Merge branch 'gadget' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include "i40e.h"
29 #include "i40e_prototype.h"
30
31 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
32                                 u32 td_tag)
33 {
34         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
35                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
36                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
37                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
38                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
39 }
40
41 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
42 #define I40E_FD_CLEAN_DELAY 10
43 /**
44  * i40e_program_fdir_filter - Program a Flow Director filter
45  * @fdir_data: Packet data that will be filter parameters
46  * @raw_packet: the pre-allocated packet buffer for FDir
47  * @pf: The pf pointer
48  * @add: True for add/update, False for remove
49  **/
50 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
51                              struct i40e_pf *pf, bool add)
52 {
53         struct i40e_filter_program_desc *fdir_desc;
54         struct i40e_tx_buffer *tx_buf, *first;
55         struct i40e_tx_desc *tx_desc;
56         struct i40e_ring *tx_ring;
57         unsigned int fpt, dcc;
58         struct i40e_vsi *vsi;
59         struct device *dev;
60         dma_addr_t dma;
61         u32 td_cmd = 0;
62         u16 delay = 0;
63         u16 i;
64
65         /* find existing FDIR VSI */
66         vsi = NULL;
67         for (i = 0; i < pf->num_alloc_vsi; i++)
68                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
69                         vsi = pf->vsi[i];
70         if (!vsi)
71                 return -ENOENT;
72
73         tx_ring = vsi->tx_rings[0];
74         dev = tx_ring->dev;
75
76         /* we need two descriptors to add/del a filter and we can wait */
77         do {
78                 if (I40E_DESC_UNUSED(tx_ring) > 1)
79                         break;
80                 msleep_interruptible(1);
81                 delay++;
82         } while (delay < I40E_FD_CLEAN_DELAY);
83
84         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
85                 return -EAGAIN;
86
87         dma = dma_map_single(dev, raw_packet,
88                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
89         if (dma_mapping_error(dev, dma))
90                 goto dma_fail;
91
92         /* grab the next descriptor */
93         i = tx_ring->next_to_use;
94         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
95         first = &tx_ring->tx_bi[i];
96         memset(first, 0, sizeof(struct i40e_tx_buffer));
97
98         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
99
100         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
101               I40E_TXD_FLTR_QW0_QINDEX_MASK;
102
103         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
104                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
105
106         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
107                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
108
109         /* Use LAN VSI Id if not programmed by user */
110         if (fdir_data->dest_vsi == 0)
111                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
112                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
113         else
114                 fpt |= ((u32)fdir_data->dest_vsi <<
115                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
116                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
117
118         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
119
120         if (add)
121                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
122                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
123         else
124                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
125                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
126
127         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
128                I40E_TXD_FLTR_QW1_DEST_MASK;
129
130         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
131                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
132
133         if (fdir_data->cnt_index != 0) {
134                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
135                 dcc |= ((u32)fdir_data->cnt_index <<
136                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
137                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
138         }
139
140         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
141         fdir_desc->rsvd = cpu_to_le32(0);
142         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
143         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
144
145         /* Now program a dummy descriptor */
146         i = tx_ring->next_to_use;
147         tx_desc = I40E_TX_DESC(tx_ring, i);
148         tx_buf = &tx_ring->tx_bi[i];
149
150         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
151
152         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
153
154         /* record length, and DMA address */
155         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
156         dma_unmap_addr_set(tx_buf, dma, dma);
157
158         tx_desc->buffer_addr = cpu_to_le64(dma);
159         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
160
161         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
162         tx_buf->raw_buf = (void *)raw_packet;
163
164         tx_desc->cmd_type_offset_bsz =
165                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
166
167         /* set the timestamp */
168         tx_buf->time_stamp = jiffies;
169
170         /* Force memory writes to complete before letting h/w
171          * know there are new descriptors to fetch.
172          */
173         wmb();
174
175         /* Mark the data descriptor to be watched */
176         first->next_to_watch = tx_desc;
177
178         writel(tx_ring->next_to_use, tx_ring->tail);
179         return 0;
180
181 dma_fail:
182         return -1;
183 }
184
185 #define IP_HEADER_OFFSET 14
186 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
187 /**
188  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
189  * @vsi: pointer to the targeted VSI
190  * @fd_data: the flow director data required for the FDir descriptor
191  * @add: true adds a filter, false removes it
192  *
193  * Returns 0 if the filters were successfully added or removed
194  **/
195 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
196                                    struct i40e_fdir_filter *fd_data,
197                                    bool add)
198 {
199         struct i40e_pf *pf = vsi->back;
200         struct udphdr *udp;
201         struct iphdr *ip;
202         bool err = false;
203         u8 *raw_packet;
204         int ret;
205         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
206                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
207                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
208
209         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
210         if (!raw_packet)
211                 return -ENOMEM;
212         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
213
214         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
215         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
216               + sizeof(struct iphdr));
217
218         ip->daddr = fd_data->dst_ip[0];
219         udp->dest = fd_data->dst_port;
220         ip->saddr = fd_data->src_ip[0];
221         udp->source = fd_data->src_port;
222
223         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
224         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
225         if (ret) {
226                 dev_info(&pf->pdev->dev,
227                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
228                          fd_data->pctype, fd_data->fd_id, ret);
229                 err = true;
230         } else {
231                 if (add)
232                         dev_info(&pf->pdev->dev,
233                                  "Filter OK for PCTYPE %d loc = %d\n",
234                                  fd_data->pctype, fd_data->fd_id);
235                 else
236                         dev_info(&pf->pdev->dev,
237                                  "Filter deleted for PCTYPE %d loc = %d\n",
238                                  fd_data->pctype, fd_data->fd_id);
239         }
240         return err ? -EOPNOTSUPP : 0;
241 }
242
243 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
244 /**
245  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
246  * @vsi: pointer to the targeted VSI
247  * @fd_data: the flow director data required for the FDir descriptor
248  * @add: true adds a filter, false removes it
249  *
250  * Returns 0 if the filters were successfully added or removed
251  **/
252 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
253                                    struct i40e_fdir_filter *fd_data,
254                                    bool add)
255 {
256         struct i40e_pf *pf = vsi->back;
257         struct tcphdr *tcp;
258         struct iphdr *ip;
259         bool err = false;
260         u8 *raw_packet;
261         int ret;
262         /* Dummy packet */
263         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
264                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
265                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
266                 0x0, 0x72, 0, 0, 0, 0};
267
268         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
269         if (!raw_packet)
270                 return -ENOMEM;
271         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
272
273         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
274         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
275               + sizeof(struct iphdr));
276
277         ip->daddr = fd_data->dst_ip[0];
278         tcp->dest = fd_data->dst_port;
279         ip->saddr = fd_data->src_ip[0];
280         tcp->source = fd_data->src_port;
281
282         if (add) {
283                 pf->fd_tcp_rule++;
284                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
285                         dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
286                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
287                 }
288         } else {
289                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
290                                   (pf->fd_tcp_rule - 1) : 0;
291                 if (pf->fd_tcp_rule == 0) {
292                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
293                         dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294                 }
295         }
296
297         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300         if (ret) {
301                 dev_info(&pf->pdev->dev,
302                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303                          fd_data->pctype, fd_data->fd_id, ret);
304                 err = true;
305         } else {
306                 if (add)
307                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308                                  fd_data->pctype, fd_data->fd_id);
309                 else
310                         dev_info(&pf->pdev->dev,
311                                  "Filter deleted for PCTYPE %d loc = %d\n",
312                                  fd_data->pctype, fd_data->fd_id);
313         }
314
315         return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320  * a specific flow spec
321  * @vsi: pointer to the targeted VSI
322  * @fd_data: the flow director data required for the FDir descriptor
323  * @add: true adds a filter, false removes it
324  *
325  * Always returns -EOPNOTSUPP
326  **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328                                     struct i40e_fdir_filter *fd_data,
329                                     bool add)
330 {
331         return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337  * a specific flow spec
338  * @vsi: pointer to the targeted VSI
339  * @fd_data: the flow director data required for the FDir descriptor
340  * @add: true adds a filter, false removes it
341  *
342  * Returns 0 if the filters were successfully added or removed
343  **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345                                   struct i40e_fdir_filter *fd_data,
346                                   bool add)
347 {
348         struct i40e_pf *pf = vsi->back;
349         struct iphdr *ip;
350         bool err = false;
351         u8 *raw_packet;
352         int ret;
353         int i;
354         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356                 0, 0, 0, 0};
357
358         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361                 if (!raw_packet)
362                         return -ENOMEM;
363                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366                 ip->saddr = fd_data->src_ip[0];
367                 ip->daddr = fd_data->dst_ip[0];
368                 ip->protocol = 0;
369
370                 fd_data->pctype = i;
371                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373                 if (ret) {
374                         dev_info(&pf->pdev->dev,
375                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376                                  fd_data->pctype, fd_data->fd_id, ret);
377                         err = true;
378                 } else {
379                         if (add)
380                                 dev_info(&pf->pdev->dev,
381                                          "Filter OK for PCTYPE %d loc = %d\n",
382                                          fd_data->pctype, fd_data->fd_id);
383                         else
384                                 dev_info(&pf->pdev->dev,
385                                          "Filter deleted for PCTYPE %d loc = %d\n",
386                                          fd_data->pctype, fd_data->fd_id);
387                 }
388         }
389
390         return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395  * @vsi: pointer to the targeted VSI
396  * @cmd: command to get or set RX flow classification rules
397  * @add: true adds a filter, false removes it
398  *
399  **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401                       struct i40e_fdir_filter *input, bool add)
402 {
403         struct i40e_pf *pf = vsi->back;
404         int ret;
405
406         switch (input->flow_type & ~FLOW_EXT) {
407         case TCP_V4_FLOW:
408                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409                 break;
410         case UDP_V4_FLOW:
411                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412                 break;
413         case SCTP_V4_FLOW:
414                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415                 break;
416         case IPV4_FLOW:
417                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418                 break;
419         case IP_USER_FLOW:
420                 switch (input->ip4_proto) {
421                 case IPPROTO_TCP:
422                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423                         break;
424                 case IPPROTO_UDP:
425                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426                         break;
427                 case IPPROTO_SCTP:
428                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429                         break;
430                 default:
431                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432                         break;
433                 }
434                 break;
435         default:
436                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437                          input->flow_type);
438                 ret = -EINVAL;
439         }
440
441         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442         return ret;
443 }
444
445 /**
446  * i40e_fd_handle_status - check the Programming Status for FD
447  * @rx_ring: the Rx ring for this descriptor
448  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449  * @prog_id: the id originally used for programming
450  *
451  * This is used to verify if the FD programming or invalidation
452  * requested by SW to the HW is successful or not and take actions accordingly.
