1 /*******************************************************************************
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
27 #include <linux/prefetch.h>
29 #include "i40e_prototype.h"
31 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
35 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
36 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
37 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
38 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
42 #define I40E_FD_CLEAN_DELAY 10
44 * i40e_program_fdir_filter - Program a Flow Director filter
45 * @fdir_data: Packet data that will be filter parameters
46 * @raw_packet: the pre-allocated packet buffer for FDir
48 * @add: True for add/update, False for remove
50 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
51 struct i40e_pf *pf, bool add)
53 struct i40e_filter_program_desc *fdir_desc;
54 struct i40e_tx_buffer *tx_buf, *first;
55 struct i40e_tx_desc *tx_desc;
56 struct i40e_ring *tx_ring;
57 unsigned int fpt, dcc;
65 /* find existing FDIR VSI */
67 for (i = 0; i < pf->num_alloc_vsi; i++)
68 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
73 tx_ring = vsi->tx_rings[0];
76 /* we need two descriptors to add/del a filter and we can wait */
78 if (I40E_DESC_UNUSED(tx_ring) > 1)
80 msleep_interruptible(1);
82 } while (delay < I40E_FD_CLEAN_DELAY);
84 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
87 dma = dma_map_single(dev, raw_packet,
88 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
89 if (dma_mapping_error(dev, dma))
92 /* grab the next descriptor */
93 i = tx_ring->next_to_use;
94 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
95 first = &tx_ring->tx_bi[i];
96 memset(first, 0, sizeof(struct i40e_tx_buffer));
98 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
101 I40E_TXD_FLTR_QW0_QINDEX_MASK;
103 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
104 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
107 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109 /* Use LAN VSI Id if not programmed by user */
110 if (fdir_data->dest_vsi == 0)
111 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
112 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114 fpt |= ((u32)fdir_data->dest_vsi <<
115 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
116 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
121 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
122 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
125 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
128 I40E_TXD_FLTR_QW1_DEST_MASK;
130 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
131 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133 if (fdir_data->cnt_index != 0) {
134 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
135 dcc |= ((u32)fdir_data->cnt_index <<
136 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
137 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
140 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
141 fdir_desc->rsvd = cpu_to_le32(0);
142 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
143 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145 /* Now program a dummy descriptor */
146 i = tx_ring->next_to_use;
147 tx_desc = I40E_TX_DESC(tx_ring, i);
148 tx_buf = &tx_ring->tx_bi[i];
150 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154 /* record length, and DMA address */
155 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
156 dma_unmap_addr_set(tx_buf, dma, dma);
158 tx_desc->buffer_addr = cpu_to_le64(dma);
159 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
162 tx_buf->raw_buf = (void *)raw_packet;
164 tx_desc->cmd_type_offset_bsz =
165 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167 /* set the timestamp */
168 tx_buf->time_stamp = jiffies;
170 /* Force memory writes to complete before letting h/w
171 * know there are new descriptors to fetch.
175 /* Mark the data descriptor to be watched */
176 first->next_to_watch = tx_desc;
178 writel(tx_ring->next_to_use, tx_ring->tail);
185 #define IP_HEADER_OFFSET 14
186 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
188 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
189 * @vsi: pointer to the targeted VSI
190 * @fd_data: the flow director data required for the FDir descriptor
191 * @add: true adds a filter, false removes it
193 * Returns 0 if the filters were successfully added or removed
195 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
196 struct i40e_fdir_filter *fd_data,
199 struct i40e_pf *pf = vsi->back;
205 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
206 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
207 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
209 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
212 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
214 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
215 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
216 + sizeof(struct iphdr));
218 ip->daddr = fd_data->dst_ip[0];
219 udp->dest = fd_data->dst_port;
220 ip->saddr = fd_data->src_ip[0];
221 udp->source = fd_data->src_port;
223 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
224 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
226 dev_info(&pf->pdev->dev,
227 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
228 fd_data->pctype, fd_data->fd_id, ret);
232 dev_info(&pf->pdev->dev,
233 "Filter OK for PCTYPE %d loc = %d\n",
234 fd_data->pctype, fd_data->fd_id);
236 dev_info(&pf->pdev->dev,
237 "Filter deleted for PCTYPE %d loc = %d\n",
238 fd_data->pctype, fd_data->fd_id);
240 return err ? -EOPNOTSUPP : 0;
243 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
246 * @vsi: pointer to the targeted VSI
247 * @fd_data: the flow director data required for the FDir descriptor
248 * @add: true adds a filter, false removes it
250 * Returns 0 if the filters were successfully added or removed
252 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
253 struct i40e_fdir_filter *fd_data,
256 struct i40e_pf *pf = vsi->back;
263 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
264 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
265 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
266 0x0, 0x72, 0, 0, 0, 0};
268 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
271 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
274 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
275 + sizeof(struct iphdr));
277 ip->daddr = fd_data->dst_ip[0];
278 tcp->dest = fd_data->dst_port;
279 ip->saddr = fd_data->src_ip[0];
280 tcp->source = fd_data->src_port;
284 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
285 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
286 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
290 (pf->fd_tcp_rule - 1) : 0;
291 if (pf->fd_tcp_rule == 0) {
292 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
293 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
301 dev_info(&pf->pdev->dev,
302 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303 fd_data->pctype, fd_data->fd_id, ret);
307 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308 fd_data->pctype, fd_data->fd_id);
310 dev_info(&pf->pdev->dev,
311 "Filter deleted for PCTYPE %d loc = %d\n",
312 fd_data->pctype, fd_data->fd_id);
315 return err ? -EOPNOTSUPP : 0;
319 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320 * a specific flow spec
321 * @vsi: pointer to the targeted VSI
322 * @fd_data: the flow director data required for the FDir descriptor
323 * @add: true adds a filter, false removes it
325 * Always returns -EOPNOTSUPP
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328 struct i40e_fdir_filter *fd_data,
334 #define I40E_IP_DUMMY_PACKET_LEN 34
336 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337 * a specific flow spec
338 * @vsi: pointer to the targeted VSI
339 * @fd_data: the flow director data required for the FDir descriptor
340 * @add: true adds a filter, false removes it
342 * Returns 0 if the filters were successfully added or removed
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345 struct i40e_fdir_filter *fd_data,
348 struct i40e_pf *pf = vsi->back;
354 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
358 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
363 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
366 ip->saddr = fd_data->src_ip[0];
367 ip->daddr = fd_data->dst_ip[0];
371 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
374 dev_info(&pf->pdev->dev,
375 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376 fd_data->pctype, fd_data->fd_id, ret);
380 dev_info(&pf->pdev->dev,
381 "Filter OK for PCTYPE %d loc = %d\n",
382 fd_data->pctype, fd_data->fd_id);
384 dev_info(&pf->pdev->dev,
385 "Filter deleted for PCTYPE %d loc = %d\n",
386 fd_data->pctype, fd_data->fd_id);
390 return err ? -EOPNOTSUPP : 0;
394 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395 * @vsi: pointer to the targeted VSI
396 * @cmd: command to get or set RX flow classification rules
397 * @add: true adds a filter, false removes it
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401 struct i40e_fdir_filter *input, bool add)
403 struct i40e_pf *pf = vsi->back;
406 switch (input->flow_type & ~FLOW_EXT) {
408 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
411 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
414 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
417 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
420 switch (input->ip4_proto) {
422 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
425 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
428 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
431 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
436 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
441 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
446 * i40e_fd_handle_status - check the Programming Status for FD
447 * @rx_ring: the Rx ring for this descriptor
448 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449 * @prog_id: the id originally used for programming
451 * This is used to verify if the FD programming or invalidation
452 * requested by SW to the HW is successful or not and take actions accordingly.
