Merge tag 'wireless-2024-02-06' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / hyperv / netvsc_drv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37
38 #include "hyperv_net.h"
39
40 #define RING_SIZE_MIN   64
41
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
44
45 /* Macros to define the context of vf registration */
46 #define VF_REG_IN_PROBE         1
47 #define VF_REG_IN_NOTIFIER      2
48
49 static unsigned int ring_size __ro_after_init = 128;
50 module_param(ring_size, uint, 0444);
51 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
52 unsigned int netvsc_ring_bytes __ro_after_init;
53
54 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
55                                 NETIF_MSG_LINK | NETIF_MSG_IFUP |
56                                 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
57                                 NETIF_MSG_TX_ERR;
58
59 static int debug = -1;
60 module_param(debug, int, 0444);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static LIST_HEAD(netvsc_dev_list);
64
65 static void netvsc_change_rx_flags(struct net_device *net, int change)
66 {
67         struct net_device_context *ndev_ctx = netdev_priv(net);
68         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
69         int inc;
70
71         if (!vf_netdev)
72                 return;
73
74         if (change & IFF_PROMISC) {
75                 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
76                 dev_set_promiscuity(vf_netdev, inc);
77         }
78
79         if (change & IFF_ALLMULTI) {
80                 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
81                 dev_set_allmulti(vf_netdev, inc);
82         }
83 }
84
85 static void netvsc_set_rx_mode(struct net_device *net)
86 {
87         struct net_device_context *ndev_ctx = netdev_priv(net);
88         struct net_device *vf_netdev;
89         struct netvsc_device *nvdev;
90
91         rcu_read_lock();
92         vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
93         if (vf_netdev) {
94                 dev_uc_sync(vf_netdev, net);
95                 dev_mc_sync(vf_netdev, net);
96         }
97
98         nvdev = rcu_dereference(ndev_ctx->nvdev);
99         if (nvdev)
100                 rndis_filter_update(nvdev);
101         rcu_read_unlock();
102 }
103
104 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
105                              struct net_device *ndev)
106 {
107         nvscdev->tx_disable = false;
108         virt_wmb(); /* ensure queue wake up mechanism is on */
109
110         netif_tx_wake_all_queues(ndev);
111 }
112
113 static int netvsc_open(struct net_device *net)
114 {
115         struct net_device_context *ndev_ctx = netdev_priv(net);
116         struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
117         struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
118         struct rndis_device *rdev;
119         int ret = 0;
120
121         netif_carrier_off(net);
122
123         /* Open up the device */
124         ret = rndis_filter_open(nvdev);
125         if (ret != 0) {
126                 netdev_err(net, "unable to open device (ret %d).\n", ret);
127                 return ret;
128         }
129
130         rdev = nvdev->extension;
131         if (!rdev->link_state) {
132                 netif_carrier_on(net);
133                 netvsc_tx_enable(nvdev, net);
134         }
135
136         if (vf_netdev) {
137                 /* Setting synthetic device up transparently sets
138                  * slave as up. If open fails, then slave will be
139                  * still be offline (and not used).
140                  */
141                 ret = dev_open(vf_netdev, NULL);
142                 if (ret)
143                         netdev_warn(net,
144                                     "unable to open slave: %s: %d\n",
145                                     vf_netdev->name, ret);
146         }
147         return 0;
148 }
149
150 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
151 {
152         unsigned int retry = 0;
153         int i;
154
155         /* Ensure pending bytes in ring are read */
156         for (;;) {
157                 u32 aread = 0;
158
159                 for (i = 0; i < nvdev->num_chn; i++) {
160                         struct vmbus_channel *chn
161                                 = nvdev->chan_table[i].channel;
162
163                         if (!chn)
164                                 continue;
165
166                         /* make sure receive not running now */
167                         napi_synchronize(&nvdev->chan_table[i].napi);
168
169                         aread = hv_get_bytes_to_read(&chn->inbound);
170                         if (aread)
171                                 break;
172
173                         aread = hv_get_bytes_to_read(&chn->outbound);
174                         if (aread)
175                                 break;
176                 }
177
178                 if (aread == 0)
179                         return 0;
180
181                 if (++retry > RETRY_MAX)
182                         return -ETIMEDOUT;
183
184                 usleep_range(RETRY_US_LO, RETRY_US_HI);
185         }
186 }
187
188 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
189                               struct net_device *ndev)
190 {
191         if (nvscdev) {
192                 nvscdev->tx_disable = true;
193                 virt_wmb(); /* ensure txq will not wake up after stop */
194         }
195
196         netif_tx_disable(ndev);
197 }
198
199 static int netvsc_close(struct net_device *net)
200 {
201         struct net_device_context *net_device_ctx = netdev_priv(net);
202         struct net_device *vf_netdev
203                 = rtnl_dereference(net_device_ctx->vf_netdev);
204         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
205         int ret;
206
207         netvsc_tx_disable(nvdev, net);
208
209         /* No need to close rndis filter if it is removed already */
210         if (!nvdev)
211                 return 0;
212
213         ret = rndis_filter_close(nvdev);
214         if (ret != 0) {
215                 netdev_err(net, "unable to close device (ret %d).\n", ret);
216                 return ret;
217         }
218
219         ret = netvsc_wait_until_empty(nvdev);
220         if (ret)
221                 netdev_err(net, "Ring buffer not empty after closing rndis\n");
222
223         if (vf_netdev)
224                 dev_close(vf_netdev);
225
226         return ret;
227 }
228
229 static inline void *init_ppi_data(struct rndis_message *msg,
230                                   u32 ppi_size, u32 pkt_type)
231 {
232         struct rndis_packet *rndis_pkt = &msg->msg.pkt;
233         struct rndis_per_packet_info *ppi;
234
235         rndis_pkt->data_offset += ppi_size;
236         ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
237                 + rndis_pkt->per_pkt_info_len;
238
239         ppi->size = ppi_size;
240         ppi->type = pkt_type;
241         ppi->internal = 0;
242         ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
243
244         rndis_pkt->per_pkt_info_len += ppi_size;
245
246         return ppi + 1;
247 }
248
249 static inline int netvsc_get_tx_queue(struct net_device *ndev,
250                                       struct sk_buff *skb, int old_idx)
251 {
252         const struct net_device_context *ndc = netdev_priv(ndev);
253         struct sock *sk = skb->sk;
254         int q_idx;
255
256         q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
257                               (VRSS_SEND_TAB_SIZE - 1)];
258
259         /* If queue index changed record the new value */
260         if (q_idx != old_idx &&
261             sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
262                 sk_tx_queue_set(sk, q_idx);
263
264         return q_idx;
265 }
266
267 /*
268  * Select queue for transmit.
269  *
270  * If a valid queue has already been assigned, then use that.
271  * Otherwise compute tx queue based on hash and the send table.
272  *
273  * This is basically similar to default (netdev_pick_tx) with the added step
274  * of using the host send_table when no other queue has been assigned.
275  *
276  * TODO support XPS - but get_xps_queue not exported
277  */
278 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
279 {
280         int q_idx = sk_tx_queue_get(skb->sk);
281
282         if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
283                 /* If forwarding a packet, we use the recorded queue when
284                  * available for better cache locality.
285                  */
286                 if (skb_rx_queue_recorded(skb))
287                         q_idx = skb_get_rx_queue(skb);
288                 else
289                         q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
290         }
291
292         return q_idx;
293 }
294
295 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
296                                struct net_device *sb_dev)
297 {
298         struct net_device_context *ndc = netdev_priv(ndev);
299         struct net_device *vf_netdev;
300         u16 txq;
301
302         rcu_read_lock();
303         vf_netdev = rcu_dereference(ndc->vf_netdev);
304         if (vf_netdev) {
305                 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
306
307                 if (vf_ops->ndo_select_queue)
308                         txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
309                 else
310                         txq = netdev_pick_tx(vf_netdev, skb, NULL);
311
312                 /* Record the queue selected by VF so that it can be
313                  * used for common case where VF has more queues than
314                  * the synthetic device.
315                  */
316                 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
317         } else {
318                 txq = netvsc_pick_tx(ndev, skb);
319         }
320         rcu_read_unlock();
321
322         while (txq >= ndev->real_num_tx_queues)
323                 txq -= ndev->real_num_tx_queues;
324
325         return txq;
326 }
327
328 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
329                        struct hv_page_buffer *pb)
330 {
331         int j = 0;
332
333         hvpfn += offset >> HV_HYP_PAGE_SHIFT;
334         offset = offset & ~HV_HYP_PAGE_MASK;
335
336         while (len > 0) {
337                 unsigned long bytes;
338
339                 bytes = HV_HYP_PAGE_SIZE - offset;
340                 if (bytes > len)
341                         bytes = len;
342                 pb[j].pfn = hvpfn;
343                 pb[j].offset = offset;
344                 pb[j].len = bytes;
345
346                 offset += bytes;
347                 len -= bytes;
348
349                 if (offset == HV_HYP_PAGE_SIZE && len) {
350                         hvpfn++;
351                         offset = 0;
352                         j++;
353                 }
354         }
355
356         return j + 1;
357 }
358
359 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
360                            struct hv_netvsc_packet *packet,
361                            struct hv_page_buffer *pb)
362 {
363         u32 slots_used = 0;
364         char *data = skb->data;
365         int frags = skb_shinfo(skb)->nr_frags;
366         int i;
367
368         /* The packet is laid out thus:
369          * 1. hdr: RNDIS header and PPI
370          * 2. skb linear data
371          * 3. skb fragment data
372          */
373         slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
374                                   offset_in_hvpage(hdr),
375                                   len,
376                                   &pb[slots_used]);
377
378         packet->rmsg_size = len;
379         packet->rmsg_pgcnt = slots_used;
380
381         slots_used += fill_pg_buf(virt_to_hvpfn(data),
382                                   offset_in_hvpage(data),
383                                   skb_headlen(skb),
384                                   &pb[slots_used]);
385
386         for (i = 0; i < frags; i++) {
387                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
388
389                 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
390                                           skb_frag_off(frag),
391                                           skb_frag_size(frag),
392                                           &pb[slots_used]);
393         }
394         return slots_used;
395 }
396
397 static int count_skb_frag_slots(struct sk_buff *skb)
398 {
399         int i, frags = skb_shinfo(skb)->nr_frags;
400         int pages = 0;
401
402         for (i = 0; i < frags; i++) {
403                 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
404                 unsigned long size = skb_frag_size(frag);
405                 unsigned long offset = skb_frag_off(frag);
406
407                 /* Skip unused frames from start of page */
408                 offset &= ~HV_HYP_PAGE_MASK;
409                 pages += HVPFN_UP(offset + size);
410         }
411         return pages;
412 }
413
414 static int netvsc_get_slots(struct sk_buff *skb)
415 {
416         char *data = skb->data;
417         unsigned int offset = offset_in_hvpage(data);
418         unsigned int len = skb_headlen(skb);
419         int slots;
420         int frag_slots;
421
422         slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
423         frag_slots = count_skb_frag_slots(skb);
424         return slots + frag_slots;
425 }
426
427 static u32 net_checksum_info(struct sk_buff *skb)
428 {
429         if (skb->protocol == htons(ETH_P_IP)) {
430                 struct iphdr *ip = ip_hdr(skb);
431
432                 if (ip->protocol == IPPROTO_TCP)
433                         return TRANSPORT_INFO_IPV4_TCP;
434                 else if (ip->protocol == IPPROTO_UDP)
435                         return TRANSPORT_INFO_IPV4_UDP;
436         } else {
437                 struct ipv6hdr *ip6 = ipv6_hdr(skb);
438
439                 if (ip6->nexthdr == IPPROTO_TCP)
440                         return TRANSPORT_INFO_IPV6_TCP;
441                 else if (ip6->nexthdr == IPPROTO_UDP)
442                         return TRANSPORT_INFO_IPV6_UDP;
443         }
444
445         return TRANSPORT_INFO_NOT_IP;
446 }
447
448 /* Send skb on the slave VF device. */
449 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
450                           struct sk_buff *skb)
451 {
452         struct net_device_context *ndev_ctx = netdev_priv(net);
453         unsigned int len = skb->len;
454         int rc;
455
456         skb->dev = vf_netdev;
457         skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
458
459         rc = dev_queue_xmit(skb);
460         if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
461                 struct netvsc_vf_pcpu_stats *pcpu_stats
462                         = this_cpu_ptr(ndev_ctx->vf_stats);
463
464                 u64_stats_update_begin(&pcpu_stats->syncp);
465                 pcpu_stats->tx_packets++;
466                 pcpu_stats->tx_bytes += len;
467                 u64_stats_update_end(&pcpu_stats->syncp);
468         } else {
469                 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
470         }
471
472         return rc;
473 }
474
475 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
476 {
477         struct net_device_context *net_device_ctx = netdev_priv(net);
478         struct hv_netvsc_packet *packet = NULL;
479         int ret;
480         unsigned int num_data_pgs;
481         struct rndis_message *rndis_msg;
482         struct net_device *vf_netdev;
483         u32 rndis_msg_size;
484         u32 hash;
485         struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
486
487         /* If VF is present and up then redirect packets to it.