453  **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455                                   union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457         struct i40e_pf *pf = rx_ring->vsi->back;
458         struct pci_dev *pdev = pf->pdev;
459         u32 fcnt_prog, fcnt_avail;
460         u32 error;
461         u64 qw;
462
463         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467         if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469                     (I40E_DEBUG_FD & pf->hw.debug_mask))
470                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471                                  rx_desc->wb.qword0.hi_dword.fd_id);
472
473                 pf->fd_add_err++;
474                 /* store the current atr filter count */
475                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
476
477                 /* filter programming failed most likely due to table full */
478                 fcnt_prog = i40e_get_cur_guaranteed_fd_count(pf);
479                 fcnt_avail = pf->fdir_pf_filter_count;
480                 /* If ATR is running fcnt_prog can quickly change,
481                  * if we are very close to full, it makes sense to disable
482                  * FD ATR/SB and then re-enable it when there is room.
483                  */
484                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
485                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
486                             !(pf->auto_disable_flags &
487                                      I40E_FLAG_FD_SB_ENABLED)) {
488                                 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
489                                 pf->auto_disable_flags |=
490                                                         I40E_FLAG_FD_SB_ENABLED;
491                         }
492                 } else {
493                         dev_info(&pdev->dev,
494                                 "FD filter programming failed due to incorrect filter parameters\n");
495                 }
496         } else if (error ==
497                           (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
498                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
499                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
500                                  rx_desc->wb.qword0.hi_dword.fd_id);
501         }
502 }
503
504 /**
505  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
506  * @ring:      the ring that owns the buffer
507  * @tx_buffer: the buffer to free
508  **/
509 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
510                                             struct i40e_tx_buffer *tx_buffer)
511 {
512         if (tx_buffer->skb) {
513                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
514                         kfree(tx_buffer->raw_buf);
515                 else
516                         dev_kfree_skb_any(tx_buffer->skb);
517
518                 if (dma_unmap_len(tx_buffer, len))
519                         dma_unmap_single(ring->dev,
520                                          dma_unmap_addr(tx_buffer, dma),
521                                          dma_unmap_len(tx_buffer, len),
522                                          DMA_TO_DEVICE);
523         } else if (dma_unmap_len(tx_buffer, len)) {
524                 dma_unmap_page(ring->dev,
525                                dma_unmap_addr(tx_buffer, dma),
526                                dma_unmap_len(tx_buffer, len),
527                                DMA_TO_DEVICE);
528         }
529         tx_buffer->next_to_watch = NULL;
530         tx_buffer->skb = NULL;
531         dma_unmap_len_set(tx_buffer, len, 0);
532         /* tx_buffer must be completely set up in the transmit path */
533 }
534
535 /**
536  * i40e_clean_tx_ring - Free any empty Tx buffers
537  * @tx_ring: ring to be cleaned
538  **/
539 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
540 {
541         unsigned long bi_size;
542         u16 i;
543
544         /* ring already cleared, nothing to do */
545         if (!tx_ring->tx_bi)
546                 return;
547
548         /* Free all the Tx ring sk_buffs */
549         for (i = 0; i < tx_ring->count; i++)
550                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
551
552         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
553         memset(tx_ring->tx_bi, 0, bi_size);
554
555         /* Zero out the descriptor ring */
556         memset(tx_ring->desc, 0, tx_ring->size);
557
558         tx_ring->next_to_use = 0;
559         tx_ring->next_to_clean = 0;
560
561         if (!tx_ring->netdev)
562                 return;
563
564         /* cleanup Tx queue statistics */
565         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
566                                                   tx_ring->queue_index));
567 }
568
569 /**
570  * i40e_free_tx_resources - Free Tx resources per queue
571  * @tx_ring: Tx descriptor ring for a specific queue
572  *
573  * Free all transmit software resources
574  **/
575 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
576 {
577         i40e_clean_tx_ring(tx_ring);
578         kfree(tx_ring->tx_bi);
579         tx_ring->tx_bi = NULL;
580
581         if (tx_ring->desc) {
582                 dma_free_coherent(tx_ring->dev, tx_ring->size,
583                                   tx_ring->desc, tx_ring->dma);
584                 tx_ring->desc = NULL;
585         }
586 }
587
588 /**
589  * i40e_get_head - Retrieve head from head writeback
590  * @tx_ring:  tx ring to fetch head of
591  *
592  * Returns value of Tx ring head based on value stored
593  * in head write-back location
594  **/
595 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
596 {
597         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
598
599         return le32_to_cpu(*(volatile __le32 *)head);
600 }
601
602 /**
603  * i40e_get_tx_pending - how many tx descriptors not processed
604  * @tx_ring: the ring of descriptors
605  *
606  * Since there is no access to the ring head register
607  * in XL710, we need to use our local copies
608  **/
609 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
610 {
611         u32 head, tail;
612
613         head = i40e_get_head(ring);
614         tail = readl(ring->tail);
615
616         if (head != tail)
617                 return (head < tail) ?
618                         tail - head : (tail + ring->count - head);
619
620         return 0;
621 }
622
623 /**
624  * i40e_check_tx_hang - Is there a hang in the Tx queue
625  * @tx_ring: the ring of descriptors
626  **/
627 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
628 {
629         u32 tx_done = tx_ring->stats.packets;
630         u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
631         u32 tx_pending = i40e_get_tx_pending(tx_ring);
632         struct i40e_pf *pf = tx_ring->vsi->back;
633         bool ret = false;
634
635         clear_check_for_tx_hang(tx_ring);
636
637         /* Check for a hung queue, but be thorough. This verifies
638          * that a transmit has been completed since the previous
639          * check AND there is at least one packet pending. The
640          * ARMED bit is set to indicate a potential hang. The
641          * bit is cleared if a pause frame is received to remove
642          * false hang detection due to PFC or 802.3x frames. By
643          * requiring this to fail twice we avoid races with
644          * PFC clearing the ARMED bit and conditions where we
645          * run the check_tx_hang logic with a transmit completion
646          * pending but without time to complete it yet.