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455 union i40e_rx_desc *rx_desc, u8 prog_id)
457 struct i40e_pf *pf = rx_ring->vsi->back;
458 struct pci_dev *pdev = pf->pdev;
459 u32 fcnt_prog, fcnt_avail;
463 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
467 if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469 (I40E_DEBUG_FD & pf->hw.debug_mask))
470 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471 rx_desc->wb.qword0.hi_dword.fd_id);
474 /* store the current atr filter count */
475 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
477 /* filter programming failed most likely due to table full */
478 fcnt_prog = i40e_get_cur_guaranteed_fd_count(pf);
479 fcnt_avail = pf->fdir_pf_filter_count;
480 /* If ATR is running fcnt_prog can quickly change,
481 * if we are very close to full, it makes sense to disable
482 * FD ATR/SB and then re-enable it when there is room.
484 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
485 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
486 !(pf->auto_disable_flags &
487 I40E_FLAG_FD_SB_ENABLED)) {
488 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
489 pf->auto_disable_flags |=
490 I40E_FLAG_FD_SB_ENABLED;
494 "FD filter programming failed due to incorrect filter parameters\n");
497 (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
498 if (I40E_DEBUG_FD & pf->hw.debug_mask)
499 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
500 rx_desc->wb.qword0.hi_dword.fd_id);
505 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
506 * @ring: the ring that owns the buffer
507 * @tx_buffer: the buffer to free
509 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
510 struct i40e_tx_buffer *tx_buffer)
512 if (tx_buffer->skb) {
513 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
514 kfree(tx_buffer->raw_buf);
516 dev_kfree_skb_any(tx_buffer->skb);
518 if (dma_unmap_len(tx_buffer, len))
519 dma_unmap_single(ring->dev,
520 dma_unmap_addr(tx_buffer, dma),
521 dma_unmap_len(tx_buffer, len),
523 } else if (dma_unmap_len(tx_buffer, len)) {
524 dma_unmap_page(ring->dev,
525 dma_unmap_addr(tx_buffer, dma),
526 dma_unmap_len(tx_buffer, len),
529 tx_buffer->next_to_watch = NULL;
530 tx_buffer->skb = NULL;
531 dma_unmap_len_set(tx_buffer, len, 0);
532 /* tx_buffer must be completely set up in the transmit path */
536 * i40e_clean_tx_ring - Free any empty Tx buffers
537 * @tx_ring: ring to be cleaned
539 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
541 unsigned long bi_size;
544 /* ring already cleared, nothing to do */
548 /* Free all the Tx ring sk_buffs */
549 for (i = 0; i < tx_ring->count; i++)
550 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
552 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
553 memset(tx_ring->tx_bi, 0, bi_size);
555 /* Zero out the descriptor ring */
556 memset(tx_ring->desc, 0, tx_ring->size);
558 tx_ring->next_to_use = 0;
559 tx_ring->next_to_clean = 0;
561 if (!tx_ring->netdev)
564 /* cleanup Tx queue statistics */
565 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
566 tx_ring->queue_index));
570 * i40e_free_tx_resources - Free Tx resources per queue
571 * @tx_ring: Tx descriptor ring for a specific queue
573 * Free all transmit software resources
575 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
577 i40e_clean_tx_ring(tx_ring);
578 kfree(tx_ring->tx_bi);
579 tx_ring->tx_bi = NULL;
582 dma_free_coherent(tx_ring->dev, tx_ring->size,
583 tx_ring->desc, tx_ring->dma);
584 tx_ring->desc = NULL;
589 * i40e_get_head - Retrieve head from head writeback
590 * @tx_ring: tx ring to fetch head of
592 * Returns value of Tx ring head based on value stored
593 * in head write-back location
595 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
597 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
599 return le32_to_cpu(*(volatile __le32 *)head);
603 * i40e_get_tx_pending - how many tx descriptors not processed
604 * @tx_ring: the ring of descriptors
606 * Since there is no access to the ring head register
607 * in XL710, we need to use our local copies
609 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
613 head = i40e_get_head(ring);
614 tail = readl(ring->tail);
617 return (head < tail) ?
618 tail - head : (tail + ring->count - head);
624 * i40e_check_tx_hang - Is there a hang in the Tx queue
625 * @tx_ring: the ring of descriptors
627 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
629 u32 tx_done = tx_ring->stats.packets;
630 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
631 u32 tx_pending = i40e_get_tx_pending(tx_ring);
632 struct i40e_pf *pf = tx_ring->vsi->back;
635 clear_check_for_tx_hang(tx_ring);
637 /* Check for a hung queue, but be thorough. This verifies
638 * that a transmit has been completed since the previous
639 * check AND there is at least one packet pending. The
640 * ARMED bit is set to indicate a potential hang. The
641 * bit is cleared if a pause frame is received to remove
642 * false hang detection due to PFC or 802.3x frames. By
643 * requiring this to fail twice we avoid races with
644 * PFC clearing the ARMED bit and conditions where we
645 * run the check_tx_hang logic with a transmit completion
646 * pending but without time to complete it yet.
