S2IO: statistics for memory allocation failuers
[sfrench/cifs-2.6.git] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2 and 3.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     1(MSI), 2(MSI_X). Default value is '0(INTA)'
41  * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.22.1"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[4] = {32,48,48,64};
94 static int rxd_count[4] = {127,85,85,63};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
135         "Register test\t(offline)",
136         "Eeprom test\t(offline)",
137         "Link test\t(online)",
138         "RLDRAM test\t(offline)",
139         "BIST Test\t(offline)"
140 };
141
142 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
143         {"tmac_frms"},
144         {"tmac_data_octets"},
145         {"tmac_drop_frms"},
146         {"tmac_mcst_frms"},
147         {"tmac_bcst_frms"},
148         {"tmac_pause_ctrl_frms"},
149         {"tmac_ttl_octets"},
150         {"tmac_ucst_frms"},
151         {"tmac_nucst_frms"},
152         {"tmac_any_err_frms"},
153         {"tmac_ttl_less_fb_octets"},
154         {"tmac_vld_ip_octets"},
155         {"tmac_vld_ip"},
156         {"tmac_drop_ip"},
157         {"tmac_icmp"},
158         {"tmac_rst_tcp"},
159         {"tmac_tcp"},
160         {"tmac_udp"},
161         {"rmac_vld_frms"},
162         {"rmac_data_octets"},
163         {"rmac_fcs_err_frms"},
164         {"rmac_drop_frms"},
165         {"rmac_vld_mcst_frms"},
166         {"rmac_vld_bcst_frms"},
167         {"rmac_in_rng_len_err_frms"},
168         {"rmac_out_rng_len_err_frms"},
169         {"rmac_long_frms"},
170         {"rmac_pause_ctrl_frms"},
171         {"rmac_unsup_ctrl_frms"},
172         {"rmac_ttl_octets"},
173         {"rmac_accepted_ucst_frms"},
174         {"rmac_accepted_nucst_frms"},
175         {"rmac_discarded_frms"},
176         {"rmac_drop_events"},
177         {"rmac_ttl_less_fb_octets"},
178         {"rmac_ttl_frms"},
179         {"rmac_usized_frms"},
180         {"rmac_osized_frms"},
181         {"rmac_frag_frms"},
182         {"rmac_jabber_frms"},
183         {"rmac_ttl_64_frms"},
184         {"rmac_ttl_65_127_frms"},
185         {"rmac_ttl_128_255_frms"},
186         {"rmac_ttl_256_511_frms"},
187         {"rmac_ttl_512_1023_frms"},
188         {"rmac_ttl_1024_1518_frms"},
189         {"rmac_ip"},
190         {"rmac_ip_octets"},
191         {"rmac_hdr_err_ip"},
192         {"rmac_drop_ip"},
193         {"rmac_icmp"},
194         {"rmac_tcp"},
195         {"rmac_udp"},
196         {"rmac_err_drp_udp"},
197         {"rmac_xgmii_err_sym"},
198         {"rmac_frms_q0"},
199         {"rmac_frms_q1"},
200         {"rmac_frms_q2"},
201         {"rmac_frms_q3"},
202         {"rmac_frms_q4"},
203         {"rmac_frms_q5"},
204         {"rmac_frms_q6"},
205         {"rmac_frms_q7"},
206         {"rmac_full_q0"},
207         {"rmac_full_q1"},
208         {"rmac_full_q2"},
209         {"rmac_full_q3"},
210         {"rmac_full_q4"},
211         {"rmac_full_q5"},
212         {"rmac_full_q6"},
213         {"rmac_full_q7"},
214         {"rmac_pause_cnt"},
215         {"rmac_xgmii_data_err_cnt"},
216         {"rmac_xgmii_ctrl_err_cnt"},
217         {"rmac_accepted_ip"},
218         {"rmac_err_tcp"},
219         {"rd_req_cnt"},
220         {"new_rd_req_cnt"},
221         {"new_rd_req_rtry_cnt"},
222         {"rd_rtry_cnt"},
223         {"wr_rtry_rd_ack_cnt"},
224         {"wr_req_cnt"},
225         {"new_wr_req_cnt"},
226         {"new_wr_req_rtry_cnt"},
227         {"wr_rtry_cnt"},
228         {"wr_disc_cnt"},
229         {"rd_rtry_wr_ack_cnt"},
230         {"txp_wr_cnt"},
231         {"txd_rd_cnt"},
232         {"txd_wr_cnt"},
233         {"rxd_rd_cnt"},
234         {"rxd_wr_cnt"},
235         {"txf_rd_cnt"},
236         {"rxf_wr_cnt"}
237 };
238
239 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
240         {"rmac_ttl_1519_4095_frms"},
241         {"rmac_ttl_4096_8191_frms"},
242         {"rmac_ttl_8192_max_frms"},
243         {"rmac_ttl_gt_max_frms"},
244         {"rmac_osized_alt_frms"},
245         {"rmac_jabber_alt_frms"},
246         {"rmac_gt_max_alt_frms"},
247         {"rmac_vlan_frms"},
248         {"rmac_len_discard"},
249         {"rmac_fcs_discard"},
250         {"rmac_pf_discard"},
251         {"rmac_da_discard"},
252         {"rmac_red_discard"},
253         {"rmac_rts_discard"},
254         {"rmac_ingm_full_discard"},
255         {"link_fault_cnt"}
256 };
257
258 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
259         {"\n DRIVER STATISTICS"},
260         {"single_bit_ecc_errs"},
261         {"double_bit_ecc_errs"},
262         {"parity_err_cnt"},
263         {"serious_err_cnt"},
264         {"soft_reset_cnt"},
265         {"fifo_full_cnt"},
266         {"ring_full_cnt"},
267         ("alarm_transceiver_temp_high"),
268         ("alarm_transceiver_temp_low"),
269         ("alarm_laser_bias_current_high"),
270         ("alarm_laser_bias_current_low"),
271         ("alarm_laser_output_power_high"),
272         ("alarm_laser_output_power_low"),
273         ("warn_transceiver_temp_high"),
274         ("warn_transceiver_temp_low"),
275         ("warn_laser_bias_current_high"),
276         ("warn_laser_bias_current_low"),
277         ("warn_laser_output_power_high"),
278         ("warn_laser_output_power_low"),
279         ("lro_aggregated_pkts"),
280         ("lro_flush_both_count"),
281         ("lro_out_of_sequence_pkts"),
282         ("lro_flush_due_to_max_pkts"),
283         ("lro_avg_aggr_pkts"),
284         ("mem_alloc_fail_cnt"),
285         ("watchdog_timer_cnt")
286 };
287
288 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
289 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
290                                         ETH_GSTRING_LEN
291 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
292
293 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
294 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
295
296 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
297 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
298
299 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
300 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
301
302 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
303                         init_timer(&timer);                     \
304                         timer.function = handle;                \
305                         timer.data = (unsigned long) arg;       \
306                         mod_timer(&timer, (jiffies + exp))      \
307
308 /* Add the vlan */
309 static void s2io_vlan_rx_register(struct net_device *dev,
310                                         struct vlan_group *grp)
311 {
312         struct s2io_nic *nic = dev->priv;
313         unsigned long flags;
314
315         spin_lock_irqsave(&nic->tx_lock, flags);
316         nic->vlgrp = grp;
317         spin_unlock_irqrestore(&nic->tx_lock, flags);
318 }
319
320 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
321 static int vlan_strip_flag;
322
323 /* Unregister the vlan */
324 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
325 {
326         struct s2io_nic *nic = dev->priv;
327         unsigned long flags;
328
329         spin_lock_irqsave(&nic->tx_lock, flags);
330         vlan_group_set_device(nic->vlgrp, vid, NULL);
331         spin_unlock_irqrestore(&nic->tx_lock, flags);
332 }
333
334 /*
335  * Constants to be programmed into the Xena's registers, to configure
336  * the XAUI.
337  */
338
339 #define END_SIGN        0x0
340 static const u64 herc_act_dtx_cfg[] = {
341         /* Set address */
342         0x8000051536750000ULL, 0x80000515367500E0ULL,
343         /* Write data */
344         0x8000051536750004ULL, 0x80000515367500E4ULL,
345         /* Set address */
346         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
347         /* Write data */
348         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
349         /* Set address */
350         0x801205150D440000ULL, 0x801205150D4400E0ULL,
351         /* Write data */
352         0x801205150D440004ULL, 0x801205150D4400E4ULL,
353         /* Set address */
354         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
355         /* Write data */
356         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
357         /* Done */
358         END_SIGN
359 };
360
361 static const u64 xena_dtx_cfg[] = {
362         /* Set address */
363         0x8000051500000000ULL, 0x80000515000000E0ULL,
364         /* Write data */
365         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
366         /* Set address */
367         0x8001051500000000ULL, 0x80010515000000E0ULL,
368         /* Write data */
369         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
370         /* Set address */
371         0x8002051500000000ULL, 0x80020515000000E0ULL,
372         /* Write data */
373         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
374         END_SIGN
375 };
376
377 /*
378  * Constants for Fixing the MacAddress problem seen mostly on
379  * Alpha machines.
380  */
381 static const u64 fix_mac[] = {
382         0x0060000000000000ULL, 0x0060600000000000ULL,
383         0x0040600000000000ULL, 0x0000600000000000ULL,
384         0x0020600000000000ULL, 0x0060600000000000ULL,
385         0x0020600000000000ULL, 0x0060600000000000ULL,
386         0x0020600000000000ULL, 0x0060600000000000ULL,
387         0x0020600000000000ULL, 0x0060600000000000ULL,
388         0x0020600000000000ULL, 0x0060600000000000ULL,
389         0x0020600000000000ULL, 0x0060600000000000ULL,
390         0x0020600000000000ULL, 0x0060600000000000ULL,
391         0x0020600000000000ULL, 0x0060600000000000ULL,
392         0x0020600000000000ULL, 0x0060600000000000ULL,
393         0x0020600000000000ULL, 0x0060600000000000ULL,
394         0x0020600000000000ULL, 0x0000600000000000ULL,
395         0x0040600000000000ULL, 0x0060600000000000ULL,
396         END_SIGN
397 };
398
399 MODULE_LICENSE("GPL");
400 MODULE_VERSION(DRV_VERSION);
401
402
403 /* Module Loadable parameters. */
404 S2IO_PARM_INT(tx_fifo_num, 1);
405 S2IO_PARM_INT(rx_ring_num, 1);
406
407
408 S2IO_PARM_INT(rx_ring_mode, 1);
409 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
410 S2IO_PARM_INT(rmac_pause_time, 0x100);
411 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
412 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
413 S2IO_PARM_INT(shared_splits, 0);
414 S2IO_PARM_INT(tmac_util_period, 5);
415 S2IO_PARM_INT(rmac_util_period, 5);
416 S2IO_PARM_INT(bimodal, 0);
417 S2IO_PARM_INT(l3l4hdr_size, 128);
418 /* Frequency of Rx desc syncs expressed as power of 2 */
419 S2IO_PARM_INT(rxsync_frequency, 3);
420 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
421 S2IO_PARM_INT(intr_type, 0);
422 /* Large receive offload feature */
423 S2IO_PARM_INT(lro, 0);
424 /* Max pkts to be aggregated by LRO at one time. If not specified,
425  * aggregation happens until we hit max IP pkt size(64K)
426  */
427 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
428 S2IO_PARM_INT(indicate_max_pkts, 0);
429
430 S2IO_PARM_INT(napi, 1);
431 S2IO_PARM_INT(ufo, 0);
432 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
433
434 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
435     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
436 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
437     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
438 static unsigned int rts_frm_len[MAX_RX_RINGS] =
439     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
440
441 module_param_array(tx_fifo_len, uint, NULL, 0);
442 module_param_array(rx_ring_sz, uint, NULL, 0);
443 module_param_array(rts_frm_len, uint, NULL, 0);
444
445 /*
446  * S2IO device table.
447  * This table lists all the devices that this driver supports.
448  */
449 static struct pci_device_id s2io_tbl[] __devinitdata = {
450         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
451          PCI_ANY_ID, PCI_ANY_ID},
452         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
453          PCI_ANY_ID, PCI_ANY_ID},
454         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
455          PCI_ANY_ID, PCI_ANY_ID},
456         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
457          PCI_ANY_ID, PCI_ANY_ID},
458         {0,}
459 };
460
461 MODULE_DEVICE_TABLE(pci, s2io_tbl);
462
463 static struct pci_driver s2io_driver = {
464       .name = "S2IO",
465       .id_table = s2io_tbl,
466       .probe = s2io_init_nic,
467       .remove = __devexit_p(s2io_rem_nic),
468 };
469
470 /* A simplifier macro used both by init and free shared_mem Fns(). */
471 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
472
473 /**
474  * init_shared_mem - Allocation and Initialization of Memory
475  * @nic: Device private variable.
476  * Description: The function allocates all the memory areas shared
477  * between the NIC and the driver. This includes Tx descriptors,
478  * Rx descriptors and the statistics block.
479  */
480
481 static int init_shared_mem(struct s2io_nic *nic)
482 {
483         u32 size;
484         void *tmp_v_addr, *tmp_v_addr_next;
485         dma_addr_t tmp_p_addr, tmp_p_addr_next;
486         struct RxD_block *pre_rxd_blk = NULL;
487         int i, j, blk_cnt;
488         int lst_size, lst_per_page;
489         struct net_device *dev = nic->dev;
490         unsigned long tmp;
491         struct buffAdd *ba;
492
493         struct mac_info *mac_control;
494         struct config_param *config;
495
496         mac_control = &nic->mac_control;
497         config = &nic->config;
498
499
500         /* Allocation and initialization of TXDLs in FIOFs */
501         size = 0;
502         for (i = 0; i < config->tx_fifo_num; i++) {
503                 size += config->tx_cfg[i].fifo_len;
504         }
505         if (size > MAX_AVAILABLE_TXDS) {
506                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
507                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
508                 return -EINVAL;
509         }
510
511         lst_size = (sizeof(struct TxD) * config->max_txds);
512         lst_per_page = PAGE_SIZE / lst_size;
513
514         for (i = 0; i < config->tx_fifo_num; i++) {
515                 int fifo_len = config->tx_cfg[i].fifo_len;
516                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
517                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
518                                                           GFP_KERNEL);
519                 if (!mac_control->fifos[i].list_info) {
520                         DBG_PRINT(INFO_DBG,
521                                   "Malloc failed for list_info\n");
522                         return -ENOMEM;
523                 }
524                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
525         }
526         for (i = 0; i < config->tx_fifo_num; i++) {
527                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
528                                                 lst_per_page);
529                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
530                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
531                     config->tx_cfg[i].fifo_len - 1;
532                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
533                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
534                     config->tx_cfg[i].fifo_len - 1;
535                 mac_control->fifos[i].fifo_no = i;
536                 mac_control->fifos[i].nic = nic;
537                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
538
539                 for (j = 0; j < page_num; j++) {
540                         int k = 0;
541                         dma_addr_t tmp_p;
542                         void *tmp_v;
543                         tmp_v = pci_alloc_consistent(nic->pdev,
544                                                      PAGE_SIZE, &tmp_p);
545                         if (!tmp_v) {
546                                 DBG_PRINT(INFO_DBG,
547                                           "pci_alloc_consistent ");
548                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
549                                 return -ENOMEM;
550                         }
551                         /* If we got a zero DMA address(can happen on
552                          * certain platforms like PPC), reallocate.
553                          * Store virtual address of page we don't want,
554                          * to be freed later.
555                          */
556                         if (!tmp_p) {
557                                 mac_control->zerodma_virt_addr = tmp_v;
558                                 DBG_PRINT(INIT_DBG,
559                                 "%s: Zero DMA address for TxDL. ", dev->name);
560                                 DBG_PRINT(INIT_DBG,
561                                 "Virtual address %p\n", tmp_v);
562                                 tmp_v = pci_alloc_consistent(nic->pdev,
563                                                      PAGE_SIZE, &tmp_p);
564                                 if (!tmp_v) {
565                                         DBG_PRINT(INFO_DBG,
566                                           "pci_alloc_consistent ");
567                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
568                                         return -ENOMEM;
569                                 }
570                         }
571                         while (k < lst_per_page) {
572                                 int l = (j * lst_per_page) + k;
573                                 if (l == config->tx_cfg[i].fifo_len)
574                                         break;
575                                 mac_control->fifos[i].list_info[l].list_virt_addr =
576                                     tmp_v + (k * lst_size);
577                                 mac_control->fifos[i].list_info[l].list_phy_addr =
578                                     tmp_p + (k * lst_size);
579                                 k++;
580                         }
581                 }
582         }
583
584         nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
585         if (!nic->ufo_in_band_v)
586                 return -ENOMEM;
587
588         /* Allocation and initialization of RXDs in Rings */
589         size = 0;
590         for (i = 0; i < config->rx_ring_num; i++) {
591                 if (config->rx_cfg[i].num_rxd %
592                     (rxd_count[nic->rxd_mode] + 1)) {
593                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
594                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
595                                   i);
596                         DBG_PRINT(ERR_DBG, "RxDs per Block");
597                         return FAILURE;
598                 }
599                 size += config->rx_cfg[i].num_rxd;
600                 mac_control->rings[i].block_count =
601                         config->rx_cfg[i].num_rxd /
602                         (rxd_count[nic->rxd_mode] + 1 );
603                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
604                         mac_control->rings[i].block_count;
605         }
606         if (nic->rxd_mode == RXD_MODE_1)
607                 size = (size * (sizeof(struct RxD1)));
608         else
609                 size = (size * (sizeof(struct RxD3)));
610
611         for (i = 0; i < config->rx_ring_num; i++) {
612                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
613                 mac_control->rings[i].rx_curr_get_info.offset = 0;
614                 mac_control->rings[i].rx_curr_get_info.ring_len =
615                     config->rx_cfg[i].num_rxd - 1;
616                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
617                 mac_control->rings[i].rx_curr_put_info.offset = 0;
618                 mac_control->rings[i].rx_curr_put_info.ring_len =
619                     config->rx_cfg[i].num_rxd - 1;
620                 mac_control->rings[i].nic = nic;
621                 mac_control->rings[i].ring_no = i;
622
623                 blk_cnt = config->rx_cfg[i].num_rxd /
624                                 (rxd_count[nic->rxd_mode] + 1);
625                 /*  Allocating all the Rx blocks */
626                 for (j = 0; j < blk_cnt; j++) {
627                         struct rx_block_info *rx_blocks;
628                         int l;
629
630                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
631                         size = SIZE_OF_BLOCK; //size is always page size
632                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
633                                                           &tmp_p_addr);
634                         if (tmp_v_addr == NULL) {
635                                 /*
636                                  * In case of failure, free_shared_mem()
637                                  * is called, which should free any
638                                  * memory that was alloced till the
639                                  * failure happened.
640                                  */
641                                 rx_blocks->block_virt_addr = tmp_v_addr;
642                                 return -ENOMEM;
643                         }
644                         memset(tmp_v_addr, 0, size);
645                         rx_blocks->block_virt_addr = tmp_v_addr;
646                         rx_blocks->block_dma_addr = tmp_p_addr;
647                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
648                                                   rxd_count[nic->rxd_mode],
649                                                   GFP_KERNEL);
650                         if (!rx_blocks->rxds)
651                                 return -ENOMEM;
652                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
653                                 rx_blocks->rxds[l].virt_addr =
654                                         rx_blocks->block_virt_addr +
655                                         (rxd_size[nic->rxd_mode] * l);
656                                 rx_blocks->rxds[l].dma_addr =
657                                         rx_blocks->block_dma_addr +
658                                         (rxd_size[nic->rxd_mode] * l);
659                         }
660                 }
661                 /* Interlinking all Rx Blocks */
662                 for (j = 0; j < blk_cnt; j++) {
663                         tmp_v_addr =
664                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
665                         tmp_v_addr_next =
666                                 mac_control->rings[i].rx_blocks[(j + 1) %
667                                               blk_cnt].block_virt_addr;
668                         tmp_p_addr =
669                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
670                         tmp_p_addr_next =
671                                 mac_control->rings[i].rx_blocks[(j + 1) %
672                                               blk_cnt].block_dma_addr;
673
674                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
675                         pre_rxd_blk->reserved_2_pNext_RxD_block =
676                             (unsigned long) tmp_v_addr_next;
677                         pre_rxd_blk->pNext_RxD_Blk_physical =
678                             (u64) tmp_p_addr_next;
679                 }
680         }
681         if (nic->rxd_mode >= RXD_MODE_3A) {
682                 /*
683                  * Allocation of Storages for buffer addresses in 2BUFF mode
684                  * and the buffers as well.
685                  */
686                 for (i = 0; i < config->rx_ring_num; i++) {
687                         blk_cnt = config->rx_cfg[i].num_rxd /
688                            (rxd_count[nic->rxd_mode]+ 1);
689                         mac_control->rings[i].ba =
690                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
691                                      GFP_KERNEL);
692                         if (!mac_control->rings[i].ba)
693                                 return -ENOMEM;
694                         for (j = 0; j < blk_cnt; j++) {
695                                 int k = 0;
696                                 mac_control->rings[i].ba[j] =
697                                         kmalloc((sizeof(struct buffAdd) *
698                                                 (rxd_count[nic->rxd_mode] + 1)),
699                                                 GFP_KERNEL);
700                                 if (!mac_control->rings[i].ba[j])
701                                         return -ENOMEM;
702                                 while (k != rxd_count[nic->rxd_mode]) {
703                                         ba = &mac_control->rings[i].ba[j][k];
704
705                                         ba->ba_0_org = (void *) kmalloc
706                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
707                                         if (!ba->ba_0_org)
708                                                 return -ENOMEM;
709                                         tmp = (unsigned long)ba->ba_0_org;
710                                         tmp += ALIGN_SIZE;
711                                         tmp &= ~((unsigned long) ALIGN_SIZE);
712                                         ba->ba_0 = (void *) tmp;
713
714                                         ba->ba_1_org = (void *) kmalloc
715                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
716                                         if (!ba->ba_1_org)
717                                                 return -ENOMEM;
718                                         tmp = (unsigned long) ba->ba_1_org;
719                                         tmp += ALIGN_SIZE;
720                                         tmp &= ~((unsigned long) ALIGN_SIZE);
721                                         ba->ba_1 = (void *) tmp;
722                                         k++;
723                                 }
724                         }
725                 }
726         }
727
728         /* Allocation and initialization of Statistics block */
729         size = sizeof(struct stat_block);
730         mac_control->stats_mem = pci_alloc_consistent
731             (nic->pdev, size, &mac_control->stats_mem_phy);
732
733         if (!mac_control->stats_mem) {
734                 /*
735                  * In case of failure, free_shared_mem() is called, which
736                  * should free any memory that was alloced till the
737                  * failure happened.
738                  */
739                 return -ENOMEM;
740         }
741         mac_control->stats_mem_sz = size;
742
743         tmp_v_addr = mac_control->stats_mem;
744         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
745         memset(tmp_v_addr, 0, size);
746         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
747                   (unsigned long long) tmp_p_addr);
748
749         return SUCCESS;
750 }
751
752 /**
753  * free_shared_mem - Free the allocated Memory
754  * @nic:  Device private variable.
755  * Description: This function is to free all memory locations allocated by
756  * the init_shared_mem() function and return it to the kernel.
757  */
758
759 static void free_shared_mem(struct s2io_nic *nic)
760 {
761         int i, j, blk_cnt, size;
762         void *tmp_v_addr;
763         dma_addr_t tmp_p_addr;
764         struct mac_info *mac_control;
765         struct config_param *config;
766         int lst_size, lst_per_page;
767         struct net_device *dev = nic->dev;
768
769         if (!nic)
770                 return;
771
772         mac_control = &nic->mac_control;
773         config = &nic->config;
774
775         lst_size = (sizeof(struct TxD) * config->max_txds);
776         lst_per_page = PAGE_SIZE / lst_size;
777
778         for (i = 0; i < config->tx_fifo_num; i++) {
779                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
780                                                 lst_per_page);
781                 for (j = 0; j < page_num; j++) {
782                         int mem_blks = (j * lst_per_page);
783                         if (!mac_control->fifos[i].list_info)
784                                 return;
785                         if (!mac_control->fifos[i].list_info[mem_blks].
786                                  list_virt_addr)
787                                 break;
788                         pci_free_consistent(nic->pdev, PAGE_SIZE,
789                                             mac_control->fifos[i].
790                                             list_info[mem_blks].
791                                             list_virt_addr,
792                                             mac_control->fifos[i].
793                                             list_info[mem_blks].
794                                             list_phy_addr);
795                 }
796                 /* If we got a zero DMA address during allocation,
797                  * free the page now
798                  */
799                 if (mac_control->zerodma_virt_addr) {
800                         pci_free_consistent(nic->pdev, PAGE_SIZE,
801                                             mac_control->zerodma_virt_addr,
802                                             (dma_addr_t)0);
803                         DBG_PRINT(INIT_DBG,
804                                 "%s: Freeing TxDL with zero DMA addr. ",
805                                 dev->name);
806                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
807                                 mac_control->zerodma_virt_addr);
808                 }
809                 kfree(mac_control->fifos[i].list_info);
810         }
811
812         size = SIZE_OF_BLOCK;
813         for (i = 0; i < config->rx_ring_num; i++) {
814                 blk_cnt = mac_control->rings[i].block_count;
815                 for (j = 0; j < blk_cnt; j++) {
816                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
817                                 block_virt_addr;
818                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
819                                 block_dma_addr;
820                         if (tmp_v_addr == NULL)
821                                 break;
822                         pci_free_consistent(nic->pdev, size,
823                                             tmp_v_addr, tmp_p_addr);
824                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
825                 }
826         }
827
828         if (nic->rxd_mode >= RXD_MODE_3A) {
829                 /* Freeing buffer storage addresses in 2BUFF mode. */
830                 for (i = 0; i < config->rx_ring_num; i++) {
831                         blk_cnt = config->rx_cfg[i].num_rxd /
832                             (rxd_count[nic->rxd_mode] + 1);
833                         for (j = 0; j < blk_cnt; j++) {
834                                 int k = 0;
835                                 if (!mac_control->rings[i].ba[j])
836                                         continue;
837                                 while (k != rxd_count[nic->rxd_mode]) {
838                                         struct buffAdd *ba =
839                                                 &mac_control->rings[i].ba[j][k];
840                                         kfree(ba->ba_0_org);
841                                         kfree(ba->ba_1_org);
842                                         k++;
843                                 }
844                                 kfree(mac_control->rings[i].ba[j]);
845                         }
846                         kfree(mac_control->rings[i].ba);
847                 }
848         }
849
850         if (mac_control->stats_mem) {
851                 pci_free_consistent(nic->pdev,
852                                     mac_control->stats_mem_sz,
853                                     mac_control->stats_mem,
854                                     mac_control->stats_mem_phy);
855         }
856         if (nic->ufo_in_band_v)
857                 kfree(nic->ufo_in_band_v);
858 }
859
860 /**
861  * s2io_verify_pci_mode -
862  */
863
864 static int s2io_verify_pci_mode(struct s2io_nic *nic)
865 {
866         struct XENA_dev_config __iomem *bar0 = nic->bar0;
867         register u64 val64 = 0;
868         int     mode;
869
870         val64 = readq(&bar0->pci_mode);
871         mode = (u8)GET_PCI_MODE(val64);
872
873         if ( val64 & PCI_MODE_UNKNOWN_MODE)
874                 return -1;      /* Unknown PCI mode */
875         return mode;
876 }
877
878 #define NEC_VENID   0x1033
879 #define NEC_DEVID   0x0125
880 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
881 {
882         struct pci_dev *tdev = NULL;
883         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
884                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
885                         if (tdev->bus == s2io_pdev->bus->parent)
886                                 pci_dev_put(tdev);
887                                 return 1;
888                 }
889         }
890         return 0;
891 }
892
893 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
894 /**
895  * s2io_print_pci_mode -
896  */
897 static int s2io_print_pci_mode(struct s2io_nic *nic)
898 {
899         struct XENA_dev_config __iomem *bar0 = nic->bar0;
900         register u64 val64 = 0;
901         int     mode;
902         struct config_param *config = &nic->config;
903
904         val64 = readq(&bar0->pci_mode);
905         mode = (u8)GET_PCI_MODE(val64);
906
907         if ( val64 & PCI_MODE_UNKNOWN_MODE)
908                 return -1;      /* Unknown PCI mode */
909
910         config->bus_speed = bus_speed[mode];
911
912         if (s2io_on_nec_bridge(nic->pdev)) {
913                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
914                                                         nic->dev->name);
915                 return mode;
916         }
917
918         if (val64 & PCI_MODE_32_BITS) {
919                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
920         } else {
921                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
922         }
923
924         switch(mode) {
925                 case PCI_MODE_PCI_33:
926                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
927                         break;
928                 case PCI_MODE_PCI_66:
929                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
930                         break;
931                 case PCI_MODE_PCIX_M1_66:
932                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
933                         break;
934                 case PCI_MODE_PCIX_M1_100:
935                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
936                         break;
937                 case PCI_MODE_PCIX_M1_133:
938                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
939                         break;
940                 case PCI_MODE_PCIX_M2_66:
941                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
942                         break;
943                 case PCI_MODE_PCIX_M2_100:
944                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
945                         break;
946                 case PCI_MODE_PCIX_M2_133:
947                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
948                         break;
949                 default:
950                         return -1;      /* Unsupported bus speed */
951         }
952
953         return mode;
954 }
955
956 /**
957  *  init_nic - Initialization of hardware
958  *  @nic: device peivate variable
959  *  Description: The function sequentially configures every block
960  *  of the H/W from their reset values.
961  *  Return Value:  SUCCESS on success and
962  *  '-1' on failure (endian settings incorrect).
963  */
964
965 static int init_nic(struct s2io_nic *nic)
966 {
967         struct XENA_dev_config __iomem *bar0 = nic->bar0;
968         struct net_device *dev = nic->dev;
969         register u64 val64 = 0;
970         void __iomem *add;
971         u32 time;
972         int i, j;
973         struct mac_info *mac_control;
974         struct config_param *config;
975         int dtx_cnt = 0;
976         unsigned long long mem_share;
977         int mem_size;
978
979         mac_control = &nic->mac_control;
980         config = &nic->config;
981
982         /* to set the swapper controle on the card */
983         if(s2io_set_swapper(nic)) {
984                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
985                 return -1;
986         }
987
988         /*
989          * Herc requires EOI to be removed from reset before XGXS, so..
