701b708628b0d6271e592c588c250bbfeb3de995
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.h
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2016 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #ifndef _I40E_TXRX_H_
28 #define _I40E_TXRX_H_
29
30 #include <net/xdp.h>
31
32 /* Interrupt Throttling and Rate Limiting Goodies */
33
34 #define I40E_MAX_ITR               0x0FF0  /* reg uses 2 usec resolution */
35 #define I40E_MIN_ITR               0x0001  /* reg uses 2 usec resolution */
36 #define I40E_ITR_100K              0x0005
37 #define I40E_ITR_50K               0x000A
38 #define I40E_ITR_20K               0x0019
39 #define I40E_ITR_18K               0x001B
40 #define I40E_ITR_8K                0x003E
41 #define I40E_ITR_4K                0x007A
42 #define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
43 #define I40E_ITR_RX_DEF            (ITR_REG_TO_USEC(I40E_ITR_20K) | \
44                                     I40E_ITR_DYNAMIC)
45 #define I40E_ITR_TX_DEF            (ITR_REG_TO_USEC(I40E_ITR_20K) | \
46                                     I40E_ITR_DYNAMIC)
47 #define I40E_ITR_DYNAMIC           0x8000  /* use top bit as a flag */
48 #define I40E_MIN_INT_RATE          250     /* ~= 1000000 / (I40E_MAX_ITR * 2) */
49 #define I40E_MAX_INT_RATE          500000  /* == 1000000 / (I40E_MIN_ITR * 2) */
50 #define I40E_DEFAULT_IRQ_WORK      256
51 #define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
52 #define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
53 #define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
54 /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
55  * the value of the rate limit is non-zero
56  */
57 #define INTRL_ENA                  BIT(6)
58 #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
59 /**
60  * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
61  * @intrl: interrupt rate limit to convert
62  *
63  * This function converts a decimal interrupt rate limit to the appropriate
64  * register format expected by the firmware when setting interrupt rate limit.
65  */
66 static inline u16 i40e_intrl_usec_to_reg(int intrl)
67 {
68         if (intrl >> 2)
69                 return ((intrl >> 2) | INTRL_ENA);
70         else
71                 return 0;
72 }
73 #define I40E_INTRL_8K              125     /* 8000 ints/sec */
74 #define I40E_INTRL_62K             16      /* 62500 ints/sec */
75 #define I40E_INTRL_83K             12      /* 83333 ints/sec */
76
77 #define I40E_QUEUE_END_OF_LIST 0x7FF
78
79 /* this enum matches hardware bits and is meant to be used by DYN_CTLN
80  * registers and QINT registers or more generally anywhere in the manual
81  * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
82  * register but instead is a special value meaning "don't update" ITR0/1/2.
83  */
84 enum i40e_dyn_idx_t {
85         I40E_IDX_ITR0 = 0,
86         I40E_IDX_ITR1 = 1,
87         I40E_IDX_ITR2 = 2,
88         I40E_ITR_NONE = 3       /* ITR_NONE must not be used as an index */
89 };
90
91 /* these are indexes into ITRN registers */
92 #define I40E_RX_ITR    I40E_IDX_ITR0
93 #define I40E_TX_ITR    I40E_IDX_ITR1
94 #define I40E_PE_ITR    I40E_IDX_ITR2
95
96 /* Supported RSS offloads */
97 #define I40E_DEFAULT_RSS_HENA ( \
98         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
99         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
100         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
101         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
102         BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
103         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
104         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
105         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
106         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
107         BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
108         BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
109
110 #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
111         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
112         BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
113         BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
114         BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
115         BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
116         BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
117
118 #define i40e_pf_get_default_rss_hena(pf) \
119         (((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
120           I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
121
122 /* Supported Rx Buffer Sizes (a multiple of 128) */
123 #define I40E_RXBUFFER_256   256
124 #define I40E_RXBUFFER_1536  1536  /* 128B aligned standard Ethernet frame */
125 #define I40E_RXBUFFER_2048  2048
126 #define I40E_RXBUFFER_3072  3072  /* Used for large frames w/ padding */
127 #define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
128
129 /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
130  * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
131  * this adds up to 512 bytes of extra data meaning the smallest allocation
132  * we could have is 1K.