648 if ((tx_done_old == tx_done) && tx_pending) {
649 /* make sure it is true for two checks in a row */
650 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
652 } else if (tx_done_old == tx_done &&
653 (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
654 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
655 dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
656 tx_pending, tx_ring->queue_index);
657 pf->tx_sluggish_count++;
659 /* update completed stats and disarm the hang check */
660 tx_ring->tx_stats.tx_done_old = tx_done;
661 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
667 #define WB_STRIDE 0x3
670 * i40e_clean_tx_irq - Reclaim resources after transmit completes
671 * @tx_ring: tx ring to clean
672 * @budget: how many cleans we're allowed
674 * Returns true if there's any budget left (e.g. the clean is finished)
676 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
678 u16 i = tx_ring->next_to_clean;
679 struct i40e_tx_buffer *tx_buf;
680 struct i40e_tx_desc *tx_head;
681 struct i40e_tx_desc *tx_desc;
682 unsigned int total_packets = 0;
683 unsigned int total_bytes = 0;
685 tx_buf = &tx_ring->tx_bi[i];
686 tx_desc = I40E_TX_DESC(tx_ring, i);
689 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
692 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
694 /* if next_to_watch is not set then there is no work pending */
698 /* prevent any other reads prior to eop_desc */
699 read_barrier_depends();
701 /* we have caught up to head, no work left to do */
702 if (tx_head == tx_desc)
705 /* clear next_to_watch to prevent false hangs */
706 tx_buf->next_to_watch = NULL;
708 /* update the statistics for this packet */
709 total_bytes += tx_buf->bytecount;
710 total_packets += tx_buf->gso_segs;
713 dev_consume_skb_any(tx_buf->skb);
715 /* unmap skb header data */
716 dma_unmap_single(tx_ring->dev,
717 dma_unmap_addr(tx_buf, dma),
718 dma_unmap_len(tx_buf, len),
721 /* clear tx_buffer data */
723 dma_unmap_len_set(tx_buf, len, 0);
725 /* unmap remaining buffers */
726 while (tx_desc != eop_desc) {
733 tx_buf = tx_ring->tx_bi;
734 tx_desc = I40E_TX_DESC(tx_ring, 0);
737 /* unmap any remaining paged data */
738 if (dma_unmap_len(tx_buf, len)) {
739 dma_unmap_page(tx_ring->dev,
740 dma_unmap_addr(tx_buf, dma),
741 dma_unmap_len(tx_buf, len),
743 dma_unmap_len_set(tx_buf, len, 0);
747 /* move us one more past the eop_desc for start of next pkt */
753 tx_buf = tx_ring->tx_bi;
754 tx_desc = I40E_TX_DESC(tx_ring, 0);
757 /* update budget accounting */
759 } while (likely(budget));
762 tx_ring->next_to_clean = i;
763 u64_stats_update_begin(&tx_ring->syncp);
764 tx_ring->stats.bytes += total_bytes;
765 tx_ring->stats.packets += total_packets;
766 u64_stats_update_end(&tx_ring->syncp);
767 tx_ring->q_vector->tx.total_bytes += total_bytes;
768 tx_ring->q_vector->tx.total_packets += total_packets;
770 /* check to see if there are any non-cache aligned descriptors
771 * waiting to be written back, and kick the hardware to force
772 * them to be written back in case of napi polling
775 !((i & WB_STRIDE) == WB_STRIDE) &&
776 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
777 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
778 tx_ring->arm_wb = true;
780 tx_ring->arm_wb = false;
782 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
783 /* schedule immediate reset if we believe we hung */
784 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
787 " next_to_use <%x>\n"
788 " next_to_clean <%x>\n",
790 tx_ring->queue_index,
791 tx_ring->next_to_use, i);
792 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
793 " time_stamp <%lx>\n"
795 tx_ring->tx_bi[i].time_stamp, jiffies);
797 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
799 dev_info(tx_ring->dev,
800 "tx hang detected on queue %d, reset requested\n",
801 tx_ring->queue_index);
803 /* do not fire the reset immediately, wait for the stack to
804 * decide we are truly stuck, also prevents every queue from
805 * simultaneously requesting a reset
808 /* the adapter is about to reset, no point in enabling polling */
812 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
813 tx_ring->queue_index),
814 total_packets, total_bytes);
816 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
817 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
818 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
819 /* Make sure that anybody stopping the queue after this
820 * sees the new next_to_clean.
823 if (__netif_subqueue_stopped(tx_ring->netdev,
824 tx_ring->queue_index) &&
825 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
826 netif_wake_subqueue(tx_ring->netdev,
827 tx_ring->queue_index);
828 ++tx_ring->tx_stats.restart_queue;
836 * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
837 * @vsi: the VSI we care about
838 * @q_vector: the vector on which to force writeback
841 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
843 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
844 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
845 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
846 /* allow 00 to be written to the index */
849 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
854 * i40e_set_new_dynamic_itr - Find new ITR level
855 * @rc: structure containing ring performance data
857 * Stores a new ITR value based on packets and byte counts during
858 * the last interrupt. The advantage of per interrupt computation
859 * is faster updates and more accurate ITR for the current traffic
860 * pattern. Constants in this function were computed based on
861 * theoretical maximum wire speed and thresholds were set based on
862 * testing data as well as attempting to minimize response time
863 * while increasing bulk throughput.
865 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
867 enum i40e_latency_range new_latency_range = rc->latency_range;
868 u32 new_itr = rc->itr;
871 if (rc->total_packets == 0 || !rc->itr)
874 /* simple throttlerate management
875 * 0-10MB/s lowest (100000 ints/s)
876 * 10-20MB/s low (20000 ints/s)
877 * 20-1249MB/s bulk (8000 ints/s)
879 bytes_per_int = rc->total_bytes / rc->itr;
881 case I40E_LOWEST_LATENCY:
882 if (bytes_per_int > 10)
883 new_latency_range = I40E_LOW_LATENCY;
885 case I40E_LOW_LATENCY:
886 if (bytes_per_int > 20)
887 new_latency_range = I40E_BULK_LATENCY;
888 else if (bytes_per_int <= 10)
889 new_latency_range = I40E_LOWEST_LATENCY;
891 case I40E_BULK_LATENCY:
892 if (bytes_per_int <= 20)
893 rc->latency_range = I40E_LOW_LATENCY;
897 switch (new_latency_range) {
898 case I40E_LOWEST_LATENCY:
899 new_itr = I40E_ITR_100K;
901 case I40E_LOW_LATENCY:
902 new_itr = I40E_ITR_20K;
904 case I40E_BULK_LATENCY:
905 new_itr = I40E_ITR_8K;
911 if (new_itr != rc->itr) {
912 /* do an exponential smoothing */
913 new_itr = (10 * new_itr * rc->itr) /
914 ((9 * new_itr) + rc->itr);
915 rc->itr = new_itr & I40E_MAX_ITR;
919 rc->total_packets = 0;
923 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
924 * @q_vector: the vector to adjust
926 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
928 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
929 struct i40e_hw *hw = &q_vector->vsi->back->hw;
933 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
934 old_itr = q_vector->rx.itr;
935 i40e_set_new_dynamic_itr(&q_vector->rx);
936 if (old_itr != q_vector->rx.itr)
937 wr32(hw, reg_addr, q_vector->rx.itr);
939 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
940 old_itr = q_vector->tx.itr;
941 i40e_set_new_dynamic_itr(&q_vector->tx);
942 if (old_itr != q_vector->tx.itr)
943 wr32(hw, reg_addr, q_vector->tx.itr);
947 * i40e_clean_programming_status - clean the programming status descriptor
948 * @rx_ring: the rx ring that has this descriptor
949 * @rx_desc: the rx descriptor written back by HW
951 * Flow director should handle FD_FILTER_STATUS to check its filter programming
952 * status being successful or not and take actions accordingly. FCoE should
953 * handle its context/filter programming/invalidation status and take actions.
