drm/msm: fix memleak on release
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40
41 #define MAJ 5
42 #define MIN 6
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46
47 enum queue_mode {
48         QUEUE_MODE_STRICT_PRIORITY,
49         QUEUE_MODE_STREAM_RESERVATION,
50 };
51
52 enum tx_queue_prio {
53         TX_QUEUE_PRIO_HIGH,
54         TX_QUEUE_PRIO_LOW,
55 };
56
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60                                 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62                                 "Copyright (c) 2007-2014 Intel Corporation.";
63
64 static const struct e1000_info *igb_info_tbl[] = {
65         [board_82575] = &e1000_82575_info,
66 };
67
68 static const struct pci_device_id igb_pci_tbl[] = {
69         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104         /* required last entry */
105         {0, }
106 };
107
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133                             struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152                           netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169                                int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172                                    bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174                                 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196                         igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203         .notifier_call  = igb_notify_dca,
204         .next           = NULL,
205         .priority       = 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215                      pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220         .error_detected = igb_io_error_detected,
221         .slot_reset = igb_io_slot_reset,
222         .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228         .name     = igb_driver_name,
229         .id_table = igb_pci_tbl,
230         .probe    = igb_probe,
231         .remove   = igb_remove,
232 #ifdef CONFIG_PM
233         .driver.pm = &igb_pm_ops,
234 #endif
235         .shutdown = igb_shutdown,
236         .sriov_configure = igb_pci_sriov_configure,
237         .err_handler = &igb_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 struct igb_reg_info {
251         u32 ofs;
252         char *name;
253 };
254
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257         /* General Registers */
258         {E1000_CTRL, "CTRL"},
259         {E1000_STATUS, "STATUS"},
260         {E1000_CTRL_EXT, "CTRL_EXT"},
261
262         /* Interrupt Registers */
263         {E1000_ICR, "ICR"},
264
265         /* RX Registers */
266         {E1000_RCTL, "RCTL"},
267         {E1000_RDLEN(0), "RDLEN"},
268         {E1000_RDH(0), "RDH"},
269         {E1000_RDT(0), "RDT"},
270         {E1000_RXDCTL(0), "RXDCTL"},
271         {E1000_RDBAL(0), "RDBAL"},
272         {E1000_RDBAH(0), "RDBAH"},
273
274         /* TX Registers */
275         {E1000_TCTL, "TCTL"},
276         {E1000_TDBAL(0), "TDBAL"},
277         {E1000_TDBAH(0), "TDBAH"},
278         {E1000_TDLEN(0), "TDLEN"},
279         {E1000_TDH(0), "TDH"},
280         {E1000_TDT(0), "TDT"},
281         {E1000_TXDCTL(0), "TXDCTL"},
282         {E1000_TDFH, "TDFH"},
283         {E1000_TDFT, "TDFT"},
284         {E1000_TDFHS, "TDFHS"},
285         {E1000_TDFPC, "TDFPC"},
286
287         /* List Terminator */
288         {}
289 };
290
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294         int n = 0;
295         char rname[16];
296         u32 regs[8];
297
298         switch (reginfo->ofs) {
299         case E1000_RDLEN(0):
300                 for (n = 0; n < 4; n++)
301                         regs[n] = rd32(E1000_RDLEN(n));
302                 break;
303         case E1000_RDH(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RDH(n));
306                 break;
307         case E1000_RDT(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDT(n));
310                 break;
311         case E1000_RXDCTL(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RXDCTL(n));
314                 break;
315         case E1000_RDBAL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RDBAL(n));
318                 break;
319         case E1000_RDBAH(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RDBAH(n));
322                 break;
323         case E1000_TDBAL(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAL(n));
326                 break;
327         case E1000_TDBAH(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_TDBAH(n));
330                 break;
331         case E1000_TDLEN(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDLEN(n));
334                 break;
335         case E1000_TDH(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDH(n));
338                 break;
339         case E1000_TDT(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDT(n));
342                 break;
343         case E1000_TXDCTL(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TXDCTL(n));
346                 break;
347         default:
348                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349                 return;
350         }
351
352         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354                 regs[2], regs[3]);
355 }
356
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
359 {
360         struct net_device *netdev = adapter->netdev;
361         struct e1000_hw *hw = &adapter->hw;
362         struct igb_reg_info *reginfo;
363         struct igb_ring *tx_ring;
364         union e1000_adv_tx_desc *tx_desc;
365         struct my_u0 { u64 a; u64 b; } *u0;
366         struct igb_ring *rx_ring;
367         union e1000_adv_rx_desc *rx_desc;
368         u32 staterr;
369         u16 i, n;
370
371         if (!netif_msg_hw(adapter))
372                 return;
373
374         /* Print netdevice Info */
375         if (netdev) {
376                 dev_info(&adapter->pdev->dev, "Net device Info\n");
377                 pr_info("Device Name     state            trans_start\n");
378                 pr_info("%-15s %016lX %016lX\n", netdev->name,
379                         netdev->state, dev_trans_start(netdev));
380         }
381
382         /* Print Registers */
383         dev_info(&adapter->pdev->dev, "Register Dump\n");
384         pr_info(" Register Name   Value\n");
385         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386              reginfo->name; reginfo++) {
387                 igb_regdump(hw, reginfo);
388         }
389
390         /* Print TX Ring Summary */
391         if (!netdev || !netif_running(netdev))
392                 goto exit;
393
394         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
396         for (n = 0; n < adapter->num_tx_queues; n++) {
397                 struct igb_tx_buffer *buffer_info;
398                 tx_ring = adapter->tx_ring[n];
399                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
402                         (u64)dma_unmap_addr(buffer_info, dma),
403                         dma_unmap_len(buffer_info, len),
404                         buffer_info->next_to_watch,
405                         (u64)buffer_info->time_stamp);
406         }
407
408         /* Print TX Rings */
409         if (!netif_msg_tx_done(adapter))
410                 goto rx_ring_summary;
411
412         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413
414         /* Transmit Descriptor Formats
415          *
416          * Advanced Transmit Descriptor
417          *   +--------------------------------------------------------------+
418          * 0 |         Buffer Address [63:0]                                |
419          *   +--------------------------------------------------------------+
420          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
421          *   +--------------------------------------------------------------+
422          *   63      46 45    40 39 38 36 35 32 31   24             15       0
423          */
424
425         for (n = 0; n < adapter->num_tx_queues; n++) {
426                 tx_ring = adapter->tx_ring[n];
427                 pr_info("------------------------------------\n");
428                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429                 pr_info("------------------------------------\n");
430                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
431
432                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433                         const char *next_desc;
434                         struct igb_tx_buffer *buffer_info;
435                         tx_desc = IGB_TX_DESC(tx_ring, i);
436                         buffer_info = &tx_ring->tx_buffer_info[i];
437                         u0 = (struct my_u0 *)tx_desc;
438                         if (i == tx_ring->next_to_use &&
439                             i == tx_ring->next_to_clean)
440                                 next_desc = " NTC/U";
441                         else if (i == tx_ring->next_to_use)
442                                 next_desc = " NTU";
443                         else if (i == tx_ring->next_to_clean)
444                                 next_desc = " NTC";
445                         else
446                                 next_desc = "";
447
448                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
449                                 i, le64_to_cpu(u0->a),
450                                 le64_to_cpu(u0->b),
451                                 (u64)dma_unmap_addr(buffer_info, dma),
452                                 dma_unmap_len(buffer_info, len),
453                                 buffer_info->next_to_watch,
454                                 (u64)buffer_info->time_stamp,
455                                 buffer_info->skb, next_desc);
456
457                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
458                                 print_hex_dump(KERN_INFO, "",
459                                         DUMP_PREFIX_ADDRESS,
460                                         16, 1, buffer_info->skb->data,
461                                         dma_unmap_len(buffer_info, len),
462                                         true);
463                 }
464         }
465
466         /* Print RX Rings Summary */
467 rx_ring_summary:
468         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469         pr_info("Queue [NTU] [NTC]\n");
470         for (n = 0; n < adapter->num_rx_queues; n++) {
471                 rx_ring = adapter->rx_ring[n];
472                 pr_info(" %5d %5X %5X\n",
473                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
474         }
475
476         /* Print RX Rings */
477         if (!netif_msg_rx_status(adapter))
478                 goto exit;
479
480         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481
482         /* Advanced Receive Descriptor (Read) Format
483          *    63                                           1        0
484          *    +-----------------------------------------------------+
485          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
486          *    +----------------------------------------------+------+
487          *  8 |       Header Buffer Address [63:1]           |  DD  |
488          *    +-----------------------------------------------------+
489          *
490          *
491          * Advanced Receive Descriptor (Write-Back) Format
492          *
493          *   63       48 47    32 31  30      21 20 17 16   4 3     0
494          *   +------------------------------------------------------+
495          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
496          *   | Checksum   Ident  |   |           |    | Type | Type |
497          *   +------------------------------------------------------+
498          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499          *   +------------------------------------------------------+
500          *   63       48 47    32 31            20 19               0
501          */
502
503         for (n = 0; n < adapter->num_rx_queues; n++) {
504                 rx_ring = adapter->rx_ring[n];
505                 pr_info("------------------------------------\n");
506                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507                 pr_info("------------------------------------\n");
508                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
509                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510
511                 for (i = 0; i < rx_ring->count; i++) {
512                         const char *next_desc;
513                         struct igb_rx_buffer *buffer_info;
514                         buffer_info = &rx_ring->rx_buffer_info[i];
515                         rx_desc = IGB_RX_DESC(rx_ring, i);
516                         u0 = (struct my_u0 *)rx_desc;
517                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518
519                         if (i == rx_ring->next_to_use)
520                                 next_desc = " NTU";
521                         else if (i == rx_ring->next_to_clean)
522                                 next_desc = " NTC";
523                         else
524                                 next_desc = "";
525
526                         if (staterr & E1000_RXD_STAT_DD) {
527                                 /* Descriptor Done */
528                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
529                                         "RWB", i,
530                                         le64_to_cpu(u0->a),
531                                         le64_to_cpu(u0->b),
532                                         next_desc);
533                         } else {
534                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
535                                         "R  ", i,
536                                         le64_to_cpu(u0->a),
537                                         le64_to_cpu(u0->b),
538                                         (u64)buffer_info->dma,
539                                         next_desc);
540
541                                 if (netif_msg_pktdata(adapter) &&
542                                     buffer_info->dma && buffer_info->page) {
543                                         print_hex_dump(KERN_INFO, "",
544                                           DUMP_PREFIX_ADDRESS,
545                                           16, 1,
546                                           page_address(buffer_info->page) +
547                                                       buffer_info->page_offset,
548                                           igb_rx_bufsz(rx_ring), true);
549                                 }
550                         }
551                 }
552         }
553
554 exit:
555         return;
556 }
557
558 /**
559  *  igb_get_i2c_data - Reads the I2C SDA data bit
560  *  @hw: pointer to hardware structure
561  *  @i2cctl: Current value of I2CCTL register
562  *
563  *  Returns the I2C data bit value
564  **/
565 static int igb_get_i2c_data(void *data)
566 {
567         struct igb_adapter *adapter = (struct igb_adapter *)data;
568         struct e1000_hw *hw = &adapter->hw;
569         s32 i2cctl = rd32(E1000_I2CPARAMS);
570
571         return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573
574 /**
575  *  igb_set_i2c_data - Sets the I2C data bit
576  *  @data: pointer to hardware structure
577  *  @state: I2C data value (0 or 1) to set
578  *
579  *  Sets the I2C data bit
580  **/
581 static void igb_set_i2c_data(void *data, int state)
582 {
583         struct igb_adapter *adapter = (struct igb_adapter *)data;
584         struct e1000_hw *hw = &adapter->hw;
585         s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587         if (state)
588                 i2cctl |= E1000_I2C_DATA_OUT;
589         else
590                 i2cctl &= ~E1000_I2C_DATA_OUT;
591
592         i2cctl &= ~E1000_I2C_DATA_OE_N;
593         i2cctl |= E1000_I2C_CLK_OE_N;
594         wr32(E1000_I2CPARAMS, i2cctl);
595         wrfl();
596
597 }
598
599 /**
600  *  igb_set_i2c_clk - Sets the I2C SCL clock
601  *  @data: pointer to hardware structure
602  *  @state: state to set clock
603  *
604  *  Sets the I2C clock line to state
605  **/
606 static void igb_set_i2c_clk(void *data, int state)
607 {
608         struct igb_adapter *adapter = (struct igb_adapter *)data;
609         struct e1000_hw *hw = &adapter->hw;
610         s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612         if (state) {
613                 i2cctl |= E1000_I2C_CLK_OUT;
614                 i2cctl &= ~E1000_I2C_CLK_OE_N;
615         } else {
616                 i2cctl &= ~E1000_I2C_CLK_OUT;
617                 i2cctl &= ~E1000_I2C_CLK_OE_N;
618         }
619         wr32(E1000_I2CPARAMS, i2cctl);
620         wrfl();
621 }
622
623 /**
624  *  igb_get_i2c_clk - Gets the I2C SCL clock state
625  *  @data: pointer to hardware structure
626  *
627  *  Gets the I2C clock state
628  **/
629 static int igb_get_i2c_clk(void *data)
630 {
631         struct igb_adapter *adapter = (struct igb_adapter *)data;
632         struct e1000_hw *hw = &adapter->hw;
633         s32 i2cctl = rd32(E1000_I2CPARAMS);
634
635         return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639         .setsda         = igb_set_i2c_data,
640         .setscl         = igb_set_i2c_clk,
641         .getsda         = igb_get_i2c_data,
642         .getscl         = igb_get_i2c_clk,
643         .udelay         = 5,
644         .timeout        = 20,
645 };
646
647 /**
648  *  igb_get_hw_dev - return device
649  *  @hw: pointer to hardware structure
650  *
651  *  used by hardware layer to print debugging information
652  **/
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655         struct igb_adapter *adapter = hw->back;
656         return adapter->netdev;
657 }
658
659 /**
660  *  igb_init_module - Driver Registration Routine
661  *
662  *  igb_init_module is the first routine called when the driver is
663  *  loaded. All it does is register with the PCI subsystem.
664  **/
665 static int __init igb_init_module(void)
666 {
667         int ret;
668
669         pr_info("%s - version %s\n",
670                igb_driver_string, igb_driver_version);
671         pr_info("%s\n", igb_copyright);
672
673 #ifdef CONFIG_IGB_DCA
674         dca_register_notify(&dca_notifier);
675 #endif
676         ret = pci_register_driver(&igb_driver);
677         return ret;
678 }
679
680 module_init(igb_init_module);
681
682 /**
683  *  igb_exit_module - Driver Exit Cleanup Routine
684  *
685  *  igb_exit_module is called just before the driver is removed
686  *  from memory.
687  **/
688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691         dca_unregister_notify(&dca_notifier);
692 #endif
693         pci_unregister_driver(&igb_driver);
694 }
695
696 module_exit(igb_exit_module);
697
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700  *  igb_cache_ring_register - Descriptor ring to register mapping
701  *  @adapter: board private structure to initialize
702  *
703  *  Once we know the feature-set enabled for the device, we'll cache
704  *  the register offset the descriptor ring is assigned to.
705  **/
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708         int i = 0, j = 0;
709         u32 rbase_offset = adapter->vfs_allocated_count;
710
711         switch (adapter->hw.mac.type) {
712         case e1000_82576:
713                 /* The queues are allocated for virtualization such that VF 0
714                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715                  * In order to avoid collision we start at the first free queue
716                  * and continue consuming queues in the same sequence
717                  */
718                 if (adapter->vfs_allocated_count) {
719                         for (; i < adapter->rss_queues; i++)
720                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
721                                                                Q_IDX_82576(i);
722                 }
723                 /* Fall through */
724         case e1000_82575:
725         case e1000_82580:
726         case e1000_i350:
727         case e1000_i354:
728         case e1000_i210:
729         case e1000_i211:
730                 /* Fall through */
731         default:
732                 for (; i < adapter->num_rx_queues; i++)
733                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734                 for (; j < adapter->num_tx_queues; j++)
735                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736                 break;
737         }
738 }
739
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743         u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744         u32 value = 0;
745
746         if (E1000_REMOVED(hw_addr))
747                 return ~value;
748
749         value = readl(&hw_addr[reg]);
750
751         /* reads should not return all F's */
752         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753                 struct net_device *netdev = igb->netdev;
754                 hw->hw_addr = NULL;
755                 netdev_err(netdev, "PCIe link lost\n");
756                 WARN(1, "igb: Failed to read reg 0x%x!\n", reg);
757         }
758
759         return value;
760 }
761
762 /**
763  *  igb_write_ivar - configure ivar for given MSI-X vector
764  *  @hw: pointer to the HW structure
765  *  @msix_vector: vector number we are allocating to a given ring
766  *  @index: row index of IVAR register to write within IVAR table
767  *  @offset: column offset of in IVAR, should be multiple of 8
768  *
769  *  This function is intended to handle the writing of the IVAR register
770  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
771  *  each containing an cause allocation for an Rx and Tx ring, and a
772  *  variable number of rows depending on the number of queues supported.
773  **/
774 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
775                            int index, int offset)
776 {
777         u32 ivar = array_rd32(E1000_IVAR0, index);
778
779         /* clear any bits that are currently set */
780         ivar &= ~((u32)0xFF << offset);
781
782         /* write vector and valid bit */
783         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
784
785         array_wr32(E1000_IVAR0, index, ivar);
786 }
787
788 #define IGB_N0_QUEUE -1
789 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
790 {
791         struct igb_adapter *adapter = q_vector->adapter;
792         struct e1000_hw *hw = &adapter->hw;
793         int rx_queue = IGB_N0_QUEUE;
794         int tx_queue = IGB_N0_QUEUE;
795         u32 msixbm = 0;
796
797         if (q_vector->rx.ring)
798                 rx_queue = q_vector->rx.ring->reg_idx;
799         if (q_vector->tx.ring)
800                 tx_queue = q_vector->tx.ring->reg_idx;
801
802         switch (hw->mac.type) {
803         case e1000_82575:
804                 /* The 82575 assigns vectors using a bitmask, which matches the
805                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
806                  * or more queues to a vector, we write the appropriate bits
807                  * into the MSIXBM register for that vector.
808                  */
809                 if (rx_queue > IGB_N0_QUEUE)
810                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
811                 if (tx_queue > IGB_N0_QUEUE)
812                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
813                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
814                         msixbm |= E1000_EIMS_OTHER;
815                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
816                 q_vector->eims_value = msixbm;
817                 break;
818         case e1000_82576:
819                 /* 82576 uses a table that essentially consists of 2 columns
820                  * with 8 rows.  The ordering is column-major so we use the
821                  * lower 3 bits as the row index, and the 4th bit as the
822                  * column offset.
823                  */
824                 if (rx_queue > IGB_N0_QUEUE)
825                         igb_write_ivar(hw, msix_vector,
826                                        rx_queue & 0x7,
827                                        (rx_queue & 0x8) << 1);
828                 if (tx_queue > IGB_N0_QUEUE)
829                         igb_write_ivar(hw, msix_vector,
830                                        tx_queue & 0x7,
831                                        ((tx_queue & 0x8) << 1) + 8);
832                 q_vector->eims_value = BIT(msix_vector);
833                 break;
834         case e1000_82580:
835         case e1000_i350:
836         case e1000_i354:
837         case e1000_i210:
838         case e1000_i211:
839                 /* On 82580 and newer adapters the scheme is similar to 82576
840                  * however instead of ordering column-major we have things
841                  * ordered row-major.  So we traverse the table by using
842                  * bit 0 as the column offset, and the remaining bits as the
843                  * row index.
844                  */
845                 if (rx_queue > IGB_N0_QUEUE)
846                         igb_write_ivar(hw, msix_vector,
847                                        rx_queue >> 1,
848                                        (rx_queue & 0x1) << 4);
849                 if (tx_queue > IGB_N0_QUEUE)
850                         igb_write_ivar(hw, msix_vector,
851                                        tx_queue >> 1,
852                                        ((tx_queue & 0x1) << 4) + 8);
853                 q_vector->eims_value = BIT(msix_vector);
854                 break;
855         default:
856                 BUG();
857                 break;
858         }
859
860         /* add q_vector eims value to global eims_enable_mask */
861         adapter->eims_enable_mask |= q_vector->eims_value;
862
863         /* configure q_vector to set itr on first interrupt */
864         q_vector->set_itr = 1;
865 }
866
867 /**
868  *  igb_configure_msix - Configure MSI-X hardware
869  *  @adapter: board private structure to initialize
870  *
871  *  igb_configure_msix sets up the hardware to properly
872  *  generate MSI-X interrupts.
873  **/
874 static void igb_configure_msix(struct igb_adapter *adapter)
875 {
876         u32 tmp;
877         int i, vector = 0;
878         struct e1000_hw *hw = &adapter->hw;
879
880         adapter->eims_enable_mask = 0;
881
882         /* set vector for other causes, i.e. link changes */
883         switch (hw->mac.type) {
884         case e1000_82575:
885                 tmp = rd32(E1000_CTRL_EXT);
886                 /* enable MSI-X PBA support*/
887                 tmp |= E1000_CTRL_EXT_PBA_CLR;
888
889                 /* Auto-Mask interrupts upon ICR read. */
890                 tmp |= E1000_CTRL_EXT_EIAME;
891                 tmp |= E1000_CTRL_EXT_IRCA;
892
893                 wr32(E1000_CTRL_EXT, tmp);
894
895                 /* enable msix_other interrupt */
896                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
897                 adapter->eims_other = E1000_EIMS_OTHER;
898
899                 break;
900
901         case e1000_82576:
902         case e1000_82580:
903         case e1000_i350:
904         case e1000_i354:
905         case e1000_i210:
906         case e1000_i211:
907                 /* Turn on MSI-X capability first, or our settings
908                  * won't stick.  And it will take days to debug.
909                  */
910                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
911                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
912                      E1000_GPIE_NSICR);
913
914                 /* enable msix_other interrupt */
915                 adapter->eims_other = BIT(vector);
916                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
917
918                 wr32(E1000_IVAR_MISC, tmp);
919                 break;
920         default:
921                 /* do nothing, since nothing else supports MSI-X */
922                 break;
923         } /* switch (hw->mac.type) */
924
925         adapter->eims_enable_mask |= adapter->eims_other;
926
927         for (i = 0; i < adapter->num_q_vectors; i++)
928                 igb_assign_vector(adapter->q_vector[i], vector++);
929
930         wrfl();
931 }
932
933 /**
934  *  igb_request_msix - Initialize MSI-X interrupts
935  *  @adapter: board private structure to initialize
936  *
937  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
938  *  kernel.
939  **/
940 static int igb_request_msix(struct igb_adapter *adapter)
941 {
942         struct net_device *netdev = adapter->netdev;
943         int i, err = 0, vector = 0, free_vector = 0;
944
945         err = request_irq(adapter->msix_entries[vector].vector,
946                           igb_msix_other, 0, netdev->name, adapter);
947         if (err)
948                 goto err_out;
949
950         for (i = 0; i < adapter->num_q_vectors; i++) {
951                 struct igb_q_vector *q_vector = adapter->q_vector[i];
952
953                 vector++;
954
955                 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
956
957                 if (q_vector->rx.ring && q_vector->tx.ring)
958                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
959                                 q_vector->rx.ring->queue_index);
960                 else if (q_vector->tx.ring)
961                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
962                                 q_vector->tx.ring->queue_index);
963                 else if (q_vector->rx.ring)
964                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
965                                 q_vector->rx.ring->queue_index);
966                 else
967                         sprintf(q_vector->name, "%s-unused", netdev->name);
968
969                 err = request_irq(adapter->msix_entries[vector].vector,
970                                   igb_msix_ring, 0, q_vector->name,
971                                   q_vector);
972                 if (err)
973                         goto err_free;
974         }
975
976         igb_configure_msix(adapter);
977         return 0;
978
979 err_free:
980         /* free already assigned IRQs */
981         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
982
983         vector--;
984         for (i = 0; i < vector; i++) {
985                 free_irq(adapter->msix_entries[free_vector++].vector,
986                          adapter->q_vector[i]);
987         }
988 err_out:
989         return err;
990 }
991
992 /**
993  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
994  *  @adapter: board private structure to initialize
995  *  @v_idx: Index of vector to be freed
996  *
997  *  This function frees the memory allocated to the q_vector.
998  **/
999 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1000 {
1001         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1002
1003         adapter->q_vector[v_idx] = NULL;
1004
1005         /* igb_get_stats64() might access the rings on this vector,
1006          * we must wait a grace period before freeing it.
1007          */
1008         if (q_vector)
1009                 kfree_rcu(q_vector, rcu);
1010 }
1011
1012 /**
1013  *  igb_reset_q_vector - Reset config for interrupt vector
1014  *  @adapter: board private structure to initialize
1015  *  @v_idx: Index of vector to be reset
1016  *
1017  *  If NAPI is enabled it will delete any references to the
1018  *  NAPI struct. This is preparation for igb_free_q_vector.
1019  **/
1020 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1021 {
1022         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1023
1024         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1025          * allocated. So, q_vector is NULL so we should stop here.
1026          */
1027         if (!q_vector)
1028                 return;
1029
1030         if (q_vector->tx.ring)
1031                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1032
1033         if (q_vector->rx.ring)
1034                 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1035
1036         netif_napi_del(&q_vector->napi);
1037
1038 }
1039
1040 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1041 {
1042         int v_idx = adapter->num_q_vectors;
1043
1044         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1045                 pci_disable_msix(adapter->pdev);
1046         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1047                 pci_disable_msi(adapter->pdev);
1048
1049         while (v_idx--)
1050                 igb_reset_q_vector(adapter, v_idx);
1051 }
1052
1053 /**
1054  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1055  *  @adapter: board private structure to initialize
1056  *
1057  *  This function frees the memory allocated to the q_vectors.  In addition if
1058  *  NAPI is enabled it will delete any references to the NAPI struct prior
1059  *  to freeing the q_vector.
1060  **/
1061 static void igb_free_q_vectors(struct igb_adapter *adapter)
1062 {
1063         int v_idx = adapter->num_q_vectors;
1064
1065         adapter->num_tx_queues = 0;
1066         adapter->num_rx_queues = 0;
1067         adapter->num_q_vectors = 0;
1068
1069         while (v_idx--) {
1070                 igb_reset_q_vector(adapter, v_idx);
1071                 igb_free_q_vector(adapter, v_idx);
1072         }
1073 }
1074
1075 /**
1076  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1077  *  @adapter: board private structure to initialize
1078  *
1079  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1080  *  MSI-X interrupts allocated.
1081  */
1082 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1083 {
1084         igb_free_q_vectors(adapter);
1085         igb_reset_interrupt_capability(adapter);
1086 }
1087
1088 /**
1089  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1090  *  @adapter: board private structure to initialize
1091  *  @msix: boolean value of MSIX capability
1092  *
1093  *  Attempt to configure interrupts using the best available
1094  *  capabilities of the hardware and kernel.
1095  **/
1096 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1097 {
1098         int err;
1099         int numvecs, i;
1100
1101         if (!msix)
1102                 goto msi_only;
1103         adapter->flags |= IGB_FLAG_HAS_MSIX;
1104
1105         /* Number of supported queues. */
1106         adapter->num_rx_queues = adapter->rss_queues;
1107         if (adapter->vfs_allocated_count)
1108                 adapter->num_tx_queues = 1;
1109         else
1110                 adapter->num_tx_queues = adapter->rss_queues;
1111
1112         /* start with one vector for every Rx queue */
1113         numvecs = adapter->num_rx_queues;
1114
1115         /* if Tx handler is separate add 1 for every Tx queue */
1116         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1117                 numvecs += adapter->num_tx_queues;
1118
1119         /* store the number of vectors reserved for queues */
1120         adapter->num_q_vectors = numvecs;
1121
1122         /* add 1 vector for link status interrupts */
1123         numvecs++;
1124         for (i = 0; i < numvecs; i++)
1125                 adapter->msix_entries[i].entry = i;
1126
1127         err = pci_enable_msix_range(adapter->pdev,
1128                                     adapter->msix_entries,
1129                                     numvecs,
1130                                     numvecs);
1131         if (err > 0)
1132                 return;
1133
1134         igb_reset_interrupt_capability(adapter);
1135
1136         /* If we can't do MSI-X, try MSI */
1137 msi_only:
1138         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1139 #ifdef CONFIG_PCI_IOV
1140         /* disable SR-IOV for non MSI-X configurations */
1141         if (adapter->vf_data) {
1142                 struct e1000_hw *hw = &adapter->hw;
1143                 /* disable iov and allow time for transactions to clear */
1144                 pci_disable_sriov(adapter->pdev);
1145                 msleep(500);
1146
1147                 kfree(adapter->vf_mac_list);
1148                 adapter->vf_mac_list = NULL;
1149                 kfree(adapter->vf_data);
1150                 adapter->vf_data = NULL;
1151                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1152                 wrfl();
1153                 msleep(100);
1154                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1155         }
1156 #endif
1157         adapter->vfs_allocated_count = 0;
1158         adapter->rss_queues = 1;
1159         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1160         adapter->num_rx_queues = 1;
1161         adapter->num_tx_queues = 1;
1162         adapter->num_q_vectors = 1;
1163         if (!pci_enable_msi(adapter->pdev))
1164                 adapter->flags |= IGB_FLAG_HAS_MSI;
1165 }
1166
1167 static void igb_add_ring(struct igb_ring *ring,
1168                          struct igb_ring_container *head)
1169 {
1170         head->ring = ring;
1171         head->count++;
1172 }
1173
1174 /**
1175  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1176  *  @adapter: board private structure to initialize
1177  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1178  *  @v_idx: index of vector in adapter struct
1179  *  @txr_count: total number of Tx rings to allocate
1180  *  @txr_idx: index of first Tx ring to allocate
1181  *  @rxr_count: total number of Rx rings to allocate
1182  *  @rxr_idx: index of first Rx ring to allocate
1183  *
1184  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1185  **/
1186 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1187                               int v_count, int v_idx,
1188                               int txr_count, int txr_idx,
1189                               int rxr_count, int rxr_idx)
1190 {
1191         struct igb_q_vector *q_vector;
1192         struct igb_ring *ring;
1193         int ring_count;
1194         size_t size;
1195
1196         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1197         if (txr_count > 1 || rxr_count > 1)
1198                 return -ENOMEM;
1199
1200         ring_count = txr_count + rxr_count;
1201         size = struct_size(q_vector, ring, ring_count);
1202
1203         /* allocate q_vector and rings */
1204         q_vector = adapter->q_vector[v_idx];
1205         if (!q_vector) {
1206                 q_vector = kzalloc(size, GFP_KERNEL);
1207         } else if (size > ksize(q_vector)) {
1208                 kfree_rcu(q_vector, rcu);
1209                 q_vector = kzalloc(size, GFP_KERNEL);
1210         } else {
1211                 memset(q_vector, 0, size);
1212         }
1213         if (!q_vector)
1214                 return -ENOMEM;
1215
1216         /* initialize NAPI */
1217         netif_napi_add(adapter->netdev, &q_vector->napi,
1218                        igb_poll, 64);
1219
1220         /* tie q_vector and adapter together */
1221         adapter->q_vector[v_idx] = q_vector;
1222         q_vector->adapter = adapter;
1223
1224         /* initialize work limits */
1225         q_vector->tx.work_limit = adapter->tx_work_limit;
1226
1227         /* initialize ITR configuration */
1228         q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229         q_vector->itr_val = IGB_START_ITR;
1230
1231         /* initialize pointer to rings */
1232         ring = q_vector->ring;
1233
1234         /* intialize ITR */
1235         if (rxr_count) {
1236                 /* rx or rx/tx vector */
1237                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238                         q_vector->itr_val = adapter->rx_itr_setting;
1239         } else {
1240                 /* tx only vector */
1241                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242                         q_vector->itr_val = adapter->tx_itr_setting;
1243         }
1244
1245         if (txr_count) {
1246                 /* assign generic ring traits */
1247                 ring->dev = &adapter->pdev->dev;
1248                 ring->netdev = adapter->netdev;
1249
1250                 /* configure backlink on ring */
1251                 ring->q_vector = q_vector;
1252
1253                 /* update q_vector Tx values */
1254                 igb_add_ring(ring, &q_vector->tx);
1255
1256                 /* For 82575, context index must be unique per ring. */
1257                 if (adapter->hw.mac.type == e1000_82575)
1258                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1259
1260                 /* apply Tx specific ring traits */
1261                 ring->count = adapter->tx_ring_count;
1262                 ring->queue_index = txr_idx;
1263
1264                 ring->cbs_enable = false;
1265                 ring->idleslope = 0;
1266                 ring->sendslope = 0;
1267                 ring->hicredit = 0;
1268                 ring->locredit = 0;
1269
1270                 u64_stats_init(&ring->tx_syncp);
1271                 u64_stats_init(&ring->tx_syncp2);
1272
1273                 /* assign ring to adapter */
1274                 adapter->tx_ring[txr_idx] = ring;
1275
1276                 /* push pointer to next ring */
1277                 ring++;
1278         }
1279
1280         if (rxr_count) {
1281                 /* assign generic ring traits */
1282                 ring->dev = &adapter->pdev->dev;
1283                 ring->netdev = adapter->netdev;
1284
1285                 /* configure backlink on ring */
1286                 ring->q_vector = q_vector;
1287
1288                 /* update q_vector Rx values */
1289                 igb_add_ring(ring, &q_vector->rx);
1290
1291                 /* set flag indicating ring supports SCTP checksum offload */
1292                 if (adapter->hw.mac.type >= e1000_82576)
1293                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1294
1295                 /* On i350, i354, i210, and i211, loopback VLAN packets
1296                  * have the tag byte-swapped.
1297                  */
1298                 if (adapter->hw.mac.type >= e1000_i350)
1299                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1300
1301                 /* apply Rx specific ring traits */
1302                 ring->count = adapter->rx_ring_count;
1303                 ring->queue_index = rxr_idx;
1304
1305                 u64_stats_init(&ring->rx_syncp);
1306
1307                 /* assign ring to adapter */
1308                 adapter->rx_ring[rxr_idx] = ring;
1309         }
1310
1311         return 0;
1312 }
1313
1314
1315 /**
1316  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317  *  @adapter: board private structure to initialize
1318  *
1319  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1320  *  return -ENOMEM.
1321  **/
1322 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323 {
1324         int q_vectors = adapter->num_q_vectors;
1325         int rxr_remaining = adapter->num_rx_queues;
1326         int txr_remaining = adapter->num_tx_queues;
1327         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328         int err;
1329
1330         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331                 for (; rxr_remaining; v_idx++) {
1332                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1333                                                  0, 0, 1, rxr_idx);
1334
1335                         if (err)
1336                                 goto err_out;
1337
1338                         /* update counts and index */
1339                         rxr_remaining--;
1340                         rxr_idx++;
1341                 }
1342         }
1343
1344         for (; v_idx < q_vectors; v_idx++) {
1345                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347
1348                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1349                                          tqpv, txr_idx, rqpv, rxr_idx);
1350
1351                 if (err)
1352                         goto err_out;
1353
1354                 /* update counts and index */
1355                 rxr_remaining -= rqpv;
1356                 txr_remaining -= tqpv;
1357                 rxr_idx++;
1358                 txr_idx++;
1359         }
1360
1361         return 0;
1362
1363 err_out:
1364         adapter->num_tx_queues = 0;
1365         adapter->num_rx_queues = 0;
1366         adapter->num_q_vectors = 0;
1367
1368         while (v_idx--)
1369                 igb_free_q_vector(adapter, v_idx);
1370
1371         return -ENOMEM;
1372 }
1373
1374 /**
1375  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376  *  @adapter: board private structure to initialize
1377  *  @msix: boolean value of MSIX capability
1378  *
1379  *  This function initializes the interrupts and allocates all of the queues.
1380  **/
1381 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382 {
1383         struct pci_dev *pdev = adapter->pdev;
1384         int err;
1385
1386         igb_set_interrupt_capability(adapter, msix);
1387
1388         err = igb_alloc_q_vectors(adapter);
1389         if (err) {
1390                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391                 goto err_alloc_q_vectors;
1392         }
1393
1394         igb_cache_ring_register(adapter);
1395
1396         return 0;
1397
1398 err_alloc_q_vectors:
1399         igb_reset_interrupt_capability(adapter);
1400         return err;
1401 }
1402
1403 /**
1404  *  igb_request_irq - initialize interrupts
1405  *  @adapter: board private structure to initialize
1406  *
1407  *  Attempts to configure interrupts using the best available
1408  *  capabilities of the hardware and kernel.