990          */
991         if (nic->device_type & XFRAME_II_DEVICE) {
992                 val64 = 0xA500000000ULL;
993                 writeq(val64, &bar0->sw_reset);
994                 msleep(500);
995                 val64 = readq(&bar0->sw_reset);
996         }
997
998         /* Remove XGXS from reset state */
999         val64 = 0;
1000         writeq(val64, &bar0->sw_reset);
1001         msleep(500);
1002         val64 = readq(&bar0->sw_reset);
1003
1004         /*  Enable Receiving broadcasts */
1005         add = &bar0->mac_cfg;
1006         val64 = readq(&bar0->mac_cfg);
1007         val64 |= MAC_RMAC_BCAST_ENABLE;
1008         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1009         writel((u32) val64, add);
1010         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1011         writel((u32) (val64 >> 32), (add + 4));
1012
1013         /* Read registers in all blocks */
1014         val64 = readq(&bar0->mac_int_mask);
1015         val64 = readq(&bar0->mc_int_mask);
1016         val64 = readq(&bar0->xgxs_int_mask);
1017
1018         /*  Set MTU */
1019         val64 = dev->mtu;
1020         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1021
1022         if (nic->device_type & XFRAME_II_DEVICE) {
1023                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1024                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1025                                           &bar0->dtx_control, UF);
1026                         if (dtx_cnt & 0x1)
1027                                 msleep(1); /* Necessary!! */
1028                         dtx_cnt++;
1029                 }
1030         } else {
1031                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1032                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1033                                           &bar0->dtx_control, UF);
1034                         val64 = readq(&bar0->dtx_control);
1035                         dtx_cnt++;
1036                 }
1037         }
1038
1039         /*  Tx DMA Initialization */
1040         val64 = 0;
1041         writeq(val64, &bar0->tx_fifo_partition_0);
1042         writeq(val64, &bar0->tx_fifo_partition_1);
1043         writeq(val64, &bar0->tx_fifo_partition_2);
1044         writeq(val64, &bar0->tx_fifo_partition_3);
1045
1046
1047         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1048                 val64 |=
1049                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1050                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1051                                     ((i * 32) + 5), 3);
1052
1053                 if (i == (config->tx_fifo_num - 1)) {
1054                         if (i % 2 == 0)
1055                                 i++;
1056                 }
1057
1058                 switch (i) {
1059                 case 1:
1060                         writeq(val64, &bar0->tx_fifo_partition_0);
1061                         val64 = 0;
1062                         break;
1063                 case 3:
1064                         writeq(val64, &bar0->tx_fifo_partition_1);
1065                         val64 = 0;
1066                         break;
1067                 case 5:
1068                         writeq(val64, &bar0->tx_fifo_partition_2);
1069                         val64 = 0;
1070                         break;
1071                 case 7:
1072                         writeq(val64, &bar0->tx_fifo_partition_3);
1073                         break;
1074                 }
1075         }
1076
1077         /*
1078          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1079          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1080          */
1081         if ((nic->device_type == XFRAME_I_DEVICE) &&
1082                 (get_xena_rev_id(nic->pdev) < 4))
1083                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1084
1085         val64 = readq(&bar0->tx_fifo_partition_0);
1086         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1087                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1088
1089         /*
1090          * Initialization of Tx_PA_CONFIG register to ignore packet
1091          * integrity checking.
1092          */
1093         val64 = readq(&bar0->tx_pa_cfg);
1094         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1095             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1096         writeq(val64, &bar0->tx_pa_cfg);
1097
1098         /* Rx DMA intialization. */
1099         val64 = 0;
1100         for (i = 0; i < config->rx_ring_num; i++) {
1101                 val64 |=
1102                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1103                          3);
1104         }
1105         writeq(val64, &bar0->rx_queue_priority);
1106
1107         /*
1108          * Allocating equal share of memory to all the
1109          * configured Rings.
1110          */
1111         val64 = 0;
1112         if (nic->device_type & XFRAME_II_DEVICE)
1113                 mem_size = 32;
1114         else
1115                 mem_size = 64;
1116
1117         for (i = 0; i < config->rx_ring_num; i++) {
1118                 switch (i) {
1119                 case 0:
1120                         mem_share = (mem_size / config->rx_ring_num +
1121                                      mem_size % config->rx_ring_num);
1122                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1123                         continue;
1124                 case 1:
1125                         mem_share = (mem_size / config->rx_ring_num);
1126                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1127                         continue;
1128                 case 2:
1129                         mem_share = (mem_size / config->rx_ring_num);
1130                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1131                         continue;
1132                 case 3:
1133                         mem_share = (mem_size / config->rx_ring_num);
1134                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1135                         continue;
1136                 case 4:
1137                         mem_share = (mem_size / config->rx_ring_num);
1138                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1139                         continue;
1140                 case 5:
1141                         mem_share = (mem_size / config->rx_ring_num);
1142                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1143                         continue;
1144                 case 6:
1145                         mem_share = (mem_size / config->rx_ring_num);
1146                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1147                         continue;
1148                 case 7:
1149                         mem_share = (mem_size / config->rx_ring_num);
1150                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1151                         continue;
1152                 }
1153         }
1154         writeq(val64, &bar0->rx_queue_cfg);
1155
1156         /*
1157          * Filling Tx round robin registers
1158          * as per the number of FIFOs
1159          */
1160         switch (config->tx_fifo_num) {
1161         case 1:
1162                 val64 = 0x0000000000000000ULL;
1163                 writeq(val64, &bar0->tx_w_round_robin_0);
1164                 writeq(val64, &bar0->tx_w_round_robin_1);
1165                 writeq(val64, &bar0->tx_w_round_robin_2);
1166                 writeq(val64, &bar0->tx_w_round_robin_3);
1167                 writeq(val64, &bar0->tx_w_round_robin_4);
1168                 break;
1169         case 2:
1170                 val64 = 0x0000010000010000ULL;
1171                 writeq(val64, &bar0->tx_w_round_robin_0);
1172                 val64 = 0x0100000100000100ULL;
1173                 writeq(val64, &bar0->tx_w_round_robin_1);
1174                 val64 = 0x0001000001000001ULL;
1175                 writeq(val64, &bar0->tx_w_round_robin_2);
1176                 val64 = 0x0000010000010000ULL;
1177                 writeq(val64, &bar0->tx_w_round_robin_3);
1178                 val64 = 0x0100000000000000ULL;
1179                 writeq(val64, &bar0->tx_w_round_robin_4);
1180                 break;
1181         case 3:
1182                 val64 = 0x0001000102000001ULL;
1183                 writeq(val64, &bar0->tx_w_round_robin_0);
1184                 val64 = 0x0001020000010001ULL;
1185                 writeq(val64, &bar0->tx_w_round_robin_1);
1186                 val64 = 0x0200000100010200ULL;
1187                 writeq(val64, &bar0->tx_w_round_robin_2);
1188                 val64 = 0x0001000102000001ULL;
1189                 writeq(val64, &bar0->tx_w_round_robin_3);
1190                 val64 = 0x0001020000000000ULL;
1191                 writeq(val64, &bar0->tx_w_round_robin_4);
1192                 break;
1193         case 4:
1194                 val64 = 0x0001020300010200ULL;
1195                 writeq(val64, &bar0->tx_w_round_robin_0);
1196                 val64 = 0x0100000102030001ULL;
1197                 writeq(val64, &bar0->tx_w_round_robin_1);
1198                 val64 = 0x0200010000010203ULL;
1199                 writeq(val64, &bar0->tx_w_round_robin_2);
1200                 val64 = 0x0001020001000001ULL;
1201                 writeq(val64, &bar0->tx_w_round_robin_3);
1202                 val64 = 0x0203000100000000ULL;
1203                 writeq(val64, &bar0->tx_w_round_robin_4);
1204                 break;
1205         case 5:
1206                 val64 = 0x0001000203000102ULL;
1207                 writeq(val64, &bar0->tx_w_round_robin_0);
1208                 val64 = 0x0001020001030004ULL;
1209                 writeq(val64, &bar0->tx_w_round_robin_1);
1210                 val64 = 0x0001000203000102ULL;
1211                 writeq(val64, &bar0->tx_w_round_robin_2);
1212                 val64 = 0x0001020001030004ULL;
1213                 writeq(val64, &bar0->tx_w_round_robin_3);
1214                 val64 = 0x0001000000000000ULL;
1215                 writeq(val64, &bar0->tx_w_round_robin_4);
1216                 break;
1217         case 6:
1218                 val64 = 0x0001020304000102ULL;
1219                 writeq(val64, &bar0->tx_w_round_robin_0);
1220                 val64 = 0x0304050001020001ULL;
1221                 writeq(val64, &bar0->tx_w_round_robin_1);
1222                 val64 = 0x0203000100000102ULL;
1223                 writeq(val64, &bar0->tx_w_round_robin_2);
1224                 val64 = 0x0304000102030405ULL;
1225                 writeq(val64, &bar0->tx_w_round_robin_3);
1226                 val64 = 0x0001000200000000ULL;
1227                 writeq(val64, &bar0->tx_w_round_robin_4);
1228                 break;
1229         case 7:
1230                 val64 = 0x0001020001020300ULL;
1231                 writeq(val64, &bar0->tx_w_round_robin_0);
1232                 val64 = 0x0102030400010203ULL;
1233                 writeq(val64, &bar0->tx_w_round_robin_1);
1234                 val64 = 0x0405060001020001ULL;
1235                 writeq(val64, &bar0->tx_w_round_robin_2);
1236                 val64 = 0x0304050000010200ULL;
1237                 writeq(val64, &bar0->tx_w_round_robin_3);
1238                 val64 = 0x0102030000000000ULL;
1239                 writeq(val64, &bar0->tx_w_round_robin_4);
1240                 break;
1241         case 8:
1242                 val64 = 0x0001020300040105ULL;
1243                 writeq(val64, &bar0->tx_w_round_robin_0);
1244                 val64 = 0x0200030106000204ULL;
1245                 writeq(val64, &bar0->tx_w_round_robin_1);
1246                 val64 = 0x0103000502010007ULL;
1247                 writeq(val64, &bar0->tx_w_round_robin_2);
1248                 val64 = 0x0304010002060500ULL;
1249                 writeq(val64, &bar0->tx_w_round_robin_3);
1250                 val64 = 0x0103020400000000ULL;
1251                 writeq(val64, &bar0->tx_w_round_robin_4);
1252                 break;
1253         }
1254
1255         /* Enable all configured Tx FIFO partitions */
1256         val64 = readq(&bar0->tx_fifo_partition_0);
1257         val64 |= (TX_FIFO_PARTITION_EN);
1258         writeq(val64, &bar0->tx_fifo_partition_0);
1259
1260         /* Filling the Rx round robin registers as per the
1261          * number of Rings and steering based on QoS.
1262          */
1263         switch (config->rx_ring_num) {
1264         case 1:
1265                 val64 = 0x8080808080808080ULL;
1266                 writeq(val64, &bar0->rts_qos_steering);
1267                 break;
1268         case 2:
1269                 val64 = 0x0000010000010000ULL;
1270                 writeq(val64, &bar0->rx_w_round_robin_0);
1271                 val64 = 0x0100000100000100ULL;
1272                 writeq(val64, &bar0->rx_w_round_robin_1);
1273                 val64 = 0x0001000001000001ULL;
1274                 writeq(val64, &bar0->rx_w_round_robin_2);
1275                 val64 = 0x0000010000010000ULL;
1276                 writeq(val64, &bar0->rx_w_round_robin_3);
1277                 val64 = 0x0100000000000000ULL;
1278                 writeq(val64, &bar0->rx_w_round_robin_4);
1279
1280                 val64 = 0x8080808040404040ULL;
1281                 writeq(val64, &bar0->rts_qos_steering);
1282                 break;
1283         case 3:
1284                 val64 = 0x0001000102000001ULL;
1285                 writeq(val64, &bar0->rx_w_round_robin_0);
1286                 val64 = 0x0001020000010001ULL;
1287                 writeq(val64, &bar0->rx_w_round_robin_1);
1288                 val64 = 0x0200000100010200ULL;
1289                 writeq(val64, &bar0->rx_w_round_robin_2);
1290                 val64 = 0x0001000102000001ULL;
1291                 writeq(val64, &bar0->rx_w_round_robin_3);
1292                 val64 = 0x0001020000000000ULL;
1293                 writeq(val64, &bar0->rx_w_round_robin_4);
1294
1295                 val64 = 0x8080804040402020ULL;
1296                 writeq(val64, &bar0->rts_qos_steering);
1297                 break;
1298         case 4:
1299                 val64 = 0x0001020300010200ULL;
1300                 writeq(val64, &bar0->rx_w_round_robin_0);
1301                 val64 = 0x0100000102030001ULL;
1302                 writeq(val64, &bar0->rx_w_round_robin_1);
1303                 val64 = 0x0200010000010203ULL;
1304                 writeq(val64, &bar0->rx_w_round_robin_2);
1305                 val64 = 0x0001020001000001ULL;
1306                 writeq(val64, &bar0->rx_w_round_robin_3);
1307                 val64 = 0x0203000100000000ULL;
1308                 writeq(val64, &bar0->rx_w_round_robin_4);
1309
1310                 val64 = 0x8080404020201010ULL;
1311                 writeq(val64, &bar0->rts_qos_steering);
1312                 break;
1313         case 5:
1314                 val64 = 0x0001000203000102ULL;
1315                 writeq(val64, &bar0->rx_w_round_robin_0);
1316                 val64 = 0x0001020001030004ULL;
1317                 writeq(val64, &bar0->rx_w_round_robin_1);
1318                 val64 = 0x0001000203000102ULL;
1319                 writeq(val64, &bar0->rx_w_round_robin_2);
1320                 val64 = 0x0001020001030004ULL;
1321                 writeq(val64, &bar0->rx_w_round_robin_3);
1322                 val64 = 0x0001000000000000ULL;
1323                 writeq(val64, &bar0->rx_w_round_robin_4);
1324
1325                 val64 = 0x8080404020201008ULL;
1326                 writeq(val64, &bar0->rts_qos_steering);
1327                 break;
1328         case 6:
1329                 val64 = 0x0001020304000102ULL;
1330                 writeq(val64, &bar0->rx_w_round_robin_0);
1331                 val64 = 0x0304050001020001ULL;
1332                 writeq(val64, &bar0->rx_w_round_robin_1);
1333                 val64 = 0x0203000100000102ULL;
1334                 writeq(val64, &bar0->rx_w_round_robin_2);
1335                 val64 = 0x0304000102030405ULL;
1336                 writeq(val64, &bar0->rx_w_round_robin_3);
1337                 val64 = 0x0001000200000000ULL;
1338                 writeq(val64, &bar0->rx_w_round_robin_4);
1339
1340                 val64 = 0x8080404020100804ULL;
1341                 writeq(val64, &bar0->rts_qos_steering);
1342                 break;
1343         case 7:
1344                 val64 = 0x0001020001020300ULL;
1345                 writeq(val64, &bar0->rx_w_round_robin_0);
1346                 val64 = 0x0102030400010203ULL;
1347                 writeq(val64, &bar0->rx_w_round_robin_1);
1348                 val64 = 0x0405060001020001ULL;
1349                 writeq(val64, &bar0->rx_w_round_robin_2);
1350                 val64 = 0x0304050000010200ULL;
1351                 writeq(val64, &bar0->rx_w_round_robin_3);
1352                 val64 = 0x0102030000000000ULL;
1353                 writeq(val64, &bar0->rx_w_round_robin_4);
1354
1355                 val64 = 0x8080402010080402ULL;
1356                 writeq(val64, &bar0->rts_qos_steering);
1357                 break;
1358         case 8:
1359                 val64 = 0x0001020300040105ULL;
1360                 writeq(val64, &bar0->rx_w_round_robin_0);
1361                 val64 = 0x0200030106000204ULL;
1362                 writeq(val64, &bar0->rx_w_round_robin_1);
1363                 val64 = 0x0103000502010007ULL;
1364                 writeq(val64, &bar0->rx_w_round_robin_2);
1365                 val64 = 0x0304010002060500ULL;
1366                 writeq(val64, &bar0->rx_w_round_robin_3);
1367                 val64 = 0x0103020400000000ULL;
1368                 writeq(val64, &bar0->rx_w_round_robin_4);
1369
1370                 val64 = 0x8040201008040201ULL;
1371                 writeq(val64, &bar0->rts_qos_steering);
1372                 break;
1373         }
1374
1375         /* UDP Fix */
1376         val64 = 0;
1377         for (i = 0; i < 8; i++)
1378                 writeq(val64, &bar0->rts_frm_len_n[i]);
1379
1380         /* Set the default rts frame length for the rings configured */
1381         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1382         for (i = 0 ; i < config->rx_ring_num ; i++)
1383                 writeq(val64, &bar0->rts_frm_len_n[i]);
1384
1385         /* Set the frame length for the configured rings
1386          * desired by the user
1387          */
1388         for (i = 0; i < config->rx_ring_num; i++) {
1389                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1390                  * specified frame length steering.
1391                  * If the user provides the frame length then program
1392                  * the rts_frm_len register for those values or else
1393                  * leave it as it is.
1394                  */
1395                 if (rts_frm_len[i] != 0) {
1396                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1397                                 &bar0->rts_frm_len_n[i]);
1398                 }
1399         }
1400         
1401         /* Disable differentiated services steering logic */
1402         for (i = 0; i < 64; i++) {
1403                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1404                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1405                                 dev->name);
1406                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1407                         return FAILURE;
1408                 }
1409         }
1410
1411         /* Program statistics memory */
1412         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1413
1414         if (nic->device_type == XFRAME_II_DEVICE) {
1415                 val64 = STAT_BC(0x320);
1416                 writeq(val64, &bar0->stat_byte_cnt);
1417         }
1418
1419         /*
1420          * Initializing the sampling rate for the device to calculate the
1421          * bandwidth utilization.
1422          */
1423         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1424             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1425         writeq(val64, &bar0->mac_link_util);
1426
1427
1428         /*
1429          * Initializing the Transmit and Receive Traffic Interrupt
1430          * Scheme.
1431          */
1432         /*
1433          * TTI Initialization. Default Tx timer gets us about
1434          * 250 interrupts per sec. Continuous interrupts are enabled
1435          * by default.
1436          */
1437         if (nic->device_type == XFRAME_II_DEVICE) {
1438                 int count = (nic->config.bus_speed * 125)/2;
1439                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1440         } else {
1441
1442                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1443         }
1444         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1445             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1446             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1447                 if (use_continuous_tx_intrs)
1448                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1449         writeq(val64, &bar0->tti_data1_mem);
1450
1451         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1452             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1453             TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1454         writeq(val64, &bar0->tti_data2_mem);
1455
1456         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1457         writeq(val64, &bar0->tti_command_mem);
1458
1459         /*
1460          * Once the operation completes, the Strobe bit of the command
1461          * register will be reset. We poll for this particular condition
1462          * We wait for a maximum of 500ms for the operation to complete,
1463          * if it's not complete by then we return error.
1464          */
1465         time = 0;
1466         while (TRUE) {
1467                 val64 = readq(&bar0->tti_command_mem);
1468                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1469                         break;
1470                 }
1471                 if (time > 10) {
1472                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1473                                   dev->name);
1474                         return -1;
1475                 }
1476                 msleep(50);
1477                 time++;
1478         }
1479
1480         if (nic->config.bimodal) {
1481                 int k = 0;
1482                 for (k = 0; k < config->rx_ring_num; k++) {
1483                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1484                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1485                         writeq(val64, &bar0->tti_command_mem);
1486
1487                 /*
1488                  * Once the operation completes, the Strobe bit of the command
1489                  * register will be reset. We poll for this particular condition
1490                  * We wait for a maximum of 500ms for the operation to complete,
1491                  * if it's not complete by then we return error.
1492                 */
1493                         time = 0;
1494                         while (TRUE) {
1495                                 val64 = readq(&bar0->tti_command_mem);
1496                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1497                                         break;
1498                                 }
1499                                 if (time > 10) {
1500                                         DBG_PRINT(ERR_DBG,
1501                                                 "%s: TTI init Failed\n",
1502                                         dev->name);
1503                                         return -1;
1504                                 }
1505                                 time++;
1506                                 msleep(50);
1507                         }
1508                 }
1509         } else {
1510
1511                 /* RTI Initialization */
1512                 if (nic->device_type == XFRAME_II_DEVICE) {
1513                         /*
1514                          * Programmed to generate Apprx 500 Intrs per
1515                          * second
1516                          */
1517                         int count = (nic->config.bus_speed * 125)/4;
1518                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1519                 } else {
1520                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1521                 }
1522                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1523                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1524                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1525
1526                 writeq(val64, &bar0->rti_data1_mem);
1527
1528                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1529                     RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1530                 if (nic->intr_type == MSI_X)
1531                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1532                                 RTI_DATA2_MEM_RX_UFC_D(0x40));
1533                 else
1534                     val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1535                                 RTI_DATA2_MEM_RX_UFC_D(0x80));
1536                 writeq(val64, &bar0->rti_data2_mem);
1537
1538                 for (i = 0; i < config->rx_ring_num; i++) {
1539                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1540                                         | RTI_CMD_MEM_OFFSET(i);
1541                         writeq(val64, &bar0->rti_command_mem);
1542
1543                         /*
1544                          * Once the operation completes, the Strobe bit of the
1545                          * command register will be reset. We poll for this
1546                          * particular condition. We wait for a maximum of 500ms
1547                          * for the operation to complete, if it's not complete
1548                          * by then we return error.
1549                          */
1550                         time = 0;
1551                         while (TRUE) {
1552                                 val64 = readq(&bar0->rti_command_mem);
1553                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1554                                         break;
1555                                 }
1556                                 if (time > 10) {
1557                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1558                                                   dev->name);
1559                                         return -1;
1560                                 }
1561                                 time++;
1562                                 msleep(50);
1563                         }
1564                 }
1565         }
1566
1567         /*
1568          * Initializing proper values as Pause threshold into all
1569          * the 8 Queues on Rx side.
1570          */
1571         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1572         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1573
1574         /* Disable RMAC PAD STRIPPING */
1575         add = &bar0->mac_cfg;
1576         val64 = readq(&bar0->mac_cfg);
1577         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1578         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1579         writel((u32) (val64), add);
1580         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1581         writel((u32) (val64 >> 32), (add + 4));
1582         val64 = readq(&bar0->mac_cfg);
1583
1584         /* Enable FCS stripping by adapter */
1585         add = &bar0->mac_cfg;
1586         val64 = readq(&bar0->mac_cfg);
1587         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1588         if (nic->device_type == XFRAME_II_DEVICE)
1589                 writeq(val64, &bar0->mac_cfg);
1590         else {
1591                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1592                 writel((u32) (val64), add);
1593                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1594                 writel((u32) (val64 >> 32), (add + 4));
1595         }
1596
1597         /*
1598          * Set the time value to be inserted in the pause frame
1599          * generated by xena.
1600          */
1601         val64 = readq(&bar0->rmac_pause_cfg);
1602         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1603         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1604         writeq(val64, &bar0->rmac_pause_cfg);
1605
1606         /*
1607          * Set the Threshold Limit for Generating the pause frame
1608          * If the amount of data in any Queue exceeds ratio of
1609          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1610          * pause frame is generated
1611          */
1612         val64 = 0;
1613         for (i = 0; i < 4; i++) {
1614                 val64 |=
1615                     (((u64) 0xFF00 | nic->mac_control.
1616                       mc_pause_threshold_q0q3)
1617                      << (i * 2 * 8));
1618         }
1619         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1620
1621         val64 = 0;
1622         for (i = 0; i < 4; i++) {
1623                 val64 |=
1624                     (((u64) 0xFF00 | nic->mac_control.
1625                       mc_pause_threshold_q4q7)
1626                      << (i * 2 * 8));
1627         }
1628         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1629
1630         /*
1631          * TxDMA will stop Read request if the number of read split has
1632          * exceeded the limit pointed by shared_splits
1633          */
1634         val64 = readq(&bar0->pic_control);
1635         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1636         writeq(val64, &bar0->pic_control);
1637
1638         if (nic->config.bus_speed == 266) {
1639                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1640                 writeq(0x0, &bar0->read_retry_delay);
1641                 writeq(0x0, &bar0->write_retry_delay);
1642         }
1643
1644         /*
1645          * Programming the Herc to split every write transaction
1646          * that does not start on an ADB to reduce disconnects.
1647          */
1648         if (nic->device_type == XFRAME_II_DEVICE) {
1649                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1650                         MISC_LINK_STABILITY_PRD(3);
1651                 writeq(val64, &bar0->misc_control);
1652                 val64 = readq(&bar0->pic_control2);
1653                 val64 &= ~(BIT(13)|BIT(14)|BIT(15));
1654                 writeq(val64, &bar0->pic_control2);
1655         }
1656         if (strstr(nic->product_name, "CX4")) {
1657                 val64 = TMAC_AVG_IPG(0x17);
1658                 writeq(val64, &bar0->tmac_avg_ipg);
1659         }
1660
1661         return SUCCESS;
1662 }
1663 #define LINK_UP_DOWN_INTERRUPT          1
1664 #define MAC_RMAC_ERR_TIMER              2
1665
1666 static int s2io_link_fault_indication(struct s2io_nic *nic)
1667 {
1668         if (nic->intr_type != INTA)
1669                 return MAC_RMAC_ERR_TIMER;
1670         if (nic->device_type == XFRAME_II_DEVICE)
1671                 return LINK_UP_DOWN_INTERRUPT;
1672         else
1673                 return MAC_RMAC_ERR_TIMER;
1674 }
1675
1676 /**
1677  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1678  *  @nic: device private variable,
1679  *  @mask: A mask indicating which Intr block must be modified and,
1680  *  @flag: A flag indicating whether to enable or disable the Intrs.
1681  *  Description: This function will either disable or enable the interrupts
1682  *  depending on the flag argument. The mask argument can be used to
1683  *  enable/disable any Intr block.
1684  *  Return Value: NONE.
1685  */
1686
1687 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1688 {
1689         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1690         register u64 val64 = 0, temp64 = 0;
1691
1692         /*  Top level interrupt classification */
1693         /*  PIC Interrupts */
1694         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1695                 /*  Enable PIC Intrs in the general intr mask register */
1696                 val64 = TXPIC_INT_M;
1697                 if (flag == ENABLE_INTRS) {
1698                         temp64 = readq(&bar0->general_int_mask);
1699                         temp64 &= ~((u64) val64);
1700                         writeq(temp64, &bar0->general_int_mask);
1701                         /*
1702                          * If Hercules adapter enable GPIO otherwise
1703                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1704                          * interrupts for now.
1705                          * TODO
1706                          */
1707                         if (s2io_link_fault_indication(nic) ==
1708                                         LINK_UP_DOWN_INTERRUPT ) {
1709                                 temp64 = readq(&bar0->pic_int_mask);
1710                                 temp64 &= ~((u64) PIC_INT_GPIO);
1711                                 writeq(temp64, &bar0->pic_int_mask);
1712                                 temp64 = readq(&bar0->gpio_int_mask);
1713                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1714                                 writeq(temp64, &bar0->gpio_int_mask);
1715                         } else {
1716                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1717                         }
1718                         /*
1719                          * No MSI Support is available presently, so TTI and
1720                          * RTI interrupts are also disabled.
1721                          */
1722                 } else if (flag == DISABLE_INTRS) {
1723                         /*
1724                          * Disable PIC Intrs in the general
1725                          * intr mask register
1726                          */
1727                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1728                         temp64 = readq(&bar0->general_int_mask);
1729                         val64 |= temp64;
1730                         writeq(val64, &bar0->general_int_mask);
1731                 }
1732         }
1733
1734         /*  MAC Interrupts */
1735         /*  Enabling/Disabling MAC interrupts */
1736         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1737                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1738                 if (flag == ENABLE_INTRS) {
1739                         temp64 = readq(&bar0->general_int_mask);
1740                         temp64 &= ~((u64) val64);
1741                         writeq(temp64, &bar0->general_int_mask);
1742                         /*
1743                          * All MAC block error interrupts are disabled for now
1744                          * TODO
1745                          */
1746                 } else if (flag == DISABLE_INTRS) {
1747                         /*
1748                          * Disable MAC Intrs in the general intr mask register
1749                          */
1750                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1751                         writeq(DISABLE_ALL_INTRS,
1752                                &bar0->mac_rmac_err_mask);
1753
1754                         temp64 = readq(&bar0->general_int_mask);
1755                         val64 |= temp64;
1756                         writeq(val64, &bar0->general_int_mask);
1757                 }
1758         }
1759
1760         /*  Tx traffic interrupts */
1761         if (mask & TX_TRAFFIC_INTR) {
1762                 val64 = TXTRAFFIC_INT_M;
1763                 if (flag == ENABLE_INTRS) {
1764                         temp64 = readq(&bar0->general_int_mask);
1765                         temp64 &= ~((u64) val64);
1766                         writeq(temp64, &bar0->general_int_mask);
1767                         /*
1768                          * Enable all the Tx side interrupts
1769                          * writing 0 Enables all 64 TX interrupt levels
1770                          */
1771                         writeq(0x0, &bar0->tx_traffic_mask);
1772                 } else if (flag == DISABLE_INTRS) {
1773                         /*
1774                          * Disable Tx Traffic Intrs in the general intr mask
1775                          * register.
1776                          */
1777                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1778                         temp64 = readq(&bar0->general_int_mask);
1779                         val64 |= temp64;
1780                         writeq(val64, &bar0->general_int_mask);
1781                 }
1782         }
1783
1784         /*  Rx traffic interrupts */
1785         if (mask & RX_TRAFFIC_INTR) {
1786                 val64 = RXTRAFFIC_INT_M;
1787                 if (flag == ENABLE_INTRS) {
1788                         temp64 = readq(&bar0->general_int_mask);
1789                         temp64 &= ~((u64) val64);
1790                         writeq(temp64, &bar0->general_int_mask);
1791                         /* writing 0 Enables all 8 RX interrupt levels */
1792                         writeq(0x0, &bar0->rx_traffic_mask);
1793                 } else if (flag == DISABLE_INTRS) {
1794                         /*
1795                          * Disable Rx Traffic Intrs in the general intr mask
1796                          * register.
1797                          */
1798                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1799                         temp64 = readq(&bar0->general_int_mask);
1800                         val64 |= temp64;
1801                         writeq(val64, &bar0->general_int_mask);
1802                 }
1803         }
1804 }
1805
1806 /**
1807  *  verify_pcc_quiescent- Checks for PCC quiescent state
1808  *  Return: 1 If PCC is quiescence
1809  *          0 If PCC is not quiescence
1810  */
1811 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1812 {
1813         int ret = 0, herc;
1814         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1815         u64 val64 = readq(&bar0->adapter_status);
1816         
1817         herc = (sp->device_type == XFRAME_II_DEVICE);
1818
1819         if (flag == FALSE) {
1820                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1821                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1822                                 ret = 1;
1823                 } else {
1824                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1825                                 ret = 1;
1826                 }
1827         } else {
1828                 if ((!herc && (get_xena_rev_id(sp->pdev) >= 4)) || herc) {
1829                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1830                              ADAPTER_STATUS_RMAC_PCC_IDLE))
1831                                 ret = 1;
1832                 } else {
1833                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1834                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1835                                 ret = 1;
1836                 }
1837         }
1838
1839         return ret;
1840 }
1841 /**
1842  *  verify_xena_quiescence - Checks whether the H/W is ready
1843  *  Description: Returns whether the H/W is ready to go or not. Depending
1844  *  on whether adapter enable bit was written or not the comparison
1845  *  differs and the calling function passes the input argument flag to
1846  *  indicate this.
1847  *  Return: 1 If xena is quiescence
1848  *          0 If Xena is not quiescence
1849  */
1850
1851 static int verify_xena_quiescence(struct s2io_nic *sp)
1852 {
1853         int  mode;
1854         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1855         u64 val64 = readq(&bar0->adapter_status);
1856         mode = s2io_verify_pci_mode(sp);
1857
1858         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
1859                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
1860                 return 0;
1861         }
1862         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
1863         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
1864                 return 0;
1865         }
1866         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
1867                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
1868                 return 0;
1869         }
1870         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
1871                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
1872                 return 0;
1873         }
1874         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
1875                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
1876                 return 0;
1877         }
1878         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
1879                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
1880                 return 0;
1881         }
1882         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
1883                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
1884                 return 0;
1885         }
1886         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
1887                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
1888                 return 0;
1889         }
1890
1891         /*
1892          * In PCI 33 mode, the P_PLL is not used, and therefore,
1893          * the the P_PLL_LOCK bit in the adapter_status register will
1894          * not be asserted.