488          * Skip the VF if it is marked down or has no carrier.
489          * If netpoll is in uses, then VF can not be used either.
490          */
491         vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
492         if (vf_netdev && netif_running(vf_netdev) &&
493             netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
494             net_device_ctx->data_path_is_vf)
495                 return netvsc_vf_xmit(net, vf_netdev, skb);
496
497         /* We will atmost need two pages to describe the rndis
498          * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
499          * of pages in a single packet. If skb is scattered around
500          * more pages we try linearizing it.
501          */
502
503         num_data_pgs = netvsc_get_slots(skb) + 2;
504
505         if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
506                 ++net_device_ctx->eth_stats.tx_scattered;
507
508                 if (skb_linearize(skb))
509                         goto no_memory;
510
511                 num_data_pgs = netvsc_get_slots(skb) + 2;
512                 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
513                         ++net_device_ctx->eth_stats.tx_too_big;
514                         goto drop;
515                 }
516         }
517
518         /*
519          * Place the rndis header in the skb head room and
520          * the skb->cb will be used for hv_netvsc_packet
521          * structure.
522          */
523         ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
524         if (ret)
525                 goto no_memory;
526
527         /* Use the skb control buffer for building up the packet */
528         BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
529                         sizeof_field(struct sk_buff, cb));
530         packet = (struct hv_netvsc_packet *)skb->cb;
531
532         packet->q_idx = skb_get_queue_mapping(skb);
533
534         packet->total_data_buflen = skb->len;
535         packet->total_bytes = skb->len;
536         packet->total_packets = 1;
537
538         rndis_msg = (struct rndis_message *)skb->head;
539
540         /* Add the rndis header */
541         rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
542         rndis_msg->msg_len = packet->total_data_buflen;
543
544         rndis_msg->msg.pkt = (struct rndis_packet) {
545                 .data_offset = sizeof(struct rndis_packet),
546                 .data_len = packet->total_data_buflen,
547                 .per_pkt_info_offset = sizeof(struct rndis_packet),
548         };
549
550         rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
551
552         hash = skb_get_hash_raw(skb);
553         if (hash != 0 && net->real_num_tx_queues > 1) {
554                 u32 *hash_info;
555
556                 rndis_msg_size += NDIS_HASH_PPI_SIZE;
557                 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
558                                           NBL_HASH_VALUE);
559                 *hash_info = hash;
560         }
561
562         /* When using AF_PACKET we need to drop VLAN header from
563          * the frame and update the SKB to allow the HOST OS
564          * to transmit the 802.1Q packet
565          */
566         if (skb->protocol == htons(ETH_P_8021Q)) {
567                 u16 vlan_tci;
568
569                 skb_reset_mac_header(skb);
570                 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
571                         if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
572                                 ++net_device_ctx->eth_stats.vlan_error;
573                                 goto drop;
574                         }
575
576                         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
577                         /* Update the NDIS header pkt lengths */
578                         packet->total_data_buflen -= VLAN_HLEN;
579                         packet->total_bytes -= VLAN_HLEN;
580                         rndis_msg->msg_len = packet->total_data_buflen;
581                         rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
582                 }
583         }
584
585         if (skb_vlan_tag_present(skb)) {
586                 struct ndis_pkt_8021q_info *vlan;
587
588                 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
589                 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
590                                      IEEE_8021Q_INFO);
591
592                 vlan->value = 0;
593                 vlan->vlanid = skb_vlan_tag_get_id(skb);
594                 vlan->cfi = skb_vlan_tag_get_cfi(skb);
595                 vlan->pri = skb_vlan_tag_get_prio(skb);
596         }
597
598         if (skb_is_gso(skb)) {
599                 struct ndis_tcp_lso_info *lso_info;
600
601                 rndis_msg_size += NDIS_LSO_PPI_SIZE;
602                 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
603                                          TCP_LARGESEND_PKTINFO);
604
605                 lso_info->value = 0;
606                 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
607                 if (skb->protocol == htons(ETH_P_IP)) {
608                         lso_info->lso_v2_transmit.ip_version =
609                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
610                         ip_hdr(skb)->tot_len = 0;
611                         ip_hdr(skb)->check = 0;
612                         tcp_hdr(skb)->check =
613                                 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
614                                                    ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
615                 } else {
616                         lso_info->lso_v2_transmit.ip_version =
617                                 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
618                         tcp_v6_gso_csum_prep(skb);
619                 }
620                 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
621                 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
622         } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
623                 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
624                         struct ndis_tcp_ip_checksum_info *csum_info;
625
626                         rndis_msg_size += NDIS_CSUM_PPI_SIZE;
627                         csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
628                                                   TCPIP_CHKSUM_PKTINFO);
629
630                         csum_info->value = 0;
631                         csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
632
633                         if (skb->protocol == htons(ETH_P_IP)) {
634                                 csum_info->transmit.is_ipv4 = 1;
635
636                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
637                                         csum_info->transmit.tcp_checksum = 1;
638                                 else
639                                         csum_info->transmit.udp_checksum = 1;
640                         } else {
641                                 csum_info->transmit.is_ipv6 = 1;
642
643                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
644                                         csum_info->transmit.tcp_checksum = 1;
645                                 else
646                                         csum_info->transmit.udp_checksum = 1;
647                         }
648                 } else {
649                         /* Can't do offload of this type of checksum */
650                         if (skb_checksum_help(skb))
651                                 goto drop;
652                 }
653         }
654
655         /* Start filling in the page buffers with the rndis hdr */
656         rndis_msg->msg_len += rndis_msg_size;
657         packet->total_data_buflen = rndis_msg->msg_len;
658         packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
659                                                skb, packet, pb);
660
661         /* timestamp packet in software */
662         skb_tx_timestamp(skb);
663
664         ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
665         if (likely(ret == 0))
666                 return NETDEV_TX_OK;
667
668         if (ret == -EAGAIN) {
669                 ++net_device_ctx->eth_stats.tx_busy;
670                 return NETDEV_TX_BUSY;
671         }
672
673         if (ret == -ENOSPC)
674                 ++net_device_ctx->eth_stats.tx_no_space;
675
676 drop:
677         dev_kfree_skb_any(skb);
678         net->stats.tx_dropped++;
679
680         return NETDEV_TX_OK;
681
682 no_memory:
683         ++net_device_ctx->eth_stats.tx_no_memory;
684         goto drop;
685 }
686
687 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
688                                      struct net_device *ndev)
689 {
690         return netvsc_xmit(skb, ndev, false);
691 }
692
693 /*
694  * netvsc_linkstatus_callback - Link up/down notification
695  */
696 void netvsc_linkstatus_callback(struct net_device *net,
697                                 struct rndis_message *resp,
698                                 void *data, u32 data_buflen)
699 {
700         struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
701         struct net_device_context *ndev_ctx = netdev_priv(net);
702         struct netvsc_reconfig *event;
703         unsigned long flags;
704
705         /* Ensure the packet is big enough to access its fields */
706         if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
707                 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
708                            resp->msg_len);
709                 return;
710         }
711
712         /* Copy the RNDIS indicate status into nvchan->recv_buf */
713         memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
714
715         /* Update the physical link speed when changing to another vSwitch */
716         if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
717                 u32 speed;
718
719                 /* Validate status_buf_offset and status_buflen.
720                  *
721                  * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
722                  * for the status buffer field in resp->msg_len; perform the validation
723                  * using data_buflen (>= resp->msg_len).
724                  */
725                 if (indicate->status_buflen < sizeof(speed) ||
726                     indicate->status_buf_offset < sizeof(*indicate) ||
727                     data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
728                     data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
729                                 < indicate->status_buflen) {
730                         netdev_err(net, "invalid rndis_indicate_status packet\n");
731                         return;
732                 }
733
734                 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
735                 ndev_ctx->speed = speed;
736                 return;
737         }
738
739         /* Handle these link change statuses below */
740         if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
741             indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
742             indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
743                 return;
744
745         if (net->reg_state != NETREG_REGISTERED)
746                 return;
747
748         event = kzalloc(sizeof(*event), GFP_ATOMIC);
749         if (!event)
750                 return;
751         event->event = indicate->status;
752
753         spin_lock_irqsave(&ndev_ctx->lock, flags);
754         list_add_tail(&event->list, &ndev_ctx->reconfig_events);
755         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
756
757         schedule_delayed_work(&ndev_ctx->dwork, 0);
758 }
759
760 /* This function should only be called after skb_record_rx_queue() */
761 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
762 {
763         int rc;
764
765         skb->queue_mapping = skb_get_rx_queue(skb);
766         __skb_push(skb, ETH_HLEN);
767
768         rc = netvsc_xmit(skb, ndev, true);
769
770         if (dev_xmit_complete(rc))
771                 return;
772
773         dev_kfree_skb_any(skb);
774         ndev->stats.tx_dropped++;
775 }
776
777 static void netvsc_comp_ipcsum(struct sk_buff *skb)
778 {
779         struct iphdr *iph = (struct iphdr *)skb->data;
780
781         iph->check = 0;
782         iph->check = ip_fast_csum(iph, iph->ihl);
783 }
784
785 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
786                                              struct netvsc_channel *nvchan,
787                                              struct xdp_buff *xdp)
788 {
789         struct napi_struct *napi = &nvchan->napi;
790         const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
791         const struct ndis_tcp_ip_checksum_info *csum_info =
792                                                 &nvchan->rsc.csum_info;
793         const u32 *hash_info = &nvchan->rsc.hash_info;
794         u8 ppi_flags = nvchan->rsc.ppi_flags;
795         struct sk_buff *skb;
796         void *xbuf = xdp->data_hard_start;
797         int i;
798
799         if (xbuf) {
800                 unsigned int hdroom = xdp->data - xdp->data_hard_start;
801                 unsigned int xlen = xdp->data_end - xdp->data;
802                 unsigned int frag_size = xdp->frame_sz;
803
804                 skb = build_skb(xbuf, frag_size);
805
806                 if (!skb) {
807                         __free_page(virt_to_page(xbuf));
808                         return NULL;
809                 }
810
811                 skb_reserve(skb, hdroom);
812                 skb_put(skb, xlen);
813                 skb->dev = napi->dev;
814         } else {
815                 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
816
817                 if (!skb)
818                         return NULL;
819
820                 /* Copy to skb. This copy is needed here since the memory
821                  * pointed by hv_netvsc_packet cannot be deallocated.
