Linux 6.10-rc4
[sfrench/cifs-2.6.git] / drivers / net / wan / fsl_ucc_hdlc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Freescale QUICC Engine HDLC Device Driver
3  *
4  * Copyright 2016 Freescale Semiconductor Inc.
5  */
6
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/hdlc.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/sched.h>
22 #include <linux/skbuff.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/stddef.h>
26 #include <soc/fsl/qe/qe_tdm.h>
27 #include <uapi/linux/if_arp.h>
28
29 #include "fsl_ucc_hdlc.h"
30
31 #define DRV_DESC "Freescale QE UCC HDLC Driver"
32 #define DRV_NAME "ucc_hdlc"
33
34 #define TDM_PPPOHT_SLIC_MAXIN
35 #define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
36
37 static int uhdlc_close(struct net_device *dev);
38
39 static struct ucc_tdm_info utdm_primary_info = {
40         .uf_info = {
41                 .tsa = 0,
42                 .cdp = 0,
43                 .cds = 1,
44                 .ctsp = 1,
45                 .ctss = 1,
46                 .revd = 0,
47                 .urfs = 256,
48                 .utfs = 256,
49                 .urfet = 128,
50                 .urfset = 192,
51                 .utfet = 128,
52                 .utftt = 0x40,
53                 .ufpt = 256,
54                 .mode = UCC_FAST_PROTOCOL_MODE_HDLC,
55                 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
56                 .tenc = UCC_FAST_TX_ENCODING_NRZ,
57                 .renc = UCC_FAST_RX_ENCODING_NRZ,
58                 .tcrc = UCC_FAST_16_BIT_CRC,
59                 .synl = UCC_FAST_SYNC_LEN_NOT_USED,
60         },
61
62         .si_info = {
63 #ifdef TDM_PPPOHT_SLIC_MAXIN
64                 .simr_rfsd = 1,
65                 .simr_tfsd = 2,
66 #else
67                 .simr_rfsd = 0,
68                 .simr_tfsd = 0,
69 #endif
70                 .simr_crt = 0,
71                 .simr_sl = 0,
72                 .simr_ce = 1,
73                 .simr_fe = 1,
74                 .simr_gm = 0,
75         },
76 };
77
78 static struct ucc_tdm_info utdm_info[UCC_MAX_NUM];
79
80 static int uhdlc_init(struct ucc_hdlc_private *priv)
81 {
82         struct ucc_tdm_info *ut_info;
83         struct ucc_fast_info *uf_info;
84         u32 cecr_subblock;
85         u16 bd_status;
86         int ret, i;
87         void *bd_buffer;
88         dma_addr_t bd_dma_addr;
89         s32 riptr;
90         s32 tiptr;
91         u32 gumr;
92
93         ut_info = priv->ut_info;
94         uf_info = &ut_info->uf_info;
95
96         if (priv->tsa) {
97                 uf_info->tsa = 1;
98                 uf_info->ctsp = 1;
99                 uf_info->cds = 1;
100                 uf_info->ctss = 1;
101         } else {
102                 uf_info->cds = 0;
103                 uf_info->ctsp = 0;
104                 uf_info->ctss = 0;
105         }
106
107         /* This sets HPM register in CMXUCR register which configures a
108          * open drain connected HDLC bus
109          */
110         if (priv->hdlc_bus)
111                 uf_info->brkpt_support = 1;
112
113         uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
114                                 UCC_HDLC_UCCE_TXB) << 16);
115
116         ret = ucc_fast_init(uf_info, &priv->uccf);
117         if (ret) {
118                 dev_err(priv->dev, "Failed to init uccf.");
119                 return ret;
120         }
121
122         priv->uf_regs = priv->uccf->uf_regs;
123         ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
124
125         /* Loopback mode */
126         if (priv->loopback) {
127                 dev_info(priv->dev, "Loopback Mode\n");
128                 /* use the same clock when work in loopback */
129                 qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
130
131                 gumr = ioread32be(&priv->uf_regs->gumr);
132                 gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
133                          UCC_FAST_GUMR_TCI);
134                 gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
135                 iowrite32be(gumr, &priv->uf_regs->gumr);
136         }
137
138         /* Initialize SI */
139         if (priv->tsa)
140                 ucc_tdm_init(priv->utdm, priv->ut_info);
141
142         /* Write to QE CECR, UCCx channel to Stop Transmission */
143         cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
144         ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
145                            QE_CR_PROTOCOL_UNSPECIFIED, 0);
146
147         /* Set UPSMR normal mode (need fixed)*/
148         iowrite32be(0, &priv->uf_regs->upsmr);
149
150         /* hdlc_bus mode */
151         if (priv->hdlc_bus) {
152                 u32 upsmr;
153
154                 dev_info(priv->dev, "HDLC bus Mode\n");
155                 upsmr = ioread32be(&priv->uf_regs->upsmr);
156
157                 /* bus mode and retransmit enable, with collision window
158                  * set to 8 bytes
159                  */
160                 upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
161                                 UCC_HDLC_UPSMR_CW8;
162                 iowrite32be(upsmr, &priv->uf_regs->upsmr);
163
164                 /* explicitly disable CDS & CTSP */
165                 gumr = ioread32be(&priv->uf_regs->gumr);
166                 gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
167                 /* set automatic sync to explicitly ignore CD signal */
168                 gumr |= UCC_FAST_GUMR_SYNL_AUTO;
169                 iowrite32be(gumr, &priv->uf_regs->gumr);
170         }
171
172         priv->rx_ring_size = RX_BD_RING_LEN;
173         priv->tx_ring_size = TX_BD_RING_LEN;
174         /* Alloc Rx BD */
