Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[sfrench/cifs-2.6.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2  *
3  * Intel Ethernet Controller XL710 Family Linux Driver
4  * Copyright(c) 2013 - 2014 Intel Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program.  If not, see <http://www.gnu.org/licenses/>.
17  *
18  * The full GNU General Public License is included in this distribution in
19  * the file called "COPYING".
20  *
21  * Contact Information:
22  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include "i40e.h"
29 #include "i40e_prototype.h"
30
31 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
32                                 u32 td_tag)
33 {
34         return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
35                            ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
36                            ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
37                            ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
38                            ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
39 }
40
41 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
42 #define I40E_FD_CLEAN_DELAY 10
43 /**
44  * i40e_program_fdir_filter - Program a Flow Director filter
45  * @fdir_data: Packet data that will be filter parameters
46  * @raw_packet: the pre-allocated packet buffer for FDir
47  * @pf: The pf pointer
48  * @add: True for add/update, False for remove
49  **/
50 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
51                              struct i40e_pf *pf, bool add)
52 {
53         struct i40e_filter_program_desc *fdir_desc;
54         struct i40e_tx_buffer *tx_buf, *first;
55         struct i40e_tx_desc *tx_desc;
56         struct i40e_ring *tx_ring;
57         unsigned int fpt, dcc;
58         struct i40e_vsi *vsi;
59         struct device *dev;
60         dma_addr_t dma;
61         u32 td_cmd = 0;
62         u16 delay = 0;
63         u16 i;
64
65         /* find existing FDIR VSI */
66         vsi = NULL;
67         for (i = 0; i < pf->num_alloc_vsi; i++)
68                 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
69                         vsi = pf->vsi[i];
70         if (!vsi)
71                 return -ENOENT;
72
73         tx_ring = vsi->tx_rings[0];
74         dev = tx_ring->dev;
75
76         /* we need two descriptors to add/del a filter and we can wait */
77         do {
78                 if (I40E_DESC_UNUSED(tx_ring) > 1)
79                         break;
80                 msleep_interruptible(1);
81                 delay++;
82         } while (delay < I40E_FD_CLEAN_DELAY);
83
84         if (!(I40E_DESC_UNUSED(tx_ring) > 1))
85                 return -EAGAIN;
86
87         dma = dma_map_single(dev, raw_packet,
88                              I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
89         if (dma_mapping_error(dev, dma))
90                 goto dma_fail;
91
92         /* grab the next descriptor */
93         i = tx_ring->next_to_use;
94         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
95         first = &tx_ring->tx_bi[i];
96         memset(first, 0, sizeof(struct i40e_tx_buffer));
97
98         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
99
100         fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
101               I40E_TXD_FLTR_QW0_QINDEX_MASK;
102
103         fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
104                I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
105
106         fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
107                I40E_TXD_FLTR_QW0_PCTYPE_MASK;
108
109         /* Use LAN VSI Id if not programmed by user */
110         if (fdir_data->dest_vsi == 0)
111                 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
112                        I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
113         else
114                 fpt |= ((u32)fdir_data->dest_vsi <<
115                         I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
116                        I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
117
118         dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
119
120         if (add)
121                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
122                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
123         else
124                 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
125                        I40E_TXD_FLTR_QW1_PCMD_SHIFT;
126
127         dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
128                I40E_TXD_FLTR_QW1_DEST_MASK;
129
130         dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
131                I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
132
133         if (fdir_data->cnt_index != 0) {
134                 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
135                 dcc |= ((u32)fdir_data->cnt_index <<
136                         I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
137                         I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
138         }
139
140         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
141         fdir_desc->rsvd = cpu_to_le32(0);
142         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
143         fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
144
145         /* Now program a dummy descriptor */
146         i = tx_ring->next_to_use;
147         tx_desc = I40E_TX_DESC(tx_ring, i);
148         tx_buf = &tx_ring->tx_bi[i];
149
150         tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
151
152         memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
153
154         /* record length, and DMA address */
155         dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
156         dma_unmap_addr_set(tx_buf, dma, dma);
157
158         tx_desc->buffer_addr = cpu_to_le64(dma);
159         td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
160
161         tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
162         tx_buf->raw_buf = (void *)raw_packet;
163
164         tx_desc->cmd_type_offset_bsz =
165                 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
166
167         /* set the timestamp */
168         tx_buf->time_stamp = jiffies;
169
170         /* Force memory writes to complete before letting h/w
171          * know there are new descriptors to fetch.
172          */
173         wmb();
174
175         /* Mark the data descriptor to be watched */
176         first->next_to_watch = tx_desc;
177
178         writel(tx_ring->next_to_use, tx_ring->tail);
179         return 0;
180
181 dma_fail:
182         return -1;
183 }
184
185 #define IP_HEADER_OFFSET 14
186 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
187 /**
188  * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
189  * @vsi: pointer to the targeted VSI
190  * @fd_data: the flow director data required for the FDir descriptor
191  * @add: true adds a filter, false removes it
192  *
193  * Returns 0 if the filters were successfully added or removed
194  **/
195 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
196                                    struct i40e_fdir_filter *fd_data,
197                                    bool add)
198 {
199         struct i40e_pf *pf = vsi->back;
200         struct udphdr *udp;
201         struct iphdr *ip;
202         bool err = false;
203         u8 *raw_packet;
204         int ret;
205         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
206                 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
207                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
208
209         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
210         if (!raw_packet)
211                 return -ENOMEM;
212         memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
213
214         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
215         udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
216               + sizeof(struct iphdr));
217
218         ip->daddr = fd_data->dst_ip[0];
219         udp->dest = fd_data->dst_port;
220         ip->saddr = fd_data->src_ip[0];
221         udp->source = fd_data->src_port;
222
223         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
224         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
225         if (ret) {
226                 dev_info(&pf->pdev->dev,
227                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
228                          fd_data->pctype, fd_data->fd_id, ret);
229                 err = true;
230         } else {
231                 if (add)
232                         dev_info(&pf->pdev->dev,
233                                  "Filter OK for PCTYPE %d loc = %d\n",
234                                  fd_data->pctype, fd_data->fd_id);
235                 else
236                         dev_info(&pf->pdev->dev,
237                                  "Filter deleted for PCTYPE %d loc = %d\n",
238                                  fd_data->pctype, fd_data->fd_id);
239         }
240         return err ? -EOPNOTSUPP : 0;
241 }
242
243 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
244 /**
245  * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
246  * @vsi: pointer to the targeted VSI
247  * @fd_data: the flow director data required for the FDir descriptor
248  * @add: true adds a filter, false removes it
249  *
250  * Returns 0 if the filters were successfully added or removed
251  **/
252 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
253                                    struct i40e_fdir_filter *fd_data,
254                                    bool add)
255 {
256         struct i40e_pf *pf = vsi->back;
257         struct tcphdr *tcp;
258         struct iphdr *ip;
259         bool err = false;
260         u8 *raw_packet;
261         int ret;
262         /* Dummy packet */
263         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
264                 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
265                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
266                 0x0, 0x72, 0, 0, 0, 0};
267
268         raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
269         if (!raw_packet)
270                 return -ENOMEM;
271         memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
272
273         ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
274         tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
275               + sizeof(struct iphdr));
276
277         ip->daddr = fd_data->dst_ip[0];
278         tcp->dest = fd_data->dst_port;
279         ip->saddr = fd_data->src_ip[0];
280         tcp->source = fd_data->src_port;
281
282         if (add) {
283                 pf->fd_tcp_rule++;
284                 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
285                         dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
286                         pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
287                 }
288         } else {
289                 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
290                                   (pf->fd_tcp_rule - 1) : 0;
291                 if (pf->fd_tcp_rule == 0) {
292                         pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
293                         dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
294                 }
295         }
296
297         fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
298         ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
299
300         if (ret) {
301                 dev_info(&pf->pdev->dev,
302                          "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
303                          fd_data->pctype, fd_data->fd_id, ret);
304                 err = true;
305         } else {
306                 if (add)
307                         dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
308                                  fd_data->pctype, fd_data->fd_id);
309                 else
310                         dev_info(&pf->pdev->dev,
311                                  "Filter deleted for PCTYPE %d loc = %d\n",
312                                  fd_data->pctype, fd_data->fd_id);
313         }
314
315         return err ? -EOPNOTSUPP : 0;
316 }
317
318 /**
319  * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
320  * a specific flow spec
321  * @vsi: pointer to the targeted VSI
322  * @fd_data: the flow director data required for the FDir descriptor
323  * @add: true adds a filter, false removes it
324  *
325  * Always returns -EOPNOTSUPP
326  **/
327 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
328                                     struct i40e_fdir_filter *fd_data,
329                                     bool add)
330 {
331         return -EOPNOTSUPP;
332 }
333
334 #define I40E_IP_DUMMY_PACKET_LEN 34
335 /**
336  * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
337  * a specific flow spec
338  * @vsi: pointer to the targeted VSI
339  * @fd_data: the flow director data required for the FDir descriptor
340  * @add: true adds a filter, false removes it
341  *
342  * Returns 0 if the filters were successfully added or removed
343  **/
344 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
345                                   struct i40e_fdir_filter *fd_data,
346                                   bool add)
347 {
348         struct i40e_pf *pf = vsi->back;
349         struct iphdr *ip;
350         bool err = false;
351         u8 *raw_packet;
352         int ret;
353         int i;
354         static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
355                 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
356                 0, 0, 0, 0};
357
358         for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
359              i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
360                 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
361                 if (!raw_packet)
362                         return -ENOMEM;
363                 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
364                 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
365
366                 ip->saddr = fd_data->src_ip[0];
367                 ip->daddr = fd_data->dst_ip[0];
368                 ip->protocol = 0;
369
370                 fd_data->pctype = i;
371                 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
372
373                 if (ret) {
374                         dev_info(&pf->pdev->dev,
375                                  "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
376                                  fd_data->pctype, fd_data->fd_id, ret);
377                         err = true;
378                 } else {
379                         if (add)
380                                 dev_info(&pf->pdev->dev,
381                                          "Filter OK for PCTYPE %d loc = %d\n",
382                                          fd_data->pctype, fd_data->fd_id);
383                         else
384                                 dev_info(&pf->pdev->dev,
385                                          "Filter deleted for PCTYPE %d loc = %d\n",
386                                          fd_data->pctype, fd_data->fd_id);
387                 }
388         }
389
390         return err ? -EOPNOTSUPP : 0;
391 }
392
393 /**
394  * i40e_add_del_fdir - Build raw packets to add/del fdir filter
395  * @vsi: pointer to the targeted VSI
396  * @cmd: command to get or set RX flow classification rules
397  * @add: true adds a filter, false removes it
398  *
399  **/
400 int i40e_add_del_fdir(struct i40e_vsi *vsi,
401                       struct i40e_fdir_filter *input, bool add)
402 {
403         struct i40e_pf *pf = vsi->back;
404         int ret;
405
406         switch (input->flow_type & ~FLOW_EXT) {
407         case TCP_V4_FLOW:
408                 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
409                 break;
410         case UDP_V4_FLOW:
411                 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
412                 break;
413         case SCTP_V4_FLOW:
414                 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
415                 break;
416         case IPV4_FLOW:
417                 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
418                 break;
419         case IP_USER_FLOW:
420                 switch (input->ip4_proto) {
421                 case IPPROTO_TCP:
422                         ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
423                         break;
424                 case IPPROTO_UDP:
425                         ret = i40e_add_del_fdir_udpv4(vsi, input, add);
426                         break;
427                 case IPPROTO_SCTP:
428                         ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
429                         break;
430                 default:
431                         ret = i40e_add_del_fdir_ipv4(vsi, input, add);
432                         break;
433                 }
434                 break;
435         default:
436                 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
437                          input->flow_type);
438                 ret = -EINVAL;
439         }
440
441         /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
442         return ret;
443 }
444
445 /**
446  * i40e_fd_handle_status - check the Programming Status for FD
447  * @rx_ring: the Rx ring for this descriptor
448  * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
449  * @prog_id: the id originally used for programming
450  *
451  * This is used to verify if the FD programming or invalidation
452  * requested by SW to the HW is successful or not and take actions accordingly.