822                  */
823                 for (i = 0; i < nvchan->rsc.cnt; i++)
824                         skb_put_data(skb, nvchan->rsc.data[i],
825                                      nvchan->rsc.len[i]);
826         }
827
828         skb->protocol = eth_type_trans(skb, net);
829
830         /* skb is already created with CHECKSUM_NONE */
831         skb_checksum_none_assert(skb);
832
833         /* Incoming packets may have IP header checksum verified by the host.
834          * They may not have IP header checksum computed after coalescing.
835          * We compute it here if the flags are set, because on Linux, the IP
836          * checksum is always checked.
837          */
838         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
839             csum_info->receive.ip_checksum_succeeded &&
840             skb->protocol == htons(ETH_P_IP)) {
841                 /* Check that there is enough space to hold the IP header. */
842                 if (skb_headlen(skb) < sizeof(struct iphdr)) {
843                         kfree_skb(skb);
844                         return NULL;
845                 }
846                 netvsc_comp_ipcsum(skb);
847         }
848
849         /* Do L4 checksum offload if enabled and present. */
850         if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
851                 if (csum_info->receive.tcp_checksum_succeeded ||
852                     csum_info->receive.udp_checksum_succeeded)
853                         skb->ip_summed = CHECKSUM_UNNECESSARY;
854         }
855
856         if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
857                 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
858
859         if (ppi_flags & NVSC_RSC_VLAN) {
860                 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
861                         (vlan->cfi ? VLAN_CFI_MASK : 0);
862
863                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
864                                        vlan_tci);
865         }
866
867         return skb;
868 }
869
870 /*
871  * netvsc_recv_callback -  Callback when we receive a packet from the
872  * "wire" on the specified device.
873  */
874 int netvsc_recv_callback(struct net_device *net,
875                          struct netvsc_device *net_device,
876                          struct netvsc_channel *nvchan)
877 {
878         struct net_device_context *net_device_ctx = netdev_priv(net);
879         struct vmbus_channel *channel = nvchan->channel;
880         u16 q_idx = channel->offermsg.offer.sub_channel_index;
881         struct sk_buff *skb;
882         struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
883         struct xdp_buff xdp;
884         u32 act;
885
886         if (net->reg_state != NETREG_REGISTERED)
887                 return NVSP_STAT_FAIL;
888
889         act = netvsc_run_xdp(net, nvchan, &xdp);
890
891         if (act == XDP_REDIRECT)
892                 return NVSP_STAT_SUCCESS;
893
894         if (act != XDP_PASS && act != XDP_TX) {
895                 u64_stats_update_begin(&rx_stats->syncp);
896                 rx_stats->xdp_drop++;
897                 u64_stats_update_end(&rx_stats->syncp);
898
899                 return NVSP_STAT_SUCCESS; /* consumed by XDP */
900         }
901
902         /* Allocate a skb - TODO direct I/O to pages? */
903         skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
904
905         if (unlikely(!skb)) {
906                 ++net_device_ctx->eth_stats.rx_no_memory;
907                 return NVSP_STAT_FAIL;
908         }
909
910         skb_record_rx_queue(skb, q_idx);
911
912         /*
913          * Even if injecting the packet, record the statistics
914          * on the synthetic device because modifying the VF device
915          * statistics will not work correctly.
916          */
917         u64_stats_update_begin(&rx_stats->syncp);
918         if (act == XDP_TX)
919                 rx_stats->xdp_tx++;
920
921         rx_stats->packets++;
922         rx_stats->bytes += nvchan->rsc.pktlen;
923
924         if (skb->pkt_type == PACKET_BROADCAST)
925                 ++rx_stats->broadcast;
926         else if (skb->pkt_type == PACKET_MULTICAST)
927                 ++rx_stats->multicast;
928         u64_stats_update_end(&rx_stats->syncp);
929
930         if (act == XDP_TX) {
931                 netvsc_xdp_xmit(skb, net);
932                 return NVSP_STAT_SUCCESS;
933         }
934
935         napi_gro_receive(&nvchan->napi, skb);
936         return NVSP_STAT_SUCCESS;
937 }
938
939 static void netvsc_get_drvinfo(struct net_device *net,
940                                struct ethtool_drvinfo *info)
941 {
942         strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
943         strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
944 }
945
946 static void netvsc_get_channels(struct net_device *net,
947                                 struct ethtool_channels *channel)
948 {
949         struct net_device_context *net_device_ctx = netdev_priv(net);
950         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
951
952         if (nvdev) {
953                 channel->max_combined   = nvdev->max_chn;
954                 channel->combined_count = nvdev->num_chn;
955         }
956 }
957
958 /* Alloc struct netvsc_device_info, and initialize it from either existing
959  * struct netvsc_device, or from default values.
960  */
961 static
962 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
963 {
964         struct netvsc_device_info *dev_info;
965         struct bpf_prog *prog;
966
967         dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
968
969         if (!dev_info)
970                 return NULL;
971
972         if (nvdev) {
973                 ASSERT_RTNL();
974
975                 dev_info->num_chn = nvdev->num_chn;
976                 dev_info->send_sections = nvdev->send_section_cnt;
977                 dev_info->send_section_size = nvdev->send_section_size;
978                 dev_info->recv_sections = nvdev->recv_section_cnt;
979                 dev_info->recv_section_size = nvdev->recv_section_size;
980
981                 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
982                        NETVSC_HASH_KEYLEN);
983
984                 prog = netvsc_xdp_get(nvdev);
985                 if (prog) {
986                         bpf_prog_inc(prog);
987                         dev_info->bprog = prog;
988                 }
989         } else {
990                 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
991                 dev_info->send_sections = NETVSC_DEFAULT_TX;
992                 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
993                 dev_info->recv_sections = NETVSC_DEFAULT_RX;
994                 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
995         }
996
997         return dev_info;
998 }
999
1000 /* Free struct netvsc_device_info */
1001 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1002 {
1003         if (dev_info->bprog) {
1004                 ASSERT_RTNL();
1005                 bpf_prog_put(dev_info->bprog);
1006         }
1007
1008         kfree(dev_info);
1009 }
1010
1011 static int netvsc_detach(struct net_device *ndev,
1012                          struct netvsc_device *nvdev)
1013 {
1014         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1015         struct hv_device *hdev = ndev_ctx->device_ctx;
1016         int ret;
1017
1018         /* Don't try continuing to try and setup sub channels */
1019         if (cancel_work_sync(&nvdev->subchan_work))
1020                 nvdev->num_chn = 1;
1021
1022         netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1023
1024         /* If device was up (receiving) then shutdown */
1025         if (netif_running(ndev)) {
1026                 netvsc_tx_disable(nvdev, ndev);
1027
1028                 ret = rndis_filter_close(nvdev);
1029                 if (ret) {
1030                         netdev_err(ndev,
1031                                    "unable to close device (ret %d).\n", ret);
1032                         return ret;
1033                 }
1034
1035                 ret = netvsc_wait_until_empty(nvdev);
1036                 if (ret) {
1037                         netdev_err(ndev,
1038                                    "Ring buffer not empty after closing rndis\n");
1039                         return ret;
1040                 }
1041         }
1042
1043         netif_device_detach(ndev);
1044
1045         rndis_filter_device_remove(hdev, nvdev);
1046
1047         return 0;
1048 }
1049
1050 static int netvsc_attach(struct net_device *ndev,
1051                          struct netvsc_device_info *dev_info)
1052 {
1053         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054         struct hv_device *hdev = ndev_ctx->device_ctx;
1055         struct netvsc_device *nvdev;
1056         struct rndis_device *rdev;
1057         struct bpf_prog *prog;
1058         int ret = 0;
1059
1060         nvdev = rndis_filter_device_add(hdev, dev_info);
1061         if (IS_ERR(nvdev))
1062                 return PTR_ERR(nvdev);
1063
1064         if (nvdev->num_chn > 1) {
1065                 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1066
1067                 /* if unavailable, just proceed with one queue */
1068                 if (ret) {
1069                         nvdev->max_chn = 1;
1070                         nvdev->num_chn = 1;
1071                 }
1072         }
1073
1074         prog = dev_info->bprog;
1075         if (prog) {
1076                 bpf_prog_inc(prog);
1077                 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1078                 if (ret) {
1079                         bpf_prog_put(prog);
1080                         goto err1;
1081                 }
1082         }
1083
1084         /* In any case device is now ready */
1085         nvdev->tx_disable = false;
1086         netif_device_attach(ndev);
1087
1088         /* Note: enable and attach happen when sub-channels setup */
1089         netif_carrier_off(ndev);
1090
1091         if (netif_running(ndev)) {
1092                 ret = rndis_filter_open(nvdev);
1093                 if (ret)
1094                         goto err2;
1095
1096                 rdev = nvdev->extension;
1097                 if (!rdev->link_state)
1098                         netif_carrier_on(ndev);
1099         }
1100
1101         return 0;
1102
1103 err2:
1104         netif_device_detach(ndev);
1105
1106 err1:
1107         rndis_filter_device_remove(hdev, nvdev);
1108
1109         return ret;
1110 }
1111
1112 static int netvsc_set_channels(struct net_device *net,
1113                                struct ethtool_channels *channels)
1114 {
1115         struct net_device_context *net_device_ctx = netdev_priv(net);
1116         struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1117         unsigned int orig, count = channels->combined_count;
1118         struct netvsc_device_info *device_info;
1119         int ret;
1120
1121         /* We do not support separate count for rx, tx, or other */
1122         if (count == 0 ||
1123             channels->rx_count || channels->tx_count || channels->other_count)
1124                 return -EINVAL;
1125
1126         if (!nvdev || nvdev->destroy)
1127                 return -ENODEV;
1128
1129         if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1130                 return -EINVAL;
1131
1132         if (count > nvdev->max_chn)
1133                 return -EINVAL;
1134
1135         orig = nvdev->num_chn;
1136
1137         device_info = netvsc_devinfo_get(nvdev);
1138
1139         if (!device_info)
1140                 return -ENOMEM;
1141
1142         device_info->num_chn = count;
1143
1144         ret = netvsc_detach(net, nvdev);
1145         if (ret)
1146                 goto out;
1147
1148         ret = netvsc_attach(net, device_info);
1149         if (ret) {
1150                 device_info->num_chn = orig;
1151                 if (netvsc_attach(net, device_info))
1152                         netdev_err(net, "restoring channel setting failed\n");
1153         }
1154
1155 out:
1156         netvsc_devinfo_put(device_info);
1157         return ret;
1158 }
1159
1160 static void netvsc_init_settings(struct net_device *dev)
1161 {
1162         struct net_device_context *ndc = netdev_priv(dev);
1163
1164         ndc->l4_hash = HV_DEFAULT_L4HASH;
1165
1166         ndc->speed = SPEED_UNKNOWN;
1167         ndc->duplex = DUPLEX_FULL;
1168
1169         dev->features = NETIF_F_LRO;
1170 }
1171