956 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
957 union i40e_rx_desc *rx_desc)
962 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
963 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
964 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
966 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
967 i40e_fd_handle_status(rx_ring, rx_desc, id);
969 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
970 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
971 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
976 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
977 * @tx_ring: the tx ring to set up
979 * Return 0 on success, negative on error
981 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
983 struct device *dev = tx_ring->dev;
989 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
990 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
994 /* round up to nearest 4K */
995 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
996 /* add u32 for head writeback, align after this takes care of
997 * guaranteeing this is at least one cache line in size
999 tx_ring->size += sizeof(u32);
1000 tx_ring->size = ALIGN(tx_ring->size, 4096);
1001 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1002 &tx_ring->dma, GFP_KERNEL);
1003 if (!tx_ring->desc) {
1004 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1009 tx_ring->next_to_use = 0;
1010 tx_ring->next_to_clean = 0;
1014 kfree(tx_ring->tx_bi);
1015 tx_ring->tx_bi = NULL;
1020 * i40e_clean_rx_ring - Free Rx buffers
1021 * @rx_ring: ring to be cleaned
1023 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1025 struct device *dev = rx_ring->dev;
1026 struct i40e_rx_buffer *rx_bi;
1027 unsigned long bi_size;
1030 /* ring already cleared, nothing to do */
1031 if (!rx_ring->rx_bi)
1034 /* Free all the Rx ring sk_buffs */
1035 for (i = 0; i < rx_ring->count; i++) {
1036 rx_bi = &rx_ring->rx_bi[i];
1038 dma_unmap_single(dev,
1040 rx_ring->rx_buf_len,
1045 dev_kfree_skb(rx_bi->skb);
1049 if (rx_bi->page_dma) {
1054 rx_bi->page_dma = 0;
1056 __free_page(rx_bi->page);
1058 rx_bi->page_offset = 0;
1062 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1063 memset(rx_ring->rx_bi, 0, bi_size);
1065 /* Zero out the descriptor ring */
1066 memset(rx_ring->desc, 0, rx_ring->size);
1068 rx_ring->next_to_clean = 0;
1069 rx_ring->next_to_use = 0;
1073 * i40e_free_rx_resources - Free Rx resources
1074 * @rx_ring: ring to clean the resources from
1076 * Free all receive software resources
1078 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1080 i40e_clean_rx_ring(rx_ring);
1081 kfree(rx_ring->rx_bi);
1082 rx_ring->rx_bi = NULL;
1084 if (rx_ring->desc) {
1085 dma_free_coherent(rx_ring->dev, rx_ring->size,
1086 rx_ring->desc, rx_ring->dma);
1087 rx_ring->desc = NULL;
1092 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1093 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1095 * Returns 0 on success, negative on failure
1097 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1099 struct device *dev = rx_ring->dev;
1102 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1103 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1104 if (!rx_ring->rx_bi)
1107 u64_stats_init(&rx_ring->syncp);
1109 /* Round up to nearest 4K */
1110 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1111 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1112 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1113 rx_ring->size = ALIGN(rx_ring->size, 4096);
1114 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1115 &rx_ring->dma, GFP_KERNEL);
1117 if (!rx_ring->desc) {
1118 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1123 rx_ring->next_to_clean = 0;
1124 rx_ring->next_to_use = 0;
1128 kfree(rx_ring->rx_bi);
1129 rx_ring->rx_bi = NULL;
1134 * i40e_release_rx_desc - Store the new tail and head values
1135 * @rx_ring: ring to bump
1136 * @val: new head index
1138 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1140 rx_ring->next_to_use = val;
1141 /* Force memory writes to complete before letting h/w
1142 * know there are new descriptors to fetch. (Only
1143 * applicable for weak-ordered memory model archs,
1147 writel(val, rx_ring->tail);
1151 * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1152 * @rx_ring: ring to place buffers on
1153 * @cleaned_count: number of buffers to replace
1155 void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1157 u16 i = rx_ring->next_to_use;
1158 union i40e_rx_desc *rx_desc;
1159 struct i40e_rx_buffer *bi;
1160 struct sk_buff *skb;
1162 /* do nothing if no valid netdev defined */
1163 if (!rx_ring->netdev || !cleaned_count)
1166 while (cleaned_count--) {
1167 rx_desc = I40E_RX_DESC(rx_ring, i);
1168 bi = &rx_ring->rx_bi[i];
1172 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1173 rx_ring->rx_buf_len);
1175 rx_ring->rx_stats.alloc_buff_failed++;
1178 /* initialize queue mapping */
1179 skb_record_rx_queue(skb, rx_ring->queue_index);
1184 bi->dma = dma_map_single(rx_ring->dev,
1186 rx_ring->rx_buf_len,
1188 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1189 rx_ring->rx_stats.alloc_buff_failed++;
1195 if (ring_is_ps_enabled(rx_ring)) {
1197 bi->page = alloc_page(GFP_ATOMIC);
1199 rx_ring->rx_stats.alloc_page_failed++;
1204 if (!bi->page_dma) {
1205 /* use a half page if we're re-using */
1206 bi->page_offset ^= PAGE_SIZE / 2;
1207 bi->page_dma = dma_map_page(rx_ring->dev,
1212 if (dma_mapping_error(rx_ring->dev,
1214 rx_ring->rx_stats.alloc_page_failed++;
1220 /* Refresh the desc even if buffer_addrs didn't change
1221 * because each write-back erases this info.
1223 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1224 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1226 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1227 rx_desc->read.hdr_addr = 0;
1230 if (i == rx_ring->count)
1235 if (rx_ring->next_to_use != i)
1236 i40e_release_rx_desc(rx_ring, i);
1240 * i40e_receive_skb - Send a completed packet up the stack
1241 * @rx_ring: rx ring in play
1242 * @skb: packet to send up
1243 * @vlan_tag: vlan tag for packet
1245 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1246 struct sk_buff *skb, u16 vlan_tag)
1248 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1249 struct i40e_vsi *vsi = rx_ring->vsi;
1250 u64 flags = vsi->back->flags;
1252 if (vlan_tag & VLAN_VID_MASK)
1253 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1255 if (flags & I40E_FLAG_IN_NETPOLL)
1258 napi_gro_receive(&q_vector->napi, skb);
1262 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1263 * @vsi: the VSI we care about
1264 * @skb: skb currently being received and modified
1265 * @rx_status: status value of last descriptor in packet
1266 * @rx_error: error value of last descriptor in packet
1267 * @rx_ptype: ptype value of last descriptor in packet
1269 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1270 struct sk_buff *skb,
1275 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1276 bool ipv4 = false, ipv6 = false;
1277 bool ipv4_tunnel, ipv6_tunnel;
1282 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1283 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1284 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1285 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1287 skb->ip_summed = CHECKSUM_NONE;
1289 /* Rx csum enabled and ip headers found? */
1290 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1293 /* did the hardware decode the packet and checksum? */
1294 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1297 /* both known and outer_ip must be set for the below code to work */
1298 if (!(decoded.known && decoded.outer_ip))
1301 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1302 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1304 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1305 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1309 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1310 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1313 /* likely incorrect csum if alternate IP extension headers found */
1315 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1316 /* don't increment checksum err here, non-fatal err */
1319 /* there was some L4 error, count error and punt packet to the stack */
1320 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1323 /* handle packets that were not able to be checksummed due
1324 * to arrival speed, in this case the stack can compute
1327 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1330 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1331 * it in the driver, hardware does not do it for us.