133  * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
134  * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
135  */
136 #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
137 #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
138 #define i40e_rx_desc i40e_32byte_rx_desc
139
140 #define I40E_RX_DMA_ATTR \
141         (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
142
143 /* Attempt to maximize the headroom available for incoming frames.  We
144  * use a 2K buffer for receives and need 1536/1534 to store the data for
145  * the frame.  This leaves us with 512 bytes of room.  From that we need
146  * to deduct the space needed for the shared info and the padding needed
147  * to IP align the frame.
148  *
149  * Note: For cache line sizes 256 or larger this value is going to end
150  *       up negative.  In these cases we should fall back to the legacy
151  *       receive path.
152  */
153 #if (PAGE_SIZE < 8192)
154 #define I40E_2K_TOO_SMALL_WITH_PADDING \
155 ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
156
157 static inline int i40e_compute_pad(int rx_buf_len)
158 {
159         int page_size, pad_size;
160
161         page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
162         pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
163
164         return pad_size;
165 }
166
167 static inline int i40e_skb_pad(void)
168 {
169         int rx_buf_len;
170
171         /* If a 2K buffer cannot handle a standard Ethernet frame then
172          * optimize padding for a 3K buffer instead of a 1.5K buffer.
173          *
174          * For a 3K buffer we need to add enough padding to allow for
175          * tailroom due to NET_IP_ALIGN possibly shifting us out of
176          * cache-line alignment.
177          */
178         if (I40E_2K_TOO_SMALL_WITH_PADDING)
179                 rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
180         else
181                 rx_buf_len = I40E_RXBUFFER_1536;
182
183         /* if needed make room for NET_IP_ALIGN */
184         rx_buf_len -= NET_IP_ALIGN;
185
186         return i40e_compute_pad(rx_buf_len);
187 }
188
189 #define I40E_SKB_PAD i40e_skb_pad()
190 #else
191 #define I40E_2K_TOO_SMALL_WITH_PADDING false
192 #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
193 #endif
194
195 /**
196  * i40e_test_staterr - tests bits in Rx descriptor status and error fields
197  * @rx_desc: pointer to receive descriptor (in le64 format)
198  * @stat_err_bits: value to mask
199  *
200  * This function does some fast chicanery in order to return the
201  * value of the mask which is really only used for boolean tests.
202  * The status_error_len doesn't need to be shifted because it begins
203  * at offset zero.
204  */
205 static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
206                                      const u64 stat_err_bits)
207 {
208         return !!(rx_desc->wb.qword1.status_error_len &
209                   cpu_to_le64(stat_err_bits));
210 }
211
212 /* How many Rx Buffers do we bundle into one write to the hardware ? */
213 #define I40E_RX_BUFFER_WRITE    32      /* Must be power of 2 */
214 #define I40E_RX_INCREMENT(r, i) \
215         do {                                    \
216                 (i)++;                          \
217                 if ((i) == (r)->count)          \
218                         i = 0;                  \
219                 r->next_to_clean = i;           \
220         } while (0)
221
222 #define I40E_RX_NEXT_DESC(r, i, n)              \
223         do {                                    \
224                 (i)++;                          \
225                 if ((i) == (r)->count)          \
226                         i = 0;                  \
227                 (n) = I40E_RX_DESC((r), (i));   \
228         } while (0)
229
230 #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)             \
231         do {                                            \
232                 I40E_RX_NEXT_DESC((r), (i), (n));       \
233                 prefetch((n));                          \
234         } while (0)
235
236 #define I40E_MAX_BUFFER_TXD     8
237 #define I40E_MIN_TX_LEN         17
238
239 /* The size limit for a transmit buffer in a descriptor is (16K - 1).
240  * In order to align with the read requests we will align the value to
241  * the nearest 4K which represents our maximum read request size.