1172 static int netvsc_get_link_ksettings(struct net_device *dev,
1173                                      struct ethtool_link_ksettings *cmd)
1174 {
1175         struct net_device_context *ndc = netdev_priv(dev);
1176         struct net_device *vf_netdev;
1177
1178         vf_netdev = rtnl_dereference(ndc->vf_netdev);
1179
1180         if (vf_netdev)
1181                 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1182
1183         cmd->base.speed = ndc->speed;
1184         cmd->base.duplex = ndc->duplex;
1185         cmd->base.port = PORT_OTHER;
1186
1187         return 0;
1188 }
1189
1190 static int netvsc_set_link_ksettings(struct net_device *dev,
1191                                      const struct ethtool_link_ksettings *cmd)
1192 {
1193         struct net_device_context *ndc = netdev_priv(dev);
1194         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1195
1196         if (vf_netdev) {
1197                 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1198                         return -EOPNOTSUPP;
1199
1200                 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1201                                                                   cmd);
1202         }
1203
1204         return ethtool_virtdev_set_link_ksettings(dev, cmd,
1205                                                   &ndc->speed, &ndc->duplex);
1206 }
1207
1208 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1209 {
1210         struct net_device_context *ndevctx = netdev_priv(ndev);
1211         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1212         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1213         int orig_mtu = ndev->mtu;
1214         struct netvsc_device_info *device_info;
1215         int ret = 0;
1216
1217         if (!nvdev || nvdev->destroy)
1218                 return -ENODEV;
1219
1220         device_info = netvsc_devinfo_get(nvdev);
1221
1222         if (!device_info)
1223                 return -ENOMEM;
1224
1225         /* Change MTU of underlying VF netdev first. */
1226         if (vf_netdev) {
1227                 ret = dev_set_mtu(vf_netdev, mtu);
1228                 if (ret)
1229                         goto out;
1230         }
1231
1232         ret = netvsc_detach(ndev, nvdev);
1233         if (ret)
1234                 goto rollback_vf;
1235
1236         ndev->mtu = mtu;
1237
1238         ret = netvsc_attach(ndev, device_info);
1239         if (!ret)
1240                 goto out;
1241
1242         /* Attempt rollback to original MTU */
1243         ndev->mtu = orig_mtu;
1244
1245         if (netvsc_attach(ndev, device_info))
1246                 netdev_err(ndev, "restoring mtu failed\n");
1247 rollback_vf:
1248         if (vf_netdev)
1249                 dev_set_mtu(vf_netdev, orig_mtu);
1250
1251 out:
1252         netvsc_devinfo_put(device_info);
1253         return ret;
1254 }
1255
1256 static void netvsc_get_vf_stats(struct net_device *net,
1257                                 struct netvsc_vf_pcpu_stats *tot)
1258 {
1259         struct net_device_context *ndev_ctx = netdev_priv(net);
1260         int i;
1261
1262         memset(tot, 0, sizeof(*tot));
1263
1264         for_each_possible_cpu(i) {
1265                 const struct netvsc_vf_pcpu_stats *stats
1266                         = per_cpu_ptr(ndev_ctx->vf_stats, i);
1267                 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1268                 unsigned int start;
1269
1270                 do {
1271                         start = u64_stats_fetch_begin(&stats->syncp);
1272                         rx_packets = stats->rx_packets;
1273                         tx_packets = stats->tx_packets;
1274                         rx_bytes = stats->rx_bytes;
1275                         tx_bytes = stats->tx_bytes;
1276                 } while (u64_stats_fetch_retry(&stats->syncp, start));
1277
1278                 tot->rx_packets += rx_packets;
1279                 tot->tx_packets += tx_packets;
1280                 tot->rx_bytes   += rx_bytes;
1281                 tot->tx_bytes   += tx_bytes;
1282                 tot->tx_dropped += stats->tx_dropped;
1283         }
1284 }
1285
1286 static void netvsc_get_pcpu_stats(struct net_device *net,
1287                                   struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1288 {
1289         struct net_device_context *ndev_ctx = netdev_priv(net);
1290         struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1291         int i;
1292
1293         /* fetch percpu stats of vf */
1294         for_each_possible_cpu(i) {
1295                 const struct netvsc_vf_pcpu_stats *stats =
1296                         per_cpu_ptr(ndev_ctx->vf_stats, i);
1297                 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1298                 unsigned int start;
1299
1300                 do {
1301                         start = u64_stats_fetch_begin(&stats->syncp);
1302                         this_tot->vf_rx_packets = stats->rx_packets;
1303                         this_tot->vf_tx_packets = stats->tx_packets;
1304                         this_tot->vf_rx_bytes = stats->rx_bytes;
1305                         this_tot->vf_tx_bytes = stats->tx_bytes;
1306                 } while (u64_stats_fetch_retry(&stats->syncp, start));
1307                 this_tot->rx_packets = this_tot->vf_rx_packets;
1308                 this_tot->tx_packets = this_tot->vf_tx_packets;
1309                 this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1310                 this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1311         }
1312
1313         /* fetch percpu stats of netvsc */
1314         for (i = 0; i < nvdev->num_chn; i++) {
1315                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1316                 const struct netvsc_stats_tx *tx_stats;
1317                 const struct netvsc_stats_rx *rx_stats;
1318                 struct netvsc_ethtool_pcpu_stats *this_tot =
1319                         &pcpu_tot[nvchan->channel->target_cpu];
1320                 u64 packets, bytes;
1321                 unsigned int start;
1322
1323                 tx_stats = &nvchan->tx_stats;
1324                 do {
1325                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1326                         packets = tx_stats->packets;
1327                         bytes = tx_stats->bytes;
1328                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1329
1330                 this_tot->tx_bytes      += bytes;
1331                 this_tot->tx_packets    += packets;
1332
1333                 rx_stats = &nvchan->rx_stats;
1334                 do {
1335                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1336                         packets = rx_stats->packets;
1337                         bytes = rx_stats->bytes;
1338                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1339
1340                 this_tot->rx_bytes      += bytes;
1341                 this_tot->rx_packets    += packets;
1342         }
1343 }
1344
1345 static void netvsc_get_stats64(struct net_device *net,
1346                                struct rtnl_link_stats64 *t)
1347 {
1348         struct net_device_context *ndev_ctx = netdev_priv(net);
1349         struct netvsc_device *nvdev;
1350         struct netvsc_vf_pcpu_stats vf_tot;
1351         int i;
1352
1353         rcu_read_lock();
1354
1355         nvdev = rcu_dereference(ndev_ctx->nvdev);
1356         if (!nvdev)
1357                 goto out;
1358
1359         netdev_stats_to_stats64(t, &net->stats);
1360
1361         netvsc_get_vf_stats(net, &vf_tot);
1362         t->rx_packets += vf_tot.rx_packets;
1363         t->tx_packets += vf_tot.tx_packets;
1364         t->rx_bytes   += vf_tot.rx_bytes;
1365         t->tx_bytes   += vf_tot.tx_bytes;
1366         t->tx_dropped += vf_tot.tx_dropped;
1367
1368         for (i = 0; i < nvdev->num_chn; i++) {
1369                 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1370                 const struct netvsc_stats_tx *tx_stats;
1371                 const struct netvsc_stats_rx *rx_stats;
1372                 u64 packets, bytes, multicast;
1373                 unsigned int start;
1374
1375                 tx_stats = &nvchan->tx_stats;
1376                 do {
1377                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1378                         packets = tx_stats->packets;
1379                         bytes = tx_stats->bytes;
1380                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1381
1382                 t->tx_bytes     += bytes;
1383                 t->tx_packets   += packets;
1384
1385                 rx_stats = &nvchan->rx_stats;
1386                 do {
1387                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1388                         packets = rx_stats->packets;
1389                         bytes = rx_stats->bytes;
1390                         multicast = rx_stats->multicast + rx_stats->broadcast;
1391                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1392
1393                 t->rx_bytes     += bytes;
1394                 t->rx_packets   += packets;
1395                 t->multicast    += multicast;
1396         }
1397 out:
1398         rcu_read_unlock();
1399 }
1400
1401 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1402 {
1403         struct net_device_context *ndc = netdev_priv(ndev);
1404         struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1405         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1406         struct sockaddr *addr = p;
1407         int err;
1408
1409         err = eth_prepare_mac_addr_change(ndev, p);
1410         if (err)
1411                 return err;
1412
1413         if (!nvdev)
1414                 return -ENODEV;
1415
1416         if (vf_netdev) {
1417                 err = dev_set_mac_address(vf_netdev, addr, NULL);
1418                 if (err)
1419                         return err;
1420         }
1421
1422         err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1423         if (!err) {
1424                 eth_commit_mac_addr_change(ndev, p);
1425         } else if (vf_netdev) {
1426                 /* rollback change on VF */
1427                 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1428                 dev_set_mac_address(vf_netdev, addr, NULL);
1429         }
1430
1431         return err;
1432 }
1433
1434 static const struct {
1435         char name[ETH_GSTRING_LEN];
1436         u16 offset;
1437 } netvsc_stats[] = {
1438         { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1439         { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1440         { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1441         { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1442         { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1443         { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1444         { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1445         { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1446         { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1447         { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1448         { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1449 }, pcpu_stats[] = {
1450         { "cpu%u_rx_packets",
1451                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1452         { "cpu%u_rx_bytes",
1453                 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1454         { "cpu%u_tx_packets",
1455                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1456         { "cpu%u_tx_bytes",
1457                 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1458         { "cpu%u_vf_rx_packets",
1459                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1460         { "cpu%u_vf_rx_bytes",
1461                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1462         { "cpu%u_vf_tx_packets",
1463                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1464         { "cpu%u_vf_tx_bytes",
1465                 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1466 }, vf_stats[] = {
1467         { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1468         { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1469         { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1470         { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1471         { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1472 };
1473
1474 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1475 #define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1476