1895          */
1896         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
1897                 sp->device_type == XFRAME_II_DEVICE && mode !=
1898                 PCI_MODE_PCI_33) {
1899                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
1900                 return 0;
1901         }
1902         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1903                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1904                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
1905                 return 0;
1906         }
1907         return 1;
1908 }
1909
1910 /**
1911  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1912  * @sp: Pointer to device specifc structure
1913  * Description :
1914  * New procedure to clear mac address reading  problems on Alpha platforms
1915  *
1916  */
1917
1918 static void fix_mac_address(struct s2io_nic * sp)
1919 {
1920         struct XENA_dev_config __iomem *bar0 = sp->bar0;
1921         u64 val64;
1922         int i = 0;
1923
1924         while (fix_mac[i] != END_SIGN) {
1925                 writeq(fix_mac[i++], &bar0->gpio_control);
1926                 udelay(10);
1927                 val64 = readq(&bar0->gpio_control);
1928         }
1929 }
1930
1931 /**
1932  *  start_nic - Turns the device on
1933  *  @nic : device private variable.
1934  *  Description:
1935  *  This function actually turns the device on. Before this  function is
1936  *  called,all Registers are configured from their reset states
1937  *  and shared memory is allocated but the NIC is still quiescent. On
1938  *  calling this function, the device interrupts are cleared and the NIC is
1939  *  literally switched on by writing into the adapter control register.
1940  *  Return Value:
1941  *  SUCCESS on success and -1 on failure.
1942  */
1943
1944 static int start_nic(struct s2io_nic *nic)
1945 {
1946         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1947         struct net_device *dev = nic->dev;
1948         register u64 val64 = 0;
1949         u16 subid, i;
1950         struct mac_info *mac_control;
1951         struct config_param *config;
1952
1953         mac_control = &nic->mac_control;
1954         config = &nic->config;
1955
1956         /*  PRC Initialization and configuration */
1957         for (i = 0; i < config->rx_ring_num; i++) {
1958                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1959                        &bar0->prc_rxd0_n[i]);
1960
1961                 val64 = readq(&bar0->prc_ctrl_n[i]);
1962                 if (nic->config.bimodal)
1963                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1964                 if (nic->rxd_mode == RXD_MODE_1)
1965                         val64 |= PRC_CTRL_RC_ENABLED;
1966                 else
1967                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1968                 if (nic->device_type == XFRAME_II_DEVICE)
1969                         val64 |= PRC_CTRL_GROUP_READS;
1970                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1971                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1972                 writeq(val64, &bar0->prc_ctrl_n[i]);
1973         }
1974
1975         if (nic->rxd_mode == RXD_MODE_3B) {
1976                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1977                 val64 = readq(&bar0->rx_pa_cfg);
1978                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1979                 writeq(val64, &bar0->rx_pa_cfg);
1980         }
1981
1982         if (vlan_tag_strip == 0) {
1983                 val64 = readq(&bar0->rx_pa_cfg);
1984                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
1985                 writeq(val64, &bar0->rx_pa_cfg);
1986                 vlan_strip_flag = 0;
1987         }
1988
1989         /*
1990          * Enabling MC-RLDRAM. After enabling the device, we timeout
1991          * for around 100ms, which is approximately the time required
1992          * for the device to be ready for operation.
1993          */
1994         val64 = readq(&bar0->mc_rldram_mrs);
1995         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1996         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1997         val64 = readq(&bar0->mc_rldram_mrs);
1998
1999         msleep(100);    /* Delay by around 100 ms. */
2000
2001         /* Enabling ECC Protection. */
2002         val64 = readq(&bar0->adapter_control);
2003         val64 &= ~ADAPTER_ECC_EN;
2004         writeq(val64, &bar0->adapter_control);
2005
2006         /*
2007          * Clearing any possible Link state change interrupts that
2008          * could have popped up just before Enabling the card.
2009          */
2010         val64 = readq(&bar0->mac_rmac_err_reg);
2011         if (val64)
2012                 writeq(val64, &bar0->mac_rmac_err_reg);
2013
2014         /*
2015          * Verify if the device is ready to be enabled, if so enable
2016          * it.
2017          */
2018         val64 = readq(&bar0->adapter_status);
2019         if (!verify_xena_quiescence(nic)) {
2020                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2021                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2022                           (unsigned long long) val64);
2023                 return FAILURE;
2024         }
2025
2026         /*
2027          * With some switches, link might be already up at this point.
2028          * Because of this weird behavior, when we enable laser,
2029          * we may not get link. We need to handle this. We cannot
2030          * figure out which switch is misbehaving. So we are forced to
2031          * make a global change.
2032          */
2033
2034         /* Enabling Laser. */
2035         val64 = readq(&bar0->adapter_control);
2036         val64 |= ADAPTER_EOI_TX_ON;
2037         writeq(val64, &bar0->adapter_control);
2038
2039         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2040                 /*
2041                  * Dont see link state interrupts initally on some switches,
2042                  * so directly scheduling the link state task here.
2043                  */
2044                 schedule_work(&nic->set_link_task);
2045         }
2046         /* SXE-002: Initialize link and activity LED */
2047         subid = nic->pdev->subsystem_device;
2048         if (((subid & 0xFF) >= 0x07) &&
2049             (nic->device_type == XFRAME_I_DEVICE)) {
2050                 val64 = readq(&bar0->gpio_control);
2051                 val64 |= 0x0000800000000000ULL;
2052                 writeq(val64, &bar0->gpio_control);
2053                 val64 = 0x0411040400000000ULL;
2054                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2055         }
2056
2057         return SUCCESS;
2058 }
2059 /**
2060  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2061  */
2062 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2063                                         TxD *txdlp, int get_off)
2064 {
2065         struct s2io_nic *nic = fifo_data->nic;
2066         struct sk_buff *skb;
2067         struct TxD *txds;
2068         u16 j, frg_cnt;
2069
2070         txds = txdlp;
2071         if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2072                 pci_unmap_single(nic->pdev, (dma_addr_t)
2073                         txds->Buffer_Pointer, sizeof(u64),
2074                         PCI_DMA_TODEVICE);
2075                 txds++;
2076         }
2077
2078         skb = (struct sk_buff *) ((unsigned long)
2079                         txds->Host_Control);
2080         if (!skb) {
2081                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2082                 return NULL;
2083         }
2084         pci_unmap_single(nic->pdev, (dma_addr_t)
2085                          txds->Buffer_Pointer,
2086                          skb->len - skb->data_len,
2087                          PCI_DMA_TODEVICE);
2088         frg_cnt = skb_shinfo(skb)->nr_frags;
2089         if (frg_cnt) {
2090                 txds++;
2091                 for (j = 0; j < frg_cnt; j++, txds++) {
2092                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2093                         if (!txds->Buffer_Pointer)
2094                                 break;
2095                         pci_unmap_page(nic->pdev, (dma_addr_t)
2096                                         txds->Buffer_Pointer,
2097                                        frag->size, PCI_DMA_TODEVICE);
2098                 }
2099         }
2100         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2101         return(skb);
2102 }
2103
2104 /**
2105  *  free_tx_buffers - Free all queued Tx buffers
2106  *  @nic : device private variable.
2107  *  Description:
2108  *  Free all queued Tx buffers.
2109  *  Return Value: void
2110 */
2111
2112 static void free_tx_buffers(struct s2io_nic *nic)
2113 {
2114         struct net_device *dev = nic->dev;
2115         struct sk_buff *skb;
2116         struct TxD *txdp;
2117         int i, j;
2118         struct mac_info *mac_control;
2119         struct config_param *config;
2120         int cnt = 0;
2121
2122         mac_control = &nic->mac_control;
2123         config = &nic->config;
2124
2125         for (i = 0; i < config->tx_fifo_num; i++) {
2126                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2127                         txdp = (struct TxD *) mac_control->fifos[i].list_info[j].
2128                             list_virt_addr;
2129                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2130                         if (skb) {
2131                                 dev_kfree_skb(skb);
2132                                 cnt++;
2133                         }
2134                 }
2135                 DBG_PRINT(INTR_DBG,
2136                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2137                           dev->name, cnt, i);
2138                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2139                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2140         }
2141 }
2142
2143 /**
2144  *   stop_nic -  To stop the nic
2145  *   @nic ; device private variable.
2146  *   Description:
2147  *   This function does exactly the opposite of what the start_nic()
2148  *   function does. This function is called to stop the device.
2149  *   Return Value:
2150  *   void.
2151  */
2152
2153 static void stop_nic(struct s2io_nic *nic)
2154 {
2155         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2156         register u64 val64 = 0;
2157         u16 interruptible;
2158         struct mac_info *mac_control;
2159         struct config_param *config;
2160
2161         mac_control = &nic->mac_control;
2162         config = &nic->config;
2163
2164         /*  Disable all interrupts */
2165         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2166         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2167         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2168         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2169
2170         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2171         val64 = readq(&bar0->adapter_control);
2172         val64 &= ~(ADAPTER_CNTL_EN);
2173         writeq(val64, &bar0->adapter_control);
2174 }
2175
2176 static int fill_rxd_3buf(struct s2io_nic *nic, struct RxD_t *rxdp, struct \
2177                                 sk_buff *skb)
2178 {
2179         struct net_device *dev = nic->dev;
2180         struct sk_buff *frag_list;
2181         void *tmp;
2182
2183         /* Buffer-1 receives L3/L4 headers */
2184         ((struct RxD3*)rxdp)->Buffer1_ptr = pci_map_single
2185                         (nic->pdev, skb->data, l3l4hdr_size + 4,
2186                         PCI_DMA_FROMDEVICE);
2187
2188         /* skb_shinfo(skb)->frag_list will have L4 data payload */
2189         skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
2190         if (skb_shinfo(skb)->frag_list == NULL) {
2191                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
2192                 DBG_PRINT(INFO_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
2193                 return -ENOMEM ;
2194         }
2195         frag_list = skb_shinfo(skb)->frag_list;
2196         skb->truesize += frag_list->truesize;
2197         frag_list->next = NULL;
2198         tmp = (void *)ALIGN((long)frag_list->data, ALIGN_SIZE + 1);
2199         frag_list->data = tmp;
2200         skb_reset_tail_pointer(frag_list);
2201
2202         /* Buffer-2 receives L4 data payload */
2203         ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
2204                                 frag_list->data, dev->mtu,
2205                                 PCI_DMA_FROMDEVICE);
2206         rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
2207         rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
2208
2209         return SUCCESS;
2210 }
2211
2212 /**
2213  *  fill_rx_buffers - Allocates the Rx side skbs
2214  *  @nic:  device private variable
2215  *  @ring_no: ring number
2216  *  Description:
2217  *  The function allocates Rx side skbs and puts the physical
2218  *  address of these buffers into the RxD buffer pointers, so that the NIC
2219  *  can DMA the received frame into these locations.
2220  *  The NIC supports 3 receive modes, viz
2221  *  1. single buffer,
2222  *  2. three buffer and
2223  *  3. Five buffer modes.
2224  *  Each mode defines how many fragments the received frame will be split
2225  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2226  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2227  *  is split into 3 fragments. As of now only single buffer mode is
2228  *  supported.
2229  *   Return Value:
2230  *  SUCCESS on success or an appropriate -ve value on failure.
2231  */
2232
2233 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2234 {
2235         struct net_device *dev = nic->dev;
2236         struct sk_buff *skb;
2237         struct RxD_t *rxdp;
2238         int off, off1, size, block_no, block_no1;
2239         u32 alloc_tab = 0;
2240         u32 alloc_cnt;
2241         struct mac_info *mac_control;
2242         struct config_param *config;
2243         u64 tmp;
2244         struct buffAdd *ba;
2245         unsigned long flags;
2246         struct RxD_t *first_rxdp = NULL;
2247         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2248
2249         mac_control = &nic->mac_control;
2250         config = &nic->config;
2251         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2252             atomic_read(&nic->rx_bufs_left[ring_no]);
2253
2254         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2255         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2256         while (alloc_tab < alloc_cnt) {
2257                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2258                     block_index;
2259                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2260
2261                 rxdp = mac_control->rings[ring_no].
2262                                 rx_blocks[block_no].rxds[off].virt_addr;
2263
2264                 if ((block_no == block_no1) && (off == off1) &&
2265                                         (rxdp->Host_Control)) {
2266                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2267                                   dev->name);
2268                         DBG_PRINT(INTR_DBG, " info equated\n");
2269                         goto end;
2270                 }
2271                 if (off && (off == rxd_count[nic->rxd_mode])) {
2272                         mac_control->rings[ring_no].rx_curr_put_info.
2273                             block_index++;
2274                         if (mac_control->rings[ring_no].rx_curr_put_info.
2275                             block_index == mac_control->rings[ring_no].
2276                                         block_count)
2277                                 mac_control->rings[ring_no].rx_curr_put_info.
2278                                         block_index = 0;
2279                         block_no = mac_control->rings[ring_no].
2280                                         rx_curr_put_info.block_index;
2281                         if (off == rxd_count[nic->rxd_mode])
2282                                 off = 0;
2283                         mac_control->rings[ring_no].rx_curr_put_info.
2284                                 offset = off;
2285                         rxdp = mac_control->rings[ring_no].
2286                                 rx_blocks[block_no].block_virt_addr;
2287                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2288                                   dev->name, rxdp);
2289                 }
2290                 if(!napi) {
2291                         spin_lock_irqsave(&nic->put_lock, flags);
2292                         mac_control->rings[ring_no].put_pos =
2293                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2294                         spin_unlock_irqrestore(&nic->put_lock, flags);
2295                 } else {
2296                         mac_control->rings[ring_no].put_pos =
2297                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2298                 }
2299                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2300                         ((nic->rxd_mode >= RXD_MODE_3A) &&
2301                                 (rxdp->Control_2 & BIT(0)))) {
2302                         mac_control->rings[ring_no].rx_curr_put_info.
2303                                         offset = off;
2304                         goto end;
2305                 }
2306                 /* calculate size of skb based on ring mode */
2307                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2308                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2309                 if (nic->rxd_mode == RXD_MODE_1)
2310                         size += NET_IP_ALIGN;
2311                 else if (nic->rxd_mode == RXD_MODE_3B)
2312                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2313                 else
2314                         size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
2315
2316                 /* allocate skb */
2317                 skb = dev_alloc_skb(size);
2318                 if(!skb) {
2319                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2320                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2321                         if (first_rxdp) {
2322                                 wmb();
2323                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2324                         }
2325                         nic->mac_control.stats_info->sw_stat. \
2326                                 mem_alloc_fail_cnt++;
2327                         return -ENOMEM ;
2328                 }
2329                 if (nic->rxd_mode == RXD_MODE_1) {
2330                         /* 1 buffer mode - normal operation mode */
2331                         memset(rxdp, 0, sizeof(struct RxD1));
2332                         skb_reserve(skb, NET_IP_ALIGN);
2333                         ((struct RxD1*)rxdp)->Buffer0_ptr = pci_map_single
2334                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2335                                 PCI_DMA_FROMDEVICE);
2336                         rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2337
2338                 } else if (nic->rxd_mode >= RXD_MODE_3A) {
2339                         /*
2340                          * 2 or 3 buffer mode -
2341                          * Both 2 buffer mode and 3 buffer mode provides 128
2342                          * byte aligned receive buffers.
2343                          *
2344                          * 3 buffer mode provides header separation where in
2345                          * skb->data will have L3/L4 headers where as
2346                          * skb_shinfo(skb)->frag_list will have the L4 data
2347                          * payload
2348                          */
2349
2350                         /* save the buffer pointers to avoid frequent dma mapping */
2351                         Buffer0_ptr = ((struct RxD3*)rxdp)->Buffer0_ptr;
2352                         Buffer1_ptr = ((struct RxD3*)rxdp)->Buffer1_ptr;
2353                         memset(rxdp, 0, sizeof(struct RxD3));
2354                         /* restore the buffer pointers for dma sync*/
2355                         ((struct RxD3*)rxdp)->Buffer0_ptr = Buffer0_ptr;
2356                         ((struct RxD3*)rxdp)->Buffer1_ptr = Buffer1_ptr;
2357
2358                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2359                         skb_reserve(skb, BUF0_LEN);
2360                         tmp = (u64)(unsigned long) skb->data;
2361                         tmp += ALIGN_SIZE;
2362                         tmp &= ~ALIGN_SIZE;
2363                         skb->data = (void *) (unsigned long)tmp;
2364                         skb_reset_tail_pointer(skb);
2365
2366                         if (!(((struct RxD3*)rxdp)->Buffer0_ptr))
2367                                 ((struct RxD3*)rxdp)->Buffer0_ptr =
2368                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2369                                            PCI_DMA_FROMDEVICE);
2370                         else
2371                                 pci_dma_sync_single_for_device(nic->pdev,
2372                                     (dma_addr_t) ((struct RxD3*)rxdp)->Buffer0_ptr,
2373                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2374                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2375                         if (nic->rxd_mode == RXD_MODE_3B) {
2376                                 /* Two buffer mode */
2377
2378                                 /*
2379                                  * Buffer2 will have L3/L4 header plus
2380                                  * L4 payload
2381                                  */
2382                                 ((struct RxD3*)rxdp)->Buffer2_ptr = pci_map_single
2383                                 (nic->pdev, skb->data, dev->mtu + 4,
2384                                                 PCI_DMA_FROMDEVICE);
2385
2386                                 /* Buffer-1 will be dummy buffer. Not used */
2387                                 if (!(((struct RxD3*)rxdp)->Buffer1_ptr)) {
2388                                         ((struct RxD3*)rxdp)->Buffer1_ptr =
2389                                                 pci_map_single(nic->pdev,
2390                                                 ba->ba_1, BUF1_LEN,
2391                                                 PCI_DMA_FROMDEVICE);
2392                                 }
2393                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2394                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2395                                                                 (dev->mtu + 4);
2396                         } else {
2397                                 /* 3 buffer mode */
2398                                 if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
2399                                         dev_kfree_skb_irq(skb);
2400                                         if (first_rxdp) {
2401                                                 wmb();
2402                                                 first_rxdp->Control_1 |=
2403                                                         RXD_OWN_XENA;
2404                                         }
2405                                         return -ENOMEM ;
2406                                 }
2407                         }
2408                         rxdp->Control_2 |= BIT(0);
2409                 }
2410                 rxdp->Host_Control = (unsigned long) (skb);
2411                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2412                         rxdp->Control_1 |= RXD_OWN_XENA;
2413                 off++;
2414                 if (off == (rxd_count[nic->rxd_mode] + 1))
2415                         off = 0;
2416                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2417
2418                 rxdp->Control_2 |= SET_RXD_MARKER;
2419                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2420                         if (first_rxdp) {
2421                                 wmb();
2422                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2423                         }
2424                         first_rxdp = rxdp;
2425                 }
2426                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2427                 alloc_tab++;
2428         }
2429
2430       end:
2431         /* Transfer ownership of first descriptor to adapter just before
2432          * exiting. Before that, use memory barrier so that ownership
2433          * and other fields are seen by adapter correctly.
2434          */
2435         if (first_rxdp) {
2436                 wmb();
2437                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2438         }
2439
2440         return SUCCESS;
2441 }
2442
2443 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2444 {
2445         struct net_device *dev = sp->dev;
2446         int j;
2447         struct sk_buff *skb;
2448         struct RxD_t *rxdp;
2449         struct mac_info *mac_control;
2450         struct buffAdd *ba;
2451
2452         mac_control = &sp->mac_control;
2453         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2454                 rxdp = mac_control->rings[ring_no].
2455                                 rx_blocks[blk].rxds[j].virt_addr;
2456                 skb = (struct sk_buff *)
2457                         ((unsigned long) rxdp->Host_Control);
2458                 if (!skb) {
2459                         continue;
2460                 }
2461                 if (sp->rxd_mode == RXD_MODE_1) {
2462                         pci_unmap_single(sp->pdev, (dma_addr_t)
2463                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2464                                  dev->mtu +
2465                                  HEADER_ETHERNET_II_802_3_SIZE
2466                                  + HEADER_802_2_SIZE +
2467                                  HEADER_SNAP_SIZE,
2468                                  PCI_DMA_FROMDEVICE);
2469                         memset(rxdp, 0, sizeof(struct RxD1));
2470                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2471                         ba = &mac_control->rings[ring_no].
2472                                 ba[blk][j];
2473                         pci_unmap_single(sp->pdev, (dma_addr_t)
2474                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2475                                  BUF0_LEN,
2476                                  PCI_DMA_FROMDEVICE);
2477                         pci_unmap_single(sp->pdev, (dma_addr_t)
2478                                  ((struct RxD3*)rxdp)->Buffer1_ptr,
2479                                  BUF1_LEN,
2480                                  PCI_DMA_FROMDEVICE);
2481                         pci_unmap_single(sp->pdev, (dma_addr_t)
2482                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2483                                  dev->mtu + 4,
2484                                  PCI_DMA_FROMDEVICE);
2485                         memset(rxdp, 0, sizeof(struct RxD3));
2486                 } else {
2487                         pci_unmap_single(sp->pdev, (dma_addr_t)
2488                                 ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2489                                 PCI_DMA_FROMDEVICE);
2490                         pci_unmap_single(sp->pdev, (dma_addr_t)
2491                                 ((struct RxD3*)rxdp)->Buffer1_ptr,
2492                                 l3l4hdr_size + 4,
2493                                 PCI_DMA_FROMDEVICE);
2494                         pci_unmap_single(sp->pdev, (dma_addr_t)
2495                                 ((struct RxD3*)rxdp)->Buffer2_ptr, dev->mtu,
2496                                 PCI_DMA_FROMDEVICE);
2497                         memset(rxdp, 0, sizeof(struct RxD3));
2498                 }
2499                 dev_kfree_skb(skb);
2500                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2501         }
2502 }
2503
2504 /**
2505  *  free_rx_buffers - Frees all Rx buffers
2506  *  @sp: device private variable.
2507  *  Description:
2508  *  This function will free all Rx buffers allocated by host.
2509  *  Return Value:
2510  *  NONE.
2511  */
2512
2513 static void free_rx_buffers(struct s2io_nic *sp)
2514 {
2515         struct net_device *dev = sp->dev;
2516         int i, blk = 0, buf_cnt = 0;
2517         struct mac_info *mac_control;
2518         struct config_param *config;
2519
2520         mac_control = &sp->mac_control;
2521         config = &sp->config;
2522
2523         for (i = 0; i < config->rx_ring_num; i++) {
2524                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2525                         free_rxd_blk(sp,i,blk);
2526
2527                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2528                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2529                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2530                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2531                 atomic_set(&sp->rx_bufs_left[i], 0);
2532                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2533                           dev->name, buf_cnt, i);
2534         }
2535 }
2536
2537 /**
2538  * s2io_poll - Rx interrupt handler for NAPI support
2539  * @dev : pointer to the device structure.
2540  * @budget : The number of packets that were budgeted to be processed
2541  * during  one pass through the 'Poll" function.
2542  * Description:
2543  * Comes into picture only if NAPI support has been incorporated. It does
2544  * the same thing that rx_intr_handler does, but not in a interrupt context
2545  * also It will process only a given number of packets.
2546  * Return value:
2547  * 0 on success and 1 if there are No Rx packets to be processed.
2548  */
2549
2550 static int s2io_poll(struct net_device *dev, int *budget)
2551 {
2552         struct s2io_nic *nic = dev->priv;
2553         int pkt_cnt = 0, org_pkts_to_process;
2554         struct mac_info *mac_control;
2555         struct config_param *config;
2556         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2557         int i;
2558
2559         atomic_inc(&nic->isr_cnt);
2560         mac_control = &nic->mac_control;
2561         config = &nic->config;
2562
2563         nic->pkts_to_process = *budget;
2564         if (nic->pkts_to_process > dev->quota)
2565                 nic->pkts_to_process = dev->quota;
2566         org_pkts_to_process = nic->pkts_to_process;
2567
2568         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2569         readl(&bar0->rx_traffic_int);
2570
2571         for (i = 0; i < config->rx_ring_num; i++) {
2572                 rx_intr_handler(&mac_control->rings[i]);
2573                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2574                 if (!nic->pkts_to_process) {
2575                         /* Quota for the current iteration has been met */
2576                         goto no_rx;
2577                 }
2578         }
2579         if (!pkt_cnt)
2580                 pkt_cnt = 1;
2581
2582         dev->quota -= pkt_cnt;
2583         *budget -= pkt_cnt;
2584         netif_rx_complete(dev);
2585
2586         for (i = 0; i < config->rx_ring_num; i++) {
2587                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2588                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2589                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2590                         break;
2591                 }
2592         }
2593         /* Re enable the Rx interrupts. */
2594         writeq(0x0, &bar0->rx_traffic_mask);
2595         readl(&bar0->rx_traffic_mask);
2596         atomic_dec(&nic->isr_cnt);
2597         return 0;
2598
2599 no_rx:
2600         dev->quota -= pkt_cnt;
2601         *budget -= pkt_cnt;
2602
2603         for (i = 0; i < config->rx_ring_num; i++) {
2604                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2605                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2606                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2607                         break;
2608                 }
2609         }
2610         atomic_dec(&nic->isr_cnt);
2611         return 1;
2612 }
2613
2614 #ifdef CONFIG_NET_POLL_CONTROLLER
2615 /**
2616  * s2io_netpoll - netpoll event handler entry point
2617  * @dev : pointer to the device structure.
2618  * Description:
2619  *      This function will be called by upper layer to check for events on the
2620  * interface in situations where interrupts are disabled. It is used for
2621  * specific in-kernel networking tasks, such as remote consoles and kernel
2622  * debugging over the network (example netdump in RedHat).
2623  */
2624 static void s2io_netpoll(struct net_device *dev)
2625 {
2626         struct s2io_nic *nic = dev->priv;
2627         struct mac_info *mac_control;
2628         struct config_param *config;
2629         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2630         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2631         int i;
2632
2633         disable_irq(dev->irq);
2634
2635         atomic_inc(&nic->isr_cnt);
2636         mac_control = &nic->mac_control;
2637         config = &nic->config;
2638
2639         writeq(val64, &bar0->rx_traffic_int);
2640         writeq(val64, &bar0->tx_traffic_int);
2641
2642         /* we need to free up the transmitted skbufs or else netpoll will
2643          * run out of skbs and will fail and eventually netpoll application such
2644          * as netdump will fail.
2645          */
2646         for (i = 0; i < config->tx_fifo_num; i++)
2647                 tx_intr_handler(&mac_control->fifos[i]);
2648
2649         /* check for received packet and indicate up to network */
2650         for (i = 0; i < config->rx_ring_num; i++)
2651                 rx_intr_handler(&mac_control->rings[i]);
2652
2653         for (i = 0; i < config->rx_ring_num; i++) {
2654                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2655                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2656                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2657                         break;
2658                 }
2659         }
2660         atomic_dec(&nic->isr_cnt);
2661         enable_irq(dev->irq);
2662         return;
2663 }
2664 #endif
2665
2666 /**
2667  *  rx_intr_handler - Rx interrupt handler
2668  *  @nic: device private variable.
2669  *  Description:
2670  *  If the interrupt is because of a received frame or if the
2671  *  receive ring contains fresh as yet un-processed frames,this function is
2672  *  called. It picks out the RxD at which place the last Rx processing had
2673  *  stopped and sends the skb to the OSM's Rx handler and then increments
2674  *  the offset.
2675  *  Return Value:
2676  *  NONE.
2677  */
2678 static void rx_intr_handler(struct ring_info *ring_data)
2679 {
2680         struct s2io_nic *nic = ring_data->nic;
2681         struct net_device *dev = (struct net_device *) nic->dev;
2682         int get_block, put_block, put_offset;
2683         struct rx_curr_get_info get_info, put_info;
2684         struct RxD_t *rxdp;
2685         struct sk_buff *skb;
2686         int pkt_cnt = 0;
2687         int i;
2688
2689         spin_lock(&nic->rx_lock);
2690         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2691                 DBG_PRINT(INTR_DBG, "%s: %s going down for reset\n",
2692                           __FUNCTION__, dev->name);
2693                 spin_unlock(&nic->rx_lock);
2694                 return;
2695         }
2696
2697         get_info = ring_data->rx_curr_get_info;
2698         get_block = get_info.block_index;
2699         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2700         put_block = put_info.block_index;
2701         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2702         if (!napi) {
2703                 spin_lock(&nic->put_lock);
2704                 put_offset = ring_data->put_pos;
2705                 spin_unlock(&nic->put_lock);
2706         } else
2707                 put_offset = ring_data->put_pos;
2708
2709         while (RXD_IS_UP2DT(rxdp)) {
2710                 /*
2711                  * If your are next to put index then it's
2712                  * FIFO full condition
2713                  */
2714                 if ((get_block == put_block) &&
2715                     (get_info.offset + 1) == put_info.offset) {
2716                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2717                         break;
2718                 }
2719                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2720                 if (skb == NULL) {
2721                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2722                                   dev->name);
2723                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2724                         spin_unlock(&nic->rx_lock);
2725                         return;
2726                 }
2727                 if (nic->rxd_mode == RXD_MODE_1) {
2728                         pci_unmap_single(nic->pdev, (dma_addr_t)
2729                                  ((struct RxD1*)rxdp)->Buffer0_ptr,
2730                                  dev->mtu +
2731                                  HEADER_ETHERNET_II_802_3_SIZE +
2732                                  HEADER_802_2_SIZE +
2733                                  HEADER_SNAP_SIZE,
2734                                  PCI_DMA_FROMDEVICE);
2735                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2736                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2737                                  ((struct RxD3*)rxdp)->Buffer0_ptr,
2738                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2739                         pci_unmap_single(nic->pdev, (dma_addr_t)
2740                                  ((struct RxD3*)rxdp)->Buffer2_ptr,
2741                                  dev->mtu + 4,
2742                                  PCI_DMA_FROMDEVICE);
2743                 } else {
2744                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2745                                          ((struct RxD3*)rxdp)->Buffer0_ptr, BUF0_LEN,
2746                                          PCI_DMA_FROMDEVICE);
2747                         pci_unmap_single(nic->pdev, (dma_addr_t)
2748                                          ((struct RxD3*)rxdp)->Buffer1_ptr,
2749                                          l3l4hdr_size + 4,
2750                                          PCI_DMA_FROMDEVICE);
2751                         pci_unmap_single(nic->pdev, (dma_addr_t)
2752                                          ((struct RxD3*)rxdp)->Buffer2_ptr,
2753                                          dev->mtu, PCI_DMA_FROMDEVICE);
2754                 }
2755                 prefetch(skb->data);
2756                 rx_osm_handler(ring_data, rxdp);
2757                 get_info.offset++;
2758                 ring_data->rx_curr_get_info.offset = get_info.offset;
2759                 rxdp = ring_data->rx_blocks[get_block].
2760                                 rxds[get_info.offset].virt_addr;
2761                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2762                         get_info.offset = 0;
2763                         ring_data->rx_curr_get_info.offset = get_info.offset;
2764                         get_block++;
2765                         if (get_block == ring_data->block_count)
2766                                 get_block = 0;
2767                         ring_data->rx_curr_get_info.block_index = get_block;
2768                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2769                 }
2770
2771                 nic->pkts_to_process -= 1;
2772                 if ((napi) && (!nic->pkts_to_process))
2773                         break;
2774                 pkt_cnt++;
2775                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2776                         break;
2777         }
2778         if (nic->lro) {
2779                 /* Clear all LRO sessions before exiting */
2780                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2781                         struct lro *lro = &nic->lro0_n[i];
2782                         if (lro->in_use) {
2783                                 update_L3L4_header(nic, lro);
2784                                 queue_rx_frame(lro->parent);
2785                                 clear_lro_session(lro);
2786                         }
2787                 }
2788         }
2789
2790         spin_unlock(&nic->rx_lock);
2791 }
2792
2793 /**
2794  *  tx_intr_handler - Transmit interrupt handler
2795  *  @nic : device private variable
2796  *  Description:
2797  *  If an interrupt was raised to indicate DMA complete of the
2798  *  Tx packet, this function is called. It identifies the last TxD
2799  *  whose buffer was freed and frees all skbs whose data have already
2800  *  DMA'ed into the NICs internal memory.