453  **/
454 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
455                                   union i40e_rx_desc *rx_desc, u8 prog_id)
456 {
457         struct i40e_pf *pf = rx_ring->vsi->back;
458         struct pci_dev *pdev = pf->pdev;
459         u32 fcnt_prog, fcnt_avail;
460         u32 error;
461         u64 qw;
462
463         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
464         error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
465                 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
466
467         if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
468                 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
469                     (I40E_DEBUG_FD & pf->hw.debug_mask))
470                         dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
471                                  rx_desc->wb.qword0.hi_dword.fd_id);
472
473                 pf->fd_add_err++;
474                 /* store the current atr filter count */
475                 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
476
477                 /* filter programming failed most likely due to table full */
478                 fcnt_prog = i40e_get_cur_guaranteed_fd_count(pf);
479                 fcnt_avail = pf->fdir_pf_filter_count;
480                 /* If ATR is running fcnt_prog can quickly change,
481                  * if we are very close to full, it makes sense to disable
482                  * FD ATR/SB and then re-enable it when there is room.
483                  */
484                 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
485                         if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
486                             !(pf->auto_disable_flags &
487                                      I40E_FLAG_FD_SB_ENABLED)) {
488                                 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
489                                 pf->auto_disable_flags |=
490                                                         I40E_FLAG_FD_SB_ENABLED;
491                         }
492                 } else {
493                         dev_info(&pdev->dev,
494                                 "FD filter programming failed due to incorrect filter parameters\n");
495                 }
496         } else if (error ==
497                           (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
498                 if (I40E_DEBUG_FD & pf->hw.debug_mask)
499                         dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
500                                  rx_desc->wb.qword0.hi_dword.fd_id);
501         }
502 }
503
504 /**
505  * i40e_unmap_and_free_tx_resource - Release a Tx buffer
506  * @ring:      the ring that owns the buffer
507  * @tx_buffer: the buffer to free
508  **/
509 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
510                                             struct i40e_tx_buffer *tx_buffer)
511 {
512         if (tx_buffer->skb) {
513                 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
514                         kfree(tx_buffer->raw_buf);
515                 else
516                         dev_kfree_skb_any(tx_buffer->skb);
517
518                 if (dma_unmap_len(tx_buffer, len))
519                         dma_unmap_single(ring->dev,
520                                          dma_unmap_addr(tx_buffer, dma),
521                                          dma_unmap_len(tx_buffer, len),
522                                          DMA_TO_DEVICE);
523         } else if (dma_unmap_len(tx_buffer, len)) {
524                 dma_unmap_page(ring->dev,
525                                dma_unmap_addr(tx_buffer, dma),
526                                dma_unmap_len(tx_buffer, len),
527                                DMA_TO_DEVICE);
528         }
529         tx_buffer->next_to_watch = NULL;
530         tx_buffer->skb = NULL;
531         dma_unmap_len_set(tx_buffer, len, 0);
532         /* tx_buffer must be completely set up in the transmit path */
533 }
534
535 /**
536  * i40e_clean_tx_ring - Free any empty Tx buffers
537  * @tx_ring: ring to be cleaned
538  **/
539 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
540 {
541         unsigned long bi_size;
542         u16 i;
543
544         /* ring already cleared, nothing to do */
545         if (!tx_ring->tx_bi)
546                 return;
547
548         /* Free all the Tx ring sk_buffs */
549         for (i = 0; i < tx_ring->count; i++)
550                 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
551
552         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
553         memset(tx_ring->tx_bi, 0, bi_size);
554
555         /* Zero out the descriptor ring */
556         memset(tx_ring->desc, 0, tx_ring->size);
557
558         tx_ring->next_to_use = 0;
559         tx_ring->next_to_clean = 0;
560
561         if (!tx_ring->netdev)
562                 return;
563
564         /* cleanup Tx queue statistics */
565         netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
566                                                   tx_ring->queue_index));
567 }
568
569 /**
570  * i40e_free_tx_resources - Free Tx resources per queue
571  * @tx_ring: Tx descriptor ring for a specific queue
572  *
573  * Free all transmit software resources
574  **/
575 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
576 {
577         i40e_clean_tx_ring(tx_ring);
578         kfree(tx_ring->tx_bi);
579         tx_ring->tx_bi = NULL;
580
581         if (tx_ring->desc) {
582                 dma_free_coherent(tx_ring->dev, tx_ring->size,
583                                   tx_ring->desc, tx_ring->dma);
584                 tx_ring->desc = NULL;
585         }
586 }
587
588 /**
589  * i40e_get_tx_pending - how many tx descriptors not processed
590  * @tx_ring: the ring of descriptors
591  *
592  * Since there is no access to the ring head register
593  * in XL710, we need to use our local copies
594  **/
595 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
596 {
597         u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
598                         ? ring->next_to_use
599                         : ring->next_to_use + ring->count);
600         return ntu - ring->next_to_clean;
601 }
602
603 /**
604  * i40e_check_tx_hang - Is there a hang in the Tx queue
605  * @tx_ring: the ring of descriptors
606  **/
607 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
608 {
609         u32 tx_pending = i40e_get_tx_pending(tx_ring);
610         struct i40e_pf *pf = tx_ring->vsi->back;
611         bool ret = false;
612
613         clear_check_for_tx_hang(tx_ring);
614
615         /* Check for a hung queue, but be thorough. This verifies
616          * that a transmit has been completed since the previous
617          * check AND there is at least one packet pending. The
618          * ARMED bit is set to indicate a potential hang. The
619          * bit is cleared if a pause frame is received to remove
620          * false hang detection due to PFC or 802.3x frames. By
621          * requiring this to fail twice we avoid races with
622          * PFC clearing the ARMED bit and conditions where we
623          * run the check_tx_hang logic with a transmit completion
624          * pending but without time to complete it yet.