1409  **/
1410 static int igb_request_irq(struct igb_adapter *adapter)
1411 {
1412         struct net_device *netdev = adapter->netdev;
1413         struct pci_dev *pdev = adapter->pdev;
1414         int err = 0;
1415
1416         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417                 err = igb_request_msix(adapter);
1418                 if (!err)
1419                         goto request_done;
1420                 /* fall back to MSI */
1421                 igb_free_all_tx_resources(adapter);
1422                 igb_free_all_rx_resources(adapter);
1423
1424                 igb_clear_interrupt_scheme(adapter);
1425                 err = igb_init_interrupt_scheme(adapter, false);
1426                 if (err)
1427                         goto request_done;
1428
1429                 igb_setup_all_tx_resources(adapter);
1430                 igb_setup_all_rx_resources(adapter);
1431                 igb_configure(adapter);
1432         }
1433
1434         igb_assign_vector(adapter->q_vector[0], 0);
1435
1436         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1438                                   netdev->name, adapter);
1439                 if (!err)
1440                         goto request_done;
1441
1442                 /* fall back to legacy interrupts */
1443                 igb_reset_interrupt_capability(adapter);
1444                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445         }
1446
1447         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1448                           netdev->name, adapter);
1449
1450         if (err)
1451                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452                         err);
1453
1454 request_done:
1455         return err;
1456 }
1457
1458 static void igb_free_irq(struct igb_adapter *adapter)
1459 {
1460         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461                 int vector = 0, i;
1462
1463                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1464
1465                 for (i = 0; i < adapter->num_q_vectors; i++)
1466                         free_irq(adapter->msix_entries[vector++].vector,
1467                                  adapter->q_vector[i]);
1468         } else {
1469                 free_irq(adapter->pdev->irq, adapter);
1470         }
1471 }
1472
1473 /**
1474  *  igb_irq_disable - Mask off interrupt generation on the NIC
1475  *  @adapter: board private structure
1476  **/
1477 static void igb_irq_disable(struct igb_adapter *adapter)
1478 {
1479         struct e1000_hw *hw = &adapter->hw;
1480
1481         /* we need to be careful when disabling interrupts.  The VFs are also
1482          * mapped into these registers and so clearing the bits can cause
1483          * issues on the VF drivers so we only need to clear what we set
1484          */
1485         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486                 u32 regval = rd32(E1000_EIAM);
1487
1488                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1490                 regval = rd32(E1000_EIAC);
1491                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492         }
1493
1494         wr32(E1000_IAM, 0);
1495         wr32(E1000_IMC, ~0);
1496         wrfl();
1497         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498                 int i;
1499
1500                 for (i = 0; i < adapter->num_q_vectors; i++)
1501                         synchronize_irq(adapter->msix_entries[i].vector);
1502         } else {
1503                 synchronize_irq(adapter->pdev->irq);
1504         }
1505 }
1506
1507 /**
1508  *  igb_irq_enable - Enable default interrupt generation settings
1509  *  @adapter: board private structure
1510  **/
1511 static void igb_irq_enable(struct igb_adapter *adapter)
1512 {
1513         struct e1000_hw *hw = &adapter->hw;
1514
1515         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517                 u32 regval = rd32(E1000_EIAC);
1518
1519                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520                 regval = rd32(E1000_EIAM);
1521                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1523                 if (adapter->vfs_allocated_count) {
1524                         wr32(E1000_MBVFIMR, 0xFF);
1525                         ims |= E1000_IMS_VMMB;
1526                 }
1527                 wr32(E1000_IMS, ims);
1528         } else {
1529                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1530                                 E1000_IMS_DRSTA);
1531                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1532                                 E1000_IMS_DRSTA);
1533         }
1534 }
1535
1536 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537 {
1538         struct e1000_hw *hw = &adapter->hw;
1539         u16 pf_id = adapter->vfs_allocated_count;
1540         u16 vid = adapter->hw.mng_cookie.vlan_id;
1541         u16 old_vid = adapter->mng_vlan_id;
1542
1543         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544                 /* add VID to filter table */
1545                 igb_vfta_set(hw, vid, pf_id, true, true);
1546                 adapter->mng_vlan_id = vid;
1547         } else {
1548                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549         }
1550
1551         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552             (vid != old_vid) &&
1553             !test_bit(old_vid, adapter->active_vlans)) {
1554                 /* remove VID from filter table */
1555                 igb_vfta_set(hw, vid, pf_id, false, true);
1556         }
1557 }
1558
1559 /**
1560  *  igb_release_hw_control - release control of the h/w to f/w
1561  *  @adapter: address of board private structure
1562  *
1563  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564  *  For ASF and Pass Through versions of f/w this means that the
1565  *  driver is no longer loaded.
1566  **/
1567 static void igb_release_hw_control(struct igb_adapter *adapter)
1568 {
1569         struct e1000_hw *hw = &adapter->hw;
1570         u32 ctrl_ext;
1571
1572         /* Let firmware take over control of h/w */
1573         ctrl_ext = rd32(E1000_CTRL_EXT);
1574         wr32(E1000_CTRL_EXT,
1575                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576 }
1577
1578 /**
1579  *  igb_get_hw_control - get control of the h/w from f/w
1580  *  @adapter: address of board private structure
1581  *
1582  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583  *  For ASF and Pass Through versions of f/w this means that
1584  *  the driver is loaded.
1585  **/
1586 static void igb_get_hw_control(struct igb_adapter *adapter)
1587 {
1588         struct e1000_hw *hw = &adapter->hw;
1589         u32 ctrl_ext;
1590
1591         /* Let firmware know the driver has taken over */
1592         ctrl_ext = rd32(E1000_CTRL_EXT);
1593         wr32(E1000_CTRL_EXT,
1594                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595 }
1596
1597 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598 {
1599         struct net_device *netdev = adapter->netdev;
1600         struct e1000_hw *hw = &adapter->hw;
1601
1602         WARN_ON(hw->mac.type != e1000_i210);
1603
1604         if (enable)
1605                 adapter->flags |= IGB_FLAG_FQTSS;
1606         else
1607                 adapter->flags &= ~IGB_FLAG_FQTSS;
1608
1609         if (netif_running(netdev))
1610                 schedule_work(&adapter->reset_task);
1611 }
1612
1613 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614 {
1615         return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616 }
1617
1618 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619                                    enum tx_queue_prio prio)
1620 {
1621         u32 val;
1622
1623         WARN_ON(hw->mac.type != e1000_i210);
1624         WARN_ON(queue < 0 || queue > 4);
1625
1626         val = rd32(E1000_I210_TXDCTL(queue));
1627
1628         if (prio == TX_QUEUE_PRIO_HIGH)
1629                 val |= E1000_TXDCTL_PRIORITY;
1630         else
1631                 val &= ~E1000_TXDCTL_PRIORITY;
1632
1633         wr32(E1000_I210_TXDCTL(queue), val);
1634 }
1635
1636 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637 {
1638         u32 val;
1639
1640         WARN_ON(hw->mac.type != e1000_i210);
1641         WARN_ON(queue < 0 || queue > 1);
1642
1643         val = rd32(E1000_I210_TQAVCC(queue));
1644
1645         if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646                 val |= E1000_TQAVCC_QUEUEMODE;
1647         else
1648                 val &= ~E1000_TQAVCC_QUEUEMODE;
1649
1650         wr32(E1000_I210_TQAVCC(queue), val);
1651 }
1652
1653 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654 {
1655         int i;
1656
1657         for (i = 0; i < adapter->num_tx_queues; i++) {
1658                 if (adapter->tx_ring[i]->cbs_enable)
1659                         return true;
1660         }
1661
1662         return false;
1663 }
1664
1665 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666 {
1667         int i;
1668
1669         for (i = 0; i < adapter->num_tx_queues; i++) {
1670                 if (adapter->tx_ring[i]->launchtime_enable)
1671                         return true;
1672         }
1673
1674         return false;
1675 }
1676
1677 /**
1678  *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679  *  @adapter: pointer to adapter struct
1680  *  @queue: queue number
1681  *
1682  *  Configure CBS and Launchtime for a given hardware queue.
1683  *  Parameters are retrieved from the correct Tx ring, so
1684  *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1685  *  for setting those correctly prior to this function being called.
1686  **/
1687 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688 {
1689         struct igb_ring *ring = adapter->tx_ring[queue];
1690         struct net_device *netdev = adapter->netdev;
1691         struct e1000_hw *hw = &adapter->hw;
1692         u32 tqavcc, tqavctrl;
1693         u16 value;
1694
1695         WARN_ON(hw->mac.type != e1000_i210);
1696         WARN_ON(queue < 0 || queue > 1);
1697
1698         /* If any of the Qav features is enabled, configure queues as SR and
1699          * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1700          * as SP.
1701          */
1702         if (ring->cbs_enable || ring->launchtime_enable) {
1703                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1704                 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1705         } else {
1706                 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1707                 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1708         }
1709
1710         /* If CBS is enabled, set DataTranARB and config its parameters. */
1711         if (ring->cbs_enable || queue == 0) {
1712                 /* i210 does not allow the queue 0 to be in the Strict
1713                  * Priority mode while the Qav mode is enabled, so,
1714                  * instead of disabling strict priority mode, we give
1715                  * queue 0 the maximum of credits possible.
1716                  *
1717                  * See section 8.12.19 of the i210 datasheet, "Note:
1718                  * Queue0 QueueMode must be set to 1b when
1719                  * TransmitMode is set to Qav."
1720                  */
1721                 if (queue == 0 && !ring->cbs_enable) {
1722                         /* max "linkspeed" idleslope in kbps */
1723                         ring->idleslope = 1000000;
1724                         ring->hicredit = ETH_FRAME_LEN;
1725                 }
1726
1727                 /* Always set data transfer arbitration to credit-based
1728                  * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1729                  * the queues.
1730                  */
1731                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1732                 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1733                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1734
1735                 /* According to i210 datasheet section 7.2.7.7, we should set
1736                  * the 'idleSlope' field from TQAVCC register following the
1737                  * equation:
1738                  *
1739                  * For 100 Mbps link speed:
1740                  *
1741                  *     value = BW * 0x7735 * 0.2                          (E1)
1742                  *
1743                  * For 1000Mbps link speed:
1744                  *
1745                  *     value = BW * 0x7735 * 2                            (E2)
1746                  *
1747                  * E1 and E2 can be merged into one equation as shown below.
1748                  * Note that 'link-speed' is in Mbps.
1749                  *
1750                  *     value = BW * 0x7735 * 2 * link-speed
1751                  *                           --------------               (E3)
1752                  *                                1000
1753                  *
1754                  * 'BW' is the percentage bandwidth out of full link speed
1755                  * which can be found with the following equation. Note that
1756                  * idleSlope here is the parameter from this function which
1757                  * is in kbps.
1758                  *
1759                  *     BW =     idleSlope
1760                  *          -----------------                             (E4)
1761                  *          link-speed * 1000
1762                  *
1763                  * That said, we can come up with a generic equation to
1764                  * calculate the value we should set it TQAVCC register by
1765                  * replacing 'BW' in E3 by E4. The resulting equation is:
1766                  *
1767                  * value =     idleSlope     * 0x7735 * 2 * link-speed
1768                  *         -----------------            --------------    (E5)
1769                  *         link-speed * 1000                 1000
1770                  *
1771                  * 'link-speed' is present in both sides of the fraction so
1772                  * it is canceled out. The final equation is the following:
1773                  *
1774                  *     value = idleSlope * 61034
1775                  *             -----------------                          (E6)
1776                  *                  1000000
1777                  *
1778                  * NOTE: For i210, given the above, we can see that idleslope
1779                  *       is represented in 16.38431 kbps units by the value at
1780                  *       the TQAVCC register (1Gbps / 61034), which reduces
1781                  *       the granularity for idleslope increments.
1782                  *       For instance, if you want to configure a 2576kbps
1783                  *       idleslope, the value to be written on the register
1784                  *       would have to be 157.23. If rounded down, you end
1785                  *       up with less bandwidth available than originally
1786                  *       required (~2572 kbps). If rounded up, you end up
1787                  *       with a higher bandwidth (~2589 kbps). Below the
1788                  *       approach we take is to always round up the
1789                  *       calculated value, so the resulting bandwidth might
1790                  *       be slightly higher for some configurations.
1791                  */
1792                 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1793
1794                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1795                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1796                 tqavcc |= value;
1797                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1798
1799                 wr32(E1000_I210_TQAVHC(queue),
1800                      0x80000000 + ring->hicredit * 0x7735);
1801         } else {
1802
1803                 /* Set idleSlope to zero. */
1804                 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1805                 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1806                 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1807
1808                 /* Set hiCredit to zero. */
1809                 wr32(E1000_I210_TQAVHC(queue), 0);
1810
1811                 /* If CBS is not enabled for any queues anymore, then return to
1812                  * the default state of Data Transmission Arbitration on
1813                  * TQAVCTRL.
1814                  */
1815                 if (!is_any_cbs_enabled(adapter)) {
1816                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1817                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1818                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1819                 }
1820         }
1821
1822         /* If LaunchTime is enabled, set DataTranTIM. */
1823         if (ring->launchtime_enable) {
1824                 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1825                  * for any of the SR queues, and configure fetchtime delta.
1826                  * XXX NOTE:
1827                  *     - LaunchTime will be enabled for all SR queues.
1828                  *     - A fixed offset can be added relative to the launch
1829                  *       time of all packets if configured at reg LAUNCH_OS0.
1830                  *       We are keeping it as 0 for now (default value).
1831                  */
1832                 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1833                 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1834                        E1000_TQAVCTRL_FETCHTIME_DELTA;
1835                 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1836         } else {
1837                 /* If Launchtime is not enabled for any SR queues anymore,
1838                  * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1839                  * effectively disabling Launchtime.
1840                  */
1841                 if (!is_any_txtime_enabled(adapter)) {
1842                         tqavctrl = rd32(E1000_I210_TQAVCTRL);
1843                         tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1844                         tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1845                         wr32(E1000_I210_TQAVCTRL, tqavctrl);
1846                 }
1847         }
1848
1849         /* XXX: In i210 controller the sendSlope and loCredit parameters from
1850          * CBS are not configurable by software so we don't do any 'controller
1851          * configuration' in respect to these parameters.
1852          */
1853
1854         netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1855                    ring->cbs_enable ? "enabled" : "disabled",
1856                    ring->launchtime_enable ? "enabled" : "disabled",
1857                    queue,
1858                    ring->idleslope, ring->sendslope,
1859                    ring->hicredit, ring->locredit);
1860 }
1861
1862 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1863                                   bool enable)
1864 {
1865         struct igb_ring *ring;
1866
1867         if (queue < 0 || queue > adapter->num_tx_queues)
1868                 return -EINVAL;
1869
1870         ring = adapter->tx_ring[queue];
1871         ring->launchtime_enable = enable;
1872
1873         return 0;
1874 }
1875
1876 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1877                                bool enable, int idleslope, int sendslope,
1878                                int hicredit, int locredit)
1879 {
1880         struct igb_ring *ring;
1881
1882         if (queue < 0 || queue > adapter->num_tx_queues)
1883                 return -EINVAL;
1884
1885         ring = adapter->tx_ring[queue];
1886
1887         ring->cbs_enable = enable;
1888         ring->idleslope = idleslope;
1889         ring->sendslope = sendslope;
1890         ring->hicredit = hicredit;
1891         ring->locredit = locredit;
1892
1893         return 0;
1894 }
1895
1896 /**
1897  *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1898  *  @adapter: pointer to adapter struct
1899  *
1900  *  Configure TQAVCTRL register switching the controller's Tx mode
1901  *  if FQTSS mode is enabled or disabled. Additionally, will issue
1902  *  a call to igb_config_tx_modes() per queue so any previously saved
1903  *  Tx parameters are applied.
1904  **/
1905 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1906 {
1907         struct net_device *netdev = adapter->netdev;
1908         struct e1000_hw *hw = &adapter->hw;
1909         u32 val;
1910
1911         /* Only i210 controller supports changing the transmission mode. */
1912         if (hw->mac.type != e1000_i210)
1913                 return;
1914
1915         if (is_fqtss_enabled(adapter)) {
1916                 int i, max_queue;
1917
1918                 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1919                  * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1920                  * so SP queues wait for SR ones.
1921                  */
1922                 val = rd32(E1000_I210_TQAVCTRL);
1923                 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1924                 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1925                 wr32(E1000_I210_TQAVCTRL, val);
1926
1927                 /* Configure Tx and Rx packet buffers sizes as described in
1928                  * i210 datasheet section 7.2.7.7.
1929                  */
1930                 val = rd32(E1000_TXPBS);
1931                 val &= ~I210_TXPBSIZE_MASK;
1932                 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1933                         I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1934                 wr32(E1000_TXPBS, val);
1935
1936                 val = rd32(E1000_RXPBS);
1937                 val &= ~I210_RXPBSIZE_MASK;
1938                 val |= I210_RXPBSIZE_PB_30KB;
1939                 wr32(E1000_RXPBS, val);
1940
1941                 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1942                  * register should not exceed the buffer size programmed in
1943                  * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1944                  * so according to the datasheet we should set MAX_TPKT_SIZE to
1945                  * 4kB / 64.
1946                  *
1947                  * However, when we do so, no frame from queue 2 and 3 are
1948                  * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1949                  * or _equal_ to the buffer size programmed in TXPBS. For this
1950                  * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1951                  */
1952                 val = (4096 - 1) / 64;
1953                 wr32(E1000_I210_DTXMXPKTSZ, val);
1954
1955                 /* Since FQTSS mode is enabled, apply any CBS configuration
1956                  * previously set. If no previous CBS configuration has been
1957                  * done, then the initial configuration is applied, which means
1958                  * CBS is disabled.
1959                  */
1960                 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1961                             adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1962
1963                 for (i = 0; i < max_queue; i++) {
1964                         igb_config_tx_modes(adapter, i);
1965                 }
1966         } else {
1967                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1968                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1969                 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1970
1971                 val = rd32(E1000_I210_TQAVCTRL);
1972                 /* According to Section 8.12.21, the other flags we've set when
1973                  * enabling FQTSS are not relevant when disabling FQTSS so we
1974                  * don't set they here.
1975                  */
1976                 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1977                 wr32(E1000_I210_TQAVCTRL, val);
1978         }
1979
1980         netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1981                    "enabled" : "disabled");
1982 }
1983
1984 /**
1985  *  igb_configure - configure the hardware for RX and TX
1986  *  @adapter: private board structure
1987  **/
1988 static void igb_configure(struct igb_adapter *adapter)
1989 {
1990         struct net_device *netdev = adapter->netdev;
1991         int i;
1992
1993         igb_get_hw_control(adapter);
1994         igb_set_rx_mode(netdev);
1995         igb_setup_tx_mode(adapter);
1996
1997         igb_restore_vlan(adapter);
1998
1999         igb_setup_tctl(adapter);
2000         igb_setup_mrqc(adapter);
2001         igb_setup_rctl(adapter);
2002
2003         igb_nfc_filter_restore(adapter);
2004         igb_configure_tx(adapter);
2005         igb_configure_rx(adapter);
2006
2007         igb_rx_fifo_flush_82575(&adapter->hw);
2008
2009         /* call igb_desc_unused which always leaves
2010          * at least 1 descriptor unused to make sure
2011          * next_to_use != next_to_clean
2012          */
2013         for (i = 0; i < adapter->num_rx_queues; i++) {
2014                 struct igb_ring *ring = adapter->rx_ring[i];
2015                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2016         }
2017 }
2018
2019 /**
2020  *  igb_power_up_link - Power up the phy/serdes link
2021  *  @adapter: address of board private structure
2022  **/
2023 void igb_power_up_link(struct igb_adapter *adapter)
2024 {
2025         igb_reset_phy(&adapter->hw);
2026
2027         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2028                 igb_power_up_phy_copper(&adapter->hw);
2029         else
2030                 igb_power_up_serdes_link_82575(&adapter->hw);
2031
2032         igb_setup_link(&adapter->hw);
2033 }
2034
2035 /**
2036  *  igb_power_down_link - Power down the phy/serdes link
2037  *  @adapter: address of board private structure
2038  */
2039 static void igb_power_down_link(struct igb_adapter *adapter)
2040 {
2041         if (adapter->hw.phy.media_type == e1000_media_type_copper)
2042                 igb_power_down_phy_copper_82575(&adapter->hw);
2043         else
2044                 igb_shutdown_serdes_link_82575(&adapter->hw);
2045 }
2046
2047 /**
2048  * Detect and switch function for Media Auto Sense
2049  * @adapter: address of the board private structure
2050  **/
2051 static void igb_check_swap_media(struct igb_adapter *adapter)
2052 {
2053         struct e1000_hw *hw = &adapter->hw;
2054         u32 ctrl_ext, connsw;
2055         bool swap_now = false;
2056
2057         ctrl_ext = rd32(E1000_CTRL_EXT);
2058         connsw = rd32(E1000_CONNSW);
2059
2060         /* need to live swap if current media is copper and we have fiber/serdes
2061          * to go to.
2062          */
2063
2064         if ((hw->phy.media_type == e1000_media_type_copper) &&
2065             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2066                 swap_now = true;
2067         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2068                 /* copper signal takes time to appear */
2069                 if (adapter->copper_tries < 4) {
2070                         adapter->copper_tries++;
2071                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2072                         wr32(E1000_CONNSW, connsw);
2073                         return;
2074                 } else {
2075                         adapter->copper_tries = 0;
2076                         if ((connsw & E1000_CONNSW_PHYSD) &&
2077                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
2078                                 swap_now = true;
2079                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2080                                 wr32(E1000_CONNSW, connsw);
2081                         }
2082                 }
2083         }
2084
2085         if (!swap_now)
2086                 return;
2087
2088         switch (hw->phy.media_type) {
2089         case e1000_media_type_copper:
2090                 netdev_info(adapter->netdev,
2091                         "MAS: changing media to fiber/serdes\n");
2092                 ctrl_ext |=
2093                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2094                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2095                 adapter->copper_tries = 0;
2096                 break;
2097         case e1000_media_type_internal_serdes:
2098         case e1000_media_type_fiber:
2099                 netdev_info(adapter->netdev,
2100                         "MAS: changing media to copper\n");
2101                 ctrl_ext &=
2102                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2103                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2104                 break;
2105         default:
2106                 /* shouldn't get here during regular operation */
2107                 netdev_err(adapter->netdev,
2108                         "AMS: Invalid media type found, returning\n");
2109                 break;
2110         }
2111         wr32(E1000_CTRL_EXT, ctrl_ext);
2112 }
2113
2114 /**
2115  *  igb_up - Open the interface and prepare it to handle traffic
2116  *  @adapter: board private structure
2117  **/
2118 int igb_up(struct igb_adapter *adapter)
2119 {
2120         struct e1000_hw *hw = &adapter->hw;
2121         int i;
2122
2123         /* hardware has been reset, we need to reload some things */
2124         igb_configure(adapter);
2125
2126         clear_bit(__IGB_DOWN, &adapter->state);
2127
2128         for (i = 0; i < adapter->num_q_vectors; i++)
2129                 napi_enable(&(adapter->q_vector[i]->napi));
2130
2131         if (adapter->flags & IGB_FLAG_HAS_MSIX)
2132                 igb_configure_msix(adapter);
2133         else
2134                 igb_assign_vector(adapter->q_vector[0], 0);
2135
2136         /* Clear any pending interrupts. */
2137         rd32(E1000_TSICR);
2138         rd32(E1000_ICR);
2139         igb_irq_enable(adapter);
2140
2141         /* notify VFs that reset has been completed */
2142         if (adapter->vfs_allocated_count) {
2143                 u32 reg_data = rd32(E1000_CTRL_EXT);
2144
2145                 reg_data |= E1000_CTRL_EXT_PFRSTD;
2146                 wr32(E1000_CTRL_EXT, reg_data);
2147         }
2148
2149         netif_tx_start_all_queues(adapter->netdev);
2150
2151         /* start the watchdog. */
2152         hw->mac.get_link_status = 1;
2153         schedule_work(&adapter->watchdog_task);
2154
2155         if ((adapter->flags & IGB_FLAG_EEE) &&
2156             (!hw->dev_spec._82575.eee_disable))
2157                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2158
2159         return 0;
2160 }
2161
2162 void igb_down(struct igb_adapter *adapter)
2163 {
2164         struct net_device *netdev = adapter->netdev;
2165         struct e1000_hw *hw = &adapter->hw;
2166         u32 tctl, rctl;
2167         int i;
2168
2169         /* signal that we're down so the interrupt handler does not
2170          * reschedule our watchdog timer
2171          */
2172         set_bit(__IGB_DOWN, &adapter->state);
2173
2174         /* disable receives in the hardware */
2175         rctl = rd32(E1000_RCTL);
2176         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2177         /* flush and sleep below */
2178
2179         igb_nfc_filter_exit(adapter);
2180
2181         netif_carrier_off(netdev);
2182         netif_tx_stop_all_queues(netdev);
2183
2184         /* disable transmits in the hardware */
2185         tctl = rd32(E1000_TCTL);
2186         tctl &= ~E1000_TCTL_EN;
2187         wr32(E1000_TCTL, tctl);
2188         /* flush both disables and wait for them to finish */
2189         wrfl();
2190         usleep_range(10000, 11000);
2191
2192         igb_irq_disable(adapter);
2193
2194         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2195
2196         for (i = 0; i < adapter->num_q_vectors; i++) {
2197                 if (adapter->q_vector[i]) {
2198                         napi_synchronize(&adapter->q_vector[i]->napi);
2199                         napi_disable(&adapter->q_vector[i]->napi);
2200                 }
2201         }
2202
2203         del_timer_sync(&adapter->watchdog_timer);
2204         del_timer_sync(&adapter->phy_info_timer);
2205
2206         /* record the stats before reset*/
2207         spin_lock(&adapter->stats64_lock);
2208         igb_update_stats(adapter);
2209         spin_unlock(&adapter->stats64_lock);
2210
2211         adapter->link_speed = 0;
2212         adapter->link_duplex = 0;
2213
2214         if (!pci_channel_offline(adapter->pdev))
2215                 igb_reset(adapter);
2216
2217         /* clear VLAN promisc flag so VFTA will be updated if necessary */
2218         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2219
2220         igb_clean_all_tx_rings(adapter);
2221         igb_clean_all_rx_rings(adapter);
2222 #ifdef CONFIG_IGB_DCA
2223
2224         /* since we reset the hardware DCA settings were cleared */
2225         igb_setup_dca(adapter);
2226 #endif
2227 }
2228
2229 void igb_reinit_locked(struct igb_adapter *adapter)
2230 {
2231         WARN_ON(in_interrupt());
2232         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2233                 usleep_range(1000, 2000);
2234         igb_down(adapter);
2235         igb_up(adapter);
2236         clear_bit(__IGB_RESETTING, &adapter->state);
2237 }
2238
2239 /** igb_enable_mas - Media Autosense re-enable after swap
2240  *
2241  * @adapter: adapter struct
2242  **/
2243 static void igb_enable_mas(struct igb_adapter *adapter)
2244 {
2245         struct e1000_hw *hw = &adapter->hw;
2246         u32 connsw = rd32(E1000_CONNSW);
2247
2248         /* configure for SerDes media detect */
2249         if ((hw->phy.media_type == e1000_media_type_copper) &&
2250             (!(connsw & E1000_CONNSW_SERDESD))) {
2251                 connsw |= E1000_CONNSW_ENRGSRC;
2252                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2253                 wr32(E1000_CONNSW, connsw);
2254                 wrfl();
2255         }
2256 }
2257
2258 void igb_reset(struct igb_adapter *adapter)
2259 {
2260         struct pci_dev *pdev = adapter->pdev;
2261         struct e1000_hw *hw = &adapter->hw;
2262         struct e1000_mac_info *mac = &hw->mac;
2263         struct e1000_fc_info *fc = &hw->fc;
2264         u32 pba, hwm;
2265
2266         /* Repartition Pba for greater than 9k mtu
2267          * To take effect CTRL.RST is required.
2268          */
2269         switch (mac->type) {
2270         case e1000_i350:
2271         case e1000_i354:
2272         case e1000_82580:
2273                 pba = rd32(E1000_RXPBS);
2274                 pba = igb_rxpbs_adjust_82580(pba);
2275                 break;
2276         case e1000_82576:
2277                 pba = rd32(E1000_RXPBS);
2278                 pba &= E1000_RXPBS_SIZE_MASK_82576;
2279                 break;
2280         case e1000_82575:
2281         case e1000_i210:
2282         case e1000_i211:
2283         default:
2284                 pba = E1000_PBA_34K;
2285                 break;
2286         }
2287
2288         if (mac->type == e1000_82575) {
2289                 u32 min_rx_space, min_tx_space, needed_tx_space;
2290
2291                 /* write Rx PBA so that hardware can report correct Tx PBA */
2292                 wr32(E1000_PBA, pba);
2293
2294                 /* To maintain wire speed transmits, the Tx FIFO should be
2295                  * large enough to accommodate two full transmit packets,
2296                  * rounded up to the next 1KB and expressed in KB.  Likewise,
2297                  * the Rx FIFO should be large enough to accommodate at least
2298                  * one full receive packet and is similarly rounded up and
2299                  * expressed in KB.
2300                  */
2301                 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2302
2303                 /* The Tx FIFO also stores 16 bytes of information about the Tx
2304                  * but don't include Ethernet FCS because hardware appends it.
2305                  * We only need to round down to the nearest 512 byte block
2306                  * count since the value we care about is 2 frames, not 1.
2307                  */
2308                 min_tx_space = adapter->max_frame_size;
2309                 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2310                 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2311
2312                 /* upper 16 bits has Tx packet buffer allocation size in KB */
2313                 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2314
2315                 /* If current Tx allocation is less than the min Tx FIFO size,
2316                  * and the min Tx FIFO size is less than the current Rx FIFO
2317                  * allocation, take space away from current Rx allocation.
2318                  */
2319                 if (needed_tx_space < pba) {
2320                         pba -= needed_tx_space;
2321
2322                         /* if short on Rx space, Rx wins and must trump Tx
2323                          * adjustment
2324                          */
2325                         if (pba < min_rx_space)
2326                                 pba = min_rx_space;
2327                 }
2328
2329                 /* adjust PBA for jumbo frames */
2330                 wr32(E1000_PBA, pba);
2331         }
2332
2333         /* flow control settings
2334          * The high water mark must be low enough to fit one full frame
2335          * after transmitting the pause frame.  As such we must have enough
2336          * space to allow for us to complete our current transmit and then
2337          * receive the frame that is in progress from the link partner.
2338          * Set it to:
2339          * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2340          */
2341         hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2342
2343         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2344         fc->low_water = fc->high_water - 16;
2345         fc->pause_time = 0xFFFF;
2346         fc->send_xon = 1;
2347         fc->current_mode = fc->requested_mode;
2348
2349         /* disable receive for all VFs and wait one second */
2350         if (adapter->vfs_allocated_count) {
2351                 int i;
2352
2353                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2354                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2355
2356                 /* ping all the active vfs to let them know we are going down */
2357                 igb_ping_all_vfs(adapter);
2358
2359                 /* disable transmits and receives */
2360                 wr32(E1000_VFRE, 0);
2361                 wr32(E1000_VFTE, 0);
2362         }
2363
2364         /* Allow time for pending master requests to run */
2365         hw->mac.ops.reset_hw(hw);
2366         wr32(E1000_WUC, 0);
2367
2368         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2369                 /* need to resetup here after media swap */
2370                 adapter->ei.get_invariants(hw);
2371                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2372         }
2373         if ((mac->type == e1000_82575) &&
2374             (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2375                 igb_enable_mas(adapter);
2376         }
2377         if (hw->mac.ops.init_hw(hw))
2378                 dev_err(&pdev->dev, "Hardware Error\n");
2379
2380         /* RAR registers were cleared during init_hw, clear mac table */
2381         igb_flush_mac_table(adapter);
2382         __dev_uc_unsync(adapter->netdev, NULL);
2383
2384         /* Recover default RAR entry */
2385         igb_set_default_mac_filter(adapter);
2386
2387         /* Flow control settings reset on hardware reset, so guarantee flow
2388          * control is off when forcing speed.
2389          */
2390         if (!hw->mac.autoneg)
2391                 igb_force_mac_fc(hw);
2392
2393         igb_init_dmac(adapter, pba);
2394 #ifdef CONFIG_IGB_HWMON
2395         /* Re-initialize the thermal sensor on i350 devices. */
2396         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2397                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2398                         /* If present, re-initialize the external thermal sensor
2399                          * interface.
2400                          */
2401                         if (adapter->ets)
2402                                 mac->ops.init_thermal_sensor_thresh(hw);
2403                 }
2404         }
2405 #endif
2406         /* Re-establish EEE setting */
2407         if (hw->phy.media_type == e1000_media_type_copper) {
2408                 switch (mac->type) {
2409                 case e1000_i350:
2410                 case e1000_i210:
2411                 case e1000_i211:
2412                         igb_set_eee_i350(hw, true, true);
2413                         break;
2414                 case e1000_i354:
2415                         igb_set_eee_i354(hw, true, true);
2416                         break;
2417                 default:
2418                         break;
2419                 }
2420         }
2421         if (!netif_running(adapter->netdev))
2422                 igb_power_down_link(adapter);
2423
2424         igb_update_mng_vlan(adapter);
2425
2426         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2427         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2428
2429         /* Re-enable PTP, where applicable. */
2430         if (adapter->ptp_flags & IGB_PTP_ENABLED)
2431                 igb_ptp_reset(adapter);
2432
2433         igb_get_phy_info(hw);
2434 }
2435
2436 static netdev_features_t igb_fix_features(struct net_device *netdev,
2437         netdev_features_t features)
2438 {
2439         /* Since there is no support for separate Rx/Tx vlan accel
2440          * enable/disable make sure Tx flag is always in same state as Rx.
2441          */
2442         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2443                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2444         else
2445                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2446
2447         return features;
2448 }
2449
2450 static int igb_set_features(struct net_device *netdev,
2451         netdev_features_t features)
2452 {
2453         netdev_features_t changed = netdev->features ^ features;
2454         struct igb_adapter *adapter = netdev_priv(netdev);
2455
2456         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2457                 igb_vlan_mode(netdev, features);
2458
2459         if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2460                 return 0;
2461
2462         if (!(features & NETIF_F_NTUPLE)) {
2463                 struct hlist_node *node2;
2464                 struct igb_nfc_filter *rule;
2465
2466                 spin_lock(&adapter->nfc_lock);
2467                 hlist_for_each_entry_safe(rule, node2,
2468                                           &adapter->nfc_filter_list, nfc_node) {
2469                         igb_erase_filter(adapter, rule);
2470                         hlist_del(&rule->nfc_node);
2471                         kfree(rule);
2472                 }
2473                 spin_unlock(&adapter->nfc_lock);
2474                 adapter->nfc_filter_count = 0;
2475         }
2476
2477         netdev->features = features;
2478
2479         if (netif_running(netdev))
2480                 igb_reinit_locked(adapter);
2481         else
2482                 igb_reset(adapter);
2483
2484         return 1;
2485 }
2486
2487 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2488                            struct net_device *dev,
2489                            const unsigned char *addr, u16 vid,
2490                            u16 flags,
2491                            struct netlink_ext_ack *extack)
2492 {
2493         /* guarantee we can provide a unique filter for the unicast address */
2494         if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2495                 struct igb_adapter *adapter = netdev_priv(dev);
2496                 int vfn = adapter->vfs_allocated_count;
2497
2498                 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2499                         return -ENOMEM;
2500         }
2501
2502         return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2503 }
2504
2505 #define IGB_MAX_MAC_HDR_LEN     127
2506 #define IGB_MAX_NETWORK_HDR_LEN 511
2507
2508 static netdev_features_t
2509 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2510                    netdev_features_t features)
2511 {
2512         unsigned int network_hdr_len, mac_hdr_len;
2513
2514         /* Make certain the headers can be described by a context descriptor */
2515         mac_hdr_len = skb_network_header(skb) - skb->data;
2516         if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2517                 return features & ~(NETIF_F_HW_CSUM |
2518                                     NETIF_F_SCTP_CRC |
2519                                     NETIF_F_HW_VLAN_CTAG_TX |
2520                                     NETIF_F_TSO |
2521                                     NETIF_F_TSO6);
2522
2523         network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2524         if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2525                 return features & ~(NETIF_F_HW_CSUM |
2526                                     NETIF_F_SCTP_CRC |
2527                                     NETIF_F_TSO |
2528                                     NETIF_F_TSO6);
2529
2530         /* We can only support IPV4 TSO in tunnels if we can mangle the
2531          * inner IP ID field, so strip TSO if MANGLEID is not supported.
