Merge tag 'arm64-mmiowb' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[sfrench/cifs-2.6.git] / drivers / net / ethernet / qlogic / qed / qed_int.c
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/bitops.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/errno.h>
40 #include <linux/interrupt.h>
41 #include <linux/kernel.h>
42 #include <linux/pci.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include "qed.h"
46 #include "qed_hsi.h"
47 #include "qed_hw.h"
48 #include "qed_init_ops.h"
49 #include "qed_int.h"
50 #include "qed_mcp.h"
51 #include "qed_reg_addr.h"
52 #include "qed_sp.h"
53 #include "qed_sriov.h"
54 #include "qed_vf.h"
55
56 struct qed_pi_info {
57         qed_int_comp_cb_t       comp_cb;
58         void                    *cookie;
59 };
60
61 struct qed_sb_sp_info {
62         struct qed_sb_info sb_info;
63
64         /* per protocol index data */
65         struct qed_pi_info pi_info_arr[PIS_PER_SB_E4];
66 };
67
68 enum qed_attention_type {
69         QED_ATTN_TYPE_ATTN,
70         QED_ATTN_TYPE_PARITY,
71 };
72
73 #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
74         ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
75
76 struct aeu_invert_reg_bit {
77         char bit_name[30];
78
79 #define ATTENTION_PARITY                (1 << 0)
80
81 #define ATTENTION_LENGTH_MASK           (0x00000ff0)
82 #define ATTENTION_LENGTH_SHIFT          (4)
83 #define ATTENTION_LENGTH(flags)         (((flags) & ATTENTION_LENGTH_MASK) >> \
84                                          ATTENTION_LENGTH_SHIFT)
85 #define ATTENTION_SINGLE                BIT(ATTENTION_LENGTH_SHIFT)
86 #define ATTENTION_PAR                   (ATTENTION_SINGLE | ATTENTION_PARITY)
87 #define ATTENTION_PAR_INT               ((2 << ATTENTION_LENGTH_SHIFT) | \
88                                          ATTENTION_PARITY)
89
90 /* Multiple bits start with this offset */
91 #define ATTENTION_OFFSET_MASK           (0x000ff000)
92 #define ATTENTION_OFFSET_SHIFT          (12)
93
94 #define ATTENTION_BB_MASK               (0x00700000)
95 #define ATTENTION_BB_SHIFT              (20)
96 #define ATTENTION_BB(value)             (value << ATTENTION_BB_SHIFT)
97 #define ATTENTION_BB_DIFFERENT          BIT(23)
98
99         unsigned int flags;
100
101         /* Callback to call if attention will be triggered */
102         int (*cb)(struct qed_hwfn *p_hwfn);
103
104         enum block_id block_index;
105 };
106
107 struct aeu_invert_reg {
108         struct aeu_invert_reg_bit bits[32];
109 };
110
111 #define MAX_ATTN_GRPS           (8)
112 #define NUM_ATTN_REGS           (9)
113
114 /* Specific HW attention callbacks */
115 static int qed_mcp_attn_cb(struct qed_hwfn *p_hwfn)
116 {
117         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_STATE);
118
119         /* This might occur on certain instances; Log it once then mask it */
120         DP_INFO(p_hwfn->cdev, "MCP_REG_CPU_STATE: %08x - Masking...\n",
121                 tmp);
122         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, MCP_REG_CPU_EVENT_MASK,
123                0xffffffff);
124
125         return 0;
126 }
127
128 #define QED_PSWHST_ATTENTION_INCORRECT_ACCESS           (0x1)
129 #define ATTENTION_INCORRECT_ACCESS_WR_MASK              (0x1)
130 #define ATTENTION_INCORRECT_ACCESS_WR_SHIFT             (0)
131 #define ATTENTION_INCORRECT_ACCESS_CLIENT_MASK          (0xf)
132 #define ATTENTION_INCORRECT_ACCESS_CLIENT_SHIFT         (1)
133 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_MASK        (0x1)
134 #define ATTENTION_INCORRECT_ACCESS_VF_VALID_SHIFT       (5)
135 #define ATTENTION_INCORRECT_ACCESS_VF_ID_MASK           (0xff)
136 #define ATTENTION_INCORRECT_ACCESS_VF_ID_SHIFT          (6)
137 #define ATTENTION_INCORRECT_ACCESS_PF_ID_MASK           (0xf)
138 #define ATTENTION_INCORRECT_ACCESS_PF_ID_SHIFT          (14)
139 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_MASK         (0xff)
140 #define ATTENTION_INCORRECT_ACCESS_BYTE_EN_SHIFT        (18)
141 static int qed_pswhst_attn_cb(struct qed_hwfn *p_hwfn)
142 {
143         u32 tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
144                          PSWHST_REG_INCORRECT_ACCESS_VALID);
145
146         if (tmp & QED_PSWHST_ATTENTION_INCORRECT_ACCESS) {
147                 u32 addr, data, length;
148
149                 addr = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
150                               PSWHST_REG_INCORRECT_ACCESS_ADDRESS);
151                 data = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
152                               PSWHST_REG_INCORRECT_ACCESS_DATA);
153                 length = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
154                                 PSWHST_REG_INCORRECT_ACCESS_LENGTH);
155
156                 DP_INFO(p_hwfn->cdev,
157                         "Incorrect access to %08x of length %08x - PF [%02x] VF [%04x] [valid %02x] client [%02x] write [%02x] Byte-Enable [%04x] [%08x]\n",
158                         addr, length,
159                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_PF_ID),
160                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_VF_ID),
161                         (u8) GET_FIELD(data,
162                                        ATTENTION_INCORRECT_ACCESS_VF_VALID),
163                         (u8) GET_FIELD(data,
164                                        ATTENTION_INCORRECT_ACCESS_CLIENT),
165                         (u8) GET_FIELD(data, ATTENTION_INCORRECT_ACCESS_WR),
166                         (u8) GET_FIELD(data,
167                                        ATTENTION_INCORRECT_ACCESS_BYTE_EN),
168                         data);
169         }
170
171         return 0;
172 }
173
174 #define QED_GRC_ATTENTION_VALID_BIT     (1 << 0)
175 #define QED_GRC_ATTENTION_ADDRESS_MASK  (0x7fffff)
176 #define QED_GRC_ATTENTION_ADDRESS_SHIFT (0)
177 #define QED_GRC_ATTENTION_RDWR_BIT      (1 << 23)
178 #define QED_GRC_ATTENTION_MASTER_MASK   (0xf)
179 #define QED_GRC_ATTENTION_MASTER_SHIFT  (24)
180 #define QED_GRC_ATTENTION_PF_MASK       (0xf)
181 #define QED_GRC_ATTENTION_PF_SHIFT      (0)
182 #define QED_GRC_ATTENTION_VF_MASK       (0xff)
183 #define QED_GRC_ATTENTION_VF_SHIFT      (4)
184 #define QED_GRC_ATTENTION_PRIV_MASK     (0x3)
185 #define QED_GRC_ATTENTION_PRIV_SHIFT    (14)
186 #define QED_GRC_ATTENTION_PRIV_VF       (0)
187 static const char *attn_master_to_str(u8 master)
188 {
189         switch (master) {
190         case 1: return "PXP";
191         case 2: return "MCP";
192         case 3: return "MSDM";
193         case 4: return "PSDM";
194         case 5: return "YSDM";
195         case 6: return "USDM";
196         case 7: return "TSDM";
197         case 8: return "XSDM";
198         case 9: return "DBU";
199         case 10: return "DMAE";
200         default:
201                 return "Unknown";
202         }
203 }
204
205 static int qed_grc_attn_cb(struct qed_hwfn *p_hwfn)
206 {
207         u32 tmp, tmp2;
208
209         /* We've already cleared the timeout interrupt register, so we learn
210          * of interrupts via the validity register
211          */
212         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
213                      GRC_REG_TIMEOUT_ATTN_ACCESS_VALID);
214         if (!(tmp & QED_GRC_ATTENTION_VALID_BIT))
215                 goto out;
216
217         /* Read the GRC timeout information */
218         tmp = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
219                      GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_0);
220         tmp2 = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
221                       GRC_REG_TIMEOUT_ATTN_ACCESS_DATA_1);
222
223         DP_INFO(p_hwfn->cdev,
224                 "GRC timeout [%08x:%08x] - %s Address [%08x] [Master %s] [PF: %02x %s %02x]\n",
225                 tmp2, tmp,
226                 (tmp & QED_GRC_ATTENTION_RDWR_BIT) ? "Write to" : "Read from",
227                 GET_FIELD(tmp, QED_GRC_ATTENTION_ADDRESS) << 2,
228                 attn_master_to_str(GET_FIELD(tmp, QED_GRC_ATTENTION_MASTER)),
229                 GET_FIELD(tmp2, QED_GRC_ATTENTION_PF),
230                 (GET_FIELD(tmp2, QED_GRC_ATTENTION_PRIV) ==
231                  QED_GRC_ATTENTION_PRIV_VF) ? "VF" : "(Irrelevant)",
232                 GET_FIELD(tmp2, QED_GRC_ATTENTION_VF));
233
234 out:
235         /* Regardles of anything else, clean the validity bit */
236         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
237                GRC_REG_TIMEOUT_ATTN_ACCESS_VALID, 0);
238         return 0;
239 }
240
241 #define PGLUE_ATTENTION_VALID                   (1 << 29)
242 #define PGLUE_ATTENTION_RD_VALID                (1 << 26)
243 #define PGLUE_ATTENTION_DETAILS_PFID_MASK       (0xf)
244 #define PGLUE_ATTENTION_DETAILS_PFID_SHIFT      (20)
245 #define PGLUE_ATTENTION_DETAILS_VF_VALID_MASK   (0x1)
246 #define PGLUE_ATTENTION_DETAILS_VF_VALID_SHIFT  (19)
247 #define PGLUE_ATTENTION_DETAILS_VFID_MASK       (0xff)
248 #define PGLUE_ATTENTION_DETAILS_VFID_SHIFT      (24)
249 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_MASK   (0x1)
250 #define PGLUE_ATTENTION_DETAILS2_WAS_ERR_SHIFT  (21)
251 #define PGLUE_ATTENTION_DETAILS2_BME_MASK       (0x1)
252 #define PGLUE_ATTENTION_DETAILS2_BME_SHIFT      (22)
253 #define PGLUE_ATTENTION_DETAILS2_FID_EN_MASK    (0x1)
254 #define PGLUE_ATTENTION_DETAILS2_FID_EN_SHIFT   (23)
255 #define PGLUE_ATTENTION_ICPL_VALID              (1 << 23)
256 #define PGLUE_ATTENTION_ZLR_VALID               (1 << 25)
257 #define PGLUE_ATTENTION_ILT_VALID               (1 << 23)
258
259 int qed_pglueb_rbc_attn_handler(struct qed_hwfn *p_hwfn,
260                                 struct qed_ptt *p_ptt)
261 {
262         u32 tmp;
263
264         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS2);
265         if (tmp & PGLUE_ATTENTION_VALID) {
266                 u32 addr_lo, addr_hi, details;
267
268                 addr_lo = qed_rd(p_hwfn, p_ptt,
269                                  PGLUE_B_REG_TX_ERR_WR_ADD_31_0);
270                 addr_hi = qed_rd(p_hwfn, p_ptt,
271                                  PGLUE_B_REG_TX_ERR_WR_ADD_63_32);
272                 details = qed_rd(p_hwfn, p_ptt,
273                                  PGLUE_B_REG_TX_ERR_WR_DETAILS);
274
275                 DP_NOTICE(p_hwfn,
276                           "Illegal write by chip to [%08x:%08x] blocked.\n"
277                           "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
278                           "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
279                           addr_hi, addr_lo, details,
280                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
281                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
282                           GET_FIELD(details,
283                                     PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
284                           tmp,
285                           GET_FIELD(tmp,
286                                     PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
287                           GET_FIELD(tmp,
288                                     PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
289                           GET_FIELD(tmp,
290                                     PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
291         }
292
293         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_RD_DETAILS2);
294         if (tmp & PGLUE_ATTENTION_RD_VALID) {
295                 u32 addr_lo, addr_hi, details;
296
297                 addr_lo = qed_rd(p_hwfn, p_ptt,