625          */
626         if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
627             (tx_pending >= I40E_MIN_DESC_PENDING)) {
628                 /* make sure it is true for two checks in a row */
629                 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
630                                        &tx_ring->state);
631         } else if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
632                    (tx_pending < I40E_MIN_DESC_PENDING) &&
633                    (tx_pending > 0)) {
634                 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
635                         dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
636                                  tx_pending, tx_ring->queue_index);
637                 pf->tx_sluggish_count++;
638         } else {
639                 /* update completed stats and disarm the hang check */
640                 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
641                 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
642         }
643
644         return ret;
645 }
646
647 /**
648  * i40e_get_head - Retrieve head from head writeback
649  * @tx_ring:  tx ring to fetch head of
650  *
651  * Returns value of Tx ring head based on value stored
652  * in head write-back location
653  **/
654 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
655 {
656         void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
657
658         return le32_to_cpu(*(volatile __le32 *)head);
659 }
660
661 #define WB_STRIDE 0x3
662
663 /**
664  * i40e_clean_tx_irq - Reclaim resources after transmit completes
665  * @tx_ring:  tx ring to clean
666  * @budget:   how many cleans we're allowed
667  *
668  * Returns true if there's any budget left (e.g. the clean is finished)
669  **/
670 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
671 {
672         u16 i = tx_ring->next_to_clean;
673         struct i40e_tx_buffer *tx_buf;
674         struct i40e_tx_desc *tx_head;
675         struct i40e_tx_desc *tx_desc;
676         unsigned int total_packets = 0;
677         unsigned int total_bytes = 0;
678
679         tx_buf = &tx_ring->tx_bi[i];
680         tx_desc = I40E_TX_DESC(tx_ring, i);
681         i -= tx_ring->count;
682
683         tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
684
685         do {
686                 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
687
688                 /* if next_to_watch is not set then there is no work pending */
689                 if (!eop_desc)
690                         break;
691
692                 /* prevent any other reads prior to eop_desc */
693                 read_barrier_depends();
694
695                 /* we have caught up to head, no work left to do */
696                 if (tx_head == tx_desc)
697                         break;
698
699                 /* clear next_to_watch to prevent false hangs */
700                 tx_buf->next_to_watch = NULL;
701
702                 /* update the statistics for this packet */
703                 total_bytes += tx_buf->bytecount;
704                 total_packets += tx_buf->gso_segs;
705
706                 /* free the skb */
707                 dev_consume_skb_any(tx_buf->skb);
708
709                 /* unmap skb header data */
710                 dma_unmap_single(tx_ring->dev,
711                                  dma_unmap_addr(tx_buf, dma),
712                                  dma_unmap_len(tx_buf, len),
713                                  DMA_TO_DEVICE);
714
715                 /* clear tx_buffer data */
716                 tx_buf->skb = NULL;
717                 dma_unmap_len_set(tx_buf, len, 0);
718
719                 /* unmap remaining buffers */
720                 while (tx_desc != eop_desc) {
721
722                         tx_buf++;
723                         tx_desc++;
724                         i++;
725                         if (unlikely(!i)) {
726                                 i -= tx_ring->count;
727                                 tx_buf = tx_ring->tx_bi;
728                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
729                         }
730
731                         /* unmap any remaining paged data */
732                         if (dma_unmap_len(tx_buf, len)) {
733                                 dma_unmap_page(tx_ring->dev,
734                                                dma_unmap_addr(tx_buf, dma),
735                                                dma_unmap_len(tx_buf, len),
736                                                DMA_TO_DEVICE);
737                                 dma_unmap_len_set(tx_buf, len, 0);
738                         }
739                 }
740
741                 /* move us one more past the eop_desc for start of next pkt */
742                 tx_buf++;
743                 tx_desc++;
744                 i++;
745                 if (unlikely(!i)) {
746                         i -= tx_ring->count;
747                         tx_buf = tx_ring->tx_bi;
748                         tx_desc = I40E_TX_DESC(tx_ring, 0);
749                 }
750
751                 /* update budget accounting */
752                 budget--;
753         } while (likely(budget));
754
755         i += tx_ring->count;
756         tx_ring->next_to_clean = i;
757         u64_stats_update_begin(&tx_ring->syncp);
758         tx_ring->stats.bytes += total_bytes;
759         tx_ring->stats.packets += total_packets;
760         u64_stats_update_end(&tx_ring->syncp);
761         tx_ring->q_vector->tx.total_bytes += total_bytes;
762         tx_ring->q_vector->tx.total_packets += total_packets;
763
764         /* check to see if there are any non-cache aligned descriptors
765          * waiting to be written back, and kick the hardware to force
766          * them to be written back in case of napi polling
767          */
768         if (budget &&
769             !((i & WB_STRIDE) == WB_STRIDE) &&
770             !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
771             (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
772                 tx_ring->arm_wb = true;
773         else
774                 tx_ring->arm_wb = false;
775
776         if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
777                 /* schedule immediate reset if we believe we hung */
778                 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
779                          "  VSI                  <%d>\n"
780                          "  Tx Queue             <%d>\n"
781                          "  next_to_use          <%x>\n"
782                          "  next_to_clean        <%x>\n",
783                          tx_ring->vsi->seid,
784                          tx_ring->queue_index,
785                          tx_ring->next_to_use, i);
786                 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
787                          "  time_stamp           <%lx>\n"
788                          "  jiffies              <%lx>\n",
789                          tx_ring->tx_bi[i].time_stamp, jiffies);
790
791                 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
792
793                 dev_info(tx_ring->dev,
794                          "tx hang detected on queue %d, reset requested\n",
795                          tx_ring->queue_index);
796
797                 /* do not fire the reset immediately, wait for the stack to
798                  * decide we are truly stuck, also prevents every queue from
799                  * simultaneously requesting a reset
800                  */
801
802                 /* the adapter is about to reset, no point in enabling polling */
803                 budget = 1;
804         }
805
806         netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
807                                                       tx_ring->queue_index),
808                                   total_packets, total_bytes);
809
810 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
811         if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
812                      (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
813                 /* Make sure that anybody stopping the queue after this
814                  * sees the new next_to_clean.
815                  */
816                 smp_mb();
817                 if (__netif_subqueue_stopped(tx_ring->netdev,
818                                              tx_ring->queue_index) &&
819                    !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
820                         netif_wake_subqueue(tx_ring->netdev,
821                                             tx_ring->queue_index);
822                         ++tx_ring->tx_stats.restart_queue;
823                 }
824         }
825
826         return !!budget;
827 }
828
829 /**
830  * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
831  * @vsi: the VSI we care about
832  * @q_vector: the vector  on which to force writeback
833  *
834  **/
835 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
836 {
837         u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
838                   I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
839                   I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
840                   /* allow 00 to be written to the index */
841
842         wr32(&vsi->back->hw,
843              I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
844              val);
845 }
846
847 /**
848  * i40e_set_new_dynamic_itr - Find new ITR level
849  * @rc: structure containing ring performance data
850  *
851  * Stores a new ITR value based on packets and byte counts during
852  * the last interrupt.  The advantage of per interrupt computation
853  * is faster updates and more accurate ITR for the current traffic
854  * pattern.  Constants in this function were computed based on
855  * theoretical maximum wire speed and thresholds were set based on
856  * testing data as well as attempting to minimize response time
857  * while increasing bulk throughput.
858  **/
859 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
860 {
861         enum i40e_latency_range new_latency_range = rc->latency_range;
862         u32 new_itr = rc->itr;
863         int bytes_per_int;
864
865         if (rc->total_packets == 0 || !rc->itr)
866                 return;
867
868         /* simple throttlerate management
869          *   0-10MB/s   lowest (100000 ints/s)
870          *  10-20MB/s   low    (20000 ints/s)
871          *  20-1249MB/s bulk   (8000 ints/s)
872          */
873         bytes_per_int = rc->total_bytes / rc->itr;
874         switch (rc->itr) {
875         case I40E_LOWEST_LATENCY:
876                 if (bytes_per_int > 10)
877                         new_latency_range = I40E_LOW_LATENCY;
878                 break;
879         case I40E_LOW_LATENCY:
880                 if (bytes_per_int > 20)
881                         new_latency_range = I40E_BULK_LATENCY;
882                 else if (bytes_per_int <= 10)
883                         new_latency_range = I40E_LOWEST_LATENCY;
884                 break;
885         case I40E_BULK_LATENCY:
886                 if (bytes_per_int <= 20)
887                         rc->latency_range = I40E_LOW_LATENCY;
888                 break;
889         }
890
891         switch (new_latency_range) {
892         case I40E_LOWEST_LATENCY:
893                 new_itr = I40E_ITR_100K;
894                 break;
895         case I40E_LOW_LATENCY:
896                 new_itr = I40E_ITR_20K;
897                 break;
898         case I40E_BULK_LATENCY:
899                 new_itr = I40E_ITR_8K;
900                 break;
901         default:
902                 break;
903         }
904
905         if (new_itr != rc->itr) {
906                 /* do an exponential smoothing */
907                 new_itr = (10 * new_itr * rc->itr) /
908                           ((9 * new_itr) + rc->itr);
909                 rc->itr = new_itr & I40E_MAX_ITR;
910         }
911
912         rc->total_bytes = 0;
913         rc->total_packets = 0;
914 }
915
916 /**
917  * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
918  * @q_vector: the vector to adjust
919  **/
920 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
921 {
922         u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
923         struct i40e_hw *hw = &q_vector->vsi->back->hw;
924         u32 reg_addr;
925         u16 old_itr;
926
927         reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
928         old_itr = q_vector->rx.itr;
929         i40e_set_new_dynamic_itr(&q_vector->rx);
930         if (old_itr != q_vector->rx.itr)
931                 wr32(hw, reg_addr, q_vector->rx.itr);
932
933         reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
934         old_itr = q_vector->tx.itr;
935         i40e_set_new_dynamic_itr(&q_vector->tx);
936         if (old_itr != q_vector->tx.itr)
937                 wr32(hw, reg_addr, q_vector->tx.itr);
938 }
939
940 /**
941  * i40e_clean_programming_status - clean the programming status descriptor
942  * @rx_ring: the rx ring that has this descriptor
943  * @rx_desc: the rx descriptor written back by HW
944  *
945  * Flow director should handle FD_FILTER_STATUS to check its filter programming
946  * status being successful or not and take actions accordingly. FCoE should
947  * handle its context/filter programming/invalidation status and take actions.