2532          */
2533         if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2534                 features &= ~NETIF_F_TSO;
2535
2536         return features;
2537 }
2538
2539 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2540 {
2541         if (!is_fqtss_enabled(adapter)) {
2542                 enable_fqtss(adapter, true);
2543                 return;
2544         }
2545
2546         igb_config_tx_modes(adapter, queue);
2547
2548         if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2549                 enable_fqtss(adapter, false);
2550 }
2551
2552 static int igb_offload_cbs(struct igb_adapter *adapter,
2553                            struct tc_cbs_qopt_offload *qopt)
2554 {
2555         struct e1000_hw *hw = &adapter->hw;
2556         int err;
2557
2558         /* CBS offloading is only supported by i210 controller. */
2559         if (hw->mac.type != e1000_i210)
2560                 return -EOPNOTSUPP;
2561
2562         /* CBS offloading is only supported by queue 0 and queue 1. */
2563         if (qopt->queue < 0 || qopt->queue > 1)
2564                 return -EINVAL;
2565
2566         err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2567                                   qopt->idleslope, qopt->sendslope,
2568                                   qopt->hicredit, qopt->locredit);
2569         if (err)
2570                 return err;
2571
2572         igb_offload_apply(adapter, qopt->queue);
2573
2574         return 0;
2575 }
2576
2577 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2578 #define VLAN_PRIO_FULL_MASK (0x07)
2579
2580 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2581                                 struct flow_cls_offload *f,
2582                                 int traffic_class,
2583                                 struct igb_nfc_filter *input)
2584 {
2585         struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2586         struct flow_dissector *dissector = rule->match.dissector;
2587         struct netlink_ext_ack *extack = f->common.extack;
2588
2589         if (dissector->used_keys &
2590             ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2591               BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2592               BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2593               BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2594                 NL_SET_ERR_MSG_MOD(extack,
2595                                    "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2596                 return -EOPNOTSUPP;
2597         }
2598
2599         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2600                 struct flow_match_eth_addrs match;
2601
2602                 flow_rule_match_eth_addrs(rule, &match);
2603                 if (!is_zero_ether_addr(match.mask->dst)) {
2604                         if (!is_broadcast_ether_addr(match.mask->dst)) {
2605                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2606                                 return -EINVAL;
2607                         }
2608
2609                         input->filter.match_flags |=
2610                                 IGB_FILTER_FLAG_DST_MAC_ADDR;
2611                         ether_addr_copy(input->filter.dst_addr, match.key->dst);
2612                 }
2613
2614                 if (!is_zero_ether_addr(match.mask->src)) {
2615                         if (!is_broadcast_ether_addr(match.mask->src)) {
2616                                 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2617                                 return -EINVAL;
2618                         }
2619
2620                         input->filter.match_flags |=
2621                                 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2622                         ether_addr_copy(input->filter.src_addr, match.key->src);
2623                 }
2624         }
2625
2626         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2627                 struct flow_match_basic match;
2628
2629                 flow_rule_match_basic(rule, &match);
2630                 if (match.mask->n_proto) {
2631                         if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2632                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2633                                 return -EINVAL;
2634                         }
2635
2636                         input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2637                         input->filter.etype = match.key->n_proto;
2638                 }
2639         }
2640
2641         if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2642                 struct flow_match_vlan match;
2643
2644                 flow_rule_match_vlan(rule, &match);
2645                 if (match.mask->vlan_priority) {
2646                         if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2647                                 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2648                                 return -EINVAL;
2649                         }
2650
2651                         input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2652                         input->filter.vlan_tci = match.key->vlan_priority;
2653                 }
2654         }
2655
2656         input->action = traffic_class;
2657         input->cookie = f->cookie;
2658
2659         return 0;
2660 }
2661
2662 static int igb_configure_clsflower(struct igb_adapter *adapter,
2663                                    struct flow_cls_offload *cls_flower)
2664 {
2665         struct netlink_ext_ack *extack = cls_flower->common.extack;
2666         struct igb_nfc_filter *filter, *f;
2667         int err, tc;
2668
2669         tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2670         if (tc < 0) {
2671                 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2672                 return -EINVAL;
2673         }
2674
2675         filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2676         if (!filter)
2677                 return -ENOMEM;
2678
2679         err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2680         if (err < 0)
2681                 goto err_parse;
2682
2683         spin_lock(&adapter->nfc_lock);
2684
2685         hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2686                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2687                         err = -EEXIST;
2688                         NL_SET_ERR_MSG_MOD(extack,
2689                                            "This filter is already set in ethtool");
2690                         goto err_locked;
2691                 }
2692         }
2693
2694         hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2695                 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2696                         err = -EEXIST;
2697                         NL_SET_ERR_MSG_MOD(extack,
2698                                            "This filter is already set in cls_flower");
2699                         goto err_locked;
2700                 }
2701         }
2702
2703         err = igb_add_filter(adapter, filter);
2704         if (err < 0) {
2705                 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2706                 goto err_locked;
2707         }
2708
2709         hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2710
2711         spin_unlock(&adapter->nfc_lock);
2712
2713         return 0;
2714
2715 err_locked:
2716         spin_unlock(&adapter->nfc_lock);
2717
2718 err_parse:
2719         kfree(filter);
2720
2721         return err;
2722 }
2723
2724 static int igb_delete_clsflower(struct igb_adapter *adapter,
2725                                 struct flow_cls_offload *cls_flower)
2726 {
2727         struct igb_nfc_filter *filter;
2728         int err;
2729
2730         spin_lock(&adapter->nfc_lock);
2731
2732         hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2733                 if (filter->cookie == cls_flower->cookie)
2734                         break;
2735
2736         if (!filter) {
2737                 err = -ENOENT;
2738                 goto out;
2739         }
2740
2741         err = igb_erase_filter(adapter, filter);
2742         if (err < 0)
2743                 goto out;
2744
2745         hlist_del(&filter->nfc_node);
2746         kfree(filter);
2747
2748 out:
2749         spin_unlock(&adapter->nfc_lock);
2750
2751         return err;
2752 }
2753
2754 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2755                                    struct flow_cls_offload *cls_flower)
2756 {
2757         switch (cls_flower->command) {
2758         case FLOW_CLS_REPLACE:
2759                 return igb_configure_clsflower(adapter, cls_flower);
2760         case FLOW_CLS_DESTROY:
2761                 return igb_delete_clsflower(adapter, cls_flower);
2762         case FLOW_CLS_STATS:
2763                 return -EOPNOTSUPP;
2764         default:
2765                 return -EOPNOTSUPP;
2766         }
2767 }
2768
2769 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2770                                  void *cb_priv)
2771 {
2772         struct igb_adapter *adapter = cb_priv;
2773
2774         if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2775                 return -EOPNOTSUPP;
2776
2777         switch (type) {
2778         case TC_SETUP_CLSFLOWER:
2779                 return igb_setup_tc_cls_flower(adapter, type_data);
2780
2781         default:
2782                 return -EOPNOTSUPP;
2783         }
2784 }
2785
2786 static int igb_offload_txtime(struct igb_adapter *adapter,
2787                               struct tc_etf_qopt_offload *qopt)
2788 {
2789         struct e1000_hw *hw = &adapter->hw;
2790         int err;
2791
2792         /* Launchtime offloading is only supported by i210 controller. */
2793         if (hw->mac.type != e1000_i210)
2794                 return -EOPNOTSUPP;
2795
2796         /* Launchtime offloading is only supported by queues 0 and 1. */
2797         if (qopt->queue < 0 || qopt->queue > 1)
2798                 return -EINVAL;
2799
2800         err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2801         if (err)
2802                 return err;
2803
2804         igb_offload_apply(adapter, qopt->queue);
2805
2806         return 0;
2807 }
2808
2809 static LIST_HEAD(igb_block_cb_list);
2810
2811 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2812                         void *type_data)
2813 {
2814         struct igb_adapter *adapter = netdev_priv(dev);
2815
2816         switch (type) {
2817         case TC_SETUP_QDISC_CBS:
2818                 return igb_offload_cbs(adapter, type_data);
2819         case TC_SETUP_BLOCK:
2820                 return flow_block_cb_setup_simple(type_data,
2821                                                   &igb_block_cb_list,
2822                                                   igb_setup_tc_block_cb,
2823                                                   adapter, adapter, true);
2824
2825         case TC_SETUP_QDISC_ETF:
2826                 return igb_offload_txtime(adapter, type_data);
2827
2828         default:
2829                 return -EOPNOTSUPP;
2830         }
2831 }
2832
2833 static const struct net_device_ops igb_netdev_ops = {
2834         .ndo_open               = igb_open,
2835         .ndo_stop               = igb_close,
2836         .ndo_start_xmit         = igb_xmit_frame,
2837         .ndo_get_stats64        = igb_get_stats64,
2838         .ndo_set_rx_mode        = igb_set_rx_mode,
2839         .ndo_set_mac_address    = igb_set_mac,
2840         .ndo_change_mtu         = igb_change_mtu,
2841         .ndo_do_ioctl           = igb_ioctl,
2842         .ndo_tx_timeout         = igb_tx_timeout,
2843         .ndo_validate_addr      = eth_validate_addr,
2844         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2845         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2846         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2847         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2848         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2849         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2850         .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2851         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2852         .ndo_fix_features       = igb_fix_features,
2853         .ndo_set_features       = igb_set_features,
2854         .ndo_fdb_add            = igb_ndo_fdb_add,
2855         .ndo_features_check     = igb_features_check,
2856         .ndo_setup_tc           = igb_setup_tc,
2857 };
2858
2859 /**
2860  * igb_set_fw_version - Configure version string for ethtool
2861  * @adapter: adapter struct
2862  **/
2863 void igb_set_fw_version(struct igb_adapter *adapter)
2864 {
2865         struct e1000_hw *hw = &adapter->hw;
2866         struct e1000_fw_version fw;
2867
2868         igb_get_fw_version(hw, &fw);
2869
2870         switch (hw->mac.type) {
2871         case e1000_i210:
2872         case e1000_i211:
2873                 if (!(igb_get_flash_presence_i210(hw))) {
2874                         snprintf(adapter->fw_version,
2875                                  sizeof(adapter->fw_version),
2876                                  "%2d.%2d-%d",
2877                                  fw.invm_major, fw.invm_minor,
2878                                  fw.invm_img_type);
2879                         break;
2880                 }
2881                 /* fall through */
2882         default:
2883                 /* if option is rom valid, display its version too */
2884                 if (fw.or_valid) {
2885                         snprintf(adapter->fw_version,
2886                                  sizeof(adapter->fw_version),
2887                                  "%d.%d, 0x%08x, %d.%d.%d",
2888                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2889                                  fw.or_major, fw.or_build, fw.or_patch);
2890                 /* no option rom */
2891                 } else if (fw.etrack_id != 0X0000) {
2892                         snprintf(adapter->fw_version,
2893                             sizeof(adapter->fw_version),
2894                             "%d.%d, 0x%08x",
2895                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2896                 } else {
2897                 snprintf(adapter->fw_version,
2898                     sizeof(adapter->fw_version),
2899                     "%d.%d.%d",
2900                     fw.eep_major, fw.eep_minor, fw.eep_build);
2901                 }
2902                 break;
2903         }
2904 }
2905
2906 /**
2907  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2908  *
2909  * @adapter: adapter struct
2910  **/
2911 static void igb_init_mas(struct igb_adapter *adapter)
2912 {
2913         struct e1000_hw *hw = &adapter->hw;
2914         u16 eeprom_data;
2915
2916         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2917         switch (hw->bus.func) {
2918         case E1000_FUNC_0:
2919                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2920                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2921                         netdev_info(adapter->netdev,
2922                                 "MAS: Enabling Media Autosense for port %d\n",
2923                                 hw->bus.func);
2924                 }
2925                 break;
2926         case E1000_FUNC_1:
2927                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2928                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2929                         netdev_info(adapter->netdev,
2930                                 "MAS: Enabling Media Autosense for port %d\n",
2931                                 hw->bus.func);
2932                 }
2933                 break;
2934         case E1000_FUNC_2:
2935                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2936                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2937                         netdev_info(adapter->netdev,
2938                                 "MAS: Enabling Media Autosense for port %d\n",
2939                                 hw->bus.func);
2940                 }
2941                 break;
2942         case E1000_FUNC_3:
2943                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2944                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2945                         netdev_info(adapter->netdev,
2946                                 "MAS: Enabling Media Autosense for port %d\n",
2947                                 hw->bus.func);
2948                 }
2949                 break;
2950         default:
2951                 /* Shouldn't get here */
2952                 netdev_err(adapter->netdev,
2953                         "MAS: Invalid port configuration, returning\n");
2954                 break;
2955         }
2956 }
2957
2958 /**
2959  *  igb_init_i2c - Init I2C interface
2960  *  @adapter: pointer to adapter structure
2961  **/
2962 static s32 igb_init_i2c(struct igb_adapter *adapter)
2963 {
2964         s32 status = 0;
2965
2966         /* I2C interface supported on i350 devices */
2967         if (adapter->hw.mac.type != e1000_i350)
2968                 return 0;
2969
2970         /* Initialize the i2c bus which is controlled by the registers.
2971          * This bus will use the i2c_algo_bit structue that implements
2972          * the protocol through toggling of the 4 bits in the register.
2973          */
2974         adapter->i2c_adap.owner = THIS_MODULE;
2975         adapter->i2c_algo = igb_i2c_algo;
2976         adapter->i2c_algo.data = adapter;
2977         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2978         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2979         strlcpy(adapter->i2c_adap.name, "igb BB",
2980                 sizeof(adapter->i2c_adap.name));
2981         status = i2c_bit_add_bus(&adapter->i2c_adap);
2982         return status;
2983 }
2984
2985 /**
2986  *  igb_probe - Device Initialization Routine
2987  *  @pdev: PCI device information struct
2988  *  @ent: entry in igb_pci_tbl
2989  *
2990  *  Returns 0 on success, negative on failure
2991  *
2992  *  igb_probe initializes an adapter identified by a pci_dev structure.
2993  *  The OS initialization, configuring of the adapter private structure,
2994  *  and a hardware reset occur.
2995  **/
2996 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2997 {
2998         struct net_device *netdev;
2999         struct igb_adapter *adapter;
3000         struct e1000_hw *hw;
3001         u16 eeprom_data = 0;
3002         s32 ret_val;
3003         static int global_quad_port_a; /* global quad port a indication */
3004         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3005         int err, pci_using_dac;
3006         u8 part_str[E1000_PBANUM_LENGTH];
3007
3008         /* Catch broken hardware that put the wrong VF device ID in
3009          * the PCIe SR-IOV capability.
3010          */
3011         if (pdev->is_virtfn) {
3012                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3013                         pci_name(pdev), pdev->vendor, pdev->device);
3014                 return -EINVAL;
3015         }
3016
3017         err = pci_enable_device_mem(pdev);
3018         if (err)
3019                 return err;
3020
3021         pci_using_dac = 0;
3022         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3023         if (!err) {
3024                 pci_using_dac = 1;
3025         } else {
3026                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3027                 if (err) {
3028                         dev_err(&pdev->dev,
3029                                 "No usable DMA configuration, aborting\n");
3030                         goto err_dma;
3031                 }
3032         }
3033
3034         err = pci_request_mem_regions(pdev, igb_driver_name);
3035         if (err)
3036                 goto err_pci_reg;
3037
3038         pci_enable_pcie_error_reporting(pdev);
3039
3040         pci_set_master(pdev);
3041         pci_save_state(pdev);
3042
3043         err = -ENOMEM;
3044         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3045                                    IGB_MAX_TX_QUEUES);
3046         if (!netdev)
3047                 goto err_alloc_etherdev;
3048
3049         SET_NETDEV_DEV(netdev, &pdev->dev);
3050
3051         pci_set_drvdata(pdev, netdev);
3052         adapter = netdev_priv(netdev);
3053         adapter->netdev = netdev;
3054         adapter->pdev = pdev;
3055         hw = &adapter->hw;
3056         hw->back = adapter;
3057         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3058
3059         err = -EIO;
3060         adapter->io_addr = pci_iomap(pdev, 0, 0);
3061         if (!adapter->io_addr)
3062                 goto err_ioremap;
3063         /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3064         hw->hw_addr = adapter->io_addr;
3065
3066         netdev->netdev_ops = &igb_netdev_ops;
3067         igb_set_ethtool_ops(netdev);
3068         netdev->watchdog_timeo = 5 * HZ;
3069
3070         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3071
3072         netdev->mem_start = pci_resource_start(pdev, 0);
3073         netdev->mem_end = pci_resource_end(pdev, 0);
3074
3075         /* PCI config space info */
3076         hw->vendor_id = pdev->vendor;
3077         hw->device_id = pdev->device;
3078         hw->revision_id = pdev->revision;
3079         hw->subsystem_vendor_id = pdev->subsystem_vendor;
3080         hw->subsystem_device_id = pdev->subsystem_device;
3081
3082         /* Copy the default MAC, PHY and NVM function pointers */
3083         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3084         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3085         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3086         /* Initialize skew-specific constants */
3087         err = ei->get_invariants(hw);
3088         if (err)
3089                 goto err_sw_init;
3090
3091         /* setup the private structure */
3092         err = igb_sw_init(adapter);
3093         if (err)
3094                 goto err_sw_init;
3095
3096         igb_get_bus_info_pcie(hw);
3097
3098         hw->phy.autoneg_wait_to_complete = false;
3099
3100         /* Copper options */
3101         if (hw->phy.media_type == e1000_media_type_copper) {
3102                 hw->phy.mdix = AUTO_ALL_MODES;
3103                 hw->phy.disable_polarity_correction = false;
3104                 hw->phy.ms_type = e1000_ms_hw_default;
3105         }
3106
3107         if (igb_check_reset_block(hw))
3108                 dev_info(&pdev->dev,
3109                         "PHY reset is blocked due to SOL/IDER session.\n");
3110
3111         /* features is initialized to 0 in allocation, it might have bits
3112          * set by igb_sw_init so we should use an or instead of an
3113          * assignment.
3114          */
3115         netdev->features |= NETIF_F_SG |
3116                             NETIF_F_TSO |
3117                             NETIF_F_TSO6 |
3118                             NETIF_F_RXHASH |
3119                             NETIF_F_RXCSUM |
3120                             NETIF_F_HW_CSUM;
3121
3122         if (hw->mac.type >= e1000_82576)
3123                 netdev->features |= NETIF_F_SCTP_CRC;
3124
3125         if (hw->mac.type >= e1000_i350)
3126                 netdev->features |= NETIF_F_HW_TC;
3127
3128 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3129                                   NETIF_F_GSO_GRE_CSUM | \
3130                                   NETIF_F_GSO_IPXIP4 | \
3131                                   NETIF_F_GSO_IPXIP6 | \
3132                                   NETIF_F_GSO_UDP_TUNNEL | \
3133                                   NETIF_F_GSO_UDP_TUNNEL_CSUM)
3134
3135         netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3136         netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3137
3138         /* copy netdev features into list of user selectable features */
3139         netdev->hw_features |= netdev->features |
3140                                NETIF_F_HW_VLAN_CTAG_RX |
3141                                NETIF_F_HW_VLAN_CTAG_TX |
3142                                NETIF_F_RXALL;
3143
3144         if (hw->mac.type >= e1000_i350)
3145                 netdev->hw_features |= NETIF_F_NTUPLE;
3146
3147         if (pci_using_dac)
3148                 netdev->features |= NETIF_F_HIGHDMA;
3149
3150         netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3151         netdev->mpls_features |= NETIF_F_HW_CSUM;
3152         netdev->hw_enc_features |= netdev->vlan_features;
3153
3154         /* set this bit last since it cannot be part of vlan_features */
3155         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3156                             NETIF_F_HW_VLAN_CTAG_RX |
3157                             NETIF_F_HW_VLAN_CTAG_TX;
3158
3159         netdev->priv_flags |= IFF_SUPP_NOFCS;
3160
3161         netdev->priv_flags |= IFF_UNICAST_FLT;
3162
3163         /* MTU range: 68 - 9216 */
3164         netdev->min_mtu = ETH_MIN_MTU;
3165         netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3166
3167         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3168
3169         /* before reading the NVM, reset the controller to put the device in a
3170          * known good starting state
3171          */
3172         hw->mac.ops.reset_hw(hw);
3173
3174         /* make sure the NVM is good , i211/i210 parts can have special NVM
3175          * that doesn't contain a checksum
3176          */
3177         switch (hw->mac.type) {
3178         case e1000_i210:
3179         case e1000_i211:
3180                 if (igb_get_flash_presence_i210(hw)) {
3181                         if (hw->nvm.ops.validate(hw) < 0) {
3182                                 dev_err(&pdev->dev,
3183                                         "The NVM Checksum Is Not Valid\n");
3184                                 err = -EIO;
3185                                 goto err_eeprom;
3186                         }
3187                 }
3188                 break;
3189         default:
3190                 if (hw->nvm.ops.validate(hw) < 0) {
3191                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3192                         err = -EIO;
3193                         goto err_eeprom;
3194                 }
3195                 break;
3196         }
3197
3198         if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3199                 /* copy the MAC address out of the NVM */
3200                 if (hw->mac.ops.read_mac_addr(hw))
3201                         dev_err(&pdev->dev, "NVM Read Error\n");
3202         }
3203
3204         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3205
3206         if (!is_valid_ether_addr(netdev->dev_addr)) {
3207                 dev_err(&pdev->dev, "Invalid MAC Address\n");
3208                 err = -EIO;
3209                 goto err_eeprom;
3210         }
3211
3212         igb_set_default_mac_filter(adapter);
3213
3214         /* get firmware version for ethtool -i */
3215         igb_set_fw_version(adapter);
3216
3217         /* configure RXPBSIZE and TXPBSIZE */
3218         if (hw->mac.type == e1000_i210) {
3219                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3220                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3221         }
3222
3223         timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3224         timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3225
3226         INIT_WORK(&adapter->reset_task, igb_reset_task);
3227         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3228
3229         /* Initialize link properties that are user-changeable */
3230         adapter->fc_autoneg = true;
3231         hw->mac.autoneg = true;
3232         hw->phy.autoneg_advertised = 0x2f;
3233
3234         hw->fc.requested_mode = e1000_fc_default;
3235         hw->fc.current_mode = e1000_fc_default;
3236
3237         igb_validate_mdi_setting(hw);
3238
3239         /* By default, support wake on port A */
3240         if (hw->bus.func == 0)
3241                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3242
3243         /* Check the NVM for wake support on non-port A ports */
3244         if (hw->mac.type >= e1000_82580)
3245                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3246                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3247                                  &eeprom_data);
3248         else if (hw->bus.func == 1)
3249                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3250
3251         if (eeprom_data & IGB_EEPROM_APME)
3252                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3253
3254         /* now that we have the eeprom settings, apply the special cases where
3255          * the eeprom may be wrong or the board simply won't support wake on
3256          * lan on a particular port
3257          */
3258         switch (pdev->device) {
3259         case E1000_DEV_ID_82575GB_QUAD_COPPER:
3260                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3261                 break;
3262         case E1000_DEV_ID_82575EB_FIBER_SERDES:
3263         case E1000_DEV_ID_82576_FIBER:
3264         case E1000_DEV_ID_82576_SERDES:
3265                 /* Wake events only supported on port A for dual fiber
3266                  * regardless of eeprom setting
3267                  */
3268                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3269                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3270                 break;
3271         case E1000_DEV_ID_82576_QUAD_COPPER:
3272         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3273                 /* if quad port adapter, disable WoL on all but port A */
3274                 if (global_quad_port_a != 0)
3275                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3276                 else
3277                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3278                 /* Reset for multiple quad port adapters */
3279                 if (++global_quad_port_a == 4)
3280                         global_quad_port_a = 0;
3281                 break;
3282         default:
3283                 /* If the device can't wake, don't set software support */
3284                 if (!device_can_wakeup(&adapter->pdev->dev))
3285                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3286         }
3287
3288         /* initialize the wol settings based on the eeprom settings */
3289         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3290                 adapter->wol |= E1000_WUFC_MAG;
3291
3292         /* Some vendors want WoL disabled by default, but still supported */
3293         if ((hw->mac.type == e1000_i350) &&
3294             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3295                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3296                 adapter->wol = 0;
3297         }
3298
3299         /* Some vendors want the ability to Use the EEPROM setting as
3300          * enable/disable only, and not for capability
3301          */
3302         if (((hw->mac.type == e1000_i350) ||
3303              (hw->mac.type == e1000_i354)) &&
3304             (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3305                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3306                 adapter->wol = 0;
3307         }
3308         if (hw->mac.type == e1000_i350) {
3309                 if (((pdev->subsystem_device == 0x5001) ||
3310                      (pdev->subsystem_device == 0x5002)) &&
3311                                 (hw->bus.func == 0)) {
3312                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3313                         adapter->wol = 0;
3314                 }
3315                 if (pdev->subsystem_device == 0x1F52)
3316                         adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3317         }
3318
3319         device_set_wakeup_enable(&adapter->pdev->dev,
3320                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3321
3322         /* reset the hardware with the new settings */
3323         igb_reset(adapter);
3324
3325         /* Init the I2C interface */
3326         err = igb_init_i2c(adapter);
3327         if (err) {
3328                 dev_err(&pdev->dev, "failed to init i2c interface\n");
3329                 goto err_eeprom;
3330         }
3331
3332         /* let the f/w know that the h/w is now under the control of the
3333          * driver.
3334          */
3335         igb_get_hw_control(adapter);
3336
3337         strcpy(netdev->name, "eth%d");
3338         err = register_netdev(netdev);
3339         if (err)
3340                 goto err_register;
3341
3342         /* carrier off reporting is important to ethtool even BEFORE open */
3343         netif_carrier_off(netdev);
3344
3345 #ifdef CONFIG_IGB_DCA
3346         if (dca_add_requester(&pdev->dev) == 0) {
3347                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3348                 dev_info(&pdev->dev, "DCA enabled\n");
3349                 igb_setup_dca(adapter);
3350         }
3351
3352 #endif
3353 #ifdef CONFIG_IGB_HWMON
3354         /* Initialize the thermal sensor on i350 devices. */
3355         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3356                 u16 ets_word;
3357
3358                 /* Read the NVM to determine if this i350 device supports an
3359                  * external thermal sensor.
3360                  */
3361                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3362                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3363                         adapter->ets = true;
3364                 else
3365                         adapter->ets = false;
3366                 if (igb_sysfs_init(adapter))
3367                         dev_err(&pdev->dev,
3368                                 "failed to allocate sysfs resources\n");
3369         } else {
3370                 adapter->ets = false;
3371         }
3372 #endif
3373         /* Check if Media Autosense is enabled */
3374         adapter->ei = *ei;
3375         if (hw->dev_spec._82575.mas_capable)
3376                 igb_init_mas(adapter);
3377
3378         /* do hw tstamp init after resetting */
3379         igb_ptp_init(adapter);
3380
3381         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3382         /* print bus type/speed/width info, not applicable to i354 */
3383         if (hw->mac.type != e1000_i354) {
3384                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3385                          netdev->name,
3386                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3387                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3388                            "unknown"),
3389                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3390                           "Width x4" :
3391                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
3392                           "Width x2" :
3393                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
3394                           "Width x1" : "unknown"), netdev->dev_addr);
3395         }
3396
3397         if ((hw->mac.type >= e1000_i210 ||
3398              igb_get_flash_presence_i210(hw))) {
3399                 ret_val = igb_read_part_string(hw, part_str,
3400                                                E1000_PBANUM_LENGTH);
3401         } else {
3402                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3403         }
3404
3405         if (ret_val)
3406                 strcpy(part_str, "Unknown");
3407         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3408         dev_info(&pdev->dev,
3409                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3410                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3411                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3412                 adapter->num_rx_queues, adapter->num_tx_queues);
3413         if (hw->phy.media_type == e1000_media_type_copper) {
3414                 switch (hw->mac.type) {
3415                 case e1000_i350:
3416                 case e1000_i210:
3417                 case e1000_i211:
3418                         /* Enable EEE for internal copper PHY devices */
3419                         err = igb_set_eee_i350(hw, true, true);
3420                         if ((!err) &&
3421                             (!hw->dev_spec._82575.eee_disable)) {
3422                                 adapter->eee_advert =
3423                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
3424                                 adapter->flags |= IGB_FLAG_EEE;
3425                         }
3426                         break;
3427                 case e1000_i354:
3428                         if ((rd32(E1000_CTRL_EXT) &
3429                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3430                                 err = igb_set_eee_i354(hw, true, true);
3431                                 if ((!err) &&
3432                                         (!hw->dev_spec._82575.eee_disable)) {
3433                                         adapter->eee_advert =
3434                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
3435                                         adapter->flags |= IGB_FLAG_EEE;
3436                                 }
3437                         }
3438                         break;
3439                 default:
3440                         break;
3441                 }
3442         }
3443
3444         dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
3445
3446         pm_runtime_put_noidle(&pdev->dev);
3447         return 0;
3448
3449 err_register:
3450         igb_release_hw_control(adapter);
3451         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3452 err_eeprom:
3453         if (!igb_check_reset_block(hw))
3454                 igb_reset_phy(hw);
3455
3456         if (hw->flash_address)
3457                 iounmap(hw->flash_address);
3458 err_sw_init:
3459         kfree(adapter->mac_table);
3460         kfree(adapter->shadow_vfta);
3461         igb_clear_interrupt_scheme(adapter);
3462 #ifdef CONFIG_PCI_IOV
3463         igb_disable_sriov(pdev);
3464 #endif
3465         pci_iounmap(pdev, adapter->io_addr);
3466 err_ioremap:
3467         free_netdev(netdev);
3468 err_alloc_etherdev:
3469         pci_release_mem_regions(pdev);
3470 err_pci_reg:
3471 err_dma:
3472         pci_disable_device(pdev);
3473         return err;
3474 }
3475
3476 #ifdef CONFIG_PCI_IOV
3477 static int igb_disable_sriov(struct pci_dev *pdev)
3478 {
3479         struct net_device *netdev = pci_get_drvdata(pdev);
3480         struct igb_adapter *adapter = netdev_priv(netdev);
3481         struct e1000_hw *hw = &adapter->hw;
3482
3483         /* reclaim resources allocated to VFs */
3484         if (adapter->vf_data) {
3485                 /* disable iov and allow time for transactions to clear */
3486                 if (pci_vfs_assigned(pdev)) {
3487                         dev_warn(&pdev->dev,
3488                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3489                         return -EPERM;
3490                 } else {
3491                         pci_disable_sriov(pdev);
3492                         msleep(500);
3493                 }
3494
3495                 kfree(adapter->vf_mac_list);
3496                 adapter->vf_mac_list = NULL;
3497                 kfree(adapter->vf_data);
3498                 adapter->vf_data = NULL;
3499                 adapter->vfs_allocated_count = 0;
3500                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3501                 wrfl();
3502                 msleep(100);
3503                 dev_info(&pdev->dev, "IOV Disabled\n");
3504
3505                 /* Re-enable DMA Coalescing flag since IOV is turned off */
3506                 adapter->flags |= IGB_FLAG_DMAC;
3507         }
3508
3509         return 0;
3510 }
3511
3512 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3513 {
3514         struct net_device *netdev = pci_get_drvdata(pdev);
3515         struct igb_adapter *adapter = netdev_priv(netdev);
3516         int old_vfs = pci_num_vf(pdev);
3517         struct vf_mac_filter *mac_list;
3518         int err = 0;
3519         int num_vf_mac_filters, i;
3520
3521         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3522                 err = -EPERM;
3523                 goto out;
3524         }
3525         if (!num_vfs)
3526                 goto out;
3527
3528         if (old_vfs) {
3529                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3530                          old_vfs, max_vfs);
3531                 adapter->vfs_allocated_count = old_vfs;
3532         } else
3533                 adapter->vfs_allocated_count = num_vfs;
3534
3535         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3536                                 sizeof(struct vf_data_storage), GFP_KERNEL);
3537
3538         /* if allocation failed then we do not support SR-IOV */
3539         if (!adapter->vf_data) {
3540                 adapter->vfs_allocated_count = 0;
3541                 err = -ENOMEM;
3542                 goto out;
3543         }
3544
3545         /* Due to the limited number of RAR entries calculate potential
3546          * number of MAC filters available for the VFs. Reserve entries
3547          * for PF default MAC, PF MAC filters and at least one RAR entry
3548          * for each VF for VF MAC.
3549          */
3550         num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3551                              (1 + IGB_PF_MAC_FILTERS_RESERVED +
3552                               adapter->vfs_allocated_count);
3553
3554         adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3555                                        sizeof(struct vf_mac_filter),
3556                                        GFP_KERNEL);
3557
3558         mac_list = adapter->vf_mac_list;
3559         INIT_LIST_HEAD(&adapter->vf_macs.l);
3560
3561         if (adapter->vf_mac_list) {
3562                 /* Initialize list of VF MAC filters */
3563                 for (i = 0; i < num_vf_mac_filters; i++) {
3564                         mac_list->vf = -1;
3565                         mac_list->free = true;
3566                         list_add(&mac_list->l, &adapter->vf_macs.l);
3567                         mac_list++;
3568                 }
3569         } else {
3570                 /* If we could not allocate memory for the VF MAC filters
3571                  * we can continue without this feature but warn user.
3572                  */
3573                 dev_err(&pdev->dev,
3574                         "Unable to allocate memory for VF MAC filter list\n");
3575         }
3576
3577         /* only call pci_enable_sriov() if no VFs are allocated already */
3578         if (!old_vfs) {
3579                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3580                 if (err)
3581                         goto err_out;
3582         }
3583         dev_info(&pdev->dev, "%d VFs allocated\n",
3584                  adapter->vfs_allocated_count);
3585         for (i = 0; i < adapter->vfs_allocated_count; i++)
3586                 igb_vf_configure(adapter, i);
3587
3588         /* DMA Coalescing is not supported in IOV mode. */
3589         adapter->flags &= ~IGB_FLAG_DMAC;
3590         goto out;
3591
3592 err_out:
3593         kfree(adapter->vf_mac_list);
3594         adapter->vf_mac_list = NULL;
3595         kfree(adapter->vf_data);
3596         adapter->vf_data = NULL;
3597         adapter->vfs_allocated_count = 0;
3598 out:
3599         return err;
3600 }
3601
3602 #endif
3603 /**
3604  *  igb_remove_i2c - Cleanup  I2C interface
3605  *  @adapter: pointer to adapter structure
3606  **/
3607 static void igb_remove_i2c(struct igb_adapter *adapter)
3608 {
3609         /* free the adapter bus structure */
3610         i2c_del_adapter(&adapter->i2c_adap);
3611 }
3612
3613 /**
3614  *  igb_remove - Device Removal Routine
3615  *  @pdev: PCI device information struct
3616  *
3617  *  igb_remove is called by the PCI subsystem to alert the driver
3618  *  that it should release a PCI device.  The could be caused by a
3619  *  Hot-Plug event, or because the driver is going to be removed from
3620  *  memory.
3621  **/
3622 static void igb_remove(struct pci_dev *pdev)
3623 {
3624         struct net_device *netdev = pci_get_drvdata(pdev);
3625         struct igb_adapter *adapter = netdev_priv(netdev);
3626         struct e1000_hw *hw = &adapter->hw;
3627
3628         pm_runtime_get_noresume(&pdev->dev);
3629 #ifdef CONFIG_IGB_HWMON
3630         igb_sysfs_exit(adapter);
3631 #endif
3632         igb_remove_i2c(adapter);
3633         igb_ptp_stop(adapter);
3634         /* The watchdog timer may be rescheduled, so explicitly
3635          * disable watchdog from being rescheduled.
3636          */
3637         set_bit(__IGB_DOWN, &adapter->state);
3638         del_timer_sync(&adapter->watchdog_timer);
3639         del_timer_sync(&adapter->phy_info_timer);
3640
3641         cancel_work_sync(&adapter->reset_task);
3642         cancel_work_sync(&adapter->watchdog_task);
3643
3644 #ifdef CONFIG_IGB_DCA
3645         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3646                 dev_info(&pdev->dev, "DCA disabled\n");
3647                 dca_remove_requester(&pdev->dev);
3648                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3649                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3650         }
3651 #endif
3652
3653         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3654          * would have already happened in close and is redundant.
3655          */
3656         igb_release_hw_control(adapter);
3657
3658 #ifdef CONFIG_PCI_IOV
3659         igb_disable_sriov(pdev);
3660 #endif
3661
3662         unregister_netdev(netdev);
3663
3664         igb_clear_interrupt_scheme(adapter);
3665
3666         pci_iounmap(pdev, adapter->io_addr);
3667         if (hw->flash_address)
3668                 iounmap(hw->flash_address);
3669         pci_release_mem_regions(pdev);
3670
3671         kfree(adapter->mac_table);
3672         kfree(adapter->shadow_vfta);
3673         free_netdev(netdev);
3674
3675         pci_disable_pcie_error_reporting(pdev);
3676
3677         pci_disable_device(pdev);
3678 }
3679
3680 /**
3681  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3682  *  @adapter: board private structure to initialize
3683  *
3684  *  This function initializes the vf specific data storage and then attempts to
3685  *  allocate the VFs.  The reason for ordering it this way is because it is much
3686  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3687  *  the memory for the VFs.
3688  **/
3689 static void igb_probe_vfs(struct igb_adapter *adapter)
3690 {
3691 #ifdef CONFIG_PCI_IOV
3692         struct pci_dev *pdev = adapter->pdev;
3693         struct e1000_hw *hw = &adapter->hw;
3694
3695         /* Virtualization features not supported on i210 family. */
3696         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3697                 return;
3698
3699         /* Of the below we really only want the effect of getting
3700          * IGB_FLAG_HAS_MSIX set (if available), without which
3701          * igb_enable_sriov() has no effect.