298                                  PGLUE_B_REG_TX_ERR_RD_ADD_31_0);
299                 addr_hi = qed_rd(p_hwfn, p_ptt,
300                                  PGLUE_B_REG_TX_ERR_RD_ADD_63_32);
301                 details = qed_rd(p_hwfn, p_ptt,
302                                  PGLUE_B_REG_TX_ERR_RD_DETAILS);
303
304                 DP_NOTICE(p_hwfn,
305                           "Illegal read by chip from [%08x:%08x] blocked.\n"
306                           "Details: %08x [PFID %02x, VFID %02x, VF_VALID %02x]\n"
307                           "Details2 %08x [Was_error %02x BME deassert %02x FID_enable deassert %02x]\n",
308                           addr_hi, addr_lo, details,
309                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_PFID),
310                           (u8)GET_FIELD(details, PGLUE_ATTENTION_DETAILS_VFID),
311                           GET_FIELD(details,
312                                     PGLUE_ATTENTION_DETAILS_VF_VALID) ? 1 : 0,
313                           tmp,
314                           GET_FIELD(tmp,
315                                     PGLUE_ATTENTION_DETAILS2_WAS_ERR) ? 1 : 0,
316                           GET_FIELD(tmp,
317                                     PGLUE_ATTENTION_DETAILS2_BME) ? 1 : 0,
318                           GET_FIELD(tmp,
319                                     PGLUE_ATTENTION_DETAILS2_FID_EN) ? 1 : 0);
320         }
321
322         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_TX_ERR_WR_DETAILS_ICPL);
323         if (tmp & PGLUE_ATTENTION_ICPL_VALID)
324                 DP_NOTICE(p_hwfn, "ICPL error - %08x\n", tmp);
325
326         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_ZLR_ERR_DETAILS);
327         if (tmp & PGLUE_ATTENTION_ZLR_VALID) {
328                 u32 addr_hi, addr_lo;
329
330                 addr_lo = qed_rd(p_hwfn, p_ptt,
331                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_31_0);
332                 addr_hi = qed_rd(p_hwfn, p_ptt,
333                                  PGLUE_B_REG_MASTER_ZLR_ERR_ADD_63_32);
334
335                 DP_NOTICE(p_hwfn, "ZLR error - %08x [Address %08x:%08x]\n",
336                           tmp, addr_hi, addr_lo);
337         }
338
339         tmp = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_ILT_ERR_DETAILS2);
340         if (tmp & PGLUE_ATTENTION_ILT_VALID) {
341                 u32 addr_hi, addr_lo, details;
342
343                 addr_lo = qed_rd(p_hwfn, p_ptt,
344                                  PGLUE_B_REG_VF_ILT_ERR_ADD_31_0);
345                 addr_hi = qed_rd(p_hwfn, p_ptt,
346                                  PGLUE_B_REG_VF_ILT_ERR_ADD_63_32);
347                 details = qed_rd(p_hwfn, p_ptt,
348                                  PGLUE_B_REG_VF_ILT_ERR_DETAILS);
349
350                 DP_NOTICE(p_hwfn,
351                           "ILT error - Details %08x Details2 %08x [Address %08x:%08x]\n",
352                           details, tmp, addr_hi, addr_lo);
353         }
354
355         /* Clear the indications */
356         qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_LATCHED_ERRORS_CLR, BIT(2));
357
358         return 0;
359 }
360
361 static int qed_pglueb_rbc_attn_cb(struct qed_hwfn *p_hwfn)
362 {
363         return qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_dpc_ptt);
364 }
365
366 #define QED_DORQ_ATTENTION_REASON_MASK  (0xfffff)
367 #define QED_DORQ_ATTENTION_OPAQUE_MASK  (0xffff)
368 #define QED_DORQ_ATTENTION_OPAQUE_SHIFT (0x0)
369 #define QED_DORQ_ATTENTION_SIZE_MASK            (0x7f)
370 #define QED_DORQ_ATTENTION_SIZE_SHIFT           (16)
371
372 #define QED_DB_REC_COUNT                        1000
373 #define QED_DB_REC_INTERVAL                     100
374
375 static int qed_db_rec_flush_queue(struct qed_hwfn *p_hwfn,
376                                   struct qed_ptt *p_ptt)
377 {
378         u32 count = QED_DB_REC_COUNT;
379         u32 usage = 1;
380
381         /* Flush any pending (e)dpms as they may never arrive */
382         qed_wr(p_hwfn, p_ptt, DORQ_REG_DPM_FORCE_ABORT, 0x1);
383
384         /* wait for usage to zero or count to run out. This is necessary since
385          * EDPM doorbell transactions can take multiple 64b cycles, and as such
386          * can "split" over the pci. Possibly, the doorbell drop can happen with
387          * half an EDPM in the queue and other half dropped. Another EDPM
388          * doorbell to the same address (from doorbell recovery mechanism or
389          * from the doorbelling entity) could have first half dropped and second
390          * half interpreted as continuation of the first. To prevent such
391          * malformed doorbells from reaching the device, flush the queue before
392          * releasing the overflow sticky indication.
393          */
394         while (count-- && usage) {
395                 usage = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_USAGE_CNT);
396                 udelay(QED_DB_REC_INTERVAL);
397         }
398
399         /* should have been depleted by now */
400         if (usage) {
401                 DP_NOTICE(p_hwfn->cdev,
402                           "DB recovery: doorbell usage failed to zero after %d usec. usage was %x\n",
403                           QED_DB_REC_INTERVAL * QED_DB_REC_COUNT, usage);
404                 return -EBUSY;
405         }
406
407         return 0;
408 }
409
410 int qed_db_rec_handler(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
411 {
412         u32 attn_ovfl, cur_ovfl;
413         int rc;
414
415         attn_ovfl = test_and_clear_bit(QED_OVERFLOW_BIT,
416                                        &p_hwfn->db_recovery_info.overflow);
417         cur_ovfl = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
418         if (!cur_ovfl && !attn_ovfl)
419                 return 0;
420
421         DP_NOTICE(p_hwfn, "PF Overflow sticky: attn %u current %u\n",
422                   attn_ovfl, cur_ovfl);
423
424         if (cur_ovfl && !p_hwfn->db_bar_no_edpm) {
425                 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
426                 if (rc)
427                         return rc;
428         }
429
430         /* Release overflow sticky indication (stop silently dropping everything) */
431         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
432
433         /* Repeat all last doorbells (doorbell drop recovery) */
434         qed_db_recovery_execute(p_hwfn);
435
436         return 0;
437 }
438
439 static void qed_dorq_attn_overflow(struct qed_hwfn *p_hwfn)
440 {
441         struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
442         u32 overflow;
443         int rc;
444
445         overflow = qed_rd(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY);
446         if (!overflow)
447                 goto out;
448
449         /* Run PF doorbell recovery in next periodic handler */
450         set_bit(QED_OVERFLOW_BIT, &p_hwfn->db_recovery_info.overflow);
451
452         if (!p_hwfn->db_bar_no_edpm) {
453                 rc = qed_db_rec_flush_queue(p_hwfn, p_ptt);
454                 if (rc)
455                         goto out;
456         }
457
458         qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_OVFL_STICKY, 0x0);
459 out:
460         /* Schedule the handler even if overflow was not detected */
461         qed_periodic_db_rec_start(p_hwfn);
462 }
463
464 static int qed_dorq_attn_int_sts(struct qed_hwfn *p_hwfn)
465 {
466         u32 int_sts, first_drop_reason, details, address, all_drops_reason;
467         struct qed_ptt *p_ptt = p_hwfn->p_dpc_ptt;
468
469         /* int_sts may be zero since all PFs were interrupted for doorbell
470          * overflow but another one already handled it. Can abort here. If
471          * This PF also requires overflow recovery we will be interrupted again.
472          * The masked almost full indication may also be set. Ignoring.
473          */
474         int_sts = qed_rd(p_hwfn, p_ptt, DORQ_REG_INT_STS);
475         if (!(int_sts & ~DORQ_REG_INT_STS_DORQ_FIFO_AFULL))
476                 return 0;
477
478         DP_NOTICE(p_hwfn->cdev, "DORQ attention. int_sts was %x\n", int_sts);
479
480         /* check if db_drop or overflow happened */
481         if (int_sts & (DORQ_REG_INT_STS_DB_DROP |
482                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR)) {
483                 /* Obtain data about db drop/overflow */
484                 first_drop_reason = qed_rd(p_hwfn, p_ptt,
485                                            DORQ_REG_DB_DROP_REASON) &
486                     QED_DORQ_ATTENTION_REASON_MASK;
487                 details = qed_rd(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS);
488                 address = qed_rd(p_hwfn, p_ptt,
489                                  DORQ_REG_DB_DROP_DETAILS_ADDRESS);
490                 all_drops_reason = qed_rd(p_hwfn, p_ptt,
491                                           DORQ_REG_DB_DROP_DETAILS_REASON);
492
493                 /* Log info */
494                 DP_NOTICE(p_hwfn->cdev,
495                           "Doorbell drop occurred\n"
496                           "Address\t\t0x%08x\t(second BAR address)\n"
497                           "FID\t\t0x%04x\t\t(Opaque FID)\n"
498                           "Size\t\t0x%04x\t\t(in bytes)\n"
499                           "1st drop reason\t0x%08x\t(details on first drop since last handling)\n"
500                           "Sticky reasons\t0x%08x\t(all drop reasons since last handling)\n",
501                           address,
502                           GET_FIELD(details, QED_DORQ_ATTENTION_OPAQUE),
503                           GET_FIELD(details, QED_DORQ_ATTENTION_SIZE) * 4,
504                           first_drop_reason, all_drops_reason);
505
506                 /* Clear the doorbell drop details and prepare for next drop */
507                 qed_wr(p_hwfn, p_ptt, DORQ_REG_DB_DROP_DETAILS_REL, 0);
508
509                 /* Mark interrupt as handled (note: even if drop was due to a different
510                  * reason than overflow we mark as handled)
511                  */
512                 qed_wr(p_hwfn,
513                        p_ptt,
514                        DORQ_REG_INT_STS_WR,
515                        DORQ_REG_INT_STS_DB_DROP |
516                        DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR);
517
518                 /* If there are no indications other than drop indications, success */
519                 if ((int_sts & ~(DORQ_REG_INT_STS_DB_DROP |
520                                  DORQ_REG_INT_STS_DORQ_FIFO_OVFL_ERR |
521                                  DORQ_REG_INT_STS_DORQ_FIFO_AFULL)) == 0)
522                         return 0;
523         }
524
525         /* Some other indication was present - non recoverable */
526         DP_INFO(p_hwfn, "DORQ fatal attention\n");
527
528         return -EINVAL;
529 }
530
531 static int qed_dorq_attn_cb(struct qed_hwfn *p_hwfn)
532 {
533         p_hwfn->db_recovery_info.dorq_attn = true;
534         qed_dorq_attn_overflow(p_hwfn);
535
536         return qed_dorq_attn_int_sts(p_hwfn);
537 }
538
539 static void qed_dorq_attn_handler(struct qed_hwfn *p_hwfn)
540 {
541         if (p_hwfn->db_recovery_info.dorq_attn)
542                 goto out;
543
544         /* Call DORQ callback if the attention was missed */
545         qed_dorq_attn_cb(p_hwfn);
546 out:
547         p_hwfn->db_recovery_info.dorq_attn = false;
548 }
549
550 /* Instead of major changes to the data-structure, we have a some 'special'
551  * identifiers for sources that changed meaning between adapters.