2801  *  Return Value:
2802  *  NONE
2803  */
2804
2805 static void tx_intr_handler(struct fifo_info *fifo_data)
2806 {
2807         struct s2io_nic *nic = fifo_data->nic;
2808         struct net_device *dev = (struct net_device *) nic->dev;
2809         struct tx_curr_get_info get_info, put_info;
2810         struct sk_buff *skb;
2811         struct TxD *txdlp;
2812
2813         get_info = fifo_data->tx_curr_get_info;
2814         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2815         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2816             list_virt_addr;
2817         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2818                (get_info.offset != put_info.offset) &&
2819                (txdlp->Host_Control)) {
2820                 /* Check for TxD errors */
2821                 if (txdlp->Control_1 & TXD_T_CODE) {
2822                         unsigned long long err;
2823                         err = txdlp->Control_1 & TXD_T_CODE;
2824                         if (err & 0x1) {
2825                                 nic->mac_control.stats_info->sw_stat.
2826                                                 parity_err_cnt++;
2827                         }
2828                         if ((err >> 48) == 0xA) {
2829                                 DBG_PRINT(TX_DBG, "TxD returned due \
2830                                                 to loss of link\n");
2831                         }
2832                         else {
2833                                 DBG_PRINT(ERR_DBG, "***TxD error %llx\n", err);
2834                         }
2835                 }
2836
2837                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2838                 if (skb == NULL) {
2839                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2840                         __FUNCTION__);
2841                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2842                         return;
2843                 }
2844
2845                 /* Updating the statistics block */
2846                 nic->stats.tx_bytes += skb->len;
2847                 dev_kfree_skb_irq(skb);
2848
2849                 get_info.offset++;
2850                 if (get_info.offset == get_info.fifo_len + 1)
2851                         get_info.offset = 0;
2852                 txdlp = (struct TxD *) fifo_data->list_info
2853                     [get_info.offset].list_virt_addr;
2854                 fifo_data->tx_curr_get_info.offset =
2855                     get_info.offset;
2856         }
2857
2858         spin_lock(&nic->tx_lock);
2859         if (netif_queue_stopped(dev))
2860                 netif_wake_queue(dev);
2861         spin_unlock(&nic->tx_lock);
2862 }
2863
2864 /**
2865  *  s2io_mdio_write - Function to write in to MDIO registers
2866  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2867  *  @addr     : address value
2868  *  @value    : data value
2869  *  @dev      : pointer to net_device structure
2870  *  Description:
2871  *  This function is used to write values to the MDIO registers
2872  *  NONE
2873  */
2874 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
2875 {
2876         u64 val64 = 0x0;
2877         struct s2io_nic *sp = dev->priv;
2878         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2879
2880         //address transaction
2881         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2882                         | MDIO_MMD_DEV_ADDR(mmd_type)
2883                         | MDIO_MMS_PRT_ADDR(0x0);
2884         writeq(val64, &bar0->mdio_control);
2885         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2886         writeq(val64, &bar0->mdio_control);
2887         udelay(100);
2888
2889         //Data transaction
2890         val64 = 0x0;
2891         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2892                         | MDIO_MMD_DEV_ADDR(mmd_type)
2893                         | MDIO_MMS_PRT_ADDR(0x0)
2894                         | MDIO_MDIO_DATA(value)
2895                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
2896         writeq(val64, &bar0->mdio_control);
2897         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2898         writeq(val64, &bar0->mdio_control);
2899         udelay(100);
2900
2901         val64 = 0x0;
2902         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2903         | MDIO_MMD_DEV_ADDR(mmd_type)
2904         | MDIO_MMS_PRT_ADDR(0x0)
2905         | MDIO_OP(MDIO_OP_READ_TRANS);
2906         writeq(val64, &bar0->mdio_control);
2907         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2908         writeq(val64, &bar0->mdio_control);
2909         udelay(100);
2910
2911 }
2912
2913 /**
2914  *  s2io_mdio_read - Function to write in to MDIO registers
2915  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2916  *  @addr     : address value
2917  *  @dev      : pointer to net_device structure
2918  *  Description:
2919  *  This function is used to read values to the MDIO registers
2920  *  NONE
2921  */
2922 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
2923 {
2924         u64 val64 = 0x0;
2925         u64 rval64 = 0x0;
2926         struct s2io_nic *sp = dev->priv;
2927         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2928
2929         /* address transaction */
2930         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2931                         | MDIO_MMD_DEV_ADDR(mmd_type)
2932                         | MDIO_MMS_PRT_ADDR(0x0);
2933         writeq(val64, &bar0->mdio_control);
2934         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2935         writeq(val64, &bar0->mdio_control);
2936         udelay(100);
2937
2938         /* Data transaction */
2939         val64 = 0x0;
2940         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
2941                         | MDIO_MMD_DEV_ADDR(mmd_type)
2942                         | MDIO_MMS_PRT_ADDR(0x0)
2943                         | MDIO_OP(MDIO_OP_READ_TRANS);
2944         writeq(val64, &bar0->mdio_control);
2945         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
2946         writeq(val64, &bar0->mdio_control);
2947         udelay(100);
2948
2949         /* Read the value from regs */
2950         rval64 = readq(&bar0->mdio_control);
2951         rval64 = rval64 & 0xFFFF0000;
2952         rval64 = rval64 >> 16;
2953         return rval64;
2954 }
2955 /**
2956  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
2957  *  @counter      : couter value to be updated
2958  *  @flag         : flag to indicate the status
2959  *  @type         : counter type
2960  *  Description:
2961  *  This function is to check the status of the xpak counters value
2962  *  NONE
2963  */
2964
2965 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
2966 {
2967         u64 mask = 0x3;
2968         u64 val64;
2969         int i;
2970         for(i = 0; i <index; i++)
2971                 mask = mask << 0x2;
2972
2973         if(flag > 0)
2974         {
2975                 *counter = *counter + 1;
2976                 val64 = *regs_stat & mask;
2977                 val64 = val64 >> (index * 0x2);
2978                 val64 = val64 + 1;
2979                 if(val64 == 3)
2980                 {
2981                         switch(type)
2982                         {
2983                         case 1:
2984                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2985                                           "service. Excessive temperatures may "
2986                                           "result in premature transceiver "
2987                                           "failure \n");
2988                         break;
2989                         case 2:
2990                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2991                                           "service Excessive bias currents may "
2992                                           "indicate imminent laser diode "
2993                                           "failure \n");
2994                         break;
2995                         case 3:
2996                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
2997                                           "service Excessive laser output "
2998                                           "power may saturate far-end "
2999                                           "receiver\n");
3000                         break;
3001                         default:
3002                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3003                                           "type \n");
3004                         }
3005                         val64 = 0x0;
3006                 }
3007                 val64 = val64 << (index * 0x2);
3008                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3009
3010         } else {
3011                 *regs_stat = *regs_stat & (~mask);
3012         }
3013 }
3014
3015 /**
3016  *  s2io_updt_xpak_counter - Function to update the xpak counters
3017  *  @dev         : pointer to net_device struct
3018  *  Description:
3019  *  This function is to upate the status of the xpak counters value
3020  *  NONE
3021  */
3022 static void s2io_updt_xpak_counter(struct net_device *dev)
3023 {
3024         u16 flag  = 0x0;
3025         u16 type  = 0x0;
3026         u16 val16 = 0x0;
3027         u64 val64 = 0x0;
3028         u64 addr  = 0x0;
3029
3030         struct s2io_nic *sp = dev->priv;
3031         struct stat_block *stat_info = sp->mac_control.stats_info;
3032
3033         /* Check the communication with the MDIO slave */
3034         addr = 0x0000;
3035         val64 = 0x0;
3036         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3037         if((val64 == 0xFFFF) || (val64 == 0x0000))
3038         {
3039                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3040                           "Returned %llx\n", (unsigned long long)val64);
3041                 return;
3042         }
3043
3044         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3045         if(val64 != 0x2040)
3046         {
3047                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3048                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3049                           (unsigned long long)val64);
3050                 return;
3051         }
3052
3053         /* Loading the DOM register to MDIO register */
3054         addr = 0xA100;
3055         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3056         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3057
3058         /* Reading the Alarm flags */
3059         addr = 0xA070;
3060         val64 = 0x0;
3061         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3062
3063         flag = CHECKBIT(val64, 0x7);
3064         type = 1;
3065         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3066                                 &stat_info->xpak_stat.xpak_regs_stat,
3067                                 0x0, flag, type);
3068
3069         if(CHECKBIT(val64, 0x6))
3070                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3071
3072         flag = CHECKBIT(val64, 0x3);
3073         type = 2;
3074         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3075                                 &stat_info->xpak_stat.xpak_regs_stat,
3076                                 0x2, flag, type);
3077
3078         if(CHECKBIT(val64, 0x2))
3079                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3080
3081         flag = CHECKBIT(val64, 0x1);
3082         type = 3;
3083         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3084                                 &stat_info->xpak_stat.xpak_regs_stat,
3085                                 0x4, flag, type);
3086
3087         if(CHECKBIT(val64, 0x0))
3088                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3089
3090         /* Reading the Warning flags */
3091         addr = 0xA074;
3092         val64 = 0x0;
3093         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3094
3095         if(CHECKBIT(val64, 0x7))
3096                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3097
3098         if(CHECKBIT(val64, 0x6))
3099                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3100
3101         if(CHECKBIT(val64, 0x3))
3102                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3103
3104         if(CHECKBIT(val64, 0x2))
3105                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3106
3107         if(CHECKBIT(val64, 0x1))
3108                 stat_info->xpak_stat.warn_laser_output_power_high++;
3109
3110         if(CHECKBIT(val64, 0x0))
3111                 stat_info->xpak_stat.warn_laser_output_power_low++;
3112 }
3113
3114 /**
3115  *  alarm_intr_handler - Alarm Interrrupt handler
3116  *  @nic: device private variable
3117  *  Description: If the interrupt was neither because of Rx packet or Tx
3118  *  complete, this function is called. If the interrupt was to indicate
3119  *  a loss of link, the OSM link status handler is invoked for any other
3120  *  alarm interrupt the block that raised the interrupt is displayed
3121  *  and a H/W reset is issued.
3122  *  Return Value:
3123  *  NONE
3124 */
3125
3126 static void alarm_intr_handler(struct s2io_nic *nic)
3127 {
3128         struct net_device *dev = (struct net_device *) nic->dev;
3129         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3130         register u64 val64 = 0, err_reg = 0;
3131         u64 cnt;
3132         int i;
3133         if (atomic_read(&nic->card_state) == CARD_DOWN)
3134                 return;
3135         nic->mac_control.stats_info->sw_stat.ring_full_cnt = 0;
3136         /* Handling the XPAK counters update */
3137         if(nic->mac_control.stats_info->xpak_stat.xpak_timer_count < 72000) {
3138                 /* waiting for an hour */
3139                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count++;
3140         } else {
3141                 s2io_updt_xpak_counter(dev);
3142                 /* reset the count to zero */
3143                 nic->mac_control.stats_info->xpak_stat.xpak_timer_count = 0;
3144         }
3145
3146         /* Handling link status change error Intr */
3147         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
3148                 err_reg = readq(&bar0->mac_rmac_err_reg);
3149                 writeq(err_reg, &bar0->mac_rmac_err_reg);
3150                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
3151                         schedule_work(&nic->set_link_task);
3152                 }
3153         }
3154
3155         /* Handling Ecc errors */
3156         val64 = readq(&bar0->mc_err_reg);
3157         writeq(val64, &bar0->mc_err_reg);
3158         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
3159                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
3160                         nic->mac_control.stats_info->sw_stat.
3161                                 double_ecc_errs++;
3162                         DBG_PRINT(INIT_DBG, "%s: Device indicates ",
3163                                   dev->name);
3164                         DBG_PRINT(INIT_DBG, "double ECC error!!\n");
3165                         if (nic->device_type != XFRAME_II_DEVICE) {
3166                                 /* Reset XframeI only if critical error */
3167                                 if (val64 & (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
3168                                              MC_ERR_REG_MIRI_ECC_DB_ERR_1)) {
3169                                         netif_stop_queue(dev);
3170                                         schedule_work(&nic->rst_timer_task);
3171                                         nic->mac_control.stats_info->sw_stat.
3172                                                         soft_reset_cnt++;
3173                                 }
3174                         }
3175                 } else {
3176                         nic->mac_control.stats_info->sw_stat.
3177                                 single_ecc_errs++;
3178                 }
3179         }
3180
3181         /* In case of a serious error, the device will be Reset. */
3182         val64 = readq(&bar0->serr_source);
3183         if (val64 & SERR_SOURCE_ANY) {
3184                 nic->mac_control.stats_info->sw_stat.serious_err_cnt++;
3185                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
3186                 DBG_PRINT(ERR_DBG, "serious error %llx!!\n",
3187                           (unsigned long long)val64);
3188                 netif_stop_queue(dev);
3189                 schedule_work(&nic->rst_timer_task);
3190                 nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3191         }
3192
3193         /*
3194          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3195          * Error occurs, the adapter will be recycled by disabling the
3196          * adapter enable bit and enabling it again after the device
3197          * becomes Quiescent.
3198          */
3199         val64 = readq(&bar0->pcc_err_reg);
3200         writeq(val64, &bar0->pcc_err_reg);
3201         if (val64 & PCC_FB_ECC_DB_ERR) {
3202                 u64 ac = readq(&bar0->adapter_control);
3203                 ac &= ~(ADAPTER_CNTL_EN);
3204                 writeq(ac, &bar0->adapter_control);
3205                 ac = readq(&bar0->adapter_control);
3206                 schedule_work(&nic->set_link_task);
3207         }
3208         /* Check for data parity error */
3209         val64 = readq(&bar0->pic_int_status);
3210         if (val64 & PIC_INT_GPIO) {
3211                 val64 = readq(&bar0->gpio_int_reg);
3212                 if (val64 & GPIO_INT_REG_DP_ERR_INT) {
3213                         nic->mac_control.stats_info->sw_stat.parity_err_cnt++;
3214                         schedule_work(&nic->rst_timer_task);
3215                         nic->mac_control.stats_info->sw_stat.soft_reset_cnt++;
3216                 }
3217         }
3218
3219         /* Check for ring full counter */
3220         if (nic->device_type & XFRAME_II_DEVICE) {
3221                 val64 = readq(&bar0->ring_bump_counter1);
3222                 for (i=0; i<4; i++) {
3223                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3224                         cnt >>= 64 - ((i+1)*16);
3225                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3226                                 += cnt;
3227                 }
3228
3229                 val64 = readq(&bar0->ring_bump_counter2);
3230                 for (i=0; i<4; i++) {
3231                         cnt = ( val64 & vBIT(0xFFFF,(i*16),16));
3232                         cnt >>= 64 - ((i+1)*16);
3233                         nic->mac_control.stats_info->sw_stat.ring_full_cnt
3234                                 += cnt;
3235                 }
3236         }
3237
3238         /* Other type of interrupts are not being handled now,  TODO */
3239 }
3240
3241 /**
3242  *  wait_for_cmd_complete - waits for a command to complete.
3243  *  @sp : private member of the device structure, which is a pointer to the
3244  *  s2io_nic structure.
3245  *  Description: Function that waits for a command to Write into RMAC
3246  *  ADDR DATA registers to be completed and returns either success or
3247  *  error depending on whether the command was complete or not.
3248  *  Return value:
3249  *   SUCCESS on success and FAILURE on failure.
3250  */
3251
3252 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3253                                 int bit_state)
3254 {
3255         int ret = FAILURE, cnt = 0, delay = 1;
3256         u64 val64;
3257
3258         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3259                 return FAILURE;
3260
3261         do {
3262                 val64 = readq(addr);
3263                 if (bit_state == S2IO_BIT_RESET) {
3264                         if (!(val64 & busy_bit)) {
3265                                 ret = SUCCESS;
3266                                 break;
3267                         }
3268                 } else {
3269                         if (!(val64 & busy_bit)) {
3270                                 ret = SUCCESS;
3271                                 break;
3272                         }
3273                 }
3274
3275                 if(in_interrupt())
3276                         mdelay(delay);
3277                 else
3278                         msleep(delay);
3279
3280                 if (++cnt >= 10)
3281                         delay = 50;
3282         } while (cnt < 20);
3283         return ret;
3284 }
3285 /*
3286  * check_pci_device_id - Checks if the device id is supported
3287  * @id : device id
3288  * Description: Function to check if the pci device id is supported by driver.
3289  * Return value: Actual device id if supported else PCI_ANY_ID
3290  */
3291 static u16 check_pci_device_id(u16 id)
3292 {
3293         switch (id) {
3294         case PCI_DEVICE_ID_HERC_WIN:
3295         case PCI_DEVICE_ID_HERC_UNI:
3296                 return XFRAME_II_DEVICE;
3297         case PCI_DEVICE_ID_S2IO_UNI:
3298         case PCI_DEVICE_ID_S2IO_WIN:
3299                 return XFRAME_I_DEVICE;
3300         default:
3301                 return PCI_ANY_ID;
3302         }
3303 }
3304
3305 /**
3306  *  s2io_reset - Resets the card.
3307  *  @sp : private member of the device structure.
3308  *  Description: Function to Reset the card. This function then also
3309  *  restores the previously saved PCI configuration space registers as
3310  *  the card reset also resets the configuration space.
3311  *  Return value:
3312  *  void.
3313  */
3314
3315 static void s2io_reset(struct s2io_nic * sp)
3316 {
3317         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3318         u64 val64;
3319         u16 subid, pci_cmd;
3320         int i;
3321         u16 val16;
3322         unsigned long long reset_cnt = 0;
3323         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3324                         __FUNCTION__, sp->dev->name);
3325
3326         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3327         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3328
3329         if (sp->device_type == XFRAME_II_DEVICE) {
3330                 int ret;
3331                 ret = pci_set_power_state(sp->pdev, 3);
3332                 if (!ret)
3333                         ret = pci_set_power_state(sp->pdev, 0);
3334                 else {
3335                         DBG_PRINT(ERR_DBG,"%s PME based SW_Reset failed!\n",
3336                                         __FUNCTION__);
3337                         goto old_way;
3338                 }
3339                 msleep(20);
3340                 goto new_way;
3341         }
3342 old_way:
3343         val64 = SW_RESET_ALL;
3344         writeq(val64, &bar0->sw_reset);
3345 new_way:
3346         if (strstr(sp->product_name, "CX4")) {
3347                 msleep(750);
3348         }
3349         msleep(250);
3350         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3351
3352                 /* Restore the PCI state saved during initialization. */
3353                 pci_restore_state(sp->pdev);
3354                 pci_read_config_word(sp->pdev, 0x2, &val16);
3355                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3356                         break;
3357                 msleep(200);
3358         }
3359
3360         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3361                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3362         }
3363
3364         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3365
3366         s2io_init_pci(sp);
3367
3368         /* Set swapper to enable I/O register access */
3369         s2io_set_swapper(sp);
3370
3371         /* Restore the MSIX table entries from local variables */
3372         restore_xmsi_data(sp);
3373
3374         /* Clear certain PCI/PCI-X fields after reset */
3375         if (sp->device_type == XFRAME_II_DEVICE) {
3376                 /* Clear "detected parity error" bit */
3377                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3378
3379                 /* Clearing PCIX Ecc status register */
3380                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3381
3382                 /* Clearing PCI_STATUS error reflected here */
3383                 writeq(BIT(62), &bar0->txpic_int_reg);
3384         }
3385
3386         /* Reset device statistics maintained by OS */
3387         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3388         /* save reset count */
3389         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3390         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3391         /* restore reset count */
3392         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3393
3394         /* SXE-002: Configure link and activity LED to turn it off */
3395         subid = sp->pdev->subsystem_device;
3396         if (((subid & 0xFF) >= 0x07) &&
3397             (sp->device_type == XFRAME_I_DEVICE)) {
3398                 val64 = readq(&bar0->gpio_control);
3399                 val64 |= 0x0000800000000000ULL;
3400                 writeq(val64, &bar0->gpio_control);
3401                 val64 = 0x0411040400000000ULL;
3402                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3403         }
3404
3405         /*
3406          * Clear spurious ECC interrupts that would have occured on
3407          * XFRAME II cards after reset.
3408          */
3409         if (sp->device_type == XFRAME_II_DEVICE) {
3410                 val64 = readq(&bar0->pcc_err_reg);
3411                 writeq(val64, &bar0->pcc_err_reg);
3412         }
3413
3414         /* restore the previously assigned mac address */
3415         s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3416
3417         sp->device_enabled_once = FALSE;
3418 }
3419
3420 /**
3421  *  s2io_set_swapper - to set the swapper controle on the card
3422  *  @sp : private member of the device structure,
3423  *  pointer to the s2io_nic structure.
3424  *  Description: Function to set the swapper control on the card
3425  *  correctly depending on the 'endianness' of the system.
3426  *  Return value:
3427  *  SUCCESS on success and FAILURE on failure.
3428  */
3429
3430 static int s2io_set_swapper(struct s2io_nic * sp)
3431 {
3432         struct net_device *dev = sp->dev;
3433         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3434         u64 val64, valt, valr;
3435
3436         /*
3437          * Set proper endian settings and verify the same by reading
3438          * the PIF Feed-back register.
3439          */
3440
3441         val64 = readq(&bar0->pif_rd_swapper_fb);
3442         if (val64 != 0x0123456789ABCDEFULL) {
3443                 int i = 0;
3444                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3445                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3446                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3447                                 0};                     /* FE=0, SE=0 */
3448
3449                 while(i<4) {
3450                         writeq(value[i], &bar0->swapper_ctrl);
3451                         val64 = readq(&bar0->pif_rd_swapper_fb);
3452                         if (val64 == 0x0123456789ABCDEFULL)
3453                                 break;
3454                         i++;
3455                 }
3456                 if (i == 4) {
3457                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3458                                 dev->name);
3459                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3460                                 (unsigned long long) val64);
3461                         return FAILURE;
3462                 }
3463                 valr = value[i];
3464         } else {
3465                 valr = readq(&bar0->swapper_ctrl);
3466         }
3467
3468         valt = 0x0123456789ABCDEFULL;
3469         writeq(valt, &bar0->xmsi_address);
3470         val64 = readq(&bar0->xmsi_address);
3471
3472         if(val64 != valt) {
3473                 int i = 0;
3474                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3475                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3476                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3477                                 0};                     /* FE=0, SE=0 */
3478
3479                 while(i<4) {
3480                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3481                         writeq(valt, &bar0->xmsi_address);
3482                         val64 = readq(&bar0->xmsi_address);
3483                         if(val64 == valt)
3484                                 break;
3485                         i++;
3486                 }
3487                 if(i == 4) {
3488                         unsigned long long x = val64;
3489                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3490                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3491                         return FAILURE;
3492                 }
3493         }
3494         val64 = readq(&bar0->swapper_ctrl);
3495         val64 &= 0xFFFF000000000000ULL;
3496
3497 #ifdef  __BIG_ENDIAN
3498         /*
3499          * The device by default set to a big endian format, so a
3500          * big endian driver need not set anything.
3501          */
3502         val64 |= (SWAPPER_CTRL_TXP_FE |
3503                  SWAPPER_CTRL_TXP_SE |
3504                  SWAPPER_CTRL_TXD_R_FE |
3505                  SWAPPER_CTRL_TXD_W_FE |
3506                  SWAPPER_CTRL_TXF_R_FE |
3507                  SWAPPER_CTRL_RXD_R_FE |
3508                  SWAPPER_CTRL_RXD_W_FE |
3509                  SWAPPER_CTRL_RXF_W_FE |
3510                  SWAPPER_CTRL_XMSI_FE |
3511                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3512         if (sp->intr_type == INTA)
3513                 val64 |= SWAPPER_CTRL_XMSI_SE;
3514         writeq(val64, &bar0->swapper_ctrl);
3515 #else
3516         /*
3517          * Initially we enable all bits to make it accessible by the
3518          * driver, then we selectively enable only those bits that
3519          * we want to set.
3520          */
3521         val64 |= (SWAPPER_CTRL_TXP_FE |
3522                  SWAPPER_CTRL_TXP_SE |
3523                  SWAPPER_CTRL_TXD_R_FE |
3524                  SWAPPER_CTRL_TXD_R_SE |
3525                  SWAPPER_CTRL_TXD_W_FE |
3526                  SWAPPER_CTRL_TXD_W_SE |
3527                  SWAPPER_CTRL_TXF_R_FE |
3528                  SWAPPER_CTRL_RXD_R_FE |
3529                  SWAPPER_CTRL_RXD_R_SE |
3530                  SWAPPER_CTRL_RXD_W_FE |
3531                  SWAPPER_CTRL_RXD_W_SE |
3532                  SWAPPER_CTRL_RXF_W_FE |
3533                  SWAPPER_CTRL_XMSI_FE |
3534                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3535         if (sp->intr_type == INTA)
3536                 val64 |= SWAPPER_CTRL_XMSI_SE;
3537         writeq(val64, &bar0->swapper_ctrl);
3538 #endif
3539         val64 = readq(&bar0->swapper_ctrl);
3540
3541         /*
3542          * Verifying if endian settings are accurate by reading a
3543          * feedback register.
3544          */
3545         val64 = readq(&bar0->pif_rd_swapper_fb);
3546         if (val64 != 0x0123456789ABCDEFULL) {
3547                 /* Endian settings are incorrect, calls for another dekko. */
3548                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3549                           dev->name);
3550                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3551                           (unsigned long long) val64);
3552                 return FAILURE;
3553         }
3554
3555         return SUCCESS;
3556 }
3557
3558 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3559 {
3560         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3561         u64 val64;
3562         int ret = 0, cnt = 0;
3563
3564         do {
3565                 val64 = readq(&bar0->xmsi_access);
3566                 if (!(val64 & BIT(15)))
3567                         break;
3568                 mdelay(1);
3569                 cnt++;
3570         } while(cnt < 5);
3571         if (cnt == 5) {
3572                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3573                 ret = 1;
3574         }
3575
3576         return ret;
3577 }
3578
3579 static void restore_xmsi_data(struct s2io_nic *nic)
3580 {
3581         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3582         u64 val64;
3583         int i;
3584
3585         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3586                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3587                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3588                 val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
3589                 writeq(val64, &bar0->xmsi_access);
3590                 if (wait_for_msix_trans(nic, i)) {
3591                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3592                         continue;
3593                 }
3594         }
3595 }
3596
3597 static void store_xmsi_data(struct s2io_nic *nic)
3598 {
3599         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3600         u64 val64, addr, data;
3601         int i;
3602
3603         /* Store and display */
3604         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3605                 val64 = (BIT(15) | vBIT(i, 26, 6));
3606                 writeq(val64, &bar0->xmsi_access);
3607                 if (wait_for_msix_trans(nic, i)) {
3608                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3609                         continue;
3610                 }
3611                 addr = readq(&bar0->xmsi_address);
3612                 data = readq(&bar0->xmsi_data);
3613                 if (addr && data) {
3614                         nic->msix_info[i].addr = addr;
3615                         nic->msix_info[i].data = data;
3616                 }
3617         }
3618 }
3619
3620 int s2io_enable_msi(struct s2io_nic *nic)
3621 {
3622         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3623         u16 msi_ctrl, msg_val;
3624         struct config_param *config = &nic->config;
3625         struct net_device *dev = nic->dev;
3626         u64 val64, tx_mat, rx_mat;
3627         int i, err;
3628
3629         val64 = readq(&bar0->pic_control);
3630         val64 &= ~BIT(1);
3631         writeq(val64, &bar0->pic_control);
3632
3633         err = pci_enable_msi(nic->pdev);
3634         if (err) {
3635                 DBG_PRINT(ERR_DBG, "%s: enabling MSI failed\n",
3636                           nic->dev->name);
3637                 return err;
3638         }
3639
3640         /*
3641          * Enable MSI and use MSI-1 in stead of the standard MSI-0
3642          * for interrupt handling.
3643          */
3644         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3645         msg_val ^= 0x1;
3646         pci_write_config_word(nic->pdev, 0x4c, msg_val);
3647         pci_read_config_word(nic->pdev, 0x4c, &msg_val);
3648
3649         pci_read_config_word(nic->pdev, 0x42, &msi_ctrl);
3650         msi_ctrl |= 0x10;
3651         pci_write_config_word(nic->pdev, 0x42, msi_ctrl);
3652
3653         /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3654         tx_mat = readq(&bar0->tx_mat0_n[0]);
3655         for (i=0; i<config->tx_fifo_num; i++) {
3656                 tx_mat |= TX_MAT_SET(i, 1);
3657         }
3658         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3659
3660         rx_mat = readq(&bar0->rx_mat);
3661         for (i=0; i<config->rx_ring_num; i++) {
3662                 rx_mat |= RX_MAT_SET(i, 1);
3663         }
3664         writeq(rx_mat, &bar0->rx_mat);
3665
3666         dev->irq = nic->pdev->irq;
3667         return 0;
3668 }
3669
3670 static int s2io_enable_msi_x(struct s2io_nic *nic)
3671 {
3672         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3673         u64 tx_mat, rx_mat;
3674         u16 msi_control; /* Temp variable */
3675         int ret, i, j, msix_indx = 1;
3676
3677         nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
3678                                GFP_KERNEL);
3679         if (nic->entries == NULL) {
3680                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3681                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3682                 return -ENOMEM;
3683         }
3684         memset(nic->entries, 0, MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3685
3686         nic->s2io_entries =
3687                 kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
3688                                    GFP_KERNEL);
3689         if (nic->s2io_entries == NULL) {
3690                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", __FUNCTION__);
3691                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3692                 kfree(nic->entries);
3693                 return -ENOMEM;
3694         }
3695         memset(nic->s2io_entries, 0,
3696                MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3697
3698         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3699                 nic->entries[i].entry = i;
3700                 nic->s2io_entries[i].entry = i;
3701                 nic->s2io_entries[i].arg = NULL;
3702                 nic->s2io_entries[i].in_use = 0;
3703         }
3704
3705         tx_mat = readq(&bar0->tx_mat0_n[0]);
3706         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3707                 tx_mat |= TX_MAT_SET(i, msix_indx);
3708                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3709                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3710                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3711         }
3712         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3713
3714         if (!nic->config.bimodal) {
3715                 rx_mat = readq(&bar0->rx_mat);
3716                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3717                         rx_mat |= RX_MAT_SET(j, msix_indx);
3718                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3719                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3720                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3721                 }
3722                 writeq(rx_mat, &bar0->rx_mat);
3723         } else {
3724                 tx_mat = readq(&bar0->tx_mat0_n[7]);
3725                 for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
3726                         tx_mat |= TX_MAT_SET(i, msix_indx);
3727                         nic->s2io_entries[msix_indx].arg = &nic->mac_control.rings[j];
3728                         nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3729                         nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3730                 }
3731                 writeq(tx_mat, &bar0->tx_mat0_n[7]);
3732         }
3733
3734         nic->avail_msix_vectors = 0;
3735         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3736         /* We fail init if error or we get less vectors than min required */
3737         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3738                 nic->avail_msix_vectors = ret;
3739                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3740         }
3741         if (ret) {
3742                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3743                 kfree(nic->entries);
3744                 kfree(nic->s2io_entries);
3745                 nic->entries = NULL;
3746                 nic->s2io_entries = NULL;
3747                 nic->avail_msix_vectors = 0;
3748                 return -ENOMEM;
3749         }
3750         if (!nic->avail_msix_vectors)
3751                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3752
3753         /*
3754          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3755          * in the herc NIC. (Temp change, needs to be removed later)
3756          */
3757         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3758         msi_control |= 0x1; /* Enable MSI */
3759         pci_write_config_word(nic->pdev, 0x42, msi_control);
3760
3761         return 0;
3762 }
3763
3764 /* ********************************************************* *
3765  * Functions defined below concern the OS part of the driver *
3766  * ********************************************************* */
3767
3768 /**
3769  *  s2io_open - open entry point of the driver
3770  *  @dev : pointer to the device structure.