647          */
648         if ((tx_done_old == tx_done) && tx_pending) {
649                 /* make sure it is true for two checks in a row */
650                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
651                                        &tx_ring->state);
652         } else if (tx_done_old == tx_done &&
653                    (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
654                 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
655                         dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
656                                  tx_pending, tx_ring->queue_index);
657                 pf->tx_sluggish_count++;
658         } else {
659                 /* update completed stats and disarm the hang check */
660                 tx_ring->tx_stats.tx_done_old = tx_done;
661                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
662         }
663
664         return ret;
665 }
666
667 #define WB_STRIDE 0x3
668
669 /**
670  * i40e_clean_tx_irq - Reclaim resources after transmit completes
671  * @tx_ring:  tx ring to clean
672  * @budget:   how many cleans we're allowed
673  *
674  * Returns true if there's any budget left (e.g. the clean is finished)
675  **/
676 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
677 {
678         u16 i = tx_ring->next_to_clean;
679         struct i40e_tx_buffer *tx_buf;
680         struct i40e_tx_desc *tx_head;
681         struct i40e_tx_desc *tx_desc;
682         unsigned int total_packets = 0;
683         unsigned int total_bytes = 0;
684
685         tx_buf = &tx_ring->tx_bi[i];
686         tx_desc = I40E_TX_DESC(tx_ring, i);
687         i -= tx_ring->count;
688
689         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
690
691         do {
692                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
693
694                 /* if next_to_watch is not set then there is no work pending */
695                 if (!eop_desc)
696                         break;
697
698                 /* prevent any other reads prior to eop_desc */
699                 read_barrier_depends();
700
701                 /* we have caught up to head, no work left to do */
702                 if (tx_head == tx_desc)
703                         break;
704
705                 /* clear next_to_watch to prevent false hangs */
706                 tx_buf->next_to_watch = NULL;
707
708                 /* update the statistics for this packet */
709                 total_bytes += tx_buf->bytecount;
710                 total_packets += tx_buf->gso_segs;
711
712                 /* free the skb */
713                 dev_consume_skb_any(tx_buf->skb);
714
715                 /* unmap skb header data */
716                 dma_unmap_single(tx_ring->dev,
717                                  dma_unmap_addr(tx_buf, dma),
718                                  dma_unmap_len(tx_buf, len),
719                                  DMA_TO_DEVICE);
720
721                 /* clear tx_buffer data */
722                 tx_buf->skb = NULL;
723                 dma_unmap_len_set(tx_buf, len, 0);
724
725                 /* unmap remaining buffers */
726                 while (tx_desc != eop_desc) {
727
728                         tx_buf++;
729                         tx_desc++;
730                         i++;
731                         if (unlikely(!i)) {
732                                 i -= tx_ring->count;
733                                 tx_buf = tx_ring->tx_bi;
734                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
735                         }
736
737                         /* unmap any remaining paged data */
738                         if (dma_unmap_len(tx_buf, len)) {
739                                 dma_unmap_page(tx_ring->dev,
740                                                dma_unmap_addr(tx_buf, dma),
741                                                dma_unmap_len(tx_buf, len),
742                                                DMA_TO_DEVICE);
743                                 dma_unmap_len_set(tx_buf, len, 0);
744                         }
745                 }
746
747                 /* move us one more past the eop_desc for start of next pkt */
748                 tx_buf++;
749                 tx_desc++;
750                 i++;
751                 if (unlikely(!i)) {
752                         i -= tx_ring->count;
753                         tx_buf = tx_ring->tx_bi;
754                         tx_desc = I40E_TX_DESC(tx_ring, 0);
755                 }
756
757                 /* update budget accounting */
758                 budget--;
759         } while (likely(budget));
760
761         i += tx_ring->count;
762         tx_ring->next_to_clean = i;
763         u64_stats_update_begin(&tx_ring->syncp);
764         tx_ring->stats.bytes += total_bytes;
765         tx_ring->stats.packets += total_packets;
766         u64_stats_update_end(&tx_ring->syncp);
767         tx_ring->q_vector->tx.total_bytes += total_bytes;
768         tx_ring->q_vector->tx.total_packets += total_packets;
769
770         /* check to see if there are any non-cache aligned descriptors
771          * waiting to be written back, and kick the hardware to force
772          * them to be written back in case of napi polling
773          */
774         if (budget &&
775             !((i & WB_STRIDE) == WB_STRIDE) &&
776             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
777             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
778                 tx_ring->arm_wb = true;
779         else
780                 tx_ring->arm_wb = false;
781
782         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
783                 /* schedule immediate reset if we believe we hung */
784                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
785                          "  VSI                  <%d>\n"
786                          "  Tx Queue             <%d>\n"
787                          "  next_to_use          <%x>\n"
788                          "  next_to_clean        <%x>\n",
789                          tx_ring->vsi->seid,
790                          tx_ring->queue_index,
791                          tx_ring->next_to_use, i);
792                 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
793                          "  time_stamp           <%lx>\n"
794                          "  jiffies              <%lx>\n",
795                          tx_ring->tx_bi[i].time_stamp, jiffies);
796
797                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
798
799                 dev_info(tx_ring->dev,
800                          "tx hang detected on queue %d, reset requested\n",
801                          tx_ring->queue_index);
802
803                 /* do not fire the reset immediately, wait for the stack to
804                  * decide we are truly stuck, also prevents every queue from
805                  * simultaneously requesting a reset
806                  */
807
808                 /* the adapter is about to reset, no point in enabling polling */
809                 budget = 1;
810         }
811
812         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
813                                                       tx_ring->queue_index),
814                                   total_packets, total_bytes);
815
816 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
817         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
818                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
819                 /* Make sure that anybody stopping the queue after this
820                  * sees the new next_to_clean.
821                  */
822                 smp_mb();
823                 if (__netif_subqueue_stopped(tx_ring->netdev,
824                                              tx_ring->queue_index) &&
825                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
826                         netif_wake_subqueue(tx_ring->netdev,
827                                             tx_ring->queue_index);
828                         ++tx_ring->tx_stats.restart_queue;
829                 }
830         }
831
832         return !!budget;
833 }
834
835 /**
836  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
837  * @vsi: the VSI we care about
838  * @q_vector: the vector  on which to force writeback
839  *
840  **/
841 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
842 {
843         u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
844                   I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
845                   I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
846                   /* allow 00 to be written to the index */
847
848         wr32(&vsi->back->hw,
849              I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
850              val);
851 }
852
853 /**
854  * i40e_set_new_dynamic_itr - Find new ITR level
855  * @rc: structure containing ring performance data
856  *
857  * Stores a new ITR value based on packets and byte counts during
858  * the last interrupt.  The advantage of per interrupt computation
859  * is faster updates and more accurate ITR for the current traffic
860  * pattern.  Constants in this function were computed based on
861  * theoretical maximum wire speed and thresholds were set based on
862  * testing data as well as attempting to minimize response time
863  * while increasing bulk throughput.
864  **/
865 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
866 {
867         enum i40e_latency_range new_latency_range = rc->latency_range;
868         u32 new_itr = rc->itr;
869         int bytes_per_int;
870
871         if (rc->total_packets == 0 || !rc->itr)
872                 return;
873
874         /* simple throttlerate management
875          *   0-10MB/s   lowest (100000 ints/s)
876          *  10-20MB/s   low    (20000 ints/s)
877          *  20-1249MB/s bulk   (8000 ints/s)
878          */
879         bytes_per_int = rc->total_bytes / rc->itr;
880         switch (rc->itr) {
881         case I40E_LOWEST_LATENCY:
882                 if (bytes_per_int > 10)
883                         new_latency_range = I40E_LOW_LATENCY;
884                 break;
885         case I40E_LOW_LATENCY:
886                 if (bytes_per_int > 20)
887                         new_latency_range = I40E_BULK_LATENCY;
888                 else if (bytes_per_int <= 10)
889                         new_latency_range = I40E_LOWEST_LATENCY;
890                 break;
891         case I40E_BULK_LATENCY:
892                 if (bytes_per_int <= 20)
893                         rc->latency_range = I40E_LOW_LATENCY;
894                 break;
895         }
896
897         switch (new_latency_range) {
898         case I40E_LOWEST_LATENCY:
899                 new_itr = I40E_ITR_100K;
900                 break;
901         case I40E_LOW_LATENCY:
902                 new_itr = I40E_ITR_20K;
903                 break;
904         case I40E_BULK_LATENCY:
905                 new_itr = I40E_ITR_8K;
906                 break;
907         default:
908                 break;
909         }
910
911         if (new_itr != rc->itr) {
912                 /* do an exponential smoothing */
913                 new_itr = (10 * new_itr * rc->itr) /
914                           ((9 * new_itr) + rc->itr);
915                 rc->itr = new_itr & I40E_MAX_ITR;
916         }
917
918         rc->total_bytes = 0;
919         rc->total_packets = 0;
920 }
921
922 /**
923  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
924  * @q_vector: the vector to adjust
925  **/
926 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
927 {
928         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
929         struct i40e_hw *hw = &q_vector->vsi->back->hw;
930         u32 reg_addr;
931         u16 old_itr;
932
933         reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
934         old_itr = q_vector->rx.itr;
935         i40e_set_new_dynamic_itr(&q_vector->rx);
936         if (old_itr != q_vector->rx.itr)
937                 wr32(hw, reg_addr, q_vector->rx.itr);
938
939         reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
940         old_itr = q_vector->tx.itr;
941         i40e_set_new_dynamic_itr(&q_vector->tx);
942         if (old_itr != q_vector->tx.itr)
943                 wr32(hw, reg_addr, q_vector->tx.itr);
944 }
945
946 /**
947  * i40e_clean_programming_status - clean the programming status descriptor
948  * @rx_ring: the rx ring that has this descriptor
949  * @rx_desc: the rx descriptor written back by HW
950  *
951  * Flow director should handle FD_FILTER_STATUS to check its filter programming
952  * status being successful or not and take actions accordingly. FCoE should
953  * handle its context/filter programming/invalidation status and take actions.