948  *
949  **/
950 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
951                                           union i40e_rx_desc *rx_desc)
952 {
953         u64 qw;
954         u8 id;
955
956         qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
957         id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
958                   I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
959
960         if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
961                 i40e_fd_handle_status(rx_ring, rx_desc, id);
962 #ifdef I40E_FCOE
963         else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
964                  (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
965                 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
966 #endif
967 }
968
969 /**
970  * i40e_setup_tx_descriptors - Allocate the Tx descriptors
971  * @tx_ring: the tx ring to set up
972  *
973  * Return 0 on success, negative on error
974  **/
975 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
976 {
977         struct device *dev = tx_ring->dev;
978         int bi_size;
979
980         if (!dev)
981                 return -ENOMEM;
982
983         bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
984         tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
985         if (!tx_ring->tx_bi)
986                 goto err;
987
988         /* round up to nearest 4K */
989         tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
990         /* add u32 for head writeback, align after this takes care of
991          * guaranteeing this is at least one cache line in size
992          */
993         tx_ring->size += sizeof(u32);
994         tx_ring->size = ALIGN(tx_ring->size, 4096);
995         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
996                                            &tx_ring->dma, GFP_KERNEL);
997         if (!tx_ring->desc) {
998                 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
999                          tx_ring->size);
1000                 goto err;
1001         }
1002
1003         tx_ring->next_to_use = 0;
1004         tx_ring->next_to_clean = 0;
1005         return 0;
1006
1007 err:
1008         kfree(tx_ring->tx_bi);
1009         tx_ring->tx_bi = NULL;
1010         return -ENOMEM;
1011 }
1012
1013 /**
1014  * i40e_clean_rx_ring - Free Rx buffers
1015  * @rx_ring: ring to be cleaned
1016  **/
1017 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1018 {
1019         struct device *dev = rx_ring->dev;
1020         struct i40e_rx_buffer *rx_bi;
1021         unsigned long bi_size;
1022         u16 i;
1023
1024         /* ring already cleared, nothing to do */
1025         if (!rx_ring->rx_bi)
1026                 return;
1027
1028         /* Free all the Rx ring sk_buffs */
1029         for (i = 0; i < rx_ring->count; i++) {
1030                 rx_bi = &rx_ring->rx_bi[i];
1031                 if (rx_bi->dma) {
1032                         dma_unmap_single(dev,
1033                                          rx_bi->dma,
1034                                          rx_ring->rx_buf_len,
1035                                          DMA_FROM_DEVICE);
1036                         rx_bi->dma = 0;
1037                 }
1038                 if (rx_bi->skb) {
1039                         dev_kfree_skb(rx_bi->skb);
1040                         rx_bi->skb = NULL;
1041                 }
1042                 if (rx_bi->page) {
1043                         if (rx_bi->page_dma) {
1044                                 dma_unmap_page(dev,
1045                                                rx_bi->page_dma,
1046                                                PAGE_SIZE / 2,
1047                                                DMA_FROM_DEVICE);
1048                                 rx_bi->page_dma = 0;
1049                         }
1050                         __free_page(rx_bi->page);
1051                         rx_bi->page = NULL;
1052                         rx_bi->page_offset = 0;
1053                 }
1054         }
1055
1056         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1057         memset(rx_ring->rx_bi, 0, bi_size);
1058
1059         /* Zero out the descriptor ring */
1060         memset(rx_ring->desc, 0, rx_ring->size);
1061
1062         rx_ring->next_to_clean = 0;
1063         rx_ring->next_to_use = 0;
1064 }
1065
1066 /**
1067  * i40e_free_rx_resources - Free Rx resources
1068  * @rx_ring: ring to clean the resources from
1069  *
1070  * Free all receive software resources
1071  **/
1072 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1073 {
1074         i40e_clean_rx_ring(rx_ring);
1075         kfree(rx_ring->rx_bi);
1076         rx_ring->rx_bi = NULL;
1077
1078         if (rx_ring->desc) {
1079                 dma_free_coherent(rx_ring->dev, rx_ring->size,
1080                                   rx_ring->desc, rx_ring->dma);
1081                 rx_ring->desc = NULL;
1082         }
1083 }
1084
1085 /**
1086  * i40e_setup_rx_descriptors - Allocate Rx descriptors
1087  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1088  *
1089  * Returns 0 on success, negative on failure
1090  **/
1091 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1092 {
1093         struct device *dev = rx_ring->dev;
1094         int bi_size;
1095
1096         bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1097         rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1098         if (!rx_ring->rx_bi)
1099                 goto err;
1100
1101         u64_stats_init(&rx_ring->syncp);
1102
1103         /* Round up to nearest 4K */
1104         rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1105                 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1106                 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1107         rx_ring->size = ALIGN(rx_ring->size, 4096);
1108         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1109                                            &rx_ring->dma, GFP_KERNEL);
1110
1111         if (!rx_ring->desc) {
1112                 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1113                          rx_ring->size);
1114                 goto err;
1115         }
1116
1117         rx_ring->next_to_clean = 0;
1118         rx_ring->next_to_use = 0;
1119
1120         return 0;
1121 err:
1122         kfree(rx_ring->rx_bi);
1123         rx_ring->rx_bi = NULL;
1124         return -ENOMEM;
1125 }
1126
1127 /**
1128  * i40e_release_rx_desc - Store the new tail and head values
1129  * @rx_ring: ring to bump
1130  * @val: new head index
1131  **/
1132 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1133 {
1134         rx_ring->next_to_use = val;
1135         /* Force memory writes to complete before letting h/w
1136          * know there are new descriptors to fetch.  (Only
1137          * applicable for weak-ordered memory model archs,
1138          * such as IA-64).
1139          */
1140         wmb();
1141         writel(val, rx_ring->tail);
1142 }
1143
1144 /**
1145  * i40e_alloc_rx_buffers - Replace used receive buffers; packet split
1146  * @rx_ring: ring to place buffers on
1147  * @cleaned_count: number of buffers to replace
1148  **/
1149 void i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1150 {
1151         u16 i = rx_ring->next_to_use;
1152         union i40e_rx_desc *rx_desc;
1153         struct i40e_rx_buffer *bi;
1154         struct sk_buff *skb;
1155
1156         /* do nothing if no valid netdev defined */
1157         if (!rx_ring->netdev || !cleaned_count)
1158                 return;
1159
1160         while (cleaned_count--) {
1161                 rx_desc = I40E_RX_DESC(rx_ring, i);
1162                 bi = &rx_ring->rx_bi[i];
1163                 skb = bi->skb;
1164
1165                 if (!skb) {
1166                         skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1167                                                         rx_ring->rx_buf_len);
1168                         if (!skb) {
1169                                 rx_ring->rx_stats.alloc_buff_failed++;
1170                                 goto no_buffers;
1171                         }
1172                         /* initialize queue mapping */
1173                         skb_record_rx_queue(skb, rx_ring->queue_index);
1174                         bi->skb = skb;
1175                 }
1176
1177                 if (!bi->dma) {
1178                         bi->dma = dma_map_single(rx_ring->dev,
1179                                                  skb->data,
1180                                                  rx_ring->rx_buf_len,
1181                                                  DMA_FROM_DEVICE);
1182                         if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1183                                 rx_ring->rx_stats.alloc_buff_failed++;
1184                                 bi->dma = 0;
1185                                 goto no_buffers;
1186                         }
1187                 }
1188
1189                 if (ring_is_ps_enabled(rx_ring)) {
1190                         if (!bi->page) {
1191                                 bi->page = alloc_page(GFP_ATOMIC);
1192                                 if (!bi->page) {
1193                                         rx_ring->rx_stats.alloc_page_failed++;
1194                                         goto no_buffers;
1195                                 }
1196                         }
1197
1198                         if (!bi->page_dma) {
1199                                 /* use a half page if we're re-using */
1200                                 bi->page_offset ^= PAGE_SIZE / 2;
1201                                 bi->page_dma = dma_map_page(rx_ring->dev,
1202                                                             bi->page,
1203                                                             bi->page_offset,
1204                                                             PAGE_SIZE / 2,
1205                                                             DMA_FROM_DEVICE);
1206                                 if (dma_mapping_error(rx_ring->dev,
1207                                                       bi->page_dma)) {
1208                                         rx_ring->rx_stats.alloc_page_failed++;
1209                                         bi->page_dma = 0;
1210                                         goto no_buffers;
1211                                 }
1212                         }
1213
1214                         /* Refresh the desc even if buffer_addrs didn't change
1215                          * because each write-back erases this info.