1332 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1333 * so the total length of IPv4 header is IHL*4 bytes
1334 * The UDP_0 bit *may* bet set if the *inner* header is UDP
1337 skb->transport_header = skb->mac_header +
1338 sizeof(struct ethhdr) +
1339 (ip_hdr(skb)->ihl * 4);
1341 /* Add 4 bytes for VLAN tagged packets */
1342 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1343 skb->protocol == htons(ETH_P_8021AD))
1346 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1347 (udp_hdr(skb)->check != 0)) {
1348 rx_udp_csum = udp_csum(skb);
1350 csum = csum_tcpudp_magic(
1351 iph->saddr, iph->daddr,
1352 (skb->len - skb_transport_offset(skb)),
1353 IPPROTO_UDP, rx_udp_csum);
1355 if (udp_hdr(skb)->check != csum)
1358 } /* else its GRE and so no outer UDP header */
1361 skb->ip_summed = CHECKSUM_UNNECESSARY;
1362 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1367 vsi->back->hw_csum_rx_error++;
1371 * i40e_rx_hash - returns the hash value from the Rx descriptor
1372 * @ring: descriptor ring
1373 * @rx_desc: specific descriptor
1375 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1376 union i40e_rx_desc *rx_desc)
1378 const __le64 rss_mask =
1379 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1380 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1382 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1383 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1384 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1390 * i40e_ptype_to_hash - get a hash type
1391 * @ptype: the ptype value from the descriptor
1393 * Returns a hash type to be used by skb_set_hash
1395 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1397 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1400 return PKT_HASH_TYPE_NONE;
1402 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1403 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1404 return PKT_HASH_TYPE_L4;
1405 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1406 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1407 return PKT_HASH_TYPE_L3;
1409 return PKT_HASH_TYPE_L2;
1413 * i40e_clean_rx_irq - Reclaim resources after receive completes
1414 * @rx_ring: rx ring to clean
1415 * @budget: how many cleans we're allowed
1417 * Returns true if there's any budget left (e.g. the clean is finished)
1419 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1421 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1422 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1423 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1424 const int current_node = numa_node_id();
1425 struct i40e_vsi *vsi = rx_ring->vsi;
1426 u16 i = rx_ring->next_to_clean;
1427 union i40e_rx_desc *rx_desc;
1428 u32 rx_error, rx_status;
1435 rx_desc = I40E_RX_DESC(rx_ring, i);
1436 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1437 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1438 I40E_RXD_QW1_STATUS_SHIFT;
1440 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1441 union i40e_rx_desc *next_rxd;
1442 struct i40e_rx_buffer *rx_bi;
1443 struct sk_buff *skb;
1445 if (i40e_rx_is_programming_status(qword)) {
1446 i40e_clean_programming_status(rx_ring, rx_desc);
1447 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1450 rx_bi = &rx_ring->rx_bi[i];
1452 prefetch(skb->data);
1454 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1455 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1456 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1457 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1458 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1459 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1461 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1462 I40E_RXD_QW1_ERROR_SHIFT;
1463 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1464 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1466 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1467 I40E_RXD_QW1_PTYPE_SHIFT;
1470 /* This memory barrier is needed to keep us from reading
1471 * any other fields out of the rx_desc until we know the
1472 * STATUS_DD bit is set
1476 /* Get the header and possibly the whole packet
1477 * If this is an skb from previous receive dma will be 0
1483 len = I40E_RX_HDR_SIZE;
1485 len = rx_header_len;
1486 else if (rx_packet_len)
1487 len = rx_packet_len; /* 1buf/no split found */
1489 len = rx_header_len; /* split always mode */
1492 dma_unmap_single(rx_ring->dev,
1494 rx_ring->rx_buf_len,
1499 /* Get the rest of the data if this was a header split */
1500 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1502 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1507 skb->len += rx_packet_len;
1508 skb->data_len += rx_packet_len;
1509 skb->truesize += rx_packet_len;
1511 if ((page_count(rx_bi->page) == 1) &&
1512 (page_to_nid(rx_bi->page) == current_node))
1513 get_page(rx_bi->page);
1517 dma_unmap_page(rx_ring->dev,
1521 rx_bi->page_dma = 0;
1523 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1526 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1527 struct i40e_rx_buffer *next_buffer;
1529 next_buffer = &rx_ring->rx_bi[i];
1531 if (ring_is_ps_enabled(rx_ring)) {
1532 rx_bi->skb = next_buffer->skb;
1533 rx_bi->dma = next_buffer->dma;
1534 next_buffer->skb = skb;
1535 next_buffer->dma = 0;
1537 rx_ring->rx_stats.non_eop_descs++;
1541 /* ERR_MASK will only have valid bits if EOP set */
1542 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1543 dev_kfree_skb_any(skb);
1544 /* TODO: shouldn't we increment a counter indicating the
1550 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1551 i40e_ptype_to_hash(rx_ptype));
1552 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1553 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1554 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1555 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1556 rx_ring->last_rx_timestamp = jiffies;
1559 /* probably a little skewed due to removing CRC */
1560 total_rx_bytes += skb->len;
1563 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1565 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1567 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1568 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1571 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1572 dev_kfree_skb_any(skb);
1576 i40e_receive_skb(rx_ring, skb, vlan_tag);
1578 rx_ring->netdev->last_rx = jiffies;
1581 rx_desc->wb.qword1.status_error_len = 0;
1586 /* return some buffers to hardware, one at a time is too slow */
1587 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1588 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1592 /* use prefetched values */
1594 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1595 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1596 I40E_RXD_QW1_STATUS_SHIFT;
1599 rx_ring->next_to_clean = i;
1600 u64_stats_update_begin(&rx_ring->syncp);
1601 rx_ring->stats.packets += total_rx_packets;
1602 rx_ring->stats.bytes += total_rx_bytes;
1603 u64_stats_update_end(&rx_ring->syncp);
1604 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1605 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1608 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1614 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1615 * @napi: napi struct with our devices info in it
1616 * @budget: amount of work driver is allowed to do this pass, in packets
1618 * This function will clean all queues associated with a q_vector.