552  */
553 enum aeu_invert_reg_special_type {
554         AEU_INVERT_REG_SPECIAL_CNIG_0,
555         AEU_INVERT_REG_SPECIAL_CNIG_1,
556         AEU_INVERT_REG_SPECIAL_CNIG_2,
557         AEU_INVERT_REG_SPECIAL_CNIG_3,
558         AEU_INVERT_REG_SPECIAL_MAX,
559 };
560
561 static struct aeu_invert_reg_bit
562 aeu_descs_special[AEU_INVERT_REG_SPECIAL_MAX] = {
563         {"CNIG port 0", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
564         {"CNIG port 1", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
565         {"CNIG port 2", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
566         {"CNIG port 3", ATTENTION_SINGLE, NULL, BLOCK_CNIG},
567 };
568
569 /* Notice aeu_invert_reg must be defined in the same order of bits as HW;  */
570 static struct aeu_invert_reg aeu_descs[NUM_ATTN_REGS] = {
571         {
572                 {       /* After Invert 1 */
573                         {"GPIO0 function%d",
574                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
575                 }
576         },
577
578         {
579                 {       /* After Invert 2 */
580                         {"PGLUE config_space", ATTENTION_SINGLE,
581                          NULL, MAX_BLOCK_ID},
582                         {"PGLUE misc_flr", ATTENTION_SINGLE,
583                          NULL, MAX_BLOCK_ID},
584                         {"PGLUE B RBC", ATTENTION_PAR_INT,
585                          qed_pglueb_rbc_attn_cb, BLOCK_PGLUE_B},
586                         {"PGLUE misc_mctp", ATTENTION_SINGLE,
587                          NULL, MAX_BLOCK_ID},
588                         {"Flash event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
589                         {"SMB event", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
590                         {"Main Power", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
591                         {"SW timers #%d", (8 << ATTENTION_LENGTH_SHIFT) |
592                                           (1 << ATTENTION_OFFSET_SHIFT),
593                          NULL, MAX_BLOCK_ID},
594                         {"PCIE glue/PXP VPD %d",
595                          (16 << ATTENTION_LENGTH_SHIFT), NULL, BLOCK_PGLCS},
596                 }
597         },
598
599         {
600                 {       /* After Invert 3 */
601                         {"General Attention %d",
602                          (32 << ATTENTION_LENGTH_SHIFT), NULL, MAX_BLOCK_ID},
603                 }
604         },
605
606         {
607                 {       /* After Invert 4 */
608                         {"General Attention 32", ATTENTION_SINGLE,
609                          NULL, MAX_BLOCK_ID},
610                         {"General Attention %d",
611                          (2 << ATTENTION_LENGTH_SHIFT) |
612                          (33 << ATTENTION_OFFSET_SHIFT), NULL, MAX_BLOCK_ID},
613                         {"General Attention 35", ATTENTION_SINGLE,
614                          NULL, MAX_BLOCK_ID},
615                         {"NWS Parity",
616                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
617                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_0),
618                          NULL, BLOCK_NWS},
619                         {"NWS Interrupt",
620                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
621                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_1),
622                          NULL, BLOCK_NWS},
623                         {"NWM Parity",
624                          ATTENTION_PAR | ATTENTION_BB_DIFFERENT |
625                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_2),
626                          NULL, BLOCK_NWM},
627                         {"NWM Interrupt",
628                          ATTENTION_SINGLE | ATTENTION_BB_DIFFERENT |
629                          ATTENTION_BB(AEU_INVERT_REG_SPECIAL_CNIG_3),
630                          NULL, BLOCK_NWM},
631                         {"MCP CPU", ATTENTION_SINGLE,
632                          qed_mcp_attn_cb, MAX_BLOCK_ID},
633                         {"MCP Watchdog timer", ATTENTION_SINGLE,
634                          NULL, MAX_BLOCK_ID},
635                         {"MCP M2P", ATTENTION_SINGLE, NULL, MAX_BLOCK_ID},
636                         {"AVS stop status ready", ATTENTION_SINGLE,
637                          NULL, MAX_BLOCK_ID},
638                         {"MSTAT", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
639                         {"MSTAT per-path", ATTENTION_PAR_INT,
640                          NULL, MAX_BLOCK_ID},
641                         {"Reserved %d", (6 << ATTENTION_LENGTH_SHIFT),
642                          NULL, MAX_BLOCK_ID},
643                         {"NIG", ATTENTION_PAR_INT, NULL, BLOCK_NIG},
644                         {"BMB/OPTE/MCP", ATTENTION_PAR_INT, NULL, BLOCK_BMB},
645                         {"BTB", ATTENTION_PAR_INT, NULL, BLOCK_BTB},
646                         {"BRB", ATTENTION_PAR_INT, NULL, BLOCK_BRB},
647                         {"PRS", ATTENTION_PAR_INT, NULL, BLOCK_PRS},
648                 }
649         },
650
651         {
652                 {       /* After Invert 5 */
653                         {"SRC", ATTENTION_PAR_INT, NULL, BLOCK_SRC},
654                         {"PB Client1", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB1},
655                         {"PB Client2", ATTENTION_PAR_INT, NULL, BLOCK_PBF_PB2},
656                         {"RPB", ATTENTION_PAR_INT, NULL, BLOCK_RPB},
657                         {"PBF", ATTENTION_PAR_INT, NULL, BLOCK_PBF},
658                         {"QM", ATTENTION_PAR_INT, NULL, BLOCK_QM},
659                         {"TM", ATTENTION_PAR_INT, NULL, BLOCK_TM},
660                         {"MCM",  ATTENTION_PAR_INT, NULL, BLOCK_MCM},
661                         {"MSDM", ATTENTION_PAR_INT, NULL, BLOCK_MSDM},
662                         {"MSEM", ATTENTION_PAR_INT, NULL, BLOCK_MSEM},
663                         {"PCM", ATTENTION_PAR_INT, NULL, BLOCK_PCM},
664                         {"PSDM", ATTENTION_PAR_INT, NULL, BLOCK_PSDM},
665                         {"PSEM", ATTENTION_PAR_INT, NULL, BLOCK_PSEM},
666                         {"TCM", ATTENTION_PAR_INT, NULL, BLOCK_TCM},
667                         {"TSDM", ATTENTION_PAR_INT, NULL, BLOCK_TSDM},
668                         {"TSEM", ATTENTION_PAR_INT, NULL, BLOCK_TSEM},
669                 }
670         },
671
672         {
673                 {       /* After Invert 6 */
674                         {"UCM", ATTENTION_PAR_INT, NULL, BLOCK_UCM},
675                         {"USDM", ATTENTION_PAR_INT, NULL, BLOCK_USDM},
676                         {"USEM", ATTENTION_PAR_INT, NULL, BLOCK_USEM},
677                         {"XCM", ATTENTION_PAR_INT, NULL, BLOCK_XCM},
678                         {"XSDM", ATTENTION_PAR_INT, NULL, BLOCK_XSDM},
679                         {"XSEM", ATTENTION_PAR_INT, NULL, BLOCK_XSEM},
680                         {"YCM", ATTENTION_PAR_INT, NULL, BLOCK_YCM},
681                         {"YSDM", ATTENTION_PAR_INT, NULL, BLOCK_YSDM},
682                         {"YSEM", ATTENTION_PAR_INT, NULL, BLOCK_YSEM},
683                         {"XYLD", ATTENTION_PAR_INT, NULL, BLOCK_XYLD},
684                         {"TMLD", ATTENTION_PAR_INT, NULL, BLOCK_TMLD},
685                         {"MYLD", ATTENTION_PAR_INT, NULL, BLOCK_MULD},
686                         {"YULD", ATTENTION_PAR_INT, NULL, BLOCK_YULD},
687                         {"DORQ", ATTENTION_PAR_INT,
688                          qed_dorq_attn_cb, BLOCK_DORQ},
689                         {"DBG", ATTENTION_PAR_INT, NULL, BLOCK_DBG},
690                         {"IPC", ATTENTION_PAR_INT, NULL, BLOCK_IPC},
691                 }
692         },
693
694         {
695                 {       /* After Invert 7 */
696                         {"CCFC", ATTENTION_PAR_INT, NULL, BLOCK_CCFC},
697                         {"CDU", ATTENTION_PAR_INT, NULL, BLOCK_CDU},
698                         {"DMAE", ATTENTION_PAR_INT, NULL, BLOCK_DMAE},
699                         {"IGU", ATTENTION_PAR_INT, NULL, BLOCK_IGU},
700                         {"ATC", ATTENTION_PAR_INT, NULL, MAX_BLOCK_ID},
701                         {"CAU", ATTENTION_PAR_INT, NULL, BLOCK_CAU},
702                         {"PTU", ATTENTION_PAR_INT, NULL, BLOCK_PTU},
703                         {"PRM", ATTENTION_PAR_INT, NULL, BLOCK_PRM},
704                         {"TCFC", ATTENTION_PAR_INT, NULL, BLOCK_TCFC},
705                         {"RDIF", ATTENTION_PAR_INT, NULL, BLOCK_RDIF},
706                         {"TDIF", ATTENTION_PAR_INT, NULL, BLOCK_TDIF},
707                         {"RSS", ATTENTION_PAR_INT, NULL, BLOCK_RSS},
708                         {"MISC", ATTENTION_PAR_INT, NULL, BLOCK_MISC},
709                         {"MISCS", ATTENTION_PAR_INT, NULL, BLOCK_MISCS},
710                         {"PCIE", ATTENTION_PAR, NULL, BLOCK_PCIE},
711                         {"Vaux PCI core", ATTENTION_SINGLE, NULL, BLOCK_PGLCS},
712                         {"PSWRQ", ATTENTION_PAR_INT, NULL, BLOCK_PSWRQ},
713                 }
714         },
715
716         {
717                 {       /* After Invert 8 */
718                         {"PSWRQ (pci_clk)", ATTENTION_PAR_INT,
719                          NULL, BLOCK_PSWRQ2},
720                         {"PSWWR", ATTENTION_PAR_INT, NULL, BLOCK_PSWWR},
721                         {"PSWWR (pci_clk)", ATTENTION_PAR_INT,
722                          NULL, BLOCK_PSWWR2},
723                         {"PSWRD", ATTENTION_PAR_INT, NULL, BLOCK_PSWRD},
724                         {"PSWRD (pci_clk)", ATTENTION_PAR_INT,
725                          NULL, BLOCK_PSWRD2},
726                         {"PSWHST", ATTENTION_PAR_INT,
727                          qed_pswhst_attn_cb, BLOCK_PSWHST},
728                         {"PSWHST (pci_clk)", ATTENTION_PAR_INT,
729                          NULL, BLOCK_PSWHST2},
730                         {"GRC", ATTENTION_PAR_INT,
731                          qed_grc_attn_cb, BLOCK_GRC},
732                         {"CPMU", ATTENTION_PAR_INT, NULL, BLOCK_CPMU},
733                         {"NCSI", ATTENTION_PAR_INT, NULL, BLOCK_NCSI},
734                         {"MSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
735                         {"PSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
736                         {"TSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
737                         {"USEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
738                         {"XSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
739                         {"YSEM PRAM", ATTENTION_PAR, NULL, MAX_BLOCK_ID},
740                         {"pxp_misc_mps", ATTENTION_PAR, NULL, BLOCK_PGLCS},
741                         {"PCIE glue/PXP Exp. ROM", ATTENTION_SINGLE,
742                          NULL, BLOCK_PGLCS},
743                         {"PERST_B assertion", ATTENTION_SINGLE,
744                          NULL, MAX_BLOCK_ID},
745                         {"PERST_B deassertion", ATTENTION_SINGLE,
746                          NULL, MAX_BLOCK_ID},
747                         {"Reserved %d", (2 << ATTENTION_LENGTH_SHIFT),
748                          NULL, MAX_BLOCK_ID},
749                 }
750         },
751
752         {
753                 {       /* After Invert 9 */
754                         {"MCP Latched memory", ATTENTION_PAR,
755                          NULL, MAX_BLOCK_ID},
756                         {"MCP Latched scratchpad cache", ATTENTION_SINGLE,
757                          NULL, MAX_BLOCK_ID},
758                         {"MCP Latched ump_tx", ATTENTION_PAR,
759                          NULL, MAX_BLOCK_ID},
760                         {"MCP Latched scratchpad", ATTENTION_PAR,
761                          NULL, MAX_BLOCK_ID},
762                         {"Reserved %d", (28 << ATTENTION_LENGTH_SHIFT),
763                          NULL, MAX_BLOCK_ID},
