net: bcmgenet: use CHECKSUM_COMPLETE for NETIF_F_RXCSUM
[sfrench/cifs-2.6.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7
8 #define pr_fmt(fmt)                             "bcmgenet: " fmt
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/types.h>
14 #include <linux/fcntl.h>
15 #include <linux/interrupt.h>
16 #include <linux/string.h>
17 #include <linux/if_ether.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/delay.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/pm.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_net.h>
29 #include <linux/of_platform.h>
30 #include <net/arp.h>
31
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/netdevice.h>
35 #include <linux/inetdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/ipv6.h>
41 #include <linux/phy.h>
42 #include <linux/platform_data/bcmgenet.h>
43
44 #include <asm/unaligned.h>
45
46 #include "bcmgenet.h"
47
48 /* Maximum number of hardware queues, downsized if needed */
49 #define GENET_MAX_MQ_CNT        4
50
51 /* Default highest priority queue for multi queue support */
52 #define GENET_Q0_PRIORITY       0
53
54 #define GENET_Q16_RX_BD_CNT     \
55         (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
56 #define GENET_Q16_TX_BD_CNT     \
57         (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
58
59 #define RX_BUF_LENGTH           2048
60 #define SKB_ALIGNMENT           32
61
62 /* Tx/Rx DMA register offset, skip 256 descriptors */
63 #define WORDS_PER_BD(p)         (p->hw_params->words_per_bd)
64 #define DMA_DESC_SIZE           (WORDS_PER_BD(priv) * sizeof(u32))
65
66 #define GENET_TDMA_REG_OFF      (priv->hw_params->tdma_offset + \
67                                 TOTAL_DESC * DMA_DESC_SIZE)
68
69 #define GENET_RDMA_REG_OFF      (priv->hw_params->rdma_offset + \
70                                 TOTAL_DESC * DMA_DESC_SIZE)
71
72 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
73 {
74         /* MIPS chips strapped for BE will automagically configure the
75          * peripheral registers for CPU-native byte order.
76          */
77         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
78                 __raw_writel(value, offset);
79         else
80                 writel_relaxed(value, offset);
81 }
82
83 static inline u32 bcmgenet_readl(void __iomem *offset)
84 {
85         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
86                 return __raw_readl(offset);
87         else
88                 return readl_relaxed(offset);
89 }
90
91 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
92                                              void __iomem *d, u32 value)
93 {
94         bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
95 }
96
97 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
98                                             void __iomem *d)
99 {
100         return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
101 }
102
103 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
104                                     void __iomem *d,
105                                     dma_addr_t addr)
106 {
107         bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
108
109         /* Register writes to GISB bus can take couple hundred nanoseconds
110          * and are done for each packet, save these expensive writes unless
111          * the platform is explicitly configured for 64-bits/LPAE.
112          */
113 #ifdef CONFIG_PHYS_ADDR_T_64BIT
114         if (priv->hw_params->flags & GENET_HAS_40BITS)
115                 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
116 #endif
117 }
118
119 /* Combined address + length/status setter */
120 static inline void dmadesc_set(struct bcmgenet_priv *priv,
121                                void __iomem *d, dma_addr_t addr, u32 val)
122 {
123         dmadesc_set_addr(priv, d, addr);
124         dmadesc_set_length_status(priv, d, val);
125 }
126
127 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
128                                           void __iomem *d)
129 {
130         dma_addr_t addr;
131
132         addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
133
134         /* Register writes to GISB bus can take couple hundred nanoseconds
135          * and are done for each packet, save these expensive writes unless
136          * the platform is explicitly configured for 64-bits/LPAE.
137          */
138 #ifdef CONFIG_PHYS_ADDR_T_64BIT
139         if (priv->hw_params->flags & GENET_HAS_40BITS)
140                 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
141 #endif
142         return addr;
143 }
144
145 #define GENET_VER_FMT   "%1d.%1d EPHY: 0x%04x"
146
147 #define GENET_MSG_DEFAULT       (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
148                                 NETIF_MSG_LINK)
149
150 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
151 {
152         if (GENET_IS_V1(priv))
153                 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
154         else
155                 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
156 }
157
158 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
159 {
160         if (GENET_IS_V1(priv))
161                 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
162         else
163                 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
164 }
165
166 /* These macros are defined to deal with register map change
167  * between GENET1.1 and GENET2. Only those currently being used
168  * by driver are defined.