175         priv->rx_bd_base = dma_alloc_coherent(priv->dev,
176                         RX_BD_RING_LEN * sizeof(struct qe_bd),
177                         &priv->dma_rx_bd, GFP_KERNEL);
178
179         if (!priv->rx_bd_base) {
180                 dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
181                 ret = -ENOMEM;
182                 goto free_uccf;
183         }
184
185         /* Alloc Tx BD */
186         priv->tx_bd_base = dma_alloc_coherent(priv->dev,
187                         TX_BD_RING_LEN * sizeof(struct qe_bd),
188                         &priv->dma_tx_bd, GFP_KERNEL);
189
190         if (!priv->tx_bd_base) {
191                 dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
192                 ret = -ENOMEM;
193                 goto free_rx_bd;
194         }
195
196         /* Alloc parameter ram for ucc hdlc */
197         priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
198                                 ALIGNMENT_OF_UCC_HDLC_PRAM);
199
200         if (priv->ucc_pram_offset < 0) {
201                 dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
202                 ret = -ENOMEM;
203                 goto free_tx_bd;
204         }
205
206         priv->rx_skbuff = kcalloc(priv->rx_ring_size,
207                                   sizeof(*priv->rx_skbuff),
208                                   GFP_KERNEL);
209         if (!priv->rx_skbuff) {
210                 ret = -ENOMEM;
211                 goto free_ucc_pram;
212         }
213
214         priv->tx_skbuff = kcalloc(priv->tx_ring_size,
215                                   sizeof(*priv->tx_skbuff),
216                                   GFP_KERNEL);
217         if (!priv->tx_skbuff) {
218                 ret = -ENOMEM;
219                 goto free_rx_skbuff;
220         }
221
222         priv->skb_curtx = 0;
223         priv->skb_dirtytx = 0;
224         priv->curtx_bd = priv->tx_bd_base;
225         priv->dirty_tx = priv->tx_bd_base;
226         priv->currx_bd = priv->rx_bd_base;
227         priv->currx_bdnum = 0;
228
229         /* init parameter base */
230         cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
231         ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
232                            QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
233
234         priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
235                                         qe_muram_addr(priv->ucc_pram_offset);
236
237         /* Zero out parameter ram */
238         memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
239
240         /* Alloc riptr, tiptr */
241         riptr = qe_muram_alloc(32, 32);
242         if (riptr < 0) {
243                 dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
244                 ret = -ENOMEM;
245                 goto free_tx_skbuff;
246         }
247
248         tiptr = qe_muram_alloc(32, 32);
249         if (tiptr < 0) {
250                 dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
251                 ret = -ENOMEM;
252                 goto free_riptr;
253         }
254         if (riptr != (u16)riptr || tiptr != (u16)tiptr) {
255                 dev_err(priv->dev, "MURAM allocation out of addressable range\n");
256                 ret = -ENOMEM;
257                 goto free_tiptr;
258         }
259
260         /* Set RIPTR, TIPTR */
261         iowrite16be(riptr, &priv->ucc_pram->riptr);
262         iowrite16be(tiptr, &priv->ucc_pram->tiptr);
263
264         /* Set MRBLR */
265         iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
266
267         /* Set RBASE, TBASE */
268         iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
269         iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
270
271         /* Set RSTATE, TSTATE */
272         iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
273         iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
274
275         /* Set C_MASK, C_PRES for 16bit CRC */
276         iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
277         iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
278
279         iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
280         iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
281         iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
282         iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
283         iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
284         iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
285         iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
286         iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
287
288         /* Get BD buffer */
289         bd_buffer = dma_alloc_coherent(priv->dev,
290                                        (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
291                                        &bd_dma_addr, GFP_KERNEL);
292
293         if (!bd_buffer) {
294                 dev_err(priv->dev, "Could not allocate buffer descriptors\n");
295                 ret = -ENOMEM;
296                 goto free_tiptr;
297         }
298
299         priv->rx_buffer = bd_buffer;
300         priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
301
302         priv->dma_rx_addr = bd_dma_addr;
303         priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
304
305         for (i = 0; i < RX_BD_RING_LEN; i++) {
306                 if (i < (RX_BD_RING_LEN - 1))
307                         bd_status = R_E_S | R_I_S;
308                 else
309                         bd_status = R_E_S | R_I_S | R_W_S;
310
311                 priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