1216                          */
1217                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1218                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1219                 } else {
1220                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1221                         rx_desc->read.hdr_addr = 0;
1222                 }
1223                 i++;
1224                 if (i == rx_ring->count)
1225                         i = 0;
1226         }
1227
1228 no_buffers:
1229         if (rx_ring->next_to_use != i)
1230                 i40e_release_rx_desc(rx_ring, i);
1231 }
1232
1233 /**
1234  * i40e_receive_skb - Send a completed packet up the stack
1235  * @rx_ring:  rx ring in play
1236  * @skb: packet to send up
1237  * @vlan_tag: vlan tag for packet
1238  **/
1239 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1240                              struct sk_buff *skb, u16 vlan_tag)
1241 {
1242         struct i40e_q_vector *q_vector = rx_ring->q_vector;
1243         struct i40e_vsi *vsi = rx_ring->vsi;
1244         u64 flags = vsi->back->flags;
1245
1246         if (vlan_tag & VLAN_VID_MASK)
1247                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1248
1249         if (flags & I40E_FLAG_IN_NETPOLL)
1250                 netif_rx(skb);
1251         else
1252                 napi_gro_receive(&q_vector->napi, skb);
1253 }
1254
1255 /**
1256  * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1257  * @vsi: the VSI we care about
1258  * @skb: skb currently being received and modified
1259  * @rx_status: status value of last descriptor in packet
1260  * @rx_error: error value of last descriptor in packet
1261  * @rx_ptype: ptype value of last descriptor in packet
1262  **/
1263 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1264                                     struct sk_buff *skb,
1265                                     u32 rx_status,
1266                                     u32 rx_error,
1267                                     u16 rx_ptype)
1268 {
1269         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1270         bool ipv4 = false, ipv6 = false;
1271         bool ipv4_tunnel, ipv6_tunnel;
1272         __wsum rx_udp_csum;
1273         struct iphdr *iph;
1274         __sum16 csum;
1275
1276         ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1277                       (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1278         ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1279                       (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1280
1281         skb->ip_summed = CHECKSUM_NONE;
1282
1283         /* Rx csum enabled and ip headers found? */
1284         if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1285                 return;
1286
1287         /* did the hardware decode the packet and checksum? */
1288         if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1289                 return;
1290
1291         /* both known and outer_ip must be set for the below code to work */
1292         if (!(decoded.known && decoded.outer_ip))
1293                 return;
1294
1295         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1296             decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1297                 ipv4 = true;
1298         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1299                  decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1300                 ipv6 = true;
1301
1302         if (ipv4 &&
1303             (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1304                          (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1305                 goto checksum_fail;
1306
1307         /* likely incorrect csum if alternate IP extension headers found */
1308         if (ipv6 &&
1309             rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1310                 /* don't increment checksum err here, non-fatal err */
1311                 return;
1312
1313         /* there was some L4 error, count error and punt packet to the stack */
1314         if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1315                 goto checksum_fail;
1316
1317         /* handle packets that were not able to be checksummed due
1318          * to arrival speed, in this case the stack can compute
1319          * the csum.
1320          */
1321         if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1322                 return;
1323
1324         /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1325          * it in the driver, hardware does not do it for us.
1326          * Since L3L4P bit was set we assume a valid IHL value (>=5)
1327          * so the total length of IPv4 header is IHL*4 bytes
1328          * The UDP_0 bit *may* bet set if the *inner* header is UDP
1329          */
1330         if (ipv4_tunnel) {
1331                 skb->transport_header = skb->mac_header +
1332                                         sizeof(struct ethhdr) +
1333                                         (ip_hdr(skb)->ihl * 4);
1334
1335                 /* Add 4 bytes for VLAN tagged packets */
1336                 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1337                                           skb->protocol == htons(ETH_P_8021AD))
1338                                           ? VLAN_HLEN : 0;
1339
1340                 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1341                     (udp_hdr(skb)->check != 0)) {
1342                         rx_udp_csum = udp_csum(skb);
1343                         iph = ip_hdr(skb);
1344                         csum = csum_tcpudp_magic(
1345                                         iph->saddr, iph->daddr,
1346                                         (skb->len - skb_transport_offset(skb)),
1347                                         IPPROTO_UDP, rx_udp_csum);
1348
1349                         if (udp_hdr(skb)->check != csum)
1350                                 goto checksum_fail;
1351
1352                 } /* else its GRE and so no outer UDP header */
1353         }
1354
1355         skb->ip_summed = CHECKSUM_UNNECESSARY;
1356         skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1357
1358         return;
1359
1360 checksum_fail:
1361         vsi->back->hw_csum_rx_error++;
1362 }
1363
1364 /**
1365  * i40e_rx_hash - returns the hash value from the Rx descriptor
1366  * @ring: descriptor ring
1367  * @rx_desc: specific descriptor
1368  **/
1369 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1370                                union i40e_rx_desc *rx_desc)
1371 {
1372         const __le64 rss_mask =
1373                 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1374                             I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1375
1376         if ((ring->netdev->features & NETIF_F_RXHASH) &&
1377             (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1378                 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1379         else
1380                 return 0;
1381 }
1382
1383 /**
1384  * i40e_ptype_to_hash - get a hash type
1385  * @ptype: the ptype value from the descriptor
1386  *
1387  * Returns a hash type to be used by skb_set_hash
1388  **/
1389 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1390 {
1391         struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1392
1393         if (!decoded.known)
1394                 return PKT_HASH_TYPE_NONE;
1395
1396         if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1397             decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1398                 return PKT_HASH_TYPE_L4;
1399         else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1400                  decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1401                 return PKT_HASH_TYPE_L3;
1402         else
1403                 return PKT_HASH_TYPE_L2;
1404 }
1405
1406 /**
1407  * i40e_clean_rx_irq - Reclaim resources after receive completes
1408  * @rx_ring:  rx ring to clean
1409  * @budget:   how many cleans we're allowed
1410  *
1411  * Returns true if there's any budget left (e.g. the clean is finished)
1412  **/
1413 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1414 {
1415         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1416         u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1417         u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1418         const int current_node = numa_node_id();
1419         struct i40e_vsi *vsi = rx_ring->vsi;
1420         u16 i = rx_ring->next_to_clean;
1421         union i40e_rx_desc *rx_desc;
1422         u32 rx_error, rx_status;
1423         u8 rx_ptype;
1424         u64 qword;
1425
1426         if (budget <= 0)
1427                 return 0;
1428
1429         rx_desc = I40E_RX_DESC(rx_ring, i);
1430         qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1431         rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1432                     I40E_RXD_QW1_STATUS_SHIFT;
1433
1434         while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
1435                 union i40e_rx_desc *next_rxd;
1436                 struct i40e_rx_buffer *rx_bi;
1437                 struct sk_buff *skb;
1438                 u16 vlan_tag;
1439                 if (i40e_rx_is_programming_status(qword)) {
1440                         i40e_clean_programming_status(rx_ring, rx_desc);
1441                         I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1442                         goto next_desc;
1443                 }
1444                 rx_bi = &rx_ring->rx_bi[i];
1445                 skb = rx_bi->skb;
1446                 prefetch(skb->data);
1447
1448                 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1449                                 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1450                 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1451                                 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1452                 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1453                          I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1454
1455                 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1456                            I40E_RXD_QW1_ERROR_SHIFT;
1457                 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1458                 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1459
1460                 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1461                            I40E_RXD_QW1_PTYPE_SHIFT;
1462                 rx_bi->skb = NULL;
1463
1464                 /* This memory barrier is needed to keep us from reading
1465                  * any other fields out of the rx_desc until we know the
1466                  * STATUS_DD bit is set
1467                  */
1468                 rmb();
1469
1470                 /* Get the header and possibly the whole packet
1471                  * If this is an skb from previous receive dma will be 0
1472                  */
1473                 if (rx_bi->dma) {
1474                         u16 len;
1475
1476                         if (rx_hbo)
1477                                 len = I40E_RX_HDR_SIZE;
1478                         else if (rx_sph)
1479                                 len = rx_header_len;
1480                         else if (rx_packet_len)
1481                                 len = rx_packet_len;   /* 1buf/no split found */
1482                         else
1483                                 len = rx_header_len;   /* split always mode */
1484
1485                         skb_put(skb, len);
1486                         dma_unmap_single(rx_ring->dev,
1487                                          rx_bi->dma,
1488                                          rx_ring->rx_buf_len,
1489                                          DMA_FROM_DEVICE);
1490                         rx_bi->dma = 0;
1491                 }
1492
1493                 /* Get the rest of the data if this was a header split */
1494                 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
1495
1496                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1497                                            rx_bi->page,
1498                                            rx_bi->page_offset,
1499                                            rx_packet_len);
1500
1501                         skb->len += rx_packet_len;
1502                         skb->data_len += rx_packet_len;
1503                         skb->truesize += rx_packet_len;
1504
1505                         if ((page_count(rx_bi->page) == 1) &&
1506                             (page_to_nid(rx_bi->page) == current_node))
1507                                 get_page(rx_bi->page);
1508                         else
1509                                 rx_bi->page = NULL;
1510
1511                         dma_unmap_page(rx_ring->dev,
1512                                        rx_bi->page_dma,
1513                                        PAGE_SIZE / 2,
1514                                        DMA_FROM_DEVICE);
1515                         rx_bi->page_dma = 0;
1516                 }
1517                 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1518
1519                 if (unlikely(
1520                     !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1521                         struct i40e_rx_buffer *next_buffer;
1522
1523                         next_buffer = &rx_ring->rx_bi[i];
1524
1525                         if (ring_is_ps_enabled(rx_ring)) {
1526                                 rx_bi->skb = next_buffer->skb;
1527                                 rx_bi->dma = next_buffer->dma;
1528                                 next_buffer->skb = skb;
1529                                 next_buffer->dma = 0;
1530                         }
1531                         rx_ring->rx_stats.non_eop_descs++;
1532                         goto next_desc;
1533                 }
1534
1535                 /* ERR_MASK will only have valid bits if EOP set */
1536                 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1537                         dev_kfree_skb_any(skb);
1538                         /* TODO: shouldn't we increment a counter indicating the
1539                          * drop?