1477 /* statistics per queue (rx/tx packets/bytes) */
1478 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1479
1480 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1481 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1482
1483 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1484 {
1485         struct net_device_context *ndc = netdev_priv(dev);
1486         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1487
1488         if (!nvdev)
1489                 return -ENODEV;
1490
1491         switch (string_set) {
1492         case ETH_SS_STATS:
1493                 return NETVSC_GLOBAL_STATS_LEN
1494                         + NETVSC_VF_STATS_LEN
1495                         + NETVSC_QUEUE_STATS_LEN(nvdev)
1496                         + NETVSC_PCPU_STATS_LEN;
1497         default:
1498                 return -EINVAL;
1499         }
1500 }
1501
1502 static void netvsc_get_ethtool_stats(struct net_device *dev,
1503                                      struct ethtool_stats *stats, u64 *data)
1504 {
1505         struct net_device_context *ndc = netdev_priv(dev);
1506         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1507         const void *nds = &ndc->eth_stats;
1508         const struct netvsc_stats_tx *tx_stats;
1509         const struct netvsc_stats_rx *rx_stats;
1510         struct netvsc_vf_pcpu_stats sum;
1511         struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1512         unsigned int start;
1513         u64 packets, bytes;
1514         u64 xdp_drop;
1515         u64 xdp_redirect;
1516         u64 xdp_tx;
1517         u64 xdp_xmit;
1518         int i, j, cpu;
1519
1520         if (!nvdev)
1521                 return;
1522
1523         for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1524                 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1525
1526         netvsc_get_vf_stats(dev, &sum);
1527         for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1528                 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1529
1530         for (j = 0; j < nvdev->num_chn; j++) {
1531                 tx_stats = &nvdev->chan_table[j].tx_stats;
1532
1533                 do {
1534                         start = u64_stats_fetch_begin(&tx_stats->syncp);
1535                         packets = tx_stats->packets;
1536                         bytes = tx_stats->bytes;
1537                         xdp_xmit = tx_stats->xdp_xmit;
1538                 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1539                 data[i++] = packets;
1540                 data[i++] = bytes;
1541                 data[i++] = xdp_xmit;
1542
1543                 rx_stats = &nvdev->chan_table[j].rx_stats;
1544                 do {
1545                         start = u64_stats_fetch_begin(&rx_stats->syncp);
1546                         packets = rx_stats->packets;
1547                         bytes = rx_stats->bytes;
1548                         xdp_drop = rx_stats->xdp_drop;
1549                         xdp_redirect = rx_stats->xdp_redirect;
1550                         xdp_tx = rx_stats->xdp_tx;
1551                 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1552                 data[i++] = packets;
1553                 data[i++] = bytes;
1554                 data[i++] = xdp_drop;
1555                 data[i++] = xdp_redirect;
1556                 data[i++] = xdp_tx;
1557         }
1558
1559         pcpu_sum = kvmalloc_array(num_possible_cpus(),
1560                                   sizeof(struct netvsc_ethtool_pcpu_stats),
1561                                   GFP_KERNEL);
1562         if (!pcpu_sum)
1563                 return;
1564
1565         netvsc_get_pcpu_stats(dev, pcpu_sum);
1566         for_each_present_cpu(cpu) {
1567                 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1568
1569                 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1570                         data[i++] = *(u64 *)((void *)this_sum
1571                                              + pcpu_stats[j].offset);
1572         }
1573         kvfree(pcpu_sum);
1574 }
1575
1576 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1577 {
1578         struct net_device_context *ndc = netdev_priv(dev);
1579         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1580         u8 *p = data;
1581         int i, cpu;
1582
1583         if (!nvdev)
1584                 return;
1585
1586         switch (stringset) {
1587         case ETH_SS_STATS:
1588                 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1589                         ethtool_puts(&p, netvsc_stats[i].name);
1590
1591                 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1592                         ethtool_puts(&p, vf_stats[i].name);
1593
1594                 for (i = 0; i < nvdev->num_chn; i++) {
1595                         ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1596                         ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1597                         ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1598                         ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1599                         ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1600                         ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1601                         ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1602                         ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1603                 }
1604
1605                 for_each_present_cpu(cpu) {
1606                         for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1607                                 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1608                 }
1609
1610                 break;
1611         }
1612 }
1613
1614 static int
1615 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1616                          struct ethtool_rxnfc *info)
1617 {
1618         const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1619
1620         info->data = RXH_IP_SRC | RXH_IP_DST;
1621
1622         switch (info->flow_type) {
1623         case TCP_V4_FLOW:
1624                 if (ndc->l4_hash & HV_TCP4_L4HASH)
1625                         info->data |= l4_flag;
1626
1627                 break;
1628
1629         case TCP_V6_FLOW:
1630                 if (ndc->l4_hash & HV_TCP6_L4HASH)
1631                         info->data |= l4_flag;
1632
1633                 break;
1634
1635         case UDP_V4_FLOW:
1636                 if (ndc->l4_hash & HV_UDP4_L4HASH)
1637                         info->data |= l4_flag;
1638
1639                 break;
1640
1641         case UDP_V6_FLOW:
1642                 if (ndc->l4_hash & HV_UDP6_L4HASH)
1643                         info->data |= l4_flag;
1644
1645                 break;
1646
1647         case IPV4_FLOW:
1648         case IPV6_FLOW:
1649                 break;
1650         default:
1651                 info->data = 0;
1652                 break;
1653         }
1654
1655         return 0;
1656 }
1657
1658 static int
1659 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1660                  u32 *rules)
1661 {
1662         struct net_device_context *ndc = netdev_priv(dev);
1663         struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1664
1665         if (!nvdev)
1666                 return -ENODEV;
1667
1668         switch (info->cmd) {
1669         case ETHTOOL_GRXRINGS:
1670                 info->data = nvdev->num_chn;
1671                 return 0;
1672
1673         case ETHTOOL_GRXFH:
1674                 return netvsc_get_rss_hash_opts(ndc, info);
1675         }
1676         return -EOPNOTSUPP;
1677 }
1678
1679 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1680                                     struct ethtool_rxnfc *info)
1681 {
1682         if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1683                            RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1684                 switch (info->flow_type) {
1685                 case TCP_V4_FLOW:
1686                         ndc->l4_hash |= HV_TCP4_L4HASH;
1687                         break;
1688
1689                 case TCP_V6_FLOW:
1690                         ndc->l4_hash |= HV_TCP6_L4HASH;
1691                         break;
1692
1693                 case UDP_V4_FLOW:
1694                         ndc->l4_hash |= HV_UDP4_L4HASH;
1695                         break;
1696
1697                 case UDP_V6_FLOW:
1698                         ndc->l4_hash |= HV_UDP6_L4HASH;
1699                         break;
1700
1701                 default:
1702                         return -EOPNOTSUPP;
1703                 }
1704
1705                 return 0;
1706         }
1707
1708         if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1709                 switch (info->flow_type) {
1710                 case TCP_V4_FLOW:
1711                         ndc->l4_hash &= ~HV_TCP4_L4HASH;
1712                         break;
1713
1714                 case TCP_V6_FLOW:
1715                         ndc->l4_hash &= ~HV_TCP6_L4HASH;
1716                         break;
1717
1718                 case UDP_V4_FLOW:
1719                         ndc->l4_hash &= ~HV_UDP4_L4HASH;
1720                         break;
1721
1722                 case UDP_V6_FLOW:
1723                         ndc->l4_hash &= ~HV_UDP6_L4HASH;
1724                         break;
1725
1726                 default:
1727                         return -EOPNOTSUPP;
1728                 }
1729
1730                 return 0;
1731         }
1732
1733         return -EOPNOTSUPP;
1734 }
1735
1736 static int
1737 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1738 {
1739         struct net_device_context *ndc = netdev_priv(ndev);
1740
1741         if (info->cmd == ETHTOOL_SRXFH)
1742                 return netvsc_set_rss_hash_opts(ndc, info);
1743
1744         return -EOPNOTSUPP;
1745 }
1746
1747 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1748 {
1749         return NETVSC_HASH_KEYLEN;
1750 }
1751
1752 static u32 netvsc_rss_indir_size(struct net_device *dev)
1753 {
1754         struct net_device_context *ndc = netdev_priv(dev);
1755
1756         return ndc->rx_table_sz;
1757 }
1758
1759 static int netvsc_get_rxfh(struct net_device *dev,
1760                            struct ethtool_rxfh_param *rxfh)
1761 {
1762         struct net_device_context *ndc = netdev_priv(dev);
1763         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1764         struct rndis_device *rndis_dev;
1765         int i;
1766
1767         if (!ndev)
1768                 return -ENODEV;
1769
1770         rxfh->hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1771
1772         rndis_dev = ndev->extension;
1773         if (rxfh->indir) {
1774                 for (i = 0; i < ndc->rx_table_sz; i++)
1775                         rxfh->indir[i] = ndc->rx_table[i];
1776         }
1777
1778         if (rxfh->key)
1779                 memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1780
1781         return 0;
1782 }
1783
1784 static int netvsc_set_rxfh(struct net_device *dev,
1785                            struct ethtool_rxfh_param *rxfh,
1786                            struct netlink_ext_ack *extack)
1787 {
1788         struct net_device_context *ndc = netdev_priv(dev);
1789         struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1790         struct rndis_device *rndis_dev;
1791         u8 *key = rxfh->key;
1792         int i;
1793
1794         if (!ndev)
1795                 return -ENODEV;
1796
1797         if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1798             rxfh->hfunc != ETH_RSS_HASH_TOP)
1799                 return -EOPNOTSUPP;
1800
1801         rndis_dev = ndev->extension;
1802         if (rxfh->indir) {
1803                 for (i = 0; i < ndc->rx_table_sz; i++)
1804                         if (rxfh->indir[i] >= ndev->num_chn)
1805                                 return -EINVAL;
1806
1807                 for (i = 0; i < ndc->rx_table_sz; i++)
1808                         ndc->rx_table[i] = rxfh->indir[i];
1809         }
1810
1811         if (!key) {
1812                 if (!rxfh->indir)
1813                         return 0;
1814
1815                 key = rndis_dev->rss_key;
1816         }
1817
1818         return rndis_filter_set_rss_param(rndis_dev, key);
1819 }
1820
1821 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1822  * It does have pre-allocated receive area which is divided into sections.