312                 priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
313         }
314
315         for (i = 0; i < TX_BD_RING_LEN; i++) {
316                 if (i < (TX_BD_RING_LEN - 1))
317                         bd_status =  T_I_S | T_TC_S;
318                 else
319                         bd_status =  T_I_S | T_TC_S | T_W_S;
320
321                 priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
322                 priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
323         }
324         dma_wmb();
325
326         return 0;
327
328 free_tiptr:
329         qe_muram_free(tiptr);
330 free_riptr:
331         qe_muram_free(riptr);
332 free_tx_skbuff:
333         kfree(priv->tx_skbuff);
334 free_rx_skbuff:
335         kfree(priv->rx_skbuff);
336 free_ucc_pram:
337         qe_muram_free(priv->ucc_pram_offset);
338 free_tx_bd:
339         dma_free_coherent(priv->dev,
340                           TX_BD_RING_LEN * sizeof(struct qe_bd),
341                           priv->tx_bd_base, priv->dma_tx_bd);
342 free_rx_bd:
343         dma_free_coherent(priv->dev,
344                           RX_BD_RING_LEN * sizeof(struct qe_bd),
345                           priv->rx_bd_base, priv->dma_rx_bd);
346 free_uccf:
347         ucc_fast_free(priv->uccf);
348
349         return ret;
350 }
351
352 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
353 {
354         hdlc_device *hdlc = dev_to_hdlc(dev);
355         struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
356         struct qe_bd *bd;
357         u16 bd_status;
358         unsigned long flags;
359         __be16 *proto_head;
360
361         switch (dev->type) {
362         case ARPHRD_RAWHDLC:
363                 if (skb_headroom(skb) < HDLC_HEAD_LEN) {
364                         dev->stats.tx_dropped++;
365                         dev_kfree_skb(skb);
366                         netdev_err(dev, "No enough space for hdlc head\n");
367                         return -ENOMEM;
368                 }
369
370                 skb_push(skb, HDLC_HEAD_LEN);
371
372                 proto_head = (__be16 *)skb->data;
373                 *proto_head = htons(DEFAULT_HDLC_HEAD);
374
375                 dev->stats.tx_bytes += skb->len;
376                 break;
377
378         case ARPHRD_PPP:
379                 proto_head = (__be16 *)skb->data;
380                 if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
381                         dev->stats.tx_dropped++;
382                         dev_kfree_skb(skb);
383                         netdev_err(dev, "Wrong ppp header\n");
384                         return -ENOMEM;
385                 }
386
387                 dev->stats.tx_bytes += skb->len;
388                 break;
389
390         case ARPHRD_ETHER:
391                 dev->stats.tx_bytes += skb->len;
392                 break;
393
394         default:
395                 dev->stats.tx_dropped++;
396                 dev_kfree_skb(skb);
397                 return -ENOMEM;
398         }
399         netdev_sent_queue(dev, skb->len);
400         spin_lock_irqsave(&priv->lock, flags);
401
402         dma_rmb();
403         /* Start from the next BD that should be filled */
404         bd = priv->curtx_bd;
405         bd_status = be16_to_cpu(bd->status);
406         /* Save the skb pointer so we can free it later */
407         priv->tx_skbuff[priv->skb_curtx] = skb;
408
409         /* Update the current skb pointer (wrapping if this was the last) */
410         priv->skb_curtx =
411             (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
412
413         /* copy skb data to tx buffer for sdma processing */
414         memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
415                skb->data, skb->len);
416
417         /* set bd status and length */
418         bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
419
420         bd->length = cpu_to_be16(skb->len);
421         bd->status = cpu_to_be16(bd_status);
422
423         /* Move to next BD in the ring */
424         if (!(bd_status & T_W_S))
425                 bd += 1;
426         else
427                 bd = priv->tx_bd_base;
428
429         if (bd == priv->dirty_tx) {
430                 if (!netif_queue_stopped(dev))
431                         netif_stop_queue(dev);
432         }
433
434         priv->curtx_bd = bd;
435
436         spin_unlock_irqrestore(&priv->lock, flags);
437
438         return NETDEV_TX_OK;
439 }
440
441 static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
442 {
443         u32 cecr_subblock;
444
445         cecr_subblock =
446                 ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
447
448         qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
449                      QE_CR_PROTOCOL_UNSPECIFIED, 0);
450         return 0;
451 }
452
453 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
454 {
455         /* Start from the next BD that should be filled */
456         struct net_device *dev = priv->ndev;
457         unsigned int bytes_sent = 0;
458         int howmany = 0;
459         struct qe_bd *bd;               /* BD pointer */
460         u16 bd_status;
461         int tx_restart = 0;
462
463         dma_rmb();
464         bd = priv->dirty_tx;
465         bd_status = be16_to_cpu(bd->status);
466
467         /* Normal processing. */
468         while ((bd_status & T_R_S) == 0) {
469                 struct sk_buff *skb;
470
471                 if (bd_status & T_UN_S) { /* Underrun */
472                         dev->stats.tx_fifo_errors++;
473                         tx_restart = 1;
474                 }
475                 if (bd_status & T_CT_S) { /* Carrier lost */
476                         dev->stats.tx_carrier_errors++;