764                 }
765         },
766 };
767
768 static struct aeu_invert_reg_bit *
769 qed_int_aeu_translate(struct qed_hwfn *p_hwfn,
770                       struct aeu_invert_reg_bit *p_bit)
771 {
772         if (!QED_IS_BB(p_hwfn->cdev))
773                 return p_bit;
774
775         if (!(p_bit->flags & ATTENTION_BB_DIFFERENT))
776                 return p_bit;
777
778         return &aeu_descs_special[(p_bit->flags & ATTENTION_BB_MASK) >>
779                                   ATTENTION_BB_SHIFT];
780 }
781
782 static bool qed_int_is_parity_flag(struct qed_hwfn *p_hwfn,
783                                    struct aeu_invert_reg_bit *p_bit)
784 {
785         return !!(qed_int_aeu_translate(p_hwfn, p_bit)->flags &
786                    ATTENTION_PARITY);
787 }
788
789 #define ATTN_STATE_BITS         (0xfff)
790 #define ATTN_BITS_MASKABLE      (0x3ff)
791 struct qed_sb_attn_info {
792         /* Virtual & Physical address of the SB */
793         struct atten_status_block       *sb_attn;
794         dma_addr_t                      sb_phys;
795
796         /* Last seen running index */
797         u16                             index;
798
799         /* A mask of the AEU bits resulting in a parity error */
800         u32                             parity_mask[NUM_ATTN_REGS];
801
802         /* A pointer to the attention description structure */
803         struct aeu_invert_reg           *p_aeu_desc;
804
805         /* Previously asserted attentions, which are still unasserted */
806         u16                             known_attn;
807
808         /* Cleanup address for the link's general hw attention */
809         u32                             mfw_attn_addr;
810 };
811
812 static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
813                                       struct qed_sb_attn_info *p_sb_desc)
814 {
815         u16 rc = 0, index;
816
817         index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
818         if (p_sb_desc->index != index) {
819                 p_sb_desc->index        = index;
820                 rc                    = QED_SB_ATT_IDX;
821         }
822
823         return rc;
824 }
825
826 /**
827  *  @brief qed_int_assertion - handles asserted attention bits
828  *
829  *  @param p_hwfn
830  *  @param asserted_bits newly asserted bits
831  *  @return int
832  */
833 static int qed_int_assertion(struct qed_hwfn *p_hwfn, u16 asserted_bits)
834 {
835         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
836         u32 igu_mask;
837
838         /* Mask the source of the attention in the IGU */
839         igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
840         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
841                    igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
842         igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
843         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
844
845         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
846                    "inner known ATTN state: 0x%04x --> 0x%04x\n",
847                    sb_attn_sw->known_attn,
848                    sb_attn_sw->known_attn | asserted_bits);
849         sb_attn_sw->known_attn |= asserted_bits;
850
851         /* Handle MCP events */
852         if (asserted_bits & 0x100) {
853                 qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
854                 /* Clean the MCP attention */
855                 qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
856                        sb_attn_sw->mfw_attn_addr, 0);
857         }
858
859         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
860                       GTT_BAR0_MAP_REG_IGU_CMD +
861                       ((IGU_CMD_ATTN_BIT_SET_UPPER -
862                         IGU_CMD_INT_ACK_BASE) << 3),
863                       (u32)asserted_bits);
864
865         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
866                    asserted_bits);
867
868         return 0;
869 }
870
871 static void qed_int_attn_print(struct qed_hwfn *p_hwfn,
872                                enum block_id id,
873                                enum dbg_attn_type type, bool b_clear)
874 {
875         struct dbg_attn_block_result attn_results;
876         enum dbg_status status;
877
878         memset(&attn_results, 0, sizeof(attn_results));
879
880         status = qed_dbg_read_attn(p_hwfn, p_hwfn->p_dpc_ptt, id, type,
881                                    b_clear, &attn_results);
882         if (status != DBG_STATUS_OK)
883                 DP_NOTICE(p_hwfn,
884                           "Failed to parse attention information [status: %s]\n",
885                           qed_dbg_get_status_str(status));
886         else
887                 qed_dbg_parse_attn(p_hwfn, &attn_results);
888 }
889
890 /**
891  * @brief qed_int_deassertion_aeu_bit - handles the effects of a single
892  * cause of the attention
893  *
894  * @param p_hwfn
895  * @param p_aeu - descriptor of an AEU bit which caused the attention
896  * @param aeu_en_reg - register offset of the AEU enable reg. which configured
897  *  this bit to this group.
898  * @param bit_index - index of this bit in the aeu_en_reg
899  *
900  * @return int
901  */
902 static int
903 qed_int_deassertion_aeu_bit(struct qed_hwfn *p_hwfn,
904                             struct aeu_invert_reg_bit *p_aeu,
905                             u32 aeu_en_reg,
906                             const char *p_bit_name, u32 bitmask)
907 {
908         bool b_fatal = false;
909         int rc = -EINVAL;
910         u32 val;
911
912         DP_INFO(p_hwfn, "Deasserted attention `%s'[%08x]\n",
913                 p_bit_name, bitmask);
914
915         /* Call callback before clearing the interrupt status */
916         if (p_aeu->cb) {
917                 DP_INFO(p_hwfn, "`%s (attention)': Calling Callback function\n",
918                         p_bit_name);
919                 rc = p_aeu->cb(p_hwfn);
920         }
921
922         if (rc)
923                 b_fatal = true;
924
925         /* Print HW block interrupt registers */
926         if (p_aeu->block_index != MAX_BLOCK_ID)
927                 qed_int_attn_print(p_hwfn, p_aeu->block_index,
928                                    ATTN_TYPE_INTERRUPT, !b_fatal);
929
930
931         /* If the attention is benign, no need to prevent it */
932         if (!rc)
933                 goto out;
934
935         /* Prevent this Attention from being asserted in the future */
936         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
937         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, (val & ~bitmask));
938         DP_INFO(p_hwfn, "`%s' - Disabled future attentions\n",
939                 p_bit_name);
940
941 out:
942         return rc;
943 }
944
945 /**
946  * @brief qed_int_deassertion_parity - handle a single parity AEU source
947  *
948  * @param p_hwfn
949  * @param p_aeu - descriptor of an AEU bit which caused the parity
950  * @param aeu_en_reg - address of the AEU enable register
951  * @param bit_index
952  */
953 static void qed_int_deassertion_parity(struct qed_hwfn *p_hwfn,
954                                        struct aeu_invert_reg_bit *p_aeu,
955                                        u32 aeu_en_reg, u8 bit_index)
956 {
957         u32 block_id = p_aeu->block_index, mask, val;
958
959         DP_NOTICE(p_hwfn->cdev,
960                   "%s parity attention is set [address 0x%08x, bit %d]\n",
961                   p_aeu->bit_name, aeu_en_reg, bit_index);
962
963         if (block_id != MAX_BLOCK_ID) {
964                 qed_int_attn_print(p_hwfn, block_id, ATTN_TYPE_PARITY, false);
965
966                 /* In BB, there's a single parity bit for several blocks */
967                 if (block_id == BLOCK_BTB) {
968                         qed_int_attn_print(p_hwfn, BLOCK_OPTE,
969                                            ATTN_TYPE_PARITY, false);
970                         qed_int_attn_print(p_hwfn, BLOCK_MCP,
971                                            ATTN_TYPE_PARITY, false);
972                 }
973         }
974
975         /* Prevent this parity error from being re-asserted */
976         mask = ~BIT(bit_index);
977         val = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg);
978         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en_reg, val & mask);
979         DP_INFO(p_hwfn, "`%s' - Disabled future parity errors\n",
980                 p_aeu->bit_name);
981 }
982
983 /**
984  * @brief - handles deassertion of previously asserted attentions.
985  *
986  * @param p_hwfn
987  * @param deasserted_bits - newly deasserted bits
988  * @return int
989  *
990  */
991 static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
992                                u16 deasserted_bits)
993 {
994         struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
995         u32 aeu_inv_arr[NUM_ATTN_REGS], aeu_mask, aeu_en, en;
996         u8 i, j, k, bit_idx;
997         int rc = 0;
998
999         /* Read the attention registers in the AEU */
1000         for (i = 0; i < NUM_ATTN_REGS; i++) {
1001                 aeu_inv_arr[i] = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
1002                                         MISC_REG_AEU_AFTER_INVERT_1_IGU +
1003                                         i * 0x4);
1004                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1005                            "Deasserted bits [%d]: %08x\n",
1006                            i, aeu_inv_arr[i]);
1007         }
1008
1009         /* Find parity attentions first */
1010         for (i = 0; i < NUM_ATTN_REGS; i++) {
1011                 struct aeu_invert_reg *p_aeu = &sb_attn_sw->p_aeu_desc[i];
1012                 u32 parities;
1013
1014                 aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 + i * sizeof(u32);
1015                 en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1016
1017                 /* Skip register in which no parity bit is currently set */
1018                 parities = sb_attn_sw->parity_mask[i] & aeu_inv_arr[i] & en;
1019                 if (!parities)
1020                         continue;
1021
1022                 for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1023                         struct aeu_invert_reg_bit *p_bit = &p_aeu->bits[j];
1024
1025                         if (qed_int_is_parity_flag(p_hwfn, p_bit) &&
1026                             !!(parities & BIT(bit_idx)))
1027                                 qed_int_deassertion_parity(p_hwfn, p_bit,
1028                                                            aeu_en, bit_idx);
1029
1030                         bit_idx += ATTENTION_LENGTH(p_bit->flags);
1031                 }
1032         }
1033
1034         /* Find non-parity cause for attention and act */
1035         for (k = 0; k < MAX_ATTN_GRPS; k++) {
1036                 struct aeu_invert_reg_bit *p_aeu;
1037
1038                 /* Handle only groups whose attention is currently deasserted */
1039                 if (!(deasserted_bits & (1 << k)))
1040                         continue;
1041
1042                 for (i = 0; i < NUM_ATTN_REGS; i++) {
1043                         u32 bits;
1044
1045                         aeu_en = MISC_REG_AEU_ENABLE1_IGU_OUT_0 +
1046                                  i * sizeof(u32) +
1047                                  k * sizeof(u32) * NUM_ATTN_REGS;
1048
1049                         en = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, aeu_en);
1050                         bits = aeu_inv_arr[i] & en;
1051
1052                         /* Skip if no bit from this group is currently set */
1053                         if (!bits)
1054                                 continue;
1055
1056                         /* Find all set bits from current register which belong
1057                          * to current group, making them responsible for the
1058                          * previous assertion.