1540                          */
1541                         goto next_desc;
1542                 }
1543
1544                 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1545                              i40e_ptype_to_hash(rx_ptype));
1546                 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1547                         i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1548                                            I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1549                                            I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1550                         rx_ring->last_rx_timestamp = jiffies;
1551                 }
1552
1553                 /* probably a little skewed due to removing CRC */
1554                 total_rx_bytes += skb->len;
1555                 total_rx_packets++;
1556
1557                 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1558
1559                 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1560
1561                 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1562                          ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1563                          : 0;
1564 #ifdef I40E_FCOE
1565                 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1566                         dev_kfree_skb_any(skb);
1567                         goto next_desc;
1568                 }
1569 #endif
1570                 i40e_receive_skb(rx_ring, skb, vlan_tag);
1571
1572                 rx_ring->netdev->last_rx = jiffies;
1573                 budget--;
1574 next_desc:
1575                 rx_desc->wb.qword1.status_error_len = 0;
1576                 if (!budget)
1577                         break;
1578
1579                 cleaned_count++;
1580                 /* return some buffers to hardware, one at a time is too slow */
1581                 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1582                         i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1583                         cleaned_count = 0;
1584                 }
1585
1586                 /* use prefetched values */
1587                 rx_desc = next_rxd;
1588                 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1589                 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1590                             I40E_RXD_QW1_STATUS_SHIFT;
1591         }
1592
1593         rx_ring->next_to_clean = i;
1594         u64_stats_update_begin(&rx_ring->syncp);
1595         rx_ring->stats.packets += total_rx_packets;
1596         rx_ring->stats.bytes += total_rx_bytes;
1597         u64_stats_update_end(&rx_ring->syncp);
1598         rx_ring->q_vector->rx.total_packets += total_rx_packets;
1599         rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1600
1601         if (cleaned_count)
1602                 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1603
1604         return budget > 0;
1605 }
1606
1607 /**
1608  * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1609  * @napi: napi struct with our devices info in it
1610  * @budget: amount of work driver is allowed to do this pass, in packets
1611  *
1612  * This function will clean all queues associated with a q_vector.
1613  *
1614  * Returns the amount of work done
1615  **/
1616 int i40e_napi_poll(struct napi_struct *napi, int budget)
1617 {
1618         struct i40e_q_vector *q_vector =
1619                                container_of(napi, struct i40e_q_vector, napi);
1620         struct i40e_vsi *vsi = q_vector->vsi;
1621         struct i40e_ring *ring;
1622         bool clean_complete = true;
1623         bool arm_wb = false;
1624         int budget_per_ring;
1625
1626         if (test_bit(__I40E_DOWN, &vsi->state)) {
1627                 napi_complete(napi);
1628                 return 0;
1629         }
1630
1631         /* Since the actual Tx work is minimal, we can give the Tx a larger
1632          * budget and be more aggressive about cleaning up the Tx descriptors.
1633          */
1634         i40e_for_each_ring(ring, q_vector->tx) {
1635                 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1636                 arm_wb |= ring->arm_wb;
1637         }
1638
1639         /* We attempt to distribute budget to each Rx queue fairly, but don't
1640          * allow the budget to go below 1 because that would exit polling early.
1641          */
1642         budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1643
1644         i40e_for_each_ring(ring, q_vector->rx)
1645                 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1646
1647         /* If work not completed, return budget and polling will return */
1648         if (!clean_complete) {
1649                 if (arm_wb)
1650                         i40e_force_wb(vsi, q_vector);
1651                 return budget;
1652         }
1653
1654         /* Work is done so exit the polling mode and re-enable the interrupt */
1655         napi_complete(napi);
1656         if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1657             ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1658                 i40e_update_dynamic_itr(q_vector);
1659
1660         if (!test_bit(__I40E_DOWN, &vsi->state)) {
1661                 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1662                         i40e_irq_dynamic_enable(vsi,
1663                                         q_vector->v_idx + vsi->base_vector);
1664                 } else {
1665                         struct i40e_hw *hw = &vsi->back->hw;
1666                         /* We re-enable the queue 0 cause, but
1667                          * don't worry about dynamic_enable
1668                          * because we left it on for the other
1669                          * possible interrupts during napi
1670                          */
1671                         u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1672                         qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1673                         wr32(hw, I40E_QINT_RQCTL(0), qval);
1674
1675                         qval = rd32(hw, I40E_QINT_TQCTL(0));
1676                         qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1677                         wr32(hw, I40E_QINT_TQCTL(0), qval);
1678
1679                         i40e_irq_dynamic_enable_icr0(vsi->back);
1680                 }
1681         }
1682
1683         return 0;
1684 }
1685
1686 /**
1687  * i40e_atr - Add a Flow Director ATR filter
1688  * @tx_ring:  ring to add programming descriptor to
1689  * @skb:      send buffer
1690  * @flags:    send flags
1691  * @protocol: wire protocol
1692  **/
1693 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1694                      u32 flags, __be16 protocol)
1695 {
1696         struct i40e_filter_program_desc *fdir_desc;
1697         struct i40e_pf *pf = tx_ring->vsi->back;
1698         union {
1699                 unsigned char *network;
1700                 struct iphdr *ipv4;
1701                 struct ipv6hdr *ipv6;
1702         } hdr;
1703         struct tcphdr *th;
1704         unsigned int hlen;
1705         u32 flex_ptype, dtype_cmd;
1706         u16 i;
1707
1708         /* make sure ATR is enabled */
1709         if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1710                 return;
1711
1712         /* if sampling is disabled do nothing */
1713         if (!tx_ring->atr_sample_rate)
1714                 return;
1715
1716         /* snag network header to get L4 type and address */
1717         hdr.network = skb_network_header(skb);
1718
1719         /* Currently only IPv4/IPv6 with TCP is supported */
1720         if (protocol == htons(ETH_P_IP)) {
1721                 if (hdr.ipv4->protocol != IPPROTO_TCP)
1722                         return;
1723
1724                 /* access ihl as a u8 to avoid unaligned access on ia64 */
1725                 hlen = (hdr.network[0] & 0x0F) << 2;
1726         } else if (protocol == htons(ETH_P_IPV6)) {
1727                 if (hdr.ipv6->nexthdr != IPPROTO_TCP)
1728                         return;
1729
1730                 hlen = sizeof(struct ipv6hdr);
1731         } else {
1732                 return;
1733         }
1734
1735         th = (struct tcphdr *)(hdr.network + hlen);
1736
1737         /* Due to lack of space, no more new filters can be programmed */
1738         if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1739                 return;
1740
1741         tx_ring->atr_count++;
1742
1743         /* sample on all syn/fin/rst packets or once every atr sample rate */
1744         if (!th->fin &&
1745             !th->syn &&
1746             !th->rst &&
1747             (tx_ring->atr_count < tx_ring->atr_sample_rate))
1748                 return;
1749
1750         tx_ring->atr_count = 0;
1751
1752         /* grab the next descriptor */
1753         i = tx_ring->next_to_use;
1754         fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
1755
1756         i++;
1757         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1758
1759         flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
1760                       I40E_TXD_FLTR_QW0_QINDEX_MASK;
1761         flex_ptype |= (protocol == htons(ETH_P_IP)) ?
1762                       (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
1763                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
1764                       (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
1765                        I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
1766
1767         flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
1768
1769         dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
1770
1771         dtype_cmd |= (th->fin || th->rst) ?
1772                      (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
1773                       I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
1774                      (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
1775                       I40E_TXD_FLTR_QW1_PCMD_SHIFT);
1776
1777         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
1778                      I40E_TXD_FLTR_QW1_DEST_SHIFT;
1779
1780         dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
1781                      I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
1782
1783         dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
1784         dtype_cmd |=
1785                 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
1786                 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
1787
1788         fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
1789         fdir_desc->rsvd = cpu_to_le32(0);
1790         fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
1791         fdir_desc->fd_id = cpu_to_le32(0);
1792 }
1793
1794 /**
1795  * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1796  * @skb:     send buffer
1797  * @tx_ring: ring to send buffer on
1798  * @flags:   the tx flags to be set
1799  *
1800  * Checks the skb and set up correspondingly several generic transmit flags
1801  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1802  *
1803  * Returns error code indicate the frame should be dropped upon error and the
1804  * otherwise  returns 0 to indicate the flags has been set properly.