1823  */
1824 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1825                                    struct ethtool_ringparam *ring)
1826 {
1827         u32 max_buf_size;
1828
1829         ring->rx_pending = nvdev->recv_section_cnt;
1830         ring->tx_pending = nvdev->send_section_cnt;
1831
1832         if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1833                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1834         else
1835                 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1836
1837         ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1838         ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1839                 / nvdev->send_section_size;
1840 }
1841
1842 static void netvsc_get_ringparam(struct net_device *ndev,
1843                                  struct ethtool_ringparam *ring,
1844                                  struct kernel_ethtool_ringparam *kernel_ring,
1845                                  struct netlink_ext_ack *extack)
1846 {
1847         struct net_device_context *ndevctx = netdev_priv(ndev);
1848         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1849
1850         if (!nvdev)
1851                 return;
1852
1853         __netvsc_get_ringparam(nvdev, ring);
1854 }
1855
1856 static int netvsc_set_ringparam(struct net_device *ndev,
1857                                 struct ethtool_ringparam *ring,
1858                                 struct kernel_ethtool_ringparam *kernel_ring,
1859                                 struct netlink_ext_ack *extack)
1860 {
1861         struct net_device_context *ndevctx = netdev_priv(ndev);
1862         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1863         struct netvsc_device_info *device_info;
1864         struct ethtool_ringparam orig;
1865         u32 new_tx, new_rx;
1866         int ret = 0;
1867
1868         if (!nvdev || nvdev->destroy)
1869                 return -ENODEV;
1870
1871         memset(&orig, 0, sizeof(orig));
1872         __netvsc_get_ringparam(nvdev, &orig);
1873
1874         new_tx = clamp_t(u32, ring->tx_pending,
1875                          NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1876         new_rx = clamp_t(u32, ring->rx_pending,
1877                          NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1878
1879         if (new_tx == orig.tx_pending &&
1880             new_rx == orig.rx_pending)
1881                 return 0;        /* no change */
1882
1883         device_info = netvsc_devinfo_get(nvdev);
1884
1885         if (!device_info)
1886                 return -ENOMEM;
1887
1888         device_info->send_sections = new_tx;
1889         device_info->recv_sections = new_rx;
1890
1891         ret = netvsc_detach(ndev, nvdev);
1892         if (ret)
1893                 goto out;
1894
1895         ret = netvsc_attach(ndev, device_info);
1896         if (ret) {
1897                 device_info->send_sections = orig.tx_pending;
1898                 device_info->recv_sections = orig.rx_pending;
1899
1900                 if (netvsc_attach(ndev, device_info))
1901                         netdev_err(ndev, "restoring ringparam failed");
1902         }
1903
1904 out:
1905         netvsc_devinfo_put(device_info);
1906         return ret;
1907 }
1908
1909 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1910                                              netdev_features_t features)
1911 {
1912         struct net_device_context *ndevctx = netdev_priv(ndev);
1913         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1914
1915         if (!nvdev || nvdev->destroy)
1916                 return features;
1917
1918         if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1919                 features ^= NETIF_F_LRO;
1920                 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1921         }
1922
1923         return features;
1924 }
1925
1926 static int netvsc_set_features(struct net_device *ndev,
1927                                netdev_features_t features)
1928 {
1929         netdev_features_t change = features ^ ndev->features;
1930         struct net_device_context *ndevctx = netdev_priv(ndev);
1931         struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1932         struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1933         struct ndis_offload_params offloads;
1934         int ret = 0;
1935
1936         if (!nvdev || nvdev->destroy)
1937                 return -ENODEV;
1938
1939         if (!(change & NETIF_F_LRO))
1940                 goto syncvf;
1941
1942         memset(&offloads, 0, sizeof(struct ndis_offload_params));
1943
1944         if (features & NETIF_F_LRO) {
1945                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1946                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947         } else {
1948                 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1949                 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950         }
1951
1952         ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1953
1954         if (ret) {
1955                 features ^= NETIF_F_LRO;
1956                 ndev->features = features;
1957         }
1958
1959 syncvf:
1960         if (!vf_netdev)
1961                 return ret;
1962
1963         vf_netdev->wanted_features = features;
1964         netdev_update_features(vf_netdev);
1965
1966         return ret;
1967 }
1968
1969 static int netvsc_get_regs_len(struct net_device *netdev)
1970 {
1971         return VRSS_SEND_TAB_SIZE * sizeof(u32);
1972 }
1973
1974 static void netvsc_get_regs(struct net_device *netdev,
1975                             struct ethtool_regs *regs, void *p)
1976 {
1977         struct net_device_context *ndc = netdev_priv(netdev);
1978         u32 *regs_buff = p;
1979
1980         /* increase the version, if buffer format is changed. */
1981         regs->version = 1;
1982
1983         memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1984 }
1985
1986 static u32 netvsc_get_msglevel(struct net_device *ndev)
1987 {
1988         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989
1990         return ndev_ctx->msg_enable;
1991 }
1992
1993 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1994 {
1995         struct net_device_context *ndev_ctx = netdev_priv(ndev);
1996
1997         ndev_ctx->msg_enable = val;
1998 }
1999
2000 static const struct ethtool_ops ethtool_ops = {
2001         .get_drvinfo    = netvsc_get_drvinfo,
2002         .get_regs_len   = netvsc_get_regs_len,
2003         .get_regs       = netvsc_get_regs,
2004         .get_msglevel   = netvsc_get_msglevel,
2005         .set_msglevel   = netvsc_set_msglevel,
2006         .get_link       = ethtool_op_get_link,
2007         .get_ethtool_stats = netvsc_get_ethtool_stats,
2008         .get_sset_count = netvsc_get_sset_count,
2009         .get_strings    = netvsc_get_strings,
2010         .get_channels   = netvsc_get_channels,
2011         .set_channels   = netvsc_set_channels,
2012         .get_ts_info    = ethtool_op_get_ts_info,
2013         .get_rxnfc      = netvsc_get_rxnfc,
2014         .set_rxnfc      = netvsc_set_rxnfc,
2015         .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2016         .get_rxfh_indir_size = netvsc_rss_indir_size,
2017         .get_rxfh       = netvsc_get_rxfh,
2018         .set_rxfh       = netvsc_set_rxfh,
2019         .get_link_ksettings = netvsc_get_link_ksettings,
2020         .set_link_ksettings = netvsc_set_link_ksettings,
2021         .get_ringparam  = netvsc_get_ringparam,
2022         .set_ringparam  = netvsc_set_ringparam,
2023 };
2024
2025 static const struct net_device_ops device_ops = {
2026         .ndo_open =                     netvsc_open,
2027         .ndo_stop =                     netvsc_close,
2028         .ndo_start_xmit =               netvsc_start_xmit,
2029         .ndo_change_rx_flags =          netvsc_change_rx_flags,
2030         .ndo_set_rx_mode =              netvsc_set_rx_mode,
2031         .ndo_fix_features =             netvsc_fix_features,
2032         .ndo_set_features =             netvsc_set_features,
2033         .ndo_change_mtu =               netvsc_change_mtu,
2034         .ndo_validate_addr =            eth_validate_addr,
2035         .ndo_set_mac_address =          netvsc_set_mac_addr,
2036         .ndo_select_queue =             netvsc_select_queue,
2037         .ndo_get_stats64 =              netvsc_get_stats64,
2038         .ndo_bpf =                      netvsc_bpf,
2039         .ndo_xdp_xmit =                 netvsc_ndoxdp_xmit,
2040 };
2041
2042 /*
2043  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2044  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2045  * present send GARP packet to network peers with netif_notify_peers().
2046  */
2047 static void netvsc_link_change(struct work_struct *w)
2048 {
2049         struct net_device_context *ndev_ctx =
2050                 container_of(w, struct net_device_context, dwork.work);
2051         struct hv_device *device_obj = ndev_ctx->device_ctx;
2052         struct net_device *net = hv_get_drvdata(device_obj);
2053         unsigned long flags, next_reconfig, delay;
2054         struct netvsc_reconfig *event = NULL;
2055         struct netvsc_device *net_device;
2056         struct rndis_device *rdev;
2057         bool reschedule = false;
2058
2059         /* if changes are happening, comeback later */
2060         if (!rtnl_trylock()) {
2061                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2062                 return;
2063         }
2064
2065         net_device = rtnl_dereference(ndev_ctx->nvdev);
2066         if (!net_device)
2067                 goto out_unlock;
2068
2069         rdev = net_device->extension;
2070
2071         next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2072         if (time_is_after_jiffies(next_reconfig)) {
2073                 /* link_watch only sends one notification with current state
2074                  * per second, avoid doing reconfig more frequently. Handle
2075                  * wrap around.
2076                  */
2077                 delay = next_reconfig - jiffies;
2078                 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2079                 schedule_delayed_work(&ndev_ctx->dwork, delay);
2080                 goto out_unlock;
2081         }
2082         ndev_ctx->last_reconfig = jiffies;
2083
2084         spin_lock_irqsave(&ndev_ctx->lock, flags);
2085         if (!list_empty(&ndev_ctx->reconfig_events)) {
2086                 event = list_first_entry(&ndev_ctx->reconfig_events,
2087                                          struct netvsc_reconfig, list);
2088                 list_del(&event->list);
2089                 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2090         }
2091         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2092
2093         if (!event)
2094                 goto out_unlock;
2095
2096         switch (event->event) {
2097                 /* Only the following events are possible due to the check in
2098                  * netvsc_linkstatus_callback()
2099                  */
2100         case RNDIS_STATUS_MEDIA_CONNECT:
2101                 if (rdev->link_state) {
2102                         rdev->link_state = false;
2103                         netif_carrier_on(net);
2104                         netvsc_tx_enable(net_device, net);
2105                 } else {
2106                         __netdev_notify_peers(net);
2107                 }
2108                 kfree(event);
2109                 break;
2110         case RNDIS_STATUS_MEDIA_DISCONNECT:
2111                 if (!rdev->link_state) {
2112                         rdev->link_state = true;
2113                         netif_carrier_off(net);
2114                         netvsc_tx_disable(net_device, net);
2115                 }
2116                 kfree(event);
2117                 break;
2118         case RNDIS_STATUS_NETWORK_CHANGE:
2119                 /* Only makes sense if carrier is present */
2120                 if (!rdev->link_state) {
2121                         rdev->link_state = true;
2122                         netif_carrier_off(net);
2123                         netvsc_tx_disable(net_device, net);
2124                         event->event = RNDIS_STATUS_MEDIA_CONNECT;
2125                         spin_lock_irqsave(&ndev_ctx->lock, flags);
2126                         list_add(&event->list, &ndev_ctx->reconfig_events);
2127                         spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2128                         reschedule = true;
2129                 }
2130                 break;
2131         }
2132
2133         rtnl_unlock();
2134
2135         /* link_watch only sends one notification with current state per
2136          * second, handle next reconfig event in 2 seconds.
2137          */
2138         if (reschedule)
2139                 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2140
2141         return;
2142
2143 out_unlock:
2144         rtnl_unlock();
2145 }
2146
2147 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2148 {
2149         struct net_device_context *net_device_ctx;
2150         struct net_device *dev;
2151
2152         dev = netdev_master_upper_dev_get(vf_netdev);
2153         if (!dev || dev->netdev_ops != &device_ops)
2154                 return NULL;    /* not a netvsc device */
2155
2156         net_device_ctx = netdev_priv(dev);
2157         if (!rtnl_dereference(net_device_ctx->nvdev))
2158                 return NULL;    /* device is removed */
2159
2160         return dev;
2161 }
2162
2163 /* Called when VF is injecting data into network stack.
2164  * Change the associated network device from VF to netvsc.