3771  *  Description:
3772  *  This function is the open entry point of the driver. It mainly calls a
3773  *  function to allocate Rx buffers and inserts them into the buffer
3774  *  descriptors and then enables the Rx part of the NIC.
3775  *  Return value:
3776  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3777  *   file on failure.
3778  */
3779
3780 static int s2io_open(struct net_device *dev)
3781 {
3782         struct s2io_nic *sp = dev->priv;
3783         int err = 0;
3784
3785         /*
3786          * Make sure you have link off by default every time
3787          * Nic is initialized
3788          */
3789         netif_carrier_off(dev);
3790         sp->last_link_state = 0;
3791
3792         /* Initialize H/W and enable interrupts */
3793         err = s2io_card_up(sp);
3794         if (err) {
3795                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3796                           dev->name);
3797                 goto hw_init_failed;
3798         }
3799
3800         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
3801                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3802                 s2io_card_down(sp);
3803                 err = -ENODEV;
3804                 goto hw_init_failed;
3805         }
3806
3807         netif_start_queue(dev);
3808         return 0;
3809
3810 hw_init_failed:
3811         if (sp->intr_type == MSI_X) {
3812                 if (sp->entries)
3813                         kfree(sp->entries);
3814                 if (sp->s2io_entries)
3815                         kfree(sp->s2io_entries);
3816         }
3817         return err;
3818 }
3819
3820 /**
3821  *  s2io_close -close entry point of the driver
3822  *  @dev : device pointer.
3823  *  Description:
3824  *  This is the stop entry point of the driver. It needs to undo exactly
3825  *  whatever was done by the open entry point,thus it's usually referred to
3826  *  as the close function.Among other things this function mainly stops the
3827  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3828  *  Return value:
3829  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3830  *  file on failure.
3831  */
3832
3833 static int s2io_close(struct net_device *dev)
3834 {
3835         struct s2io_nic *sp = dev->priv;
3836
3837         netif_stop_queue(dev);
3838         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3839         s2io_card_down(sp);
3840
3841         sp->device_close_flag = TRUE;   /* Device is shut down. */
3842         return 0;
3843 }
3844
3845 /**
3846  *  s2io_xmit - Tx entry point of te driver
3847  *  @skb : the socket buffer containing the Tx data.
3848  *  @dev : device pointer.
3849  *  Description :
3850  *  This function is the Tx entry point of the driver. S2IO NIC supports
3851  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3852  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3853  *  not be upadted.
3854  *  Return value:
3855  *  0 on success & 1 on failure.
3856  */
3857
3858 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3859 {
3860         struct s2io_nic *sp = dev->priv;
3861         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3862         register u64 val64;
3863         struct TxD *txdp;
3864         struct TxFIFO_element __iomem *tx_fifo;
3865         unsigned long flags;
3866         u16 vlan_tag = 0;
3867         int vlan_priority = 0;
3868         struct mac_info *mac_control;
3869         struct config_param *config;
3870         int offload_type;
3871
3872         mac_control = &sp->mac_control;
3873         config = &sp->config;
3874
3875         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3876         spin_lock_irqsave(&sp->tx_lock, flags);
3877         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3878                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3879                           dev->name);
3880                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3881                 dev_kfree_skb(skb);
3882                 return 0;
3883         }
3884
3885         queue = 0;
3886
3887         /* Get Fifo number to Transmit based on vlan priority */
3888         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3889                 vlan_tag = vlan_tx_tag_get(skb);
3890                 vlan_priority = vlan_tag >> 13;
3891                 queue = config->fifo_mapping[vlan_priority];
3892         }
3893
3894         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3895         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3896         txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3897                 list_virt_addr;
3898
3899         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3900         /* Avoid "put" pointer going beyond "get" pointer */
3901         if (txdp->Host_Control ||
3902                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3903                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3904                 netif_stop_queue(dev);
3905                 dev_kfree_skb(skb);
3906                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3907                 return 0;
3908         }
3909
3910         /* A buffer with no data will be dropped */
3911         if (!skb->len) {
3912                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3913                 dev_kfree_skb(skb);
3914                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3915                 return 0;
3916         }
3917
3918         offload_type = s2io_offload_type(skb);
3919         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3920                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3921                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
3922         }
3923         if (skb->ip_summed == CHECKSUM_PARTIAL) {
3924                 txdp->Control_2 |=
3925                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3926                      TXD_TX_CKO_UDP_EN);
3927         }
3928         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
3929         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3930         txdp->Control_2 |= config->tx_intr_type;
3931
3932         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3933                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3934                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3935         }
3936
3937         frg_len = skb->len - skb->data_len;
3938         if (offload_type == SKB_GSO_UDP) {
3939                 int ufo_size;
3940
3941                 ufo_size = s2io_udp_mss(skb);
3942                 ufo_size &= ~7;
3943                 txdp->Control_1 |= TXD_UFO_EN;
3944                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
3945                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
3946 #ifdef __BIG_ENDIAN
3947                 sp->ufo_in_band_v[put_off] =
3948                                 (u64)skb_shinfo(skb)->ip6_frag_id;
3949 #else
3950                 sp->ufo_in_band_v[put_off] =
3951                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
3952 #endif
3953                 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
3954                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
3955                                         sp->ufo_in_band_v,
3956                                         sizeof(u64), PCI_DMA_TODEVICE);
3957                 txdp++;
3958         }
3959
3960         txdp->Buffer_Pointer = pci_map_single
3961             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3962         txdp->Host_Control = (unsigned long) skb;
3963         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
3964         if (offload_type == SKB_GSO_UDP)
3965                 txdp->Control_1 |= TXD_UFO_EN;
3966
3967         frg_cnt = skb_shinfo(skb)->nr_frags;
3968         /* For fragmented SKB. */
3969         for (i = 0; i < frg_cnt; i++) {
3970                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3971                 /* A '0' length fragment will be ignored */
3972                 if (!frag->size)
3973                         continue;
3974                 txdp++;
3975                 txdp->Buffer_Pointer = (u64) pci_map_page
3976                     (sp->pdev, frag->page, frag->page_offset,
3977                      frag->size, PCI_DMA_TODEVICE);
3978                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
3979                 if (offload_type == SKB_GSO_UDP)
3980                         txdp->Control_1 |= TXD_UFO_EN;
3981         }
3982         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3983
3984         if (offload_type == SKB_GSO_UDP)
3985                 frg_cnt++; /* as Txd0 was used for inband header */
3986
3987         tx_fifo = mac_control->tx_FIFO_start[queue];
3988         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3989         writeq(val64, &tx_fifo->TxDL_Pointer);
3990
3991         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3992                  TX_FIFO_LAST_LIST);
3993         if (offload_type)
3994                 val64 |= TX_FIFO_SPECIAL_FUNC;
3995
3996         writeq(val64, &tx_fifo->List_Control);
3997
3998         mmiowb();
3999
4000         put_off++;
4001         if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4002                 put_off = 0;
4003         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4004
4005         /* Avoid "put" pointer going beyond "get" pointer */
4006         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4007                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4008                 DBG_PRINT(TX_DBG,
4009                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4010                           put_off, get_off);
4011                 netif_stop_queue(dev);
4012         }
4013
4014         dev->trans_start = jiffies;
4015         spin_unlock_irqrestore(&sp->tx_lock, flags);
4016
4017         return 0;
4018 }
4019
4020 static void
4021 s2io_alarm_handle(unsigned long data)
4022 {
4023         struct s2io_nic *sp = (struct s2io_nic *)data;
4024
4025         alarm_intr_handler(sp);
4026         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4027 }
4028
4029 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4030 {
4031         int rxb_size, level;
4032
4033         if (!sp->lro) {
4034                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4035                 level = rx_buffer_level(sp, rxb_size, rng_n);
4036
4037                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4038                         int ret;
4039                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4040                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4041                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4042                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4043                                           __FUNCTION__);
4044                                 clear_bit(0, (&sp->tasklet_status));
4045                                 return -1;
4046                         }
4047                         clear_bit(0, (&sp->tasklet_status));
4048                 } else if (level == LOW)
4049                         tasklet_schedule(&sp->task);
4050
4051         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4052                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4053                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4054         }
4055         return 0;
4056 }
4057
4058 static irqreturn_t s2io_msi_handle(int irq, void *dev_id)
4059 {
4060         struct net_device *dev = (struct net_device *) dev_id;
4061         struct s2io_nic *sp = dev->priv;
4062         int i;
4063         struct mac_info *mac_control;
4064         struct config_param *config;
4065
4066         atomic_inc(&sp->isr_cnt);
4067         mac_control = &sp->mac_control;
4068         config = &sp->config;
4069         DBG_PRINT(INTR_DBG, "%s: MSI handler\n", __FUNCTION__);
4070
4071         /* If Intr is because of Rx Traffic */
4072         for (i = 0; i < config->rx_ring_num; i++)
4073                 rx_intr_handler(&mac_control->rings[i]);
4074
4075         /* If Intr is because of Tx Traffic */
4076         for (i = 0; i < config->tx_fifo_num; i++)
4077                 tx_intr_handler(&mac_control->fifos[i]);
4078
4079         /*
4080          * If the Rx buffer count is below the panic threshold then
4081          * reallocate the buffers from the interrupt handler itself,
4082          * else schedule a tasklet to reallocate the buffers.
4083          */
4084         for (i = 0; i < config->rx_ring_num; i++)
4085                 s2io_chk_rx_buffers(sp, i);
4086
4087         atomic_dec(&sp->isr_cnt);
4088         return IRQ_HANDLED;
4089 }
4090
4091 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4092 {
4093         struct ring_info *ring = (struct ring_info *)dev_id;
4094         struct s2io_nic *sp = ring->nic;
4095
4096         atomic_inc(&sp->isr_cnt);
4097
4098         rx_intr_handler(ring);
4099         s2io_chk_rx_buffers(sp, ring->ring_no);
4100
4101         atomic_dec(&sp->isr_cnt);
4102         return IRQ_HANDLED;
4103 }
4104
4105 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4106 {
4107         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4108         struct s2io_nic *sp = fifo->nic;
4109
4110         atomic_inc(&sp->isr_cnt);
4111         tx_intr_handler(fifo);
4112         atomic_dec(&sp->isr_cnt);
4113         return IRQ_HANDLED;
4114 }
4115 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4116 {
4117         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4118         u64 val64;
4119
4120         val64 = readq(&bar0->pic_int_status);
4121         if (val64 & PIC_INT_GPIO) {
4122                 val64 = readq(&bar0->gpio_int_reg);
4123                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4124                     (val64 & GPIO_INT_REG_LINK_UP)) {
4125                         /*
4126                          * This is unstable state so clear both up/down
4127                          * interrupt and adapter to re-evaluate the link state.
4128                          */
4129                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4130                         val64 |= GPIO_INT_REG_LINK_UP;
4131                         writeq(val64, &bar0->gpio_int_reg);
4132                         val64 = readq(&bar0->gpio_int_mask);
4133                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4134                                    GPIO_INT_MASK_LINK_DOWN);
4135                         writeq(val64, &bar0->gpio_int_mask);
4136                 }
4137                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4138                         val64 = readq(&bar0->adapter_status);
4139                                 /* Enable Adapter */
4140                         val64 = readq(&bar0->adapter_control);
4141                         val64 |= ADAPTER_CNTL_EN;
4142                         writeq(val64, &bar0->adapter_control);
4143                         val64 |= ADAPTER_LED_ON;
4144                         writeq(val64, &bar0->adapter_control);
4145                         if (!sp->device_enabled_once)
4146                                 sp->device_enabled_once = 1;
4147
4148                         s2io_link(sp, LINK_UP);
4149                         /*
4150                          * unmask link down interrupt and mask link-up
4151                          * intr
4152                          */
4153                         val64 = readq(&bar0->gpio_int_mask);
4154                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4155                         val64 |= GPIO_INT_MASK_LINK_UP;
4156                         writeq(val64, &bar0->gpio_int_mask);
4157
4158                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4159                         val64 = readq(&bar0->adapter_status);
4160                         s2io_link(sp, LINK_DOWN);
4161                         /* Link is down so unmaks link up interrupt */
4162                         val64 = readq(&bar0->gpio_int_mask);
4163                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4164                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4165                         writeq(val64, &bar0->gpio_int_mask);
4166
4167                         /* turn off LED */
4168                         val64 = readq(&bar0->adapter_control);
4169                         val64 = val64 &(~ADAPTER_LED_ON);
4170                         writeq(val64, &bar0->adapter_control);
4171                 }
4172         }
4173         val64 = readq(&bar0->gpio_int_mask);
4174 }
4175
4176 /**
4177  *  s2io_isr - ISR handler of the device .
4178  *  @irq: the irq of the device.
4179  *  @dev_id: a void pointer to the dev structure of the NIC.
4180  *  Description:  This function is the ISR handler of the device. It
4181  *  identifies the reason for the interrupt and calls the relevant
4182  *  service routines. As a contongency measure, this ISR allocates the
4183  *  recv buffers, if their numbers are below the panic value which is
4184  *  presently set to 25% of the original number of rcv buffers allocated.
4185  *  Return value:
4186  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4187  *   IRQ_NONE: will be returned if interrupt is not from our device
4188  */
4189 static irqreturn_t s2io_isr(int irq, void *dev_id)
4190 {
4191         struct net_device *dev = (struct net_device *) dev_id;
4192         struct s2io_nic *sp = dev->priv;
4193         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4194         int i;
4195         u64 reason = 0;
4196         struct mac_info *mac_control;
4197         struct config_param *config;
4198
4199         atomic_inc(&sp->isr_cnt);
4200         mac_control = &sp->mac_control;
4201         config = &sp->config;
4202
4203         /*
4204          * Identify the cause for interrupt and call the appropriate
4205          * interrupt handler. Causes for the interrupt could be;
4206          * 1. Rx of packet.
4207          * 2. Tx complete.
4208          * 3. Link down.
4209          * 4. Error in any functional blocks of the NIC.
4210          */
4211         reason = readq(&bar0->general_int_status);
4212
4213         if (!reason) {
4214                 /* The interrupt was not raised by us. */
4215                 atomic_dec(&sp->isr_cnt);
4216                 return IRQ_NONE;
4217         }
4218         else if (unlikely(reason == S2IO_MINUS_ONE) ) {
4219                 /* Disable device and get out */
4220                 atomic_dec(&sp->isr_cnt);
4221                 return IRQ_NONE;
4222         }
4223
4224         if (napi) {
4225                 if (reason & GEN_INTR_RXTRAFFIC) {
4226                         if ( likely ( netif_rx_schedule_prep(dev)) ) {
4227                                 __netif_rx_schedule(dev);
4228                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4229                         }
4230                         else
4231                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4232                 }
4233         } else {
4234                 /*
4235                  * Rx handler is called by default, without checking for the
4236                  * cause of interrupt.
4237                  * rx_traffic_int reg is an R1 register, writing all 1's
4238                  * will ensure that the actual interrupt causing bit get's
4239                  * cleared and hence a read can be avoided.
4240                  */
4241                 if (reason & GEN_INTR_RXTRAFFIC)
4242                         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4243
4244                 for (i = 0; i < config->rx_ring_num; i++) {
4245                         rx_intr_handler(&mac_control->rings[i]);
4246                 }
4247         }
4248
4249         /*
4250          * tx_traffic_int reg is an R1 register, writing all 1's
4251          * will ensure that the actual interrupt causing bit get's
4252          * cleared and hence a read can be avoided.
4253          */
4254         if (reason & GEN_INTR_TXTRAFFIC)
4255                 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4256
4257         for (i = 0; i < config->tx_fifo_num; i++)
4258                 tx_intr_handler(&mac_control->fifos[i]);
4259
4260         if (reason & GEN_INTR_TXPIC)
4261                 s2io_txpic_intr_handle(sp);
4262         /*
4263          * If the Rx buffer count is below the panic threshold then
4264          * reallocate the buffers from the interrupt handler itself,
4265          * else schedule a tasklet to reallocate the buffers.
4266          */
4267         if (!napi) {
4268                 for (i = 0; i < config->rx_ring_num; i++)
4269                         s2io_chk_rx_buffers(sp, i);
4270         }
4271
4272         writeq(0, &bar0->general_int_mask);
4273         readl(&bar0->general_int_status);
4274
4275         atomic_dec(&sp->isr_cnt);
4276         return IRQ_HANDLED;
4277 }
4278
4279 /**
4280  * s2io_updt_stats -
4281  */
4282 static void s2io_updt_stats(struct s2io_nic *sp)
4283 {
4284         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4285         u64 val64;
4286         int cnt = 0;
4287
4288         if (atomic_read(&sp->card_state) == CARD_UP) {
4289                 /* Apprx 30us on a 133 MHz bus */
4290                 val64 = SET_UPDT_CLICKS(10) |
4291                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4292                 writeq(val64, &bar0->stat_cfg);
4293                 do {
4294                         udelay(100);
4295                         val64 = readq(&bar0->stat_cfg);
4296                         if (!(val64 & BIT(0)))
4297                                 break;
4298                         cnt++;
4299                         if (cnt == 5)
4300                                 break; /* Updt failed */
4301                 } while(1);
4302         } 
4303 }
4304
4305 /**
4306  *  s2io_get_stats - Updates the device statistics structure.
4307  *  @dev : pointer to the device structure.
4308  *  Description:
4309  *  This function updates the device statistics structure in the s2io_nic
4310  *  structure and returns a pointer to the same.
4311  *  Return value:
4312  *  pointer to the updated net_device_stats structure.
4313  */
4314
4315 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4316 {
4317         struct s2io_nic *sp = dev->priv;
4318         struct mac_info *mac_control;
4319         struct config_param *config;
4320
4321
4322         mac_control = &sp->mac_control;
4323         config = &sp->config;
4324
4325         /* Configure Stats for immediate updt */
4326         s2io_updt_stats(sp);
4327
4328         sp->stats.tx_packets =
4329                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4330         sp->stats.tx_errors =
4331                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4332         sp->stats.rx_errors =
4333                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4334         sp->stats.multicast =
4335                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4336         sp->stats.rx_length_errors =
4337                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4338
4339         return (&sp->stats);
4340 }
4341
4342 /**
4343  *  s2io_set_multicast - entry point for multicast address enable/disable.
4344  *  @dev : pointer to the device structure
4345  *  Description:
4346  *  This function is a driver entry point which gets called by the kernel
4347  *  whenever multicast addresses must be enabled/disabled. This also gets
4348  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4349  *  determine, if multicast address must be enabled or if promiscuous mode
4350  *  is to be disabled etc.
4351  *  Return value:
4352  *  void.
4353  */
4354
4355 static void s2io_set_multicast(struct net_device *dev)
4356 {
4357         int i, j, prev_cnt;
4358         struct dev_mc_list *mclist;
4359         struct s2io_nic *sp = dev->priv;
4360         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4361         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4362             0xfeffffffffffULL;
4363         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4364         void __iomem *add;
4365
4366         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4367                 /*  Enable all Multicast addresses */
4368                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4369                        &bar0->rmac_addr_data0_mem);
4370                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4371                        &bar0->rmac_addr_data1_mem);
4372                 val64 = RMAC_ADDR_CMD_MEM_WE |
4373                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4374                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4375                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4376                 /* Wait till command completes */
4377                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4378                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4379                                         S2IO_BIT_RESET);
4380
4381                 sp->m_cast_flg = 1;
4382                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4383         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4384                 /*  Disable all Multicast addresses */
4385                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4386                        &bar0->rmac_addr_data0_mem);
4387                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4388                        &bar0->rmac_addr_data1_mem);
4389                 val64 = RMAC_ADDR_CMD_MEM_WE |
4390                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4391                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4392                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4393                 /* Wait till command completes */
4394                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4395                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4396                                         S2IO_BIT_RESET);
4397
4398                 sp->m_cast_flg = 0;
4399                 sp->all_multi_pos = 0;
4400         }
4401
4402         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4403                 /*  Put the NIC into promiscuous mode */
4404                 add = &bar0->mac_cfg;
4405                 val64 = readq(&bar0->mac_cfg);
4406                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4407
4408                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4409                 writel((u32) val64, add);
4410                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4411                 writel((u32) (val64 >> 32), (add + 4));
4412
4413                 if (vlan_tag_strip != 1) {
4414                         val64 = readq(&bar0->rx_pa_cfg);
4415                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4416                         writeq(val64, &bar0->rx_pa_cfg);
4417                         vlan_strip_flag = 0;
4418                 }
4419
4420                 val64 = readq(&bar0->mac_cfg);
4421                 sp->promisc_flg = 1;
4422                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4423                           dev->name);
4424         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4425                 /*  Remove the NIC from promiscuous mode */
4426                 add = &bar0->mac_cfg;
4427                 val64 = readq(&bar0->mac_cfg);
4428                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4429
4430                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4431                 writel((u32) val64, add);
4432                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4433                 writel((u32) (val64 >> 32), (add + 4));
4434
4435                 if (vlan_tag_strip != 0) {
4436                         val64 = readq(&bar0->rx_pa_cfg);
4437                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4438                         writeq(val64, &bar0->rx_pa_cfg);
4439                         vlan_strip_flag = 1;
4440                 }
4441
4442                 val64 = readq(&bar0->mac_cfg);
4443                 sp->promisc_flg = 0;
4444                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4445                           dev->name);
4446         }
4447
4448         /*  Update individual M_CAST address list */
4449         if ((!sp->m_cast_flg) && dev->mc_count) {
4450                 if (dev->mc_count >
4451                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4452                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4453                                   dev->name);
4454                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4455                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4456                         return;
4457                 }
4458
4459                 prev_cnt = sp->mc_addr_count;
4460                 sp->mc_addr_count = dev->mc_count;
4461
4462                 /* Clear out the previous list of Mc in the H/W. */
4463                 for (i = 0; i < prev_cnt; i++) {
4464                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4465                                &bar0->rmac_addr_data0_mem);
4466                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4467                                 &bar0->rmac_addr_data1_mem);
4468                         val64 = RMAC_ADDR_CMD_MEM_WE |
4469                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4470                             RMAC_ADDR_CMD_MEM_OFFSET
4471                             (MAC_MC_ADDR_START_OFFSET + i);
4472                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4473
4474                         /* Wait for command completes */
4475                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4476                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4477                                         S2IO_BIT_RESET)) {
4478                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4479                                           dev->name);
4480                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4481                                 return;
4482                         }
4483                 }
4484
4485                 /* Create the new Rx filter list and update the same in H/W. */
4486                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4487                      i++, mclist = mclist->next) {
4488                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4489                                ETH_ALEN);
4490                         mac_addr = 0;
4491                         for (j = 0; j < ETH_ALEN; j++) {
4492                                 mac_addr |= mclist->dmi_addr[j];
4493                                 mac_addr <<= 8;
4494                         }
4495                         mac_addr >>= 8;
4496                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4497                                &bar0->rmac_addr_data0_mem);
4498                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4499                                 &bar0->rmac_addr_data1_mem);
4500                         val64 = RMAC_ADDR_CMD_MEM_WE |
4501                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4502                             RMAC_ADDR_CMD_MEM_OFFSET
4503                             (i + MAC_MC_ADDR_START_OFFSET);
4504                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4505
4506                         /* Wait for command completes */
4507                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4508                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4509                                         S2IO_BIT_RESET)) {
4510                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4511                                           dev->name);
4512                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4513                                 return;
4514                         }
4515                 }
4516         }
4517 }
4518
4519 /**
4520  *  s2io_set_mac_addr - Programs the Xframe mac address
4521  *  @dev : pointer to the device structure.
4522  *  @addr: a uchar pointer to the new mac address which is to be set.
4523  *  Description : This procedure will program the Xframe to receive
4524  *  frames with new Mac Address
4525  *  Return value: SUCCESS on success and an appropriate (-)ve integer
4526  *  as defined in errno.h file on failure.
4527  */
4528
4529 static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
4530 {
4531         struct s2io_nic *sp = dev->priv;
4532         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4533         register u64 val64, mac_addr = 0;
4534         int i;
4535         u64 old_mac_addr = 0;
4536
4537         /*
4538          * Set the new MAC address as the new unicast filter and reflect this
4539          * change on the device address registered with the OS. It will be
4540          * at offset 0.
4541          */
4542         for (i = 0; i < ETH_ALEN; i++) {
4543                 mac_addr <<= 8;
4544                 mac_addr |= addr[i];
4545                 old_mac_addr <<= 8;
4546                 old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
4547         }
4548
4549         if(0 == mac_addr)
4550                 return SUCCESS;
4551
4552         /* Update the internal structure with this new mac address */
4553         if(mac_addr != old_mac_addr) {
4554                 memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
4555                 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
4556                 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
4557                 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
4558                 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
4559                 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
4560                 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
4561         }
4562
4563         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4564                &bar0->rmac_addr_data0_mem);
4565
4566         val64 =
4567             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4568             RMAC_ADDR_CMD_MEM_OFFSET(0);
4569         writeq(val64, &bar0->rmac_addr_cmd_mem);
4570         /* Wait till command completes */
4571         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4572                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
4573                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
4574                 return FAILURE;
4575         }
4576
4577         return SUCCESS;
4578 }
4579
4580 /**
4581  * s2io_ethtool_sset - Sets different link parameters.
4582  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
4583  * @info: pointer to the structure with parameters given by ethtool to set
4584  * link information.
4585  * Description:
4586  * The function sets different link parameters provided by the user onto
4587  * the NIC.
4588  * Return value:
4589  * 0 on success.
4590 */
4591
4592 static int s2io_ethtool_sset(struct net_device *dev,
4593                              struct ethtool_cmd *info)
4594 {
4595         struct s2io_nic *sp = dev->priv;
4596         if ((info->autoneg == AUTONEG_ENABLE) ||
4597             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4598                 return -EINVAL;
4599         else {
4600                 s2io_close(sp->dev);
4601                 s2io_open(sp->dev);
4602         }
4603
4604         return 0;
4605 }
4606
4607 /**
4608  * s2io_ethtol_gset - Return link specific information.
4609  * @sp : private member of the device structure, pointer to the
4610  *      s2io_nic structure.
4611  * @info : pointer to the structure with parameters given by ethtool
4612  * to return link information.
4613  * Description:
4614  * Returns link specific information like speed, duplex etc.. to ethtool.
4615  * Return value :
4616  * return 0 on success.
4617  */
4618
4619 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4620 {
4621         struct s2io_nic *sp = dev->priv;
4622         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4623         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
4624         info->port = PORT_FIBRE;
4625         /* info->transceiver?? TODO */
4626
4627         if (netif_carrier_ok(sp->dev)) {
4628                 info->speed = 10000;
4629                 info->duplex = DUPLEX_FULL;
4630         } else {
4631                 info->speed = -1;
4632                 info->duplex = -1;
4633         }
4634
4635         info->autoneg = AUTONEG_DISABLE;
4636         return 0;
4637 }
4638
4639 /**
4640  * s2io_ethtool_gdrvinfo - Returns driver specific information.
4641  * @sp : private member of the device structure, which is a pointer to the
4642  * s2io_nic structure.
4643  * @info : pointer to the structure with parameters given by ethtool to
4644  * return driver information.
4645  * Description:
4646  * Returns driver specefic information like name, version etc.. to ethtool.
4647  * Return value:
4648  *  void
4649  */
4650
4651 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
4652                                   struct ethtool_drvinfo *info)
4653 {
4654         struct s2io_nic *sp = dev->priv;
4655
4656         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
4657         strncpy(info->version, s2io_driver_version, sizeof(info->version));
4658         strncpy(info->fw_version, "", sizeof(info->fw_version));
4659         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
4660         info->regdump_len = XENA_REG_SPACE;
4661         info->eedump_len = XENA_EEPROM_SPACE;
4662         info->testinfo_len = S2IO_TEST_LEN;
4663
4664         if (sp->device_type == XFRAME_I_DEVICE)
4665                 info->n_stats = XFRAME_I_STAT_LEN;
4666         else
4667                 info->n_stats = XFRAME_II_STAT_LEN;
4668 }
4669
4670 /**
4671  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4672  *  @sp: private member of the device structure, which is a pointer to the
4673  *  s2io_nic structure.
4674  *  @regs : pointer to the structure with parameters given by ethtool for
4675  *  dumping the registers.
4676  *  @reg_space: The input argumnet into which all the registers are dumped.
4677  *  Description:
4678  *  Dumps the entire register space of xFrame NIC into the user given
4679  *  buffer area.
4680  * Return value :
4681  * void .
4682 */
4683
4684 static void s2io_ethtool_gregs(struct net_device *dev,
4685                                struct ethtool_regs *regs, void *space)
4686 {
4687         int i;
4688         u64 reg;
4689         u8 *reg_space = (u8 *) space;
4690         struct s2io_nic *sp = dev->priv;
4691
4692         regs->len = XENA_REG_SPACE;
4693         regs->version = sp->pdev->subsystem_device;
4694
4695         for (i = 0; i < regs->len; i += 8) {
4696                 reg = readq(sp->bar0 + i);
4697                 memcpy((reg_space + i), &reg, 8);
4698         }
4699 }
4700
4701 /**
4702  *  s2io_phy_id  - timer function that alternates adapter LED.
4703  *  @data : address of the private member of the device structure, which
4704  *  is a pointer to the s2io_nic structure, provided as an u32.
4705  * Description: This is actually the timer function that alternates the
4706  * adapter LED bit of the adapter control bit to set/reset every time on
4707  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4708  *  once every second.
4709 */
4710 static void s2io_phy_id(unsigned long data)
4711 {
4712         struct s2io_nic *sp = (struct s2io_nic *) data;
4713         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4714         u64 val64 = 0;
4715         u16 subid;
4716
4717         subid = sp->pdev->subsystem_device;
4718         if ((sp->device_type == XFRAME_II_DEVICE) ||
4719                    ((subid & 0xFF) >= 0x07)) {
4720                 val64 = readq(&bar0->gpio_control);
4721                 val64 ^= GPIO_CTRL_GPIO_0;
4722                 writeq(val64, &bar0->gpio_control);
4723         } else {
4724                 val64 = readq(&bar0->adapter_control);
4725                 val64 ^= ADAPTER_LED_ON;
4726                 writeq(val64, &bar0->adapter_control);
4727         }
4728
4729         mod_timer(&sp->id_timer, jiffies + HZ / 2);
4730 }
4731
4732 /**
4733  * s2io_ethtool_idnic - To physically identify the nic on the system.
4734  * @sp : private member of the device structure, which is a pointer to the
4735  * s2io_nic structure.
4736  * @id : pointer to the structure with identification parameters given by
4737  * ethtool.
4738  * Description: Used to physically identify the NIC on the system.
4739  * The Link LED will blink for a time specified by the user for
4740  * identification.
4741  * NOTE: The Link has to be Up to be able to blink the LED. Hence
4742  * identification is possible only if it's link is up.