242  */
243 #define I40E_MAX_READ_REQ_SIZE          4096
244 #define I40E_MAX_DATA_PER_TXD           (16 * 1024 - 1)
245 #define I40E_MAX_DATA_PER_TXD_ALIGNED \
246         (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
247
248 /**
249  * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
250  * @size: transmit request size in bytes
251  *
252  * Due to hardware alignment restrictions (4K alignment), we need to
253  * assume that we can have no more than 12K of data per descriptor, even
254  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
255  * Thus, we need to divide by 12K. But division is slow! Instead,
256  * we decompose the operation into shifts and one relatively cheap
257  * multiply operation.
258  *
259  * To divide by 12K, we first divide by 4K, then divide by 3:
260  *     To divide by 4K, shift right by 12 bits
261  *     To divide by 3, multiply by 85, then divide by 256
262  *     (Divide by 256 is done by shifting right by 8 bits)
263  * Finally, we add one to round up. Because 256 isn't an exact multiple of
264  * 3, we'll underestimate near each multiple of 12K. This is actually more
265  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
266  * segment.  For our purposes this is accurate out to 1M which is orders of
267  * magnitude greater than our largest possible GSO size.
268  *
269  * This would then be implemented as:
270  *     return (((size >> 12) * 85) >> 8) + 1;
271  *
272  * Since multiplication and division are commutative, we can reorder
273  * operations into:
274  *     return ((size * 85) >> 20) + 1;
275  */
276 static inline unsigned int i40e_txd_use_count(unsigned int size)
277 {
278         return ((size * 85) >> 20) + 1;
279 }
280
281 /* Tx Descriptors needed, worst case */
282 #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
283 #define I40E_MIN_DESC_PENDING   4
284
285 #define I40E_TX_FLAGS_HW_VLAN           BIT(1)
286 #define I40E_TX_FLAGS_SW_VLAN           BIT(2)
287 #define I40E_TX_FLAGS_TSO               BIT(3)
288 #define I40E_TX_FLAGS_IPV4              BIT(4)
289 #define I40E_TX_FLAGS_IPV6              BIT(5)
290 #define I40E_TX_FLAGS_FCCRC             BIT(6)
291 #define I40E_TX_FLAGS_FSO               BIT(7)
292 #define I40E_TX_FLAGS_TSYN              BIT(8)
293 #define I40E_TX_FLAGS_FD_SB             BIT(9)
294 #define I40E_TX_FLAGS_UDP_TUNNEL        BIT(10)
295 #define I40E_TX_FLAGS_VLAN_MASK         0xffff0000
296 #define I40E_TX_FLAGS_VLAN_PRIO_MASK    0xe0000000
297 #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT   29
298 #define I40E_TX_FLAGS_VLAN_SHIFT        16
299
300 struct i40e_tx_buffer {
301         struct i40e_tx_desc *next_to_watch;
302         union {
303                 struct sk_buff *skb;
304                 void *raw_buf;
305         };
306         unsigned int bytecount;
307         unsigned short gso_segs;
308
309         DEFINE_DMA_UNMAP_ADDR(dma);
310         DEFINE_DMA_UNMAP_LEN(len);
311         u32 tx_flags;
312 };
313
314 struct i40e_rx_buffer {
315         dma_addr_t dma;
316         struct page *page;
317 #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
318         __u32 page_offset;
319 #else
320         __u16 page_offset;
321 #endif
322         __u16 pagecnt_bias;
323 };
324
325 struct i40e_queue_stats {
326         u64 packets;
327         u64 bytes;
328 };
329
330 struct i40e_tx_queue_stats {
331         u64 restart_queue;
332         u64 tx_busy;
333         u64 tx_done_old;
334         u64 tx_linearize;
335         u64 tx_force_wb;
336         int prev_pkt_ctr;
337 };
338
339 struct i40e_rx_queue_stats {
340         u64 non_eop_descs;
341         u64 alloc_page_failed;
342         u64 alloc_buff_failed;
343         u64 page_reuse_count;
344         u64 realloc_count;
