR_RAD5122_SREV_MAJOR,        "5122" },
3502         { AR_RAD2133_SREV_MAJOR,        "2133" },
3503         { AR_RAD2122_SREV_MAJOR,        "2122" }
3504 };
3505
3506 /*
3507  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3508  */
3509 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3510 {
3511         int i;
3512
3513         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3514                 if (ath_mac_bb_names[i].version == mac_bb_version) {
3515                         return ath_mac_bb_names[i].name;
3516                 }
3517         }
3518
3519         return "????";
3520 }
3521
3522 /*
3523  * Return the RF name. "????" is returned if the RF is unknown.
3524  * Used for devices with external radios.
3525  */
3526 static const char *ath9k_hw_rf_name(u16 rf_version)
3527 {
3528         int i;
3529
3530         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3531                 if (ath_rf_names[i].version == rf_version) {
3532                         return ath_rf_names[i].name;
3533                 }
3534         }
3535
3536         return "????";
3537 }
3538
3539 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3540 {
3541         int used;
3542
3543         /* chipsets >= AR9280 are single-chip */
3544         if (AR_SREV_9280_10_OR_LATER(ah)) {
3545                 used = snprintf(hw_name, len,
3546                                "Atheros AR%s Rev:%x",
3547                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3548                                ah->hw_version.macRev);
3549         }
3550         else {
3551                 used = snprintf(hw_name, len,
3552                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3553                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3554                                ah->hw_version.macRev,
3555                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3556                                                 AR_RADIO_SREV_MAJOR)),
3557                                ah->hw_version.phyRev);
3558         }
3559
3560         hw_name[used] = '\0';
3561 }
3562 EXPORT_SYMBOL(ath9k_hw_name);
3563
3564 /* Sets up the AR5008/AR9001/AR9002 hardware familiy callbacks */
3565 static void ar9002_hw_attach_ops(struct ath_hw *ah)
3566 {
3567         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
3568         struct ath_hw_ops *ops = ath9k_hw_ops(ah);
3569
3570         priv_ops->init_cal_settings = ar9002_hw_init_cal_settings;
3571         priv_ops->init_mode_regs = ar9002_hw_init_mode_regs;
3572         priv_ops->macversion_supported = ar9002_hw_macversion_supported;
3573
3574         ops->config_pci_powersave = ar9002_hw_configpcipowersave;
3575
3576         if (AR_SREV_9280_10_OR_LATER(ah))
3577                 ar9002_hw_attach_phy_ops(ah);
3578         else
3579                 ar5008_hw_attach_phy_ops(ah);
3580 }