1805  **/
1806 #ifdef I40E_FCOE
1807 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1808                                struct i40e_ring *tx_ring,
1809                                u32 *flags)
1810 #else
1811 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1812                                       struct i40e_ring *tx_ring,
1813                                       u32 *flags)
1814 #endif
1815 {
1816         __be16 protocol = skb->protocol;
1817         u32  tx_flags = 0;
1818
1819         /* if we have a HW VLAN tag being added, default to the HW one */
1820         if (skb_vlan_tag_present(skb)) {
1821                 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1822                 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1823         /* else if it is a SW VLAN, check the next protocol and store the tag */
1824         } else if (protocol == htons(ETH_P_8021Q)) {
1825                 struct vlan_hdr *vhdr, _vhdr;
1826                 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1827                 if (!vhdr)
1828                         return -EINVAL;
1829
1830                 protocol = vhdr->h_vlan_encapsulated_proto;
1831                 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1832                 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1833         }
1834
1835         /* Insert 802.1p priority into VLAN header */
1836         if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
1837             (skb->priority != TC_PRIO_CONTROL)) {
1838                 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
1839                 tx_flags |= (skb->priority & 0x7) <<
1840                                 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
1841                 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
1842                         struct vlan_ethhdr *vhdr;
1843                         int rc;
1844
1845                         rc = skb_cow_head(skb, 0);
1846                         if (rc < 0)
1847                                 return rc;
1848                         vhdr = (struct vlan_ethhdr *)skb->data;
1849                         vhdr->h_vlan_TCI = htons(tx_flags >>
1850                                                  I40E_TX_FLAGS_VLAN_SHIFT);
1851                 } else {
1852                         tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1853                 }
1854         }
1855         *flags = tx_flags;
1856         return 0;
1857 }
1858
1859 /**
1860  * i40e_tso - set up the tso context descriptor
1861  * @tx_ring:  ptr to the ring to send
1862  * @skb:      ptr to the skb we're sending
1863  * @tx_flags: the collected send information
1864  * @protocol: the send protocol
1865  * @hdr_len:  ptr to the size of the packet header
1866  * @cd_tunneling: ptr to context descriptor bits
1867  *
1868  * Returns 0 if no TSO can happen, 1 if tso is going, or error
1869  **/
1870 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1871                     u32 tx_flags, __be16 protocol, u8 *hdr_len,
1872                     u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1873 {
1874         u32 cd_cmd, cd_tso_len, cd_mss;
1875         struct ipv6hdr *ipv6h;
1876         struct tcphdr *tcph;
1877         struct iphdr *iph;
1878         u32 l4len;
1879         int err;
1880
1881         if (!skb_is_gso(skb))
1882                 return 0;
1883
1884         err = skb_cow_head(skb, 0);
1885         if (err < 0)
1886                 return err;
1887
1888         iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1889         ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1890
1891         if (iph->version == 4) {
1892                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1893                 iph->tot_len = 0;
1894                 iph->check = 0;
1895                 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1896                                                  0, IPPROTO_TCP, 0);
1897         } else if (ipv6h->version == 6) {
1898                 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1899                 ipv6h->payload_len = 0;
1900                 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1901                                                0, IPPROTO_TCP, 0);
1902         }
1903
1904         l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1905         *hdr_len = (skb->encapsulation
1906                     ? (skb_inner_transport_header(skb) - skb->data)
1907                     : skb_transport_offset(skb)) + l4len;
1908
1909         /* find the field values */
1910         cd_cmd = I40E_TX_CTX_DESC_TSO;
1911         cd_tso_len = skb->len - *hdr_len;
1912         cd_mss = skb_shinfo(skb)->gso_size;
1913         *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1914                                 ((u64)cd_tso_len <<
1915                                  I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1916                                 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1917         return 1;
1918 }
1919
1920 /**
1921  * i40e_tsyn - set up the tsyn context descriptor
1922  * @tx_ring:  ptr to the ring to send
1923  * @skb:      ptr to the skb we're sending
1924  * @tx_flags: the collected send information
1925  *
1926  * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
1927  **/
1928 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
1929                      u32 tx_flags, u64 *cd_type_cmd_tso_mss)
1930 {
1931         struct i40e_pf *pf;
1932
1933         if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1934                 return 0;
1935
1936         /* Tx timestamps cannot be sampled when doing TSO */
1937         if (tx_flags & I40E_TX_FLAGS_TSO)
1938                 return 0;
1939
1940         /* only timestamp the outbound packet if the user has requested it and
1941          * we are not already transmitting a packet to be timestamped
1942          */
1943         pf = i40e_netdev_to_pf(tx_ring->netdev);
1944         if (!(pf->flags & I40E_FLAG_PTP))
1945                 return 0;
1946
1947         if (pf->ptp_tx &&
1948             !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
1949                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1950                 pf->ptp_tx_skb = skb_get(skb);
1951         } else {
1952                 return 0;
1953         }
1954
1955         *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
1956                                 I40E_TXD_CTX_QW1_CMD_SHIFT;
1957
1958         return 1;
1959 }
1960
1961 /**
1962  * i40e_tx_enable_csum - Enable Tx checksum offloads
1963  * @skb: send buffer
1964  * @tx_flags: Tx flags currently set
1965  * @td_cmd: Tx descriptor command bits to set
1966  * @td_offset: Tx descriptor header offsets to set
1967  * @cd_tunneling: ptr to context desc bits
1968  **/
1969 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1970                                 u32 *td_cmd, u32 *td_offset,
1971                                 struct i40e_ring *tx_ring,
1972                                 u32 *cd_tunneling)
1973 {
1974         struct ipv6hdr *this_ipv6_hdr;
1975         unsigned int this_tcp_hdrlen;
1976         struct iphdr *this_ip_hdr;
1977         u32 network_hdr_len;
1978         u8 l4_hdr = 0;
1979
1980         if (skb->encapsulation) {
1981                 network_hdr_len = skb_inner_network_header_len(skb);
1982                 this_ip_hdr = inner_ip_hdr(skb);
1983                 this_ipv6_hdr = inner_ipv6_hdr(skb);
1984                 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1985
1986                 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1987
1988                         if (tx_flags & I40E_TX_FLAGS_TSO) {
1989                                 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1990                                 ip_hdr(skb)->check = 0;
1991                         } else {
1992                                 *cd_tunneling |=
1993                                          I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1994                         }
1995                 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1996                         *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1997                         if (tx_flags & I40E_TX_FLAGS_TSO)
1998                                 ip_hdr(skb)->check = 0;
1999                 }
2000
2001                 /* Now set the ctx descriptor fields */
2002                 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2003                                         I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2004                                    I40E_TXD_CTX_UDP_TUNNELING            |
2005                                    ((skb_inner_network_offset(skb) -
2006                                         skb_transport_offset(skb)) >> 1) <<
2007                                    I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2008                 if (this_ip_hdr->version == 6) {
2009                         tx_flags &= ~I40E_TX_FLAGS_IPV4;
2010                         tx_flags |= I40E_TX_FLAGS_IPV6;
2011                 }
2012         } else {
2013                 network_hdr_len = skb_network_header_len(skb);
2014                 this_ip_hdr = ip_hdr(skb);
2015                 this_ipv6_hdr = ipv6_hdr(skb);
2016                 this_tcp_hdrlen = tcp_hdrlen(skb);
2017         }
2018
2019         /* Enable IP checksum offloads */
2020         if (tx_flags & I40E_TX_FLAGS_IPV4) {
2021                 l4_hdr = this_ip_hdr->protocol;
2022                 /* the stack computes the IP header already, the only time we
2023                  * need the hardware to recompute it is in the case of TSO.
2024                  */
2025                 if (tx_flags & I40E_TX_FLAGS_TSO) {
2026                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2027                         this_ip_hdr->check = 0;
2028                 } else {
2029                         *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2030                 }
2031                 /* Now set the td_offset for IP header length */
2032                 *td_offset = (network_hdr_len >> 2) <<
2033                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2034         } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
2035                 l4_hdr = this_ipv6_hdr->nexthdr;
2036                 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2037                 /* Now set the td_offset for IP header length */
2038                 *td_offset = (network_hdr_len >> 2) <<
2039                               I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2040         }
2041         /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2042         *td_offset |= (skb_network_offset(skb) >> 1) <<
2043                        I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2044
2045         /* Enable L4 checksum offloads */
2046         switch (l4_hdr) {
2047         case IPPROTO_TCP:
2048                 /* enable checksum offloads */
2049                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2050                 *td_offset |= (this_tcp_hdrlen >> 2) <<
2051                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2052                 break;
2053         case IPPROTO_SCTP:
2054                 /* enable SCTP checksum offload */
2055                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2056                 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2057                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2058                 break;
2059         case IPPROTO_UDP:
2060                 /* enable UDP checksum offload */
2061                 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2062                 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2063                                I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2064                 break;
2065         default:
2066                 break;
2067         }
2068 }
2069
2070 /**
2071  * i40e_create_tx_ctx Build the Tx context descriptor
2072  * @tx_ring:  ring to create the descriptor on
2073  * @cd_type_cmd_tso_mss: Quad Word 1
2074  * @cd_tunneling: Quad Word 0 - bits 0-31
2075  * @cd_l2tag2: Quad Word 0 - bits 32-63
2076  **/
2077 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2078                                const u64 cd_type_cmd_tso_mss,
2079                                const u32 cd_tunneling, const u32 cd_l2tag2)
2080 {
2081         struct i40e_tx_context_desc *context_desc;
2082         int i = tx_ring->next_to_use;
2083
2084         if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2085             !cd_tunneling && !cd_l2tag2)
2086                 return;
2087
2088         /* grab the next descriptor */
2089         context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2090
2091         i++;
2092         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2093
2094         /* cpu_to_le32 and assign to struct fields */
2095         context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2096         context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2097         context_desc->rsvd = cpu_to_le16(0);
2098         context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2099 }