4743  * Return value:
4744  * int , returns 0 on success
4745  */
4746
4747 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
4748 {
4749         u64 val64 = 0, last_gpio_ctrl_val;
4750         struct s2io_nic *sp = dev->priv;
4751         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4752         u16 subid;
4753
4754         subid = sp->pdev->subsystem_device;
4755         last_gpio_ctrl_val = readq(&bar0->gpio_control);
4756         if ((sp->device_type == XFRAME_I_DEVICE) &&
4757                 ((subid & 0xFF) < 0x07)) {
4758                 val64 = readq(&bar0->adapter_control);
4759                 if (!(val64 & ADAPTER_CNTL_EN)) {
4760                         printk(KERN_ERR
4761                                "Adapter Link down, cannot blink LED\n");
4762                         return -EFAULT;
4763                 }
4764         }
4765         if (sp->id_timer.function == NULL) {
4766                 init_timer(&sp->id_timer);
4767                 sp->id_timer.function = s2io_phy_id;
4768                 sp->id_timer.data = (unsigned long) sp;
4769         }
4770         mod_timer(&sp->id_timer, jiffies);
4771         if (data)
4772                 msleep_interruptible(data * HZ);
4773         else
4774                 msleep_interruptible(MAX_FLICKER_TIME);
4775         del_timer_sync(&sp->id_timer);
4776
4777         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
4778                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
4779                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
4780         }
4781
4782         return 0;
4783 }
4784
4785 static void s2io_ethtool_gringparam(struct net_device *dev,
4786                                     struct ethtool_ringparam *ering)
4787 {
4788         struct s2io_nic *sp = dev->priv;
4789         int i,tx_desc_count=0,rx_desc_count=0;
4790
4791         if (sp->rxd_mode == RXD_MODE_1)
4792                 ering->rx_max_pending = MAX_RX_DESC_1;
4793         else if (sp->rxd_mode == RXD_MODE_3B)
4794                 ering->rx_max_pending = MAX_RX_DESC_2;
4795         else if (sp->rxd_mode == RXD_MODE_3A)
4796                 ering->rx_max_pending = MAX_RX_DESC_3;
4797
4798         ering->tx_max_pending = MAX_TX_DESC;
4799         for (i = 0 ; i < sp->config.tx_fifo_num ; i++) {
4800                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
4801         }
4802         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
4803         ering->tx_pending = tx_desc_count;
4804         rx_desc_count = 0;
4805         for (i = 0 ; i < sp->config.rx_ring_num ; i++) {
4806                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
4807         }
4808         ering->rx_pending = rx_desc_count;
4809
4810         ering->rx_mini_max_pending = 0;
4811         ering->rx_mini_pending = 0;
4812         if(sp->rxd_mode == RXD_MODE_1)
4813                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
4814         else if (sp->rxd_mode == RXD_MODE_3B)
4815                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
4816         ering->rx_jumbo_pending = rx_desc_count;
4817 }
4818
4819 /**
4820  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4821  * @sp : private member of the device structure, which is a pointer to the
4822  *      s2io_nic structure.
4823  * @ep : pointer to the structure with pause parameters given by ethtool.
4824  * Description:
4825  * Returns the Pause frame generation and reception capability of the NIC.
4826  * Return value:
4827  *  void
4828  */
4829 static void s2io_ethtool_getpause_data(struct net_device *dev,
4830                                        struct ethtool_pauseparam *ep)
4831 {
4832         u64 val64;
4833         struct s2io_nic *sp = dev->priv;
4834         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4835
4836         val64 = readq(&bar0->rmac_pause_cfg);
4837         if (val64 & RMAC_PAUSE_GEN_ENABLE)
4838                 ep->tx_pause = TRUE;
4839         if (val64 & RMAC_PAUSE_RX_ENABLE)
4840                 ep->rx_pause = TRUE;
4841         ep->autoneg = FALSE;
4842 }
4843
4844 /**
4845  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
4846  * @sp : private member of the device structure, which is a pointer to the
4847  *      s2io_nic structure.
4848  * @ep : pointer to the structure with pause parameters given by ethtool.
4849  * Description:
4850  * It can be used to set or reset Pause frame generation or reception
4851  * support of the NIC.
4852  * Return value:
4853  * int, returns 0 on Success
4854  */
4855
4856 static int s2io_ethtool_setpause_data(struct net_device *dev,
4857                                struct ethtool_pauseparam *ep)
4858 {
4859         u64 val64;
4860         struct s2io_nic *sp = dev->priv;
4861         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4862
4863         val64 = readq(&bar0->rmac_pause_cfg);
4864         if (ep->tx_pause)
4865                 val64 |= RMAC_PAUSE_GEN_ENABLE;
4866         else
4867                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
4868         if (ep->rx_pause)
4869                 val64 |= RMAC_PAUSE_RX_ENABLE;
4870         else
4871                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
4872         writeq(val64, &bar0->rmac_pause_cfg);
4873         return 0;
4874 }
4875
4876 /**
4877  * read_eeprom - reads 4 bytes of data from user given offset.
4878  * @sp : private member of the device structure, which is a pointer to the
4879  *      s2io_nic structure.
4880  * @off : offset at which the data must be written
4881  * @data : Its an output parameter where the data read at the given
4882  *      offset is stored.
4883  * Description:
4884  * Will read 4 bytes of data from the user given offset and return the
4885  * read data.
4886  * NOTE: Will allow to read only part of the EEPROM visible through the
4887  *   I2C bus.
4888  * Return value:
4889  *  -1 on failure and 0 on success.
4890  */
4891
4892 #define S2IO_DEV_ID             5
4893 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
4894 {
4895         int ret = -1;
4896         u32 exit_cnt = 0;
4897         u64 val64;
4898         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4899
4900         if (sp->device_type == XFRAME_I_DEVICE) {
4901                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4902                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
4903                     I2C_CONTROL_CNTL_START;
4904                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4905
4906                 while (exit_cnt < 5) {
4907                         val64 = readq(&bar0->i2c_control);
4908                         if (I2C_CONTROL_CNTL_END(val64)) {
4909                                 *data = I2C_CONTROL_GET_DATA(val64);
4910                                 ret = 0;
4911                                 break;
4912                         }
4913                         msleep(50);
4914                         exit_cnt++;
4915                 }
4916         }
4917
4918         if (sp->device_type == XFRAME_II_DEVICE) {
4919                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4920                         SPI_CONTROL_BYTECNT(0x3) |
4921                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
4922                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4923                 val64 |= SPI_CONTROL_REQ;
4924                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4925                 while (exit_cnt < 5) {
4926                         val64 = readq(&bar0->spi_control);
4927                         if (val64 & SPI_CONTROL_NACK) {
4928                                 ret = 1;
4929                                 break;
4930                         } else if (val64 & SPI_CONTROL_DONE) {
4931                                 *data = readq(&bar0->spi_data);
4932                                 *data &= 0xffffff;
4933                                 ret = 0;
4934                                 break;
4935                         }
4936                         msleep(50);
4937                         exit_cnt++;
4938                 }
4939         }
4940         return ret;
4941 }
4942
4943 /**
4944  *  write_eeprom - actually writes the relevant part of the data value.
4945  *  @sp : private member of the device structure, which is a pointer to the
4946  *       s2io_nic structure.
4947  *  @off : offset at which the data must be written
4948  *  @data : The data that is to be written
4949  *  @cnt : Number of bytes of the data that are actually to be written into
4950  *  the Eeprom. (max of 3)
4951  * Description:
4952  *  Actually writes the relevant part of the data value into the Eeprom
4953  *  through the I2C bus.
4954  * Return value:
4955  *  0 on success, -1 on failure.
4956  */
4957
4958 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
4959 {
4960         int exit_cnt = 0, ret = -1;
4961         u64 val64;
4962         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4963
4964         if (sp->device_type == XFRAME_I_DEVICE) {
4965                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
4966                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
4967                     I2C_CONTROL_CNTL_START;
4968                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
4969
4970                 while (exit_cnt < 5) {
4971                         val64 = readq(&bar0->i2c_control);
4972                         if (I2C_CONTROL_CNTL_END(val64)) {
4973                                 if (!(val64 & I2C_CONTROL_NACK))
4974                                         ret = 0;
4975                                 break;
4976                         }
4977                         msleep(50);
4978                         exit_cnt++;
4979                 }
4980         }
4981
4982         if (sp->device_type == XFRAME_II_DEVICE) {
4983                 int write_cnt = (cnt == 8) ? 0 : cnt;
4984                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
4985
4986                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
4987                         SPI_CONTROL_BYTECNT(write_cnt) |
4988                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
4989                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4990                 val64 |= SPI_CONTROL_REQ;
4991                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
4992                 while (exit_cnt < 5) {
4993                         val64 = readq(&bar0->spi_control);
4994                         if (val64 & SPI_CONTROL_NACK) {
4995                                 ret = 1;
4996                                 break;
4997                         } else if (val64 & SPI_CONTROL_DONE) {
4998                                 ret = 0;
4999                                 break;
5000                         }
5001                         msleep(50);
5002                         exit_cnt++;
5003                 }
5004         }
5005         return ret;
5006 }
5007 static void s2io_vpd_read(struct s2io_nic *nic)
5008 {
5009         u8 *vpd_data;
5010         u8 data;
5011         int i=0, cnt, fail = 0;
5012         int vpd_addr = 0x80;
5013
5014         if (nic->device_type == XFRAME_II_DEVICE) {
5015                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5016                 vpd_addr = 0x80;
5017         }
5018         else {
5019                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5020                 vpd_addr = 0x50;
5021         }
5022         strcpy(nic->serial_num, "NOT AVAILABLE");
5023
5024         vpd_data = kmalloc(256, GFP_KERNEL);
5025         if (!vpd_data) {
5026                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5027                 return;
5028         }
5029
5030         for (i = 0; i < 256; i +=4 ) {
5031                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5032                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5033                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5034                 for (cnt = 0; cnt <5; cnt++) {
5035                         msleep(2);
5036                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5037                         if (data == 0x80)
5038                                 break;
5039                 }
5040                 if (cnt >= 5) {
5041                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5042                         fail = 1;
5043                         break;
5044                 }
5045                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5046                                       (u32 *)&vpd_data[i]);
5047         }
5048
5049         if(!fail) {
5050                 /* read serial number of adapter */
5051                 for (cnt = 0; cnt < 256; cnt++) {
5052                 if ((vpd_data[cnt] == 'S') &&
5053                         (vpd_data[cnt+1] == 'N') &&
5054                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5055                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5056                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5057                                         vpd_data[cnt+2]);
5058                                 break;
5059                         }
5060                 }
5061         }
5062
5063         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5064                 memset(nic->product_name, 0, vpd_data[1]);
5065                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5066         }
5067         kfree(vpd_data);
5068 }
5069
5070 /**
5071  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5072  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5073  *  @eeprom : pointer to the user level structure provided by ethtool,
5074  *  containing all relevant information.
5075  *  @data_buf : user defined value to be written into Eeprom.
5076  *  Description: Reads the values stored in the Eeprom at given offset
5077  *  for a given length. Stores these values int the input argument data
5078  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5079  *  Return value:
5080  *  int  0 on success
5081  */
5082
5083 static int s2io_ethtool_geeprom(struct net_device *dev,
5084                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5085 {
5086         u32 i, valid;
5087         u64 data;
5088         struct s2io_nic *sp = dev->priv;
5089
5090         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5091
5092         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5093                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5094
5095         for (i = 0; i < eeprom->len; i += 4) {
5096                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5097                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5098                         return -EFAULT;
5099                 }
5100                 valid = INV(data);
5101                 memcpy((data_buf + i), &valid, 4);
5102         }
5103         return 0;
5104 }
5105
5106 /**
5107  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5108  *  @sp : private member of the device structure, which is a pointer to the
5109  *  s2io_nic structure.
5110  *  @eeprom : pointer to the user level structure provided by ethtool,
5111  *  containing all relevant information.
5112  *  @data_buf ; user defined value to be written into Eeprom.
5113  *  Description:
5114  *  Tries to write the user provided value in the Eeprom, at the offset
5115  *  given by the user.
5116  *  Return value:
5117  *  0 on success, -EFAULT on failure.
5118  */
5119
5120 static int s2io_ethtool_seeprom(struct net_device *dev,
5121                                 struct ethtool_eeprom *eeprom,
5122                                 u8 * data_buf)
5123 {
5124         int len = eeprom->len, cnt = 0;
5125         u64 valid = 0, data;
5126         struct s2io_nic *sp = dev->priv;
5127
5128         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5129                 DBG_PRINT(ERR_DBG,
5130                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5131                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5132                           eeprom->magic);
5133                 return -EFAULT;
5134         }
5135
5136         while (len) {
5137                 data = (u32) data_buf[cnt] & 0x000000FF;
5138                 if (data) {
5139                         valid = (u32) (data << 24);
5140                 } else
5141                         valid = data;
5142
5143                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5144                         DBG_PRINT(ERR_DBG,
5145                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5146                         DBG_PRINT(ERR_DBG,
5147                                   "write into the specified offset\n");
5148                         return -EFAULT;
5149                 }
5150                 cnt++;
5151                 len--;
5152         }
5153
5154         return 0;
5155 }
5156
5157 /**
5158  * s2io_register_test - reads and writes into all clock domains.
5159  * @sp : private member of the device structure, which is a pointer to the
5160  * s2io_nic structure.
5161  * @data : variable that returns the result of each of the test conducted b
5162  * by the driver.
5163  * Description:
5164  * Read and write into all clock domains. The NIC has 3 clock domains,
5165  * see that registers in all the three regions are accessible.
5166  * Return value:
5167  * 0 on success.
5168  */
5169
5170 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5171 {
5172         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5173         u64 val64 = 0, exp_val;
5174         int fail = 0;
5175
5176         val64 = readq(&bar0->pif_rd_swapper_fb);
5177         if (val64 != 0x123456789abcdefULL) {
5178                 fail = 1;
5179                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5180         }
5181
5182         val64 = readq(&bar0->rmac_pause_cfg);
5183         if (val64 != 0xc000ffff00000000ULL) {
5184                 fail = 1;
5185                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5186         }
5187
5188         val64 = readq(&bar0->rx_queue_cfg);
5189         if (sp->device_type == XFRAME_II_DEVICE)
5190                 exp_val = 0x0404040404040404ULL;
5191         else
5192                 exp_val = 0x0808080808080808ULL;
5193         if (val64 != exp_val) {
5194                 fail = 1;
5195                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5196         }
5197
5198         val64 = readq(&bar0->xgxs_efifo_cfg);
5199         if (val64 != 0x000000001923141EULL) {
5200                 fail = 1;
5201                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5202         }
5203
5204         val64 = 0x5A5A5A5A5A5A5A5AULL;
5205         writeq(val64, &bar0->xmsi_data);
5206         val64 = readq(&bar0->xmsi_data);
5207         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5208                 fail = 1;
5209                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5210         }
5211
5212         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5213         writeq(val64, &bar0->xmsi_data);
5214         val64 = readq(&bar0->xmsi_data);
5215         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5216                 fail = 1;
5217                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5218         }
5219
5220         *data = fail;
5221         return fail;
5222 }
5223
5224 /**
5225  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5226  * @sp : private member of the device structure, which is a pointer to the
5227  * s2io_nic structure.
5228  * @data:variable that returns the result of each of the test conducted by
5229  * the driver.
5230  * Description:
5231  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5232  * register.
5233  * Return value:
5234  * 0 on success.
5235  */
5236
5237 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5238 {
5239         int fail = 0;
5240         u64 ret_data, org_4F0, org_7F0;
5241         u8 saved_4F0 = 0, saved_7F0 = 0;
5242         struct net_device *dev = sp->dev;
5243
5244         /* Test Write Error at offset 0 */
5245         /* Note that SPI interface allows write access to all areas
5246          * of EEPROM. Hence doing all negative testing only for Xframe I.
5247          */
5248         if (sp->device_type == XFRAME_I_DEVICE)
5249                 if (!write_eeprom(sp, 0, 0, 3))
5250                         fail = 1;
5251
5252         /* Save current values at offsets 0x4F0 and 0x7F0 */
5253         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5254                 saved_4F0 = 1;
5255         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5256                 saved_7F0 = 1;
5257
5258         /* Test Write at offset 4f0 */
5259         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5260                 fail = 1;
5261         if (read_eeprom(sp, 0x4F0, &ret_data))
5262                 fail = 1;
5263
5264         if (ret_data != 0x012345) {
5265                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5266                         "Data written %llx Data read %llx\n",
5267                         dev->name, (unsigned long long)0x12345,
5268                         (unsigned long long)ret_data);
5269                 fail = 1;
5270         }
5271
5272         /* Reset the EEPROM data go FFFF */
5273         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5274
5275         /* Test Write Request Error at offset 0x7c */
5276         if (sp->device_type == XFRAME_I_DEVICE)
5277                 if (!write_eeprom(sp, 0x07C, 0, 3))
5278                         fail = 1;
5279
5280         /* Test Write Request at offset 0x7f0 */
5281         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5282                 fail = 1;
5283         if (read_eeprom(sp, 0x7F0, &ret_data))
5284                 fail = 1;
5285
5286         if (ret_data != 0x012345) {
5287                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5288                         "Data written %llx Data read %llx\n",
5289                         dev->name, (unsigned long long)0x12345,
5290                         (unsigned long long)ret_data);
5291                 fail = 1;
5292         }
5293
5294         /* Reset the EEPROM data go FFFF */
5295         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5296
5297         if (sp->device_type == XFRAME_I_DEVICE) {
5298                 /* Test Write Error at offset 0x80 */
5299                 if (!write_eeprom(sp, 0x080, 0, 3))
5300                         fail = 1;
5301
5302                 /* Test Write Error at offset 0xfc */
5303                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5304                         fail = 1;
5305
5306                 /* Test Write Error at offset 0x100 */
5307                 if (!write_eeprom(sp, 0x100, 0, 3))
5308                         fail = 1;
5309
5310                 /* Test Write Error at offset 4ec */
5311                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5312                         fail = 1;
5313         }
5314
5315         /* Restore values at offsets 0x4F0 and 0x7F0 */
5316         if (saved_4F0)
5317                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5318         if (saved_7F0)
5319                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5320
5321         *data = fail;
5322         return fail;
5323 }
5324
5325 /**
5326  * s2io_bist_test - invokes the MemBist test of the card .
5327  * @sp : private member of the device structure, which is a pointer to the
5328  * s2io_nic structure.
5329  * @data:variable that returns the result of each of the test conducted by
5330  * the driver.
5331  * Description:
5332  * This invokes the MemBist test of the card. We give around
5333  * 2 secs time for the Test to complete. If it's still not complete
5334  * within this peiod, we consider that the test failed.
5335  * Return value:
5336  * 0 on success and -1 on failure.
5337  */
5338
5339 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5340 {
5341         u8 bist = 0;
5342         int cnt = 0, ret = -1;
5343
5344         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5345         bist |= PCI_BIST_START;
5346         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5347
5348         while (cnt < 20) {
5349                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5350                 if (!(bist & PCI_BIST_START)) {
5351                         *data = (bist & PCI_BIST_CODE_MASK);
5352                         ret = 0;
5353                         break;
5354                 }
5355                 msleep(100);
5356                 cnt++;
5357         }
5358
5359         return ret;
5360 }
5361
5362 /**
5363  * s2io-link_test - verifies the link state of the nic
5364  * @sp ; private member of the device structure, which is a pointer to the
5365  * s2io_nic structure.
5366  * @data: variable that returns the result of each of the test conducted by
5367  * the driver.
5368  * Description:
5369  * The function verifies the link state of the NIC and updates the input
5370  * argument 'data' appropriately.
5371  * Return value:
5372  * 0 on success.
5373  */
5374
5375 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5376 {
5377         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5378         u64 val64;
5379
5380         val64 = readq(&bar0->adapter_status);
5381         if(!(LINK_IS_UP(val64)))
5382                 *data = 1;
5383         else
5384                 *data = 0;
5385
5386         return *data;
5387 }
5388
5389 /**
5390  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5391  * @sp - private member of the device structure, which is a pointer to the
5392  * s2io_nic structure.
5393  * @data - variable that returns the result of each of the test
5394  * conducted by the driver.
5395  * Description:
5396  *  This is one of the offline test that tests the read and write
5397  *  access to the RldRam chip on the NIC.
5398  * Return value:
5399  *  0 on success.
5400  */
5401
5402 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5403 {
5404         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5405         u64 val64;
5406         int cnt, iteration = 0, test_fail = 0;
5407
5408         val64 = readq(&bar0->adapter_control);
5409         val64 &= ~ADAPTER_ECC_EN;
5410         writeq(val64, &bar0->adapter_control);
5411
5412         val64 = readq(&bar0->mc_rldram_test_ctrl);
5413         val64 |= MC_RLDRAM_TEST_MODE;
5414         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5415
5416         val64 = readq(&bar0->mc_rldram_mrs);
5417         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5418         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5419
5420         val64 |= MC_RLDRAM_MRS_ENABLE;
5421         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5422
5423         while (iteration < 2) {
5424                 val64 = 0x55555555aaaa0000ULL;
5425                 if (iteration == 1) {
5426                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5427                 }
5428                 writeq(val64, &bar0->mc_rldram_test_d0);
5429
5430                 val64 = 0xaaaa5a5555550000ULL;
5431                 if (iteration == 1) {
5432                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5433                 }
5434                 writeq(val64, &bar0->mc_rldram_test_d1);
5435
5436                 val64 = 0x55aaaaaaaa5a0000ULL;
5437                 if (iteration == 1) {
5438                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
5439                 }
5440                 writeq(val64, &bar0->mc_rldram_test_d2);
5441
5442                 val64 = (u64) (0x0000003ffffe0100ULL);
5443                 writeq(val64, &bar0->mc_rldram_test_add);
5444
5445                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5446                         MC_RLDRAM_TEST_GO;
5447                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5448
5449                 for (cnt = 0; cnt < 5; cnt++) {
5450                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5451                         if (val64 & MC_RLDRAM_TEST_DONE)
5452                                 break;
5453                         msleep(200);
5454                 }
5455
5456                 if (cnt == 5)
5457                         break;
5458
5459                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5460                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5461
5462                 for (cnt = 0; cnt < 5; cnt++) {
5463                         val64 = readq(&bar0->mc_rldram_test_ctrl);
5464                         if (val64 & MC_RLDRAM_TEST_DONE)
5465                                 break;
5466                         msleep(500);
5467                 }
5468
5469                 if (cnt == 5)
5470                         break;
5471
5472                 val64 = readq(&bar0->mc_rldram_test_ctrl);
5473                 if (!(val64 & MC_RLDRAM_TEST_PASS))
5474                         test_fail = 1;
5475
5476                 iteration++;
5477         }
5478
5479         *data = test_fail;
5480
5481         /* Bring the adapter out of test mode */
5482         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5483
5484         return test_fail;
5485 }
5486
5487 /**
5488  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5489  *  @sp : private member of the device structure, which is a pointer to the
5490  *  s2io_nic structure.
5491  *  @ethtest : pointer to a ethtool command specific structure that will be
5492  *  returned to the user.
5493  *  @data : variable that returns the result of each of the test
5494  * conducted by the driver.
5495  * Description:
5496  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
5497  *  the health of the card.
5498  * Return value:
5499  *  void
5500  */
5501
5502 static void s2io_ethtool_test(struct net_device *dev,
5503                               struct ethtool_test *ethtest,
5504                               uint64_t * data)
5505 {
5506         struct s2io_nic *sp = dev->priv;
5507         int orig_state = netif_running(sp->dev);
5508
5509         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5510                 /* Offline Tests. */
5511                 if (orig_state)
5512                         s2io_close(sp->dev);
5513
5514                 if (s2io_register_test(sp, &data[0]))
5515                         ethtest->flags |= ETH_TEST_FL_FAILED;
5516
5517                 s2io_reset(sp);
5518
5519                 if (s2io_rldram_test(sp, &data[3]))
5520                         ethtest->flags |= ETH_TEST_FL_FAILED;
5521
5522                 s2io_reset(sp);
5523
5524                 if (s2io_eeprom_test(sp, &data[1]))
5525                         ethtest->flags |= ETH_TEST_FL_FAILED;
5526
5527                 if (s2io_bist_test(sp, &data[4]))
5528                         ethtest->flags |= ETH_TEST_FL_FAILED;
5529
5530                 if (orig_state)
5531                         s2io_open(sp->dev);
5532
5533                 data[2] = 0;
5534         } else {
5535                 /* Online Tests. */
5536                 if (!orig_state) {
5537                         DBG_PRINT(ERR_DBG,
5538                                   "%s: is not up, cannot run test\n",
5539                                   dev->name);
5540                         data[0] = -1;
5541                         data[1] = -1;
5542                         data[2] = -1;
5543                         data[3] = -1;
5544                         data[4] = -1;
5545                 }
5546
5547                 if (s2io_link_test(sp, &data[2]))
5548                         ethtest->flags |= ETH_TEST_FL_FAILED;
5549
5550                 data[0] = 0;
5551                 data[1] = 0;
5552                 data[3] = 0;
5553                 data[4] = 0;
5554         }
5555 }
5556
5557 static void s2io_get_ethtool_stats(struct net_device *dev,
5558                                    struct ethtool_stats *estats,
5559                                    u64 * tmp_stats)
5560 {
5561         int i = 0;
5562         struct s2io_nic *sp = dev->priv;
5563         struct stat_block *stat_info = sp->mac_control.stats_info;
5564
5565         s2io_updt_stats(sp);
5566         tmp_stats[i++] =
5567                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
5568                 le32_to_cpu(stat_info->tmac_frms);
5569         tmp_stats[i++] =
5570                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5571                 le32_to_cpu(stat_info->tmac_data_octets);
5572         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5573         tmp_stats[i++] =
5574                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5575                 le32_to_cpu(stat_info->tmac_mcst_frms);
5576         tmp_stats[i++] =
5577                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5578                 le32_to_cpu(stat_info->tmac_bcst_frms);
5579         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5580         tmp_stats[i++] =
5581                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5582                 le32_to_cpu(stat_info->tmac_ttl_octets);
5583         tmp_stats[i++] =
5584                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5585                 le32_to_cpu(stat_info->tmac_ucst_frms);
5586         tmp_stats[i++] =
5587                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5588                 le32_to_cpu(stat_info->tmac_nucst_frms);
5589         tmp_stats[i++] =
5590                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5591                 le32_to_cpu(stat_info->tmac_any_err_frms);
5592         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5593         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5594         tmp_stats[i++] =
5595                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5596                 le32_to_cpu(stat_info->tmac_vld_ip);
5597         tmp_stats[i++] =
5598                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5599                 le32_to_cpu(stat_info->tmac_drop_ip);
5600         tmp_stats[i++] =
5601                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5602                 le32_to_cpu(stat_info->tmac_icmp);
5603         tmp_stats[i++] =
5604                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5605                 le32_to_cpu(stat_info->tmac_rst_tcp);
5606         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5607         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5608                 le32_to_cpu(stat_info->tmac_udp);
5609         tmp_stats[i++] =
5610                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5611                 le32_to_cpu(stat_info->rmac_vld_frms);
5612         tmp_stats[i++] =
5613                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5614                 le32_to_cpu(stat_info->rmac_data_octets);
5615         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5616         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5617         tmp_stats[i++] =
5618                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5619                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5620         tmp_stats[i++] =
5621                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5622                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5623         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5624         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5625         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5626         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
5627         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
5628         tmp_stats[i++] =
5629                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
5630                 le32_to_cpu(stat_info->rmac_ttl_octets);
5631         tmp_stats[i++] =
5632                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
5633                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
5634         tmp_stats[i++] =
5635                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
5636                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
5637         tmp_stats[i++] =
5638                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
5639                 le32_to_cpu(stat_info->rmac_discarded_frms);
5640         tmp_stats[i++] =
5641                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
5642                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
5643         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
5644         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
5645         tmp_stats[i++] =
5646                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
5647                 le32_to_cpu(stat_info->rmac_usized_frms);
5648         tmp_stats[i++] =
5649                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
5650                 le32_to_cpu(stat_info->rmac_osized_frms);
5651         tmp_stats[i++] =
5652                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
5653                 le32_to_cpu(stat_info->rmac_frag_frms);
5654         tmp_stats[i++] =
5655                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
5656                 le32_to_cpu(stat_info->rmac_jabber_frms);
5657         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
5658         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
5659         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
5660         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
5661         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
5662         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
5663         tmp_stats[i++] =
5664                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
5665                 le32_to_cpu(stat_info->rmac_ip);
5666         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
5667         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
5668         tmp_stats[i++] =
5669                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
5670                 le32_to_cpu(stat_info->rmac_drop_ip);
5671         tmp_stats[i++] =
5672                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
5673                 le32_to_cpu(stat_info->rmac_icmp);
5674         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
5675         tmp_stats[i++] =
5676                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
5677                 le32_to_cpu(stat_info->rmac_udp);
5678         tmp_stats[i++] =
5679                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
5680                 le32_to_cpu(stat_info->rmac_err_drp_udp);
5681         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
5682         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
5683         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
5684         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
5685         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
5686         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
5687         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
5688         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
5689         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
5690         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
5691         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
5692         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
5693         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
5694         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
5695         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
5696         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
5697         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
5698         tmp_stats[i++] =
5699                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
5700                 le32_to_cpu(stat_info->rmac_pause_cnt);
5701         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
5702         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
5703         tmp_stats[i++] =
5704                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
5705                 le32_to_cpu(stat_info->rmac_accepted_ip);
5706         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
5707         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
5708         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
5709         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
5710         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
5711         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
5712         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
5713         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
5714         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
5715         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
5716         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
5717         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
5718         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
5719         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
5720         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
5721         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
5722         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
5723         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
5724         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
5725
5726         /* Enhanced statistics exist only for Hercules */
5727         if(sp->device_type == XFRAME_II_DEVICE) {
5728                 tmp_stats[i++] =
5729                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
5730                 tmp_stats[i++] =
5731                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
5732                 tmp_stats[i++] =
5733                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
5734                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
5735                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
5736                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
5737                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
5738                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
5739                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
5740                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
5741                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
5742                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
5743                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
5744                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
5745                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
5746                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
5747         }
5748
5749         tmp_stats[i++] = 0;
5750         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
5751         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
5752         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
5753         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
5754         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
5755         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
5756         tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt;
5757         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
5758         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
5759         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
5760         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
5761         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
5762         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
5763         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
5764         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
5765         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
5766         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
5767         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
5768         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
5769         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
5770         tmp_stats[i++] = stat_info->sw_stat.sending_both;
5771         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
5772         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
5773         if (stat_info->sw_stat.num_aggregations) {
5774                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
5775                 int count = 0;
5776                 /*
5777                  * Since 64-bit divide does not work on all platforms,
5778                  * do repeated subtraction.