2165  * note: already called with rcu_read_lock
2166  */
2167 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2168 {
2169         struct sk_buff *skb = *pskb;
2170         struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2171         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2172         struct netvsc_vf_pcpu_stats *pcpu_stats
2173                  = this_cpu_ptr(ndev_ctx->vf_stats);
2174
2175         skb = skb_share_check(skb, GFP_ATOMIC);
2176         if (unlikely(!skb))
2177                 return RX_HANDLER_CONSUMED;
2178
2179         *pskb = skb;
2180
2181         skb->dev = ndev;
2182
2183         u64_stats_update_begin(&pcpu_stats->syncp);
2184         pcpu_stats->rx_packets++;
2185         pcpu_stats->rx_bytes += skb->len;
2186         u64_stats_update_end(&pcpu_stats->syncp);
2187
2188         return RX_HANDLER_ANOTHER;
2189 }
2190
2191 static int netvsc_vf_join(struct net_device *vf_netdev,
2192                           struct net_device *ndev, int context)
2193 {
2194         struct net_device_context *ndev_ctx = netdev_priv(ndev);
2195         int ret;
2196
2197         ret = netdev_rx_handler_register(vf_netdev,
2198                                          netvsc_vf_handle_frame, ndev);
2199         if (ret != 0) {
2200                 netdev_err(vf_netdev,
2201                            "can not register netvsc VF receive handler (err = %d)\n",
2202                            ret);
2203                 goto rx_handler_failed;
2204         }
2205
2206         ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2207                                            NULL, NULL, NULL);
2208         if (ret != 0) {
2209                 netdev_err(vf_netdev,
2210                            "can not set master device %s (err = %d)\n",
2211                            ndev->name, ret);
2212                 goto upper_link_failed;
2213         }
2214
2215         /* If this registration is called from probe context vf_takeover
2216          * is taken care of later in probe itself.
2217          */
2218         if (context == VF_REG_IN_NOTIFIER)
2219                 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2220
2221         call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2222
2223         netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2224         return 0;
2225
2226 upper_link_failed:
2227         netdev_rx_handler_unregister(vf_netdev);
2228 rx_handler_failed:
2229         return ret;
2230 }
2231
2232 static void __netvsc_vf_setup(struct net_device *ndev,
2233                               struct net_device *vf_netdev)
2234 {
2235         int ret;
2236
2237         /* Align MTU of VF with master */
2238         ret = dev_set_mtu(vf_netdev, ndev->mtu);
2239         if (ret)
2240                 netdev_warn(vf_netdev,
2241                             "unable to change mtu to %u\n", ndev->mtu);
2242
2243         /* set multicast etc flags on VF */
2244         dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2245
2246         /* sync address list from ndev to VF */
2247         netif_addr_lock_bh(ndev);
2248         dev_uc_sync(vf_netdev, ndev);
2249         dev_mc_sync(vf_netdev, ndev);
2250         netif_addr_unlock_bh(ndev);
2251
2252         if (netif_running(ndev)) {
2253                 ret = dev_open(vf_netdev, NULL);
2254                 if (ret)
2255                         netdev_warn(vf_netdev,
2256                                     "unable to open: %d\n", ret);
2257         }
2258 }
2259
2260 /* Setup VF as slave of the synthetic device.
2261  * Runs in workqueue to avoid recursion in netlink callbacks.
2262  */
2263 static void netvsc_vf_setup(struct work_struct *w)
2264 {
2265         struct net_device_context *ndev_ctx
2266                 = container_of(w, struct net_device_context, vf_takeover.work);
2267         struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2268         struct net_device *vf_netdev;
2269
2270         if (!rtnl_trylock()) {
2271                 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2272                 return;
2273         }
2274
2275         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2276         if (vf_netdev)
2277                 __netvsc_vf_setup(ndev, vf_netdev);
2278
2279         rtnl_unlock();
2280 }
2281
2282 /* Find netvsc by VF serial number.
2283  * The PCI hyperv controller records the serial number as the slot kobj name.
2284  */
2285 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2286 {
2287         struct device *parent = vf_netdev->dev.parent;
2288         struct net_device_context *ndev_ctx;
2289         struct net_device *ndev;
2290         struct pci_dev *pdev;
2291         u32 serial;
2292
2293         if (!parent || !dev_is_pci(parent))
2294                 return NULL; /* not a PCI device */
2295
2296         pdev = to_pci_dev(parent);
2297         if (!pdev->slot) {
2298                 netdev_notice(vf_netdev, "no PCI slot information\n");
2299                 return NULL;
2300         }
2301
2302         if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2303                 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2304                               pci_slot_name(pdev->slot));
2305                 return NULL;
2306         }
2307
2308         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2309                 if (!ndev_ctx->vf_alloc)
2310                         continue;
2311
2312                 if (ndev_ctx->vf_serial != serial)
2313                         continue;
2314
2315                 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2316                 if (ndev->addr_len != vf_netdev->addr_len ||
2317                     memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2318                            ndev->addr_len) != 0)
2319                         continue;
2320
2321                 return ndev;
2322
2323         }
2324
2325         /* Fallback path to check synthetic vf with help of mac addr.
2326          * Because this function can be called before vf_netdev is
2327          * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2328          * from dev_addr, also try to match to its dev_addr.
2329          * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2330          * on a VF that matches to the MAC of a unrelated NETVSC device.
2331          */
2332         list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2333                 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2334                 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2335                     ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2336                         return ndev;
2337         }
2338
2339         netdev_notice(vf_netdev,
2340                       "no netdev found for vf serial:%u\n", serial);
2341         return NULL;
2342 }
2343
2344 static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2345 {
2346         struct net_device *ndev;
2347
2348         ndev = get_netvsc_byslot(vf_netdev);
2349         if (!ndev)
2350                 return NOTIFY_DONE;
2351
2352         /* set slave flag before open to prevent IPv6 addrconf */
2353         vf_netdev->flags |= IFF_SLAVE;
2354         return NOTIFY_DONE;
2355 }
2356
2357 static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2358 {
2359         struct net_device_context *net_device_ctx;
2360         struct netvsc_device *netvsc_dev;
2361         struct bpf_prog *prog;
2362         struct net_device *ndev;
2363         int ret;
2364
2365         if (vf_netdev->addr_len != ETH_ALEN)
2366                 return NOTIFY_DONE;
2367
2368         ndev = get_netvsc_byslot(vf_netdev);
2369         if (!ndev)
2370                 return NOTIFY_DONE;
2371
2372         net_device_ctx = netdev_priv(ndev);
2373         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2374         if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2375                 return NOTIFY_DONE;
2376
2377         /* if synthetic interface is a different namespace,
2378          * then move the VF to that namespace; join will be
2379          * done again in that context.
2380          */
2381         if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2382                 ret = dev_change_net_namespace(vf_netdev,
2383                                                dev_net(ndev), "eth%d");
2384                 if (ret)
2385                         netdev_err(vf_netdev,
2386                                    "could not move to same namespace as %s: %d\n",
2387                                    ndev->name, ret);
2388                 else
2389                         netdev_info(vf_netdev,
2390                                     "VF moved to namespace with: %s\n",
2391                                     ndev->name);
2392                 return NOTIFY_DONE;
2393         }
2394
2395         netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2396
2397         if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2398                 return NOTIFY_DONE;
2399
2400         dev_hold(vf_netdev);
2401         rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2402
2403         if (ndev->needed_headroom < vf_netdev->needed_headroom)
2404                 ndev->needed_headroom = vf_netdev->needed_headroom;
2405
2406         vf_netdev->wanted_features = ndev->features;
2407         netdev_update_features(vf_netdev);
2408
2409         prog = netvsc_xdp_get(netvsc_dev);
2410         netvsc_vf_setxdp(vf_netdev, prog);
2411
2412         return NOTIFY_OK;
2413 }
2414
2415 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2416  *
2417  * Typically a UP or DOWN event is followed by a CHANGE event, so
2418  * net_device_ctx->data_path_is_vf is used to cache the current data path
2419  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2420  * message.
2421  *
2422  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2423  * interface, there is only the CHANGE event and no UP or DOWN event.
2424  */
2425 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2426 {
2427         struct net_device_context *net_device_ctx;
2428         struct netvsc_device *netvsc_dev;
2429         struct net_device *ndev;
2430         bool vf_is_up = false;
2431         int ret;
2432
2433         if (event != NETDEV_GOING_DOWN)
2434                 vf_is_up = netif_running(vf_netdev);
2435
2436         ndev = get_netvsc_byref(vf_netdev);
2437         if (!ndev)
2438                 return NOTIFY_DONE;
2439
2440         net_device_ctx = netdev_priv(ndev);
2441         netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2442         if (!netvsc_dev)
2443                 return NOTIFY_DONE;
2444
2445         if (net_device_ctx->data_path_is_vf == vf_is_up)
2446                 return NOTIFY_OK;
2447
2448         if (vf_is_up && !net_device_ctx->vf_alloc) {
2449                 netdev_info(ndev, "Waiting for the VF association from host\n");
2450                 wait_for_completion(&net_device_ctx->vf_add);
2451         }
2452
2453         ret = netvsc_switch_datapath(ndev, vf_is_up);
2454
2455         if (ret) {
2456                 netdev_err(ndev,
2457                            "Data path failed to switch %s VF: %s, err: %d\n",
2458                            vf_is_up ? "to" : "from", vf_netdev->name, ret);
2459                 return NOTIFY_DONE;
2460         } else {
2461                 netdev_info(ndev, "Data path switched %s VF: %s\n",
2462                             vf_is_up ? "to" : "from", vf_netdev->name);
2463         }
2464
2465         return NOTIFY_OK;
2466 }
2467
2468 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2469 {
2470         struct net_device *ndev;
2471         struct net_device_context *net_device_ctx;
2472
2473         ndev = get_netvsc_byref(vf_netdev);
2474         if (!ndev)
2475                 return NOTIFY_DONE;
2476
2477         net_device_ctx = netdev_priv(ndev);
2478         cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2479
2480         netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2481
2482         netvsc_vf_setxdp(vf_netdev, NULL);
2483
2484         reinit_completion(&net_device_ctx->vf_add);
2485         netdev_rx_handler_unregister(vf_netdev);
2486         netdev_upper_dev_unlink(vf_netdev, ndev);
2487         RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2488         dev_put(vf_netdev);
2489
2490         ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2491
2492         return NOTIFY_OK;
2493 }
2494
2495 static int check_dev_is_matching_vf(struct net_device *event_ndev)
2496 {
2497         /* Skip NetVSC interfaces */
2498         if (event_ndev->netdev_ops == &device_ops)
2499                 return -ENODEV;
2500
2501         /* Avoid non-Ethernet type devices */
2502         if (event_ndev->type != ARPHRD_ETHER)
2503                 return -ENODEV;
2504
2505         /* Avoid Vlan dev with same MAC registering as VF */
2506         if (is_vlan_dev(event_ndev))
2507                 return -ENODEV;
2508
2509         /* Avoid Bonding master dev with same MAC registering as VF */
2510         if (netif_is_bond_master(event_ndev))
2511                 return -ENODEV;
2512
2513         return 0;
2514 }
2515
2516 static int netvsc_probe(struct hv_device *dev,
2517                         const struct hv_vmbus_device_id *dev_id)
2518 {
2519         struct net_device *net = NULL, *vf_netdev;
2520         struct net_device_context *net_device_ctx;
2521         struct netvsc_device_info *device_info = NULL;
2522         struct netvsc_device *nvdev;
2523         int ret = -ENOMEM;
2524
2525         net = alloc_etherdev_mq(sizeof(struct net_device_context),
2526                                 VRSS_CHANNEL_MAX);
2527         if (!net)
2528                 goto no_net;
2529
2530         netif_carrier_off(net);
2531
2532         netvsc_init_settings(net);
2533
2534         net_device_ctx = netdev_priv(net);
2535         net_device_ctx->device_ctx = dev;
2536         net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2537         if (netif_msg_probe(net_device_ctx))
2538                 netdev_dbg(net, "netvsc msg_enable: %d\n",
2539                            net_device_ctx->msg_enable);
2540
2541         hv_set_drvdata(dev, net);
2542
2543         INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2544
2545         init_completion(&net_device_ctx->vf_add);
2546         spin_lock_init(&net_device_ctx->lock);
2547         INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2548         INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2549
2550         net_device_ctx->vf_stats
2551                 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2552         if (!net_device_ctx->vf_stats)
2553                 goto no_stats;
2554
2555         net->netdev_ops = &device_ops;
2556         net->ethtool_ops = &ethtool_ops;
2557         SET_NETDEV_DEV(net, &dev->device);
2558         dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2559
2560         /* We always need headroom for rndis header */
2561         net->needed_headroom = RNDIS_AND_PPI_SIZE;
2562
2563         /* Initialize the number of queues to be 1, we may change it if more
2564          * channels are offered later.