1059                          */
1060                         for (j = 0, bit_idx = 0; bit_idx < 32; j++) {
1061                                 long unsigned int bitmask;
1062                                 u8 bit, bit_len;
1063
1064                                 p_aeu = &sb_attn_sw->p_aeu_desc[i].bits[j];
1065                                 p_aeu = qed_int_aeu_translate(p_hwfn, p_aeu);
1066
1067                                 bit = bit_idx;
1068                                 bit_len = ATTENTION_LENGTH(p_aeu->flags);
1069                                 if (qed_int_is_parity_flag(p_hwfn, p_aeu)) {
1070                                         /* Skip Parity */
1071                                         bit++;
1072                                         bit_len--;
1073                                 }
1074
1075                                 bitmask = bits & (((1 << bit_len) - 1) << bit);
1076                                 bitmask >>= bit;
1077
1078                                 if (bitmask) {
1079                                         u32 flags = p_aeu->flags;
1080                                         char bit_name[30];
1081                                         u8 num;
1082
1083                                         num = (u8)find_first_bit(&bitmask,
1084                                                                  bit_len);
1085
1086                                         /* Some bits represent more than a
1087                                          * a single interrupt. Correctly print
1088                                          * their name.
1089                                          */
1090                                         if (ATTENTION_LENGTH(flags) > 2 ||
1091                                             ((flags & ATTENTION_PAR_INT) &&
1092                                              ATTENTION_LENGTH(flags) > 1))
1093                                                 snprintf(bit_name, 30,
1094                                                          p_aeu->bit_name, num);
1095                                         else
1096                                                 strncpy(bit_name,
1097                                                         p_aeu->bit_name, 30);
1098
1099                                         /* We now need to pass bitmask in its
1100                                          * correct position.
1101                                          */
1102                                         bitmask <<= bit;
1103
1104                                         /* Handle source of the attention */
1105                                         qed_int_deassertion_aeu_bit(p_hwfn,
1106                                                                     p_aeu,
1107                                                                     aeu_en,
1108                                                                     bit_name,
1109                                                                     bitmask);
1110                                 }
1111
1112                                 bit_idx += ATTENTION_LENGTH(p_aeu->flags);
1113                         }
1114                 }
1115         }
1116
1117         /* Handle missed DORQ attention */
1118         qed_dorq_attn_handler(p_hwfn);
1119
1120         /* Clear IGU indication for the deasserted bits */
1121         DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
1122                                     GTT_BAR0_MAP_REG_IGU_CMD +
1123                                     ((IGU_CMD_ATTN_BIT_CLR_UPPER -
1124                                       IGU_CMD_INT_ACK_BASE) << 3),
1125                                     ~((u32)deasserted_bits));
1126
1127         /* Unmask deasserted attentions in IGU */
1128         aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE);
1129         aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
1130         qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
1131
1132         /* Clear deassertion from inner state */
1133         sb_attn_sw->known_attn &= ~deasserted_bits;
1134
1135         return rc;
1136 }
1137
1138 static int qed_int_attentions(struct qed_hwfn *p_hwfn)
1139 {
1140         struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
1141         struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
1142         u32 attn_bits = 0, attn_acks = 0;
1143         u16 asserted_bits, deasserted_bits;
1144         __le16 index;
1145         int rc = 0;
1146
1147         /* Read current attention bits/acks - safeguard against attentions
1148          * by guaranting work on a synchronized timeframe
1149          */
1150         do {
1151                 index = p_sb_attn->sb_index;
1152                 /* finish reading index before the loop condition */
1153                 dma_rmb();
1154                 attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
1155                 attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
1156         } while (index != p_sb_attn->sb_index);
1157         p_sb_attn->sb_index = index;
1158
1159         /* Attention / Deassertion are meaningful (and in correct state)
1160          * only when they differ and consistent with known state - deassertion
1161          * when previous attention & current ack, and assertion when current
1162          * attention with no previous attention
1163          */
1164         asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
1165                 ~p_sb_attn_sw->known_attn;
1166         deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
1167                 p_sb_attn_sw->known_attn;
1168
1169         if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
1170                 DP_INFO(p_hwfn,
1171                         "Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
1172                         index, attn_bits, attn_acks, asserted_bits,
1173                         deasserted_bits, p_sb_attn_sw->known_attn);
1174         } else if (asserted_bits == 0x100) {
1175                 DP_INFO(p_hwfn, "MFW indication via attention\n");
1176         } else {
1177                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1178                            "MFW indication [deassertion]\n");
1179         }
1180
1181         if (asserted_bits) {
1182                 rc = qed_int_assertion(p_hwfn, asserted_bits);
1183                 if (rc)
1184                         return rc;
1185         }
1186
1187         if (deasserted_bits)
1188                 rc = qed_int_deassertion(p_hwfn, deasserted_bits);
1189
1190         return rc;
1191 }
1192
1193 static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
1194                             void __iomem *igu_addr, u32 ack_cons)
1195 {
1196         struct igu_prod_cons_update igu_ack = { 0 };
1197
1198         igu_ack.sb_id_and_flags =
1199                 ((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
1200                  (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
1201                  (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
1202                  (IGU_SEG_ACCESS_ATTN <<
1203                   IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
1204
1205         DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
1206
1207         /* Both segments (interrupts & acks) are written to same place address;
1208          * Need to guarantee all commands will be received (in-order) by HW.
1209          */
1210         barrier();
1211 }
1212
1213 void qed_int_sp_dpc(unsigned long hwfn_cookie)
1214 {
1215         struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
1216         struct qed_pi_info *pi_info = NULL;
1217         struct qed_sb_attn_info *sb_attn;
1218         struct qed_sb_info *sb_info;
1219         int arr_size;
1220         u16 rc = 0;
1221
1222         if (!p_hwfn->p_sp_sb) {
1223                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
1224                 return;
1225         }
1226
1227         sb_info = &p_hwfn->p_sp_sb->sb_info;
1228         arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
1229         if (!sb_info) {
1230                 DP_ERR(p_hwfn->cdev,
1231                        "Status block is NULL - cannot ack interrupts\n");
1232                 return;
1233         }
1234
1235         if (!p_hwfn->p_sb_attn) {
1236                 DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
1237                 return;
1238         }
1239         sb_attn = p_hwfn->p_sb_attn;
1240
1241         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
1242                    p_hwfn, p_hwfn->my_id);
1243
1244         /* Disable ack for def status block. Required both for msix +
1245          * inta in non-mask mode, in inta does no harm.
1246          */
1247         qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
1248
1249         /* Gather Interrupts/Attentions information */
1250         if (!sb_info->sb_virt) {
1251                 DP_ERR(p_hwfn->cdev,
1252                        "Interrupt Status block is NULL - cannot check for new interrupts!\n");
1253         } else {
1254                 u32 tmp_index = sb_info->sb_ack;
1255
1256                 rc = qed_sb_update_sb_idx(sb_info);
1257                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1258                            "Interrupt indices: 0x%08x --> 0x%08x\n",
1259                            tmp_index, sb_info->sb_ack);
1260         }
1261
1262         if (!sb_attn || !sb_attn->sb_attn) {
1263                 DP_ERR(p_hwfn->cdev,
1264                        "Attentions Status block is NULL - cannot check for new attentions!\n");
1265         } else {
1266                 u16 tmp_index = sb_attn->index;
1267
1268                 rc |= qed_attn_update_idx(p_hwfn, sb_attn);
1269                 DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
1270                            "Attention indices: 0x%08x --> 0x%08x\n",
1271                            tmp_index, sb_attn->index);
1272         }
1273
1274         /* Check if we expect interrupts at this time. if not just ack them */
1275         if (!(rc & QED_SB_EVENT_MASK)) {
1276                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1277                 return;
1278         }
1279
1280         /* Check the validity of the DPC ptt. If not ack interrupts and fail */
1281         if (!p_hwfn->p_dpc_ptt) {
1282                 DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
1283                 qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1284                 return;
1285         }
1286
1287         if (rc & QED_SB_ATT_IDX)
1288                 qed_int_attentions(p_hwfn);
1289
1290         if (rc & QED_SB_IDX) {
1291                 int pi;
1292
1293                 /* Look for a free index */
1294                 for (pi = 0; pi < arr_size; pi++) {
1295                         pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
1296                         if (pi_info->comp_cb)
1297                                 pi_info->comp_cb(p_hwfn, pi_info->cookie);
1298                 }
1299         }
1300
1301         if (sb_attn && (rc & QED_SB_ATT_IDX))
1302                 /* This should be done before the interrupts are enabled,
1303                  * since otherwise a new attention will be generated.