3702          */
3703         igb_set_interrupt_capability(adapter, true);
3704         igb_reset_interrupt_capability(adapter);
3705
3706         pci_sriov_set_totalvfs(pdev, 7);
3707         igb_enable_sriov(pdev, max_vfs);
3708
3709 #endif /* CONFIG_PCI_IOV */
3710 }
3711
3712 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3713 {
3714         struct e1000_hw *hw = &adapter->hw;
3715         unsigned int max_rss_queues;
3716
3717         /* Determine the maximum number of RSS queues supported. */
3718         switch (hw->mac.type) {
3719         case e1000_i211:
3720                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3721                 break;
3722         case e1000_82575:
3723         case e1000_i210:
3724                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3725                 break;
3726         case e1000_i350:
3727                 /* I350 cannot do RSS and SR-IOV at the same time */
3728                 if (!!adapter->vfs_allocated_count) {
3729                         max_rss_queues = 1;
3730                         break;
3731                 }
3732                 /* fall through */
3733         case e1000_82576:
3734                 if (!!adapter->vfs_allocated_count) {
3735                         max_rss_queues = 2;
3736                         break;
3737                 }
3738                 /* fall through */
3739         case e1000_82580:
3740         case e1000_i354:
3741         default:
3742                 max_rss_queues = IGB_MAX_RX_QUEUES;
3743                 break;
3744         }
3745
3746         return max_rss_queues;
3747 }
3748
3749 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3750 {
3751         u32 max_rss_queues;
3752
3753         max_rss_queues = igb_get_max_rss_queues(adapter);
3754         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3755
3756         igb_set_flag_queue_pairs(adapter, max_rss_queues);
3757 }
3758
3759 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3760                               const u32 max_rss_queues)
3761 {
3762         struct e1000_hw *hw = &adapter->hw;
3763
3764         /* Determine if we need to pair queues. */
3765         switch (hw->mac.type) {
3766         case e1000_82575:
3767         case e1000_i211:
3768                 /* Device supports enough interrupts without queue pairing. */
3769                 break;
3770         case e1000_82576:
3771         case e1000_82580:
3772         case e1000_i350:
3773         case e1000_i354:
3774         case e1000_i210:
3775         default:
3776                 /* If rss_queues > half of max_rss_queues, pair the queues in
3777                  * order to conserve interrupts due to limited supply.
3778                  */
3779                 if (adapter->rss_queues > (max_rss_queues / 2))
3780                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3781                 else
3782                         adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3783                 break;
3784         }
3785 }
3786
3787 /**
3788  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3789  *  @adapter: board private structure to initialize
3790  *
3791  *  igb_sw_init initializes the Adapter private data structure.
3792  *  Fields are initialized based on PCI device information and
3793  *  OS network device settings (MTU size).
3794  **/
3795 static int igb_sw_init(struct igb_adapter *adapter)
3796 {
3797         struct e1000_hw *hw = &adapter->hw;
3798         struct net_device *netdev = adapter->netdev;
3799         struct pci_dev *pdev = adapter->pdev;
3800
3801         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3802
3803         /* set default ring sizes */
3804         adapter->tx_ring_count = IGB_DEFAULT_TXD;
3805         adapter->rx_ring_count = IGB_DEFAULT_RXD;
3806
3807         /* set default ITR values */
3808         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3809         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3810
3811         /* set default work limits */
3812         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3813
3814         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3815                                   VLAN_HLEN;
3816         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3817
3818         spin_lock_init(&adapter->nfc_lock);
3819         spin_lock_init(&adapter->stats64_lock);
3820 #ifdef CONFIG_PCI_IOV
3821         switch (hw->mac.type) {
3822         case e1000_82576:
3823         case e1000_i350:
3824                 if (max_vfs > 7) {
3825                         dev_warn(&pdev->dev,
3826                                  "Maximum of 7 VFs per PF, using max\n");
3827                         max_vfs = adapter->vfs_allocated_count = 7;
3828                 } else
3829                         adapter->vfs_allocated_count = max_vfs;
3830                 if (adapter->vfs_allocated_count)
3831                         dev_warn(&pdev->dev,
3832                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3833                 break;
3834         default:
3835                 break;
3836         }
3837 #endif /* CONFIG_PCI_IOV */
3838
3839         /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3840         adapter->flags |= IGB_FLAG_HAS_MSIX;
3841
3842         adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3843                                      sizeof(struct igb_mac_addr),
3844                                      GFP_KERNEL);
3845         if (!adapter->mac_table)
3846                 return -ENOMEM;
3847
3848         igb_probe_vfs(adapter);
3849
3850         igb_init_queue_configuration(adapter);
3851
3852         /* Setup and initialize a copy of the hw vlan table array */
3853         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3854                                        GFP_KERNEL);
3855         if (!adapter->shadow_vfta)
3856                 return -ENOMEM;
3857
3858         /* This call may decrease the number of queues */
3859         if (igb_init_interrupt_scheme(adapter, true)) {
3860                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3861                 return -ENOMEM;
3862         }
3863
3864         /* Explicitly disable IRQ since the NIC can be in any state. */
3865         igb_irq_disable(adapter);
3866
3867         if (hw->mac.type >= e1000_i350)
3868                 adapter->flags &= ~IGB_FLAG_DMAC;
3869
3870         set_bit(__IGB_DOWN, &adapter->state);
3871         return 0;
3872 }
3873
3874 /**
3875  *  igb_open - Called when a network interface is made active
3876  *  @netdev: network interface device structure
3877  *
3878  *  Returns 0 on success, negative value on failure
3879  *
3880  *  The open entry point is called when a network interface is made
3881  *  active by the system (IFF_UP).  At this point all resources needed
3882  *  for transmit and receive operations are allocated, the interrupt
3883  *  handler is registered with the OS, the watchdog timer is started,
3884  *  and the stack is notified that the interface is ready.
3885  **/
3886 static int __igb_open(struct net_device *netdev, bool resuming)
3887 {
3888         struct igb_adapter *adapter = netdev_priv(netdev);
3889         struct e1000_hw *hw = &adapter->hw;
3890         struct pci_dev *pdev = adapter->pdev;
3891         int err;
3892         int i;
3893
3894         /* disallow open during test */
3895         if (test_bit(__IGB_TESTING, &adapter->state)) {
3896                 WARN_ON(resuming);
3897                 return -EBUSY;
3898         }
3899
3900         if (!resuming)
3901                 pm_runtime_get_sync(&pdev->dev);
3902
3903         netif_carrier_off(netdev);
3904
3905         /* allocate transmit descriptors */
3906         err = igb_setup_all_tx_resources(adapter);
3907         if (err)
3908                 goto err_setup_tx;
3909
3910         /* allocate receive descriptors */
3911         err = igb_setup_all_rx_resources(adapter);
3912         if (err)
3913                 goto err_setup_rx;
3914
3915         igb_power_up_link(adapter);
3916
3917         /* before we allocate an interrupt, we must be ready to handle it.
3918          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3919          * as soon as we call pci_request_irq, so we have to setup our
3920          * clean_rx handler before we do so.
3921          */
3922         igb_configure(adapter);
3923
3924         err = igb_request_irq(adapter);
3925         if (err)
3926                 goto err_req_irq;
3927
3928         /* Notify the stack of the actual queue counts. */
3929         err = netif_set_real_num_tx_queues(adapter->netdev,
3930                                            adapter->num_tx_queues);
3931         if (err)
3932                 goto err_set_queues;
3933
3934         err = netif_set_real_num_rx_queues(adapter->netdev,
3935                                            adapter->num_rx_queues);
3936         if (err)
3937                 goto err_set_queues;
3938
3939         /* From here on the code is the same as igb_up() */
3940         clear_bit(__IGB_DOWN, &adapter->state);
3941
3942         for (i = 0; i < adapter->num_q_vectors; i++)
3943                 napi_enable(&(adapter->q_vector[i]->napi));
3944
3945         /* Clear any pending interrupts. */
3946         rd32(E1000_TSICR);
3947         rd32(E1000_ICR);
3948
3949         igb_irq_enable(adapter);
3950
3951         /* notify VFs that reset has been completed */
3952         if (adapter->vfs_allocated_count) {
3953                 u32 reg_data = rd32(E1000_CTRL_EXT);
3954
3955                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3956                 wr32(E1000_CTRL_EXT, reg_data);
3957         }
3958
3959         netif_tx_start_all_queues(netdev);
3960
3961         if (!resuming)
3962                 pm_runtime_put(&pdev->dev);
3963
3964         /* start the watchdog. */
3965         hw->mac.get_link_status = 1;
3966         schedule_work(&adapter->watchdog_task);
3967
3968         return 0;
3969
3970 err_set_queues:
3971         igb_free_irq(adapter);
3972 err_req_irq:
3973         igb_release_hw_control(adapter);
3974         igb_power_down_link(adapter);
3975         igb_free_all_rx_resources(adapter);
3976 err_setup_rx:
3977         igb_free_all_tx_resources(adapter);
3978 err_setup_tx:
3979         igb_reset(adapter);
3980         if (!resuming)
3981                 pm_runtime_put(&pdev->dev);
3982
3983         return err;
3984 }
3985
3986 int igb_open(struct net_device *netdev)
3987 {
3988         return __igb_open(netdev, false);
3989 }
3990
3991 /**
3992  *  igb_close - Disables a network interface
3993  *  @netdev: network interface device structure
3994  *
3995  *  Returns 0, this is not allowed to fail
3996  *
3997  *  The close entry point is called when an interface is de-activated
3998  *  by the OS.  The hardware is still under the driver's control, but
3999  *  needs to be disabled.  A global MAC reset is issued to stop the
4000  *  hardware, and all transmit and receive resources are freed.
4001  **/
4002 static int __igb_close(struct net_device *netdev, bool suspending)
4003 {
4004         struct igb_adapter *adapter = netdev_priv(netdev);
4005         struct pci_dev *pdev = adapter->pdev;
4006
4007         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4008
4009         if (!suspending)
4010                 pm_runtime_get_sync(&pdev->dev);
4011
4012         igb_down(adapter);
4013         igb_free_irq(adapter);
4014
4015         igb_free_all_tx_resources(adapter);
4016         igb_free_all_rx_resources(adapter);
4017
4018         if (!suspending)
4019                 pm_runtime_put_sync(&pdev->dev);
4020         return 0;
4021 }
4022
4023 int igb_close(struct net_device *netdev)
4024 {
4025         if (netif_device_present(netdev) || netdev->dismantle)
4026                 return __igb_close(netdev, false);
4027         return 0;
4028 }
4029
4030 /**
4031  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4032  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4033  *
4034  *  Return 0 on success, negative on failure
4035  **/
4036 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4037 {
4038         struct device *dev = tx_ring->dev;
4039         int size;
4040
4041         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4042
4043         tx_ring->tx_buffer_info = vmalloc(size);
4044         if (!tx_ring->tx_buffer_info)
4045                 goto err;
4046
4047         /* round up to nearest 4K */
4048         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4049         tx_ring->size = ALIGN(tx_ring->size, 4096);
4050
4051         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4052                                            &tx_ring->dma, GFP_KERNEL);
4053         if (!tx_ring->desc)
4054                 goto err;
4055
4056         tx_ring->next_to_use = 0;
4057         tx_ring->next_to_clean = 0;
4058
4059         return 0;
4060
4061 err:
4062         vfree(tx_ring->tx_buffer_info);
4063         tx_ring->tx_buffer_info = NULL;
4064         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4065         return -ENOMEM;
4066 }
4067
4068 /**
4069  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4070  *                               (Descriptors) for all queues
4071  *  @adapter: board private structure
4072  *
4073  *  Return 0 on success, negative on failure
4074  **/
4075 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4076 {
4077         struct pci_dev *pdev = adapter->pdev;
4078         int i, err = 0;
4079
4080         for (i = 0; i < adapter->num_tx_queues; i++) {
4081                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4082                 if (err) {
4083                         dev_err(&pdev->dev,
4084                                 "Allocation for Tx Queue %u failed\n", i);
4085                         for (i--; i >= 0; i--)
4086                                 igb_free_tx_resources(adapter->tx_ring[i]);
4087                         break;
4088                 }
4089         }
4090
4091         return err;
4092 }
4093
4094 /**
4095  *  igb_setup_tctl - configure the transmit control registers
4096  *  @adapter: Board private structure
4097  **/
4098 void igb_setup_tctl(struct igb_adapter *adapter)
4099 {
4100         struct e1000_hw *hw = &adapter->hw;
4101         u32 tctl;
4102
4103         /* disable queue 0 which is enabled by default on 82575 and 82576 */
4104         wr32(E1000_TXDCTL(0), 0);
4105
4106         /* Program the Transmit Control Register */
4107         tctl = rd32(E1000_TCTL);
4108         tctl &= ~E1000_TCTL_CT;
4109         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4110                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4111
4112         igb_config_collision_dist(hw);
4113
4114         /* Enable transmits */
4115         tctl |= E1000_TCTL_EN;
4116
4117         wr32(E1000_TCTL, tctl);
4118 }
4119
4120 /**
4121  *  igb_configure_tx_ring - Configure transmit ring after Reset
4122  *  @adapter: board private structure
4123  *  @ring: tx ring to configure
4124  *
4125  *  Configure a transmit ring after a reset.
4126  **/
4127 void igb_configure_tx_ring(struct igb_adapter *adapter,
4128                            struct igb_ring *ring)
4129 {
4130         struct e1000_hw *hw = &adapter->hw;
4131         u32 txdctl = 0;
4132         u64 tdba = ring->dma;
4133         int reg_idx = ring->reg_idx;
4134
4135         wr32(E1000_TDLEN(reg_idx),
4136              ring->count * sizeof(union e1000_adv_tx_desc));
4137         wr32(E1000_TDBAL(reg_idx),
4138              tdba & 0x00000000ffffffffULL);
4139         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4140
4141         ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4142         wr32(E1000_TDH(reg_idx), 0);
4143         writel(0, ring->tail);
4144
4145         txdctl |= IGB_TX_PTHRESH;
4146         txdctl |= IGB_TX_HTHRESH << 8;
4147         txdctl |= IGB_TX_WTHRESH << 16;
4148
4149         /* reinitialize tx_buffer_info */
4150         memset(ring->tx_buffer_info, 0,
4151                sizeof(struct igb_tx_buffer) * ring->count);
4152
4153         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4154         wr32(E1000_TXDCTL(reg_idx), txdctl);
4155 }
4156
4157 /**
4158  *  igb_configure_tx - Configure transmit Unit after Reset
4159  *  @adapter: board private structure
4160  *
4161  *  Configure the Tx unit of the MAC after a reset.
4162  **/
4163 static void igb_configure_tx(struct igb_adapter *adapter)
4164 {
4165         struct e1000_hw *hw = &adapter->hw;
4166         int i;
4167
4168         /* disable the queues */
4169         for (i = 0; i < adapter->num_tx_queues; i++)
4170                 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4171
4172         wrfl();
4173         usleep_range(10000, 20000);
4174
4175         for (i = 0; i < adapter->num_tx_queues; i++)
4176                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4177 }
4178
4179 /**
4180  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4181  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4182  *
4183  *  Returns 0 on success, negative on failure
4184  **/
4185 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4186 {
4187         struct device *dev = rx_ring->dev;
4188         int size;
4189
4190         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4191
4192         rx_ring->rx_buffer_info = vmalloc(size);
4193         if (!rx_ring->rx_buffer_info)
4194                 goto err;
4195
4196         /* Round up to nearest 4K */
4197         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4198         rx_ring->size = ALIGN(rx_ring->size, 4096);
4199
4200         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4201                                            &rx_ring->dma, GFP_KERNEL);
4202         if (!rx_ring->desc)
4203                 goto err;
4204
4205         rx_ring->next_to_alloc = 0;
4206         rx_ring->next_to_clean = 0;
4207         rx_ring->next_to_use = 0;
4208
4209         return 0;
4210
4211 err:
4212         vfree(rx_ring->rx_buffer_info);
4213         rx_ring->rx_buffer_info = NULL;
4214         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4215         return -ENOMEM;
4216 }
4217
4218 /**
4219  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4220  *                               (Descriptors) for all queues
4221  *  @adapter: board private structure
4222  *
4223  *  Return 0 on success, negative on failure
4224  **/
4225 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4226 {
4227         struct pci_dev *pdev = adapter->pdev;
4228         int i, err = 0;
4229
4230         for (i = 0; i < adapter->num_rx_queues; i++) {
4231                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4232                 if (err) {
4233                         dev_err(&pdev->dev,
4234                                 "Allocation for Rx Queue %u failed\n", i);
4235                         for (i--; i >= 0; i--)
4236                                 igb_free_rx_resources(adapter->rx_ring[i]);
4237                         break;
4238                 }
4239         }
4240
4241         return err;
4242 }
4243
4244 /**
4245  *  igb_setup_mrqc - configure the multiple receive queue control registers
4246  *  @adapter: Board private structure
4247  **/
4248 static void igb_setup_mrqc(struct igb_adapter *adapter)
4249 {
4250         struct e1000_hw *hw = &adapter->hw;
4251         u32 mrqc, rxcsum;
4252         u32 j, num_rx_queues;
4253         u32 rss_key[10];
4254
4255         netdev_rss_key_fill(rss_key, sizeof(rss_key));
4256         for (j = 0; j < 10; j++)
4257                 wr32(E1000_RSSRK(j), rss_key[j]);
4258
4259         num_rx_queues = adapter->rss_queues;
4260
4261         switch (hw->mac.type) {
4262         case e1000_82576:
4263                 /* 82576 supports 2 RSS queues for SR-IOV */
4264                 if (adapter->vfs_allocated_count)
4265                         num_rx_queues = 2;
4266                 break;
4267         default:
4268                 break;
4269         }
4270
4271         if (adapter->rss_indir_tbl_init != num_rx_queues) {
4272                 for (j = 0; j < IGB_RETA_SIZE; j++)
4273                         adapter->rss_indir_tbl[j] =
4274                         (j * num_rx_queues) / IGB_RETA_SIZE;
4275                 adapter->rss_indir_tbl_init = num_rx_queues;
4276         }
4277         igb_write_rss_indir_tbl(adapter);
4278
4279         /* Disable raw packet checksumming so that RSS hash is placed in
4280          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4281          * offloads as they are enabled by default
4282          */
4283         rxcsum = rd32(E1000_RXCSUM);
4284         rxcsum |= E1000_RXCSUM_PCSD;
4285
4286         if (adapter->hw.mac.type >= e1000_82576)
4287                 /* Enable Receive Checksum Offload for SCTP */
4288                 rxcsum |= E1000_RXCSUM_CRCOFL;
4289
4290         /* Don't need to set TUOFL or IPOFL, they default to 1 */
4291         wr32(E1000_RXCSUM, rxcsum);
4292
4293         /* Generate RSS hash based on packet types, TCP/UDP
4294          * port numbers and/or IPv4/v6 src and dst addresses
4295          */
4296         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4297                E1000_MRQC_RSS_FIELD_IPV4_TCP |
4298                E1000_MRQC_RSS_FIELD_IPV6 |
4299                E1000_MRQC_RSS_FIELD_IPV6_TCP |
4300                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4301
4302         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4303                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4304         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4305                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4306
4307         /* If VMDq is enabled then we set the appropriate mode for that, else
4308          * we default to RSS so that an RSS hash is calculated per packet even
4309          * if we are only using one queue
4310          */
4311         if (adapter->vfs_allocated_count) {
4312                 if (hw->mac.type > e1000_82575) {
4313                         /* Set the default pool for the PF's first queue */
4314                         u32 vtctl = rd32(E1000_VT_CTL);
4315
4316                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4317                                    E1000_VT_CTL_DISABLE_DEF_POOL);
4318                         vtctl |= adapter->vfs_allocated_count <<
4319                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4320                         wr32(E1000_VT_CTL, vtctl);
4321                 }
4322                 if (adapter->rss_queues > 1)
4323                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4324                 else
4325                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
4326         } else {
4327                 if (hw->mac.type != e1000_i211)
4328                         mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4329         }
4330         igb_vmm_control(adapter);
4331
4332         wr32(E1000_MRQC, mrqc);
4333 }
4334
4335 /**
4336  *  igb_setup_rctl - configure the receive control registers
4337  *  @adapter: Board private structure
4338  **/
4339 void igb_setup_rctl(struct igb_adapter *adapter)
4340 {
4341         struct e1000_hw *hw = &adapter->hw;
4342         u32 rctl;
4343
4344         rctl = rd32(E1000_RCTL);
4345
4346         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4347         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4348
4349         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4350                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4351
4352         /* enable stripping of CRC. It's unlikely this will break BMC
4353          * redirection as it did with e1000. Newer features require
4354          * that the HW strips the CRC.
4355          */
4356         rctl |= E1000_RCTL_SECRC;
4357
4358         /* disable store bad packets and clear size bits. */
4359         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4360
4361         /* enable LPE to allow for reception of jumbo frames */
4362         rctl |= E1000_RCTL_LPE;
4363
4364         /* disable queue 0 to prevent tail write w/o re-config */
4365         wr32(E1000_RXDCTL(0), 0);
4366
4367         /* Attention!!!  For SR-IOV PF driver operations you must enable
4368          * queue drop for all VF and PF queues to prevent head of line blocking
4369          * if an un-trusted VF does not provide descriptors to hardware.
4370          */
4371         if (adapter->vfs_allocated_count) {
4372                 /* set all queue drop enable bits */
4373                 wr32(E1000_QDE, ALL_QUEUES);
4374         }
4375
4376         /* This is useful for sniffing bad packets. */
4377         if (adapter->netdev->features & NETIF_F_RXALL) {
4378                 /* UPE and MPE will be handled by normal PROMISC logic
4379                  * in e1000e_set_rx_mode
4380                  */
4381                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4382                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
4383                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4384
4385                 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4386                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4387                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4388                  * and that breaks VLANs.
4389                  */
4390         }
4391
4392         wr32(E1000_RCTL, rctl);
4393 }
4394
4395 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4396                                    int vfn)
4397 {
4398         struct e1000_hw *hw = &adapter->hw;
4399         u32 vmolr;
4400
4401         if (size > MAX_JUMBO_FRAME_SIZE)
4402                 size = MAX_JUMBO_FRAME_SIZE;
4403
4404         vmolr = rd32(E1000_VMOLR(vfn));
4405         vmolr &= ~E1000_VMOLR_RLPML_MASK;
4406         vmolr |= size | E1000_VMOLR_LPE;
4407         wr32(E1000_VMOLR(vfn), vmolr);
4408
4409         return 0;
4410 }
4411
4412 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4413                                          int vfn, bool enable)
4414 {
4415         struct e1000_hw *hw = &adapter->hw;
4416         u32 val, reg;
4417
4418         if (hw->mac.type < e1000_82576)
4419                 return;
4420
4421         if (hw->mac.type == e1000_i350)
4422                 reg = E1000_DVMOLR(vfn);
4423         else
4424                 reg = E1000_VMOLR(vfn);
4425
4426         val = rd32(reg);
4427         if (enable)
4428                 val |= E1000_VMOLR_STRVLAN;
4429         else
4430                 val &= ~(E1000_VMOLR_STRVLAN);
4431         wr32(reg, val);
4432 }
4433
4434 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4435                                  int vfn, bool aupe)
4436 {
4437         struct e1000_hw *hw = &adapter->hw;
4438         u32 vmolr;
4439
4440         /* This register exists only on 82576 and newer so if we are older then
4441          * we should exit and do nothing
4442          */
4443         if (hw->mac.type < e1000_82576)
4444                 return;
4445
4446         vmolr = rd32(E1000_VMOLR(vfn));
4447         if (aupe)
4448                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4449         else
4450                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4451
4452         /* clear all bits that might not be set */
4453         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4454
4455         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4456                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4457         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4458          * multicast packets
4459          */
4460         if (vfn <= adapter->vfs_allocated_count)
4461                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4462
4463         wr32(E1000_VMOLR(vfn), vmolr);
4464 }
4465
4466 /**
4467  *  igb_configure_rx_ring - Configure a receive ring after Reset
4468  *  @adapter: board private structure
4469  *  @ring: receive ring to be configured
4470  *
4471  *  Configure the Rx unit of the MAC after a reset.
4472  **/
4473 void igb_configure_rx_ring(struct igb_adapter *adapter,
4474                            struct igb_ring *ring)
4475 {
4476         struct e1000_hw *hw = &adapter->hw;
4477         union e1000_adv_rx_desc *rx_desc;
4478         u64 rdba = ring->dma;
4479         int reg_idx = ring->reg_idx;
4480         u32 srrctl = 0, rxdctl = 0;
4481
4482         /* disable the queue */
4483         wr32(E1000_RXDCTL(reg_idx), 0);
4484
4485         /* Set DMA base address registers */
4486         wr32(E1000_RDBAL(reg_idx),
4487              rdba & 0x00000000ffffffffULL);
4488         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4489         wr32(E1000_RDLEN(reg_idx),
4490              ring->count * sizeof(union e1000_adv_rx_desc));
4491
4492         /* initialize head and tail */
4493         ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4494         wr32(E1000_RDH(reg_idx), 0);
4495         writel(0, ring->tail);
4496
4497         /* set descriptor configuration */
4498         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4499         if (ring_uses_large_buffer(ring))
4500                 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4501         else
4502                 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4503         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4504         if (hw->mac.type >= e1000_82580)
4505                 srrctl |= E1000_SRRCTL_TIMESTAMP;
4506         /* Only set Drop Enable if we are supporting multiple queues */
4507         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4508                 srrctl |= E1000_SRRCTL_DROP_EN;
4509
4510         wr32(E1000_SRRCTL(reg_idx), srrctl);
4511
4512         /* set filtering for VMDQ pools */
4513         igb_set_vmolr(adapter, reg_idx & 0x7, true);
4514
4515         rxdctl |= IGB_RX_PTHRESH;
4516         rxdctl |= IGB_RX_HTHRESH << 8;
4517         rxdctl |= IGB_RX_WTHRESH << 16;
4518
4519         /* initialize rx_buffer_info */
4520         memset(ring->rx_buffer_info, 0,
4521                sizeof(struct igb_rx_buffer) * ring->count);
4522
4523         /* initialize Rx descriptor 0 */
4524         rx_desc = IGB_RX_DESC(ring, 0);
4525         rx_desc->wb.upper.length = 0;
4526
4527         /* enable receive descriptor fetching */
4528         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4529         wr32(E1000_RXDCTL(reg_idx), rxdctl);
4530 }
4531
4532 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4533                                   struct igb_ring *rx_ring)
4534 {
4535         /* set build_skb and buffer size flags */
4536         clear_ring_build_skb_enabled(rx_ring);
4537         clear_ring_uses_large_buffer(rx_ring);
4538
4539         if (adapter->flags & IGB_FLAG_RX_LEGACY)
4540                 return;
4541
4542         set_ring_build_skb_enabled(rx_ring);
4543
4544 #if (PAGE_SIZE < 8192)
4545         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4546                 return;
4547
4548         set_ring_uses_large_buffer(rx_ring);
4549 #endif
4550 }
4551
4552 /**
4553  *  igb_configure_rx - Configure receive Unit after Reset
4554  *  @adapter: board private structure
4555  *
4556  *  Configure the Rx unit of the MAC after a reset.
4557  **/
4558 static void igb_configure_rx(struct igb_adapter *adapter)
4559 {
4560         int i;
4561
4562         /* set the correct pool for the PF default MAC address in entry 0 */
4563         igb_set_default_mac_filter(adapter);
4564
4565         /* Setup the HW Rx Head and Tail Descriptor Pointers and
4566          * the Base and Length of the Rx Descriptor Ring
4567          */
4568         for (i = 0; i < adapter->num_rx_queues; i++) {
4569                 struct igb_ring *rx_ring = adapter->rx_ring[i];
4570
4571                 igb_set_rx_buffer_len(adapter, rx_ring);
4572                 igb_configure_rx_ring(adapter, rx_ring);
4573         }
4574 }
4575
4576 /**
4577  *  igb_free_tx_resources - Free Tx Resources per Queue
4578  *  @tx_ring: Tx descriptor ring for a specific queue
4579  *
4580  *  Free all transmit software resources
4581  **/
4582 void igb_free_tx_resources(struct igb_ring *tx_ring)
4583 {
4584         igb_clean_tx_ring(tx_ring);
4585
4586         vfree(tx_ring->tx_buffer_info);
4587         tx_ring->tx_buffer_info = NULL;
4588
4589         /* if not set, then don't free */
4590         if (!tx_ring->desc)
4591                 return;
4592
4593         dma_free_coherent(tx_ring->dev, tx_ring->size,
4594                           tx_ring->desc, tx_ring->dma);
4595
4596         tx_ring->desc = NULL;
4597 }
4598
4599 /**
4600  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4601  *  @adapter: board private structure
4602  *
4603  *  Free all transmit software resources
4604  **/
4605 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4606 {
4607         int i;
4608
4609         for (i = 0; i < adapter->num_tx_queues; i++)
4610                 if (adapter->tx_ring[i])
4611                         igb_free_tx_resources(adapter->tx_ring[i]);
4612 }
4613
4614 /**
4615  *  igb_clean_tx_ring - Free Tx Buffers
4616  *  @tx_ring: ring to be cleaned
4617  **/
4618 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4619 {
4620         u16 i = tx_ring->next_to_clean;
4621         struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4622
4623         while (i != tx_ring->next_to_use) {
4624                 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4625
4626                 /* Free all the Tx ring sk_buffs */
4627                 dev_kfree_skb_any(tx_buffer->skb);
4628
4629                 /* unmap skb header data */
4630                 dma_unmap_single(tx_ring->dev,
4631                                  dma_unmap_addr(tx_buffer, dma),
4632                                  dma_unmap_len(tx_buffer, len),
4633                                  DMA_TO_DEVICE);
4634
4635                 /* check for eop_desc to determine the end of the packet */
4636                 eop_desc = tx_buffer->next_to_watch;
4637                 tx_desc = IGB_TX_DESC(tx_ring, i);
4638
4639                 /* unmap remaining buffers */
4640                 while (tx_desc != eop_desc) {
4641                         tx_buffer++;
4642                         tx_desc++;
4643                         i++;
4644                         if (unlikely(i == tx_ring->count)) {
4645                                 i = 0;
4646                                 tx_buffer = tx_ring->tx_buffer_info;
4647                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4648                         }
4649
4650                         /* unmap any remaining paged data */
4651                         if (dma_unmap_len(tx_buffer, len))
4652                                 dma_unmap_page(tx_ring->dev,
4653                                                dma_unmap_addr(tx_buffer, dma),
4654                                                dma_unmap_len(tx_buffer, len),
4655                                                DMA_TO_DEVICE);
4656                 }
4657
4658                 /* move us one more past the eop_desc for start of next pkt */
4659                 tx_buffer++;
4660                 i++;
4661                 if (unlikely(i == tx_ring->count)) {
4662                         i = 0;
4663                         tx_buffer = tx_ring->tx_buffer_info;
4664                 }
4665         }
4666
4667         /* reset BQL for queue */
4668         netdev_tx_reset_queue(txring_txq(tx_ring));
4669
4670         /* reset next_to_use and next_to_clean */
4671         tx_ring->next_to_use = 0;
4672         tx_ring->next_to_clean = 0;
4673 }
4674
4675 /**
4676  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4677  *  @adapter: board private structure
4678  **/
4679 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4680 {
4681         int i;
4682
4683         for (i = 0; i < adapter->num_tx_queues; i++)
4684                 if (adapter->tx_ring[i])
4685                         igb_clean_tx_ring(adapter->tx_ring[i]);
4686 }
4687
4688 /**
4689  *  igb_free_rx_resources - Free Rx Resources
4690  *  @rx_ring: ring to clean the resources from
4691  *
4692  *  Free all receive software resources
4693  **/
4694 void igb_free_rx_resources(struct igb_ring *rx_ring)
4695 {
4696         igb_clean_rx_ring(rx_ring);
4697
4698         vfree(rx_ring->rx_buffer_info);
4699         rx_ring->rx_buffer_info = NULL;
4700
4701         /* if not set, then don't free */
4702         if (!rx_ring->desc)
4703                 return;
4704
4705         dma_free_coherent(rx_ring->dev, rx_ring->size,
4706                           rx_ring->desc, rx_ring->dma);
4707
4708         rx_ring->desc = NULL;
4709 }
4710
4711 /**
4712  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4713  *  @adapter: board private structure
4714  *
4715  *  Free all receive software resources
4716  **/
4717 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4718 {
4719         int i;
4720
4721         for (i = 0; i < adapter->num_rx_queues; i++)
4722                 if (adapter->rx_ring[i])
4723                         igb_free_rx_resources(adapter->rx_ring[i]);
4724 }
4725
4726 /**
4727  *  igb_clean_rx_ring - Free Rx Buffers per Queue
4728  *  @rx_ring: ring to free buffers from
4729  **/
4730 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4731 {
4732         u16 i = rx_ring->next_to_clean;
4733
4734         dev_kfree_skb(rx_ring->skb);
4735         rx_ring->skb = NULL;
4736
4737         /* Free all the Rx ring sk_buffs */
4738         while (i != rx_ring->next_to_alloc) {
4739                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4740
4741                 /* Invalidate cache lines that may have been written to by
4742                  * device so that we avoid corrupting memory.
4743                  */
4744                 dma_sync_single_range_for_cpu(rx_ring->dev,
4745                                               buffer_info->dma,
4746                                               buffer_info->page_offset,
4747                                               igb_rx_bufsz(rx_ring),
4748                                               DMA_FROM_DEVICE);
4749
4750                 /* free resources associated with mapping */
4751                 dma_unmap_page_attrs(rx_ring->dev,
4752                                      buffer_info->dma,
4753                                      igb_rx_pg_size(rx_ring),
4754                                      DMA_FROM_DEVICE,
4755                                      IGB_RX_DMA_ATTR);
4756                 __page_frag_cache_drain(buffer_info->page,
4757                                         buffer_info->pagecnt_bias);
4758
4759                 i++;
4760                 if (i == rx_ring->count)
4761                         i = 0;
4762         }
4763
4764         rx_ring->next_to_alloc = 0;
4765         rx_ring->next_to_clean = 0;
4766         rx_ring->next_to_use = 0;
4767 }
4768
4769 /**
4770  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4771  *  @adapter: board private structure
4772  **/
4773 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4774 {
4775         int i;
4776
4777         for (i = 0; i < adapter->num_rx_queues; i++)
4778                 if (adapter->rx_ring[i])
4779                         igb_clean_rx_ring(adapter->rx_ring[i]);
4780 }
4781
4782 /**
4783  *  igb_set_mac - Change the Ethernet Address of the NIC
4784  *  @netdev: network interface device structure
4785  *  @p: pointer to an address structure
4786  *
4787  *  Returns 0 on success, negative on failure
4788  **/
4789 static int igb_set_mac(struct net_device *netdev, void *p)
4790 {
4791         struct igb_adapter *adapter = netdev_priv(netdev);
4792         struct e1000_hw *hw = &adapter->hw;
4793         struct sockaddr *addr = p;
4794
4795         if (!is_valid_ether_addr(addr->sa_data))
4796                 return -EADDRNOTAVAIL;
4797
4798         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4799         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4800
4801         /* set the correct pool for the new PF MAC address in entry 0 */
4802         igb_set_default_mac_filter(adapter);
4803
4804         return 0;
4805 }
4806
4807 /**
4808  *  igb_write_mc_addr_list - write multicast addresses to MTA
4809  *  @netdev: network interface device structure
4810  *
4811  *  Writes multicast address list to the MTA hash table.
4812  *  Returns: -ENOMEM on failure
4813  *           0 on no addresses written
4814  *           X on writing X addresses to MTA
4815  **/
4816 static int igb_write_mc_addr_list(struct net_device *netdev)
4817 {
4818         struct igb_adapter *adapter = netdev_priv(netdev);
4819         struct e1000_hw *hw = &adapter->hw;
4820         struct netdev_hw_addr *ha;
4821         u8  *mta_list;
4822         int i;
4823
4824         if (netdev_mc_empty(netdev)) {
4825                 /* nothing to program, so clear mc list */
4826                 igb_update_mc_addr_list(hw, NULL, 0);
4827                 igb_restore_vf_multicasts(adapter);
4828                 return 0;
4829         }
4830
4831         mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4832         if (!mta_list)
4833                 return -ENOMEM;
4834
4835         /* The shared function expects a packed array of only addresses. */
4836         i = 0;
4837         netdev_for_each_mc_addr(ha, netdev)
4838                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4839
4840         igb_update_mc_addr_list(hw, mta_list, i);
4841         kfree(mta_list);
4842
4843         return netdev_mc_count(netdev);
4844 }
4845
4846 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4847 {
4848         struct e1000_hw *hw = &adapter->hw;
4849         u32 i, pf_id;
4850
4851         switch (hw->mac.type) {
4852         case e1000_i210:
4853         case e1000_i211:
4854         case e1000_i350:
4855                 /* VLAN filtering needed for VLAN prio filter */
4856                 if (adapter->netdev->features & NETIF_F_NTUPLE)
4857                         break;
4858                 /* fall through */
4859         case e1000_82576:
4860         case e1000_82580:
4861         case e1000_i354:
4862                 /* VLAN filtering needed for pool filtering */
4863                 if (adapter->vfs_allocated_count)
4864                         break;
4865                 /* fall through */
4866         default:
4867                 return 1;
4868         }
4869
4870         /* We are already in VLAN promisc, nothing to do */
4871         if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4872                 return 0;
4873
4874         if (!adapter->vfs_allocated_count)
4875                 goto set_vfta;
4876
4877         /* Add PF to all active pools */
4878         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4879
4880         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4881                 u32 vlvf = rd32(E1000_VLVF(i));
4882
4883                 vlvf |= BIT(pf_id);
4884                 wr32(E1000_VLVF(i), vlvf);
4885         }
4886
4887 set_vfta:
4888         /* Set all bits in the VLAN filter table array */
4889         for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4890                 hw->mac.ops.write_vfta(hw, i, ~0U);
4891
4892         /* Set flag so we don't redo unnecessary work */
4893         adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4894
4895         return 0;
4896 }
4897
4898 #define VFTA_BLOCK_SIZE 8
4899 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4900 {
4901         struct e1000_hw *hw = &adapter->hw;
4902         u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4903         u32 vid_start = vfta_offset * 32;
4904         u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4905         u32 i, vid, word, bits, pf_id;
4906
4907         /* guarantee that we don't scrub out management VLAN */
4908         vid = adapter->mng_vlan_id;
4909         if (vid >= vid_start && vid < vid_end)
4910                 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4911
4912         if (!adapter->vfs_allocated_count)
4913                 goto set_vfta;
4914
4915         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4916
4917         for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4918                 u32 vlvf = rd32(E1000_VLVF(i));
4919
4920                 /* pull VLAN ID from VLVF */
4921                 vid = vlvf & VLAN_VID_MASK;
4922
4923                 /* only concern ourselves with a certain range */
4924                 if (vid < vid_start || vid >= vid_end)
4925                         continue;
4926
4927                 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4928                         /* record VLAN ID in VFTA */
4929                         vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4930
4931                         /* if PF is part of this then continue */
4932                         if (test_bit(vid, adapter->active_vlans))
4933                                 continue;
4934                 }
4935
4936                 /* remove PF from the pool */
4937                 bits = ~BIT(pf_id);
4938                 bits &= rd32(E1000_VLVF(i));
4939                 wr32(E1000_VLVF(i), bits);
4940         }
4941
4942 set_vfta:
4943         /* extract values from active_vlans and write back to VFTA */
4944         for (i = VFTA_BLOCK_SIZE; i--;) {
4945                 vid = (vfta_offset + i) * 32;
4946                 word = vid / BITS_PER_LONG;
4947                 bits = vid % BITS_PER_LONG;
4948
4949                 vfta[i] |= adapter->active_vlans[word] >> bits;
4950
4951                 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4952         }
4953 }
4954
4955 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4956 {
4957         u32 i;
4958
4959         /* We are not in VLAN promisc, nothing to do */
4960         if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4961                 return;
4962
4963         /* Set flag so we don't redo unnecessary work */
4964         adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4965
4966         for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4967                 igb_scrub_vfta(adapter, i);
4968 }
4969
4970 /**
4971  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4972  *  @netdev: network interface device structure
4973  *
4974  *  The set_rx_mode entry point is called whenever the unicast or multicast
4975  *  address lists or the network interface flags are updated.  This routine is
4976  *  responsible for configuring the hardware for proper unicast, multicast,
4977  *  promiscuous mode, and all-multi behavior.