1620 * Returns the amount of work done
1622 int i40e_napi_poll(struct napi_struct *napi, int budget)
1624 struct i40e_q_vector *q_vector =
1625 container_of(napi, struct i40e_q_vector, napi);
1626 struct i40e_vsi *vsi = q_vector->vsi;
1627 struct i40e_ring *ring;
1628 bool clean_complete = true;
1629 bool arm_wb = false;
1630 int budget_per_ring;
1632 if (test_bit(__I40E_DOWN, &vsi->state)) {
1633 napi_complete(napi);
1637 /* Since the actual Tx work is minimal, we can give the Tx a larger
1638 * budget and be more aggressive about cleaning up the Tx descriptors.
1640 i40e_for_each_ring(ring, q_vector->tx) {
1641 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1642 arm_wb |= ring->arm_wb;
1645 /* We attempt to distribute budget to each Rx queue fairly, but don't
1646 * allow the budget to go below 1 because that would exit polling early.
1648 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1650 i40e_for_each_ring(ring, q_vector->rx)
1651 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1653 /* If work not completed, return budget and polling will return */
1654 if (!clean_complete) {
1656 i40e_force_wb(vsi, q_vector);
1660 /* Work is done so exit the polling mode and re-enable the interrupt */
1661 napi_complete(napi);
1662 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1663 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1664 i40e_update_dynamic_itr(q_vector);
1666 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1667 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1668 i40e_irq_dynamic_enable(vsi,
1669 q_vector->v_idx + vsi->base_vector);
1671 struct i40e_hw *hw = &vsi->back->hw;
1672 /* We re-enable the queue 0 cause, but
1673 * don't worry about dynamic_enable
1674 * because we left it on for the other
1675 * possible interrupts during napi
1677 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1678 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1679 wr32(hw, I40E_QINT_RQCTL(0), qval);
1681 qval = rd32(hw, I40E_QINT_TQCTL(0));
1682 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1683 wr32(hw, I40E_QINT_TQCTL(0), qval);
1685 i40e_irq_dynamic_enable_icr0(vsi->back);
1693 * i40e_atr - Add a Flow Director ATR filter
1694 * @tx_ring: ring to add programming descriptor to
1696 * @flags: send flags
1697 * @protocol: wire protocol
1699 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1700 u32 flags, __be16 protocol)
1702 struct i40e_filter_program_desc *fdir_desc;
1703 struct i40e_pf *pf = tx_ring->vsi->back;
1705 unsigned char *network;
1707 struct ipv6hdr *ipv6;
1711 u32 flex_ptype, dtype_cmd;
1714 /* make sure ATR is enabled */
1715 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1718 /* if sampling is disabled do nothing */
1719 if (!tx_ring->atr_sample_rate)
1722 /* snag network header to get L4 type and address */
1723 hdr.network = skb_network_header(skb);
1725 /* Currently only IPv4/IPv6 with TCP is supported */
1726 if (protocol == htons(ETH_P_IP)) {
1727 if (hdr.ipv4->protocol != IPPROTO_TCP)
1730 /* access ihl as a u8 to avoid unaligned access on ia64 */
1731 hlen = (hdr.network[0] & 0x0F) << 2;
1732 } else if (protocol == htons(ETH_P_IPV6)) {
1733 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1736 hlen = sizeof(struct ipv6hdr);
1741 th = (struct tcphdr *)(hdr.network + hlen);
1743 /* Due to lack of space, no more new filters can be programmed */
1744 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1747 tx_ring->atr_count++;
1749 /* sample on all syn/fin/rst packets or once every atr sample rate */
1753 (tx_ring->atr_count < tx_ring->atr_sample_rate))
1756 tx_ring->atr_count = 0;
1758 /* grab the next descriptor */
1759 i = tx_ring->next_to_use;
1760 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1763 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1765 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1766 I40E_TXD_FLTR_QW0_QINDEX_MASK;
1767 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1768 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1769 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1770 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1771 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1773 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1775 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1777 dtype_cmd |= (th->fin || th->rst) ?
1778 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1779 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1780 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1781 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1783 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1784 I40E_TXD_FLTR_QW1_DEST_SHIFT;
1786 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1787 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1789 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
1791 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
1792 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
1794 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1795 fdir_desc->rsvd = cpu_to_le32(0);
1796 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1797 fdir_desc->fd_id = cpu_to_le32(0);
1801 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1803 * @tx_ring: ring to send buffer on
1804 * @flags: the tx flags to be set
1806 * Checks the skb and set up correspondingly several generic transmit flags
1807 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1809 * Returns error code indicate the frame should be dropped upon error and the
1810 * otherwise returns 0 to indicate the flags has been set properly.
1813 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1814 struct i40e_ring *tx_ring,
1817 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1818 struct i40e_ring *tx_ring,
1822 __be16 protocol = skb->protocol;
1825 /* if we have a HW VLAN tag being added, default to the HW one */
1826 if (skb_vlan_tag_present(skb)) {
1827 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1828 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1829 /* else if it is a SW VLAN, check the next protocol and store the tag */
1830 } else if (protocol == htons(ETH_P_8021Q)) {
1831 struct vlan_hdr *vhdr, _vhdr;
1832 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1836 protocol = vhdr->h_vlan_encapsulated_proto;
1837 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1838 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1841 /* Insert 802.1p priority into VLAN header */
1842 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1843 (skb->priority != TC_PRIO_CONTROL)) {
1844 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1845 tx_flags |= (skb->priority & 0x7) <<
1846 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1847 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1848 struct vlan_ethhdr *vhdr;
1851 rc = skb_cow_head(skb, 0);
1854 vhdr = (struct vlan_ethhdr *)skb->data;
1855 vhdr->h_vlan_TCI = htons(tx_flags >>
1856 I40E_TX_FLAGS_VLAN_SHIFT);
1858 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1866 * i40e_tso - set up the tso context descriptor
1867 * @tx_ring: ptr to the ring to send
1868 * @skb: ptr to the skb we're sending
1869 * @tx_flags: the collected send information
1870 * @protocol: the send protocol
1871 * @hdr_len: ptr to the size of the packet header
1872 * @cd_tunneling: ptr to context descriptor bits
1874 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1876 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1877 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1878 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1880 u32 cd_cmd, cd_tso_len, cd_mss;
1881 struct ipv6hdr *ipv6h;
1882 struct tcphdr *tcph;
1887 if (!skb_is_gso(skb))
1890 err = skb_cow_head(skb, 0);