5779                  */
5780                 while (tmp >= stat_info->sw_stat.num_aggregations) {
5781                         tmp -= stat_info->sw_stat.num_aggregations;
5782                         count++;
5783                 }
5784                 tmp_stats[i++] = count;
5785         }
5786         else
5787                 tmp_stats[i++] = 0;
5788         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
5789         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
5790 }
5791
5792 static int s2io_ethtool_get_regs_len(struct net_device *dev)
5793 {
5794         return (XENA_REG_SPACE);
5795 }
5796
5797
5798 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
5799 {
5800         struct s2io_nic *sp = dev->priv;
5801
5802         return (sp->rx_csum);
5803 }
5804
5805 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
5806 {
5807         struct s2io_nic *sp = dev->priv;
5808
5809         if (data)
5810                 sp->rx_csum = 1;
5811         else
5812                 sp->rx_csum = 0;
5813
5814         return 0;
5815 }
5816
5817 static int s2io_get_eeprom_len(struct net_device *dev)
5818 {
5819         return (XENA_EEPROM_SPACE);
5820 }
5821
5822 static int s2io_ethtool_self_test_count(struct net_device *dev)
5823 {
5824         return (S2IO_TEST_LEN);
5825 }
5826
5827 static void s2io_ethtool_get_strings(struct net_device *dev,
5828                                      u32 stringset, u8 * data)
5829 {
5830         int stat_size = 0;
5831         struct s2io_nic *sp = dev->priv;
5832
5833         switch (stringset) {
5834         case ETH_SS_TEST:
5835                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
5836                 break;
5837         case ETH_SS_STATS:
5838                 stat_size = sizeof(ethtool_xena_stats_keys);
5839                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
5840                 if(sp->device_type == XFRAME_II_DEVICE) {
5841                         memcpy(data + stat_size,
5842                                 &ethtool_enhanced_stats_keys,
5843                                 sizeof(ethtool_enhanced_stats_keys));
5844                         stat_size += sizeof(ethtool_enhanced_stats_keys);
5845                 }
5846
5847                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
5848                         sizeof(ethtool_driver_stats_keys));
5849         }
5850 }
5851 static int s2io_ethtool_get_stats_count(struct net_device *dev)
5852 {
5853         struct s2io_nic *sp = dev->priv;
5854         int stat_count = 0;
5855         switch(sp->device_type) {
5856         case XFRAME_I_DEVICE:
5857                 stat_count = XFRAME_I_STAT_LEN;
5858         break;
5859
5860         case XFRAME_II_DEVICE:
5861                 stat_count = XFRAME_II_STAT_LEN;
5862         break;
5863         }
5864
5865         return stat_count;
5866 }
5867
5868 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
5869 {
5870         if (data)
5871                 dev->features |= NETIF_F_IP_CSUM;
5872         else
5873                 dev->features &= ~NETIF_F_IP_CSUM;
5874
5875         return 0;
5876 }
5877
5878 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
5879 {
5880         return (dev->features & NETIF_F_TSO) != 0;
5881 }
5882 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
5883 {
5884         if (data)
5885                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
5886         else
5887                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
5888
5889         return 0;
5890 }
5891
5892 static const struct ethtool_ops netdev_ethtool_ops = {
5893         .get_settings = s2io_ethtool_gset,
5894         .set_settings = s2io_ethtool_sset,
5895         .get_drvinfo = s2io_ethtool_gdrvinfo,
5896         .get_regs_len = s2io_ethtool_get_regs_len,
5897         .get_regs = s2io_ethtool_gregs,
5898         .get_link = ethtool_op_get_link,
5899         .get_eeprom_len = s2io_get_eeprom_len,
5900         .get_eeprom = s2io_ethtool_geeprom,
5901         .set_eeprom = s2io_ethtool_seeprom,
5902         .get_ringparam = s2io_ethtool_gringparam,
5903         .get_pauseparam = s2io_ethtool_getpause_data,
5904         .set_pauseparam = s2io_ethtool_setpause_data,
5905         .get_rx_csum = s2io_ethtool_get_rx_csum,
5906         .set_rx_csum = s2io_ethtool_set_rx_csum,
5907         .get_tx_csum = ethtool_op_get_tx_csum,
5908         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
5909         .get_sg = ethtool_op_get_sg,
5910         .set_sg = ethtool_op_set_sg,
5911         .get_tso = s2io_ethtool_op_get_tso,
5912         .set_tso = s2io_ethtool_op_set_tso,
5913         .get_ufo = ethtool_op_get_ufo,
5914         .set_ufo = ethtool_op_set_ufo,
5915         .self_test_count = s2io_ethtool_self_test_count,
5916         .self_test = s2io_ethtool_test,
5917         .get_strings = s2io_ethtool_get_strings,
5918         .phys_id = s2io_ethtool_idnic,
5919         .get_stats_count = s2io_ethtool_get_stats_count,
5920         .get_ethtool_stats = s2io_get_ethtool_stats
5921 };
5922
5923 /**
5924  *  s2io_ioctl - Entry point for the Ioctl
5925  *  @dev :  Device pointer.
5926  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
5927  *  a proprietary structure used to pass information to the driver.
5928  *  @cmd :  This is used to distinguish between the different commands that
5929  *  can be passed to the IOCTL functions.
5930  *  Description:
5931  *  Currently there are no special functionality supported in IOCTL, hence
5932  *  function always return EOPNOTSUPPORTED
5933  */
5934
5935 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5936 {
5937         return -EOPNOTSUPP;
5938 }
5939
5940 /**
5941  *  s2io_change_mtu - entry point to change MTU size for the device.
5942  *   @dev : device pointer.
5943  *   @new_mtu : the new MTU size for the device.
5944  *   Description: A driver entry point to change MTU size for the device.
5945  *   Before changing the MTU the device must be stopped.
5946  *  Return value:
5947  *   0 on success and an appropriate (-)ve integer as defined in errno.h
5948  *   file on failure.
5949  */
5950
5951 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
5952 {
5953         struct s2io_nic *sp = dev->priv;
5954
5955         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
5956                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
5957                           dev->name);
5958                 return -EPERM;
5959         }
5960
5961         dev->mtu = new_mtu;
5962         if (netif_running(dev)) {
5963                 s2io_card_down(sp);
5964                 netif_stop_queue(dev);
5965                 if (s2io_card_up(sp)) {
5966                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
5967                                   __FUNCTION__);
5968                 }
5969                 if (netif_queue_stopped(dev))
5970                         netif_wake_queue(dev);
5971         } else { /* Device is down */
5972                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5973                 u64 val64 = new_mtu;
5974
5975                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
5976         }
5977
5978         return 0;
5979 }
5980
5981 /**
5982  *  s2io_tasklet - Bottom half of the ISR.
5983  *  @dev_adr : address of the device structure in dma_addr_t format.
5984  *  Description:
5985  *  This is the tasklet or the bottom half of the ISR. This is
5986  *  an extension of the ISR which is scheduled by the scheduler to be run
5987  *  when the load on the CPU is low. All low priority tasks of the ISR can
5988  *  be pushed into the tasklet. For now the tasklet is used only to
5989  *  replenish the Rx buffers in the Rx buffer descriptors.
5990  *  Return value:
5991  *  void.
5992  */
5993
5994 static void s2io_tasklet(unsigned long dev_addr)
5995 {
5996         struct net_device *dev = (struct net_device *) dev_addr;
5997         struct s2io_nic *sp = dev->priv;
5998         int i, ret;
5999         struct mac_info *mac_control;
6000         struct config_param *config;
6001
6002         mac_control = &sp->mac_control;
6003         config = &sp->config;
6004
6005         if (!TASKLET_IN_USE) {
6006                 for (i = 0; i < config->rx_ring_num; i++) {
6007                         ret = fill_rx_buffers(sp, i);
6008                         if (ret == -ENOMEM) {
6009                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6010                                           dev->name);
6011                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
6012                                 break;
6013                         } else if (ret == -EFILL) {
6014                                 DBG_PRINT(INFO_DBG,
6015                                           "%s: Rx Ring %d is full\n",
6016                                           dev->name, i);
6017                                 break;
6018                         }
6019                 }
6020                 clear_bit(0, (&sp->tasklet_status));
6021         }
6022 }
6023
6024 /**
6025  * s2io_set_link - Set the LInk status
6026  * @data: long pointer to device private structue
6027  * Description: Sets the link status for the adapter
6028  */
6029
6030 static void s2io_set_link(struct work_struct *work)
6031 {
6032         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6033         struct net_device *dev = nic->dev;
6034         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6035         register u64 val64;
6036         u16 subid;
6037
6038         rtnl_lock();
6039
6040         if (!netif_running(dev))
6041                 goto out_unlock;
6042
6043         if (test_and_set_bit(0, &(nic->link_state))) {
6044                 /* The card is being reset, no point doing anything */
6045                 goto out_unlock;
6046         }
6047
6048         subid = nic->pdev->subsystem_device;
6049         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6050                 /*
6051                  * Allow a small delay for the NICs self initiated
6052                  * cleanup to complete.
6053                  */
6054                 msleep(100);
6055         }
6056
6057         val64 = readq(&bar0->adapter_status);
6058         if (LINK_IS_UP(val64)) {
6059                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6060                         if (verify_xena_quiescence(nic)) {
6061                                 val64 = readq(&bar0->adapter_control);
6062                                 val64 |= ADAPTER_CNTL_EN;
6063                                 writeq(val64, &bar0->adapter_control);
6064                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6065                                         nic->device_type, subid)) {
6066                                         val64 = readq(&bar0->gpio_control);
6067                                         val64 |= GPIO_CTRL_GPIO_0;
6068                                         writeq(val64, &bar0->gpio_control);
6069                                         val64 = readq(&bar0->gpio_control);
6070                                 } else {
6071                                         val64 |= ADAPTER_LED_ON;
6072                                         writeq(val64, &bar0->adapter_control);
6073                                 }
6074                                 nic->device_enabled_once = TRUE;
6075                         } else {
6076                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6077                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6078                                 netif_stop_queue(dev);
6079                         }
6080                 }
6081                 val64 = readq(&bar0->adapter_status);
6082                 if (!LINK_IS_UP(val64)) {
6083                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
6084                         DBG_PRINT(ERR_DBG, " Link down after enabling ");
6085                         DBG_PRINT(ERR_DBG, "device \n");
6086                 } else
6087                         s2io_link(nic, LINK_UP);
6088         } else {
6089                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6090                                                       subid)) {
6091                         val64 = readq(&bar0->gpio_control);
6092                         val64 &= ~GPIO_CTRL_GPIO_0;
6093                         writeq(val64, &bar0->gpio_control);
6094                         val64 = readq(&bar0->gpio_control);
6095                 }
6096                 s2io_link(nic, LINK_DOWN);
6097         }
6098         clear_bit(0, &(nic->link_state));
6099
6100 out_unlock:
6101         rtnl_unlock();
6102 }
6103
6104 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6105                                 struct buffAdd *ba,
6106                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6107                                 u64 *temp2, int size)
6108 {
6109         struct net_device *dev = sp->dev;
6110         struct sk_buff *frag_list;
6111
6112         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6113                 /* allocate skb */
6114                 if (*skb) {
6115                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6116                         /*
6117                          * As Rx frame are not going to be processed,
6118                          * using same mapped address for the Rxd
6119                          * buffer pointer
6120                          */
6121                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0;
6122                 } else {
6123                         *skb = dev_alloc_skb(size);
6124                         if (!(*skb)) {
6125                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6126                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6127                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6128                                 sp->mac_control.stats_info->sw_stat. \
6129                                         mem_alloc_fail_cnt++;
6130                                 return -ENOMEM ;
6131                         }
6132                         /* storing the mapped addr in a temp variable
6133                          * such it will be used for next rxd whose
6134                          * Host Control is NULL
6135                          */
6136                         ((struct RxD1*)rxdp)->Buffer0_ptr = *temp0 =
6137                                 pci_map_single( sp->pdev, (*skb)->data,
6138                                         size - NET_IP_ALIGN,
6139                                         PCI_DMA_FROMDEVICE);
6140                         rxdp->Host_Control = (unsigned long) (*skb);
6141                 }
6142         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6143                 /* Two buffer Mode */
6144                 if (*skb) {
6145                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6146                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6147                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6148                 } else {
6149                         *skb = dev_alloc_skb(size);
6150                         if (!(*skb)) {
6151                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6152                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6153                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6154                                 sp->mac_control.stats_info->sw_stat. \
6155                                         mem_alloc_fail_cnt++;
6156                                 return -ENOMEM;
6157                         }
6158                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6159                                 pci_map_single(sp->pdev, (*skb)->data,
6160                                                dev->mtu + 4,
6161                                                PCI_DMA_FROMDEVICE);
6162                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6163                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6164                                                 PCI_DMA_FROMDEVICE);
6165                         rxdp->Host_Control = (unsigned long) (*skb);
6166
6167                         /* Buffer-1 will be dummy buffer not used */
6168                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6169                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6170                                                PCI_DMA_FROMDEVICE);
6171                 }
6172         } else if ((rxdp->Host_Control == 0)) {
6173                 /* Three buffer mode */
6174                 if (*skb) {
6175                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0;
6176                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1;
6177                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2;
6178                 } else {
6179                         *skb = dev_alloc_skb(size);
6180                         if (!(*skb)) {
6181                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6182                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6183                                 DBG_PRINT(INFO_DBG, "3 buf mode SKBs\n");
6184                                 sp->mac_control.stats_info->sw_stat. \
6185                                         mem_alloc_fail_cnt++;
6186                                 return -ENOMEM;
6187                         }
6188                         ((struct RxD3*)rxdp)->Buffer0_ptr = *temp0 =
6189                                 pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6190                                                PCI_DMA_FROMDEVICE);
6191                         /* Buffer-1 receives L3/L4 headers */
6192                         ((struct RxD3*)rxdp)->Buffer1_ptr = *temp1 =
6193                                 pci_map_single( sp->pdev, (*skb)->data,
6194                                                 l3l4hdr_size + 4,
6195                                                 PCI_DMA_FROMDEVICE);
6196                         /*
6197                          * skb_shinfo(skb)->frag_list will have L4
6198                          * data payload
6199                          */
6200                         skb_shinfo(*skb)->frag_list = dev_alloc_skb(dev->mtu +
6201                                                                    ALIGN_SIZE);
6202                         if (skb_shinfo(*skb)->frag_list == NULL) {
6203                                 DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb \
6204                                           failed\n ", dev->name);
6205                                 sp->mac_control.stats_info->sw_stat. \
6206                                         mem_alloc_fail_cnt++;
6207                                 return -ENOMEM ;
6208                         }
6209                         frag_list = skb_shinfo(*skb)->frag_list;
6210                         frag_list->next = NULL;
6211                         /*
6212                          * Buffer-2 receives L4 data payload
6213                          */
6214                         ((struct RxD3*)rxdp)->Buffer2_ptr = *temp2 =
6215                                 pci_map_single( sp->pdev, frag_list->data,
6216                                                 dev->mtu, PCI_DMA_FROMDEVICE);
6217                 }
6218         }
6219         return 0;
6220 }
6221 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6222                                 int size)
6223 {
6224         struct net_device *dev = sp->dev;
6225         if (sp->rxd_mode == RXD_MODE_1) {
6226                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6227         } else if (sp->rxd_mode == RXD_MODE_3B) {
6228                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6229                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6230                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6231         } else {
6232                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6233                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
6234                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
6235         }
6236 }
6237
6238 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6239 {
6240         int i, j, k, blk_cnt = 0, size;
6241         struct mac_info * mac_control = &sp->mac_control;
6242         struct config_param *config = &sp->config;
6243         struct net_device *dev = sp->dev;
6244         struct RxD_t *rxdp = NULL;
6245         struct sk_buff *skb = NULL;
6246         struct buffAdd *ba = NULL;
6247         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6248
6249         /* Calculate the size based on ring mode */
6250         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6251                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6252         if (sp->rxd_mode == RXD_MODE_1)
6253                 size += NET_IP_ALIGN;
6254         else if (sp->rxd_mode == RXD_MODE_3B)
6255                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6256         else
6257                 size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
6258
6259         for (i = 0; i < config->rx_ring_num; i++) {
6260                 blk_cnt = config->rx_cfg[i].num_rxd /
6261                         (rxd_count[sp->rxd_mode] +1);
6262
6263                 for (j = 0; j < blk_cnt; j++) {
6264                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6265                                 rxdp = mac_control->rings[i].
6266                                         rx_blocks[j].rxds[k].virt_addr;
6267                                 if(sp->rxd_mode >= RXD_MODE_3A)
6268                                         ba = &mac_control->rings[i].ba[j][k];
6269                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6270                                                        &skb,(u64 *)&temp0_64,
6271                                                        (u64 *)&temp1_64,
6272                                                        (u64 *)&temp2_64,
6273                                                         size) == ENOMEM) {
6274                                         return 0;
6275                                 }
6276
6277                                 set_rxd_buffer_size(sp, rxdp, size);
6278                                 wmb();
6279                                 /* flip the Ownership bit to Hardware */
6280                                 rxdp->Control_1 |= RXD_OWN_XENA;
6281                         }
6282                 }
6283         }
6284         return 0;
6285
6286 }
6287
6288 static int s2io_add_isr(struct s2io_nic * sp)
6289 {
6290         int ret = 0;
6291         struct net_device *dev = sp->dev;
6292         int err = 0;
6293
6294         if (sp->intr_type == MSI)
6295                 ret = s2io_enable_msi(sp);
6296         else if (sp->intr_type == MSI_X)
6297                 ret = s2io_enable_msi_x(sp);
6298         if (ret) {
6299                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6300                 sp->intr_type = INTA;
6301         }
6302
6303         /* Store the values of the MSIX table in the struct s2io_nic structure */
6304         store_xmsi_data(sp);
6305
6306         /* After proper initialization of H/W, register ISR */
6307         if (sp->intr_type == MSI) {
6308                 err = request_irq((int) sp->pdev->irq, s2io_msi_handle,
6309                         IRQF_SHARED, sp->name, dev);
6310                 if (err) {
6311                         pci_disable_msi(sp->pdev);
6312                         DBG_PRINT(ERR_DBG, "%s: MSI registration failed\n",
6313                                   dev->name);
6314                         return -1;
6315                 }
6316         }
6317         if (sp->intr_type == MSI_X) {
6318                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6319
6320                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6321                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6322                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6323                                         dev->name, i);
6324                                 err = request_irq(sp->entries[i].vector,
6325                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6326                                                   sp->s2io_entries[i].arg);
6327                                 /* If either data or addr is zero print it */
6328                                 if(!(sp->msix_info[i].addr &&
6329                                         sp->msix_info[i].data)) {
6330                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6331                                                 "Data:0x%lx\n",sp->desc[i],
6332                                                 (unsigned long long)
6333                                                 sp->msix_info[i].addr,
6334                                                 (unsigned long)
6335                                                 ntohl(sp->msix_info[i].data));
6336                                 } else {
6337                                         msix_tx_cnt++;
6338                                 }
6339                         } else {
6340                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6341                                         dev->name, i);
6342                                 err = request_irq(sp->entries[i].vector,
6343                                           s2io_msix_ring_handle, 0, sp->desc[i],
6344                                                   sp->s2io_entries[i].arg);
6345                                 /* If either data or addr is zero print it */
6346                                 if(!(sp->msix_info[i].addr &&
6347                                         sp->msix_info[i].data)) {
6348                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6349                                                 "Data:0x%lx\n",sp->desc[i],
6350                                                 (unsigned long long)
6351                                                 sp->msix_info[i].addr,
6352                                                 (unsigned long)
6353                                                 ntohl(sp->msix_info[i].data));
6354                                 } else {
6355                                         msix_rx_cnt++;
6356                                 }
6357                         }
6358                         if (err) {
6359                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6360                                           "failed\n", dev->name, i);
6361                                 DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
6362                                 return -1;
6363                         }
6364                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6365                 }
6366                 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
6367                 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
6368         }
6369         if (sp->intr_type == INTA) {
6370                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6371                                 sp->name, dev);
6372                 if (err) {
6373                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6374                                   dev->name);
6375                         return -1;
6376                 }
6377         }
6378         return 0;
6379 }
6380 static void s2io_rem_isr(struct s2io_nic * sp)
6381 {
6382         int cnt = 0;
6383         struct net_device *dev = sp->dev;
6384
6385         if (sp->intr_type == MSI_X) {
6386                 int i;
6387                 u16 msi_control;
6388
6389                 for (i=1; (sp->s2io_entries[i].in_use ==
6390                         MSIX_REGISTERED_SUCCESS); i++) {
6391                         int vector = sp->entries[i].vector;
6392                         void *arg = sp->s2io_entries[i].arg;
6393
6394                         free_irq(vector, arg);
6395                 }
6396                 pci_read_config_word(sp->pdev, 0x42, &msi_control);
6397                 msi_control &= 0xFFFE; /* Disable MSI */
6398                 pci_write_config_word(sp->pdev, 0x42, msi_control);
6399
6400                 pci_disable_msix(sp->pdev);
6401         } else {
6402                 free_irq(sp->pdev->irq, dev);
6403                 if (sp->intr_type == MSI) {
6404                         u16 val;
6405
6406                         pci_disable_msi(sp->pdev);
6407                         pci_read_config_word(sp->pdev, 0x4c, &val);
6408                         val ^= 0x1;
6409                         pci_write_config_word(sp->pdev, 0x4c, val);
6410                 }
6411         }
6412         /* Waiting till all Interrupt handlers are complete */
6413         cnt = 0;
6414         do {
6415                 msleep(10);
6416                 if (!atomic_read(&sp->isr_cnt))
6417                         break;
6418                 cnt++;
6419         } while(cnt < 5);
6420 }
6421
6422 static void s2io_card_down(struct s2io_nic * sp)
6423 {
6424         int cnt = 0;
6425         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6426         unsigned long flags;
6427         register u64 val64 = 0;
6428
6429         del_timer_sync(&sp->alarm_timer);
6430         /* If s2io_set_link task is executing, wait till it completes. */
6431         while (test_and_set_bit(0, &(sp->link_state))) {
6432                 msleep(50);
6433         }
6434         atomic_set(&sp->card_state, CARD_DOWN);
6435
6436         /* disable Tx and Rx traffic on the NIC */
6437         stop_nic(sp);
6438
6439         s2io_rem_isr(sp);
6440
6441         /* Kill tasklet. */
6442         tasklet_kill(&sp->task);
6443
6444         /* Check if the device is Quiescent and then Reset the NIC */
6445         do {
6446                 /* As per the HW requirement we need to replenish the
6447                  * receive buffer to avoid the ring bump. Since there is
6448                  * no intention of processing the Rx frame at this pointwe are
6449                  * just settting the ownership bit of rxd in Each Rx
6450                  * ring to HW and set the appropriate buffer size
6451                  * based on the ring mode
6452                  */
6453                 rxd_owner_bit_reset(sp);
6454
6455                 val64 = readq(&bar0->adapter_status);
6456                 if (verify_xena_quiescence(sp)) {
6457                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6458                         break;
6459                 }
6460
6461                 msleep(50);
6462                 cnt++;
6463                 if (cnt == 10) {
6464                         DBG_PRINT(ERR_DBG,
6465                                   "s2io_close:Device not Quiescent ");
6466                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6467                                   (unsigned long long) val64);
6468                         break;
6469                 }
6470         } while (1);
6471         s2io_reset(sp);
6472
6473         spin_lock_irqsave(&sp->tx_lock, flags);
6474         /* Free all Tx buffers */
6475         free_tx_buffers(sp);
6476         spin_unlock_irqrestore(&sp->tx_lock, flags);
6477
6478         /* Free all Rx buffers */
6479         spin_lock_irqsave(&sp->rx_lock, flags);
6480         free_rx_buffers(sp);
6481         spin_unlock_irqrestore(&sp->rx_lock, flags);
6482
6483         clear_bit(0, &(sp->link_state));
6484 }
6485
6486 static int s2io_card_up(struct s2io_nic * sp)
6487 {
6488         int i, ret = 0;
6489         struct mac_info *mac_control;
6490         struct config_param *config;
6491         struct net_device *dev = (struct net_device *) sp->dev;
6492         u16 interruptible;
6493
6494         /* Initialize the H/W I/O registers */
6495         if (init_nic(sp) != 0) {
6496                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6497                           dev->name);
6498                 s2io_reset(sp);
6499                 return -ENODEV;
6500         }
6501
6502         /*
6503          * Initializing the Rx buffers. For now we are considering only 1
6504          * Rx ring and initializing buffers into 30 Rx blocks
6505          */
6506         mac_control = &sp->mac_control;
6507         config = &sp->config;
6508
6509         for (i = 0; i < config->rx_ring_num; i++) {
6510                 if ((ret = fill_rx_buffers(sp, i))) {
6511                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6512                                   dev->name);
6513                         s2io_reset(sp);
6514                         free_rx_buffers(sp);
6515                         return -ENOMEM;
6516                 }
6517                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6518                           atomic_read(&sp->rx_bufs_left[i]));
6519         }
6520         /* Maintain the state prior to the open */
6521         if (sp->promisc_flg)
6522                 sp->promisc_flg = 0;
6523         if (sp->m_cast_flg) {
6524                 sp->m_cast_flg = 0;
6525                 sp->all_multi_pos= 0;
6526         }
6527
6528         /* Setting its receive mode */
6529         s2io_set_multicast(dev);
6530
6531         if (sp->lro) {
6532                 /* Initialize max aggregatable pkts per session based on MTU */
6533                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6534                 /* Check if we can use(if specified) user provided value */
6535                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6536                         sp->lro_max_aggr_per_sess = lro_max_pkts;
6537         }
6538
6539         /* Enable Rx Traffic and interrupts on the NIC */
6540         if (start_nic(sp)) {
6541                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6542                 s2io_reset(sp);
6543                 free_rx_buffers(sp);
6544                 return -ENODEV;
6545         }
6546
6547         /* Add interrupt service routine */
6548         if (s2io_add_isr(sp) != 0) {
6549                 if (sp->intr_type == MSI_X)
6550                         s2io_rem_isr(sp);
6551                 s2io_reset(sp);
6552                 free_rx_buffers(sp);
6553                 return -ENODEV;
6554         }
6555
6556         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6557
6558         /* Enable tasklet for the device */
6559         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6560
6561         /*  Enable select interrupts */
6562         if (sp->intr_type != INTA)
6563                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6564         else {
6565                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6566                 interruptible |= TX_PIC_INTR | RX_PIC_INTR;
6567                 interruptible |= TX_MAC_INTR | RX_MAC_INTR;
6568                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6569         }
6570
6571
6572         atomic_set(&sp->card_state, CARD_UP);
6573         return 0;
6574 }
6575
6576 /**
6577  * s2io_restart_nic - Resets the NIC.
6578  * @data : long pointer to the device private structure
6579  * Description:
6580  * This function is scheduled to be run by the s2io_tx_watchdog
6581  * function after 0.5 secs to reset the NIC. The idea is to reduce
6582  * the run time of the watch dog routine which is run holding a
6583  * spin lock.
6584  */
6585
6586 static void s2io_restart_nic(struct work_struct *work)
6587 {
6588         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6589         struct net_device *dev = sp->dev;
6590
6591         rtnl_lock();
6592
6593         if (!netif_running(dev))
6594                 goto out_unlock;
6595
6596         s2io_card_down(sp);
6597         if (s2io_card_up(sp)) {
6598                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6599                           dev->name);
6600         }
6601         netif_wake_queue(dev);
6602         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6603                   dev->name);
6604 out_unlock:
6605         rtnl_unlock();
6606 }
6607
6608 /**
6609  *  s2io_tx_watchdog - Watchdog for transmit side.
6610  *  @dev : Pointer to net device structure
6611  *  Description:
6612  *  This function is triggered if the Tx Queue is stopped
6613  *  for a pre-defined amount of time when the Interface is still up.
6614  *  If the Interface is jammed in such a situation, the hardware is
6615  *  reset (by s2io_close) and restarted again (by s2io_open) to
6616  *  overcome any problem that might have been caused in the hardware.
6617  *  Return value:
6618  *  void
6619  */
6620
6621 static void s2io_tx_watchdog(struct net_device *dev)
6622 {
6623         struct s2io_nic *sp = dev->priv;
6624
6625         if (netif_carrier_ok(dev)) {
6626                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6627                 schedule_work(&sp->rst_timer_task);
6628                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
6629         }
6630 }
6631
6632 /**
6633  *   rx_osm_handler - To perform some OS related operations on SKB.
6634  *   @sp: private member of the device structure,pointer to s2io_nic structure.
6635  *   @skb : the socket buffer pointer.
6636  *   @len : length of the packet
6637  *   @cksum : FCS checksum of the frame.
6638  *   @ring_no : the ring from which this RxD was extracted.
6639  *   Description:
6640  *   This function is called by the Rx interrupt serivce routine to perform
6641  *   some OS related operations on the SKB before passing it to the upper
6642  *   layers. It mainly checks if the checksum is OK, if so adds it to the
6643  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
6644  *   to the upper layer. If the checksum is wrong, it increments the Rx
6645  *   packet error count, frees the SKB and returns error.
6646  *   Return value:
6647  *   SUCCESS on success and -1 on failure.
6648  */
6649 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
6650 {
6651         struct s2io_nic *sp = ring_data->nic;
6652         struct net_device *dev = (struct net_device *) sp->dev;
6653         struct sk_buff *skb = (struct sk_buff *)
6654                 ((unsigned long) rxdp->Host_Control);
6655         int ring_no = ring_data->ring_no;
6656         u16 l3_csum, l4_csum;
6657         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
6658         struct lro *lro;
6659
6660         skb->dev = dev;
6661
6662         if (err) {
6663                 /* Check for parity error */
6664                 if (err & 0x1) {
6665                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
6666                 }
6667
6668                 /*
6669                 * Drop the packet if bad transfer code. Exception being
6670                 * 0x5, which could be due to unsupported IPv6 extension header.
6671                 * In this case, we let stack handle the packet.
6672                 * Note that in this case, since checksum will be incorrect,
6673                 * stack will validate the same.
6674                 */
6675                 if (err && ((err >> 48) != 0x5)) {
6676                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
6677                                 dev->name, err);
6678                         sp->stats.rx_crc_errors++;
6679                         dev_kfree_skb(skb);
6680                         atomic_dec(&sp->rx_bufs_left[ring_no]);
6681                         rxdp->Host_Control = 0;
6682                         return 0;
6683                 }
6684         }
6685
6686         /* Updating statistics */
6687         rxdp->Host_Control = 0;
6688         sp->stats.rx_packets++;
6689         if (sp->rxd_mode == RXD_MODE_1) {
6690                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
6691
6692                 sp->stats.rx_bytes += len;
6693                 skb_put(skb, len);
6694
6695         } else if (sp->rxd_mode >= RXD_MODE_3A) {
6696                 int get_block = ring_data->rx_curr_get_info.block_index;
6697                 int get_off = ring_data->rx_curr_get_info.offset;
6698                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
6699                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
6700                 unsigned char *buff = skb_push(skb, buf0_len);
6701
6702                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
6703                 sp->stats.rx_bytes += buf0_len + buf2_len;
6704                 memcpy(buff, ba->ba_0, buf0_len);
6705
6706                 if (sp->rxd_mode == RXD_MODE_3A) {
6707                         int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
6708
6709                         skb_put(skb, buf1_len);
6710                         skb->len += buf2_len;
6711                         skb->data_len += buf2_len;
6712                         skb_put(skb_shinfo(skb)->frag_list, buf2_len);
6713                         sp->stats.rx_bytes += buf1_len;
6714
6715                 } else
6716                         skb_put(skb, buf2_len);
6717         }
6718
6719         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
6720             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
6721             (sp->rx_csum)) {
6722                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
6723                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
6724                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
6725                         /*
6726                          * NIC verifies if the Checksum of the received
6727                          * frame is Ok or not and accordingly returns
6728                          * a flag in the RxD.
6729                          */
6730                         skb->ip_summed = CHECKSUM_UNNECESSARY;
6731                         if (sp->lro) {
6732                                 u32 tcp_len;
6733                                 u8 *tcp;
6734                                 int ret = 0;
6735
6736                                 ret = s2io_club_tcp_session(skb->data, &tcp,
6737                                                 &tcp_len, &lro, rxdp, sp);
6738                                 switch (ret) {
6739                                         case 3: /* Begin anew */
6740                                                 lro->parent = skb;
6741                                                 goto aggregate;
6742                                         case 1: /* Aggregate */
6743                                         {
6744                                                 lro_append_pkt(sp, lro,
6745                                                         skb, tcp_len);
6746                                                 goto aggregate;
6747                                         }
6748                                         case 4: /* Flush session */
6749                                         {
6750                                                 lro_append_pkt(sp, lro,
6751                                                         skb, tcp_len);
6752                                                 queue_rx_frame(lro->parent);
6753                                                 clear_lro_session(lro);
6754                                                 sp->mac_control.stats_info->
6755                                                     sw_stat.flush_max_pkts++;
6756                                                 goto aggregate;
6757                                         }
6758                                         case 2: /* Flush both */
6759                                                 lro->parent->data_len =
6760                                                         lro->frags_len;
6761                                                 sp->mac_control.stats_info->
6762                                                      sw_stat.sending_both++;
6763                                                 queue_rx_frame(lro->parent);
6764                                                 clear_lro_session(lro);
6765                                                 goto send_up;
6766                                         case 0: /* sessions exceeded */
6767                                         case -1: /* non-TCP or not
6768                                                   * L2 aggregatable
6769                                                   */
6770                                         case 5: /*
6771                                                  * First pkt in session not
6772                                                  * L3/L4 aggregatable
6773                                                  */
6774                                                 break;
6775                                         default:
6776                                                 DBG_PRINT(ERR_DBG,
6777                                                         "%s: Samadhana!!\n",
6778                                                          __FUNCTION__);
6779                                                 BUG();
6780                                 }
6781                         }
6782                 } else {
6783                         /*
6784                          * Packet with erroneous checksum, let the
6785                          * upper layers deal with it.