1304                  */
1305                 qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
1306
1307         qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
1308 }
1309
1310 static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
1311 {
1312         struct qed_sb_attn_info *p_sb = p_hwfn->p_sb_attn;
1313
1314         if (!p_sb)
1315                 return;
1316
1317         if (p_sb->sb_attn)
1318                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1319                                   SB_ATTN_ALIGNED_SIZE(p_hwfn),
1320                                   p_sb->sb_attn, p_sb->sb_phys);
1321         kfree(p_sb);
1322         p_hwfn->p_sb_attn = NULL;
1323 }
1324
1325 static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
1326                                   struct qed_ptt *p_ptt)
1327 {
1328         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1329
1330         memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
1331
1332         sb_info->index = 0;
1333         sb_info->known_attn = 0;
1334
1335         /* Configure Attention Status Block in IGU */
1336         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
1337                lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
1338         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
1339                upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
1340 }
1341
1342 static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
1343                                  struct qed_ptt *p_ptt,
1344                                  void *sb_virt_addr, dma_addr_t sb_phy_addr)
1345 {
1346         struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
1347         int i, j, k;
1348
1349         sb_info->sb_attn = sb_virt_addr;
1350         sb_info->sb_phys = sb_phy_addr;
1351
1352         /* Set the pointer to the AEU descriptors */
1353         sb_info->p_aeu_desc = aeu_descs;
1354
1355         /* Calculate Parity Masks */
1356         memset(sb_info->parity_mask, 0, sizeof(u32) * NUM_ATTN_REGS);
1357         for (i = 0; i < NUM_ATTN_REGS; i++) {
1358                 /* j is array index, k is bit index */
1359                 for (j = 0, k = 0; k < 32; j++) {
1360                         struct aeu_invert_reg_bit *p_aeu;
1361
1362                         p_aeu = &aeu_descs[i].bits[j];
1363                         if (qed_int_is_parity_flag(p_hwfn, p_aeu))
1364                                 sb_info->parity_mask[i] |= 1 << k;
1365
1366                         k += ATTENTION_LENGTH(p_aeu->flags);
1367                 }
1368                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1369                            "Attn Mask [Reg %d]: 0x%08x\n",
1370                            i, sb_info->parity_mask[i]);
1371         }
1372
1373         /* Set the address of cleanup for the mcp attention */
1374         sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
1375                                  MISC_REG_AEU_GENERAL_ATTN_0;
1376
1377         qed_int_sb_attn_setup(p_hwfn, p_ptt);
1378 }
1379
1380 static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
1381                                  struct qed_ptt *p_ptt)
1382 {
1383         struct qed_dev *cdev = p_hwfn->cdev;
1384         struct qed_sb_attn_info *p_sb;
1385         dma_addr_t p_phys = 0;
1386         void *p_virt;
1387
1388         /* SB struct */
1389         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1390         if (!p_sb)
1391                 return -ENOMEM;
1392
1393         /* SB ring  */
1394         p_virt = dma_alloc_coherent(&cdev->pdev->dev,
1395                                     SB_ATTN_ALIGNED_SIZE(p_hwfn),
1396                                     &p_phys, GFP_KERNEL);
1397
1398         if (!p_virt) {
1399                 kfree(p_sb);
1400                 return -ENOMEM;
1401         }
1402
1403         /* Attention setup */
1404         p_hwfn->p_sb_attn = p_sb;
1405         qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
1406
1407         return 0;
1408 }
1409
1410 /* coalescing timeout = timeset << (timer_res + 1) */
1411 #define QED_CAU_DEF_RX_USECS 24
1412 #define QED_CAU_DEF_TX_USECS 48
1413
1414 void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
1415                            struct cau_sb_entry *p_sb_entry,
1416                            u8 pf_id, u16 vf_number, u8 vf_valid)
1417 {
1418         struct qed_dev *cdev = p_hwfn->cdev;
1419         u32 cau_state;
1420         u8 timer_res;
1421
1422         memset(p_sb_entry, 0, sizeof(*p_sb_entry));
1423
1424         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
1425         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
1426         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
1427         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
1428         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
1429
1430         cau_state = CAU_HC_DISABLE_STATE;
1431
1432         if (cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1433                 cau_state = CAU_HC_ENABLE_STATE;
1434                 if (!cdev->rx_coalesce_usecs)
1435                         cdev->rx_coalesce_usecs = QED_CAU_DEF_RX_USECS;
1436                 if (!cdev->tx_coalesce_usecs)
1437                         cdev->tx_coalesce_usecs = QED_CAU_DEF_TX_USECS;
1438         }
1439
1440         /* Coalesce = (timeset << timer-res), timeset is 7bit wide */
1441         if (cdev->rx_coalesce_usecs <= 0x7F)
1442                 timer_res = 0;
1443         else if (cdev->rx_coalesce_usecs <= 0xFF)
1444                 timer_res = 1;
1445         else
1446                 timer_res = 2;
1447         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
1448
1449         if (cdev->tx_coalesce_usecs <= 0x7F)
1450                 timer_res = 0;
1451         else if (cdev->tx_coalesce_usecs <= 0xFF)
1452                 timer_res = 1;
1453         else
1454                 timer_res = 2;
1455         SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
1456
1457         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
1458         SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
1459 }
1460
1461 static void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
1462                                 struct qed_ptt *p_ptt,
1463                                 u16 igu_sb_id,
1464                                 u32 pi_index,
1465                                 enum qed_coalescing_fsm coalescing_fsm,
1466                                 u8 timeset)
1467 {
1468         struct cau_pi_entry pi_entry;
1469         u32 sb_offset, pi_offset;
1470
1471         if (IS_VF(p_hwfn->cdev))
1472                 return;
1473
1474         sb_offset = igu_sb_id * PIS_PER_SB_E4;
1475         memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
1476
1477         SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
1478         if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
1479                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
1480         else
1481                 SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
1482
1483         pi_offset = sb_offset + pi_index;
1484         if (p_hwfn->hw_init_done) {
1485                 qed_wr(p_hwfn, p_ptt,
1486                        CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
1487                        *((u32 *)&(pi_entry)));
1488         } else {
1489                 STORE_RT_REG(p_hwfn,
1490                              CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
1491                              *((u32 *)&(pi_entry)));
1492         }
1493 }
1494
1495 void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
1496                          struct qed_ptt *p_ptt,
1497                          dma_addr_t sb_phys,
1498                          u16 igu_sb_id, u16 vf_number, u8 vf_valid)
1499 {
1500         struct cau_sb_entry sb_entry;
1501
1502         qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
1503                               vf_number, vf_valid);
1504
1505         if (p_hwfn->hw_init_done) {
1506                 /* Wide-bus, initialize via DMAE */
1507                 u64 phys_addr = (u64)sb_phys;
1508
1509                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&phys_addr,
1510                                   CAU_REG_SB_ADDR_MEMORY +
1511                                   igu_sb_id * sizeof(u64), 2, 0);
1512                 qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&sb_entry,
1513                                   CAU_REG_SB_VAR_MEMORY +
1514                                   igu_sb_id * sizeof(u64), 2, 0);
1515         } else {
1516                 /* Initialize Status Block Address */
1517                 STORE_RT_REG_AGG(p_hwfn,
1518                                  CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
1519                                  igu_sb_id * 2,
1520                                  sb_phys);
1521
1522                 STORE_RT_REG_AGG(p_hwfn,
1523                                  CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
1524                                  igu_sb_id * 2,
1525                                  sb_entry);
1526         }
1527
1528         /* Configure pi coalescing if set */
1529         if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
1530                 u8 num_tc = p_hwfn->hw_info.num_hw_tc;
1531                 u8 timeset, timer_res;
1532                 u8 i;
1533
1534                 /* timeset = (coalesce >> timer-res), timeset is 7bit wide */
1535                 if (p_hwfn->cdev->rx_coalesce_usecs <= 0x7F)
1536                         timer_res = 0;
1537                 else if (p_hwfn->cdev->rx_coalesce_usecs <= 0xFF)
1538                         timer_res = 1;
1539                 else
1540                         timer_res = 2;
1541                 timeset = (u8)(p_hwfn->cdev->rx_coalesce_usecs >> timer_res);
1542                 qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
1543                                     QED_COAL_RX_STATE_MACHINE, timeset);
1544
1545                 if (p_hwfn->cdev->tx_coalesce_usecs <= 0x7F)
1546                         timer_res = 0;
1547                 else if (p_hwfn->cdev->tx_coalesce_usecs <= 0xFF)
1548                         timer_res = 1;
1549                 else
1550                         timer_res = 2;
1551                 timeset = (u8)(p_hwfn->cdev->tx_coalesce_usecs >> timer_res);
1552                 for (i = 0; i < num_tc; i++) {
1553                         qed_int_cau_conf_pi(p_hwfn, p_ptt,
1554                                             igu_sb_id, TX_PI(i),
1555                                             QED_COAL_TX_STATE_MACHINE,
1556                                             timeset);
1557                 }
1558         }
1559 }
1560
1561 void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
1562                       struct qed_ptt *p_ptt, struct qed_sb_info *sb_info)
1563 {
1564         /* zero status block and ack counter */
1565         sb_info->sb_ack = 0;
1566         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1567
1568         if (IS_PF(p_hwfn->cdev))
1569                 qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
1570                                     sb_info->igu_sb_id, 0, 0);
1571 }
1572
1573 struct qed_igu_block *qed_get_igu_free_sb(struct qed_hwfn *p_hwfn, bool b_is_pf)
1574 {
1575         struct qed_igu_block *p_block;
1576         u16 igu_id;
1577
1578         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1579              igu_id++) {
1580                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1581
1582                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1583                     !(p_block->status & QED_IGU_STATUS_FREE))
1584                         continue;
1585
1586                 if (!!(p_block->status & QED_IGU_STATUS_PF) == b_is_pf)
1587                         return p_block;
1588         }
1589
1590         return NULL;
1591 }
1592
1593 static u16 qed_get_pf_igu_sb_id(struct qed_hwfn *p_hwfn, u16 vector_id)
1594 {
1595         struct qed_igu_block *p_block;
1596         u16 igu_id;
1597
1598         for (igu_id = 0; igu_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
1599              igu_id++) {
1600                 p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_id];
1601
1602                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1603                     !p_block->is_pf ||
1604                     p_block->vector_number != vector_id)
1605                         continue;
1606
1607                 return igu_id;
1608         }
1609
1610         return QED_SB_INVALID_IDX;
1611 }
1612
1613 u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn, u16 sb_id)
1614 {
1615         u16 igu_sb_id;
1616
1617         /* Assuming continuous set of IGU SBs dedicated for given PF */
1618         if (sb_id == QED_SP_SB_ID)
1619                 igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
1620         else if (IS_PF(p_hwfn->cdev))
1621                 igu_sb_id = qed_get_pf_igu_sb_id(p_hwfn, sb_id + 1);
1622         else
1623                 igu_sb_id = qed_vf_get_igu_sb_id(p_hwfn, sb_id);
1624
1625         if (sb_id == QED_SP_SB_ID)
1626                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1627                            "Slowpath SB index in IGU is 0x%04x\n", igu_sb_id);
1628         else
1629                 DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1630                            "SB [%04x] <--> IGU SB [%04x]\n", sb_id, igu_sb_id);
1631
1632         return igu_sb_id;
1633 }
1634
1635 int qed_int_sb_init(struct qed_hwfn *p_hwfn,
1636                     struct qed_ptt *p_ptt,
1637                     struct qed_sb_info *sb_info,
1638                     void *sb_virt_addr, dma_addr_t sb_phy_addr, u16 sb_id)
1639 {
1640         sb_info->sb_virt = sb_virt_addr;
1641         sb_info->sb_phys = sb_phy_addr;
1642
1643         sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
1644
1645         if (sb_id != QED_SP_SB_ID) {
1646                 if (IS_PF(p_hwfn->cdev)) {
1647                         struct qed_igu_info *p_info;
1648                         struct qed_igu_block *p_block;
1649
1650                         p_info = p_hwfn->hw_info.p_igu_info;
1651                         p_block = &p_info->entry[sb_info->igu_sb_id];
1652
1653                         p_block->sb_info = sb_info;
1654                         p_block->status &= ~QED_IGU_STATUS_FREE;
1655                         p_info->usage.free_cnt--;
1656                 } else {
1657                         qed_vf_set_sb_info(p_hwfn, sb_id, sb_info);
1658                 }
1659         }
1660
1661         sb_info->cdev = p_hwfn->cdev;
1662
1663         /* The igu address will hold the absolute address that needs to be
1664          * written to for a specific status block
1665          */
1666         if (IS_PF(p_hwfn->cdev)) {
1667                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1668                                                   GTT_BAR0_MAP_REG_IGU_CMD +
1669                                                   (sb_info->igu_sb_id << 3);
1670         } else {
1671                 sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
1672                                                   PXP_VF_BAR0_START_IGU +
1673                                                   ((IGU_CMD_INT_ACK_BASE +
1674                                                     sb_info->igu_sb_id) << 3);
1675         }
1676
1677         sb_info->flags |= QED_SB_INFO_INIT;
1678
1679         qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