954  *
955  **/
956 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
957                                           union i40e_rx_desc *rx_desc)
958 {
959         u64 qw;
960         u8 id;
961
962         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
963         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
964                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
965
966         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
967                 i40e_fd_handle_status(rx_ring, rx_desc, id);
968 #ifdef I40E_FCOE
969         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
970                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
971                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
972 #endif
973 }
974
975 /**
976  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
977  * @tx_ring: the tx ring to set up
978  *
979  * Return 0 on success, negative on error
980  **/
981 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
982 {
983         struct device *dev = tx_ring->dev;
984         int bi_size;
985
986         if (!dev)
987                 return -ENOMEM;
988
989         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
990         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
991         if (!tx_ring->tx_bi)
992                 goto err;
993
994         /* round up to nearest 4K */
995         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
996         /* add u32 for head writeback, align after this takes care of
997          * guaranteeing this is at least one cache line in size
998          */
999         tx_ring->size += sizeof(u32);
1000         tx_ring->size = ALIGN(tx_ring->size, 4096);
1001         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1002                                            &tx_ring->dma, GFP_KERNEL);
1003         if (!tx_ring->desc) {
1004                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1005                          tx_ring->size);
1006                 goto err;
1007         }
1008
1009         tx_ring->next_to_use = 0;
1010         tx_ring->next_to_clean = 0;
1011         return 0;
1012
1013 err:
1014         kfree(tx_ring->tx_bi);
1015         tx_ring->tx_bi = NULL;
1016         return -ENOMEM;
1017 }
1018
1019 /**
1020  * i40e_clean_rx_ring - Free Rx buffers
1021  * @rx_ring: ring to be cleaned
1022  **/
1023 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1024 {
1025         struct device *dev = rx_ring->dev;
1026         struct i40e_rx_buffer *rx_bi;
1027         unsigned long bi_size;
1028         u16 i;
1029
1030         /* ring already cleared, nothing to do */
1031         if (!rx_ring->rx_bi)
1032                 return;
1033
1034         /* Free all the Rx ring sk_buffs */
1035         for (i = 0; i < rx_ring->count; i++) {
1036                 rx_bi = &rx_ring->rx_bi[i];
1037                 if (rx_bi->dma) {
1038                         dma_unmap_single(dev,
1039                                          rx_bi->dma,
1040                                          rx_ring->rx_buf_len,
1041                                          DMA_FROM_DEVICE);
1042                         rx_bi->dma = 0;
1043                 }
1044                 if (rx_bi->skb) {
1045                         dev_kfree_skb(rx_bi->skb);
1046                         rx_bi->skb = NULL;
1047                 }
1048                 if (rx_bi->page) {
1049                         if (rx_bi->page_dma) {
1050                                 dma_unmap_page(dev,
1051                                                rx_bi->page_dma,
1052                                                PAGE_SIZE / 2,
1053                                                DMA_FROM_DEVICE);
1054                                 rx_bi->page_dma = 0;
1055                         }
1056                         __free_page(rx_bi->page);
1057                         rx_bi->page = NULL;
1058                         rx_bi->page_offset = 0;
1059                 }
1060         }
1061
1062         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1063         memset(rx_ring->rx_bi, 0, bi_size);
1064
1065         /* Zero out the descriptor ring */
1066         memset(rx_ring->desc, 0, rx_ring->size);
1067
1068         rx_ring->next_to_clean = 0;
1069         rx_ring->next_to_use = 0;
1070 }
1071
1072 /**
1073  * i40e_free_rx_resources - Free Rx resources
1074  * @rx_ring: ring to clean the resources from
1075  *
1076  * Free all receive software resources
1077  **/
1078 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1079 {
1080         i40e_clean_rx_ring(rx_ring);
1081         kfree(rx_ring->rx_bi);
1082         rx_ring->rx_bi = NULL;
1083
1084         if (rx_ring->desc) {
1085                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1086                                   rx_ring->desc, rx_ring->dma);
1087                 rx_ring->desc = NULL;
1088         }
1089 }
1090
1091 /**
1092  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1093  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1094  *
1095  * Returns 0 on success, negative on failure
1096  **/
1097 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1098 {
1099         struct device *dev = rx_ring->dev;
1100         int bi_size;
1101
1102         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1103         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1104         if (!rx_ring->rx_bi)
1105                 goto err;
1106
1107         u64_stats_init(&rx_ring->syncp);
1108
1109         /* Round up to nearest 4K */
1110         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1111                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1112                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1113         rx_ring->size = ALIGN(rx_ring->size, 4096);
1114         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1115                                            &rx_ring->dma, GFP_KERNEL);
1116
1117         if (!rx_ring->desc) {
1118                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1119                          rx_ring->size);
1120                 goto err;
1121         }
1122
1123         rx_ring->next_to_clean = 0;
1124         rx_ring->next_to_use = 0;
1125
1126         return 0;
1127 err:
1128         kfree(rx_ring->rx_bi);
1129         rx_ring->rx_bi = NULL;
1130         return -ENOMEM;
1131 }
1132
1133 /**
1134  * i40e_release_rx_desc - Store the new tail and head values
1135  * @rx_ring: ring to bump
1136  * @val: new head index
1137  **/
1138 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1139 {
1140         rx_ring->next_to_use = val;
1141         /* Force memory writes to complete before letting h/w
1142          * know there are new descriptors to fetch.  (Only
1143          * applicable for weak-ordered memory model archs,
1144          * such as IA-64).
1145          */
1146         wmb();
1147         writel(val, rx_ring->tail);
1148 }
1149
1150 /**
1151  * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1152  * @rx_ring: ring to place buffers on
1153  * @cleaned_count: number of buffers to replace
1154  **/
1155 void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1156 {
1157         u16 i = rx_ring->next_to_use;
1158         union i40e_rx_desc *rx_desc;
1159         struct i40e_rx_buffer *bi;
1160         struct sk_buff *skb;
1161
1162         /* do nothing if no valid netdev defined */
1163         if (!rx_ring->netdev || !cleaned_count)
1164                 return;
1165
1166         while (cleaned_count--) {
1167                 rx_desc = I40E_RX_DESC(rx_ring, i);
1168                 bi = &rx_ring->rx_bi[i];
1169                 skb = bi->skb;
1170
1171                 if (!skb) {
1172                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1173                                                         rx_ring->rx_buf_len);
1174                         if (!skb) {
1175                                 rx_ring->rx_stats.alloc_buff_failed++;
1176                                 goto no_buffers;
1177                         }
1178                         /* initialize queue mapping */
1179                         skb_record_rx_queue(skb, rx_ring->queue_index);
1180                         bi->skb = skb;
1181                 }
1182
1183                 if (!bi->dma) {
1184                         bi->dma = dma_map_single(rx_ring->dev,
1185                                                  skb->data,
1186                                                  rx_ring->rx_buf_len,
1187                                                  DMA_FROM_DEVICE);
1188                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1189                                 rx_ring->rx_stats.alloc_buff_failed++;
1190                                 bi->dma = 0;
1191                                 goto no_buffers;
1192                         }
1193                 }
1194
1195                 if (ring_is_ps_enabled(rx_ring)) {
1196                         if (!bi->page) {
1197                                 bi->page = alloc_page(GFP_ATOMIC);
1198                                 if (!bi->page) {
1199                                         rx_ring->rx_stats.alloc_page_failed++;
1200                                         goto no_buffers;
1201                                 }
1202                         }
1203
1204                         if (!bi->page_dma) {
1205                                 /* use a half page if we're re-using */
1206                                 bi->page_offset ^= PAGE_SIZE / 2;
1207                                 bi->page_dma = dma_map_page(rx_ring->dev,
1208                                                             bi->page,
1209                                                             bi->page_offset,
1210                                                             PAGE_SIZE / 2,
1211                                                             DMA_FROM_DEVICE);
1212                                 if (dma_mapping_error(rx_ring->dev,
1213                                                       bi->page_dma)) {
1214                                         rx_ring->rx_stats.alloc_page_failed++;
1215                                         bi->page_dma = 0;
1216                                         goto no_buffers;
1217                                 }
1218                         }
1219
1220                         /* Refresh the desc even if buffer_addrs didn't change
1221                          * because each write-back erases this info.
1222                          */
1223                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1224                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1225                 } else {
1226                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1227                         rx_desc->read.hdr_addr = 0;
1228                 }
1229                 i++;
1230                 if (i == rx_ring->count)
1231                         i = 0;
1232         }
1233
1234 no_buffers:
1235         if (rx_ring->next_to_use != i)
1236                 i40e_release_rx_desc(rx_ring, i);
1237 }
1238
1239 /**
1240  * i40e_receive_skb - Send a completed packet up the stack
1241  * @rx_ring:  rx ring in play
1242  * @skb: packet to send up
1243  * @vlan_tag: vlan tag for packet
1244  **/
1245 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1246                              struct sk_buff *skb, u16 vlan_tag)
1247 {
1248         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1249         struct i40e_vsi *vsi = rx_ring->vsi;
1250         u64 flags = vsi->back->flags;
1251
1252         if (vlan_tag & VLAN_VID_MASK)
1253                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1254
1255         if (flags & I40E_FLAG_IN_NETPOLL)
1256                 netif_rx(skb);
1257         else
1258                 napi_gro_receive(&q_vector->napi, skb);
1259 }
1260
1261 /**
1262  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1263  * @vsi: the VSI we care about
1264  * @skb: skb currently being received and modified
1265  * @rx_status: status value of last descriptor in packet
1266  * @rx_error: error value of last descriptor in packet
1267  * @rx_ptype: ptype value of last descriptor in packet
1268  **/
1269 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1270                                     struct sk_buff *skb,
1271                                     u32 rx_status,
1272                                     u32 rx_error,
1273                                     u16 rx_ptype)
1274 {
1275         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1276         bool ipv4 = false, ipv6 = false;
1277         bool ipv4_tunnel, ipv6_tunnel;
1278         __wsum rx_udp_csum;
1279         struct iphdr *iph;
1280         __sum16 csum;
1281
1282         ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1283                       (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1284         ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1285                       (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1286
1287         skb->ip_summed = CHECKSUM_NONE;
1288
1289         /* Rx csum enabled and ip headers found? */
1290         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1291                 return;
1292
1293         /* did the hardware decode the packet and checksum? */
1294         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1295                 return;
1296
1297         /* both known and outer_ip must be set for the below code to work */
1298         if (!(decoded.known && decoded.outer_ip))
1299                 return;
1300
1301         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1302             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1303                 ipv4 = true;
1304         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1305                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1306                 ipv6 = true;
1307
1308         if (ipv4 &&
1309             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1310                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1311                 goto checksum_fail;
1312
1313         /* likely incorrect csum if alternate IP extension headers found */
1314         if (ipv6 &&
1315             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1316                 /* don't increment checksum err here, non-fatal err */
1317                 return;
1318
1319         /* there was some L4 error, count error and punt packet to the stack */
1320         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1321                 goto checksum_fail;
1322
1323         /* handle packets that were not able to be checksummed due
1324          * to arrival speed, in this case the stack can compute
1325          * the csum.