1894 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1895 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1897 if (iph->version == 4) {
1898 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1901 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1903 } else if (ipv6h->version == 6) {
1904 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1905 ipv6h->payload_len = 0;
1906 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1910 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1911 *hdr_len = (skb->encapsulation
1912 ? (skb_inner_transport_header(skb) - skb->data)
1913 : skb_transport_offset(skb)) + l4len;
1915 /* find the field values */
1916 cd_cmd = I40E_TX_CTX_DESC_TSO;
1917 cd_tso_len = skb->len - *hdr_len;
1918 cd_mss = skb_shinfo(skb)->gso_size;
1919 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1921 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1922 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1927 * i40e_tsyn - set up the tsyn context descriptor
1928 * @tx_ring: ptr to the ring to send
1929 * @skb: ptr to the skb we're sending
1930 * @tx_flags: the collected send information
1932 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1934 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1935 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1939 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1942 /* Tx timestamps cannot be sampled when doing TSO */
1943 if (tx_flags & I40E_TX_FLAGS_TSO)
1946 /* only timestamp the outbound packet if the user has requested it and
1947 * we are not already transmitting a packet to be timestamped
1949 pf = i40e_netdev_to_pf(tx_ring->netdev);
1950 if (!(pf->flags & I40E_FLAG_PTP))
1954 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
1955 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1956 pf->ptp_tx_skb = skb_get(skb);
1961 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1962 I40E_TXD_CTX_QW1_CMD_SHIFT;
1968 * i40e_tx_enable_csum - Enable Tx checksum offloads
1970 * @tx_flags: Tx flags currently set
1971 * @td_cmd: Tx descriptor command bits to set
1972 * @td_offset: Tx descriptor header offsets to set
1973 * @cd_tunneling: ptr to context desc bits
1975 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1976 u32 *td_cmd, u32 *td_offset,
1977 struct i40e_ring *tx_ring,
1980 struct ipv6hdr *this_ipv6_hdr;
1981 unsigned int this_tcp_hdrlen;
1982 struct iphdr *this_ip_hdr;
1983 u32 network_hdr_len;
1986 if (skb->encapsulation) {
1987 network_hdr_len = skb_inner_network_header_len(skb);
1988 this_ip_hdr = inner_ip_hdr(skb);
1989 this_ipv6_hdr = inner_ipv6_hdr(skb);
1990 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1992 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1994 if (tx_flags & I40E_TX_FLAGS_TSO) {
1995 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1996 ip_hdr(skb)->check = 0;
1999 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2001 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2002 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2003 if (tx_flags & I40E_TX_FLAGS_TSO)
2004 ip_hdr(skb)->check = 0;
2007 /* Now set the ctx descriptor fields */
2008 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2009 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2010 I40E_TXD_CTX_UDP_TUNNELING |
2011 ((skb_inner_network_offset(skb) -
2012 skb_transport_offset(skb)) >> 1) <<
2013 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2014 if (this_ip_hdr->version == 6) {
2015 tx_flags &= ~I40E_TX_FLAGS_IPV4;
2016 tx_flags |= I40E_TX_FLAGS_IPV6;
2019 network_hdr_len = skb_network_header_len(skb);
2020 this_ip_hdr = ip_hdr(skb);
2021 this_ipv6_hdr = ipv6_hdr(skb);
2022 this_tcp_hdrlen = tcp_hdrlen(skb);
2025 /* Enable IP checksum offloads */
2026 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2027 l4_hdr = this_ip_hdr->protocol;
2028 /* the stack computes the IP header already, the only time we
2029 * need the hardware to recompute it is in the case of TSO.
2031 if (tx_flags & I40E_TX_FLAGS_TSO) {
2032 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2033 this_ip_hdr->check = 0;
2035 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2037 /* Now set the td_offset for IP header length */
2038 *td_offset = (network_hdr_len >> 2) <<
2039 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2040 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2041 l4_hdr = this_ipv6_hdr->nexthdr;
2042 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2043 /* Now set the td_offset for IP header length */
2044 *td_offset = (network_hdr_len >> 2) <<
2045 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2047 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2048 *td_offset |= (skb_network_offset(skb) >> 1) <<
2049 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2051 /* Enable L4 checksum offloads */
2054 /* enable checksum offloads */
2055 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2056 *td_offset |= (this_tcp_hdrlen >> 2) <<
2057 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2060 /* enable SCTP checksum offload */
2061 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2062 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2063 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2066 /* enable UDP checksum offload */
2067 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2068 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2069 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2077 * i40e_create_tx_ctx Build the Tx context descriptor
2078 * @tx_ring: ring to create the descriptor on
2079 * @cd_type_cmd_tso_mss: Quad Word 1
2080 * @cd_tunneling: Quad Word 0 - bits 0-31
2081 * @cd_l2tag2: Quad Word 0 - bits 32-63
2083 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2084 const u64 cd_type_cmd_tso_mss,
2085 const u32 cd_tunneling, const u32 cd_l2tag2)
2087 struct i40e_tx_context_desc *context_desc;
2088 int i = tx_ring->next_to_use;
2090 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2091 !cd_tunneling && !cd_l2tag2)
2094 /* grab the next descriptor */
2095 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2098 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2100 /* cpu_to_le32 and assign to struct fields */
2101 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2102 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2103 context_desc->rsvd = cpu_to_le16(0);
2104 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2108 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2109 * @tx_ring: the ring to be checked
2110 * @size: the size buffer we want to assure is available
2112 * Returns -EBUSY if a stop is needed, else 0
2114 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2116 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2117 /* Memory barrier before checking head and tail */
2120 /* Check again in a case another CPU has just made room available. */
2121 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2124 /* A reprieve! - use start_queue because it doesn't call schedule */
2125 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2126 ++tx_ring->tx_stats.restart_queue;
2131 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2132 * @tx_ring: the ring to be checked
2133 * @size: the size buffer we want to assure is available
2135 * Returns 0 if stop is not needed
2138 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2140 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2143 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2145 return __i40e_maybe_stop_tx(tx_ring, size);
2149 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2151 * @tx_flags: collected send information
2152 * @hdr_len: size of the packet header
2154 * Note: Our HW can't scatter-gather more than 8 fragments to build
2155 * a packet on the wire and so we need to figure out the cases where we
2156 * need to linearize the skb.