4978  **/
4979 static void igb_set_rx_mode(struct net_device *netdev)
4980 {
4981         struct igb_adapter *adapter = netdev_priv(netdev);
4982         struct e1000_hw *hw = &adapter->hw;
4983         unsigned int vfn = adapter->vfs_allocated_count;
4984         u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4985         int count;
4986
4987         /* Check for Promiscuous and All Multicast modes */
4988         if (netdev->flags & IFF_PROMISC) {
4989                 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4990                 vmolr |= E1000_VMOLR_MPME;
4991
4992                 /* enable use of UTA filter to force packets to default pool */
4993                 if (hw->mac.type == e1000_82576)
4994                         vmolr |= E1000_VMOLR_ROPE;
4995         } else {
4996                 if (netdev->flags & IFF_ALLMULTI) {
4997                         rctl |= E1000_RCTL_MPE;
4998                         vmolr |= E1000_VMOLR_MPME;
4999                 } else {
5000                         /* Write addresses to the MTA, if the attempt fails
5001                          * then we should just turn on promiscuous mode so
5002                          * that we can at least receive multicast traffic
5003                          */
5004                         count = igb_write_mc_addr_list(netdev);
5005                         if (count < 0) {
5006                                 rctl |= E1000_RCTL_MPE;
5007                                 vmolr |= E1000_VMOLR_MPME;
5008                         } else if (count) {
5009                                 vmolr |= E1000_VMOLR_ROMPE;
5010                         }
5011                 }
5012         }
5013
5014         /* Write addresses to available RAR registers, if there is not
5015          * sufficient space to store all the addresses then enable
5016          * unicast promiscuous mode
5017          */
5018         if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5019                 rctl |= E1000_RCTL_UPE;
5020                 vmolr |= E1000_VMOLR_ROPE;
5021         }
5022
5023         /* enable VLAN filtering by default */
5024         rctl |= E1000_RCTL_VFE;
5025
5026         /* disable VLAN filtering for modes that require it */
5027         if ((netdev->flags & IFF_PROMISC) ||
5028             (netdev->features & NETIF_F_RXALL)) {
5029                 /* if we fail to set all rules then just clear VFE */
5030                 if (igb_vlan_promisc_enable(adapter))
5031                         rctl &= ~E1000_RCTL_VFE;
5032         } else {
5033                 igb_vlan_promisc_disable(adapter);
5034         }
5035
5036         /* update state of unicast, multicast, and VLAN filtering modes */
5037         rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5038                                      E1000_RCTL_VFE);
5039         wr32(E1000_RCTL, rctl);
5040
5041 #if (PAGE_SIZE < 8192)
5042         if (!adapter->vfs_allocated_count) {
5043                 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5044                         rlpml = IGB_MAX_FRAME_BUILD_SKB;
5045         }
5046 #endif
5047         wr32(E1000_RLPML, rlpml);
5048
5049         /* In order to support SR-IOV and eventually VMDq it is necessary to set
5050          * the VMOLR to enable the appropriate modes.  Without this workaround
5051          * we will have issues with VLAN tag stripping not being done for frames
5052          * that are only arriving because we are the default pool
5053          */
5054         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5055                 return;
5056
5057         /* set UTA to appropriate mode */
5058         igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5059
5060         vmolr |= rd32(E1000_VMOLR(vfn)) &
5061                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5062
5063         /* enable Rx jumbo frames, restrict as needed to support build_skb */
5064         vmolr &= ~E1000_VMOLR_RLPML_MASK;
5065 #if (PAGE_SIZE < 8192)
5066         if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5067                 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5068         else
5069 #endif
5070                 vmolr |= MAX_JUMBO_FRAME_SIZE;
5071         vmolr |= E1000_VMOLR_LPE;
5072
5073         wr32(E1000_VMOLR(vfn), vmolr);
5074
5075         igb_restore_vf_multicasts(adapter);
5076 }
5077
5078 static void igb_check_wvbr(struct igb_adapter *adapter)
5079 {
5080         struct e1000_hw *hw = &adapter->hw;
5081         u32 wvbr = 0;
5082
5083         switch (hw->mac.type) {
5084         case e1000_82576:
5085         case e1000_i350:
5086                 wvbr = rd32(E1000_WVBR);
5087                 if (!wvbr)
5088                         return;
5089                 break;
5090         default:
5091                 break;
5092         }
5093
5094         adapter->wvbr |= wvbr;
5095 }
5096
5097 #define IGB_STAGGERED_QUEUE_OFFSET 8
5098
5099 static void igb_spoof_check(struct igb_adapter *adapter)
5100 {
5101         int j;
5102
5103         if (!adapter->wvbr)
5104                 return;
5105
5106         for (j = 0; j < adapter->vfs_allocated_count; j++) {
5107                 if (adapter->wvbr & BIT(j) ||
5108                     adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5109                         dev_warn(&adapter->pdev->dev,
5110                                 "Spoof event(s) detected on VF %d\n", j);
5111                         adapter->wvbr &=
5112                                 ~(BIT(j) |
5113                                   BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5114                 }
5115         }
5116 }
5117
5118 /* Need to wait a few seconds after link up to get diagnostic information from
5119  * the phy
5120  */
5121 static void igb_update_phy_info(struct timer_list *t)
5122 {
5123         struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5124         igb_get_phy_info(&adapter->hw);
5125 }
5126
5127 /**
5128  *  igb_has_link - check shared code for link and determine up/down
5129  *  @adapter: pointer to driver private info
5130  **/
5131 bool igb_has_link(struct igb_adapter *adapter)
5132 {
5133         struct e1000_hw *hw = &adapter->hw;
5134         bool link_active = false;
5135
5136         /* get_link_status is set on LSC (link status) interrupt or
5137          * rx sequence error interrupt.  get_link_status will stay
5138          * false until the e1000_check_for_link establishes link
5139          * for copper adapters ONLY
5140          */
5141         switch (hw->phy.media_type) {
5142         case e1000_media_type_copper:
5143                 if (!hw->mac.get_link_status)
5144                         return true;
5145                 /* fall through */
5146         case e1000_media_type_internal_serdes:
5147                 hw->mac.ops.check_for_link(hw);
5148                 link_active = !hw->mac.get_link_status;
5149                 break;
5150         default:
5151         case e1000_media_type_unknown:
5152                 break;
5153         }
5154
5155         if (((hw->mac.type == e1000_i210) ||
5156              (hw->mac.type == e1000_i211)) &&
5157              (hw->phy.id == I210_I_PHY_ID)) {
5158                 if (!netif_carrier_ok(adapter->netdev)) {
5159                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5160                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5161                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5162                         adapter->link_check_timeout = jiffies;
5163                 }
5164         }
5165
5166         return link_active;
5167 }
5168
5169 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5170 {
5171         bool ret = false;
5172         u32 ctrl_ext, thstat;
5173
5174         /* check for thermal sensor event on i350 copper only */
5175         if (hw->mac.type == e1000_i350) {
5176                 thstat = rd32(E1000_THSTAT);
5177                 ctrl_ext = rd32(E1000_CTRL_EXT);
5178
5179                 if ((hw->phy.media_type == e1000_media_type_copper) &&
5180                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5181                         ret = !!(thstat & event);
5182         }
5183
5184         return ret;
5185 }
5186
5187 /**
5188  *  igb_check_lvmmc - check for malformed packets received
5189  *  and indicated in LVMMC register
5190  *  @adapter: pointer to adapter
5191  **/
5192 static void igb_check_lvmmc(struct igb_adapter *adapter)
5193 {
5194         struct e1000_hw *hw = &adapter->hw;
5195         u32 lvmmc;
5196
5197         lvmmc = rd32(E1000_LVMMC);
5198         if (lvmmc) {
5199                 if (unlikely(net_ratelimit())) {
5200                         netdev_warn(adapter->netdev,
5201                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5202                                     lvmmc);
5203                 }
5204         }
5205 }
5206
5207 /**
5208  *  igb_watchdog - Timer Call-back
5209  *  @data: pointer to adapter cast into an unsigned long
5210  **/
5211 static void igb_watchdog(struct timer_list *t)
5212 {
5213         struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5214         /* Do the rest outside of interrupt context */
5215         schedule_work(&adapter->watchdog_task);
5216 }
5217
5218 static void igb_watchdog_task(struct work_struct *work)
5219 {
5220         struct igb_adapter *adapter = container_of(work,
5221                                                    struct igb_adapter,
5222                                                    watchdog_task);
5223         struct e1000_hw *hw = &adapter->hw;
5224         struct e1000_phy_info *phy = &hw->phy;
5225         struct net_device *netdev = adapter->netdev;
5226         u32 link;
5227         int i;
5228         u32 connsw;
5229         u16 phy_data, retry_count = 20;
5230
5231         link = igb_has_link(adapter);
5232
5233         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5234                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5235                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5236                 else
5237                         link = false;
5238         }
5239
5240         /* Force link down if we have fiber to swap to */
5241         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5242                 if (hw->phy.media_type == e1000_media_type_copper) {
5243                         connsw = rd32(E1000_CONNSW);
5244                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5245                                 link = 0;
5246                 }
5247         }
5248         if (link) {
5249                 /* Perform a reset if the media type changed. */
5250                 if (hw->dev_spec._82575.media_changed) {
5251                         hw->dev_spec._82575.media_changed = false;
5252                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
5253                         igb_reset(adapter);
5254                 }
5255                 /* Cancel scheduled suspend requests. */
5256                 pm_runtime_resume(netdev->dev.parent);
5257
5258                 if (!netif_carrier_ok(netdev)) {
5259                         u32 ctrl;
5260
5261                         hw->mac.ops.get_speed_and_duplex(hw,
5262                                                          &adapter->link_speed,
5263                                                          &adapter->link_duplex);
5264
5265                         ctrl = rd32(E1000_CTRL);
5266                         /* Links status message must follow this format */
5267                         netdev_info(netdev,
5268                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5269                                netdev->name,
5270                                adapter->link_speed,
5271                                adapter->link_duplex == FULL_DUPLEX ?
5272                                "Full" : "Half",
5273                                (ctrl & E1000_CTRL_TFCE) &&
5274                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5275                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5276                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5277
5278                         /* disable EEE if enabled */
5279                         if ((adapter->flags & IGB_FLAG_EEE) &&
5280                                 (adapter->link_duplex == HALF_DUPLEX)) {
5281                                 dev_info(&adapter->pdev->dev,
5282                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5283                                 adapter->hw.dev_spec._82575.eee_disable = true;
5284                                 adapter->flags &= ~IGB_FLAG_EEE;
5285                         }
5286
5287                         /* check if SmartSpeed worked */
5288                         igb_check_downshift(hw);
5289                         if (phy->speed_downgraded)
5290                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5291
5292                         /* check for thermal sensor event */
5293                         if (igb_thermal_sensor_event(hw,
5294                             E1000_THSTAT_LINK_THROTTLE))
5295                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5296
5297                         /* adjust timeout factor according to speed/duplex */
5298                         adapter->tx_timeout_factor = 1;
5299                         switch (adapter->link_speed) {
5300                         case SPEED_10:
5301                                 adapter->tx_timeout_factor = 14;
5302                                 break;
5303                         case SPEED_100:
5304                                 /* maybe add some timeout factor ? */
5305                                 break;
5306                         }
5307
5308                         if (adapter->link_speed != SPEED_1000)
5309                                 goto no_wait;
5310
5311                         /* wait for Remote receiver status OK */
5312 retry_read_status:
5313                         if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5314                                               &phy_data)) {
5315                                 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5316                                     retry_count) {
5317                                         msleep(100);
5318                                         retry_count--;
5319                                         goto retry_read_status;
5320                                 } else if (!retry_count) {
5321                                         dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5322                                 }
5323                         } else {
5324                                 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5325                         }
5326 no_wait:
5327                         netif_carrier_on(netdev);
5328
5329                         igb_ping_all_vfs(adapter);
5330                         igb_check_vf_rate_limit(adapter);
5331
5332                         /* link state has changed, schedule phy info update */
5333                         if (!test_bit(__IGB_DOWN, &adapter->state))
5334                                 mod_timer(&adapter->phy_info_timer,
5335                                           round_jiffies(jiffies + 2 * HZ));
5336                 }
5337         } else {
5338                 if (netif_carrier_ok(netdev)) {
5339                         adapter->link_speed = 0;
5340                         adapter->link_duplex = 0;
5341
5342                         /* check for thermal sensor event */
5343                         if (igb_thermal_sensor_event(hw,
5344                             E1000_THSTAT_PWR_DOWN)) {
5345                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5346                         }
5347
5348                         /* Links status message must follow this format */
5349                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
5350                                netdev->name);
5351                         netif_carrier_off(netdev);
5352
5353                         igb_ping_all_vfs(adapter);
5354
5355                         /* link state has changed, schedule phy info update */
5356                         if (!test_bit(__IGB_DOWN, &adapter->state))
5357                                 mod_timer(&adapter->phy_info_timer,
5358                                           round_jiffies(jiffies + 2 * HZ));
5359
5360                         /* link is down, time to check for alternate media */
5361                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5362                                 igb_check_swap_media(adapter);
5363                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5364                                         schedule_work(&adapter->reset_task);
5365                                         /* return immediately */
5366                                         return;
5367                                 }
5368                         }
5369                         pm_schedule_suspend(netdev->dev.parent,
5370                                             MSEC_PER_SEC * 5);
5371
5372                 /* also check for alternate media here */
5373                 } else if (!netif_carrier_ok(netdev) &&
5374                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5375                         igb_check_swap_media(adapter);
5376                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5377                                 schedule_work(&adapter->reset_task);
5378                                 /* return immediately */
5379                                 return;
5380                         }
5381                 }
5382         }
5383
5384         spin_lock(&adapter->stats64_lock);
5385         igb_update_stats(adapter);
5386         spin_unlock(&adapter->stats64_lock);
5387
5388         for (i = 0; i < adapter->num_tx_queues; i++) {
5389                 struct igb_ring *tx_ring = adapter->tx_ring[i];
5390                 if (!netif_carrier_ok(netdev)) {
5391                         /* We've lost link, so the controller stops DMA,
5392                          * but we've got queued Tx work that's never going
5393                          * to get done, so reset controller to flush Tx.
5394                          * (Do the reset outside of interrupt context).
5395                          */
5396                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5397                                 adapter->tx_timeout_count++;
5398                                 schedule_work(&adapter->reset_task);
5399                                 /* return immediately since reset is imminent */
5400                                 return;
5401                         }
5402                 }
5403
5404                 /* Force detection of hung controller every watchdog period */
5405                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5406         }
5407
5408         /* Cause software interrupt to ensure Rx ring is cleaned */
5409         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5410                 u32 eics = 0;
5411
5412                 for (i = 0; i < adapter->num_q_vectors; i++)
5413                         eics |= adapter->q_vector[i]->eims_value;
5414                 wr32(E1000_EICS, eics);
5415         } else {
5416                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5417         }
5418
5419         igb_spoof_check(adapter);
5420         igb_ptp_rx_hang(adapter);
5421         igb_ptp_tx_hang(adapter);
5422
5423         /* Check LVMMC register on i350/i354 only */
5424         if ((adapter->hw.mac.type == e1000_i350) ||
5425             (adapter->hw.mac.type == e1000_i354))
5426                 igb_check_lvmmc(adapter);
5427
5428         /* Reset the timer */
5429         if (!test_bit(__IGB_DOWN, &adapter->state)) {
5430                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5431                         mod_timer(&adapter->watchdog_timer,
5432                                   round_jiffies(jiffies +  HZ));
5433                 else
5434                         mod_timer(&adapter->watchdog_timer,
5435                                   round_jiffies(jiffies + 2 * HZ));
5436         }
5437 }
5438
5439 enum latency_range {
5440         lowest_latency = 0,
5441         low_latency = 1,
5442         bulk_latency = 2,
5443         latency_invalid = 255
5444 };
5445
5446 /**
5447  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5448  *  @q_vector: pointer to q_vector
5449  *
5450  *  Stores a new ITR value based on strictly on packet size.  This
5451  *  algorithm is less sophisticated than that used in igb_update_itr,
5452  *  due to the difficulty of synchronizing statistics across multiple
5453  *  receive rings.  The divisors and thresholds used by this function
5454  *  were determined based on theoretical maximum wire speed and testing
5455  *  data, in order to minimize response time while increasing bulk
5456  *  throughput.
5457  *  This functionality is controlled by ethtool's coalescing settings.
5458  *  NOTE:  This function is called only when operating in a multiqueue
5459  *         receive environment.
5460  **/
5461 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5462 {
5463         int new_val = q_vector->itr_val;
5464         int avg_wire_size = 0;
5465         struct igb_adapter *adapter = q_vector->adapter;
5466         unsigned int packets;
5467
5468         /* For non-gigabit speeds, just fix the interrupt rate at 4000
5469          * ints/sec - ITR timer value of 120 ticks.
5470          */
5471         if (adapter->link_speed != SPEED_1000) {
5472                 new_val = IGB_4K_ITR;
5473                 goto set_itr_val;
5474         }
5475
5476         packets = q_vector->rx.total_packets;
5477         if (packets)
5478                 avg_wire_size = q_vector->rx.total_bytes / packets;
5479
5480         packets = q_vector->tx.total_packets;
5481         if (packets)
5482                 avg_wire_size = max_t(u32, avg_wire_size,
5483                                       q_vector->tx.total_bytes / packets);
5484
5485         /* if avg_wire_size isn't set no work was done */
5486         if (!avg_wire_size)
5487                 goto clear_counts;
5488
5489         /* Add 24 bytes to size to account for CRC, preamble, and gap */
5490         avg_wire_size += 24;
5491
5492         /* Don't starve jumbo frames */
5493         avg_wire_size = min(avg_wire_size, 3000);
5494
5495         /* Give a little boost to mid-size frames */
5496         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5497                 new_val = avg_wire_size / 3;
5498         else
5499                 new_val = avg_wire_size / 2;
5500
5501         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5502         if (new_val < IGB_20K_ITR &&
5503             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5504              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5505                 new_val = IGB_20K_ITR;
5506
5507 set_itr_val:
5508         if (new_val != q_vector->itr_val) {
5509                 q_vector->itr_val = new_val;
5510                 q_vector->set_itr = 1;
5511         }
5512 clear_counts:
5513         q_vector->rx.total_bytes = 0;
5514         q_vector->rx.total_packets = 0;
5515         q_vector->tx.total_bytes = 0;
5516         q_vector->tx.total_packets = 0;
5517 }
5518
5519 /**
5520  *  igb_update_itr - update the dynamic ITR value based on statistics
5521  *  @q_vector: pointer to q_vector
5522  *  @ring_container: ring info to update the itr for
5523  *
5524  *  Stores a new ITR value based on packets and byte
5525  *  counts during the last interrupt.  The advantage of per interrupt
5526  *  computation is faster updates and more accurate ITR for the current
5527  *  traffic pattern.  Constants in this function were computed
5528  *  based on theoretical maximum wire speed and thresholds were set based
5529  *  on testing data as well as attempting to minimize response time
5530  *  while increasing bulk throughput.
5531  *  This functionality is controlled by ethtool's coalescing settings.
5532  *  NOTE:  These calculations are only valid when operating in a single-
5533  *         queue environment.
5534  **/
5535 static void igb_update_itr(struct igb_q_vector *q_vector,
5536                            struct igb_ring_container *ring_container)
5537 {
5538         unsigned int packets = ring_container->total_packets;
5539         unsigned int bytes = ring_container->total_bytes;
5540         u8 itrval = ring_container->itr;
5541
5542         /* no packets, exit with status unchanged */
5543         if (packets == 0)
5544                 return;
5545
5546         switch (itrval) {
5547         case lowest_latency:
5548                 /* handle TSO and jumbo frames */
5549                 if (bytes/packets > 8000)
5550                         itrval = bulk_latency;
5551                 else if ((packets < 5) && (bytes > 512))
5552                         itrval = low_latency;
5553                 break;
5554         case low_latency:  /* 50 usec aka 20000 ints/s */
5555                 if (bytes > 10000) {
5556                         /* this if handles the TSO accounting */
5557                         if (bytes/packets > 8000)
5558                                 itrval = bulk_latency;
5559                         else if ((packets < 10) || ((bytes/packets) > 1200))
5560                                 itrval = bulk_latency;
5561                         else if ((packets > 35))
5562                                 itrval = lowest_latency;
5563                 } else if (bytes/packets > 2000) {
5564                         itrval = bulk_latency;
5565                 } else if (packets <= 2 && bytes < 512) {
5566                         itrval = lowest_latency;
5567                 }
5568                 break;
5569         case bulk_latency: /* 250 usec aka 4000 ints/s */
5570                 if (bytes > 25000) {
5571                         if (packets > 35)
5572                                 itrval = low_latency;
5573                 } else if (bytes < 1500) {
5574                         itrval = low_latency;
5575                 }
5576                 break;
5577         }
5578
5579         /* clear work counters since we have the values we need */
5580         ring_container->total_bytes = 0;
5581         ring_container->total_packets = 0;
5582
5583         /* write updated itr to ring container */
5584         ring_container->itr = itrval;
5585 }
5586
5587 static void igb_set_itr(struct igb_q_vector *q_vector)
5588 {
5589         struct igb_adapter *adapter = q_vector->adapter;
5590         u32 new_itr = q_vector->itr_val;
5591         u8 current_itr = 0;
5592
5593         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5594         if (adapter->link_speed != SPEED_1000) {
5595                 current_itr = 0;
5596                 new_itr = IGB_4K_ITR;
5597                 goto set_itr_now;
5598         }
5599
5600         igb_update_itr(q_vector, &q_vector->tx);
5601         igb_update_itr(q_vector, &q_vector->rx);
5602
5603         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5604
5605         /* conservative mode (itr 3) eliminates the lowest_latency setting */
5606         if (current_itr == lowest_latency &&
5607             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5608              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5609                 current_itr = low_latency;
5610
5611         switch (current_itr) {
5612         /* counts and packets in update_itr are dependent on these numbers */
5613         case lowest_latency:
5614                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5615                 break;
5616         case low_latency:
5617                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5618                 break;
5619         case bulk_latency:
5620                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5621                 break;
5622         default:
5623                 break;
5624         }
5625
5626 set_itr_now:
5627         if (new_itr != q_vector->itr_val) {
5628                 /* this attempts to bias the interrupt rate towards Bulk
5629                  * by adding intermediate steps when interrupt rate is
5630                  * increasing
5631                  */
5632                 new_itr = new_itr > q_vector->itr_val ?
5633                           max((new_itr * q_vector->itr_val) /
5634                           (new_itr + (q_vector->itr_val >> 2)),
5635                           new_itr) : new_itr;
5636                 /* Don't write the value here; it resets the adapter's
5637                  * internal timer, and causes us to delay far longer than
5638                  * we should between interrupts.  Instead, we write the ITR
5639                  * value at the beginning of the next interrupt so the timing
5640                  * ends up being correct.
5641                  */
5642                 q_vector->itr_val = new_itr;
5643                 q_vector->set_itr = 1;
5644         }
5645 }
5646
5647 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5648                             struct igb_tx_buffer *first,
5649                             u32 vlan_macip_lens, u32 type_tucmd,
5650                             u32 mss_l4len_idx)
5651 {
5652         struct e1000_adv_tx_context_desc *context_desc;
5653         u16 i = tx_ring->next_to_use;
5654         struct timespec64 ts;
5655
5656         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5657
5658         i++;
5659         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5660
5661         /* set bits to identify this as an advanced context descriptor */
5662         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5663
5664         /* For 82575, context index must be unique per ring. */
5665         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5666                 mss_l4len_idx |= tx_ring->reg_idx << 4;
5667
5668         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5669         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5670         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5671
5672         /* We assume there is always a valid tx time available. Invalid times
5673          * should have been handled by the upper layers.
5674          */
5675         if (tx_ring->launchtime_enable) {
5676                 ts = ns_to_timespec64(first->skb->tstamp);
5677                 first->skb->tstamp = 0;
5678                 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5679         } else {
5680                 context_desc->seqnum_seed = 0;
5681         }
5682 }
5683
5684 static int igb_tso(struct igb_ring *tx_ring,
5685                    struct igb_tx_buffer *first,
5686                    u8 *hdr_len)
5687 {
5688         u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5689         struct sk_buff *skb = first->skb;
5690         union {
5691                 struct iphdr *v4;
5692                 struct ipv6hdr *v6;
5693                 unsigned char *hdr;
5694         } ip;
5695         union {
5696                 struct tcphdr *tcp;
5697                 unsigned char *hdr;
5698         } l4;
5699         u32 paylen, l4_offset;
5700         int err;
5701
5702         if (skb->ip_summed != CHECKSUM_PARTIAL)
5703                 return 0;
5704
5705         if (!skb_is_gso(skb))
5706                 return 0;
5707
5708         err = skb_cow_head(skb, 0);
5709         if (err < 0)
5710                 return err;
5711
5712         ip.hdr = skb_network_header(skb);
5713         l4.hdr = skb_checksum_start(skb);
5714
5715         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5716         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5717
5718         /* initialize outer IP header fields */
5719         if (ip.v4->version == 4) {
5720                 unsigned char *csum_start = skb_checksum_start(skb);
5721                 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5722
5723                 /* IP header will have to cancel out any data that
5724                  * is not a part of the outer IP header
5725                  */
5726                 ip.v4->check = csum_fold(csum_partial(trans_start,
5727                                                       csum_start - trans_start,
5728                                                       0));
5729                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5730
5731                 ip.v4->tot_len = 0;
5732                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5733                                    IGB_TX_FLAGS_CSUM |
5734                                    IGB_TX_FLAGS_IPV4;
5735         } else {
5736                 ip.v6->payload_len = 0;
5737                 first->tx_flags |= IGB_TX_FLAGS_TSO |
5738                                    IGB_TX_FLAGS_CSUM;
5739         }
5740
5741         /* determine offset of inner transport header */
5742         l4_offset = l4.hdr - skb->data;
5743
5744         /* compute length of segmentation header */
5745         *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5746
5747         /* remove payload length from inner checksum */
5748         paylen = skb->len - l4_offset;
5749         csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5750
5751         /* update gso size and bytecount with header size */
5752         first->gso_segs = skb_shinfo(skb)->gso_segs;
5753         first->bytecount += (first->gso_segs - 1) * *hdr_len;
5754
5755         /* MSS L4LEN IDX */
5756         mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5757         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5758
5759         /* VLAN MACLEN IPLEN */
5760         vlan_macip_lens = l4.hdr - ip.hdr;
5761         vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5762         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5763
5764         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5765                         type_tucmd, mss_l4len_idx);
5766
5767         return 1;
5768 }
5769
5770 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5771 {
5772         unsigned int offset = 0;
5773
5774         ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5775
5776         return offset == skb_checksum_start_offset(skb);
5777 }
5778
5779 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5780 {
5781         struct sk_buff *skb = first->skb;
5782         u32 vlan_macip_lens = 0;
5783         u32 type_tucmd = 0;
5784
5785         if (skb->ip_summed != CHECKSUM_PARTIAL) {
5786 csum_failed:
5787                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5788                     !tx_ring->launchtime_enable)
5789                         return;
5790                 goto no_csum;
5791         }
5792
5793         switch (skb->csum_offset) {
5794         case offsetof(struct tcphdr, check):
5795                 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5796                 /* fall through */
5797         case offsetof(struct udphdr, check):
5798                 break;
5799         case offsetof(struct sctphdr, checksum):
5800                 /* validate that this is actually an SCTP request */
5801                 if (((first->protocol == htons(ETH_P_IP)) &&
5802                      (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5803                     ((first->protocol == htons(ETH_P_IPV6)) &&
5804                      igb_ipv6_csum_is_sctp(skb))) {
5805                         type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5806                         break;
5807                 }
5808                 /* fall through */
5809         default:
5810                 skb_checksum_help(skb);
5811                 goto csum_failed;
5812         }
5813
5814         /* update TX checksum flag */
5815         first->tx_flags |= IGB_TX_FLAGS_CSUM;
5816         vlan_macip_lens = skb_checksum_start_offset(skb) -
5817                           skb_network_offset(skb);
5818 no_csum:
5819         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5820         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5821
5822         igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5823 }
5824
5825 #define IGB_SET_FLAG(_input, _flag, _result) \
5826         ((_flag <= _result) ? \
5827          ((u32)(_input & _flag) * (_result / _flag)) : \
5828          ((u32)(_input & _flag) / (_flag / _result)))
5829
5830 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5831 {
5832         /* set type for advanced descriptor with frame checksum insertion */
5833         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5834                        E1000_ADVTXD_DCMD_DEXT |
5835                        E1000_ADVTXD_DCMD_IFCS;
5836
5837         /* set HW vlan bit if vlan is present */
5838         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5839                                  (E1000_ADVTXD_DCMD_VLE));
5840
5841         /* set segmentation bits for TSO */
5842         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5843                                  (E1000_ADVTXD_DCMD_TSE));
5844
5845         /* set timestamp bit if present */
5846         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5847                                  (E1000_ADVTXD_MAC_TSTAMP));
5848
5849         /* insert frame checksum */
5850         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5851
5852         return cmd_type;
5853 }
5854
5855 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5856                                  union e1000_adv_tx_desc *tx_desc,
5857                                  u32 tx_flags, unsigned int paylen)
5858 {
5859         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5860
5861         /* 82575 requires a unique index per ring */
5862         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5863                 olinfo_status |= tx_ring->reg_idx << 4;
5864
5865         /* insert L4 checksum */
5866         olinfo_status |= IGB_SET_FLAG(tx_flags,
5867                                       IGB_TX_FLAGS_CSUM,
5868                                       (E1000_TXD_POPTS_TXSM << 8));
5869
5870         /* insert IPv4 checksum */
5871         olinfo_status |= IGB_SET_FLAG(tx_flags,
5872                                       IGB_TX_FLAGS_IPV4,
5873                                       (E1000_TXD_POPTS_IXSM << 8));
5874
5875         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5876 }
5877
5878 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5879 {
5880         struct net_device *netdev = tx_ring->netdev;
5881
5882         netif_stop_subqueue(netdev, tx_ring->queue_index);
5883
5884         /* Herbert's original patch had:
5885          *  smp_mb__after_netif_stop_queue();
5886          * but since that doesn't exist yet, just open code it.
5887          */
5888         smp_mb();
5889
5890         /* We need to check again in a case another CPU has just
5891          * made room available.
5892          */
5893         if (igb_desc_unused(tx_ring) < size)
5894                 return -EBUSY;
5895
5896         /* A reprieve! */
5897         netif_wake_subqueue(netdev, tx_ring->queue_index);
5898
5899         u64_stats_update_begin(&tx_ring->tx_syncp2);
5900         tx_ring->tx_stats.restart_queue2++;
5901         u64_stats_update_end(&tx_ring->tx_syncp2);
5902
5903         return 0;
5904 }
5905
5906 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5907 {
5908         if (igb_desc_unused(tx_ring) >= size)
5909                 return 0;
5910         return __igb_maybe_stop_tx(tx_ring, size);
5911 }
5912
5913 static int igb_tx_map(struct igb_ring *tx_ring,
5914                       struct igb_tx_buffer *first,
5915                       const u8 hdr_len)
5916 {
5917         struct sk_buff *skb = first->skb;
5918         struct igb_tx_buffer *tx_buffer;
5919         union e1000_adv_tx_desc *tx_desc;
5920         skb_frag_t *frag;
5921         dma_addr_t dma;
5922         unsigned int data_len, size;
5923         u32 tx_flags = first->tx_flags;
5924         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5925         u16 i = tx_ring->next_to_use;
5926
5927         tx_desc = IGB_TX_DESC(tx_ring, i);
5928
5929         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5930
5931         size = skb_headlen(skb);
5932         data_len = skb->data_len;
5933
5934         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5935
5936         tx_buffer = first;
5937
5938         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5939                 if (dma_mapping_error(tx_ring->dev, dma))
5940                         goto dma_error;
5941
5942                 /* record length, and DMA address */
5943                 dma_unmap_len_set(tx_buffer, len, size);
5944                 dma_unmap_addr_set(tx_buffer, dma, dma);
5945
5946                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5947
5948                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5949                         tx_desc->read.cmd_type_len =
5950                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5951
5952                         i++;
5953                         tx_desc++;
5954                         if (i == tx_ring->count) {
5955                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
5956                                 i = 0;
5957                         }
5958                         tx_desc->read.olinfo_status = 0;
5959
5960                         dma += IGB_MAX_DATA_PER_TXD;
5961                         size -= IGB_MAX_DATA_PER_TXD;
5962
5963                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
5964                 }
5965
5966                 if (likely(!data_len))
5967                         break;
5968
5969                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5970
5971                 i++;
5972                 tx_desc++;
5973                 if (i == tx_ring->count) {
5974                         tx_desc = IGB_TX_DESC(tx_ring, 0);
5975                         i = 0;
5976                 }
5977                 tx_desc->read.olinfo_status = 0;
5978
5979                 size = skb_frag_size(frag);
5980                 data_len -= size;
5981
5982                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5983                                        size, DMA_TO_DEVICE);
5984
5985                 tx_buffer = &tx_ring->tx_buffer_info[i];
5986         }
5987
5988         /* write last descriptor with RS and EOP bits */
5989         cmd_type |= size | IGB_TXD_DCMD;
5990         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5991
5992         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5993
5994         /* set the timestamp */
5995         first->time_stamp = jiffies;
5996
5997         skb_tx_timestamp(skb);
5998
5999         /* Force memory writes to complete before letting h/w know there
6000          * are new descriptors to fetch.  (Only applicable for weak-ordered
6001          * memory model archs, such as IA-64).
6002          *
6003          * We also need this memory barrier to make certain all of the
6004          * status bits have been updated before next_to_watch is written.