345 };
346
347 enum i40e_ring_state_t {
348         __I40E_TX_FDIR_INIT_DONE,
349         __I40E_TX_XPS_INIT_DONE,
350         __I40E_RING_STATE_NBITS /* must be last */
351 };
352
353 /* some useful defines for virtchannel interface, which
354  * is the only remaining user of header split
355  */
356 #define I40E_RX_DTYPE_NO_SPLIT      0
357 #define I40E_RX_DTYPE_HEADER_SPLIT  1
358 #define I40E_RX_DTYPE_SPLIT_ALWAYS  2
359 #define I40E_RX_SPLIT_L2      0x1
360 #define I40E_RX_SPLIT_IP      0x2
361 #define I40E_RX_SPLIT_TCP_UDP 0x4
362 #define I40E_RX_SPLIT_SCTP    0x8
363
364 /* struct that defines a descriptor ring, associated with a VSI */
365 struct i40e_ring {
366         struct i40e_ring *next;         /* pointer to next ring in q_vector */
367         void *desc;                     /* Descriptor ring memory */
368         struct device *dev;             /* Used for DMA mapping */
369         struct net_device *netdev;      /* netdev ring maps to */
370         struct bpf_prog *xdp_prog;
371         union {
372                 struct i40e_tx_buffer *tx_bi;
373                 struct i40e_rx_buffer *rx_bi;
374         };
375         DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
376         u16 queue_index;                /* Queue number of ring */
377         u8 dcb_tc;                      /* Traffic class of ring */
378         u8 __iomem *tail;
379
380         /* high bit set means dynamic, use accessor routines to read/write.
381          * hardware only supports 2us resolution for the ITR registers.
382          * these values always store the USER setting, and must be converted
383          * before programming to a register.
384          */
385         u16 rx_itr_setting;
386         u16 tx_itr_setting;
387
388         u16 count;                      /* Number of descriptors */
389         u16 reg_idx;                    /* HW register index of the ring */
390         u16 rx_buf_len;
391
392         /* used in interrupt processing */
393         u16 next_to_use;
394         u16 next_to_clean;
395
396         u8 atr_sample_rate;
397         u8 atr_count;
398
399         bool ring_active;               /* is ring online or not */
400         bool arm_wb;            /* do something to arm write back */
401         u8 packet_stride;
402
403         u16 flags;
404 #define I40E_TXR_FLAGS_WB_ON_ITR                BIT(0)
405 #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED        BIT(1)
406 #define I40E_TXR_FLAGS_XDP                      BIT(2)
407
408         /* stats structs */
409         struct i40e_queue_stats stats;
410         struct u64_stats_sync syncp;
411         union {
412                 struct i40e_tx_queue_stats tx_stats;
413                 struct i40e_rx_queue_stats rx_stats;
414         };
415
416         unsigned int size;              /* length of descriptor ring in bytes */
417         dma_addr_t dma;                 /* physical address of ring */
418
419         struct i40e_vsi *vsi;           /* Backreference to associated VSI */
420         struct i40e_q_vector *q_vector; /* Backreference to associated vector */
421
422         struct rcu_head rcu;            /* to avoid race on free */
423         u16 next_to_alloc;
424         struct sk_buff *skb;            /* When i40e_clean_rx_ring_irq() must
425                                          * return before it sees the EOP for
426                                          * the current packet, we save that skb
427                                          * here and resume receiving this
428                                          * packet the next time
429                                          * i40e_clean_rx_ring_irq() is called
430                                          * for this ring.