2565          */
2566         netif_set_real_num_tx_queues(net, 1);
2567         netif_set_real_num_rx_queues(net, 1);
2568
2569         /* Notify the netvsc driver of the new device */
2570         device_info = netvsc_devinfo_get(NULL);
2571
2572         if (!device_info) {
2573                 ret = -ENOMEM;
2574                 goto devinfo_failed;
2575         }
2576
2577         /* We must get rtnl lock before scheduling nvdev->subchan_work,
2578          * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2579          * all subchannels to show up, but that may not happen because
2580          * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2581          * -> ... -> device_add() -> ... -> __device_attach() can't get
2582          * the device lock, so all the subchannels can't be processed --
2583          * finally netvsc_subchan_work() hangs forever.
2584          *
2585          * The rtnl lock also needs to be held before rndis_filter_device_add()
2586          * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2587          * VF NIC offering and registering. If VF NIC finished register_netdev()
2588          * earlier it may cause name based config failure.
2589          */
2590         rtnl_lock();
2591
2592         nvdev = rndis_filter_device_add(dev, device_info);
2593         if (IS_ERR(nvdev)) {
2594                 ret = PTR_ERR(nvdev);
2595                 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2596                 goto rndis_failed;
2597         }
2598
2599         eth_hw_addr_set(net, device_info->mac_adr);
2600
2601         if (nvdev->num_chn > 1)
2602                 schedule_work(&nvdev->subchan_work);
2603
2604         /* hw_features computed in rndis_netdev_set_hwcaps() */
2605         net->features = net->hw_features |
2606                 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2607                 NETIF_F_HW_VLAN_CTAG_RX;
2608         net->vlan_features = net->features;
2609
2610         netdev_lockdep_set_classes(net);
2611
2612         net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2613                             NETDEV_XDP_ACT_NDO_XMIT;
2614
2615         /* MTU range: 68 - 1500 or 65521 */
2616         net->min_mtu = NETVSC_MTU_MIN;
2617         if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2618                 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2619         else
2620                 net->max_mtu = ETH_DATA_LEN;
2621
2622         nvdev->tx_disable = false;
2623
2624         ret = register_netdevice(net);
2625         if (ret != 0) {
2626                 pr_err("Unable to register netdev.\n");
2627                 goto register_failed;
2628         }
2629
2630         list_add(&net_device_ctx->list, &netvsc_dev_list);
2631
2632         /* When the hv_netvsc driver is unloaded and reloaded, the
2633          * NET_DEVICE_REGISTER for the vf device is replayed before probe
2634          * is complete. This is because register_netdevice_notifier() gets
2635          * registered before vmbus_driver_register() so that callback func
2636          * is set before probe and we don't miss events like NETDEV_POST_INIT
2637          * So, in this section we try to register the matching vf device that
2638          * is present as a netdevice, knowing that its register call is not
2639          * processed in the netvsc_netdev_notifier(as probing is progress and
2640          * get_netvsc_byslot fails).
2641          */
2642         for_each_netdev(dev_net(net), vf_netdev) {
2643                 ret = check_dev_is_matching_vf(vf_netdev);
2644                 if (ret != 0)
2645                         continue;
2646
2647                 if (net != get_netvsc_byslot(vf_netdev))
2648                         continue;
2649
2650                 netvsc_prepare_bonding(vf_netdev);
2651                 netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2652                 __netvsc_vf_setup(net, vf_netdev);
2653                 break;
2654         }
2655         rtnl_unlock();
2656
2657         netvsc_devinfo_put(device_info);
2658         return 0;
2659
2660 register_failed:
2661         rndis_filter_device_remove(dev, nvdev);
2662 rndis_failed:
2663         rtnl_unlock();
2664         netvsc_devinfo_put(device_info);
2665 devinfo_failed:
2666         free_percpu(net_device_ctx->vf_stats);
2667 no_stats:
2668         hv_set_drvdata(dev, NULL);
2669         free_netdev(net);
2670 no_net:
2671         return ret;
2672 }
2673
2674 static void netvsc_remove(struct hv_device *dev)
2675 {
2676         struct net_device_context *ndev_ctx;
2677         struct net_device *vf_netdev, *net;
2678         struct netvsc_device *nvdev;
2679
2680         net = hv_get_drvdata(dev);
2681         if (net == NULL) {
2682                 dev_err(&dev->device, "No net device to remove\n");
2683                 return;
2684         }
2685
2686         ndev_ctx = netdev_priv(net);
2687
2688         cancel_delayed_work_sync(&ndev_ctx->dwork);
2689
2690         rtnl_lock();
2691         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2692         if (nvdev) {
2693                 cancel_work_sync(&nvdev->subchan_work);
2694                 netvsc_xdp_set(net, NULL, NULL, nvdev);
2695         }
2696
2697         /*
2698          * Call to the vsc driver to let it know that the device is being
2699          * removed. Also blocks mtu and channel changes.
2700          */
2701         vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2702         if (vf_netdev)
2703                 netvsc_unregister_vf(vf_netdev);
2704
2705         if (nvdev)
2706                 rndis_filter_device_remove(dev, nvdev);
2707
2708         unregister_netdevice(net);
2709         list_del(&ndev_ctx->list);
2710
2711         rtnl_unlock();
2712
2713         hv_set_drvdata(dev, NULL);
2714
2715         free_percpu(ndev_ctx->vf_stats);
2716         free_netdev(net);
2717 }
2718
2719 static int netvsc_suspend(struct hv_device *dev)
2720 {
2721         struct net_device_context *ndev_ctx;
2722         struct netvsc_device *nvdev;
2723         struct net_device *net;
2724         int ret;
2725
2726         net = hv_get_drvdata(dev);
2727
2728         ndev_ctx = netdev_priv(net);
2729         cancel_delayed_work_sync(&ndev_ctx->dwork);
2730
2731         rtnl_lock();
2732
2733         nvdev = rtnl_dereference(ndev_ctx->nvdev);
2734         if (nvdev == NULL) {
2735                 ret = -ENODEV;
2736                 goto out;
2737         }
2738
2739         /* Save the current config info */
2740         ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2741         if (!ndev_ctx->saved_netvsc_dev_info) {
2742                 ret = -ENOMEM;
2743                 goto out;
2744         }
2745         ret = netvsc_detach(net, nvdev);
2746 out:
2747         rtnl_unlock();
2748
2749         return ret;
2750 }
2751
2752 static int netvsc_resume(struct hv_device *dev)
2753 {
2754         struct net_device *net = hv_get_drvdata(dev);
2755         struct net_device_context *net_device_ctx;
2756         struct netvsc_device_info *device_info;
2757         int ret;
2758
2759         rtnl_lock();
2760
2761         net_device_ctx = netdev_priv(net);
2762
2763         /* Reset the data path to the netvsc NIC before re-opening the vmbus
2764          * channel. Later netvsc_netdev_event() will switch the data path to
2765          * the VF upon the UP or CHANGE event.
2766          */
2767         net_device_ctx->data_path_is_vf = false;
2768         device_info = net_device_ctx->saved_netvsc_dev_info;
2769
2770         ret = netvsc_attach(net, device_info);
2771
2772         netvsc_devinfo_put(device_info);
2773         net_device_ctx->saved_netvsc_dev_info = NULL;
2774
2775         rtnl_unlock();
2776
2777         return ret;
2778 }
2779 static const struct hv_vmbus_device_id id_table[] = {
2780         /* Network guid */
2781         { HV_NIC_GUID, },
2782         { },
2783 };
2784
2785 MODULE_DEVICE_TABLE(vmbus, id_table);
2786
2787 /* The one and only one */
2788 static struct  hv_driver netvsc_drv = {
2789         .name = KBUILD_MODNAME,
2790         .id_table = id_table,
2791         .probe = netvsc_probe,
2792         .remove = netvsc_remove,
2793         .suspend = netvsc_suspend,
2794         .resume = netvsc_resume,
2795         .driver = {
2796                 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2797         },
2798 };
2799
2800 /*
2801  * On Hyper-V, every VF interface is matched with a corresponding
2802  * synthetic interface. The synthetic interface is presented first
2803  * to the guest. When the corresponding VF instance is registered,
2804  * we will take care of switching the data path.
2805  */
2806 static int netvsc_netdev_event(struct notifier_block *this,
2807                                unsigned long event, void *ptr)
2808 {
2809         struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2810         int ret = 0;
2811
2812         ret = check_dev_is_matching_vf(event_dev);
2813         if (ret != 0)
2814                 return NOTIFY_DONE;
2815
2816         switch (event) {
2817         case NETDEV_POST_INIT:
2818                 return netvsc_prepare_bonding(event_dev);
2819         case NETDEV_REGISTER:
2820                 return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2821         case NETDEV_UNREGISTER:
2822                 return netvsc_unregister_vf(event_dev);
2823         case NETDEV_UP:
2824         case NETDEV_DOWN:
2825         case NETDEV_CHANGE:
2826         case NETDEV_GOING_DOWN:
2827                 return netvsc_vf_changed(event_dev, event);
2828         default:
2829                 return NOTIFY_DONE;
2830         }
2831 }
2832
2833 static struct notifier_block netvsc_netdev_notifier = {
2834         .notifier_call = netvsc_netdev_event,
2835 };
2836
2837 static void __exit netvsc_drv_exit(void)
2838 {
2839         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2840         vmbus_driver_unregister(&netvsc_drv);
2841 }
2842
2843 static int __init netvsc_drv_init(void)
2844 {
2845         int ret;
2846
2847         if (ring_size < RING_SIZE_MIN) {
2848                 ring_size = RING_SIZE_MIN;
2849                 pr_info("Increased ring_size to %u (min allowed)\n",
2850                         ring_size);
2851         }
2852         netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2853
2854         register_netdevice_notifier(&netvsc_netdev_notifier);
2855
2856         ret = vmbus_driver_register(&netvsc_drv);
2857         if (ret)
2858                 goto err_vmbus_reg;
2859
2860         return 0;
2861
2862 err_vmbus_reg:
2863         unregister_netdevice_notifier(&netvsc_netdev_notifier);
2864         return ret;
2865 }
2866
2867 MODULE_LICENSE("GPL");
2868 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2869
2870 module_init(netvsc_drv_init);
2871 module_exit(netvsc_drv_exit);