1326          */
1327         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1328                 return;
1329
1330         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1331          * it in the driver, hardware does not do it for us.
1332          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1333          * so the total length of IPv4 header is IHL*4 bytes
1334          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1335          */
1336         if (ipv4_tunnel) {
1337                 skb->transport_header = skb->mac_header +
1338                                         sizeof(struct ethhdr) +
1339                                         (ip_hdr(skb)->ihl * 4);
1340
1341                 /* Add 4 bytes for VLAN tagged packets */
1342                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1343                                           skb->protocol == htons(ETH_P_8021AD))
1344                                           ? VLAN_HLEN : 0;
1345
1346                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1347                     (udp_hdr(skb)->check != 0)) {
1348                         rx_udp_csum = udp_csum(skb);
1349                         iph = ip_hdr(skb);
1350                         csum = csum_tcpudp_magic(
1351                                         iph->saddr, iph->daddr,
1352                                         (skb->len - skb_transport_offset(skb)),
1353                                         IPPROTO_UDP, rx_udp_csum);
1354
1355                         if (udp_hdr(skb)->check != csum)
1356                                 goto checksum_fail;
1357
1358                 } /* else its GRE and so no outer UDP header */
1359         }
1360
1361         skb->ip_summed = CHECKSUM_UNNECESSARY;
1362         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1363
1364         return;
1365
1366 checksum_fail:
1367         vsi->back->hw_csum_rx_error++;
1368 }
1369
1370 /**
1371  * i40e_rx_hash - returns the hash value from the Rx descriptor
1372  * @ring: descriptor ring
1373  * @rx_desc: specific descriptor
1374  **/
1375 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1376                                union i40e_rx_desc *rx_desc)
1377 {
1378         const __le64 rss_mask =
1379                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1380                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1381
1382         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1383             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1384                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1385         else
1386                 return 0;
1387 }
1388
1389 /**
1390  * i40e_ptype_to_hash - get a hash type
1391  * @ptype: the ptype value from the descriptor
1392  *
1393  * Returns a hash type to be used by skb_set_hash
1394  **/
1395 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1396 {
1397         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1398
1399         if (!decoded.known)
1400                 return PKT_HASH_TYPE_NONE;
1401
1402         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1403             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1404                 return PKT_HASH_TYPE_L4;
1405         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1406                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1407                 return PKT_HASH_TYPE_L3;
1408         else
1409                 return PKT_HASH_TYPE_L2;
1410 }
1411
1412 /**
1413  * i40e_clean_rx_irq - Reclaim resources after receive completes
1414  * @rx_ring:  rx ring to clean
1415  * @budget:   how many cleans we're allowed
1416  *
1417  * Returns true if there's any budget left (e.g. the clean is finished)
1418  **/
1419 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1420 {
1421         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1422         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1423         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1424         const int current_node = numa_node_id();
1425         struct i40e_vsi *vsi = rx_ring->vsi;
1426         u16 i = rx_ring->next_to_clean;
1427         union i40e_rx_desc *rx_desc;
1428         u32 rx_error, rx_status;
1429         u8 rx_ptype;
1430         u64 qword;
1431
1432         if (budget <= 0)
1433                 return 0;
1434
1435         rx_desc = I40E_RX_DESC(rx_ring, i);
1436         qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1437         rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1438                     I40E_RXD_QW1_STATUS_SHIFT;
1439
1440         while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1441                 union i40e_rx_desc *next_rxd;
1442                 struct i40e_rx_buffer *rx_bi;
1443                 struct sk_buff *skb;
1444                 u16 vlan_tag;
1445                 if (i40e_rx_is_programming_status(qword)) {
1446                         i40e_clean_programming_status(rx_ring, rx_desc);
1447                         I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1448                         goto next_desc;
1449                 }
1450                 rx_bi = &rx_ring->rx_bi[i];
1451                 skb = rx_bi->skb;
1452                 prefetch(skb->data);
1453
1454                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1455                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1456                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1457                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1458                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1459                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1460
1461                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1462                            I40E_RXD_QW1_ERROR_SHIFT;
1463                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1464                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1465
1466                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1467                            I40E_RXD_QW1_PTYPE_SHIFT;
1468                 rx_bi->skb = NULL;
1469
1470                 /* This memory barrier is needed to keep us from reading
1471                  * any other fields out of the rx_desc until we know the
1472                  * STATUS_DD bit is set
1473                  */
1474                 rmb();
1475
1476                 /* Get the header and possibly the whole packet
1477                  * If this is an skb from previous receive dma will be 0
1478                  */
1479                 if (rx_bi->dma) {
1480                         u16 len;
1481
1482                         if (rx_hbo)
1483                                 len = I40E_RX_HDR_SIZE;
1484                         else if (rx_sph)
1485                                 len = rx_header_len;
1486                         else if (rx_packet_len)
1487                                 len = rx_packet_len;   /* 1buf/no split found */
1488                         else
1489                                 len = rx_header_len;   /* split always mode */
1490
1491                         skb_put(skb, len);
1492                         dma_unmap_single(rx_ring->dev,
1493                                          rx_bi->dma,
1494                                          rx_ring->rx_buf_len,
1495                                          DMA_FROM_DEVICE);
1496                         rx_bi->dma = 0;
1497                 }
1498
1499                 /* Get the rest of the data if this was a header split */
1500                 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1501
1502                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1503                                            rx_bi->page,
1504                                            rx_bi->page_offset,
1505                                            rx_packet_len);
1506
1507                         skb->len += rx_packet_len;
1508                         skb->data_len += rx_packet_len;
1509                         skb->truesize += rx_packet_len;
1510
1511                         if ((page_count(rx_bi->page) == 1) &&
1512                             (page_to_nid(rx_bi->page) == current_node))
1513                                 get_page(rx_bi->page);
1514                         else
1515                                 rx_bi->page = NULL;
1516
1517                         dma_unmap_page(rx_ring->dev,
1518                                        rx_bi->page_dma,
1519                                        PAGE_SIZE / 2,
1520                                        DMA_FROM_DEVICE);
1521                         rx_bi->page_dma = 0;
1522                 }
1523                 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1524
1525                 if (unlikely(
1526                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1527                         struct i40e_rx_buffer *next_buffer;
1528
1529                         next_buffer = &rx_ring->rx_bi[i];
1530
1531                         if (ring_is_ps_enabled(rx_ring)) {
1532                                 rx_bi->skb = next_buffer->skb;
1533                                 rx_bi->dma = next_buffer->dma;
1534                                 next_buffer->skb = skb;
1535                                 next_buffer->dma = 0;
1536                         }
1537                         rx_ring->rx_stats.non_eop_descs++;
1538                         goto next_desc;
1539                 }
1540
1541                 /* ERR_MASK will only have valid bits if EOP set */
1542                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1543                         dev_kfree_skb_any(skb);
1544                         /* TODO: shouldn't we increment a counter indicating the
1545                          * drop?
1546                          */
1547                         goto next_desc;
1548                 }
1549
1550                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1551                              i40e_ptype_to_hash(rx_ptype));
1552                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1553                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1554                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1555                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1556                         rx_ring->last_rx_timestamp = jiffies;
1557                 }
1558
1559                 /* probably a little skewed due to removing CRC */
1560                 total_rx_bytes += skb->len;
1561                 total_rx_packets++;
1562
1563                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1564
1565                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1566
1567                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1568                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1569                          : 0;
1570 #ifdef I40E_FCOE
1571                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1572                         dev_kfree_skb_any(skb);
1573                         goto next_desc;
1574                 }
1575 #endif
1576                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1577
1578                 rx_ring->netdev->last_rx = jiffies;
1579                 budget--;
1580 next_desc:
1581                 rx_desc->wb.qword1.status_error_len = 0;
1582                 if (!budget)
1583                         break;
1584
1585                 cleaned_count++;
1586                 /* return some buffers to hardware, one at a time is too slow */
1587                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1588                         i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1589                         cleaned_count = 0;
1590                 }
1591
1592                 /* use prefetched values */
1593                 rx_desc = next_rxd;
1594                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1595                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1596                             I40E_RXD_QW1_STATUS_SHIFT;
1597         }
1598
1599         rx_ring->next_to_clean = i;
1600         u64_stats_update_begin(&rx_ring->syncp);
1601         rx_ring->stats.packets += total_rx_packets;
1602         rx_ring->stats.bytes += total_rx_bytes;
1603         u64_stats_update_end(&rx_ring->syncp);
1604         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1605         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1606
1607         if (cleaned_count)
1608                 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1609
1610         return budget > 0;
1611 }
1612
1613 /**
1614  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1615  * @napi: napi struct with our devices info in it
1616  * @budget: amount of work driver is allowed to do this pass, in packets
1617  *
1618  * This function will clean all queues associated with a q_vector.