6005          */
6006         dma_wmb();
6007
6008         /* set next_to_watch value indicating a packet is present */
6009         first->next_to_watch = tx_desc;
6010
6011         i++;
6012         if (i == tx_ring->count)
6013                 i = 0;
6014
6015         tx_ring->next_to_use = i;
6016
6017         /* Make sure there is space in the ring for the next send. */
6018         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6019
6020         if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6021                 writel(i, tx_ring->tail);
6022         }
6023         return 0;
6024
6025 dma_error:
6026         dev_err(tx_ring->dev, "TX DMA map failed\n");
6027         tx_buffer = &tx_ring->tx_buffer_info[i];
6028
6029         /* clear dma mappings for failed tx_buffer_info map */
6030         while (tx_buffer != first) {
6031                 if (dma_unmap_len(tx_buffer, len))
6032                         dma_unmap_page(tx_ring->dev,
6033                                        dma_unmap_addr(tx_buffer, dma),
6034                                        dma_unmap_len(tx_buffer, len),
6035                                        DMA_TO_DEVICE);
6036                 dma_unmap_len_set(tx_buffer, len, 0);
6037
6038                 if (i-- == 0)
6039                         i += tx_ring->count;
6040                 tx_buffer = &tx_ring->tx_buffer_info[i];
6041         }
6042
6043         if (dma_unmap_len(tx_buffer, len))
6044                 dma_unmap_single(tx_ring->dev,
6045                                  dma_unmap_addr(tx_buffer, dma),
6046                                  dma_unmap_len(tx_buffer, len),
6047                                  DMA_TO_DEVICE);
6048         dma_unmap_len_set(tx_buffer, len, 0);
6049
6050         dev_kfree_skb_any(tx_buffer->skb);
6051         tx_buffer->skb = NULL;
6052
6053         tx_ring->next_to_use = i;
6054
6055         return -1;
6056 }
6057
6058 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6059                                 struct igb_ring *tx_ring)
6060 {
6061         struct igb_tx_buffer *first;
6062         int tso;
6063         u32 tx_flags = 0;
6064         unsigned short f;
6065         u16 count = TXD_USE_COUNT(skb_headlen(skb));
6066         __be16 protocol = vlan_get_protocol(skb);
6067         u8 hdr_len = 0;
6068
6069         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6070          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6071          *       + 2 desc gap to keep tail from touching head,
6072          *       + 1 desc for context descriptor,
6073          * otherwise try next time
6074          */
6075         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6076                 count += TXD_USE_COUNT(skb_frag_size(
6077                                                 &skb_shinfo(skb)->frags[f]));
6078
6079         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6080                 /* this is a hard error */
6081                 return NETDEV_TX_BUSY;
6082         }
6083
6084         /* record the location of the first descriptor for this packet */
6085         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6086         first->skb = skb;
6087         first->bytecount = skb->len;
6088         first->gso_segs = 1;
6089
6090         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6091                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6092
6093                 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6094                     !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6095                                            &adapter->state)) {
6096                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6097                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
6098
6099                         adapter->ptp_tx_skb = skb_get(skb);
6100                         adapter->ptp_tx_start = jiffies;
6101                         if (adapter->hw.mac.type == e1000_82576)
6102                                 schedule_work(&adapter->ptp_tx_work);
6103                 } else {
6104                         adapter->tx_hwtstamp_skipped++;
6105                 }
6106         }
6107
6108         if (skb_vlan_tag_present(skb)) {
6109                 tx_flags |= IGB_TX_FLAGS_VLAN;
6110                 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6111         }
6112
6113         /* record initial flags and protocol */
6114         first->tx_flags = tx_flags;
6115         first->protocol = protocol;
6116
6117         tso = igb_tso(tx_ring, first, &hdr_len);
6118         if (tso < 0)
6119                 goto out_drop;
6120         else if (!tso)
6121                 igb_tx_csum(tx_ring, first);
6122
6123         if (igb_tx_map(tx_ring, first, hdr_len))
6124                 goto cleanup_tx_tstamp;
6125
6126         return NETDEV_TX_OK;
6127
6128 out_drop:
6129         dev_kfree_skb_any(first->skb);
6130         first->skb = NULL;
6131 cleanup_tx_tstamp:
6132         if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6133                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6134
6135                 dev_kfree_skb_any(adapter->ptp_tx_skb);
6136                 adapter->ptp_tx_skb = NULL;
6137                 if (adapter->hw.mac.type == e1000_82576)
6138                         cancel_work_sync(&adapter->ptp_tx_work);
6139                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6140         }
6141
6142         return NETDEV_TX_OK;
6143 }
6144
6145 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6146                                                     struct sk_buff *skb)
6147 {
6148         unsigned int r_idx = skb->queue_mapping;
6149
6150         if (r_idx >= adapter->num_tx_queues)
6151                 r_idx = r_idx % adapter->num_tx_queues;
6152
6153         return adapter->tx_ring[r_idx];
6154 }
6155
6156 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6157                                   struct net_device *netdev)
6158 {
6159         struct igb_adapter *adapter = netdev_priv(netdev);
6160
6161         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6162          * in order to meet this minimum size requirement.
6163          */
6164         if (skb_put_padto(skb, 17))
6165                 return NETDEV_TX_OK;
6166
6167         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6168 }
6169
6170 /**
6171  *  igb_tx_timeout - Respond to a Tx Hang
6172  *  @netdev: network interface device structure
6173  **/
6174 static void igb_tx_timeout(struct net_device *netdev)
6175 {
6176         struct igb_adapter *adapter = netdev_priv(netdev);
6177         struct e1000_hw *hw = &adapter->hw;
6178
6179         /* Do the reset outside of interrupt context */
6180         adapter->tx_timeout_count++;
6181
6182         if (hw->mac.type >= e1000_82580)
6183                 hw->dev_spec._82575.global_device_reset = true;
6184
6185         schedule_work(&adapter->reset_task);
6186         wr32(E1000_EICS,
6187              (adapter->eims_enable_mask & ~adapter->eims_other));
6188 }
6189
6190 static void igb_reset_task(struct work_struct *work)
6191 {
6192         struct igb_adapter *adapter;
6193         adapter = container_of(work, struct igb_adapter, reset_task);
6194
6195         igb_dump(adapter);
6196         netdev_err(adapter->netdev, "Reset adapter\n");
6197         igb_reinit_locked(adapter);
6198 }
6199
6200 /**
6201  *  igb_get_stats64 - Get System Network Statistics
6202  *  @netdev: network interface device structure
6203  *  @stats: rtnl_link_stats64 pointer
6204  **/
6205 static void igb_get_stats64(struct net_device *netdev,
6206                             struct rtnl_link_stats64 *stats)
6207 {
6208         struct igb_adapter *adapter = netdev_priv(netdev);
6209
6210         spin_lock(&adapter->stats64_lock);
6211         igb_update_stats(adapter);
6212         memcpy(stats, &adapter->stats64, sizeof(*stats));
6213         spin_unlock(&adapter->stats64_lock);
6214 }
6215
6216 /**
6217  *  igb_change_mtu - Change the Maximum Transfer Unit
6218  *  @netdev: network interface device structure
6219  *  @new_mtu: new value for maximum frame size
6220  *
6221  *  Returns 0 on success, negative on failure
6222  **/
6223 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6224 {
6225         struct igb_adapter *adapter = netdev_priv(netdev);
6226         struct pci_dev *pdev = adapter->pdev;
6227         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6228
6229         /* adjust max frame to be at least the size of a standard frame */
6230         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6231                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6232
6233         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6234                 usleep_range(1000, 2000);
6235
6236         /* igb_down has a dependency on max_frame_size */
6237         adapter->max_frame_size = max_frame;
6238
6239         if (netif_running(netdev))
6240                 igb_down(adapter);
6241
6242         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6243                  netdev->mtu, new_mtu);
6244         netdev->mtu = new_mtu;
6245
6246         if (netif_running(netdev))
6247                 igb_up(adapter);
6248         else
6249                 igb_reset(adapter);
6250
6251         clear_bit(__IGB_RESETTING, &adapter->state);
6252
6253         return 0;
6254 }
6255
6256 /**
6257  *  igb_update_stats - Update the board statistics counters
6258  *  @adapter: board private structure
6259  **/
6260 void igb_update_stats(struct igb_adapter *adapter)
6261 {
6262         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6263         struct e1000_hw *hw = &adapter->hw;
6264         struct pci_dev *pdev = adapter->pdev;
6265         u32 reg, mpc;
6266         int i;
6267         u64 bytes, packets;
6268         unsigned int start;
6269         u64 _bytes, _packets;
6270
6271         /* Prevent stats update while adapter is being reset, or if the pci
6272          * connection is down.
6273          */
6274         if (adapter->link_speed == 0)
6275                 return;
6276         if (pci_channel_offline(pdev))
6277                 return;
6278
6279         bytes = 0;
6280         packets = 0;
6281
6282         rcu_read_lock();
6283         for (i = 0; i < adapter->num_rx_queues; i++) {
6284                 struct igb_ring *ring = adapter->rx_ring[i];
6285                 u32 rqdpc = rd32(E1000_RQDPC(i));
6286                 if (hw->mac.type >= e1000_i210)
6287                         wr32(E1000_RQDPC(i), 0);
6288
6289                 if (rqdpc) {
6290                         ring->rx_stats.drops += rqdpc;
6291                         net_stats->rx_fifo_errors += rqdpc;
6292                 }
6293
6294                 do {
6295                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6296                         _bytes = ring->rx_stats.bytes;
6297                         _packets = ring->rx_stats.packets;
6298                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6299                 bytes += _bytes;
6300                 packets += _packets;
6301         }
6302
6303         net_stats->rx_bytes = bytes;
6304         net_stats->rx_packets = packets;
6305
6306         bytes = 0;
6307         packets = 0;
6308         for (i = 0; i < adapter->num_tx_queues; i++) {
6309                 struct igb_ring *ring = adapter->tx_ring[i];
6310                 do {
6311                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6312                         _bytes = ring->tx_stats.bytes;
6313                         _packets = ring->tx_stats.packets;
6314                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6315                 bytes += _bytes;
6316                 packets += _packets;
6317         }
6318         net_stats->tx_bytes = bytes;
6319         net_stats->tx_packets = packets;
6320         rcu_read_unlock();
6321
6322         /* read stats registers */
6323         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6324         adapter->stats.gprc += rd32(E1000_GPRC);
6325         adapter->stats.gorc += rd32(E1000_GORCL);
6326         rd32(E1000_GORCH); /* clear GORCL */
6327         adapter->stats.bprc += rd32(E1000_BPRC);
6328         adapter->stats.mprc += rd32(E1000_MPRC);
6329         adapter->stats.roc += rd32(E1000_ROC);
6330
6331         adapter->stats.prc64 += rd32(E1000_PRC64);
6332         adapter->stats.prc127 += rd32(E1000_PRC127);
6333         adapter->stats.prc255 += rd32(E1000_PRC255);
6334         adapter->stats.prc511 += rd32(E1000_PRC511);
6335         adapter->stats.prc1023 += rd32(E1000_PRC1023);
6336         adapter->stats.prc1522 += rd32(E1000_PRC1522);
6337         adapter->stats.symerrs += rd32(E1000_SYMERRS);
6338         adapter->stats.sec += rd32(E1000_SEC);
6339
6340         mpc = rd32(E1000_MPC);
6341         adapter->stats.mpc += mpc;
6342         net_stats->rx_fifo_errors += mpc;
6343         adapter->stats.scc += rd32(E1000_SCC);
6344         adapter->stats.ecol += rd32(E1000_ECOL);
6345         adapter->stats.mcc += rd32(E1000_MCC);
6346         adapter->stats.latecol += rd32(E1000_LATECOL);
6347         adapter->stats.dc += rd32(E1000_DC);
6348         adapter->stats.rlec += rd32(E1000_RLEC);
6349         adapter->stats.xonrxc += rd32(E1000_XONRXC);
6350         adapter->stats.xontxc += rd32(E1000_XONTXC);
6351         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6352         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6353         adapter->stats.fcruc += rd32(E1000_FCRUC);
6354         adapter->stats.gptc += rd32(E1000_GPTC);
6355         adapter->stats.gotc += rd32(E1000_GOTCL);
6356         rd32(E1000_GOTCH); /* clear GOTCL */
6357         adapter->stats.rnbc += rd32(E1000_RNBC);
6358         adapter->stats.ruc += rd32(E1000_RUC);
6359         adapter->stats.rfc += rd32(E1000_RFC);
6360         adapter->stats.rjc += rd32(E1000_RJC);
6361         adapter->stats.tor += rd32(E1000_TORH);
6362         adapter->stats.tot += rd32(E1000_TOTH);
6363         adapter->stats.tpr += rd32(E1000_TPR);
6364
6365         adapter->stats.ptc64 += rd32(E1000_PTC64);
6366         adapter->stats.ptc127 += rd32(E1000_PTC127);
6367         adapter->stats.ptc255 += rd32(E1000_PTC255);
6368         adapter->stats.ptc511 += rd32(E1000_PTC511);
6369         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6370         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6371
6372         adapter->stats.mptc += rd32(E1000_MPTC);
6373         adapter->stats.bptc += rd32(E1000_BPTC);
6374
6375         adapter->stats.tpt += rd32(E1000_TPT);
6376         adapter->stats.colc += rd32(E1000_COLC);
6377
6378         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6379         /* read internal phy specific stats */
6380         reg = rd32(E1000_CTRL_EXT);
6381         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6382                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6383
6384                 /* this stat has invalid values on i210/i211 */
6385                 if ((hw->mac.type != e1000_i210) &&
6386                     (hw->mac.type != e1000_i211))
6387                         adapter->stats.tncrs += rd32(E1000_TNCRS);
6388         }
6389
6390         adapter->stats.tsctc += rd32(E1000_TSCTC);
6391         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6392
6393         adapter->stats.iac += rd32(E1000_IAC);
6394         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6395         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6396         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6397         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6398         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6399         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6400         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6401         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6402
6403         /* Fill out the OS statistics structure */
6404         net_stats->multicast = adapter->stats.mprc;
6405         net_stats->collisions = adapter->stats.colc;
6406
6407         /* Rx Errors */
6408
6409         /* RLEC on some newer hardware can be incorrect so build
6410          * our own version based on RUC and ROC
6411          */
6412         net_stats->rx_errors = adapter->stats.rxerrc +
6413                 adapter->stats.crcerrs + adapter->stats.algnerrc +
6414                 adapter->stats.ruc + adapter->stats.roc +
6415                 adapter->stats.cexterr;
6416         net_stats->rx_length_errors = adapter->stats.ruc +
6417                                       adapter->stats.roc;
6418         net_stats->rx_crc_errors = adapter->stats.crcerrs;
6419         net_stats->rx_frame_errors = adapter->stats.algnerrc;
6420         net_stats->rx_missed_errors = adapter->stats.mpc;
6421
6422         /* Tx Errors */
6423         net_stats->tx_errors = adapter->stats.ecol +
6424                                adapter->stats.latecol;
6425         net_stats->tx_aborted_errors = adapter->stats.ecol;
6426         net_stats->tx_window_errors = adapter->stats.latecol;
6427         net_stats->tx_carrier_errors = adapter->stats.tncrs;
6428
6429         /* Tx Dropped needs to be maintained elsewhere */
6430
6431         /* Management Stats */
6432         adapter->stats.mgptc += rd32(E1000_MGTPTC);
6433         adapter->stats.mgprc += rd32(E1000_MGTPRC);
6434         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6435
6436         /* OS2BMC Stats */
6437         reg = rd32(E1000_MANC);
6438         if (reg & E1000_MANC_EN_BMC2OS) {
6439                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6440                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6441                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6442                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6443         }
6444 }
6445
6446 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6447 {
6448         struct e1000_hw *hw = &adapter->hw;
6449         struct ptp_clock_event event;
6450         struct timespec64 ts;
6451         u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6452
6453         if (tsicr & TSINTR_SYS_WRAP) {
6454                 event.type = PTP_CLOCK_PPS;
6455                 if (adapter->ptp_caps.pps)
6456                         ptp_clock_event(adapter->ptp_clock, &event);
6457                 ack |= TSINTR_SYS_WRAP;
6458         }
6459
6460         if (tsicr & E1000_TSICR_TXTS) {
6461                 /* retrieve hardware timestamp */
6462                 schedule_work(&adapter->ptp_tx_work);
6463                 ack |= E1000_TSICR_TXTS;
6464         }
6465
6466         if (tsicr & TSINTR_TT0) {
6467                 spin_lock(&adapter->tmreg_lock);
6468                 ts = timespec64_add(adapter->perout[0].start,
6469                                     adapter->perout[0].period);
6470                 /* u32 conversion of tv_sec is safe until y2106 */
6471                 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6472                 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6473                 tsauxc = rd32(E1000_TSAUXC);
6474                 tsauxc |= TSAUXC_EN_TT0;
6475                 wr32(E1000_TSAUXC, tsauxc);
6476                 adapter->perout[0].start = ts;
6477                 spin_unlock(&adapter->tmreg_lock);
6478                 ack |= TSINTR_TT0;
6479         }
6480
6481         if (tsicr & TSINTR_TT1) {
6482                 spin_lock(&adapter->tmreg_lock);
6483                 ts = timespec64_add(adapter->perout[1].start,
6484                                     adapter->perout[1].period);
6485                 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6486                 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6487                 tsauxc = rd32(E1000_TSAUXC);
6488                 tsauxc |= TSAUXC_EN_TT1;
6489                 wr32(E1000_TSAUXC, tsauxc);
6490                 adapter->perout[1].start = ts;
6491                 spin_unlock(&adapter->tmreg_lock);
6492                 ack |= TSINTR_TT1;
6493         }
6494
6495         if (tsicr & TSINTR_AUTT0) {
6496                 nsec = rd32(E1000_AUXSTMPL0);
6497                 sec  = rd32(E1000_AUXSTMPH0);
6498                 event.type = PTP_CLOCK_EXTTS;
6499                 event.index = 0;
6500                 event.timestamp = sec * 1000000000ULL + nsec;
6501                 ptp_clock_event(adapter->ptp_clock, &event);
6502                 ack |= TSINTR_AUTT0;
6503         }
6504
6505         if (tsicr & TSINTR_AUTT1) {
6506                 nsec = rd32(E1000_AUXSTMPL1);
6507                 sec  = rd32(E1000_AUXSTMPH1);
6508                 event.type = PTP_CLOCK_EXTTS;
6509                 event.index = 1;
6510                 event.timestamp = sec * 1000000000ULL + nsec;
6511                 ptp_clock_event(adapter->ptp_clock, &event);
6512                 ack |= TSINTR_AUTT1;
6513         }
6514
6515         /* acknowledge the interrupts */
6516         wr32(E1000_TSICR, ack);
6517 }
6518
6519 static irqreturn_t igb_msix_other(int irq, void *data)
6520 {
6521         struct igb_adapter *adapter = data;
6522         struct e1000_hw *hw = &adapter->hw;
6523         u32 icr = rd32(E1000_ICR);
6524         /* reading ICR causes bit 31 of EICR to be cleared */
6525
6526         if (icr & E1000_ICR_DRSTA)
6527                 schedule_work(&adapter->reset_task);
6528
6529         if (icr & E1000_ICR_DOUTSYNC) {
6530                 /* HW is reporting DMA is out of sync */
6531                 adapter->stats.doosync++;
6532                 /* The DMA Out of Sync is also indication of a spoof event
6533                  * in IOV mode. Check the Wrong VM Behavior register to
6534                  * see if it is really a spoof event.
6535                  */
6536                 igb_check_wvbr(adapter);
6537         }
6538
6539         /* Check for a mailbox event */
6540         if (icr & E1000_ICR_VMMB)
6541                 igb_msg_task(adapter);
6542
6543         if (icr & E1000_ICR_LSC) {
6544                 hw->mac.get_link_status = 1;
6545                 /* guard against interrupt when we're going down */
6546                 if (!test_bit(__IGB_DOWN, &adapter->state))
6547                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6548         }
6549
6550         if (icr & E1000_ICR_TS)
6551                 igb_tsync_interrupt(adapter);
6552
6553         wr32(E1000_EIMS, adapter->eims_other);
6554
6555         return IRQ_HANDLED;
6556 }
6557
6558 static void igb_write_itr(struct igb_q_vector *q_vector)
6559 {
6560         struct igb_adapter *adapter = q_vector->adapter;
6561         u32 itr_val = q_vector->itr_val & 0x7FFC;
6562
6563         if (!q_vector->set_itr)
6564                 return;
6565
6566         if (!itr_val)
6567                 itr_val = 0x4;
6568
6569         if (adapter->hw.mac.type == e1000_82575)
6570                 itr_val |= itr_val << 16;
6571         else
6572                 itr_val |= E1000_EITR_CNT_IGNR;
6573
6574         writel(itr_val, q_vector->itr_register);
6575         q_vector->set_itr = 0;
6576 }
6577
6578 static irqreturn_t igb_msix_ring(int irq, void *data)
6579 {
6580         struct igb_q_vector *q_vector = data;
6581
6582         /* Write the ITR value calculated from the previous interrupt. */
6583         igb_write_itr(q_vector);
6584
6585         napi_schedule(&q_vector->napi);
6586
6587         return IRQ_HANDLED;
6588 }
6589
6590 #ifdef CONFIG_IGB_DCA
6591 static void igb_update_tx_dca(struct igb_adapter *adapter,
6592                               struct igb_ring *tx_ring,
6593                               int cpu)
6594 {
6595         struct e1000_hw *hw = &adapter->hw;
6596         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6597
6598         if (hw->mac.type != e1000_82575)
6599                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6600
6601         /* We can enable relaxed ordering for reads, but not writes when
6602          * DCA is enabled.  This is due to a known issue in some chipsets
6603          * which will cause the DCA tag to be cleared.
6604          */
6605         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6606                   E1000_DCA_TXCTRL_DATA_RRO_EN |
6607                   E1000_DCA_TXCTRL_DESC_DCA_EN;
6608
6609         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6610 }
6611
6612 static void igb_update_rx_dca(struct igb_adapter *adapter,
6613                               struct igb_ring *rx_ring,
6614                               int cpu)
6615 {
6616         struct e1000_hw *hw = &adapter->hw;
6617         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6618
6619         if (hw->mac.type != e1000_82575)
6620                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6621
6622         /* We can enable relaxed ordering for reads, but not writes when
6623          * DCA is enabled.  This is due to a known issue in some chipsets
6624          * which will cause the DCA tag to be cleared.
6625          */
6626         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6627                   E1000_DCA_RXCTRL_DESC_DCA_EN;
6628
6629         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6630 }
6631
6632 static void igb_update_dca(struct igb_q_vector *q_vector)
6633 {
6634         struct igb_adapter *adapter = q_vector->adapter;
6635         int cpu = get_cpu();
6636
6637         if (q_vector->cpu == cpu)
6638                 goto out_no_update;
6639
6640         if (q_vector->tx.ring)
6641                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6642
6643         if (q_vector->rx.ring)
6644                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6645
6646         q_vector->cpu = cpu;
6647 out_no_update:
6648         put_cpu();
6649 }
6650
6651 static void igb_setup_dca(struct igb_adapter *adapter)
6652 {
6653         struct e1000_hw *hw = &adapter->hw;
6654         int i;
6655
6656         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6657                 return;
6658
6659         /* Always use CB2 mode, difference is masked in the CB driver. */
6660         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6661
6662         for (i = 0; i < adapter->num_q_vectors; i++) {
6663                 adapter->q_vector[i]->cpu = -1;
6664                 igb_update_dca(adapter->q_vector[i]);
6665         }
6666 }
6667
6668 static int __igb_notify_dca(struct device *dev, void *data)
6669 {
6670         struct net_device *netdev = dev_get_drvdata(dev);
6671         struct igb_adapter *adapter = netdev_priv(netdev);
6672         struct pci_dev *pdev = adapter->pdev;
6673         struct e1000_hw *hw = &adapter->hw;
6674         unsigned long event = *(unsigned long *)data;
6675
6676         switch (event) {
6677         case DCA_PROVIDER_ADD:
6678                 /* if already enabled, don't do it again */
6679                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6680                         break;
6681                 if (dca_add_requester(dev) == 0) {
6682                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
6683                         dev_info(&pdev->dev, "DCA enabled\n");
6684                         igb_setup_dca(adapter);
6685                         break;
6686                 }
6687                 /* Fall Through - since DCA is disabled. */
6688         case DCA_PROVIDER_REMOVE:
6689                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6690                         /* without this a class_device is left
6691                          * hanging around in the sysfs model
6692                          */
6693                         dca_remove_requester(dev);
6694                         dev_info(&pdev->dev, "DCA disabled\n");
6695                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6696                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6697                 }
6698                 break;
6699         }
6700
6701         return 0;
6702 }
6703
6704 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6705                           void *p)
6706 {
6707         int ret_val;
6708
6709         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6710                                          __igb_notify_dca);
6711
6712         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6713 }
6714 #endif /* CONFIG_IGB_DCA */
6715
6716 #ifdef CONFIG_PCI_IOV
6717 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6718 {
6719         unsigned char mac_addr[ETH_ALEN];
6720
6721         eth_zero_addr(mac_addr);
6722         igb_set_vf_mac(adapter, vf, mac_addr);
6723
6724         /* By default spoof check is enabled for all VFs */
6725         adapter->vf_data[vf].spoofchk_enabled = true;
6726
6727         /* By default VFs are not trusted */
6728         adapter->vf_data[vf].trusted = false;
6729
6730         return 0;
6731 }
6732
6733 #endif
6734 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6735 {
6736         struct e1000_hw *hw = &adapter->hw;
6737         u32 ping;
6738         int i;
6739
6740         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6741                 ping = E1000_PF_CONTROL_MSG;
6742                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6743                         ping |= E1000_VT_MSGTYPE_CTS;
6744                 igb_write_mbx(hw, &ping, 1, i);
6745         }
6746 }
6747
6748 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6749 {
6750         struct e1000_hw *hw = &adapter->hw;
6751         u32 vmolr = rd32(E1000_VMOLR(vf));
6752         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6753
6754         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6755                             IGB_VF_FLAG_MULTI_PROMISC);
6756         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6757
6758         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6759                 vmolr |= E1000_VMOLR_MPME;
6760                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6761                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6762         } else {
6763                 /* if we have hashes and we are clearing a multicast promisc
6764                  * flag we need to write the hashes to the MTA as this step
6765                  * was previously skipped
6766                  */
6767                 if (vf_data->num_vf_mc_hashes > 30) {
6768                         vmolr |= E1000_VMOLR_MPME;
6769                 } else if (vf_data->num_vf_mc_hashes) {
6770                         int j;
6771
6772                         vmolr |= E1000_VMOLR_ROMPE;
6773                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6774                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6775                 }
6776         }
6777
6778         wr32(E1000_VMOLR(vf), vmolr);
6779
6780         /* there are flags left unprocessed, likely not supported */
6781         if (*msgbuf & E1000_VT_MSGINFO_MASK)
6782                 return -EINVAL;
6783
6784         return 0;
6785 }
6786
6787 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6788                                   u32 *msgbuf, u32 vf)
6789 {
6790         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6791         u16 *hash_list = (u16 *)&msgbuf[1];
6792         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6793         int i;
6794
6795         /* salt away the number of multicast addresses assigned
6796          * to this VF for later use to restore when the PF multi cast
6797          * list changes
6798          */
6799         vf_data->num_vf_mc_hashes = n;
6800
6801         /* only up to 30 hash values supported */
6802         if (n > 30)
6803                 n = 30;
6804
6805         /* store the hashes for later use */
6806         for (i = 0; i < n; i++)
6807                 vf_data->vf_mc_hashes[i] = hash_list[i];
6808
6809         /* Flush and reset the mta with the new values */
6810         igb_set_rx_mode(adapter->netdev);
6811
6812         return 0;
6813 }
6814
6815 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6816 {
6817         struct e1000_hw *hw = &adapter->hw;
6818         struct vf_data_storage *vf_data;
6819         int i, j;
6820
6821         for (i = 0; i < adapter->vfs_allocated_count; i++) {
6822                 u32 vmolr = rd32(E1000_VMOLR(i));
6823
6824                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6825
6826                 vf_data = &adapter->vf_data[i];
6827
6828                 if ((vf_data->num_vf_mc_hashes > 30) ||
6829                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6830                         vmolr |= E1000_VMOLR_MPME;
6831                 } else if (vf_data->num_vf_mc_hashes) {
6832                         vmolr |= E1000_VMOLR_ROMPE;
6833                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6834                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6835                 }
6836                 wr32(E1000_VMOLR(i), vmolr);
6837         }
6838 }
6839
6840 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6841 {
6842         struct e1000_hw *hw = &adapter->hw;
6843         u32 pool_mask, vlvf_mask, i;
6844
6845         /* create mask for VF and other pools */
6846         pool_mask = E1000_VLVF_POOLSEL_MASK;
6847         vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6848
6849         /* drop PF from pool bits */
6850         pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6851                              adapter->vfs_allocated_count);
6852
6853         /* Find the vlan filter for this id */
6854         for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6855                 u32 vlvf = rd32(E1000_VLVF(i));
6856                 u32 vfta_mask, vid, vfta;
6857
6858                 /* remove the vf from the pool */
6859                 if (!(vlvf & vlvf_mask))
6860                         continue;
6861
6862                 /* clear out bit from VLVF */
6863                 vlvf ^= vlvf_mask;
6864
6865                 /* if other pools are present, just remove ourselves */
6866                 if (vlvf & pool_mask)
6867                         goto update_vlvfb;
6868
6869                 /* if PF is present, leave VFTA */
6870                 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6871                         goto update_vlvf;
6872
6873                 vid = vlvf & E1000_VLVF_VLANID_MASK;
6874                 vfta_mask = BIT(vid % 32);
6875
6876                 /* clear bit from VFTA */
6877                 vfta = adapter->shadow_vfta[vid / 32];
6878                 if (vfta & vfta_mask)
6879                         hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6880 update_vlvf:
6881                 /* clear pool selection enable */
6882                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6883                         vlvf &= E1000_VLVF_POOLSEL_MASK;
6884                 else
6885                         vlvf = 0;
6886 update_vlvfb:
6887                 /* clear pool bits */
6888                 wr32(E1000_VLVF(i), vlvf);
6889         }
6890 }
6891
6892 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6893 {
6894         u32 vlvf;
6895         int idx;
6896
6897         /* short cut the special case */
6898         if (vlan == 0)
6899                 return 0;
6900
6901         /* Search for the VLAN id in the VLVF entries */
6902         for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6903                 vlvf = rd32(E1000_VLVF(idx));
6904                 if ((vlvf & VLAN_VID_MASK) == vlan)
6905                         break;
6906         }
6907
6908         return idx;
6909 }
6910
6911 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6912 {
6913         struct e1000_hw *hw = &adapter->hw;
6914         u32 bits, pf_id;
6915         int idx;
6916
6917         idx = igb_find_vlvf_entry(hw, vid);
6918         if (!idx)
6919                 return;
6920
6921         /* See if any other pools are set for this VLAN filter
6922          * entry other than the PF.
6923          */
6924         pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6925         bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6926         bits &= rd32(E1000_VLVF(idx));
6927
6928         /* Disable the filter so this falls into the default pool. */
6929         if (!bits) {
6930                 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6931                         wr32(E1000_VLVF(idx), BIT(pf_id));
6932                 else
6933                         wr32(E1000_VLVF(idx), 0);
6934         }
6935 }
6936
6937 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6938                            bool add, u32 vf)
6939 {
6940         int pf_id = adapter->vfs_allocated_count;
6941         struct e1000_hw *hw = &adapter->hw;
6942         int err;
6943
6944         /* If VLAN overlaps with one the PF is currently monitoring make
6945          * sure that we are able to allocate a VLVF entry.  This may be
6946          * redundant but it guarantees PF will maintain visibility to
6947          * the VLAN.
6948          */
6949         if (add && test_bit(vid, adapter->active_vlans)) {
6950                 err = igb_vfta_set(hw, vid, pf_id, true, false);
6951                 if (err)
6952                         return err;
6953         }
6954
6955         err = igb_vfta_set(hw, vid, vf, add, false);
6956
6957         if (add && !err)
6958                 return err;
6959
6960         /* If we failed to add the VF VLAN or we are removing the VF VLAN
6961          * we may need to drop the PF pool bit in order to allow us to free
6962          * up the VLVF resources.
6963          */
6964         if (test_bit(vid, adapter->active_vlans) ||
6965             (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6966                 igb_update_pf_vlvf(adapter, vid);
6967
6968         return err;
6969 }
6970
6971 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6972 {
6973         struct e1000_hw *hw = &adapter->hw;
6974
6975         if (vid)
6976                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6977         else
6978                 wr32(E1000_VMVIR(vf), 0);
6979 }
6980
6981 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6982                                 u16 vlan, u8 qos)
6983 {
6984         int err;
6985
6986         err = igb_set_vf_vlan(adapter, vlan, true, vf);
6987         if (err)
6988                 return err;
6989
6990         igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6991         igb_set_vmolr(adapter, vf, !vlan);
6992
6993         /* revoke access to previous VLAN */
6994         if (vlan != adapter->vf_data[vf].pf_vlan)
6995                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6996                                 false, vf);
6997
6998         adapter->vf_data[vf].pf_vlan = vlan;
6999         adapter->vf_data[vf].pf_qos = qos;
7000         igb_set_vf_vlan_strip(adapter, vf, true);
7001         dev_info(&adapter->pdev->dev,
7002                  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7003         if (test_bit(__IGB_DOWN, &adapter->state)) {
7004                 dev_warn(&adapter->pdev->dev,
7005                          "The VF VLAN has been set, but the PF device is not up.\n");
7006                 dev_warn(&adapter->pdev->dev,
7007                          "Bring the PF device up before attempting to use the VF device.\n");
7008         }
7009
7010         return err;
7011 }
7012
7013 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7014 {
7015         /* Restore tagless access via VLAN 0 */
7016         igb_set_vf_vlan(adapter, 0, true, vf);
7017
7018         igb_set_vmvir(adapter, 0, vf);
7019         igb_set_vmolr(adapter, vf, true);
7020
7021         /* Remove any PF assigned VLAN */
7022         if (adapter->vf_data[vf].pf_vlan)
7023                 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7024                                 false, vf);
7025
7026         adapter->vf_data[vf].pf_vlan = 0;
7027         adapter->vf_data[vf].pf_qos = 0;
7028         igb_set_vf_vlan_strip(adapter, vf, false);
7029
7030         return 0;
7031 }
7032
7033 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7034                                u16 vlan, u8 qos, __be16 vlan_proto)
7035 {
7036         struct igb_adapter *adapter = netdev_priv(netdev);
7037
7038         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7039                 return -EINVAL;
7040
7041         if (vlan_proto != htons(ETH_P_8021Q))
7042                 return -EPROTONOSUPPORT;
7043
7044         return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7045                                igb_disable_port_vlan(adapter, vf);
7046 }
7047
7048 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7049 {
7050         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7051         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7052         int ret;
7053
7054         if (adapter->vf_data[vf].pf_vlan)
7055                 return -1;
7056
7057         /* VLAN 0 is a special case, don't allow it to be removed */
7058         if (!vid && !add)
7059                 return 0;
7060
7061         ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7062         if (!ret)
7063                 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7064         return ret;
7065 }
7066
7067 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7068 {
7069         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7070
7071         /* clear flags - except flag that indicates PF has set the MAC */
7072         vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7073         vf_data->last_nack = jiffies;
7074
7075         /* reset vlans for device */
7076         igb_clear_vf_vfta(adapter, vf);
7077         igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7078         igb_set_vmvir(adapter, vf_data->pf_vlan |
7079                                (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7080         igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7081         igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7082
7083         /* reset multicast table array for vf */
7084         adapter->vf_data[vf].num_vf_mc_hashes = 0;
7085
7086         /* Flush and reset the mta with the new values */
7087         igb_set_rx_mode(adapter->netdev);
7088 }
7089
7090 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7091 {
7092         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7093
7094         /* clear mac address as we were hotplug removed/added */
7095         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7096                 eth_zero_addr(vf_mac);
7097
7098         /* process remaining reset events */
7099         igb_vf_reset(adapter, vf);
7100 }
7101
7102 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7103 {
7104         struct e1000_hw *hw = &adapter->hw;
7105         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7106         u32 reg, msgbuf[3];
7107         u8 *addr = (u8 *)(&msgbuf[1]);
7108
7109         /* process all the same items cleared in a function level reset */
7110         igb_vf_reset(adapter, vf);
7111
7112         /* set vf mac address */
7113         igb_set_vf_mac(adapter, vf, vf_mac);
7114
7115         /* enable transmit and receive for vf */
7116         reg = rd32(E1000_VFTE);
7117         wr32(E1000_VFTE, reg | BIT(vf));
7118         reg = rd32(E1000_VFRE);
7119         wr32(E1000_VFRE, reg | BIT(vf));
7120
7121         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7122
7123         /* reply to reset with ack and vf mac address */
7124         if (!is_zero_ether_addr(vf_mac)) {
7125                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7126                 memcpy(addr, vf_mac, ETH_ALEN);
7127         } else {
7128                 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7129         }
7130         igb_write_mbx(hw, msgbuf, 3, vf);
7131 }
7132
7133 static void igb_flush_mac_table(struct igb_adapter *adapter)
7134 {
7135         struct e1000_hw *hw = &adapter->hw;
7136         int i;
7137
7138         for (i = 0; i < hw->mac.rar_entry_count; i++) {
7139                 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7140                 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7141                 adapter->mac_table[i].queue = 0;
7142                 igb_rar_set_index(adapter, i);
7143         }
7144 }
7145
7146 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7147 {
7148         struct e1000_hw *hw = &adapter->hw;
7149         /* do not count rar entries reserved for VFs MAC addresses */
7150         int rar_entries = hw->mac.rar_entry_count -
7151                           adapter->vfs_allocated_count;
7152         int i, count = 0;
7153
7154         for (i = 0; i < rar_entries; i++) {
7155                 /* do not count default entries */
7156                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7157                         continue;
7158
7159                 /* do not count "in use" entries for different queues */
7160                 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7161                     (adapter->mac_table[i].queue != queue))
7162                         continue;
7163
7164                 count++;
7165         }
7166
7167         return count;
7168 }
7169
7170 /* Set default MAC address for the PF in the first RAR entry */
7171 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7172 {
7173         struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7174
7175         ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7176         mac_table->queue = adapter->vfs_allocated_count;
7177         mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7178
7179         igb_rar_set_index(adapter, 0);
7180 }
7181
7182 /* If the filter to be added and an already existing filter express
7183  * the same address and address type, it should be possible to only
7184  * override the other configurations, for example the queue to steer
7185  * traffic.