431                                          */
432
433         struct i40e_channel *ch;
434         struct xdp_rxq_info xdp_rxq;
435 } ____cacheline_internodealigned_in_smp;
436
437 static inline bool ring_uses_build_skb(struct i40e_ring *ring)
438 {
439         return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
440 }
441
442 static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
443 {
444         ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
445 }
446
447 static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
448 {
449         ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
450 }
451
452 static inline bool ring_is_xdp(struct i40e_ring *ring)
453 {
454         return !!(ring->flags & I40E_TXR_FLAGS_XDP);
455 }
456
457 static inline void set_ring_xdp(struct i40e_ring *ring)
458 {
459         ring->flags |= I40E_TXR_FLAGS_XDP;
460 }
461
462 enum i40e_latency_range {
463         I40E_LOWEST_LATENCY = 0,
464         I40E_LOW_LATENCY = 1,
465         I40E_BULK_LATENCY = 2,
466 };
467
468 struct i40e_ring_container {
469         /* array of pointers to rings */
470         struct i40e_ring *ring;
471         unsigned int total_bytes;       /* total bytes processed this int */
472         unsigned int total_packets;     /* total packets processed this int */
473         unsigned long last_itr_update;  /* jiffies of last ITR update */
474         u16 count;
475         enum i40e_latency_range latency_range;
476         u16 itr;
477 };
478
479 /* iterator for handling rings in ring container */
480 #define i40e_for_each_ring(pos, head) \
481         for (pos = (head).ring; pos != NULL; pos = pos->next)
482
483 static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
484 {
485 #if (PAGE_SIZE < 8192)
486         if (ring->rx_buf_len > (PAGE_SIZE / 2))
487                 return 1;
488 #endif
489         return 0;
490 }
491
492 #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
493
494 bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
495 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
496 void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
497 void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
498 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
499 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
500 void i40e_free_tx_resources(struct i40e_ring *tx_ring);
501 void i40e_free_rx_resources(struct i40e_ring *rx_ring);
502 int i40e_napi_poll(struct napi_struct *napi, int budget);
503 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
504 u32 i40e_get_tx_pending(struct i40e_ring *ring);
505 void i40e_detect_recover_hung(struct i40e_vsi *vsi);
506 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
507 bool __i40e_chk_linearize(struct sk_buff *skb);
508
509 /**
510  * i40e_get_head - Retrieve head from head writeback
511  * @tx_ring:  tx ring to fetch head of
512  *
513  * Returns value of Tx ring head based on value stored
514  * in head write-back location
515  **/
516 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
517 {
518         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
519
520         return le32_to_cpu(*(volatile __le32 *)head);
521 }
522
523 /**
524  * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
525  * @skb:     send buffer
526  * @tx_ring: ring to send buffer on
527  *
528  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
529  * there is not enough descriptors available in this ring since we need at least
530  * one descriptor.
531  **/
532 static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
533 {
534         const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
535         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
536         int count = 0, size = skb_headlen(skb);
537
538         for (;;) {
539                 count += i40e_txd_use_count(size);
540
541                 if (!nr_frags--)
542                         break;
543
544                 size = skb_frag_size(frag++);
545         }
546
547         return count;
548 }
549
550 /**
551  * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
552  * @tx_ring: the ring to be checked
553  * @size:    the size buffer we want to assure is available
554  *
555  * Returns 0 if stop is not needed
556  **/
557 static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
558 {
559         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
560                 return 0;
561         return __i40e_maybe_stop_tx(tx_ring, size);
562 }
563
564 /**
565  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
566  * @skb:      send buffer
567  * @count:    number of buffers used
568  *
569  * Note: Our HW can't scatter-gather more than 8 fragments to build
570  * a packet on the wire and so we need to figure out the cases where we
571  * need to linearize the skb.
572  **/
573 static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
574 {
575         /* Both TSO and single send will work if count is less than 8 */
576         if (likely(count < I40E_MAX_BUFFER_TXD))
577                 return false;
578
579         if (skb_is_gso(skb))
580                 return __i40e_chk_linearize(skb);
581
582         /* we can support up to 8 data buffers for a single send */
583         return count != I40E_MAX_BUFFER_TXD;
584 }
585
586 /**
587  * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
588  * @ring: Tx ring to find the netdev equivalent of
589  **/
590 static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
591 {
592         return netdev_get_tx_queue(ring->netdev, ring->queue_index);
593 }
594 #endif /* _I40E_TXRX_H_ */