1619  *
1620  * Returns the amount of work done
1621  **/
1622 int i40e_napi_poll(struct napi_struct *napi, int budget)
1623 {
1624         struct i40e_q_vector *q_vector =
1625                                container_of(napi, struct i40e_q_vector, napi);
1626         struct i40e_vsi *vsi = q_vector->vsi;
1627         struct i40e_ring *ring;
1628         bool clean_complete = true;
1629         bool arm_wb = false;
1630         int budget_per_ring;
1631
1632         if (test_bit(__I40E_DOWN, &vsi->state)) {
1633                 napi_complete(napi);
1634                 return 0;
1635         }
1636
1637         /* Since the actual Tx work is minimal, we can give the Tx a larger
1638          * budget and be more aggressive about cleaning up the Tx descriptors.
1639          */
1640         i40e_for_each_ring(ring, q_vector->tx) {
1641                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1642                 arm_wb |= ring->arm_wb;
1643         }
1644
1645         /* We attempt to distribute budget to each Rx queue fairly, but don't
1646          * allow the budget to go below 1 because that would exit polling early.
1647          */
1648         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1649
1650         i40e_for_each_ring(ring, q_vector->rx)
1651                 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1652
1653         /* If work not completed, return budget and polling will return */
1654         if (!clean_complete) {
1655                 if (arm_wb)
1656                         i40e_force_wb(vsi, q_vector);
1657                 return budget;
1658         }
1659
1660         /* Work is done so exit the polling mode and re-enable the interrupt */
1661         napi_complete(napi);
1662         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1663             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1664                 i40e_update_dynamic_itr(q_vector);
1665
1666         if (!test_bit(__I40E_DOWN, &vsi->state)) {
1667                 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1668                         i40e_irq_dynamic_enable(vsi,
1669                                         q_vector->v_idx + vsi->base_vector);
1670                 } else {
1671                         struct i40e_hw *hw = &vsi->back->hw;
1672                         /* We re-enable the queue 0 cause, but
1673                          * don't worry about dynamic_enable
1674                          * because we left it on for the other
1675                          * possible interrupts during napi
1676                          */
1677                         u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1678                         qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1679                         wr32(hw, I40E_QINT_RQCTL(0), qval);
1680
1681                         qval = rd32(hw, I40E_QINT_TQCTL(0));
1682                         qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1683                         wr32(hw, I40E_QINT_TQCTL(0), qval);
1684
1685                         i40e_irq_dynamic_enable_icr0(vsi->back);
1686                 }
1687         }
1688
1689         return 0;
1690 }
1691
1692 /**
1693  * i40e_atr - Add a Flow Director ATR filter
1694  * @tx_ring:  ring to add programming descriptor to
1695  * @skb:      send buffer
1696  * @flags:    send flags
1697  * @protocol: wire protocol
1698  **/
1699 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1700                      u32 flags, __be16 protocol)
1701 {
1702         struct i40e_filter_program_desc *fdir_desc;
1703         struct i40e_pf *pf = tx_ring->vsi->back;
1704         union {
1705                 unsigned char *network;
1706                 struct iphdr *ipv4;
1707                 struct ipv6hdr *ipv6;
1708         } hdr;
1709         struct tcphdr *th;
1710         unsigned int hlen;
1711         u32 flex_ptype, dtype_cmd;
1712         u16 i;
1713
1714         /* make sure ATR is enabled */
1715         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1716                 return;
1717
1718         /* if sampling is disabled do nothing */
1719         if (!tx_ring->atr_sample_rate)
1720                 return;
1721
1722         /* snag network header to get L4 type and address */
1723         hdr.network = skb_network_header(skb);
1724
1725         /* Currently only IPv4/IPv6 with TCP is supported */
1726         if (protocol == htons(ETH_P_IP)) {
1727                 if (hdr.ipv4->protocol != IPPROTO_TCP)
1728                         return;
1729
1730                 /* access ihl as a u8 to avoid unaligned access on ia64 */
1731                 hlen = (hdr.network[0] & 0x0F) << 2;
1732         } else if (protocol == htons(ETH_P_IPV6)) {
1733                 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1734                         return;
1735
1736                 hlen = sizeof(struct ipv6hdr);
1737         } else {
1738                 return;
1739         }
1740
1741         th = (struct tcphdr *)(hdr.network + hlen);
1742
1743         /* Due to lack of space, no more new filters can be programmed */
1744         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1745                 return;
1746
1747         tx_ring->atr_count++;
1748
1749         /* sample on all syn/fin/rst packets or once every atr sample rate */
1750         if (!th->fin &&
1751             !th->syn &&
1752             !th->rst &&
1753             (tx_ring->atr_count < tx_ring->atr_sample_rate))
1754                 return;
1755
1756         tx_ring->atr_count = 0;
1757
1758         /* grab the next descriptor */
1759         i = tx_ring->next_to_use;
1760         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1761
1762         i++;
1763         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1764
1765         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1766                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
1767         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1768                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1769                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1770                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1771                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1772
1773         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1774
1775         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1776
1777         dtype_cmd |= (th->fin || th->rst) ?
1778                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1779                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1780                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1781                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1782
1783         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1784                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
1785
1786         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1787                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1788
1789         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
1790         dtype_cmd |=
1791                 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
1792                 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
1793
1794         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1795         fdir_desc->rsvd = cpu_to_le32(0);
1796         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1797         fdir_desc->fd_id = cpu_to_le32(0);
1798 }
1799
1800 /**
1801  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1802  * @skb:     send buffer
1803  * @tx_ring: ring to send buffer on
1804  * @flags:   the tx flags to be set
1805  *
1806  * Checks the skb and set up correspondingly several generic transmit flags
1807  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1808  *
1809  * Returns error code indicate the frame should be dropped upon error and the
1810  * otherwise  returns 0 to indicate the flags has been set properly.
1811  **/
1812 #ifdef I40E_FCOE
1813 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1814                                struct i40e_ring *tx_ring,
1815                                u32 *flags)
1816 #else
1817 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1818                                       struct i40e_ring *tx_ring,
1819                                       u32 *flags)
1820 #endif
1821 {
1822         __be16 protocol = skb->protocol;
1823         u32  tx_flags = 0;
1824
1825         /* if we have a HW VLAN tag being added, default to the HW one */
1826         if (skb_vlan_tag_present(skb)) {
1827                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1828                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1829         /* else if it is a SW VLAN, check the next protocol and store the tag */
1830         } else if (protocol == htons(ETH_P_8021Q)) {
1831                 struct vlan_hdr *vhdr, _vhdr;
1832                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1833                 if (!vhdr)
1834                         return -EINVAL;
1835
1836                 protocol = vhdr->h_vlan_encapsulated_proto;
1837                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1838                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1839         }
1840
1841         /* Insert 802.1p priority into VLAN header */
1842         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1843             (skb->priority != TC_PRIO_CONTROL)) {
1844                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1845                 tx_flags |= (skb->priority & 0x7) <<
1846                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1847                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1848                         struct vlan_ethhdr *vhdr;
1849                         int rc;
1850
1851                         rc = skb_cow_head(skb, 0);
1852                         if (rc < 0)
1853                                 return rc;
1854                         vhdr = (struct vlan_ethhdr *)skb->data;
1855                         vhdr->h_vlan_TCI = htons(tx_flags >>
1856                                                  I40E_TX_FLAGS_VLAN_SHIFT);
1857                 } else {
1858                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1859                 }
1860         }
1861         *flags = tx_flags;
1862         return 0;
1863 }
1864
1865 /**
1866  * i40e_tso - set up the tso context descriptor
1867  * @tx_ring:  ptr to the ring to send
1868  * @skb:      ptr to the skb we're sending
1869  * @tx_flags: the collected send information
1870  * @protocol: the send protocol
1871  * @hdr_len:  ptr to the size of the packet header
1872  * @cd_tunneling: ptr to context descriptor bits
1873  *
1874  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1875  **/
1876 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1877                     u32 tx_flags, __be16 protocol, u8 *hdr_len,
1878                     u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1879 {
1880         u32 cd_cmd, cd_tso_len, cd_mss;
1881         struct ipv6hdr *ipv6h;
1882         struct tcphdr *tcph;
1883         struct iphdr *iph;
1884         u32 l4len;
1885         int err;
1886
1887         if (!skb_is_gso(skb))
1888                 return 0;
1889
1890         err = skb_cow_head(skb, 0);
1891         if (err < 0)
1892                 return err;
1893