7186  */
7187 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7188                                       const u8 *addr, const u8 flags)
7189 {
7190         if (!(entry->state & IGB_MAC_STATE_IN_USE))
7191                 return true;
7192
7193         if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7194             (flags & IGB_MAC_STATE_SRC_ADDR))
7195                 return false;
7196
7197         if (!ether_addr_equal(addr, entry->addr))
7198                 return false;
7199
7200         return true;
7201 }
7202
7203 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7204  * 'flags' is used to indicate what kind of match is made, match is by
7205  * default for the destination address, if matching by source address
7206  * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7207  */
7208 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7209                                     const u8 *addr, const u8 queue,
7210                                     const u8 flags)
7211 {
7212         struct e1000_hw *hw = &adapter->hw;
7213         int rar_entries = hw->mac.rar_entry_count -
7214                           adapter->vfs_allocated_count;
7215         int i;
7216
7217         if (is_zero_ether_addr(addr))
7218                 return -EINVAL;
7219
7220         /* Search for the first empty entry in the MAC table.
7221          * Do not touch entries at the end of the table reserved for the VF MAC
7222          * addresses.
7223          */
7224         for (i = 0; i < rar_entries; i++) {
7225                 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7226                                                addr, flags))
7227                         continue;
7228
7229                 ether_addr_copy(adapter->mac_table[i].addr, addr);
7230                 adapter->mac_table[i].queue = queue;
7231                 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7232
7233                 igb_rar_set_index(adapter, i);
7234                 return i;
7235         }
7236
7237         return -ENOSPC;
7238 }
7239
7240 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7241                               const u8 queue)
7242 {
7243         return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7244 }
7245
7246 /* Remove a MAC filter for 'addr' directing matching traffic to
7247  * 'queue', 'flags' is used to indicate what kind of match need to be
7248  * removed, match is by default for the destination address, if
7249  * matching by source address is to be removed the flag
7250  * IGB_MAC_STATE_SRC_ADDR can be used.
7251  */
7252 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7253                                     const u8 *addr, const u8 queue,
7254                                     const u8 flags)
7255 {
7256         struct e1000_hw *hw = &adapter->hw;
7257         int rar_entries = hw->mac.rar_entry_count -
7258                           adapter->vfs_allocated_count;
7259         int i;
7260
7261         if (is_zero_ether_addr(addr))
7262                 return -EINVAL;
7263
7264         /* Search for matching entry in the MAC table based on given address
7265          * and queue. Do not touch entries at the end of the table reserved
7266          * for the VF MAC addresses.
7267          */
7268         for (i = 0; i < rar_entries; i++) {
7269                 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7270                         continue;
7271                 if ((adapter->mac_table[i].state & flags) != flags)
7272                         continue;
7273                 if (adapter->mac_table[i].queue != queue)
7274                         continue;
7275                 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7276                         continue;
7277
7278                 /* When a filter for the default address is "deleted",
7279                  * we return it to its initial configuration
7280                  */
7281                 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7282                         adapter->mac_table[i].state =
7283                                 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7284                         adapter->mac_table[i].queue =
7285                                 adapter->vfs_allocated_count;
7286                 } else {
7287                         adapter->mac_table[i].state = 0;
7288                         adapter->mac_table[i].queue = 0;
7289                         memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7290                 }
7291
7292                 igb_rar_set_index(adapter, i);
7293                 return 0;
7294         }
7295
7296         return -ENOENT;
7297 }
7298
7299 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7300                               const u8 queue)
7301 {
7302         return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7303 }
7304
7305 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7306                                 const u8 *addr, u8 queue, u8 flags)
7307 {
7308         struct e1000_hw *hw = &adapter->hw;
7309
7310         /* In theory, this should be supported on 82575 as well, but
7311          * that part wasn't easily accessible during development.
7312          */
7313         if (hw->mac.type != e1000_i210)
7314                 return -EOPNOTSUPP;
7315
7316         return igb_add_mac_filter_flags(adapter, addr, queue,
7317                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7318 }
7319
7320 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7321                                 const u8 *addr, u8 queue, u8 flags)
7322 {
7323         return igb_del_mac_filter_flags(adapter, addr, queue,
7324                                         IGB_MAC_STATE_QUEUE_STEERING | flags);
7325 }
7326
7327 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7328 {
7329         struct igb_adapter *adapter = netdev_priv(netdev);
7330         int ret;
7331
7332         ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7333
7334         return min_t(int, ret, 0);
7335 }
7336
7337 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7338 {
7339         struct igb_adapter *adapter = netdev_priv(netdev);
7340
7341         igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7342
7343         return 0;
7344 }
7345
7346 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7347                                  const u32 info, const u8 *addr)
7348 {
7349         struct pci_dev *pdev = adapter->pdev;
7350         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7351         struct list_head *pos;
7352         struct vf_mac_filter *entry = NULL;
7353         int ret = 0;
7354
7355         switch (info) {
7356         case E1000_VF_MAC_FILTER_CLR:
7357                 /* remove all unicast MAC filters related to the current VF */
7358                 list_for_each(pos, &adapter->vf_macs.l) {
7359                         entry = list_entry(pos, struct vf_mac_filter, l);
7360                         if (entry->vf == vf) {
7361                                 entry->vf = -1;
7362                                 entry->free = true;
7363                                 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7364                         }
7365                 }
7366                 break;
7367         case E1000_VF_MAC_FILTER_ADD:
7368                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7369                     !vf_data->trusted) {
7370                         dev_warn(&pdev->dev,
7371                                  "VF %d requested MAC filter but is administratively denied\n",
7372                                  vf);
7373                         return -EINVAL;
7374                 }
7375                 if (!is_valid_ether_addr(addr)) {
7376                         dev_warn(&pdev->dev,
7377                                  "VF %d attempted to set invalid MAC filter\n",
7378                                  vf);
7379                         return -EINVAL;
7380                 }
7381
7382                 /* try to find empty slot in the list */
7383                 list_for_each(pos, &adapter->vf_macs.l) {
7384                         entry = list_entry(pos, struct vf_mac_filter, l);
7385                         if (entry->free)
7386                                 break;
7387                 }
7388
7389                 if (entry && entry->free) {
7390                         entry->free = false;
7391                         entry->vf = vf;
7392                         ether_addr_copy(entry->vf_mac, addr);
7393
7394                         ret = igb_add_mac_filter(adapter, addr, vf);
7395                         ret = min_t(int, ret, 0);
7396                 } else {
7397                         ret = -ENOSPC;
7398                 }
7399
7400                 if (ret == -ENOSPC)
7401                         dev_warn(&pdev->dev,
7402                                  "VF %d has requested MAC filter but there is no space for it\n",
7403                                  vf);
7404                 break;
7405         default:
7406                 ret = -EINVAL;
7407                 break;
7408         }
7409
7410         return ret;
7411 }
7412
7413 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7414 {
7415         struct pci_dev *pdev = adapter->pdev;
7416         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7417         u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7418
7419         /* The VF MAC Address is stored in a packed array of bytes
7420          * starting at the second 32 bit word of the msg array
7421          */
7422         unsigned char *addr = (unsigned char *)&msg[1];
7423         int ret = 0;
7424
7425         if (!info) {
7426                 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7427                     !vf_data->trusted) {
7428                         dev_warn(&pdev->dev,
7429                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7430                                  vf);
7431                         return -EINVAL;
7432                 }
7433
7434                 if (!is_valid_ether_addr(addr)) {
7435                         dev_warn(&pdev->dev,
7436                                  "VF %d attempted to set invalid MAC\n",
7437                                  vf);
7438                         return -EINVAL;
7439                 }
7440
7441                 ret = igb_set_vf_mac(adapter, vf, addr);
7442         } else {
7443                 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7444         }
7445
7446         return ret;
7447 }
7448
7449 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7450 {
7451         struct e1000_hw *hw = &adapter->hw;
7452         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7453         u32 msg = E1000_VT_MSGTYPE_NACK;
7454
7455         /* if device isn't clear to send it shouldn't be reading either */
7456         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7457             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7458                 igb_write_mbx(hw, &msg, 1, vf);
7459                 vf_data->last_nack = jiffies;
7460         }
7461 }
7462
7463 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7464 {
7465         struct pci_dev *pdev = adapter->pdev;
7466         u32 msgbuf[E1000_VFMAILBOX_SIZE];
7467         struct e1000_hw *hw = &adapter->hw;
7468         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7469         s32 retval;
7470
7471         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7472
7473         if (retval) {
7474                 /* if receive failed revoke VF CTS stats and restart init */
7475                 dev_err(&pdev->dev, "Error receiving message from VF\n");
7476                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7477                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7478                         goto unlock;
7479                 goto out;
7480         }
7481
7482         /* this is a message we already processed, do nothing */
7483         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7484                 goto unlock;
7485
7486         /* until the vf completes a reset it should not be
7487          * allowed to start any configuration.
7488          */
7489         if (msgbuf[0] == E1000_VF_RESET) {
7490                 /* unlocks mailbox */
7491                 igb_vf_reset_msg(adapter, vf);
7492                 return;
7493         }
7494
7495         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7496                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7497                         goto unlock;
7498                 retval = -1;
7499                 goto out;
7500         }
7501
7502         switch ((msgbuf[0] & 0xFFFF)) {
7503         case E1000_VF_SET_MAC_ADDR:
7504                 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7505                 break;
7506         case E1000_VF_SET_PROMISC:
7507                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7508                 break;
7509         case E1000_VF_SET_MULTICAST:
7510                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7511                 break;
7512         case E1000_VF_SET_LPE:
7513                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7514                 break;
7515         case E1000_VF_SET_VLAN:
7516                 retval = -1;
7517                 if (vf_data->pf_vlan)
7518                         dev_warn(&pdev->dev,
7519                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7520                                  vf);
7521                 else
7522                         retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7523                 break;
7524         default:
7525                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7526                 retval = -1;
7527                 break;
7528         }
7529
7530         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7531 out:
7532         /* notify the VF of the results of what it sent us */
7533         if (retval)
7534                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7535         else
7536                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7537
7538         /* unlocks mailbox */
7539         igb_write_mbx(hw, msgbuf, 1, vf);
7540         return;
7541
7542 unlock:
7543         igb_unlock_mbx(hw, vf);
7544 }
7545
7546 static void igb_msg_task(struct igb_adapter *adapter)
7547 {
7548         struct e1000_hw *hw = &adapter->hw;
7549         u32 vf;
7550
7551         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7552                 /* process any reset requests */
7553                 if (!igb_check_for_rst(hw, vf))
7554                         igb_vf_reset_event(adapter, vf);
7555
7556                 /* process any messages pending */
7557                 if (!igb_check_for_msg(hw, vf))
7558                         igb_rcv_msg_from_vf(adapter, vf);
7559
7560                 /* process any acks */
7561                 if (!igb_check_for_ack(hw, vf))
7562                         igb_rcv_ack_from_vf(adapter, vf);
7563         }
7564 }
7565
7566 /**
7567  *  igb_set_uta - Set unicast filter table address
7568  *  @adapter: board private structure
7569  *  @set: boolean indicating if we are setting or clearing bits
7570  *
7571  *  The unicast table address is a register array of 32-bit registers.
7572  *  The table is meant to be used in a way similar to how the MTA is used
7573  *  however due to certain limitations in the hardware it is necessary to
7574  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7575  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7576  **/
7577 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7578 {
7579         struct e1000_hw *hw = &adapter->hw;
7580         u32 uta = set ? ~0 : 0;
7581         int i;
7582
7583         /* we only need to do this if VMDq is enabled */
7584         if (!adapter->vfs_allocated_count)
7585                 return;
7586
7587         for (i = hw->mac.uta_reg_count; i--;)
7588                 array_wr32(E1000_UTA, i, uta);
7589 }
7590
7591 /**
7592  *  igb_intr_msi - Interrupt Handler
7593  *  @irq: interrupt number
7594  *  @data: pointer to a network interface device structure
7595  **/
7596 static irqreturn_t igb_intr_msi(int irq, void *data)
7597 {
7598         struct igb_adapter *adapter = data;
7599         struct igb_q_vector *q_vector = adapter->q_vector[0];
7600         struct e1000_hw *hw = &adapter->hw;
7601         /* read ICR disables interrupts using IAM */
7602         u32 icr = rd32(E1000_ICR);
7603
7604         igb_write_itr(q_vector);
7605
7606         if (icr & E1000_ICR_DRSTA)
7607                 schedule_work(&adapter->reset_task);
7608
7609         if (icr & E1000_ICR_DOUTSYNC) {
7610                 /* HW is reporting DMA is out of sync */
7611                 adapter->stats.doosync++;
7612         }
7613
7614         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7615                 hw->mac.get_link_status = 1;
7616                 if (!test_bit(__IGB_DOWN, &adapter->state))
7617                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7618         }
7619
7620         if (icr & E1000_ICR_TS)
7621                 igb_tsync_interrupt(adapter);
7622
7623         napi_schedule(&q_vector->napi);
7624
7625         return IRQ_HANDLED;
7626 }
7627
7628 /**
7629  *  igb_intr - Legacy Interrupt Handler
7630  *  @irq: interrupt number
7631  *  @data: pointer to a network interface device structure
7632  **/
7633 static irqreturn_t igb_intr(int irq, void *data)
7634 {
7635         struct igb_adapter *adapter = data;
7636         struct igb_q_vector *q_vector = adapter->q_vector[0];
7637         struct e1000_hw *hw = &adapter->hw;
7638         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7639          * need for the IMC write
7640          */
7641         u32 icr = rd32(E1000_ICR);
7642
7643         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7644          * not set, then the adapter didn't send an interrupt
7645          */
7646         if (!(icr & E1000_ICR_INT_ASSERTED))
7647                 return IRQ_NONE;
7648
7649         igb_write_itr(q_vector);
7650
7651         if (icr & E1000_ICR_DRSTA)
7652                 schedule_work(&adapter->reset_task);
7653
7654         if (icr & E1000_ICR_DOUTSYNC) {
7655                 /* HW is reporting DMA is out of sync */
7656                 adapter->stats.doosync++;
7657         }
7658
7659         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7660                 hw->mac.get_link_status = 1;
7661                 /* guard against interrupt when we're going down */
7662                 if (!test_bit(__IGB_DOWN, &adapter->state))
7663                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
7664         }
7665
7666         if (icr & E1000_ICR_TS)
7667                 igb_tsync_interrupt(adapter);
7668
7669         napi_schedule(&q_vector->napi);
7670
7671         return IRQ_HANDLED;
7672 }
7673
7674 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7675 {
7676         struct igb_adapter *adapter = q_vector->adapter;
7677         struct e1000_hw *hw = &adapter->hw;
7678
7679         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7680             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7681                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7682                         igb_set_itr(q_vector);
7683                 else
7684                         igb_update_ring_itr(q_vector);
7685         }
7686
7687         if (!test_bit(__IGB_DOWN, &adapter->state)) {
7688                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7689                         wr32(E1000_EIMS, q_vector->eims_value);
7690                 else
7691                         igb_irq_enable(adapter);
7692         }
7693 }
7694
7695 /**
7696  *  igb_poll - NAPI Rx polling callback
7697  *  @napi: napi polling structure
7698  *  @budget: count of how many packets we should handle
7699  **/
7700 static int igb_poll(struct napi_struct *napi, int budget)
7701 {
7702         struct igb_q_vector *q_vector = container_of(napi,
7703                                                      struct igb_q_vector,
7704                                                      napi);
7705         bool clean_complete = true;
7706         int work_done = 0;
7707
7708 #ifdef CONFIG_IGB_DCA
7709         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7710                 igb_update_dca(q_vector);
7711 #endif
7712         if (q_vector->tx.ring)
7713                 clean_complete = igb_clean_tx_irq(q_vector, budget);
7714
7715         if (q_vector->rx.ring) {
7716                 int cleaned = igb_clean_rx_irq(q_vector, budget);
7717
7718                 work_done += cleaned;
7719                 if (cleaned >= budget)
7720                         clean_complete = false;
7721         }
7722
7723         /* If all work not completed, return budget and keep polling */
7724         if (!clean_complete)
7725                 return budget;
7726
7727         /* Exit the polling mode, but don't re-enable interrupts if stack might
7728          * poll us due to busy-polling
7729          */
7730         if (likely(napi_complete_done(napi, work_done)))
7731                 igb_ring_irq_enable(q_vector);
7732
7733         return min(work_done, budget - 1);
7734 }
7735
7736 /**
7737  *  igb_clean_tx_irq - Reclaim resources after transmit completes
7738  *  @q_vector: pointer to q_vector containing needed info
7739  *  @napi_budget: Used to determine if we are in netpoll
7740  *
7741  *  returns true if ring is completely cleaned
7742  **/
7743 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7744 {
7745         struct igb_adapter *adapter = q_vector->adapter;
7746         struct igb_ring *tx_ring = q_vector->tx.ring;
7747         struct igb_tx_buffer *tx_buffer;
7748         union e1000_adv_tx_desc *tx_desc;
7749         unsigned int total_bytes = 0, total_packets = 0;
7750         unsigned int budget = q_vector->tx.work_limit;
7751         unsigned int i = tx_ring->next_to_clean;
7752
7753         if (test_bit(__IGB_DOWN, &adapter->state))
7754                 return true;
7755
7756         tx_buffer = &tx_ring->tx_buffer_info[i];
7757         tx_desc = IGB_TX_DESC(tx_ring, i);
7758         i -= tx_ring->count;
7759
7760         do {
7761                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7762
7763                 /* if next_to_watch is not set then there is no work pending */
7764                 if (!eop_desc)
7765                         break;
7766
7767                 /* prevent any other reads prior to eop_desc */
7768                 smp_rmb();
7769
7770                 /* if DD is not set pending work has not been completed */
7771                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7772                         break;
7773
7774                 /* clear next_to_watch to prevent false hangs */
7775                 tx_buffer->next_to_watch = NULL;
7776
7777                 /* update the statistics for this packet */
7778                 total_bytes += tx_buffer->bytecount;
7779                 total_packets += tx_buffer->gso_segs;
7780
7781                 /* free the skb */
7782                 napi_consume_skb(tx_buffer->skb, napi_budget);
7783
7784                 /* unmap skb header data */
7785                 dma_unmap_single(tx_ring->dev,
7786                                  dma_unmap_addr(tx_buffer, dma),
7787                                  dma_unmap_len(tx_buffer, len),
7788                                  DMA_TO_DEVICE);
7789
7790                 /* clear tx_buffer data */
7791                 dma_unmap_len_set(tx_buffer, len, 0);
7792
7793                 /* clear last DMA location and unmap remaining buffers */
7794                 while (tx_desc != eop_desc) {
7795                         tx_buffer++;
7796                         tx_desc++;
7797                         i++;
7798                         if (unlikely(!i)) {
7799                                 i -= tx_ring->count;
7800                                 tx_buffer = tx_ring->tx_buffer_info;
7801                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
7802                         }
7803
7804                         /* unmap any remaining paged data */
7805                         if (dma_unmap_len(tx_buffer, len)) {
7806                                 dma_unmap_page(tx_ring->dev,
7807                                                dma_unmap_addr(tx_buffer, dma),
7808                                                dma_unmap_len(tx_buffer, len),
7809                                                DMA_TO_DEVICE);
7810                                 dma_unmap_len_set(tx_buffer, len, 0);
7811                         }
7812                 }
7813
7814                 /* move us one more past the eop_desc for start of next pkt */
7815                 tx_buffer++;
7816                 tx_desc++;
7817                 i++;
7818                 if (unlikely(!i)) {
7819                         i -= tx_ring->count;
7820                         tx_buffer = tx_ring->tx_buffer_info;
7821                         tx_desc = IGB_TX_DESC(tx_ring, 0);
7822                 }
7823
7824                 /* issue prefetch for next Tx descriptor */
7825                 prefetch(tx_desc);
7826
7827                 /* update budget accounting */
7828                 budget--;
7829         } while (likely(budget));
7830
7831         netdev_tx_completed_queue(txring_txq(tx_ring),
7832                                   total_packets, total_bytes);
7833         i += tx_ring->count;
7834         tx_ring->next_to_clean = i;
7835         u64_stats_update_begin(&tx_ring->tx_syncp);
7836         tx_ring->tx_stats.bytes += total_bytes;
7837         tx_ring->tx_stats.packets += total_packets;
7838         u64_stats_update_end(&tx_ring->tx_syncp);
7839         q_vector->tx.total_bytes += total_bytes;
7840         q_vector->tx.total_packets += total_packets;
7841
7842         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7843                 struct e1000_hw *hw = &adapter->hw;
7844
7845                 /* Detect a transmit hang in hardware, this serializes the
7846                  * check with the clearing of time_stamp and movement of i
7847                  */
7848                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7849                 if (tx_buffer->next_to_watch &&
7850                     time_after(jiffies, tx_buffer->time_stamp +
7851                                (adapter->tx_timeout_factor * HZ)) &&
7852                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7853
7854                         /* detected Tx unit hang */
7855                         dev_err(tx_ring->dev,
7856                                 "Detected Tx Unit Hang\n"
7857                                 "  Tx Queue             <%d>\n"
7858                                 "  TDH                  <%x>\n"
7859                                 "  TDT                  <%x>\n"
7860                                 "  next_to_use          <%x>\n"
7861                                 "  next_to_clean        <%x>\n"
7862                                 "buffer_info[next_to_clean]\n"
7863                                 "  time_stamp           <%lx>\n"
7864                                 "  next_to_watch        <%p>\n"
7865                                 "  jiffies              <%lx>\n"
7866                                 "  desc.status          <%x>\n",
7867                                 tx_ring->queue_index,
7868                                 rd32(E1000_TDH(tx_ring->reg_idx)),
7869                                 readl(tx_ring->tail),
7870                                 tx_ring->next_to_use,
7871                                 tx_ring->next_to_clean,
7872                                 tx_buffer->time_stamp,
7873                                 tx_buffer->next_to_watch,
7874                                 jiffies,
7875                                 tx_buffer->next_to_watch->wb.status);
7876                         netif_stop_subqueue(tx_ring->netdev,
7877                                             tx_ring->queue_index);
7878
7879                         /* we are about to reset, no point in enabling stuff */
7880                         return true;
7881                 }
7882         }
7883
7884 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7885         if (unlikely(total_packets &&
7886             netif_carrier_ok(tx_ring->netdev) &&
7887             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7888                 /* Make sure that anybody stopping the queue after this
7889                  * sees the new next_to_clean.
7890                  */
7891                 smp_mb();
7892                 if (__netif_subqueue_stopped(tx_ring->netdev,
7893                                              tx_ring->queue_index) &&
7894                     !(test_bit(__IGB_DOWN, &adapter->state))) {
7895                         netif_wake_subqueue(tx_ring->netdev,
7896                                             tx_ring->queue_index);
7897
7898                         u64_stats_update_begin(&tx_ring->tx_syncp);
7899                         tx_ring->tx_stats.restart_queue++;
7900                         u64_stats_update_end(&tx_ring->tx_syncp);
7901                 }
7902         }
7903
7904         return !!budget;
7905 }
7906
7907 /**
7908  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
7909  *  @rx_ring: rx descriptor ring to store buffers on
7910  *  @old_buff: donor buffer to have page reused
7911  *
7912  *  Synchronizes page for reuse by the adapter
7913  **/
7914 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7915                               struct igb_rx_buffer *old_buff)
7916 {
7917         struct igb_rx_buffer *new_buff;
7918         u16 nta = rx_ring->next_to_alloc;
7919
7920         new_buff = &rx_ring->rx_buffer_info[nta];
7921
7922         /* update, and store next to alloc */
7923         nta++;
7924         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7925
7926         /* Transfer page from old buffer to new buffer.
7927          * Move each member individually to avoid possible store
7928          * forwarding stalls.
7929          */
7930         new_buff->dma           = old_buff->dma;
7931         new_buff->page          = old_buff->page;
7932         new_buff->page_offset   = old_buff->page_offset;
7933         new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
7934 }
7935
7936 static inline bool igb_page_is_reserved(struct page *page)
7937 {
7938         return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7939 }
7940
7941 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7942 {
7943         unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7944         struct page *page = rx_buffer->page;
7945
7946         /* avoid re-using remote pages */
7947         if (unlikely(igb_page_is_reserved(page)))
7948                 return false;
7949
7950 #if (PAGE_SIZE < 8192)
7951         /* if we are only owner of page we can reuse it */
7952         if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7953                 return false;
7954 #else
7955 #define IGB_LAST_OFFSET \
7956         (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7957
7958         if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7959                 return false;
7960 #endif
7961
7962         /* If we have drained the page fragment pool we need to update
7963          * the pagecnt_bias and page count so that we fully restock the
7964          * number of references the driver holds.
7965          */
7966         if (unlikely(!pagecnt_bias)) {
7967                 page_ref_add(page, USHRT_MAX);
7968                 rx_buffer->pagecnt_bias = USHRT_MAX;
7969         }
7970
7971         return true;
7972 }
7973
7974 /**
7975  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7976  *  @rx_ring: rx descriptor ring to transact packets on
7977  *  @rx_buffer: buffer containing page to add
7978  *  @skb: sk_buff to place the data into
7979  *  @size: size of buffer to be added
7980  *
7981  *  This function will add the data contained in rx_buffer->page to the skb.
7982  **/
7983 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7984                             struct igb_rx_buffer *rx_buffer,
7985                             struct sk_buff *skb,
7986                             unsigned int size)
7987 {
7988 #if (PAGE_SIZE < 8192)
7989         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7990 #else
7991         unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7992                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7993                                 SKB_DATA_ALIGN(size);
7994 #endif
7995         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7996                         rx_buffer->page_offset, size, truesize);
7997 #if (PAGE_SIZE < 8192)
7998         rx_buffer->page_offset ^= truesize;
7999 #else
8000         rx_buffer->page_offset += truesize;
8001 #endif
8002 }
8003
8004 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8005                                          struct igb_rx_buffer *rx_buffer,
8006                                          union e1000_adv_rx_desc *rx_desc,
8007                                          unsigned int size)
8008 {
8009         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8010 #if (PAGE_SIZE < 8192)
8011         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8012 #else
8013         unsigned int truesize = SKB_DATA_ALIGN(size);
8014 #endif
8015         unsigned int headlen;
8016         struct sk_buff *skb;
8017
8018         /* prefetch first cache line of first page */
8019         prefetch(va);
8020 #if L1_CACHE_BYTES < 128
8021         prefetch(va + L1_CACHE_BYTES);
8022 #endif
8023
8024         /* allocate a skb to store the frags */
8025         skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8026         if (unlikely(!skb))
8027                 return NULL;
8028
8029         if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8030                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8031                 va += IGB_TS_HDR_LEN;
8032                 size -= IGB_TS_HDR_LEN;
8033         }
8034
8035         /* Determine available headroom for copy */
8036         headlen = size;
8037         if (headlen > IGB_RX_HDR_LEN)
8038                 headlen = eth_get_headlen(skb->dev, va, IGB_RX_HDR_LEN);
8039
8040         /* align pull length to size of long to optimize memcpy performance */
8041         memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8042
8043         /* update all of the pointers */
8044         size -= headlen;
8045         if (size) {
8046                 skb_add_rx_frag(skb, 0, rx_buffer->page,
8047                                 (va + headlen) - page_address(rx_buffer->page),
8048                                 size, truesize);
8049 #if (PAGE_SIZE < 8192)
8050                 rx_buffer->page_offset ^= truesize;
8051 #else
8052                 rx_buffer->page_offset += truesize;
8053 #endif
8054         } else {
8055                 rx_buffer->pagecnt_bias++;
8056         }
8057
8058         return skb;
8059 }
8060
8061 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8062                                      struct igb_rx_buffer *rx_buffer,
8063                                      union e1000_adv_rx_desc *rx_desc,
8064                                      unsigned int size)
8065 {
8066         void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8067 #if (PAGE_SIZE < 8192)
8068         unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8069 #else
8070         unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8071                                 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8072 #endif
8073         struct sk_buff *skb;
8074
8075         /* prefetch first cache line of first page */
8076         prefetch(va);
8077 #if L1_CACHE_BYTES < 128
8078         prefetch(va + L1_CACHE_BYTES);
8079 #endif
8080
8081         /* build an skb around the page buffer */
8082         skb = build_skb(va - IGB_SKB_PAD, truesize);
8083         if (unlikely(!skb))
8084                 return NULL;
8085
8086         /* update pointers within the skb to store the data */
8087         skb_reserve(skb, IGB_SKB_PAD);
8088         __skb_put(skb, size);
8089
8090         /* pull timestamp out of packet data */
8091         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8092                 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8093                 __skb_pull(skb, IGB_TS_HDR_LEN);
8094         }
8095
8096         /* update buffer offset */
8097 #if (PAGE_SIZE < 8192)
8098         rx_buffer->page_offset ^= truesize;
8099 #else
8100         rx_buffer->page_offset += truesize;
8101 #endif
8102
8103         return skb;
8104 }
8105
8106 static inline void igb_rx_checksum(struct igb_ring *ring,
8107                                    union e1000_adv_rx_desc *rx_desc,
8108                                    struct sk_buff *skb)
8109 {
8110         skb_checksum_none_assert(skb);
8111
8112         /* Ignore Checksum bit is set */
8113         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8114                 return;
8115
8116         /* Rx checksum disabled via ethtool */
8117         if (!(ring->netdev->features & NETIF_F_RXCSUM))
8118                 return;
8119
8120         /* TCP/UDP checksum error bit is set */
8121         if (igb_test_staterr(rx_desc,
8122                              E1000_RXDEXT_STATERR_TCPE |
8123                              E1000_RXDEXT_STATERR_IPE)) {
8124                 /* work around errata with sctp packets where the TCPE aka
8125                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8126                  * packets, (aka let the stack check the crc32c)
8127                  */
8128                 if (!((skb->len == 60) &&
8129                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8130                         u64_stats_update_begin(&ring->rx_syncp);
8131                         ring->rx_stats.csum_err++;
8132                         u64_stats_update_end(&ring->rx_syncp);
8133                 }
8134                 /* let the stack verify checksum errors */
8135                 return;
8136         }
8137         /* It must be a TCP or UDP packet with a valid checksum */
8138         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8139                                       E1000_RXD_STAT_UDPCS))
8140                 skb->ip_summed = CHECKSUM_UNNECESSARY;
8141
8142         dev_dbg(ring->dev, "cksum success: bits %08X\n",
8143                 le32_to_cpu(rx_desc->wb.upper.status_error));
8144 }
8145
8146 static inline void igb_rx_hash(struct igb_ring *ring,
8147                                union e1000_adv_rx_desc *rx_desc,
8148                                struct sk_buff *skb)
8149 {
8150         if (ring->netdev->features & NETIF_F_RXHASH)
8151                 skb_set_hash(skb,
8152                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8153                              PKT_HASH_TYPE_L3);
8154 }
8155
8156 /**
8157  *  igb_is_non_eop - process handling of non-EOP buffers
8158  *  @rx_ring: Rx ring being processed
8159  *  @rx_desc: Rx descriptor for current buffer
8160  *  @skb: current socket buffer containing buffer in progress
8161  *
8162  *  This function updates next to clean.  If the buffer is an EOP buffer
8163  *  this function exits returning false, otherwise it will place the
8164  *  sk_buff in the next buffer to be chained and return true indicating
8165  *  that this is in fact a non-EOP buffer.
8166  **/
8167 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8168                            union e1000_adv_rx_desc *rx_desc)
8169 {
8170         u32 ntc = rx_ring->next_to_clean + 1;
8171
8172         /* fetch, update, and store next to clean */
8173         ntc = (ntc < rx_ring->count) ? ntc : 0;
8174         rx_ring->next_to_clean = ntc;
8175
8176         prefetch(IGB_RX_DESC(rx_ring, ntc));
8177
8178         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8179                 return false;
8180
8181         return true;
8182 }
8183
8184 /**
8185  *  igb_cleanup_headers - Correct corrupted or empty headers
8186  *  @rx_ring: rx descriptor ring packet is being transacted on
8187  *  @rx_desc: pointer to the EOP Rx descriptor
8188  *  @skb: pointer to current skb being fixed
8189  *
8190  *  Address the case where we are pulling data in on pages only
8191  *  and as such no data is present in the skb header.
8192  *
8193  *  In addition if skb is not at least 60 bytes we need to pad it so that
8194  *  it is large enough to qualify as a valid Ethernet frame.
8195  *
8196  *  Returns true if an error was encountered and skb was freed.
8197  **/
8198 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8199                                 union e1000_adv_rx_desc *rx_desc,
8200                                 struct sk_buff *skb)
8201 {
8202         if (unlikely((igb_test_staterr(rx_desc,
8203                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8204                 struct net_device *netdev = rx_ring->netdev;
8205                 if (!(netdev->features & NETIF_F_RXALL)) {
8206                         dev_kfree_skb_any(skb);
8207                         return true;
8208                 }
8209         }
8210
8211         /* if eth_skb_pad returns an error the skb was freed */
8212         if (eth_skb_pad(skb))
8213                 return true;
8214
8215         return false;
8216 }
8217
8218 /**
8219  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8220  *  @rx_ring: rx descriptor ring packet is being transacted on
8221  *  @rx_desc: pointer to the EOP Rx descriptor
8222  *  @skb: pointer to current skb being populated
8223  *
8224  *  This function checks the ring, descriptor, and packet information in
8225  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8226  *  other fields within the skb.
8227  **/
8228 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8229                                    union e1000_adv_rx_desc *rx_desc,
8230                                    struct sk_buff *skb)
8231 {
8232         struct net_device *dev = rx_ring->netdev;
8233
8234         igb_rx_hash(rx_ring, rx_desc, skb);
8235
8236         igb_rx_checksum(rx_ring, rx_desc, skb);
8237
8238         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8239             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8240                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8241
8242         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8243             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8244                 u16 vid;
8245
8246                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8247                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8248                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8249                 else
8250                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8251
8252                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8253         }
8254
8255         skb_record_rx_queue(skb, rx_ring->queue_index);
8256
8257         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8258 }
8259
8260 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8261                                                const unsigned int size)
8262 {
8263         struct igb_rx_buffer *rx_buffer;
8264
8265         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8266         prefetchw(rx_buffer->page);
8267
8268         /* we are reusing so sync this buffer for CPU use */
8269         dma_sync_single_range_for_cpu(rx_ring->dev,
8270                                       rx_buffer->dma,
8271                                       rx_buffer->page_offset,
8272                                       size,
8273                                       DMA_FROM_DEVICE);
8274
8275         rx_buffer->pagecnt_bias--;
8276
8277         return rx_buffer;
8278 }
8279
8280 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8281                               struct igb_rx_buffer *rx_buffer)
8282 {
8283         if (igb_can_reuse_rx_page(rx_buffer)) {
8284                 /* hand second half of page back to the ring */
8285                 igb_reuse_rx_page(rx_ring, rx_buffer);
8286         } else {
8287                 /* We are not reusing the buffer so unmap it and free
8288                  * any references we are holding to it
8289                  */
8290                 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8291                                      igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8292                                      IGB_RX_DMA_ATTR);
8293                 __page_frag_cache_drain(rx_buffer->page,
8294                                         rx_buffer->pagecnt_bias);
8295         }
8296
8297         /* clear contents of rx_buffer */
8298         rx_buffer->page = NULL;
8299 }
8300
8301 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8302 {
8303         struct igb_ring *rx_ring = q_vector->rx.ring;
8304         struct sk_buff *skb = rx_ring->skb;
8305         unsigned int total_bytes = 0, total_packets = 0;
8306         u16 cleaned_count = igb_desc_unused(rx_ring);
8307
8308         while (likely(total_packets < budget)) {
8309                 union e1000_adv_rx_desc *rx_desc;
8310                 struct igb_rx_buffer *rx_buffer;
8311                 unsigned int size;
8312
8313                 /* return some buffers to hardware, one at a time is too slow */
8314                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8315                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
8316                         cleaned_count = 0;
8317                 }
8318
8319                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8320                 size = le16_to_cpu(rx_desc->wb.upper.length);
8321                 if (!size)
8322                         break;
8323
8324                 /* This memory barrier is needed to keep us from reading
8325                  * any other fields out of the rx_desc until we know the
8326                  * descriptor has been written back
8327                  */
8328                 dma_rmb();
8329
8330                 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8331
8332                 /* retrieve a buffer from the ring */
8333                 if (skb)
8334                         igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8335                 else if (ring_uses_build_skb(rx_ring))
8336                         skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8337                 else
8338                         skb = igb_construct_skb(rx_ring, rx_buffer,
8339                                                 rx_desc, size);
8340
8341                 /* exit if we failed to retrieve a buffer */
8342                 if (!skb) {
8343                         rx_ring->rx_stats.alloc_failed++;
8344                         rx_buffer->pagecnt_bias++;
8345                         break;
8346                 }
8347
8348                 igb_put_rx_buffer(rx_ring, rx_buffer);
8349                 cleaned_count++;
8350
8351                 /* fetch next buffer in frame if non-eop */
8352                 if (igb_is_non_eop(rx_ring, rx_desc))
8353                         continue;
8354
8355                 /* verify the packet layout is correct */
8356                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8357                         skb = NULL;
8358                         continue;
8359                 }
8360
8361                 /* probably a little skewed due to removing CRC */
8362                 total_bytes += skb->len;
8363
8364                 /* populate checksum, timestamp, VLAN, and protocol */
8365                 igb_process_skb_fields(rx_ring, rx_desc, skb);
8366
8367                 napi_gro_receive(&q_vector->napi, skb);
8368
8369                 /* reset skb pointer */
8370                 skb = NULL;
8371
8372                 /* update budget accounting */
8373                 total_packets++;
8374         }
8375
8376         /* place incomplete frames back on ring for completion */
8377         rx_ring->skb = skb;
8378
8379         u64_stats_update_begin(&rx_ring->rx_syncp);
8380         rx_ring->rx_stats.packets += total_packets;
8381         rx_ring->rx_stats.bytes += total_bytes;
8382         u64_stats_update_end(&rx_ring->rx_syncp);
8383         q_vector->rx.total_packets += total_packets;
8384         q_vector->rx.total_bytes += total_bytes;
8385
8386         if (cleaned_count)
8387                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8388
8389         return total_packets;
8390 }
8391
8392 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8393 {
8394         return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8395 }
8396
8397 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8398                                   struct igb_rx_buffer *bi)
8399 {
8400         struct page *page = bi->page;
8401         dma_addr_t dma;
8402
8403         /* since we are recycling buffers we should seldom need to alloc */
8404         if (likely(page))
8405                 return true;
8406
8407         /* alloc new page for storage */
8408         page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8409         if (unlikely(!page)) {
8410                 rx_ring->rx_stats.alloc_failed++;
8411                 return false;
8412         }
8413
8414         /* map page for use */
8415         dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8416                                  igb_rx_pg_size(rx_ring),
8417                                  DMA_FROM_DEVICE,
8418                                  IGB_RX_DMA_ATTR);
8419
8420         /* if mapping failed free memory back to system since
8421          * there isn't much point in holding memory we can't use
8422          */
8423         if (dma_mapping_error(rx_ring->dev, dma)) {
8424                 __free_pages(page, igb_rx_pg_order(rx_ring));
8425
8426                 rx_ring->rx_stats.alloc_failed++;
8427                 return false;
8428         }
8429
8430         bi->dma = dma;
8431         bi->page = page;
8432         bi->page_offset = igb_rx_offset(rx_ring);
8433         bi->pagecnt_bias = 1;
8434
8435         return true;
8436 }
8437
8438 /**
8439  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
8440  *  @adapter: address of board private structure
8441  **/
8442 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8443 {
8444         union e1000_adv_rx_desc *rx_desc;
8445         struct igb_rx_buffer *bi;
8446         u16 i = rx_ring->next_to_use;
8447         u16 bufsz;
8448
8449         /* nothing to do */
8450         if (!cleaned_count)
8451                 return;
8452
8453         rx_desc = IGB_RX_DESC(rx_ring, i);
8454         bi = &rx_ring->rx_buffer_info[i];
8455         i -= rx_ring->count;
8456
8457         bufsz = igb_rx_bufsz(rx_ring);
8458
8459         do {
8460                 if (!igb_alloc_mapped_page(rx_ring, bi))
8461                         break;
8462
8463                 /* sync the buffer for use by the device */
8464                 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8465                                                  bi->page_offset, bufsz,
8466                                                  DMA_FROM_DEVICE);
8467
8468                 /* Refresh the desc even if buffer_addrs didn't change
8469                  * because each write-back erases this info.