6786                          */
6787                         skb->ip_summed = CHECKSUM_NONE;
6788                 }
6789         } else {
6790                 skb->ip_summed = CHECKSUM_NONE;
6791         }
6792
6793         if (!sp->lro) {
6794                 skb->protocol = eth_type_trans(skb, dev);
6795                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
6796                         vlan_strip_flag)) {
6797                         /* Queueing the vlan frame to the upper layer */
6798                         if (napi)
6799                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
6800                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6801                         else
6802                                 vlan_hwaccel_rx(skb, sp->vlgrp,
6803                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
6804                 } else {
6805                         if (napi)
6806                                 netif_receive_skb(skb);
6807                         else
6808                                 netif_rx(skb);
6809                 }
6810         } else {
6811 send_up:
6812                 queue_rx_frame(skb);
6813         }
6814         dev->last_rx = jiffies;
6815 aggregate:
6816         atomic_dec(&sp->rx_bufs_left[ring_no]);
6817         return SUCCESS;
6818 }
6819
6820 /**
6821  *  s2io_link - stops/starts the Tx queue.
6822  *  @sp : private member of the device structure, which is a pointer to the
6823  *  s2io_nic structure.
6824  *  @link : inidicates whether link is UP/DOWN.
6825  *  Description:
6826  *  This function stops/starts the Tx queue depending on whether the link
6827  *  status of the NIC is is down or up. This is called by the Alarm
6828  *  interrupt handler whenever a link change interrupt comes up.
6829  *  Return value:
6830  *  void.
6831  */
6832
6833 static void s2io_link(struct s2io_nic * sp, int link)
6834 {
6835         struct net_device *dev = (struct net_device *) sp->dev;
6836
6837         if (link != sp->last_link_state) {
6838                 if (link == LINK_DOWN) {
6839                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
6840                         netif_carrier_off(dev);
6841                 } else {
6842                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
6843                         netif_carrier_on(dev);
6844                 }
6845         }
6846         sp->last_link_state = link;
6847 }
6848
6849 /**
6850  *  get_xena_rev_id - to identify revision ID of xena.
6851  *  @pdev : PCI Dev structure
6852  *  Description:
6853  *  Function to identify the Revision ID of xena.
6854  *  Return value:
6855  *  returns the revision ID of the device.
6856  */
6857
6858 static int get_xena_rev_id(struct pci_dev *pdev)
6859 {
6860         u8 id = 0;
6861         int ret;
6862         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
6863         return id;
6864 }
6865
6866 /**
6867  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6868  *  @sp : private member of the device structure, which is a pointer to the
6869  *  s2io_nic structure.
6870  *  Description:
6871  *  This function initializes a few of the PCI and PCI-X configuration registers
6872  *  with recommended values.
6873  *  Return value:
6874  *  void
6875  */
6876
6877 static void s2io_init_pci(struct s2io_nic * sp)
6878 {
6879         u16 pci_cmd = 0, pcix_cmd = 0;
6880
6881         /* Enable Data Parity Error Recovery in PCI-X command register. */
6882         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6883                              &(pcix_cmd));
6884         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6885                               (pcix_cmd | 1));
6886         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
6887                              &(pcix_cmd));
6888
6889         /* Set the PErr Response bit in PCI command register. */
6890         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6891         pci_write_config_word(sp->pdev, PCI_COMMAND,
6892                               (pci_cmd | PCI_COMMAND_PARITY));
6893         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
6894 }
6895
6896 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
6897 {
6898         if ( tx_fifo_num > 8) {
6899                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
6900                          "supported\n");
6901                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
6902                 tx_fifo_num = 8;
6903         }
6904         if ( rx_ring_num > 8) {
6905                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
6906                          "supported\n");
6907                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
6908                 rx_ring_num = 8;
6909         }
6910         if (*dev_intr_type != INTA)
6911                 napi = 0;
6912
6913 #ifndef CONFIG_PCI_MSI
6914         if (*dev_intr_type != INTA) {
6915                 DBG_PRINT(ERR_DBG, "s2io: This kernel does not support"
6916                           "MSI/MSI-X. Defaulting to INTA\n");
6917                 *dev_intr_type = INTA;
6918         }
6919 #else
6920         if (*dev_intr_type > MSI_X) {
6921                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
6922                           "Defaulting to INTA\n");
6923                 *dev_intr_type = INTA;
6924         }
6925 #endif
6926         if ((*dev_intr_type == MSI_X) &&
6927                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
6928                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
6929                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
6930                                         "Defaulting to INTA\n");
6931                 *dev_intr_type = INTA;
6932         }
6933
6934         if (rx_ring_mode > 3) {
6935                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
6936                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 3-buffer mode\n");
6937                 rx_ring_mode = 3;
6938         }
6939         return SUCCESS;
6940 }
6941
6942 /**
6943  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6944  * or Traffic class respectively.
6945  * @nic: device peivate variable
6946  * Description: The function configures the receive steering to
6947  * desired receive ring.
6948  * Return Value:  SUCCESS on success and
6949  * '-1' on failure (endian settings incorrect).
6950  */
6951 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
6952 {
6953         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6954         register u64 val64 = 0;
6955
6956         if (ds_codepoint > 63)
6957                 return FAILURE;
6958
6959         val64 = RTS_DS_MEM_DATA(ring);
6960         writeq(val64, &bar0->rts_ds_mem_data);
6961
6962         val64 = RTS_DS_MEM_CTRL_WE |
6963                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
6964                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
6965
6966         writeq(val64, &bar0->rts_ds_mem_ctrl);
6967
6968         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
6969                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
6970                                 S2IO_BIT_RESET);
6971 }
6972
6973 /**
6974  *  s2io_init_nic - Initialization of the adapter .
6975  *  @pdev : structure containing the PCI related information of the device.
6976  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6977  *  Description:
6978  *  The function initializes an adapter identified by the pci_dec structure.
6979  *  All OS related initialization including memory and device structure and
6980  *  initlaization of the device private variable is done. Also the swapper
6981  *  control register is initialized to enable read and write into the I/O
6982  *  registers of the device.
6983  *  Return value:
6984  *  returns 0 on success and negative on failure.
6985  */
6986
6987 static int __devinit
6988 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
6989 {
6990         struct s2io_nic *sp;
6991         struct net_device *dev;
6992         int i, j, ret;
6993         int dma_flag = FALSE;
6994         u32 mac_up, mac_down;
6995         u64 val64 = 0, tmp64 = 0;
6996         struct XENA_dev_config __iomem *bar0 = NULL;
6997         u16 subid;
6998         struct mac_info *mac_control;
6999         struct config_param *config;
7000         int mode;
7001         u8 dev_intr_type = intr_type;
7002
7003         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7004                 return ret;
7005
7006         if ((ret = pci_enable_device(pdev))) {
7007                 DBG_PRINT(ERR_DBG,
7008                           "s2io_init_nic: pci_enable_device failed\n");
7009                 return ret;
7010         }
7011
7012         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7013                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7014                 dma_flag = TRUE;
7015                 if (pci_set_consistent_dma_mask
7016                     (pdev, DMA_64BIT_MASK)) {
7017                         DBG_PRINT(ERR_DBG,
7018                                   "Unable to obtain 64bit DMA for \
7019                                         consistent allocations\n");
7020                         pci_disable_device(pdev);
7021                         return -ENOMEM;
7022                 }
7023         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7024                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7025         } else {
7026                 pci_disable_device(pdev);
7027                 return -ENOMEM;
7028         }
7029         if (dev_intr_type != MSI_X) {
7030                 if (pci_request_regions(pdev, s2io_driver_name)) {
7031                         DBG_PRINT(ERR_DBG, "Request Regions failed\n");
7032                         pci_disable_device(pdev);
7033                         return -ENODEV;
7034                 }
7035         }
7036         else {
7037                 if (!(request_mem_region(pci_resource_start(pdev, 0),
7038                          pci_resource_len(pdev, 0), s2io_driver_name))) {
7039                         DBG_PRINT(ERR_DBG, "bar0 Request Regions failed\n");
7040                         pci_disable_device(pdev);
7041                         return -ENODEV;
7042                 }
7043                 if (!(request_mem_region(pci_resource_start(pdev, 2),
7044                          pci_resource_len(pdev, 2), s2io_driver_name))) {
7045                         DBG_PRINT(ERR_DBG, "bar1 Request Regions failed\n");
7046                         release_mem_region(pci_resource_start(pdev, 0),
7047                                    pci_resource_len(pdev, 0));
7048                         pci_disable_device(pdev);
7049                         return -ENODEV;
7050                 }
7051         }
7052
7053         dev = alloc_etherdev(sizeof(struct s2io_nic));
7054         if (dev == NULL) {
7055                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7056                 pci_disable_device(pdev);
7057                 pci_release_regions(pdev);
7058                 return -ENODEV;
7059         }
7060
7061         pci_set_master(pdev);
7062         pci_set_drvdata(pdev, dev);
7063         SET_MODULE_OWNER(dev);
7064         SET_NETDEV_DEV(dev, &pdev->dev);
7065
7066         /*  Private member variable initialized to s2io NIC structure */
7067         sp = dev->priv;
7068         memset(sp, 0, sizeof(struct s2io_nic));
7069         sp->dev = dev;
7070         sp->pdev = pdev;
7071         sp->high_dma_flag = dma_flag;
7072         sp->device_enabled_once = FALSE;
7073         if (rx_ring_mode == 1)
7074                 sp->rxd_mode = RXD_MODE_1;
7075         if (rx_ring_mode == 2)
7076                 sp->rxd_mode = RXD_MODE_3B;
7077         if (rx_ring_mode == 3)
7078                 sp->rxd_mode = RXD_MODE_3A;
7079
7080         sp->intr_type = dev_intr_type;
7081
7082         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7083                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7084                 sp->device_type = XFRAME_II_DEVICE;
7085         else
7086                 sp->device_type = XFRAME_I_DEVICE;
7087
7088         sp->lro = lro;
7089
7090         /* Initialize some PCI/PCI-X fields of the NIC. */
7091         s2io_init_pci(sp);
7092
7093         /*
7094          * Setting the device configuration parameters.
7095          * Most of these parameters can be specified by the user during
7096          * module insertion as they are module loadable parameters. If
7097          * these parameters are not not specified during load time, they
7098          * are initialized with default values.
7099          */
7100         mac_control = &sp->mac_control;
7101         config = &sp->config;
7102
7103         /* Tx side parameters. */
7104         config->tx_fifo_num = tx_fifo_num;
7105         for (i = 0; i < MAX_TX_FIFOS; i++) {
7106                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7107                 config->tx_cfg[i].fifo_priority = i;
7108         }
7109
7110         /* mapping the QoS priority to the configured fifos */
7111         for (i = 0; i < MAX_TX_FIFOS; i++)
7112                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7113
7114         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7115         for (i = 0; i < config->tx_fifo_num; i++) {
7116                 config->tx_cfg[i].f_no_snoop =
7117                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7118                 if (config->tx_cfg[i].fifo_len < 65) {
7119                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7120                         break;
7121                 }
7122         }
7123         /* + 2 because one Txd for skb->data and one Txd for UFO */
7124         config->max_txds = MAX_SKB_FRAGS + 2;
7125
7126         /* Rx side parameters. */
7127         config->rx_ring_num = rx_ring_num;
7128         for (i = 0; i < MAX_RX_RINGS; i++) {
7129                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7130                     (rxd_count[sp->rxd_mode] + 1);
7131                 config->rx_cfg[i].ring_priority = i;
7132         }
7133
7134         for (i = 0; i < rx_ring_num; i++) {
7135                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7136                 config->rx_cfg[i].f_no_snoop =
7137                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7138         }
7139
7140         /*  Setting Mac Control parameters */
7141         mac_control->rmac_pause_time = rmac_pause_time;
7142         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7143         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7144
7145
7146         /* Initialize Ring buffer parameters. */
7147         for (i = 0; i < config->rx_ring_num; i++)
7148                 atomic_set(&sp->rx_bufs_left[i], 0);
7149
7150         /* Initialize the number of ISRs currently running */
7151         atomic_set(&sp->isr_cnt, 0);
7152
7153         /*  initialize the shared memory used by the NIC and the host */
7154         if (init_shared_mem(sp)) {
7155                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7156                           dev->name);
7157                 ret = -ENOMEM;
7158                 goto mem_alloc_failed;
7159         }
7160
7161         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7162                                      pci_resource_len(pdev, 0));
7163         if (!sp->bar0) {
7164                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7165                           dev->name);
7166                 ret = -ENOMEM;
7167                 goto bar0_remap_failed;
7168         }
7169
7170         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7171                                      pci_resource_len(pdev, 2));
7172         if (!sp->bar1) {
7173                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7174                           dev->name);
7175                 ret = -ENOMEM;
7176                 goto bar1_remap_failed;
7177         }
7178
7179         dev->irq = pdev->irq;
7180         dev->base_addr = (unsigned long) sp->bar0;
7181
7182         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7183         for (j = 0; j < MAX_TX_FIFOS; j++) {
7184                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7185                     (sp->bar1 + (j * 0x00020000));
7186         }
7187
7188         /*  Driver entry points */
7189         dev->open = &s2io_open;
7190         dev->stop = &s2io_close;
7191         dev->hard_start_xmit = &s2io_xmit;
7192         dev->get_stats = &s2io_get_stats;
7193         dev->set_multicast_list = &s2io_set_multicast;
7194         dev->do_ioctl = &s2io_ioctl;
7195         dev->change_mtu = &s2io_change_mtu;
7196         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7197         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7198         dev->vlan_rx_register = s2io_vlan_rx_register;
7199         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
7200
7201         /*
7202          * will use eth_mac_addr() for  dev->set_mac_address
7203          * mac address will be set every time dev->open() is called
7204          */
7205         dev->poll = s2io_poll;
7206         dev->weight = 32;
7207
7208 #ifdef CONFIG_NET_POLL_CONTROLLER
7209         dev->poll_controller = s2io_netpoll;
7210 #endif
7211
7212         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7213         if (sp->high_dma_flag == TRUE)
7214                 dev->features |= NETIF_F_HIGHDMA;
7215         dev->features |= NETIF_F_TSO;
7216         dev->features |= NETIF_F_TSO6;
7217         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7218                 dev->features |= NETIF_F_UFO;
7219                 dev->features |= NETIF_F_HW_CSUM;
7220         }
7221
7222         dev->tx_timeout = &s2io_tx_watchdog;
7223         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7224         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7225         INIT_WORK(&sp->set_link_task, s2io_set_link);
7226
7227         pci_save_state(sp->pdev);
7228
7229         /* Setting swapper control on the NIC, for proper reset operation */
7230         if (s2io_set_swapper(sp)) {
7231                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7232                           dev->name);
7233                 ret = -EAGAIN;
7234                 goto set_swap_failed;
7235         }
7236
7237         /* Verify if the Herc works on the slot its placed into */
7238         if (sp->device_type & XFRAME_II_DEVICE) {
7239                 mode = s2io_verify_pci_mode(sp);
7240                 if (mode < 0) {
7241                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7242                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7243                         ret = -EBADSLT;
7244                         goto set_swap_failed;
7245                 }
7246         }
7247
7248         /* Not needed for Herc */
7249         if (sp->device_type & XFRAME_I_DEVICE) {
7250                 /*
7251                  * Fix for all "FFs" MAC address problems observed on
7252                  * Alpha platforms
7253                  */
7254                 fix_mac_address(sp);
7255                 s2io_reset(sp);
7256         }
7257
7258         /*
7259          * MAC address initialization.
7260          * For now only one mac address will be read and used.
7261          */
7262         bar0 = sp->bar0;
7263         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7264             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7265         writeq(val64, &bar0->rmac_addr_cmd_mem);
7266         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7267                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7268         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7269         mac_down = (u32) tmp64;
7270         mac_up = (u32) (tmp64 >> 32);
7271
7272         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7273         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7274         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7275         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7276         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7277         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7278
7279         /*  Set the factory defined MAC address initially   */
7280         dev->addr_len = ETH_ALEN;
7281         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7282
7283         /* reset Nic and bring it to known state */
7284         s2io_reset(sp);
7285
7286         /*
7287          * Initialize the tasklet status and link state flags
7288          * and the card state parameter
7289          */
7290         atomic_set(&(sp->card_state), 0);
7291         sp->tasklet_status = 0;
7292         sp->link_state = 0;
7293
7294         /* Initialize spinlocks */
7295         spin_lock_init(&sp->tx_lock);
7296
7297         if (!napi)
7298                 spin_lock_init(&sp->put_lock);
7299         spin_lock_init(&sp->rx_lock);
7300
7301         /*
7302          * SXE-002: Configure link and activity LED to init state
7303          * on driver load.
7304          */
7305         subid = sp->pdev->subsystem_device;
7306         if ((subid & 0xFF) >= 0x07) {
7307                 val64 = readq(&bar0->gpio_control);
7308                 val64 |= 0x0000800000000000ULL;
7309                 writeq(val64, &bar0->gpio_control);
7310                 val64 = 0x0411040400000000ULL;
7311                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7312                 val64 = readq(&bar0->gpio_control);
7313         }
7314
7315         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7316
7317         if (register_netdev(dev)) {
7318                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7319                 ret = -ENODEV;
7320                 goto register_failed;
7321         }
7322         s2io_vpd_read(sp);
7323         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7324         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7325                   sp->product_name, get_xena_rev_id(sp->pdev));
7326         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7327                   s2io_driver_version);
7328         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: "
7329                           "%02x:%02x:%02x:%02x:%02x:%02x", dev->name,
7330                           sp->def_mac_addr[0].mac_addr[0],
7331                           sp->def_mac_addr[0].mac_addr[1],
7332                           sp->def_mac_addr[0].mac_addr[2],
7333                           sp->def_mac_addr[0].mac_addr[3],
7334                           sp->def_mac_addr[0].mac_addr[4],
7335                           sp->def_mac_addr[0].mac_addr[5]);
7336         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7337         if (sp->device_type & XFRAME_II_DEVICE) {
7338                 mode = s2io_print_pci_mode(sp);
7339                 if (mode < 0) {
7340                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7341                         ret = -EBADSLT;
7342                         unregister_netdev(dev);
7343                         goto set_swap_failed;
7344                 }
7345         }
7346         switch(sp->rxd_mode) {
7347                 case RXD_MODE_1:
7348                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7349                                                 dev->name);
7350                     break;
7351                 case RXD_MODE_3B:
7352                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7353                                                 dev->name);
7354                     break;
7355                 case RXD_MODE_3A:
7356                     DBG_PRINT(ERR_DBG, "%s: 3-Buffer receive mode enabled\n",
7357                                                 dev->name);
7358                     break;
7359         }
7360
7361         if (napi)
7362                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7363         switch(sp->intr_type) {
7364                 case INTA:
7365                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7366                     break;
7367                 case MSI:
7368                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI\n", dev->name);
7369                     break;
7370                 case MSI_X:
7371                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7372                     break;
7373         }
7374         if (sp->lro)
7375                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7376                           dev->name);
7377         if (ufo)
7378                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7379                                         " enabled\n", dev->name);
7380         /* Initialize device name */
7381         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7382
7383         /* Initialize bimodal Interrupts */
7384         sp->config.bimodal = bimodal;
7385         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
7386                 sp->config.bimodal = 0;
7387                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
7388                         dev->name);
7389         }
7390
7391         /*
7392          * Make Link state as off at this point, when the Link change
7393          * interrupt comes the state will be automatically changed to
7394          * the right state.
7395          */
7396         netif_carrier_off(dev);
7397
7398         return 0;
7399
7400       register_failed:
7401       set_swap_failed:
7402         iounmap(sp->bar1);
7403       bar1_remap_failed:
7404         iounmap(sp->bar0);
7405       bar0_remap_failed:
7406       mem_alloc_failed:
7407         free_shared_mem(sp);
7408         pci_disable_device(pdev);
7409         if (dev_intr_type != MSI_X)
7410                 pci_release_regions(pdev);
7411         else {
7412                 release_mem_region(pci_resource_start(pdev, 0),
7413                         pci_resource_len(pdev, 0));
7414                 release_mem_region(pci_resource_start(pdev, 2),
7415                         pci_resource_len(pdev, 2));
7416         }
7417         pci_set_drvdata(pdev, NULL);
7418         free_netdev(dev);
7419
7420         return ret;
7421 }
7422
7423 /**
7424  * s2io_rem_nic - Free the PCI device
7425  * @pdev: structure containing the PCI related information of the device.
7426  * Description: This function is called by the Pci subsystem to release a
7427  * PCI device and free up all resource held up by the device. This could
7428  * be in response to a Hot plug event or when the driver is to be removed
7429  * from memory.
7430  */
7431
7432 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7433 {
7434         struct net_device *dev =
7435             (struct net_device *) pci_get_drvdata(pdev);
7436         struct s2io_nic *sp;
7437
7438         if (dev == NULL) {
7439                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7440                 return;
7441         }
7442
7443         flush_scheduled_work();
7444
7445         sp = dev->priv;
7446         unregister_netdev(dev);
7447
7448         free_shared_mem(sp);
7449         iounmap(sp->bar0);
7450         iounmap(sp->bar1);
7451         if (sp->intr_type != MSI_X)
7452                 pci_release_regions(pdev);
7453         else {
7454                 release_mem_region(pci_resource_start(pdev, 0),
7455                         pci_resource_len(pdev, 0));
7456                 release_mem_region(pci_resource_start(pdev, 2),
7457                         pci_resource_len(pdev, 2));
7458         }
7459         pci_set_drvdata(pdev, NULL);
7460         free_netdev(dev);
7461         pci_disable_device(pdev);
7462 }
7463
7464 /**
7465  * s2io_starter - Entry point for the driver
7466  * Description: This function is the entry point for the driver. It verifies
7467  * the module loadable parameters and initializes PCI configuration space.
7468  */
7469
7470 int __init s2io_starter(void)
7471 {
7472         return pci_register_driver(&s2io_driver);
7473 }
7474
7475 /**
7476  * s2io_closer - Cleanup routine for the driver
7477  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7478  */
7479
7480 static __exit void s2io_closer(void)
7481 {
7482         pci_unregister_driver(&s2io_driver);
7483         DBG_PRINT(INIT_DBG, "cleanup done\n");
7484 }
7485
7486 module_init(s2io_starter);
7487 module_exit(s2io_closer);
7488
7489 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7490                 struct tcphdr **tcp, struct RxD_t *rxdp)
7491 {
7492         int ip_off;
7493         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7494
7495         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7496                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7497                           __FUNCTION__);
7498                 return -1;
7499         }
7500
7501         /* TODO:
7502          * By default the VLAN field in the MAC is stripped by the card, if this
7503          * feature is turned off in rx_pa_cfg register, then the ip_off field
7504          * has to be shifted by a further 2 bytes
7505          */
7506         switch (l2_type) {
7507                 case 0: /* DIX type */
7508                 case 4: /* DIX type with VLAN */
7509                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7510                         break;
7511                 /* LLC, SNAP etc are considered non-mergeable */
7512                 default:
7513                         return -1;
7514         }
7515
7516         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7517         ip_len = (u8)((*ip)->ihl);
7518         ip_len <<= 2;
7519         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7520
7521         return 0;
7522 }
7523
7524 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7525                                   struct tcphdr *tcp)
7526 {
7527         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7528         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7529            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7530                 return -1;
7531         return 0;
7532 }
7533
7534 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7535 {
7536         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7537 }
7538
7539 static void initiate_new_session(struct lro *lro, u8 *l2h,
7540                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7541 {
7542         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7543         lro->l2h = l2h;
7544         lro->iph = ip;
7545         lro->tcph = tcp;
7546         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7547         lro->tcp_ack = ntohl(tcp->ack_seq);
7548         lro->sg_num = 1;
7549         lro->total_len = ntohs(ip->tot_len);
7550         lro->frags_len = 0;
7551         /*
7552          * check if we saw TCP timestamp. Other consistency checks have
7553          * already been done.
7554          */
7555         if (tcp->doff == 8) {
7556                 u32 *ptr;
7557                 ptr = (u32 *)(tcp+1);
7558                 lro->saw_ts = 1;
7559                 lro->cur_tsval = *(ptr+1);
7560                 lro->cur_tsecr = *(ptr+2);
7561         }
7562         lro->in_use = 1;
7563 }
7564
7565 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7566 {
7567         struct iphdr *ip = lro->iph;
7568         struct tcphdr *tcp = lro->tcph;
7569         __sum16 nchk;
7570         struct stat_block *statinfo = sp->mac_control.stats_info;
7571         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7572
7573         /* Update L3 header */
7574         ip->tot_len = htons(lro->total_len);
7575         ip->check = 0;
7576         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7577         ip->check = nchk;
7578
7579         /* Update L4 header */
7580         tcp->ack_seq = lro->tcp_ack;
7581         tcp->window = lro->window;
7582
7583         /* Update tsecr field if this session has timestamps enabled */
7584         if (lro->saw_ts) {
7585                 u32 *ptr = (u32 *)(tcp + 1);
7586                 *(ptr+2) = lro->cur_tsecr;
7587         }
7588
7589         /* Update counters required for calculation of
7590          * average no. of packets aggregated.
7591          */
7592         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7593         statinfo->sw_stat.num_aggregations++;
7594 }
7595
7596 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7597                 struct tcphdr *tcp, u32 l4_pyld)
7598 {
7599         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7600         lro->total_len += l4_pyld;
7601         lro->frags_len += l4_pyld;
7602         lro->tcp_next_seq += l4_pyld;
7603         lro->sg_num++;
7604
7605         /* Update ack seq no. and window ad(from this pkt) in LRO object */
7606         lro->tcp_ack = tcp->ack_seq;
7607         lro->window = tcp->window;
7608
7609         if (lro->saw_ts) {
7610                 u32 *ptr;
7611                 /* Update tsecr and tsval from this packet */
7612                 ptr = (u32 *) (tcp + 1);
7613                 lro->cur_tsval = *(ptr + 1);
7614                 lro->cur_tsecr = *(ptr + 2);
7615         }
7616 }
7617
7618 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7619                                     struct tcphdr *tcp, u32 tcp_pyld_len)
7620 {
7621         u8 *ptr;
7622
7623         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7624
7625         if (!tcp_pyld_len) {
7626                 /* Runt frame or a pure ack */
7627                 return -1;
7628         }
7629
7630         if (ip->ihl != 5) /* IP has options */
7631                 return -1;
7632
7633         /* If we see CE codepoint in IP header, packet is not mergeable */
7634         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7635                 return -1;
7636
7637         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7638         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7639                                     tcp->ece || tcp->cwr || !tcp->ack) {
7640                 /*
7641                  * Currently recognize only the ack control word and
7642                  * any other control field being set would result in
7643                  * flushing the LRO session
7644                  */
7645                 return -1;
7646         }
7647
7648         /*
7649          * Allow only one TCP timestamp option. Don't aggregate if
7650          * any other options are detected.
7651          */
7652         if (tcp->doff != 5 && tcp->doff != 8)
7653                 return -1;
7654
7655         if (tcp->doff == 8) {
7656                 ptr = (u8 *)(tcp + 1);
7657                 while (*ptr == TCPOPT_NOP)
7658                         ptr++;
7659                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
7660                         return -1;
7661
7662                 /* Ensure timestamp value increases monotonically */
7663                 if (l_lro)
7664                         if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
7665                                 return -1;
7666
7667                 /* timestamp echo reply should be non-zero */
7668                 if (*((u32 *)(ptr+6)) == 0)
7669                         return -1;
7670         }
7671
7672         return 0;
7673 }
7674
7675 static int
7676 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
7677                       struct RxD_t *rxdp, struct s2io_nic *sp)
7678 {
7679         struct iphdr *ip;
7680         struct tcphdr *tcph;
7681         int ret = 0, i;
7682
7683         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
7684                                          rxdp))) {
7685                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
7686                           ip->saddr, ip->daddr);
7687         } else {
7688                 return ret;
7689         }
7690
7691         tcph = (struct tcphdr *)*tcp;
7692         *tcp_len = get_l4_pyld_length(ip, tcph);
7693         for (i=0; i<MAX_LRO_SESSIONS; i++) {
7694                 struct lro *l_lro = &sp->lro0_n[i];
7695                 if (l_lro->in_use) {
7696                         if (check_for_socket_match(l_lro, ip, tcph))
7697                                 continue;
7698                         /* Sock pair matched */
7699                         *lro = l_lro;
7700
7701                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
7702                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
7703                                           "0x%x, actual 0x%x\n", __FUNCTION__,
7704                                           (*lro)->tcp_next_seq,
7705                                           ntohl(tcph->seq));
7706
7707                                 sp->mac_control.stats_info->
7708                                    sw_stat.outof_sequence_pkts++;
7709                                 ret = 2;
7710                                 break;
7711                         }
7712
7713                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
7714                                 ret = 1; /* Aggregate */
7715                         else
7716                                 ret = 2; /* Flush both */
7717                         break;
7718                 }
7719         }
7720
7721         if (ret == 0) {
7722                 /* Before searching for available LRO objects,
7723                  * check if the pkt is L3/L4 aggregatable. If not
7724                  * don't create new LRO session. Just send this
7725                  * packet up.
7726                  */
7727                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
7728                         return 5;
7729                 }
7730
7731                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
7732                         struct lro *l_lro = &sp->lro0_n[i];
7733                         if (!(l_lro->in_use)) {
7734                                 *lro = l_lro;
7735                                 ret = 3; /* Begin anew */
7736                                 break;
7737                         }
7738                 }
7739         }
7740
7741         if (ret == 0) { /* sessions exceeded */
7742                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
7743                           __FUNCTION__);
7744                 *lro = NULL;
7745                 return ret;
7746         }
7747
7748         switch (ret) {
7749                 case 3:
7750                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
7751                         break;
7752                 case 2:
7753                         update_L3L4_header(sp, *lro);
7754                         break;
7755                 case 1:
7756                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
7757                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
7758                                 update_L3L4_header(sp, *lro);
7759                                 ret = 4; /* Flush the LRO */
7760                         }
7761                         break;
7762                 default:
7763                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
7764                                 __FUNCTION__);
7765                         break;
7766         }
7767
7768         return ret;
7769 }
7770
7771 static void clear_lro_session(struct lro *lro)
7772 {
7773         static u16 lro_struct_size = sizeof(struct lro);
7774
7775         memset(lro, 0, lro_struct_size);
7776 }
7777
7778 static void queue_rx_frame(struct sk_buff *skb)
7779 {
7780         struct net_device *dev = skb->dev;
7781
7782         skb->protocol = eth_type_trans(skb, dev);
7783         if (napi)
7784                 netif_receive_skb(skb);
7785         else
7786                 netif_rx(skb);
7787 }
7788
7789 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
7790                            struct sk_buff *skb,
7791                            u32 tcp_len)
7792 {
7793         struct sk_buff *first = lro->parent;
7794
7795         first->len += tcp_len;
7796         first->data_len = lro->frags_len;
7797         skb_pull(skb, (skb->len - tcp_len));
7798         if (skb_shinfo(first)->frag_list)
7799                 lro->last_frag->next = skb;
7800         else
7801                 skb_shinfo(first)->frag_list = skb;
7802         first->truesize += skb->truesize;
7803         lro->last_frag = skb;
7804         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
7805         return;
7806 }