1680
1681         return 0;
1682 }
1683
1684 int qed_int_sb_release(struct qed_hwfn *p_hwfn,
1685                        struct qed_sb_info *sb_info, u16 sb_id)
1686 {
1687         struct qed_igu_block *p_block;
1688         struct qed_igu_info *p_info;
1689
1690         if (!sb_info)
1691                 return 0;
1692
1693         /* zero status block and ack counter */
1694         sb_info->sb_ack = 0;
1695         memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
1696
1697         if (IS_VF(p_hwfn->cdev)) {
1698                 qed_vf_set_sb_info(p_hwfn, sb_id, NULL);
1699                 return 0;
1700         }
1701
1702         p_info = p_hwfn->hw_info.p_igu_info;
1703         p_block = &p_info->entry[sb_info->igu_sb_id];
1704
1705         /* Vector 0 is reserved to Default SB */
1706         if (!p_block->vector_number) {
1707                 DP_ERR(p_hwfn, "Do Not free sp sb using this function");
1708                 return -EINVAL;
1709         }
1710
1711         /* Lose reference to client's SB info, and fix counters */
1712         p_block->sb_info = NULL;
1713         p_block->status |= QED_IGU_STATUS_FREE;
1714         p_info->usage.free_cnt++;
1715
1716         return 0;
1717 }
1718
1719 static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
1720 {
1721         struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
1722
1723         if (!p_sb)
1724                 return;
1725
1726         if (p_sb->sb_info.sb_virt)
1727                 dma_free_coherent(&p_hwfn->cdev->pdev->dev,
1728                                   SB_ALIGNED_SIZE(p_hwfn),
1729                                   p_sb->sb_info.sb_virt,
1730                                   p_sb->sb_info.sb_phys);
1731         kfree(p_sb);
1732         p_hwfn->p_sp_sb = NULL;
1733 }
1734
1735 static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1736 {
1737         struct qed_sb_sp_info *p_sb;
1738         dma_addr_t p_phys = 0;
1739         void *p_virt;
1740
1741         /* SB struct */
1742         p_sb = kmalloc(sizeof(*p_sb), GFP_KERNEL);
1743         if (!p_sb)
1744                 return -ENOMEM;
1745
1746         /* SB ring  */
1747         p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
1748                                     SB_ALIGNED_SIZE(p_hwfn),
1749                                     &p_phys, GFP_KERNEL);
1750         if (!p_virt) {
1751                 kfree(p_sb);
1752                 return -ENOMEM;
1753         }
1754
1755         /* Status Block setup */
1756         p_hwfn->p_sp_sb = p_sb;
1757         qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
1758                         p_phys, QED_SP_SB_ID);
1759
1760         memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
1761
1762         return 0;
1763 }
1764
1765 int qed_int_register_cb(struct qed_hwfn *p_hwfn,
1766                         qed_int_comp_cb_t comp_cb,
1767                         void *cookie, u8 *sb_idx, __le16 **p_fw_cons)
1768 {
1769         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1770         int rc = -ENOMEM;
1771         u8 pi;
1772
1773         /* Look for a free index */
1774         for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
1775                 if (p_sp_sb->pi_info_arr[pi].comp_cb)
1776                         continue;
1777
1778                 p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
1779                 p_sp_sb->pi_info_arr[pi].cookie = cookie;
1780                 *sb_idx = pi;
1781                 *p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
1782                 rc = 0;
1783                 break;
1784         }
1785
1786         return rc;
1787 }
1788
1789 int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
1790 {
1791         struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
1792
1793         if (p_sp_sb->pi_info_arr[pi].comp_cb == NULL)
1794                 return -ENOMEM;
1795
1796         p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
1797         p_sp_sb->pi_info_arr[pi].cookie = NULL;
1798
1799         return 0;
1800 }
1801
1802 u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
1803 {
1804         return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
1805 }
1806
1807 void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
1808                             struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1809 {
1810         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
1811
1812         p_hwfn->cdev->int_mode = int_mode;
1813         switch (p_hwfn->cdev->int_mode) {
1814         case QED_INT_MODE_INTA:
1815                 igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
1816                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1817                 break;
1818
1819         case QED_INT_MODE_MSI:
1820                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1821                 igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
1822                 break;
1823
1824         case QED_INT_MODE_MSIX:
1825                 igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
1826                 break;
1827         case QED_INT_MODE_POLL:
1828                 break;
1829         }
1830
1831         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
1832 }
1833
1834 static void qed_int_igu_enable_attn(struct qed_hwfn *p_hwfn,
1835                                     struct qed_ptt *p_ptt)
1836 {
1837
1838         /* Configure AEU signal change to produce attentions */
1839         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0);
1840         qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
1841         qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
1842         qed_wr(p_hwfn, p_ptt, IGU_REG_ATTENTION_ENABLE, 0xfff);
1843
1844         /* Unmask AEU signals toward IGU */
1845         qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
1846 }
1847
1848 int
1849 qed_int_igu_enable(struct qed_hwfn *p_hwfn,
1850                    struct qed_ptt *p_ptt, enum qed_int_mode int_mode)
1851 {
1852         int rc = 0;
1853
1854         qed_int_igu_enable_attn(p_hwfn, p_ptt);
1855
1856         if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
1857                 rc = qed_slowpath_irq_req(p_hwfn);
1858                 if (rc) {
1859                         DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
1860                         return -EINVAL;
1861                 }
1862                 p_hwfn->b_int_requested = true;
1863         }
1864         /* Enable interrupt Generation */
1865         qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
1866         p_hwfn->b_int_enabled = 1;
1867
1868         return rc;
1869 }
1870
1871 void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
1872 {
1873         p_hwfn->b_int_enabled = 0;
1874
1875         if (IS_VF(p_hwfn->cdev))
1876                 return;
1877
1878         qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
1879 }
1880
1881 #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
1882 static void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
1883                                    struct qed_ptt *p_ptt,
1884                                    u16 igu_sb_id,
1885                                    bool cleanup_set, u16 opaque_fid)
1886 {
1887         u32 cmd_ctrl = 0, val = 0, sb_bit = 0, sb_bit_addr = 0, data = 0;
1888         u32 pxp_addr = IGU_CMD_INT_ACK_BASE + igu_sb_id;
1889         u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
1890
1891         /* Set the data field */
1892         SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
1893         SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
1894         SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
1895
1896         /* Set the control register */
1897         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
1898         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
1899         SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
1900
1901         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
1902
1903         barrier();
1904
1905         qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
1906
1907         /* calculate where to read the status bit from */
1908         sb_bit = 1 << (igu_sb_id % 32);
1909         sb_bit_addr = igu_sb_id / 32 * sizeof(u32);
1910
1911         sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
1912
1913         /* Now wait for the command to complete */
1914         do {
1915                 val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
1916
1917                 if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
1918                         break;
1919
1920                 usleep_range(5000, 10000);
1921         } while (--sleep_cnt);
1922
1923         if (!sleep_cnt)
1924                 DP_NOTICE(p_hwfn,
1925                           "Timeout waiting for clear status 0x%08x [for sb %d]\n",
1926                           val, igu_sb_id);
1927 }
1928
1929 void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
1930                                      struct qed_ptt *p_ptt,
1931                                      u16 igu_sb_id, u16 opaque, bool b_set)
1932 {
1933         struct qed_igu_block *p_block;
1934         int pi, i;
1935
1936         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
1937         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
1938                    "Cleaning SB [%04x]: func_id= %d is_pf = %d vector_num = 0x%0x\n",
1939                    igu_sb_id,
1940                    p_block->function_id,
1941                    p_block->is_pf, p_block->vector_number);
1942
1943         /* Set */
1944         if (b_set)
1945                 qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 1, opaque);
1946
1947         /* Clear */
1948         qed_int_igu_cleanup_sb(p_hwfn, p_ptt, igu_sb_id, 0, opaque);
1949
1950         /* Wait for the IGU SB to cleanup */
1951         for (i = 0; i < IGU_CLEANUP_SLEEP_LENGTH; i++) {
1952                 u32 val;
1953
1954                 val = qed_rd(p_hwfn, p_ptt,
1955                              IGU_REG_WRITE_DONE_PENDING +
1956                              ((igu_sb_id / 32) * 4));
1957                 if (val & BIT((igu_sb_id % 32)))
1958                         usleep_range(10, 20);
1959                 else
1960                         break;
1961         }
1962         if (i == IGU_CLEANUP_SLEEP_LENGTH)
1963                 DP_NOTICE(p_hwfn,
1964                           "Failed SB[0x%08x] still appearing in WRITE_DONE_PENDING\n",
1965                           igu_sb_id);
1966
1967         /* Clear the CAU for the SB */
1968         for (pi = 0; pi < 12; pi++)
1969                 qed_wr(p_hwfn, p_ptt,
1970                        CAU_REG_PI_MEMORY + (igu_sb_id * 12 + pi) * 4, 0);
1971 }
1972
1973 void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
1974                               struct qed_ptt *p_ptt,
1975                               bool b_set, bool b_slowpath)
1976 {
1977         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
1978         struct qed_igu_block *p_block;
1979         u16 igu_sb_id = 0;
1980         u32 val = 0;
1981
1982         val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
1983         val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
1984         val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
1985         qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
1986
1987         for (igu_sb_id = 0;
1988              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
1989                 p_block = &p_info->entry[igu_sb_id];
1990
1991                 if (!(p_block->status & QED_IGU_STATUS_VALID) ||
1992                     !p_block->is_pf ||
1993                     (p_block->status & QED_IGU_STATUS_DSB))
1994                         continue;
1995
1996                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, igu_sb_id,
1997                                                 p_hwfn->hw_info.opaque_fid,
1998                                                 b_set);
1999         }
2000
2001         if (b_slowpath)
2002                 qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
2003                                                 p_info->igu_dsb_id,
2004                                                 p_hwfn->hw_info.opaque_fid,
2005                                                 b_set);
2006 }
2007
2008 int qed_int_igu_reset_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2009 {
2010         struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
2011         struct qed_igu_block *p_block;
2012         int pf_sbs, vf_sbs;
2013         u16 igu_sb_id;
2014         u32 val, rval;
2015
2016         if (!RESC_NUM(p_hwfn, QED_SB)) {
2017                 p_info->b_allow_pf_vf_change = false;
2018         } else {
2019                 /* Use the numbers the MFW have provided -
2020                  * don't forget MFW accounts for the default SB as well.
2021                  */
2022                 p_info->b_allow_pf_vf_change = true;
2023
2024                 if (p_info->usage.cnt != RESC_NUM(p_hwfn, QED_SB) - 1) {
2025                         DP_INFO(p_hwfn,
2026                                 "MFW notifies of 0x%04x PF SBs; IGU indicates of only 0x%04x\n",
2027                                 RESC_NUM(p_hwfn, QED_SB) - 1,
2028                                 p_info->usage.cnt);
2029                         p_info->usage.cnt = RESC_NUM(p_hwfn, QED_SB) - 1;
2030                 }
2031
2032                 if (IS_PF_SRIOV(p_hwfn)) {
2033                         u16 vfs = p_hwfn->cdev->p_iov_info->total_vfs;
2034
2035                         if (vfs != p_info->usage.iov_cnt)
2036                                 DP_VERBOSE(p_hwfn,
2037                                            NETIF_MSG_INTR,
2038                                            "0x%04x VF SBs in IGU CAM != PCI configuration 0x%04x\n",
2039                                            p_info->usage.iov_cnt, vfs);
2040
2041                         /* At this point we know how many SBs we have totally
2042                          * in IGU + number of PF SBs. So we can validate that
2043                          * we'd have sufficient for VF.
2044                          */
2045                         if (vfs > p_info->usage.free_cnt +
2046                             p_info->usage.free_cnt_iov - p_info->usage.cnt) {
2047                                 DP_NOTICE(p_hwfn,
2048                                           "Not enough SBs for VFs - 0x%04x SBs, from which %04x PFs and %04x are required\n",
2049                                           p_info->usage.free_cnt +
2050                                           p_info->usage.free_cnt_iov,
2051                                           p_info->usage.cnt, vfs);
2052                                 return -EINVAL;
2053                         }
2054
2055                         /* Currently cap the number of VFs SBs by the
2056                          * number of VFs.
2057                          */
2058                         p_info->usage.iov_cnt = vfs;
2059                 }
2060         }
2061
2062         /* Mark all SBs as free, now in the right PF/VFs division */
2063         p_info->usage.free_cnt = p_info->usage.cnt;
2064         p_info->usage.free_cnt_iov = p_info->usage.iov_cnt;
2065         p_info->usage.orig = p_info->usage.cnt;
2066         p_info->usage.iov_orig = p_info->usage.iov_cnt;
2067
2068         /* We now proceed to re-configure the IGU cam to reflect the initial
2069          * configuration. We can start with the Default SB.