477                         tx_restart = 1;
478                 }
479
480                 /* BD contains already transmitted buffer.   */
481                 /* Handle the transmitted buffer and release */
482                 /* the BD to be used with the current frame  */
483
484                 skb = priv->tx_skbuff[priv->skb_dirtytx];
485                 if (!skb)
486                         break;
487                 howmany++;
488                 bytes_sent += skb->len;
489                 dev->stats.tx_packets++;
490                 memset(priv->tx_buffer +
491                        (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
492                        0, skb->len);
493                 dev_consume_skb_irq(skb);
494
495                 priv->tx_skbuff[priv->skb_dirtytx] = NULL;
496                 priv->skb_dirtytx =
497                     (priv->skb_dirtytx +
498                      1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
499
500                 /* We freed a buffer, so now we can restart transmission */
501                 if (netif_queue_stopped(dev))
502                         netif_wake_queue(dev);
503
504                 /* Advance the confirmation BD pointer */
505                 if (!(bd_status & T_W_S))
506                         bd += 1;
507                 else
508                         bd = priv->tx_bd_base;
509                 bd_status = be16_to_cpu(bd->status);
510         }
511         priv->dirty_tx = bd;
512
513         if (tx_restart)
514                 hdlc_tx_restart(priv);
515
516         netdev_completed_queue(dev, howmany, bytes_sent);
517         return 0;
518 }
519
520 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
521 {
522         struct net_device *dev = priv->ndev;
523         struct sk_buff *skb = NULL;
524         hdlc_device *hdlc = dev_to_hdlc(dev);
525         struct qe_bd *bd;
526         u16 bd_status;
527         u16 length, howmany = 0;
528         u8 *bdbuffer;
529
530         dma_rmb();
531         bd = priv->currx_bd;
532         bd_status = be16_to_cpu(bd->status);
533
534         /* while there are received buffers and BD is full (~R_E) */
535         while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
536                 if (bd_status & (RX_BD_ERRORS)) {
537                         dev->stats.rx_errors++;
538
539                         if (bd_status & R_CD_S)
540                                 dev->stats.collisions++;
541                         if (bd_status & R_OV_S)
542                                 dev->stats.rx_fifo_errors++;
543                         if (bd_status & R_CR_S)
544                                 dev->stats.rx_crc_errors++;
545                         if (bd_status & R_AB_S)
546                                 dev->stats.rx_over_errors++;
547                         if (bd_status & R_NO_S)
548                                 dev->stats.rx_frame_errors++;
549                         if (bd_status & R_LG_S)
550                                 dev->stats.rx_length_errors++;
551
552                         goto recycle;
553                 }
554                 bdbuffer = priv->rx_buffer +
555                         (priv->currx_bdnum * MAX_RX_BUF_LENGTH);
556                 length = be16_to_cpu(bd->length);
557
558                 switch (dev->type) {
559                 case ARPHRD_RAWHDLC:
560                         bdbuffer += HDLC_HEAD_LEN;
561                         length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
562
563                         skb = dev_alloc_skb(length);
564                         if (!skb) {
565                                 dev->stats.rx_dropped++;
566                                 return -ENOMEM;
567                         }
568
569                         skb_put(skb, length);
570                         skb->len = length;
571                         skb->dev = dev;
572                         memcpy(skb->data, bdbuffer, length);
573                         break;
574
575                 case ARPHRD_PPP:
576                 case ARPHRD_ETHER:
577                         length -= HDLC_CRC_SIZE;
578
579                         skb = dev_alloc_skb(length);
580                         if (!skb) {
581                                 dev->stats.rx_dropped++;
582                                 return -ENOMEM;
583                         }
584
585                         skb_put(skb, length);
586                         skb->len = length;
587                         skb->dev = dev;
588                         memcpy(skb->data, bdbuffer, length);
589                         break;
590                 }
591
592                 dev->stats.rx_packets++;
593                 dev->stats.rx_bytes += skb->len;
594                 howmany++;
595                 if (hdlc->proto)
596                         skb->protocol = hdlc_type_trans(skb, dev);
597                 netif_receive_skb(skb);
598
599 recycle:
600                 bd->status = cpu_to_be16((bd_status & R_W_S) | R_E_S | R_I_S);
601
602                 /* update to point at the next bd */
603                 if (bd_status & R_W_S) {
604                         priv->currx_bdnum = 0;
605                         bd = priv->rx_bd_base;
606                 } else {
607                         if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
608                                 priv->currx_bdnum += 1;
609                         else
610                                 priv->currx_bdnum = RX_BD_RING_LEN - 1;
611
612                         bd += 1;
613                 }
614
615                 bd_status = be16_to_cpu(bd->status);
616         }
617         dma_rmb();
618