1894         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1895         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1896
1897         if (iph->version == 4) {
1898                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1899                 iph->tot_len = 0;
1900                 iph->check = 0;
1901                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1902                                                  0, IPPROTO_TCP, 0);
1903         } else if (ipv6h->version == 6) {
1904                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1905                 ipv6h->payload_len = 0;
1906                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1907                                                0, IPPROTO_TCP, 0);
1908         }
1909
1910         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1911         *hdr_len = (skb->encapsulation
1912                     ? (skb_inner_transport_header(skb) - skb->data)
1913                     : skb_transport_offset(skb)) + l4len;
1914
1915         /* find the field values */
1916         cd_cmd = I40E_TX_CTX_DESC_TSO;
1917         cd_tso_len = skb->len - *hdr_len;
1918         cd_mss = skb_shinfo(skb)->gso_size;
1919         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1920                                 ((u64)cd_tso_len <<
1921                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1922                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1923         return 1;
1924 }
1925
1926 /**
1927  * i40e_tsyn - set up the tsyn context descriptor
1928  * @tx_ring:  ptr to the ring to send
1929  * @skb:      ptr to the skb we're sending
1930  * @tx_flags: the collected send information
1931  *
1932  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1933  **/
1934 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1935                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1936 {
1937         struct i40e_pf *pf;
1938
1939         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1940                 return 0;
1941
1942         /* Tx timestamps cannot be sampled when doing TSO */
1943         if (tx_flags & I40E_TX_FLAGS_TSO)
1944                 return 0;
1945
1946         /* only timestamp the outbound packet if the user has requested it and
1947          * we are not already transmitting a packet to be timestamped
1948          */
1949         pf = i40e_netdev_to_pf(tx_ring->netdev);
1950         if (!(pf->flags & I40E_FLAG_PTP))
1951                 return 0;
1952
1953         if (pf->ptp_tx &&
1954             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
1955                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1956                 pf->ptp_tx_skb = skb_get(skb);
1957         } else {
1958                 return 0;
1959         }
1960
1961         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1962                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
1963
1964         return 1;
1965 }
1966
1967 /**
1968  * i40e_tx_enable_csum - Enable Tx checksum offloads
1969  * @skb: send buffer
1970  * @tx_flags: Tx flags currently set
1971  * @td_cmd: Tx descriptor command bits to set
1972  * @td_offset: Tx descriptor header offsets to set
1973  * @cd_tunneling: ptr to context desc bits
1974  **/
1975 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1976                                 u32 *td_cmd, u32 *td_offset,
1977                                 struct i40e_ring *tx_ring,
1978                                 u32 *cd_tunneling)
1979 {
1980         struct ipv6hdr *this_ipv6_hdr;
1981         unsigned int this_tcp_hdrlen;
1982         struct iphdr *this_ip_hdr;
1983         u32 network_hdr_len;
1984         u8 l4_hdr = 0;
1985
1986         if (skb->encapsulation) {
1987                 network_hdr_len = skb_inner_network_header_len(skb);
1988                 this_ip_hdr = inner_ip_hdr(skb);
1989                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1990                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1991
1992                 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1993
1994                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1995                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1996                                 ip_hdr(skb)->check = 0;
1997                         } else {
1998                                 *cd_tunneling |=
1999                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2000                         }
2001                 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2002                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2003                         if (tx_flags & I40E_TX_FLAGS_TSO)
2004                                 ip_hdr(skb)->check = 0;
2005                 }
2006
2007                 /* Now set the ctx descriptor fields */
2008                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2009                                         I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2010                                    I40E_TXD_CTX_UDP_TUNNELING            |
2011                                    ((skb_inner_network_offset(skb) -
2012                                         skb_transport_offset(skb)) >> 1) <<
2013                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2014                 if (this_ip_hdr->version == 6) {
2015                         tx_flags &= ~I40E_TX_FLAGS_IPV4;
2016                         tx_flags |= I40E_TX_FLAGS_IPV6;
2017                 }
2018         } else {
2019                 network_hdr_len = skb_network_header_len(skb);
2020                 this_ip_hdr = ip_hdr(skb);
2021                 this_ipv6_hdr = ipv6_hdr(skb);
2022                 this_tcp_hdrlen = tcp_hdrlen(skb);
2023         }
2024
2025         /* Enable IP checksum offloads */
2026         if (tx_flags & I40E_TX_FLAGS_IPV4) {
2027                 l4_hdr = this_ip_hdr->protocol;
2028                 /* the stack computes the IP header already, the only time we
2029                  * need the hardware to recompute it is in the case of TSO.
2030                  */
2031                 if (tx_flags & I40E_TX_FLAGS_TSO) {
2032                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2033                         this_ip_hdr->check = 0;
2034                 } else {
2035                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2036                 }
2037                 /* Now set the td_offset for IP header length */
2038                 *td_offset = (network_hdr_len >> 2) <<
2039                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2040         } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2041                 l4_hdr = this_ipv6_hdr->nexthdr;
2042                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2043                 /* Now set the td_offset for IP header length */
2044                 *td_offset = (network_hdr_len >> 2) <<
2045                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2046         }
2047         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2048         *td_offset |= (skb_network_offset(skb) >> 1) <<
2049                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2050
2051         /* Enable L4 checksum offloads */
2052         switch (l4_hdr) {
2053         case IPPROTO_TCP:
2054                 /* enable checksum offloads */
2055                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2056                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2057                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2058                 break;
2059         case IPPROTO_SCTP:
2060                 /* enable SCTP checksum offload */
2061                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2062                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2063                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2064                 break;
2065         case IPPROTO_UDP:
2066                 /* enable UDP checksum offload */
2067                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2068                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2069                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2070                 break;
2071         default:
2072                 break;
2073         }
2074 }
2075
2076 /**
2077  * i40e_create_tx_ctx Build the Tx context descriptor
2078  * @tx_ring:  ring to create the descriptor on
2079  * @cd_type_cmd_tso_mss: Quad Word 1
2080  * @cd_tunneling: Quad Word 0 - bits 0-31
2081  * @cd_l2tag2: Quad Word 0 - bits 32-63
2082  **/
2083 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2084                                const u64 cd_type_cmd_tso_mss,
2085                                const u32 cd_tunneling, const u32 cd_l2tag2)
2086 {
2087         struct i40e_tx_context_desc *context_desc;
2088         int i = tx_ring->next_to_use;
2089
2090         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2091             !cd_tunneling && !cd_l2tag2)
2092                 return;
2093
2094         /* grab the next descriptor */
2095         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2096
2097         i++;
2098         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2099
2100         /* cpu_to_le32 and assign to struct fields */
2101         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2102         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2103         context_desc->rsvd = cpu_to_le16(0);
2104         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2105 }
2106
2107 /**
2108  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2109  * @tx_ring: the ring to be checked
2110  * @size:    the size buffer we want to assure is available
2111  *
2112  * Returns -EBUSY if a stop is needed, else 0
2113  **/
2114 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2115 {
2116         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2117         /* Memory barrier before checking head and tail */
2118         smp_mb();
2119
2120         /* Check again in a case another CPU has just made room available. */
2121         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2122                 return -EBUSY;
2123
2124         /* A reprieve! - use start_queue because it doesn't call schedule */
2125         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2126         ++tx_ring->tx_stats.restart_queue;
2127         return 0;
2128 }
2129
2130 /**
2131  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2132  * @tx_ring: the ring to be checked
2133  * @size:    the size buffer we want to assure is available
2134  *
2135  * Returns 0 if stop is not needed
2136  **/
2137 #ifdef I40E_FCOE
2138 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2139 #else
2140 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2141 #endif
2142 {
2143         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2144                 return 0;
2145         return __i40e_maybe_stop_tx(tx_ring, size);
2146 }
2147
2148 /**
2149  * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2150  * @skb:      send buffer
2151  * @tx_flags: collected send information
2152  * @hdr_len:  size of the packet header
2153  *
2154  * Note: Our HW can't scatter-gather more than 8 fragments to build
2155  * a packet on the wire and so we need to figure out the cases where we
2156  * need to linearize the skb.