2070          */
2071         pf_sbs = p_info->usage.cnt;
2072         vf_sbs = p_info->usage.iov_cnt;
2073
2074         for (igu_sb_id = p_info->igu_dsb_id;
2075              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2076                 p_block = &p_info->entry[igu_sb_id];
2077                 val = 0;
2078
2079                 if (!(p_block->status & QED_IGU_STATUS_VALID))
2080                         continue;
2081
2082                 if (p_block->status & QED_IGU_STATUS_DSB) {
2083                         p_block->function_id = p_hwfn->rel_pf_id;
2084                         p_block->is_pf = 1;
2085                         p_block->vector_number = 0;
2086                         p_block->status = QED_IGU_STATUS_VALID |
2087                                           QED_IGU_STATUS_PF |
2088                                           QED_IGU_STATUS_DSB;
2089                 } else if (pf_sbs) {
2090                         pf_sbs--;
2091                         p_block->function_id = p_hwfn->rel_pf_id;
2092                         p_block->is_pf = 1;
2093                         p_block->vector_number = p_info->usage.cnt - pf_sbs;
2094                         p_block->status = QED_IGU_STATUS_VALID |
2095                                           QED_IGU_STATUS_PF |
2096                                           QED_IGU_STATUS_FREE;
2097                 } else if (vf_sbs) {
2098                         p_block->function_id =
2099                             p_hwfn->cdev->p_iov_info->first_vf_in_pf +
2100                             p_info->usage.iov_cnt - vf_sbs;
2101                         p_block->is_pf = 0;
2102                         p_block->vector_number = 0;
2103                         p_block->status = QED_IGU_STATUS_VALID |
2104                                           QED_IGU_STATUS_FREE;
2105                         vf_sbs--;
2106                 } else {
2107                         p_block->function_id = 0;
2108                         p_block->is_pf = 0;
2109                         p_block->vector_number = 0;
2110                 }
2111
2112                 SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER,
2113                           p_block->function_id);
2114                 SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, p_block->is_pf);
2115                 SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER,
2116                           p_block->vector_number);
2117
2118                 /* VF entries would be enabled when VF is initializaed */
2119                 SET_FIELD(val, IGU_MAPPING_LINE_VALID, p_block->is_pf);
2120
2121                 rval = qed_rd(p_hwfn, p_ptt,
2122                               IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2123
2124                 if (rval != val) {
2125                         qed_wr(p_hwfn, p_ptt,
2126                                IGU_REG_MAPPING_MEMORY +
2127                                sizeof(u32) * igu_sb_id, val);
2128
2129                         DP_VERBOSE(p_hwfn,
2130                                    NETIF_MSG_INTR,
2131                                    "IGU reset: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x [%08x -> %08x]\n",
2132                                    igu_sb_id,
2133                                    p_block->function_id,
2134                                    p_block->is_pf,
2135                                    p_block->vector_number, rval, val);
2136                 }
2137         }
2138
2139         return 0;
2140 }
2141
2142 static void qed_int_igu_read_cam_block(struct qed_hwfn *p_hwfn,
2143                                        struct qed_ptt *p_ptt, u16 igu_sb_id)
2144 {
2145         u32 val = qed_rd(p_hwfn, p_ptt,
2146                          IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_sb_id);
2147         struct qed_igu_block *p_block;
2148
2149         p_block = &p_hwfn->hw_info.p_igu_info->entry[igu_sb_id];
2150
2151         /* Fill the block information */
2152         p_block->function_id = GET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER);
2153         p_block->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
2154         p_block->vector_number = GET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER);
2155         p_block->igu_sb_id = igu_sb_id;
2156 }
2157
2158 int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2159 {
2160         struct qed_igu_info *p_igu_info;
2161         struct qed_igu_block *p_block;
2162         u32 min_vf = 0, max_vf = 0;
2163         u16 igu_sb_id;
2164
2165         p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_KERNEL);
2166         if (!p_hwfn->hw_info.p_igu_info)
2167                 return -ENOMEM;
2168
2169         p_igu_info = p_hwfn->hw_info.p_igu_info;
2170
2171         /* Distinguish between existent and non-existent default SB */
2172         p_igu_info->igu_dsb_id = QED_SB_INVALID_IDX;
2173
2174         /* Find the range of VF ids whose SB belong to this PF */
2175         if (p_hwfn->cdev->p_iov_info) {
2176                 struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
2177
2178                 min_vf  = p_iov->first_vf_in_pf;
2179                 max_vf  = p_iov->first_vf_in_pf + p_iov->total_vfs;
2180         }
2181
2182         for (igu_sb_id = 0;
2183              igu_sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev); igu_sb_id++) {
2184                 /* Read current entry; Notice it might not belong to this PF */
2185                 qed_int_igu_read_cam_block(p_hwfn, p_ptt, igu_sb_id);
2186                 p_block = &p_igu_info->entry[igu_sb_id];
2187
2188                 if ((p_block->is_pf) &&
2189                     (p_block->function_id == p_hwfn->rel_pf_id)) {
2190                         p_block->status = QED_IGU_STATUS_PF |
2191                                           QED_IGU_STATUS_VALID |
2192                                           QED_IGU_STATUS_FREE;
2193
2194                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2195                                 p_igu_info->usage.cnt++;
2196                 } else if (!(p_block->is_pf) &&
2197                            (p_block->function_id >= min_vf) &&
2198                            (p_block->function_id < max_vf)) {
2199                         /* Available for VFs of this PF */
2200                         p_block->status = QED_IGU_STATUS_VALID |
2201                                           QED_IGU_STATUS_FREE;
2202
2203                         if (p_igu_info->igu_dsb_id != QED_SB_INVALID_IDX)
2204                                 p_igu_info->usage.iov_cnt++;
2205                 }
2206
2207                 /* Mark the First entry belonging to the PF or its VFs
2208                  * as the default SB [we'll reset IGU prior to first usage].
2209                  */
2210                 if ((p_block->status & QED_IGU_STATUS_VALID) &&
2211                     (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX)) {
2212                         p_igu_info->igu_dsb_id = igu_sb_id;
2213                         p_block->status |= QED_IGU_STATUS_DSB;
2214                 }
2215
2216                 /* limit number of prints by having each PF print only its
2217                  * entries with the exception of PF0 which would print
2218                  * everything.
2219                  */
2220                 if ((p_block->status & QED_IGU_STATUS_VALID) ||
2221                     (p_hwfn->abs_pf_id == 0)) {
2222                         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2223                                    "IGU_BLOCK: [SB 0x%04x] func_id = %d is_pf = %d vector_num = 0x%x\n",
2224                                    igu_sb_id, p_block->function_id,
2225                                    p_block->is_pf, p_block->vector_number);
2226                 }
2227         }
2228
2229         if (p_igu_info->igu_dsb_id == QED_SB_INVALID_IDX) {
2230                 DP_NOTICE(p_hwfn,
2231                           "IGU CAM returned invalid values igu_dsb_id=0x%x\n",
2232                           p_igu_info->igu_dsb_id);
2233                 return -EINVAL;
2234         }
2235
2236         /* All non default SB are considered free at this point */
2237         p_igu_info->usage.free_cnt = p_igu_info->usage.cnt;
2238         p_igu_info->usage.free_cnt_iov = p_igu_info->usage.iov_cnt;
2239
2240         DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
2241                    "igu_dsb_id=0x%x, num Free SBs - PF: %04x VF: %04x [might change after resource allocation]\n",
2242                    p_igu_info->igu_dsb_id,
2243                    p_igu_info->usage.cnt, p_igu_info->usage.iov_cnt);
2244
2245         return 0;
2246 }
2247
2248 /**
2249  * @brief Initialize igu runtime registers
2250  *
2251  * @param p_hwfn
2252  */
2253 void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
2254 {
2255         u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN;
2256
2257         STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
2258 }
2259
2260 u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
2261 {
2262         u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
2263                                IGU_CMD_INT_ACK_BASE;
2264         u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
2265                                IGU_CMD_INT_ACK_BASE;
2266         u32 intr_status_hi = 0, intr_status_lo = 0;
2267         u64 intr_status = 0;
2268
2269         intr_status_lo = REG_RD(p_hwfn,
2270                                 GTT_BAR0_MAP_REG_IGU_CMD +
2271                                 lsb_igu_cmd_addr * 8);
2272         intr_status_hi = REG_RD(p_hwfn,
2273                                 GTT_BAR0_MAP_REG_IGU_CMD +
2274                                 msb_igu_cmd_addr * 8);
2275         intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
2276
2277         return intr_status;
2278 }
2279
2280 static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
2281 {
2282         tasklet_init(p_hwfn->sp_dpc,
2283                      qed_int_sp_dpc, (unsigned long)p_hwfn);
2284         p_hwfn->b_sp_dpc_enabled = true;
2285 }
2286
2287 static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
2288 {
2289         p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_KERNEL);
2290         if (!p_hwfn->sp_dpc)
2291                 return -ENOMEM;
2292
2293         return 0;
2294 }
2295
2296 static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
2297 {
2298         kfree(p_hwfn->sp_dpc);
2299         p_hwfn->sp_dpc = NULL;
2300 }
2301
2302 int qed_int_alloc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2303 {
2304         int rc = 0;
2305
2306         rc = qed_int_sp_dpc_alloc(p_hwfn);
2307         if (rc)
2308                 return rc;
2309
2310         rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
2311         if (rc)
2312                 return rc;
2313
2314         rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
2315
2316         return rc;
2317 }
2318
2319 void qed_int_free(struct qed_hwfn *p_hwfn)
2320 {
2321         qed_int_sp_sb_free(p_hwfn);
2322         qed_int_sb_attn_free(p_hwfn);
2323         qed_int_sp_dpc_free(p_hwfn);
2324 }
2325
2326 void qed_int_setup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2327 {
2328         qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
2329         qed_int_sb_attn_setup(p_hwfn, p_ptt);
2330         qed_int_sp_dpc_setup(p_hwfn);
2331 }
2332
2333 void qed_int_get_num_sbs(struct qed_hwfn        *p_hwfn,
2334                          struct qed_sb_cnt_info *p_sb_cnt_info)
2335 {
2336         struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
2337
2338         if (!info || !p_sb_cnt_info)
2339                 return;
2340
2341         memcpy(p_sb_cnt_info, &info->usage, sizeof(*p_sb_cnt_info));
2342 }
2343
2344 void qed_int_disable_post_isr_release(struct qed_dev *cdev)
2345 {
2346         int i;
2347
2348         for_each_hwfn(cdev, i)
2349                 cdev->hwfns[i].b_int_requested = false;
2350 }
2351
2352 int qed_int_set_timer_res(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
2353                           u8 timer_res, u16 sb_id, bool tx)
2354 {
2355         struct cau_sb_entry sb_entry;
2356         int rc;
2357
2358         if (!p_hwfn->hw_init_done) {
2359                 DP_ERR(p_hwfn, "hardware not initialized yet\n");
2360                 return -EINVAL;
2361         }
2362
2363         rc = qed_dmae_grc2host(p_hwfn, p_ptt, CAU_REG_SB_VAR_MEMORY +
2364                                sb_id * sizeof(u64),
2365                                (u64)(uintptr_t)&sb_entry, 2, 0);
2366         if (rc) {
2367                 DP_ERR(p_hwfn, "dmae_grc2host failed %d\n", rc);
2368                 return rc;
2369         }
2370
2371         if (tx)
2372                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES1, timer_res);
2373         else
2374                 SET_FIELD(sb_entry.params, CAU_SB_ENTRY_TIMER_RES0, timer_res);
2375
2376         rc = qed_dmae_host2grc(p_hwfn, p_ptt,
2377                                (u64)(uintptr_t)&sb_entry,
2378                                CAU_REG_SB_VAR_MEMORY +
2379                                sb_id * sizeof(u64), 2, 0);
2380         if (rc) {
2381                 DP_ERR(p_hwfn, "dmae_host2grc failed %d\n", rc);
2382                 return rc;
2383         }
2384
2385         return rc;
2386 }