619         priv->currx_bd = bd;
620         return howmany;
621 }
622
623 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
624 {
625         struct ucc_hdlc_private *priv = container_of(napi,
626                                                      struct ucc_hdlc_private,
627                                                      napi);
628         int howmany;
629
630         /* Tx event processing */
631         spin_lock(&priv->lock);
632         hdlc_tx_done(priv);
633         spin_unlock(&priv->lock);
634
635         howmany = 0;
636         howmany += hdlc_rx_done(priv, budget - howmany);
637
638         if (howmany < budget) {
639                 napi_complete_done(napi, howmany);
640                 qe_setbits_be32(priv->uccf->p_uccm,
641                                 (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
642         }
643
644         return howmany;
645 }
646
647 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
648 {
649         struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
650         struct net_device *dev = priv->ndev;
651         struct ucc_fast_private *uccf;
652         u32 ucce;
653         u32 uccm;
654
655         uccf = priv->uccf;
656
657         ucce = ioread32be(uccf->p_ucce);
658         uccm = ioread32be(uccf->p_uccm);
659         ucce &= uccm;
660         iowrite32be(ucce, uccf->p_ucce);
661         if (!ucce)
662                 return IRQ_NONE;
663
664         if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
665                 if (napi_schedule_prep(&priv->napi)) {
666                         uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
667                                   << 16);
668                         iowrite32be(uccm, uccf->p_uccm);
669                         __napi_schedule(&priv->napi);
670                 }
671         }
672
673         /* Errors and other events */
674         if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
675                 dev->stats.rx_missed_errors++;
676         if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
677                 dev->stats.tx_errors++;
678
679         return IRQ_HANDLED;
680 }
681
682 static int uhdlc_ioctl(struct net_device *dev, struct if_settings *ifs)
683 {
684         const size_t size = sizeof(te1_settings);
685         te1_settings line;
686         struct ucc_hdlc_private *priv = netdev_priv(dev);
687
688         switch (ifs->type) {
689         case IF_GET_IFACE:
690                 ifs->type = IF_IFACE_E1;
691                 if (ifs->size < size) {
692                         ifs->size = size; /* data size wanted */
693                         return -ENOBUFS;
694                 }
695                 memset(&line, 0, sizeof(line));
696                 line.clock_type = priv->clocking;
697
698                 if (copy_to_user(ifs->ifs_ifsu.sync, &line, size))
699                         return -EFAULT;
700                 return 0;
701
702         default:
703                 return hdlc_ioctl(dev, ifs);
704         }
705 }
706
707 static int uhdlc_open(struct net_device *dev)
708 {
709         u32 cecr_subblock;
710         hdlc_device *hdlc = dev_to_hdlc(dev);
711         struct ucc_hdlc_private *priv = hdlc->priv;
712         struct ucc_tdm *utdm = priv->utdm;
713         int rc = 0;
714
715         if (priv->hdlc_busy != 1) {
716                 if (request_irq(priv->ut_info->uf_info.irq,
717                                 ucc_hdlc_irq_handler, 0, "hdlc", priv))
718                         return -ENODEV;
719
720                 cecr_subblock = ucc_fast_get_qe_cr_subblock(
721                                         priv->ut_info->uf_info.ucc_num);
722
723                 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
724                              QE_CR_PROTOCOL_UNSPECIFIED, 0);
725
726                 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
727
728                 /* Enable the TDM port */
729                 if (priv->tsa)
730                         qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
731
732                 priv->hdlc_busy = 1;
733                 netif_device_attach(priv->ndev);
734                 napi_enable(&priv->napi);
735                 netdev_reset_queue(dev);
736                 netif_start_queue(dev);
737
738                 rc = hdlc_open(dev);
739                 if (rc)
740                         uhdlc_close(dev);
741         }
742
743         return rc;
744 }
745
746 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
747 {
748         qe_muram_free(ioread16be(&priv->ucc_pram->riptr));
749         qe_muram_free(ioread16be(&priv->ucc_pram->tiptr));
750
751         if (priv->rx_bd_base) {
752                 dma_free_coherent(priv->dev,
753                                   RX_BD_RING_LEN * sizeof(struct qe_bd),
754                                   priv->rx_bd_base, priv->dma_rx_bd);
755
756                 priv->rx_bd_base = NULL;
757                 priv->dma_rx_bd = 0;
758         }
759
760         if (priv->tx_bd_base) {
761                 dma_free_coherent(priv->dev,
762                                   TX_BD_RING_LEN * sizeof(struct qe_bd),
763                                   priv->tx_bd_base, priv->dma_tx_bd);
764
765                 priv->tx_bd_base = NULL;
766                 priv->dma_tx_bd = 0;
767         }
768
769         if (priv->ucc_pram) {
770                 qe_muram_free(priv->ucc_pram_offset);
771                 priv->ucc_pram = NULL;
772                 priv->ucc_pram_offset = 0;
773          }
774
775         kfree(priv->rx_skbuff);
776         priv->rx_skbuff = NULL;
777
778         kfree(priv->tx_skbuff);
779         priv->tx_skbuff = NULL;
780