8470                  */
8471                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8472
8473                 rx_desc++;
8474                 bi++;
8475                 i++;
8476                 if (unlikely(!i)) {
8477                         rx_desc = IGB_RX_DESC(rx_ring, 0);
8478                         bi = rx_ring->rx_buffer_info;
8479                         i -= rx_ring->count;
8480                 }
8481
8482                 /* clear the length for the next_to_use descriptor */
8483                 rx_desc->wb.upper.length = 0;
8484
8485                 cleaned_count--;
8486         } while (cleaned_count);
8487
8488         i += rx_ring->count;
8489
8490         if (rx_ring->next_to_use != i) {
8491                 /* record the next descriptor to use */
8492                 rx_ring->next_to_use = i;
8493
8494                 /* update next to alloc since we have filled the ring */
8495                 rx_ring->next_to_alloc = i;
8496
8497                 /* Force memory writes to complete before letting h/w
8498                  * know there are new descriptors to fetch.  (Only
8499                  * applicable for weak-ordered memory model archs,
8500                  * such as IA-64).
8501                  */
8502                 dma_wmb();
8503                 writel(i, rx_ring->tail);
8504         }
8505 }
8506
8507 /**
8508  * igb_mii_ioctl -
8509  * @netdev:
8510  * @ifreq:
8511  * @cmd:
8512  **/
8513 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8514 {
8515         struct igb_adapter *adapter = netdev_priv(netdev);
8516         struct mii_ioctl_data *data = if_mii(ifr);
8517
8518         if (adapter->hw.phy.media_type != e1000_media_type_copper)
8519                 return -EOPNOTSUPP;
8520
8521         switch (cmd) {
8522         case SIOCGMIIPHY:
8523                 data->phy_id = adapter->hw.phy.addr;
8524                 break;
8525         case SIOCGMIIREG:
8526                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8527                                      &data->val_out))
8528                         return -EIO;
8529                 break;
8530         case SIOCSMIIREG:
8531         default:
8532                 return -EOPNOTSUPP;
8533         }
8534         return 0;
8535 }
8536
8537 /**
8538  * igb_ioctl -
8539  * @netdev:
8540  * @ifreq:
8541  * @cmd:
8542  **/
8543 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8544 {
8545         switch (cmd) {
8546         case SIOCGMIIPHY:
8547         case SIOCGMIIREG:
8548         case SIOCSMIIREG:
8549                 return igb_mii_ioctl(netdev, ifr, cmd);
8550         case SIOCGHWTSTAMP:
8551                 return igb_ptp_get_ts_config(netdev, ifr);
8552         case SIOCSHWTSTAMP:
8553                 return igb_ptp_set_ts_config(netdev, ifr);
8554         default:
8555                 return -EOPNOTSUPP;
8556         }
8557 }
8558
8559 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8560 {
8561         struct igb_adapter *adapter = hw->back;
8562
8563         pci_read_config_word(adapter->pdev, reg, value);
8564 }
8565
8566 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8567 {
8568         struct igb_adapter *adapter = hw->back;
8569
8570         pci_write_config_word(adapter->pdev, reg, *value);
8571 }
8572
8573 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8574 {
8575         struct igb_adapter *adapter = hw->back;
8576
8577         if (pcie_capability_read_word(adapter->pdev, reg, value))
8578                 return -E1000_ERR_CONFIG;
8579
8580         return 0;
8581 }
8582
8583 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8584 {
8585         struct igb_adapter *adapter = hw->back;
8586
8587         if (pcie_capability_write_word(adapter->pdev, reg, *value))
8588                 return -E1000_ERR_CONFIG;
8589
8590         return 0;
8591 }
8592
8593 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8594 {
8595         struct igb_adapter *adapter = netdev_priv(netdev);
8596         struct e1000_hw *hw = &adapter->hw;
8597         u32 ctrl, rctl;
8598         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8599
8600         if (enable) {
8601                 /* enable VLAN tag insert/strip */
8602                 ctrl = rd32(E1000_CTRL);
8603                 ctrl |= E1000_CTRL_VME;
8604                 wr32(E1000_CTRL, ctrl);
8605
8606                 /* Disable CFI check */
8607                 rctl = rd32(E1000_RCTL);
8608                 rctl &= ~E1000_RCTL_CFIEN;
8609                 wr32(E1000_RCTL, rctl);
8610         } else {
8611                 /* disable VLAN tag insert/strip */
8612                 ctrl = rd32(E1000_CTRL);
8613                 ctrl &= ~E1000_CTRL_VME;
8614                 wr32(E1000_CTRL, ctrl);
8615         }
8616
8617         igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8618 }
8619
8620 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8621                                __be16 proto, u16 vid)
8622 {
8623         struct igb_adapter *adapter = netdev_priv(netdev);
8624         struct e1000_hw *hw = &adapter->hw;
8625         int pf_id = adapter->vfs_allocated_count;
8626
8627         /* add the filter since PF can receive vlans w/o entry in vlvf */
8628         if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8629                 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8630
8631         set_bit(vid, adapter->active_vlans);
8632
8633         return 0;
8634 }
8635
8636 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8637                                 __be16 proto, u16 vid)
8638 {
8639         struct igb_adapter *adapter = netdev_priv(netdev);
8640         int pf_id = adapter->vfs_allocated_count;
8641         struct e1000_hw *hw = &adapter->hw;
8642
8643         /* remove VID from filter table */
8644         if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8645                 igb_vfta_set(hw, vid, pf_id, false, true);
8646
8647         clear_bit(vid, adapter->active_vlans);
8648
8649         return 0;
8650 }
8651
8652 static void igb_restore_vlan(struct igb_adapter *adapter)
8653 {
8654         u16 vid = 1;
8655
8656         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8657         igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8658
8659         for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8660                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8661 }
8662
8663 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8664 {
8665         struct pci_dev *pdev = adapter->pdev;
8666         struct e1000_mac_info *mac = &adapter->hw.mac;
8667
8668         mac->autoneg = 0;
8669
8670         /* Make sure dplx is at most 1 bit and lsb of speed is not set
8671          * for the switch() below to work
8672          */
8673         if ((spd & 1) || (dplx & ~1))
8674                 goto err_inval;
8675
8676         /* Fiber NIC's only allow 1000 gbps Full duplex
8677          * and 100Mbps Full duplex for 100baseFx sfp
8678          */
8679         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8680                 switch (spd + dplx) {
8681                 case SPEED_10 + DUPLEX_HALF:
8682                 case SPEED_10 + DUPLEX_FULL:
8683                 case SPEED_100 + DUPLEX_HALF:
8684                         goto err_inval;
8685                 default:
8686                         break;
8687                 }
8688         }
8689
8690         switch (spd + dplx) {
8691         case SPEED_10 + DUPLEX_HALF:
8692                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8693                 break;
8694         case SPEED_10 + DUPLEX_FULL:
8695                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8696                 break;
8697         case SPEED_100 + DUPLEX_HALF:
8698                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8699                 break;
8700         case SPEED_100 + DUPLEX_FULL:
8701                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8702                 break;
8703         case SPEED_1000 + DUPLEX_FULL:
8704                 mac->autoneg = 1;
8705                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8706                 break;
8707         case SPEED_1000 + DUPLEX_HALF: /* not supported */
8708         default:
8709                 goto err_inval;
8710         }
8711
8712         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8713         adapter->hw.phy.mdix = AUTO_ALL_MODES;
8714
8715         return 0;
8716
8717 err_inval:
8718         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8719         return -EINVAL;
8720 }
8721
8722 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8723                           bool runtime)
8724 {
8725         struct net_device *netdev = pci_get_drvdata(pdev);
8726         struct igb_adapter *adapter = netdev_priv(netdev);
8727         struct e1000_hw *hw = &adapter->hw;
8728         u32 ctrl, rctl, status;
8729         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8730         bool wake;
8731
8732         rtnl_lock();
8733         netif_device_detach(netdev);
8734
8735         if (netif_running(netdev))
8736                 __igb_close(netdev, true);
8737
8738         igb_ptp_suspend(adapter);
8739
8740         igb_clear_interrupt_scheme(adapter);
8741         rtnl_unlock();
8742
8743         status = rd32(E1000_STATUS);
8744         if (status & E1000_STATUS_LU)
8745                 wufc &= ~E1000_WUFC_LNKC;
8746
8747         if (wufc) {
8748                 igb_setup_rctl(adapter);
8749                 igb_set_rx_mode(netdev);
8750
8751                 /* turn on all-multi mode if wake on multicast is enabled */
8752                 if (wufc & E1000_WUFC_MC) {
8753                         rctl = rd32(E1000_RCTL);
8754                         rctl |= E1000_RCTL_MPE;
8755                         wr32(E1000_RCTL, rctl);
8756                 }
8757
8758                 ctrl = rd32(E1000_CTRL);
8759                 ctrl |= E1000_CTRL_ADVD3WUC;
8760                 wr32(E1000_CTRL, ctrl);
8761
8762                 /* Allow time for pending master requests to run */
8763                 igb_disable_pcie_master(hw);
8764
8765                 wr32(E1000_WUC, E1000_WUC_PME_EN);
8766                 wr32(E1000_WUFC, wufc);
8767         } else {
8768                 wr32(E1000_WUC, 0);
8769                 wr32(E1000_WUFC, 0);
8770         }
8771
8772         wake = wufc || adapter->en_mng_pt;
8773         if (!wake)
8774                 igb_power_down_link(adapter);
8775         else
8776                 igb_power_up_link(adapter);
8777
8778         if (enable_wake)
8779                 *enable_wake = wake;
8780
8781         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
8782          * would have already happened in close and is redundant.
8783          */
8784         igb_release_hw_control(adapter);
8785
8786         pci_disable_device(pdev);
8787
8788         return 0;
8789 }
8790
8791 static void igb_deliver_wake_packet(struct net_device *netdev)
8792 {
8793         struct igb_adapter *adapter = netdev_priv(netdev);
8794         struct e1000_hw *hw = &adapter->hw;
8795         struct sk_buff *skb;
8796         u32 wupl;
8797
8798         wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8799
8800         /* WUPM stores only the first 128 bytes of the wake packet.
8801          * Read the packet only if we have the whole thing.
8802          */
8803         if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8804                 return;
8805
8806         skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8807         if (!skb)
8808                 return;
8809
8810         skb_put(skb, wupl);
8811
8812         /* Ensure reads are 32-bit aligned */
8813         wupl = roundup(wupl, 4);
8814
8815         memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8816
8817         skb->protocol = eth_type_trans(skb, netdev);
8818         netif_rx(skb);
8819 }
8820
8821 static int __maybe_unused igb_suspend(struct device *dev)
8822 {
8823         return __igb_shutdown(to_pci_dev(dev), NULL, 0);
8824 }
8825
8826 static int __maybe_unused igb_resume(struct device *dev)
8827 {
8828         struct pci_dev *pdev = to_pci_dev(dev);
8829         struct net_device *netdev = pci_get_drvdata(pdev);
8830         struct igb_adapter *adapter = netdev_priv(netdev);
8831         struct e1000_hw *hw = &adapter->hw;
8832         u32 err, val;
8833
8834         pci_set_power_state(pdev, PCI_D0);
8835         pci_restore_state(pdev);
8836         pci_save_state(pdev);
8837
8838         if (!pci_device_is_present(pdev))
8839                 return -ENODEV;
8840         err = pci_enable_device_mem(pdev);
8841         if (err) {
8842                 dev_err(&pdev->dev,
8843                         "igb: Cannot enable PCI device from suspend\n");
8844                 return err;
8845         }
8846         pci_set_master(pdev);
8847
8848         pci_enable_wake(pdev, PCI_D3hot, 0);
8849         pci_enable_wake(pdev, PCI_D3cold, 0);
8850
8851         if (igb_init_interrupt_scheme(adapter, true)) {
8852                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8853                 return -ENOMEM;
8854         }
8855
8856         igb_reset(adapter);
8857
8858         /* let the f/w know that the h/w is now under the control of the
8859          * driver.
8860          */
8861         igb_get_hw_control(adapter);
8862
8863         val = rd32(E1000_WUS);
8864         if (val & WAKE_PKT_WUS)
8865                 igb_deliver_wake_packet(netdev);
8866
8867         wr32(E1000_WUS, ~0);
8868
8869         rtnl_lock();
8870         if (!err && netif_running(netdev))
8871                 err = __igb_open(netdev, true);
8872
8873         if (!err)
8874                 netif_device_attach(netdev);
8875         rtnl_unlock();
8876
8877         return err;
8878 }
8879
8880 static int __maybe_unused igb_runtime_idle(struct device *dev)
8881 {
8882         struct net_device *netdev = dev_get_drvdata(dev);
8883         struct igb_adapter *adapter = netdev_priv(netdev);
8884
8885         if (!igb_has_link(adapter))
8886                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8887
8888         return -EBUSY;
8889 }
8890
8891 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8892 {
8893         return __igb_shutdown(to_pci_dev(dev), NULL, 1);
8894 }
8895
8896 static int __maybe_unused igb_runtime_resume(struct device *dev)
8897 {
8898         return igb_resume(dev);
8899 }
8900
8901 static void igb_shutdown(struct pci_dev *pdev)
8902 {
8903         bool wake;
8904
8905         __igb_shutdown(pdev, &wake, 0);
8906
8907         if (system_state == SYSTEM_POWER_OFF) {
8908                 pci_wake_from_d3(pdev, wake);
8909                 pci_set_power_state(pdev, PCI_D3hot);
8910         }
8911 }
8912
8913 #ifdef CONFIG_PCI_IOV
8914 static int igb_sriov_reinit(struct pci_dev *dev)
8915 {
8916         struct net_device *netdev = pci_get_drvdata(dev);
8917         struct igb_adapter *adapter = netdev_priv(netdev);
8918         struct pci_dev *pdev = adapter->pdev;
8919
8920         rtnl_lock();
8921
8922         if (netif_running(netdev))
8923                 igb_close(netdev);
8924         else
8925                 igb_reset(adapter);
8926
8927         igb_clear_interrupt_scheme(adapter);
8928
8929         igb_init_queue_configuration(adapter);
8930
8931         if (igb_init_interrupt_scheme(adapter, true)) {
8932                 rtnl_unlock();
8933                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8934                 return -ENOMEM;
8935         }
8936
8937         if (netif_running(netdev))
8938                 igb_open(netdev);
8939
8940         rtnl_unlock();
8941
8942         return 0;
8943 }
8944
8945 static int igb_pci_disable_sriov(struct pci_dev *dev)
8946 {
8947         int err = igb_disable_sriov(dev);
8948
8949         if (!err)
8950                 err = igb_sriov_reinit(dev);
8951
8952         return err;
8953 }
8954
8955 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8956 {
8957         int err = igb_enable_sriov(dev, num_vfs);
8958
8959         if (err)
8960                 goto out;
8961
8962         err = igb_sriov_reinit(dev);
8963         if (!err)
8964                 return num_vfs;
8965
8966 out:
8967         return err;
8968 }
8969
8970 #endif
8971 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8972 {
8973 #ifdef CONFIG_PCI_IOV
8974         if (num_vfs == 0)
8975                 return igb_pci_disable_sriov(dev);
8976         else
8977                 return igb_pci_enable_sriov(dev, num_vfs);
8978 #endif
8979         return 0;
8980 }
8981
8982 /**
8983  *  igb_io_error_detected - called when PCI error is detected
8984  *  @pdev: Pointer to PCI device
8985  *  @state: The current pci connection state
8986  *
8987  *  This function is called after a PCI bus error affecting
8988  *  this device has been detected.
8989  **/
8990 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8991                                               pci_channel_state_t state)
8992 {
8993         struct net_device *netdev = pci_get_drvdata(pdev);
8994         struct igb_adapter *adapter = netdev_priv(netdev);
8995
8996         netif_device_detach(netdev);
8997
8998         if (state == pci_channel_io_perm_failure)
8999                 return PCI_ERS_RESULT_DISCONNECT;
9000
9001         if (netif_running(netdev))
9002                 igb_down(adapter);
9003         pci_disable_device(pdev);
9004
9005         /* Request a slot slot reset. */
9006         return PCI_ERS_RESULT_NEED_RESET;
9007 }
9008
9009 /**
9010  *  igb_io_slot_reset - called after the pci bus has been reset.
9011  *  @pdev: Pointer to PCI device
9012  *
9013  *  Restart the card from scratch, as if from a cold-boot. Implementation
9014  *  resembles the first-half of the igb_resume routine.
9015  **/
9016 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9017 {
9018         struct net_device *netdev = pci_get_drvdata(pdev);
9019         struct igb_adapter *adapter = netdev_priv(netdev);
9020         struct e1000_hw *hw = &adapter->hw;
9021         pci_ers_result_t result;
9022
9023         if (pci_enable_device_mem(pdev)) {
9024                 dev_err(&pdev->dev,
9025                         "Cannot re-enable PCI device after reset.\n");
9026                 result = PCI_ERS_RESULT_DISCONNECT;
9027         } else {
9028                 pci_set_master(pdev);
9029                 pci_restore_state(pdev);
9030                 pci_save_state(pdev);
9031
9032                 pci_enable_wake(pdev, PCI_D3hot, 0);
9033                 pci_enable_wake(pdev, PCI_D3cold, 0);
9034
9035                 /* In case of PCI error, adapter lose its HW address
9036                  * so we should re-assign it here.
9037                  */
9038                 hw->hw_addr = adapter->io_addr;
9039
9040                 igb_reset(adapter);
9041                 wr32(E1000_WUS, ~0);
9042                 result = PCI_ERS_RESULT_RECOVERED;
9043         }
9044
9045         return result;
9046 }
9047
9048 /**
9049  *  igb_io_resume - called when traffic can start flowing again.
9050  *  @pdev: Pointer to PCI device
9051  *
9052  *  This callback is called when the error recovery driver tells us that
9053  *  its OK to resume normal operation. Implementation resembles the
9054  *  second-half of the igb_resume routine.
9055  */
9056 static void igb_io_resume(struct pci_dev *pdev)
9057 {
9058         struct net_device *netdev = pci_get_drvdata(pdev);
9059         struct igb_adapter *adapter = netdev_priv(netdev);
9060
9061         if (netif_running(netdev)) {
9062                 if (igb_up(adapter)) {
9063                         dev_err(&pdev->dev, "igb_up failed after reset\n");
9064                         return;
9065                 }
9066         }
9067
9068         netif_device_attach(netdev);
9069
9070         /* let the f/w know that the h/w is now under the control of the
9071          * driver.
9072          */
9073         igb_get_hw_control(adapter);
9074 }
9075
9076 /**
9077  *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9078  *  @adapter: Pointer to adapter structure
9079  *  @index: Index of the RAR entry which need to be synced with MAC table
9080  **/
9081 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9082 {
9083         struct e1000_hw *hw = &adapter->hw;
9084         u32 rar_low, rar_high;
9085         u8 *addr = adapter->mac_table[index].addr;
9086
9087         /* HW expects these to be in network order when they are plugged
9088          * into the registers which are little endian.  In order to guarantee
9089          * that ordering we need to do an leXX_to_cpup here in order to be
9090          * ready for the byteswap that occurs with writel
9091          */
9092         rar_low = le32_to_cpup((__le32 *)(addr));
9093         rar_high = le16_to_cpup((__le16 *)(addr + 4));
9094
9095         /* Indicate to hardware the Address is Valid. */
9096         if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9097                 if (is_valid_ether_addr(addr))
9098                         rar_high |= E1000_RAH_AV;
9099
9100                 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9101                         rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9102
9103                 switch (hw->mac.type) {
9104                 case e1000_82575:
9105                 case e1000_i210:
9106                         if (adapter->mac_table[index].state &
9107                             IGB_MAC_STATE_QUEUE_STEERING)
9108                                 rar_high |= E1000_RAH_QSEL_ENABLE;
9109
9110                         rar_high |= E1000_RAH_POOL_1 *
9111                                     adapter->mac_table[index].queue;
9112                         break;
9113                 default:
9114                         rar_high |= E1000_RAH_POOL_1 <<
9115                                     adapter->mac_table[index].queue;
9116                         break;
9117                 }
9118         }
9119
9120         wr32(E1000_RAL(index), rar_low);
9121         wrfl();
9122         wr32(E1000_RAH(index), rar_high);
9123         wrfl();
9124 }
9125
9126 static int igb_set_vf_mac(struct igb_adapter *adapter,
9127                           int vf, unsigned char *mac_addr)
9128 {
9129         struct e1000_hw *hw = &adapter->hw;
9130         /* VF MAC addresses start at end of receive addresses and moves
9131          * towards the first, as a result a collision should not be possible
9132          */
9133         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9134         unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9135
9136         ether_addr_copy(vf_mac_addr, mac_addr);
9137         ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9138         adapter->mac_table[rar_entry].queue = vf;
9139         adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9140         igb_rar_set_index(adapter, rar_entry);
9141
9142         return 0;
9143 }
9144
9145 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9146 {
9147         struct igb_adapter *adapter = netdev_priv(netdev);
9148
9149         if (vf >= adapter->vfs_allocated_count)
9150                 return -EINVAL;
9151
9152         /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9153          * flag and allows to overwrite the MAC via VF netdev.  This
9154          * is necessary to allow libvirt a way to restore the original
9155          * MAC after unbinding vfio-pci and reloading igbvf after shutting
9156          * down a VM.
9157          */
9158         if (is_zero_ether_addr(mac)) {
9159                 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9160                 dev_info(&adapter->pdev->dev,
9161                          "remove administratively set MAC on VF %d\n",
9162                          vf);
9163         } else if (is_valid_ether_addr(mac)) {
9164                 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9165                 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9166                          mac, vf);
9167                 dev_info(&adapter->pdev->dev,
9168                          "Reload the VF driver to make this change effective.");
9169                 /* Generate additional warning if PF is down */
9170                 if (test_bit(__IGB_DOWN, &adapter->state)) {
9171                         dev_warn(&adapter->pdev->dev,
9172                                  "The VF MAC address has been set, but the PF device is not up.\n");
9173                         dev_warn(&adapter->pdev->dev,
9174                                  "Bring the PF device up before attempting to use the VF device.\n");
9175                 }
9176         } else {
9177                 return -EINVAL;
9178         }
9179         return igb_set_vf_mac(adapter, vf, mac);
9180 }
9181
9182 static int igb_link_mbps(int internal_link_speed)
9183 {
9184         switch (internal_link_speed) {
9185         case SPEED_100:
9186                 return 100;
9187         case SPEED_1000:
9188                 return 1000;
9189         default:
9190                 return 0;
9191         }
9192 }
9193
9194 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9195                                   int link_speed)
9196 {
9197         int rf_dec, rf_int;
9198         u32 bcnrc_val;
9199
9200         if (tx_rate != 0) {
9201                 /* Calculate the rate factor values to set */
9202                 rf_int = link_speed / tx_rate;
9203                 rf_dec = (link_speed - (rf_int * tx_rate));
9204                 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9205                          tx_rate;
9206
9207                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9208                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9209                               E1000_RTTBCNRC_RF_INT_MASK);
9210                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9211         } else {
9212                 bcnrc_val = 0;
9213         }
9214
9215         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9216         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9217          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9218          */
9219         wr32(E1000_RTTBCNRM, 0x14);
9220         wr32(E1000_RTTBCNRC, bcnrc_val);
9221 }
9222
9223 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9224 {
9225         int actual_link_speed, i;
9226         bool reset_rate = false;
9227
9228         /* VF TX rate limit was not set or not supported */
9229         if ((adapter->vf_rate_link_speed == 0) ||
9230             (adapter->hw.mac.type != e1000_82576))
9231                 return;
9232
9233         actual_link_speed = igb_link_mbps(adapter->link_speed);
9234         if (actual_link_speed != adapter->vf_rate_link_speed) {
9235                 reset_rate = true;
9236                 adapter->vf_rate_link_speed = 0;
9237                 dev_info(&adapter->pdev->dev,
9238                          "Link speed has been changed. VF Transmit rate is disabled\n");
9239         }
9240
9241         for (i = 0; i < adapter->vfs_allocated_count; i++) {
9242                 if (reset_rate)
9243                         adapter->vf_data[i].tx_rate = 0;
9244
9245                 igb_set_vf_rate_limit(&adapter->hw, i,
9246                                       adapter->vf_data[i].tx_rate,
9247                                       actual_link_speed);
9248         }
9249 }
9250
9251 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9252                              int min_tx_rate, int max_tx_rate)
9253 {
9254         struct igb_adapter *adapter = netdev_priv(netdev);
9255         struct e1000_hw *hw = &adapter->hw;
9256         int actual_link_speed;
9257
9258         if (hw->mac.type != e1000_82576)
9259                 return -EOPNOTSUPP;
9260
9261         if (min_tx_rate)
9262                 return -EINVAL;
9263
9264         actual_link_speed = igb_link_mbps(adapter->link_speed);
9265         if ((vf >= adapter->vfs_allocated_count) ||
9266             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9267             (max_tx_rate < 0) ||
9268             (max_tx_rate > actual_link_speed))
9269                 return -EINVAL;
9270
9271         adapter->vf_rate_link_speed = actual_link_speed;
9272         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9273         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9274
9275         return 0;
9276 }
9277
9278 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9279                                    bool setting)
9280 {
9281         struct igb_adapter *adapter = netdev_priv(netdev);
9282         struct e1000_hw *hw = &adapter->hw;
9283         u32 reg_val, reg_offset;
9284
9285         if (!adapter->vfs_allocated_count)
9286                 return -EOPNOTSUPP;
9287
9288         if (vf >= adapter->vfs_allocated_count)
9289                 return -EINVAL;
9290
9291         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9292         reg_val = rd32(reg_offset);
9293         if (setting)
9294                 reg_val |= (BIT(vf) |
9295                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9296         else
9297                 reg_val &= ~(BIT(vf) |
9298                              BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9299         wr32(reg_offset, reg_val);
9300
9301         adapter->vf_data[vf].spoofchk_enabled = setting;
9302         return 0;
9303 }
9304
9305 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9306 {
9307         struct igb_adapter *adapter = netdev_priv(netdev);
9308
9309         if (vf >= adapter->vfs_allocated_count)
9310                 return -EINVAL;
9311         if (adapter->vf_data[vf].trusted == setting)
9312                 return 0;
9313
9314         adapter->vf_data[vf].trusted = setting;
9315
9316         dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9317                  vf, setting ? "" : "not ");
9318         return 0;
9319 }
9320
9321 static int igb_ndo_get_vf_config(struct net_device *netdev,
9322                                  int vf, struct ifla_vf_info *ivi)
9323 {
9324         struct igb_adapter *adapter = netdev_priv(netdev);
9325         if (vf >= adapter->vfs_allocated_count)
9326                 return -EINVAL;
9327         ivi->vf = vf;
9328         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9329         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9330         ivi->min_tx_rate = 0;
9331         ivi->vlan = adapter->vf_data[vf].pf_vlan;
9332         ivi->qos = adapter->vf_data[vf].pf_qos;
9333         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9334         ivi->trusted = adapter->vf_data[vf].trusted;
9335         return 0;
9336 }
9337
9338 static void igb_vmm_control(struct igb_adapter *adapter)
9339 {
9340         struct e1000_hw *hw = &adapter->hw;
9341         u32 reg;
9342
9343         switch (hw->mac.type) {
9344         case e1000_82575:
9345         case e1000_i210:
9346         case e1000_i211:
9347         case e1000_i354:
9348         default:
9349                 /* replication is not supported for 82575 */
9350                 return;
9351         case e1000_82576:
9352                 /* notify HW that the MAC is adding vlan tags */
9353                 reg = rd32(E1000_DTXCTL);
9354                 reg |= E1000_DTXCTL_VLAN_ADDED;
9355                 wr32(E1000_DTXCTL, reg);
9356                 /* Fall through */
9357         case e1000_82580:
9358                 /* enable replication vlan tag stripping */
9359                 reg = rd32(E1000_RPLOLR);
9360                 reg |= E1000_RPLOLR_STRVLAN;
9361                 wr32(E1000_RPLOLR, reg);
9362                 /* Fall through */
9363         case e1000_i350:
9364                 /* none of the above registers are supported by i350 */
9365                 break;
9366         }
9367
9368         if (adapter->vfs_allocated_count) {
9369                 igb_vmdq_set_loopback_pf(hw, true);
9370                 igb_vmdq_set_replication_pf(hw, true);
9371                 igb_vmdq_set_anti_spoofing_pf(hw, true,
9372                                               adapter->vfs_allocated_count);
9373         } else {
9374                 igb_vmdq_set_loopback_pf(hw, false);
9375                 igb_vmdq_set_replication_pf(hw, false);
9376         }
9377 }
9378
9379 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9380 {
9381         struct e1000_hw *hw = &adapter->hw;
9382         u32 dmac_thr;
9383         u16 hwm;
9384
9385         if (hw->mac.type > e1000_82580) {
9386                 if (adapter->flags & IGB_FLAG_DMAC) {
9387                         u32 reg;
9388
9389                         /* force threshold to 0. */
9390                         wr32(E1000_DMCTXTH, 0);
9391
9392                         /* DMA Coalescing high water mark needs to be greater
9393                          * than the Rx threshold. Set hwm to PBA - max frame
9394                          * size in 16B units, capping it at PBA - 6KB.
9395                          */
9396                         hwm = 64 * (pba - 6);
9397                         reg = rd32(E1000_FCRTC);
9398                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9399                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9400                                 & E1000_FCRTC_RTH_COAL_MASK);
9401                         wr32(E1000_FCRTC, reg);
9402
9403                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9404                          * frame size, capping it at PBA - 10KB.
9405                          */
9406                         dmac_thr = pba - 10;
9407                         reg = rd32(E1000_DMACR);
9408                         reg &= ~E1000_DMACR_DMACTHR_MASK;
9409                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9410                                 & E1000_DMACR_DMACTHR_MASK);
9411
9412                         /* transition to L0x or L1 if available..*/
9413                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9414
9415                         /* watchdog timer= +-1000 usec in 32usec intervals */
9416                         reg |= (1000 >> 5);
9417
9418                         /* Disable BMC-to-OS Watchdog Enable */
9419                         if (hw->mac.type != e1000_i354)
9420                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9421
9422                         wr32(E1000_DMACR, reg);
9423
9424                         /* no lower threshold to disable
9425                          * coalescing(smart fifb)-UTRESH=0
9426                          */
9427                         wr32(E1000_DMCRTRH, 0);
9428
9429                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9430
9431                         wr32(E1000_DMCTLX, reg);
9432
9433                         /* free space in tx packet buffer to wake from
9434                          * DMA coal
9435                          */
9436                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9437                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9438
9439                         /* make low power state decision controlled
9440                          * by DMA coal
9441                          */
9442                         reg = rd32(E1000_PCIEMISC);
9443                         reg &= ~E1000_PCIEMISC_LX_DECISION;
9444                         wr32(E1000_PCIEMISC, reg);
9445                 } /* endif adapter->dmac is not disabled */
9446         } else if (hw->mac.type == e1000_82580) {
9447                 u32 reg = rd32(E1000_PCIEMISC);
9448
9449                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9450                 wr32(E1000_DMACR, 0);
9451         }
9452 }
9453
9454 /**
9455  *  igb_read_i2c_byte - Reads 8 bit word over I2C
9456  *  @hw: pointer to hardware structure
9457  *  @byte_offset: byte offset to read
9458  *  @dev_addr: device address
9459  *  @data: value read
9460  *
9461  *  Performs byte read operation over I2C interface at
9462  *  a specified device address.
9463  **/
9464 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9465                       u8 dev_addr, u8 *data)
9466 {
9467         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9468         struct i2c_client *this_client = adapter->i2c_client;
9469         s32 status;
9470         u16 swfw_mask = 0;
9471
9472         if (!this_client)
9473                 return E1000_ERR_I2C;
9474
9475         swfw_mask = E1000_SWFW_PHY0_SM;
9476
9477         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9478                 return E1000_ERR_SWFW_SYNC;
9479
9480         status = i2c_smbus_read_byte_data(this_client, byte_offset);
9481         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9482
9483         if (status < 0)
9484                 return E1000_ERR_I2C;
9485         else {
9486                 *data = status;
9487                 return 0;
9488         }
9489 }
9490
9491 /**
9492  *  igb_write_i2c_byte - Writes 8 bit word over I2C
9493  *  @hw: pointer to hardware structure
9494  *  @byte_offset: byte offset to write
9495  *  @dev_addr: device address
9496  *  @data: value to write
9497  *
9498  *  Performs byte write operation over I2C interface at
9499  *  a specified device address.
9500  **/
9501 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9502                        u8 dev_addr, u8 data)
9503 {
9504         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9505         struct i2c_client *this_client = adapter->i2c_client;
9506         s32 status;
9507         u16 swfw_mask = E1000_SWFW_PHY0_SM;
9508
9509         if (!this_client)
9510                 return E1000_ERR_I2C;
9511
9512         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9513                 return E1000_ERR_SWFW_SYNC;
9514         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9515         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9516
9517         if (status)
9518                 return E1000_ERR_I2C;
9519         else
9520                 return 0;
9521
9522 }
9523
9524 int igb_reinit_queues(struct igb_adapter *adapter)
9525 {
9526         struct net_device *netdev = adapter->netdev;
9527         struct pci_dev *pdev = adapter->pdev;
9528         int err = 0;
9529
9530         if (netif_running(netdev))
9531                 igb_close(netdev);
9532
9533         igb_reset_interrupt_capability(adapter);
9534
9535         if (igb_init_interrupt_scheme(adapter, true)) {
9536                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9537                 return -ENOMEM;
9538         }
9539
9540         if (netif_running(netdev))
9541                 err = igb_open(netdev);
9542
9543         return err;
9544 }
9545
9546 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9547 {
9548         struct igb_nfc_filter *rule;
9549
9550         spin_lock(&adapter->nfc_lock);
9551
9552         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9553                 igb_erase_filter(adapter, rule);
9554
9555         hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9556                 igb_erase_filter(adapter, rule);
9557
9558         spin_unlock(&adapter->nfc_lock);
9559 }
9560
9561 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9562 {
9563         struct igb_nfc_filter *rule;
9564
9565         spin_lock(&adapter->nfc_lock);
9566
9567         hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9568                 igb_add_filter(adapter, rule);
9569
9570         spin_unlock(&adapter->nfc_lock);
9571 }
9572 /* igb_main.c */