2100
2101 /**
2102  * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2103  * @tx_ring: the ring to be checked
2104  * @size:    the size buffer we want to assure is available
2105  *
2106  * Returns -EBUSY if a stop is needed, else 0
2107  **/
2108 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2109 {
2110         netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2111         /* Memory barrier before checking head and tail */
2112         smp_mb();
2113
2114         /* Check again in a case another CPU has just made room available. */
2115         if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2116                 return -EBUSY;
2117
2118         /* A reprieve! - use start_queue because it doesn't call schedule */
2119         netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2120         ++tx_ring->tx_stats.restart_queue;
2121         return 0;
2122 }
2123
2124 /**
2125  * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2126  * @tx_ring: the ring to be checked
2127  * @size:    the size buffer we want to assure is available
2128  *
2129  * Returns 0 if stop is not needed
2130  **/
2131 #ifdef I40E_FCOE
2132 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2133 #else
2134 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2135 #endif
2136 {
2137         if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2138                 return 0;
2139         return __i40e_maybe_stop_tx(tx_ring, size);
2140 }
2141
2142 /**
2143  * i40e_tx_map - Build the Tx descriptor
2144  * @tx_ring:  ring to send buffer on
2145  * @skb:      send buffer
2146  * @first:    first buffer info buffer to use
2147  * @tx_flags: collected send information
2148  * @hdr_len:  size of the packet header
2149  * @td_cmd:   the command field in the descriptor
2150  * @td_offset: offset for checksum or crc
2151  **/
2152 #ifdef I40E_FCOE
2153 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2154                  struct i40e_tx_buffer *first, u32 tx_flags,
2155                  const u8 hdr_len, u32 td_cmd, u32 td_offset)
2156 #else
2157 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2158                         struct i40e_tx_buffer *first, u32 tx_flags,
2159                         const u8 hdr_len, u32 td_cmd, u32 td_offset)
2160 #endif
2161 {
2162         unsigned int data_len = skb->data_len;
2163         unsigned int size = skb_headlen(skb);
2164         struct skb_frag_struct *frag;
2165         struct i40e_tx_buffer *tx_bi;
2166         struct i40e_tx_desc *tx_desc;
2167         u16 i = tx_ring->next_to_use;
2168         u32 td_tag = 0;
2169         dma_addr_t dma;
2170         u16 gso_segs;
2171
2172         if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2173                 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2174                 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2175                          I40E_TX_FLAGS_VLAN_SHIFT;
2176         }
2177
2178         if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2179                 gso_segs = skb_shinfo(skb)->gso_segs;
2180         else
2181                 gso_segs = 1;
2182
2183         /* multiply data chunks by size of headers */
2184         first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2185         first->gso_segs = gso_segs;
2186         first->skb = skb;
2187         first->tx_flags = tx_flags;
2188
2189         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2190
2191         tx_desc = I40E_TX_DESC(tx_ring, i);
2192         tx_bi = first;
2193
2194         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2195                 if (dma_mapping_error(tx_ring->dev, dma))
2196                         goto dma_error;
2197
2198                 /* record length, and DMA address */
2199                 dma_unmap_len_set(tx_bi, len, size);
2200                 dma_unmap_addr_set(tx_bi, dma, dma);
2201
2202                 tx_desc->buffer_addr = cpu_to_le64(dma);
2203
2204                 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2205                         tx_desc->cmd_type_offset_bsz =
2206                                 build_ctob(td_cmd, td_offset,
2207                                            I40E_MAX_DATA_PER_TXD, td_tag);
2208
2209                         tx_desc++;
2210                         i++;
2211                         if (i == tx_ring->count) {
2212                                 tx_desc = I40E_TX_DESC(tx_ring, 0);
2213                                 i = 0;
2214                         }
2215
2216                         dma += I40E_MAX_DATA_PER_TXD;
2217                         size -= I40E_MAX_DATA_PER_TXD;
2218
2219                         tx_desc->buffer_addr = cpu_to_le64(dma);
2220                 }
2221
2222                 if (likely(!data_len))
2223                         break;
2224
2225                 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2226                                                           size, td_tag);
2227
2228                 tx_desc++;
2229                 i++;
2230                 if (i == tx_ring->count) {
2231                         tx_desc = I40E_TX_DESC(tx_ring, 0);
2232                         i = 0;
2233                 }
2234
2235                 size = skb_frag_size(frag);
2236                 data_len -= size;
2237
2238                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2239                                        DMA_TO_DEVICE);
2240
2241                 tx_bi = &tx_ring->tx_bi[i];
2242         }
2243
2244         /* Place RS bit on last descriptor of any packet that spans across the
2245          * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2246          */
2247         if (((i & WB_STRIDE) != WB_STRIDE) &&
2248             (first <= &tx_ring->tx_bi[i]) &&
2249             (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2250                 tx_desc->cmd_type_offset_bsz =
2251                         build_ctob(td_cmd, td_offset, size, td_tag) |
2252                         cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2253                                          I40E_TXD_QW1_CMD_SHIFT);
2254         } else {
2255                 tx_desc->cmd_type_offset_bsz =
2256                         build_ctob(td_cmd, td_offset, size, td_tag) |
2257                         cpu_to_le64((u64)I40E_TXD_CMD <<
2258                                          I40E_TXD_QW1_CMD_SHIFT);
2259         }
2260
2261         netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2262                                                  tx_ring->queue_index),
2263                              first->bytecount);
2264
2265         /* set the timestamp */
2266         first->time_stamp = jiffies;
2267
2268         /* Force memory writes to complete before letting h/w
2269          * know there are new descriptors to fetch.  (Only
2270          * applicable for weak-ordered memory model archs,
2271          * such as IA-64).
2272          */
2273         wmb();
2274
2275         /* set next_to_watch value indicating a packet is present */
2276         first->next_to_watch = tx_desc;
2277
2278         i++;
2279         if (i == tx_ring->count)
2280                 i = 0;
2281
2282         tx_ring->next_to_use = i;
2283
2284         i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2285         /* notify HW of packet */
2286         if (!skb->xmit_more ||
2287             netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2288                                                    tx_ring->queue_index)))
2289                 writel(i, tx_ring->tail);
2290
2291         return;
2292
2293 dma_error:
2294         dev_info(tx_ring->dev, "TX DMA map failed\n");
2295
2296         /* clear dma mappings for failed tx_bi map */
2297         for (;;) {
2298                 tx_bi = &tx_ring->tx_bi[i];
2299                 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2300                 if (tx_bi == first)
2301                         break;
2302                 if (i == 0)
2303                         i = tx_ring->count;
2304                 i--;
2305         }
2306
2307         tx_ring->next_to_use = i;
2308 }
2309
2310 /**
2311  * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2312  * @skb:     send buffer
2313  * @tx_ring: ring to send buffer on
2314  *
2315  * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2316  * there is not enough descriptors available in this ring since we need at least
2317  * one descriptor.
2318  **/
2319 #ifdef I40E_FCOE
2320 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2321                                struct i40e_ring *tx_ring)
2322 #else
2323 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2324                                       struct i40e_ring *tx_ring)
2325 #endif
2326 {
2327         unsigned int f;
2328         int count = 0;
2329
2330         /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2331          *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2332          *       + 4 desc gap to avoid the cache line where head is,
2333          *       + 1 desc for context descriptor,
2334          * otherwise try next time
2335          */
2336         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2337                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2338
2339         count += TXD_USE_COUNT(skb_headlen(skb));
2340         if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2341                 tx_ring->tx_stats.tx_busy++;
2342                 return 0;
2343         }
2344         return count;
2345 }
2346
2347 /**
2348  * i40e_xmit_frame_ring - Sends buffer on Tx ring
2349  * @skb:     send buffer
2350  * @tx_ring: ring to send buffer on
2351  *
2352  * Returns NETDEV_TX_OK if sent, else an error code
2353  **/
2354 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2355                                         struct i40e_ring *tx_ring)
2356 {
2357         u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2358         u32 cd_tunneling = 0, cd_l2tag2 = 0;
2359         struct i40e_tx_buffer *first;
2360         u32 td_offset = 0;
2361         u32 tx_flags = 0;
2362         __be16 protocol;
2363         u32 td_cmd = 0;
2364         u8 hdr_len = 0;
2365         int tsyn;
2366         int tso;
2367         if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2368                 return NETDEV_TX_BUSY;
2369
2370         /* prepare the xmit flags */
2371         if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2372                 goto out_drop;
2373
2374         /* obtain protocol of skb */
2375         protocol = vlan_get_protocol(skb);
2376
2377         /* record the location of the first descriptor for this packet */
2378         first = &tx_ring->tx_bi[tx_ring->next_to_use];
2379
2380         /* setup IPv4/IPv6 offloads */
2381         if (protocol == htons(ETH_P_IP))
2382                 tx_flags |= I40E_TX_FLAGS_IPV4;
2383         else if (protocol == htons(ETH_P_IPV6))
2384                 tx_flags |= I40E_TX_FLAGS_IPV6;
2385
2386         tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
2387                        &cd_type_cmd_tso_mss, &cd_tunneling);
2388
2389         if (tso < 0)
2390                 goto out_drop;
2391         else if (tso)
2392                 tx_flags |= I40E_TX_FLAGS_TSO;
2393
2394         tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2395
2396         if (tsyn)
2397                 tx_flags |= I40E_TX_FLAGS_TSYN;
2398
2399         skb_tx_timestamp(skb);
2400
2401         /* always enable CRC insertion offload */
2402         td_cmd |= I40E_TX_DESC_CMD_ICRC;
2403
2404         /* Always offload the checksum, since it's in the data descriptor */
2405         if (skb->ip_summed == CHECKSUM_PARTIAL) {
2406                 tx_flags |= I40E_TX_FLAGS_CSUM;
2407
2408                 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
2409                                     tx_ring, &cd_tunneling);
2410         }
2411
2412         i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2413                            cd_tunneling, cd_l2tag2);
2414
2415         /* Add Flow Director ATR if it's enabled.
2416          *
2417          * NOTE: this must always be directly before the data descriptor.
2418          */
2419         i40e_atr(tx_ring, skb, tx_flags, protocol);
2420
2421         i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2422                     td_cmd, td_offset);
2423
2424         return NETDEV_TX_OK;
2425
2426 out_drop:
2427         dev_kfree_skb_any(skb);
2428         return NETDEV_TX_OK;
2429 }
2430
2431 /**
2432  * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2433  * @skb:    send buffer
2434  * @netdev: network interface device structure
2435  *
2436  * Returns NETDEV_TX_OK if sent, else an error code
2437  **/
2438 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2439 {
2440         struct i40e_netdev_priv *np = netdev_priv(netdev);
2441         struct i40e_vsi *vsi = np->vsi;
2442         struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2443
2444         /* hardware can't handle really short frames, hardware padding works
2445          * beyond this point
2446          */
2447         if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2448                 return NETDEV_TX_OK;
2449
2450         return i40e_xmit_frame_ring(skb, tx_ring);
2451 }