781         if (priv->uf_regs) {
782                 iounmap(priv->uf_regs);
783                 priv->uf_regs = NULL;
784         }
785
786         if (priv->uccf) {
787                 ucc_fast_free(priv->uccf);
788                 priv->uccf = NULL;
789         }
790
791         if (priv->rx_buffer) {
792                 dma_free_coherent(priv->dev,
793                                   RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
794                                   priv->rx_buffer, priv->dma_rx_addr);
795                 priv->rx_buffer = NULL;
796                 priv->dma_rx_addr = 0;
797         }
798
799         if (priv->tx_buffer) {
800                 dma_free_coherent(priv->dev,
801                                   TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
802                                   priv->tx_buffer, priv->dma_tx_addr);
803                 priv->tx_buffer = NULL;
804                 priv->dma_tx_addr = 0;
805         }
806 }
807
808 static int uhdlc_close(struct net_device *dev)
809 {
810         struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
811         struct ucc_tdm *utdm = priv->utdm;
812         u32 cecr_subblock;
813
814         napi_disable(&priv->napi);
815         cecr_subblock = ucc_fast_get_qe_cr_subblock(
816                                 priv->ut_info->uf_info.ucc_num);
817
818         qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
819                      (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
820         qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
821                      (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
822
823         if (priv->tsa)
824                 qe_clrbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
825
826         ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
827
828         free_irq(priv->ut_info->uf_info.irq, priv);
829         netif_stop_queue(dev);
830         netdev_reset_queue(dev);
831         priv->hdlc_busy = 0;
832
833         hdlc_close(dev);
834
835         return 0;
836 }
837
838 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
839                            unsigned short parity)
840 {
841         struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
842
843         if (encoding != ENCODING_NRZ &&
844             encoding != ENCODING_NRZI)
845                 return -EINVAL;
846
847         if (parity != PARITY_NONE &&
848             parity != PARITY_CRC32_PR1_CCITT &&
849             parity != PARITY_CRC16_PR0_CCITT &&
850             parity != PARITY_CRC16_PR1_CCITT)
851                 return -EINVAL;
852
853         priv->encoding = encoding;
854         priv->parity = parity;
855
856         return 0;
857 }
858
859 #ifdef CONFIG_PM
860 static void store_clk_config(struct ucc_hdlc_private *priv)
861 {
862         struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
863
864         /* store si clk */
865         priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
866         priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
867
868         /* store si sync */
869         priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
870
871         /* store ucc clk */
872         memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
873 }
874
875 static void resume_clk_config(struct ucc_hdlc_private *priv)
876 {
877         struct qe_mux __iomem *qe_mux_reg = &qe_immr->qmx;
878
879         memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
880
881         iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
882         iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
883
884         iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
885 }
886
887 static int uhdlc_suspend(struct device *dev)
888 {
889         struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
890         struct ucc_fast __iomem *uf_regs;
891
892         if (!priv)
893                 return -EINVAL;
894
895         if (!netif_running(priv->ndev))
896                 return 0;
897
898         netif_device_detach(priv->ndev);
899         napi_disable(&priv->napi);
900
901         uf_regs = priv->uf_regs;
902
903         /* backup gumr guemr*/
904         priv->gumr = ioread32be(&uf_regs->gumr);
905         priv->guemr = ioread8(&uf_regs->guemr);
906
907         priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
908                                         GFP_KERNEL);
909         if (!priv->ucc_pram_bak)
910                 return -ENOMEM;
911
912         /* backup HDLC parameter */
913         memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
914                       sizeof(struct ucc_hdlc_param));
915
916         /* store the clk configuration */
917         store_clk_config(priv);
918
919         /* save power */
920         ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
921
922         return 0;
923 }
924
925 static int uhdlc_resume(struct device *dev)
926 {
927         struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
928         struct ucc_tdm *utdm;
929         struct ucc_tdm_info *ut_info;
930         struct ucc_fast __iomem *uf_regs;
931         struct ucc_fast_private *uccf;
932         struct ucc_fast_info *uf_info;
933         int i;
934         u32 cecr_subblock;
935         u16 bd_status;
936
937         if (!priv)
938                 return -EINVAL;
939
940         if (!netif_running(priv->ndev))
941                 return 0;
942
943         utdm = priv->utdm;
944         ut_info = priv->ut_info;
945         uf_info = &ut_info->uf_info;
946         uf_regs = priv->uf_regs;
947         uccf = priv->uccf;
948
949         /* restore gumr guemr */
950         iowrite8(priv->guemr, &uf_regs->guemr);