2158 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
2161 struct skb_frag_struct *frag;
2162 bool linearize = false;
2163 unsigned int size = 0;
2167 num_frags = skb_shinfo(skb)->nr_frags;
2168 gso_segs = skb_shinfo(skb)->gso_segs;
2170 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2173 if (num_frags < (I40E_MAX_BUFFER_TXD))
2174 goto linearize_chk_done;
2175 /* try the simple math, if we have too many frags per segment */
2176 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2177 I40E_MAX_BUFFER_TXD) {
2179 goto linearize_chk_done;
2181 frag = &skb_shinfo(skb)->frags[0];
2183 /* we might still have more fragments per segment */
2185 size += skb_frag_size(frag);
2187 if (j == I40E_MAX_BUFFER_TXD) {
2188 if (size < skb_shinfo(skb)->gso_size) {
2193 size -= skb_shinfo(skb)->gso_size;
2199 } while (num_frags);
2201 if (num_frags >= I40E_MAX_BUFFER_TXD)
2210 * i40e_tx_map - Build the Tx descriptor
2211 * @tx_ring: ring to send buffer on
2213 * @first: first buffer info buffer to use
2214 * @tx_flags: collected send information
2215 * @hdr_len: size of the packet header
2216 * @td_cmd: the command field in the descriptor
2217 * @td_offset: offset for checksum or crc
2220 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2221 struct i40e_tx_buffer *first, u32 tx_flags,
2222 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2224 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2225 struct i40e_tx_buffer *first, u32 tx_flags,
2226 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2229 unsigned int data_len = skb->data_len;
2230 unsigned int size = skb_headlen(skb);
2231 struct skb_frag_struct *frag;
2232 struct i40e_tx_buffer *tx_bi;
2233 struct i40e_tx_desc *tx_desc;
2234 u16 i = tx_ring->next_to_use;
2239 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2240 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2241 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2242 I40E_TX_FLAGS_VLAN_SHIFT;
2245 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2246 gso_segs = skb_shinfo(skb)->gso_segs;
2250 /* multiply data chunks by size of headers */
2251 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2252 first->gso_segs = gso_segs;
2254 first->tx_flags = tx_flags;
2256 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2258 tx_desc = I40E_TX_DESC(tx_ring, i);
2261 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2262 if (dma_mapping_error(tx_ring->dev, dma))
2265 /* record length, and DMA address */
2266 dma_unmap_len_set(tx_bi, len, size);
2267 dma_unmap_addr_set(tx_bi, dma, dma);
2269 tx_desc->buffer_addr = cpu_to_le64(dma);
2271 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2272 tx_desc->cmd_type_offset_bsz =
2273 build_ctob(td_cmd, td_offset,
2274 I40E_MAX_DATA_PER_TXD, td_tag);
2278 if (i == tx_ring->count) {
2279 tx_desc = I40E_TX_DESC(tx_ring, 0);
2283 dma += I40E_MAX_DATA_PER_TXD;
2284 size -= I40E_MAX_DATA_PER_TXD;
2286 tx_desc->buffer_addr = cpu_to_le64(dma);
2289 if (likely(!data_len))
2292 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2297 if (i == tx_ring->count) {
2298 tx_desc = I40E_TX_DESC(tx_ring, 0);
2302 size = skb_frag_size(frag);
2305 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2308 tx_bi = &tx_ring->tx_bi[i];
2311 /* Place RS bit on last descriptor of any packet that spans across the
2312 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2314 if (((i & WB_STRIDE) != WB_STRIDE) &&
2315 (first <= &tx_ring->tx_bi[i]) &&
2316 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2317 tx_desc->cmd_type_offset_bsz =
2318 build_ctob(td_cmd, td_offset, size, td_tag) |
2319 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2320 I40E_TXD_QW1_CMD_SHIFT);
2322 tx_desc->cmd_type_offset_bsz =
2323 build_ctob(td_cmd, td_offset, size, td_tag) |
2324 cpu_to_le64((u64)I40E_TXD_CMD <<
2325 I40E_TXD_QW1_CMD_SHIFT);
2328 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2329 tx_ring->queue_index),
2332 /* set the timestamp */
2333 first->time_stamp = jiffies;
2335 /* Force memory writes to complete before letting h/w
2336 * know there are new descriptors to fetch. (Only
2337 * applicable for weak-ordered memory model archs,
2342 /* set next_to_watch value indicating a packet is present */
2343 first->next_to_watch = tx_desc;
2346 if (i == tx_ring->count)
2349 tx_ring->next_to_use = i;
2351 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2352 /* notify HW of packet */
2353 if (!skb->xmit_more ||
2354 netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2355 tx_ring->queue_index)))
2356 writel(i, tx_ring->tail);
2361 dev_info(tx_ring->dev, "TX DMA map failed\n");
2363 /* clear dma mappings for failed tx_bi map */
2365 tx_bi = &tx_ring->tx_bi[i];
2366 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2374 tx_ring->next_to_use = i;
2378 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2380 * @tx_ring: ring to send buffer on
2382 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2383 * there is not enough descriptors available in this ring since we need at least
2387 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2388 struct i40e_ring *tx_ring)
2390 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2391 struct i40e_ring *tx_ring)
2397 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2398 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2399 * + 4 desc gap to avoid the cache line where head is,
2400 * + 1 desc for context descriptor,
2401 * otherwise try next time
2403 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2404 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2406 count += TXD_USE_COUNT(skb_headlen(skb));
2407 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2408 tx_ring->tx_stats.tx_busy++;
2415 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2417 * @tx_ring: ring to send buffer on
2419 * Returns NETDEV_TX_OK if sent, else an error code
2421 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2422 struct i40e_ring *tx_ring)
2424 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2425 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2426 struct i40e_tx_buffer *first;
2434 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2435 return NETDEV_TX_BUSY;
2437 /* prepare the xmit flags */
2438 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2441 /* obtain protocol of skb */
2442 protocol = vlan_get_protocol(skb);
2444 /* record the location of the first descriptor for this packet */
2445 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2447 /* setup IPv4/IPv6 offloads */
2448 if (protocol == htons(ETH_P_IP))
2449 tx_flags |= I40E_TX_FLAGS_IPV4;
2450 else if (protocol == htons(ETH_P_IPV6))
2451 tx_flags |= I40E_TX_FLAGS_IPV6;
2453 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2454 &cd_type_cmd_tso_mss, &cd_tunneling);
2459 tx_flags |= I40E_TX_FLAGS_TSO;
2461 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2464 tx_flags |= I40E_TX_FLAGS_TSYN;
2466 if (i40e_chk_linearize(skb, tx_flags, hdr_len))
2467 if (skb_linearize(skb))
2470 skb_tx_timestamp(skb);
2472 /* always enable CRC insertion offload */
2473 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2475 /* Always offload the checksum, since it's in the data descriptor */
2476 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2477 tx_flags |= I40E_TX_FLAGS_CSUM;
2479 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2480 tx_ring, &cd_tunneling);
2483 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2484 cd_tunneling, cd_l2tag2);
2486 /* Add Flow Director ATR if it's enabled.
2488 * NOTE: this must always be directly before the data descriptor.
2490 i40e_atr(tx_ring, skb, tx_flags, protocol);
2492 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2495 return NETDEV_TX_OK;
2498 dev_kfree_skb_any(skb);
2499 return NETDEV_TX_OK;
2503 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2505 * @netdev: network interface device structure
2507 * Returns NETDEV_TX_OK if sent, else an error code
2509 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2511 struct i40e_netdev_priv *np = netdev_priv(netdev);
2512 struct i40e_vsi *vsi = np->vsi;
2513 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2515 /* hardware can't handle really short frames, hardware padding works
2518 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2519 return NETDEV_TX_OK;
2521 return i40e_xmit_frame_ring(skb, tx_ring);