2157  **/
2158 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
2159                                const u8 hdr_len)
2160 {
2161         struct skb_frag_struct *frag;
2162         bool linearize = false;
2163         unsigned int size = 0;
2164         u16 num_frags;
2165         u16 gso_segs;
2166
2167         num_frags = skb_shinfo(skb)->nr_frags;
2168         gso_segs = skb_shinfo(skb)->gso_segs;
2169
2170         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2171                 u16 j = 1;
2172
2173                 if (num_frags < (I40E_MAX_BUFFER_TXD))
2174                         goto linearize_chk_done;
2175                 /* try the simple math, if we have too many frags per segment */
2176                 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2177                     I40E_MAX_BUFFER_TXD) {
2178                         linearize = true;
2179                         goto linearize_chk_done;
2180                 }
2181                 frag = &skb_shinfo(skb)->frags[0];
2182                 size = hdr_len;
2183                 /* we might still have more fragments per segment */
2184                 do {
2185                         size += skb_frag_size(frag);
2186                         frag++; j++;
2187                         if (j == I40E_MAX_BUFFER_TXD) {
2188                                 if (size < skb_shinfo(skb)->gso_size) {
2189                                         linearize = true;
2190                                         break;
2191                                 }
2192                                 j = 1;
2193                                 size -= skb_shinfo(skb)->gso_size;
2194                                 if (size)
2195                                         j++;
2196                                 size += hdr_len;
2197                         }
2198                         num_frags--;
2199                 } while (num_frags);
2200         } else {
2201                 if (num_frags >= I40E_MAX_BUFFER_TXD)
2202                         linearize = true;
2203         }
2204
2205 linearize_chk_done:
2206         return linearize;
2207 }
2208
2209 /**
2210  * i40e_tx_map - Build the Tx descriptor
2211  * @tx_ring:  ring to send buffer on
2212  * @skb:      send buffer
2213  * @first:    first buffer info buffer to use
2214  * @tx_flags: collected send information
2215  * @hdr_len:  size of the packet header
2216  * @td_cmd:   the command field in the descriptor
2217  * @td_offset: offset for checksum or crc
2218  **/
2219 #ifdef I40E_FCOE
2220 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2221                  struct i40e_tx_buffer *first, u32 tx_flags,
2222                  const u8 hdr_len, u32 td_cmd, u32 td_offset)
2223 #else
2224 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2225                         struct i40e_tx_buffer *first, u32 tx_flags,
2226                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2227 #endif
2228 {
2229         unsigned int data_len = skb->data_len;
2230         unsigned int size = skb_headlen(skb);
2231         struct skb_frag_struct *frag;
2232         struct i40e_tx_buffer *tx_bi;
2233         struct i40e_tx_desc *tx_desc;
2234         u16 i = tx_ring->next_to_use;
2235         u32 td_tag = 0;
2236         dma_addr_t dma;
2237         u16 gso_segs;
2238
2239         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2240                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2241                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2242                          I40E_TX_FLAGS_VLAN_SHIFT;
2243         }
2244
2245         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2246                 gso_segs = skb_shinfo(skb)->gso_segs;
2247         else
2248                 gso_segs = 1;
2249
2250         /* multiply data chunks by size of headers */
2251         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2252         first->gso_segs = gso_segs;
2253         first->skb = skb;
2254         first->tx_flags = tx_flags;
2255
2256         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2257
2258         tx_desc = I40E_TX_DESC(tx_ring, i);
2259         tx_bi = first;
2260
2261         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2262                 if (dma_mapping_error(tx_ring->dev, dma))
2263                         goto dma_error;
2264
2265                 /* record length, and DMA address */
2266                 dma_unmap_len_set(tx_bi, len, size);
2267                 dma_unmap_addr_set(tx_bi, dma, dma);
2268
2269                 tx_desc->buffer_addr = cpu_to_le64(dma);
2270
2271                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2272                         tx_desc->cmd_type_offset_bsz =
2273                                 build_ctob(td_cmd, td_offset,
2274                                            I40E_MAX_DATA_PER_TXD, td_tag);
2275
2276                         tx_desc++;
2277                         i++;
2278                         if (i == tx_ring->count) {
2279                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2280                                 i = 0;
2281                         }
2282
2283                         dma += I40E_MAX_DATA_PER_TXD;
2284                         size -= I40E_MAX_DATA_PER_TXD;
2285
2286                         tx_desc->buffer_addr = cpu_to_le64(dma);
2287                 }
2288
2289                 if (likely(!data_len))
2290                         break;
2291
2292                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2293                                                           size, td_tag);
2294
2295                 tx_desc++;
2296                 i++;
2297                 if (i == tx_ring->count) {
2298                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2299                         i = 0;
2300                 }
2301
2302                 size = skb_frag_size(frag);
2303                 data_len -= size;
2304
2305                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2306                                        DMA_TO_DEVICE);
2307
2308                 tx_bi = &tx_ring->tx_bi[i];
2309         }
2310
2311         /* Place RS bit on last descriptor of any packet that spans across the
2312          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2313          */
2314         if (((i & WB_STRIDE) != WB_STRIDE) &&
2315             (first <= &tx_ring->tx_bi[i]) &&
2316             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2317                 tx_desc->cmd_type_offset_bsz =
2318                         build_ctob(td_cmd, td_offset, size, td_tag) |
2319                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2320                                          I40E_TXD_QW1_CMD_SHIFT);
2321         } else {
2322                 tx_desc->cmd_type_offset_bsz =
2323                         build_ctob(td_cmd, td_offset, size, td_tag) |
2324                         cpu_to_le64((u64)I40E_TXD_CMD <<
2325                                          I40E_TXD_QW1_CMD_SHIFT);
2326         }
2327
2328         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2329                                                  tx_ring->queue_index),
2330                              first->bytecount);
2331
2332         /* set the timestamp */
2333         first->time_stamp = jiffies;
2334
2335         /* Force memory writes to complete before letting h/w
2336          * know there are new descriptors to fetch.  (Only
2337          * applicable for weak-ordered memory model archs,
2338          * such as IA-64).
2339          */
2340         wmb();
2341
2342         /* set next_to_watch value indicating a packet is present */
2343         first->next_to_watch = tx_desc;
2344
2345         i++;
2346         if (i == tx_ring->count)
2347                 i = 0;
2348
2349         tx_ring->next_to_use = i;
2350
2351         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2352         /* notify HW of packet */
2353         if (!skb->xmit_more ||
2354             netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2355                                                    tx_ring->queue_index)))
2356                 writel(i, tx_ring->tail);
2357
2358         return;
2359
2360 dma_error:
2361         dev_info(tx_ring->dev, "TX DMA map failed\n");
2362
2363         /* clear dma mappings for failed tx_bi map */
2364         for (;;) {
2365                 tx_bi = &tx_ring->tx_bi[i];
2366                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2367                 if (tx_bi == first)
2368                         break;
2369                 if (i == 0)
2370                         i = tx_ring->count;
2371                 i--;
2372         }
2373
2374         tx_ring->next_to_use = i;
2375 }
2376
2377 /**
2378  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2379  * @skb:     send buffer
2380  * @tx_ring: ring to send buffer on
2381  *
2382  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2383  * there is not enough descriptors available in this ring since we need at least
2384  * one descriptor.
2385  **/
2386 #ifdef I40E_FCOE
2387 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2388                                struct i40e_ring *tx_ring)
2389 #else
2390 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2391                                       struct i40e_ring *tx_ring)
2392 #endif
2393 {
2394         unsigned int f;
2395         int count = 0;
2396
2397         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2398          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2399          *       + 4 desc gap to avoid the cache line where head is,
2400          *       + 1 desc for context descriptor,
2401          * otherwise try next time
2402          */
2403         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2404                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2405
2406         count += TXD_USE_COUNT(skb_headlen(skb));
2407         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2408                 tx_ring->tx_stats.tx_busy++;
2409                 return 0;
2410         }
2411         return count;
2412 }
2413
2414 /**
2415  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2416  * @skb:     send buffer
2417  * @tx_ring: ring to send buffer on
2418  *
2419  * Returns NETDEV_TX_OK if sent, else an error code
2420  **/
2421 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2422                                         struct i40e_ring *tx_ring)
2423 {
2424         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2425         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2426         struct i40e_tx_buffer *first;
2427         u32 td_offset = 0;
2428         u32 tx_flags = 0;
2429         __be16 protocol;
2430         u32 td_cmd = 0;
2431         u8 hdr_len = 0;
2432         int tsyn;
2433         int tso;
2434         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2435                 return NETDEV_TX_BUSY;
2436
2437         /* prepare the xmit flags */
2438         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2439                 goto out_drop;
2440
2441         /* obtain protocol of skb */
2442         protocol = vlan_get_protocol(skb);
2443
2444         /* record the location of the first descriptor for this packet */
2445         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2446
2447         /* setup IPv4/IPv6 offloads */
2448         if (protocol == htons(ETH_P_IP))
2449                 tx_flags |= I40E_TX_FLAGS_IPV4;
2450         else if (protocol == htons(ETH_P_IPV6))
2451                 tx_flags |= I40E_TX_FLAGS_IPV6;
2452
2453         tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2454                        &cd_type_cmd_tso_mss, &cd_tunneling);
2455
2456         if (tso < 0)
2457                 goto out_drop;
2458         else if (tso)
2459                 tx_flags |= I40E_TX_FLAGS_TSO;
2460
2461         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2462
2463         if (tsyn)
2464                 tx_flags |= I40E_TX_FLAGS_TSYN;
2465
2466         if (i40e_chk_linearize(skb, tx_flags, hdr_len))
2467                 if (skb_linearize(skb))
2468                         goto out_drop;
2469
2470         skb_tx_timestamp(skb);
2471
2472         /* always enable CRC insertion offload */
2473         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2474
2475         /* Always offload the checksum, since it's in the data descriptor */
2476         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2477                 tx_flags |= I40E_TX_FLAGS_CSUM;
2478
2479                 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2480                                     tx_ring, &cd_tunneling);
2481         }
2482
2483         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2484                            cd_tunneling, cd_l2tag2);
2485
2486         /* Add Flow Director ATR if it's enabled.
2487          *
2488          * NOTE: this must always be directly before the data descriptor.
2489          */
2490         i40e_atr(tx_ring, skb, tx_flags, protocol);
2491
2492         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2493                     td_cmd, td_offset);
2494
2495         return NETDEV_TX_OK;
2496
2497 out_drop:
2498         dev_kfree_skb_any(skb);
2499         return NETDEV_TX_OK;
2500 }
2501
2502 /**
2503  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2504  * @skb:    send buffer
2505  * @netdev: network interface device structure
2506  *
2507  * Returns NETDEV_TX_OK if sent, else an error code
2508  **/
2509 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2510 {
2511         struct i40e_netdev_priv *np = netdev_priv(netdev);
2512         struct i40e_vsi *vsi = np->vsi;
2513         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2514
2515         /* hardware can't handle really short frames, hardware padding works
2516          * beyond this point
2517          */
2518         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2519                 return NETDEV_TX_OK;
2520
2521         return i40e_xmit_frame_ring(skb, tx_ring);
2522 }