951         iowrite32be(priv->gumr, &uf_regs->gumr);
952
953         /* Set Virtual Fifo registers */
954         iowrite16be(uf_info->urfs, &uf_regs->urfs);
955         iowrite16be(uf_info->urfet, &uf_regs->urfet);
956         iowrite16be(uf_info->urfset, &uf_regs->urfset);
957         iowrite16be(uf_info->utfs, &uf_regs->utfs);
958         iowrite16be(uf_info->utfet, &uf_regs->utfet);
959         iowrite16be(uf_info->utftt, &uf_regs->utftt);
960         /* utfb, urfb are offsets from MURAM base */
961         iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
962         iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
963
964         /* Rx Tx and sync clock routing */
965         resume_clk_config(priv);
966
967         iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
968         iowrite32be(0xffffffff, &uf_regs->ucce);
969
970         ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
971
972         /* rebuild SIRAM */
973         if (priv->tsa)
974                 ucc_tdm_init(priv->utdm, priv->ut_info);
975
976         /* Write to QE CECR, UCCx channel to Stop Transmission */
977         cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
978         qe_issue_cmd(QE_STOP_TX, cecr_subblock,
979                      (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
980
981         /* Set UPSMR normal mode */
982         iowrite32be(0, &uf_regs->upsmr);
983
984         /* init parameter base */
985         cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
986         qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
987                      QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
988
989         priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
990                                 qe_muram_addr(priv->ucc_pram_offset);
991
992         /* restore ucc parameter */
993         memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
994                     sizeof(struct ucc_hdlc_param));
995         kfree(priv->ucc_pram_bak);
996
997         /* rebuild BD entry */
998         for (i = 0; i < RX_BD_RING_LEN; i++) {
999                 if (i < (RX_BD_RING_LEN - 1))
1000                         bd_status = R_E_S | R_I_S;
1001                 else
1002                         bd_status = R_E_S | R_I_S | R_W_S;
1003
1004                 priv->rx_bd_base[i].status = cpu_to_be16(bd_status);
1005                 priv->rx_bd_base[i].buf = cpu_to_be32(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH);
1006         }
1007
1008         for (i = 0; i < TX_BD_RING_LEN; i++) {
1009                 if (i < (TX_BD_RING_LEN - 1))
1010                         bd_status =  T_I_S | T_TC_S;
1011                 else
1012                         bd_status =  T_I_S | T_TC_S | T_W_S;
1013
1014                 priv->tx_bd_base[i].status = cpu_to_be16(bd_status);
1015                 priv->tx_bd_base[i].buf = cpu_to_be32(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH);
1016         }
1017         dma_wmb();
1018
1019         /* if hdlc is busy enable TX and RX */
1020         if (priv->hdlc_busy == 1) {
1021                 cecr_subblock = ucc_fast_get_qe_cr_subblock(
1022                                         priv->ut_info->uf_info.ucc_num);
1023
1024                 qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1025                              (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1026
1027                 ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1028
1029                 /* Enable the TDM port */
1030                 if (priv->tsa)
1031                         qe_setbits_8(&utdm->si_regs->siglmr1_h, 0x1 << utdm->tdm_port);
1032         }
1033
1034         napi_enable(&priv->napi);
1035         netif_device_attach(priv->ndev);
1036
1037         return 0;
1038 }
1039
1040 static const struct dev_pm_ops uhdlc_pm_ops = {
1041         .suspend = uhdlc_suspend,
1042         .resume = uhdlc_resume,
1043         .freeze = uhdlc_suspend,
1044         .thaw = uhdlc_resume,
1045 };
1046
1047 #define HDLC_PM_OPS (&uhdlc_pm_ops)
1048
1049 #else
1050
1051 #define HDLC_PM_OPS NULL
1052
1053 #endif
1054 static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1055 {
1056         netdev_err(ndev, "%s\n", __func__);
1057 }
1058
1059 static const struct net_device_ops uhdlc_ops = {
1060         .ndo_open       = uhdlc_open,
1061         .ndo_stop       = uhdlc_close,
1062         .ndo_start_xmit = hdlc_start_xmit,
1063         .ndo_siocwandev = uhdlc_ioctl,
1064         .ndo_tx_timeout = uhdlc_tx_timeout,
1065 };
1066
1067 static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1068 {
1069         struct device_node *np;
1070         struct platform_device *pdev;
1071         struct resource *res;
1072         static int siram_init_flag;
1073         int ret = 0;
1074
1075         np = of_find_compatible_node(NULL, NULL, name);
1076         if (!np)
1077                 return -EINVAL;
1078
1079         pdev = of_find_device_by_node(np);
1080         if (!pdev) {
1081                 pr_err("%pOFn: failed to lookup pdev\n", np);
1082                 of_node_put(np);
1083                 return -EINVAL;
1084         }
1085
1086         of_node_put(np);
1087         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1088         if (!res) {
1089                 ret = -EINVAL;
1090                 goto error_put_device;
1091         }
1092         *ptr = ioremap(res->start, resource_size(res));
1093         if (!*ptr) {
1094                 ret = -ENOMEM;
1095                 goto error_put_device;
1096         }
1097
1098         /* We've remapped the addresses, and we don't need the device any
1099          * more, so we should release it.
1100          */
1101         put_device(&pdev->dev);
1102
1103         if (init_flag && siram_init_flag == 0) {
1104                 memset_io(*ptr, 0, resource_size(res));
1105                 siram_init_flag = 1;
1106         }
1107         return  0;
1108
1109 error_put_device:
1110         put_device(&pdev->dev);
1111
1112         return ret;
1113 }
1114
1115 static int ucc_hdlc_probe(struct platform_device *pdev)
1116 {
1117         struct device_node *np = pdev->dev.of_node;
1118         struct ucc_hdlc_private *uhdlc_priv = NULL;
1119         struct ucc_tdm_info *ut_info;
1120         struct ucc_tdm *utdm = NULL;
1121         struct resource res;
1122         struct net_device *dev;
1123         hdlc_device *hdlc;
1124         int ucc_num;
1125         const char *sprop;
1126         int ret;
1127         u32 val;
1128
1129         ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1130         if (ret) {
1131                 dev_err(&pdev->dev, "Invalid ucc property\n");
1132                 return -ENODEV;
1133         }
1134
1135         ucc_num = val - 1;
1136         if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1137                 dev_err(&pdev->dev, ": Invalid UCC num\n");
1138                 return -EINVAL;
1139         }
1140
1141         memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1142                sizeof(utdm_primary_info));
1143
1144         ut_info = &utdm_info[ucc_num];
1145         ut_info->uf_info.ucc_num = ucc_num;
1146
1147         sprop = of_get_property(np, "rx-clock-name", NULL);
1148         if (sprop) {
1149                 ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1150                 if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1151                     (ut_info->uf_info.rx_clock > QE_CLK24)) {
1152                         dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1153                         return -EINVAL;
1154                 }
1155         } else {
1156                 dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1157                 return -EINVAL;
1158         }
1159
1160         sprop = of_get_property(np, "tx-clock-name", NULL);
1161         if (sprop) {
1162                 ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1163                 if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1164                     (ut_info->uf_info.tx_clock > QE_CLK24)) {
1165                         dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1166                         return -EINVAL;
1167                 }
1168         } else {
1169                 dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1170                 return -EINVAL;
1171         }
1172
1173         ret = of_address_to_resource(np, 0, &res);
1174         if (ret)
1175                 return -EINVAL;
1176
1177         ut_info->uf_info.regs = res.start;
1178         ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1179
1180         uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1181         if (!uhdlc_priv)
1182                 return -ENOMEM;
1183
1184         dev_set_drvdata(&pdev->dev, uhdlc_priv);
1185         uhdlc_priv->dev = &pdev->dev;
1186         uhdlc_priv->ut_info = ut_info;
1187
1188         uhdlc_priv->tsa = of_property_read_bool(np, "fsl,tdm-interface");
1189         uhdlc_priv->loopback = of_property_read_bool(np, "fsl,ucc-internal-loopback");
1190         uhdlc_priv->hdlc_bus = of_property_read_bool(np, "fsl,hdlc-bus");
1191
1192         if (uhdlc_priv->tsa == 1) {
1193                 utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1194                 if (!utdm) {
1195                         ret = -ENOMEM;
1196                         dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1197                         goto free_uhdlc_priv;
1198                 }
1199                 uhdlc_priv->utdm = utdm;
1200                 ret = ucc_of_parse_tdm(np, utdm, ut_info);
1201                 if (ret)
1202                         goto free_utdm;
1203
1204                 ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1205                                      (void __iomem **)&utdm->si_regs);
1206                 if (ret)
1207                         goto free_utdm;
1208                 ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1209                                      (void __iomem **)&utdm->siram);
1210                 if (ret)
1211                         goto unmap_si_regs;
1212         }
1213
1214         if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1215                 uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1216
1217         ret = uhdlc_init(uhdlc_priv);
1218         if (ret) {
1219                 dev_err(&pdev->dev, "Failed to init uhdlc\n");
1220                 goto undo_uhdlc_init;
1221         }
1222
1223         dev = alloc_hdlcdev(uhdlc_priv);
1224         if (!dev) {
1225                 ret = -ENOMEM;
1226                 pr_err("ucc_hdlc: unable to allocate memory\n");
1227                 goto undo_uhdlc_init;
1228         }
1229
1230         uhdlc_priv->ndev = dev;
1231         hdlc = dev_to_hdlc(dev);
1232         dev->tx_queue_len = 16;
1233         dev->netdev_ops = &uhdlc_ops;
1234         dev->watchdog_timeo = 2 * HZ;
1235         hdlc->attach = ucc_hdlc_attach;
1236         hdlc->xmit = ucc_hdlc_tx;
1237         netif_napi_add_weight(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1238         if (register_hdlc_device(dev)) {
1239                 ret = -ENOBUFS;
1240                 pr_err("ucc_hdlc: unable to register hdlc device\n");
1241                 goto free_dev;
1242         }
1243
1244         return 0;
1245
1246 free_dev:
1247         free_netdev(dev);
1248 undo_uhdlc_init:
1249         if (utdm)
1250                 iounmap(utdm->siram);
1251 unmap_si_regs:
1252         if (utdm)
1253                 iounmap(utdm->si_regs);
1254 free_utdm:
1255         if (uhdlc_priv->tsa)
1256                 kfree(utdm);
1257 free_uhdlc_priv:
1258         kfree(uhdlc_priv);
1259         return ret;
1260 }
1261
1262 static void ucc_hdlc_remove(struct platform_device *pdev)
1263 {
1264         struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1265
1266         uhdlc_memclean(priv);
1267
1268         if (priv->utdm->si_regs) {
1269                 iounmap(priv->utdm->si_regs);
1270                 priv->utdm->si_regs = NULL;
1271         }
1272
1273         if (priv->utdm->siram) {
1274                 iounmap(priv->utdm->siram);
1275                 priv->utdm->siram = NULL;
1276         }
1277         kfree(priv);
1278
1279         dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1280 }
1281
1282 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1283         {
1284         .compatible = "fsl,ucc-hdlc",
1285         },
1286         {},
1287 };
1288
1289 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1290
1291 static struct platform_driver ucc_hdlc_driver = {
1292         .probe  = ucc_hdlc_probe,
1293         .remove_new = ucc_hdlc_remove,
1294         .driver = {
1295                 .name           = DRV_NAME,
1296                 .pm             = HDLC_PM_OPS,
1297                 .of_match_table = fsl_ucc_hdlc_of_match,
1298         },
1299 };
1300
1301 module_platform_driver(ucc_hdlc_driver);
1302 MODULE_LICENSE("GPL");
1303 MODULE_DESCRIPTION(DRV_DESC);