169  */
170 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
171 {
172         if (GENET_IS_V1(priv))
173                 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
174         else
175                 return bcmgenet_readl(priv->base +
176                                       priv->hw_params->tbuf_offset + TBUF_CTRL);
177 }
178
179 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
180 {
181         if (GENET_IS_V1(priv))
182                 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
183         else
184                 bcmgenet_writel(val, priv->base +
185                                 priv->hw_params->tbuf_offset + TBUF_CTRL);
186 }
187
188 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
189 {
190         if (GENET_IS_V1(priv))
191                 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
192         else
193                 return bcmgenet_readl(priv->base +
194                                       priv->hw_params->tbuf_offset + TBUF_BP_MC);
195 }
196
197 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
198 {
199         if (GENET_IS_V1(priv))
200                 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
201         else
202                 bcmgenet_writel(val, priv->base +
203                                 priv->hw_params->tbuf_offset + TBUF_BP_MC);
204 }
205
206 /* RX/TX DMA register accessors */
207 enum dma_reg {
208         DMA_RING_CFG = 0,
209         DMA_CTRL,
210         DMA_STATUS,
211         DMA_SCB_BURST_SIZE,
212         DMA_ARB_CTRL,
213         DMA_PRIORITY_0,
214         DMA_PRIORITY_1,
215         DMA_PRIORITY_2,
216         DMA_INDEX2RING_0,
217         DMA_INDEX2RING_1,
218         DMA_INDEX2RING_2,
219         DMA_INDEX2RING_3,
220         DMA_INDEX2RING_4,
221         DMA_INDEX2RING_5,
222         DMA_INDEX2RING_6,
223         DMA_INDEX2RING_7,
224         DMA_RING0_TIMEOUT,
225         DMA_RING1_TIMEOUT,
226         DMA_RING2_TIMEOUT,
227         DMA_RING3_TIMEOUT,
228         DMA_RING4_TIMEOUT,
229         DMA_RING5_TIMEOUT,
230         DMA_RING6_TIMEOUT,
231         DMA_RING7_TIMEOUT,
232         DMA_RING8_TIMEOUT,
233         DMA_RING9_TIMEOUT,
234         DMA_RING10_TIMEOUT,
235         DMA_RING11_TIMEOUT,
236         DMA_RING12_TIMEOUT,
237         DMA_RING13_TIMEOUT,
238         DMA_RING14_TIMEOUT,
239         DMA_RING15_TIMEOUT,
240         DMA_RING16_TIMEOUT,
241 };
242
243 static const u8 bcmgenet_dma_regs_v3plus[] = {
244         [DMA_RING_CFG]          = 0x00,
245         [DMA_CTRL]              = 0x04,
246         [DMA_STATUS]            = 0x08,
247         [DMA_SCB_BURST_SIZE]    = 0x0C,
248         [DMA_ARB_CTRL]          = 0x2C,
249         [DMA_PRIORITY_0]        = 0x30,
250         [DMA_PRIORITY_1]        = 0x34,
251         [DMA_PRIORITY_2]        = 0x38,
252         [DMA_RING0_TIMEOUT]     = 0x2C,
253         [DMA_RING1_TIMEOUT]     = 0x30,
254         [DMA_RING2_TIMEOUT]     = 0x34,
255         [DMA_RING3_TIMEOUT]     = 0x38,
256         [DMA_RING4_TIMEOUT]     = 0x3c,
257         [DMA_RING5_TIMEOUT]     = 0x40,
258         [DMA_RING6_TIMEOUT]     = 0x44,
259         [DMA_RING7_TIMEOUT]     = 0x48,
260         [DMA_RING8_TIMEOUT]     = 0x4c,
261         [DMA_RING9_TIMEOUT]     = 0x50,
262         [DMA_RING10_TIMEOUT]    = 0x54,
263         [DMA_RING11_TIMEOUT]    = 0x58,
264         [DMA_RING12_TIMEOUT]    = 0x5c,
265         [DMA_RING13_TIMEOUT]    = 0x60,
266         [DMA_RING14_TIMEOUT]    = 0x64,
267         [DMA_RING15_TIMEOUT]    = 0x68,
268         [DMA_RING16_TIMEOUT]    = 0x6C,
269         [DMA_INDEX2RING_0]      = 0x70,
270         [DMA_INDEX2RING_1]      = 0x74,
271         [DMA_INDEX2RING_2]      = 0x78,
272         [DMA_INDEX2RING_3]      = 0x7C,
273         [DMA_INDEX2RING_4]      = 0x80,
274         [DMA_INDEX2RING_5]      = 0x84,
275         [DMA_INDEX2RING_6]      = 0x88,
276         [DMA_INDEX2RING_7]      = 0x8C,
277 };
278
279 static const u8 bcmgenet_dma_regs_v2[] = {
280         [DMA_RING_CFG]          = 0x00,
281         [DMA_CTRL]              = 0x04,
282         [DMA_STATUS]            = 0x08,
283         [DMA_SCB_BURST_SIZE]    = 0x0C,
284         [DMA_ARB_CTRL]          = 0x30,
285         [DMA_PRIORITY_0]        = 0x34,
286         [DMA_PRIORITY_1]        = 0x38,
287         [DMA_PRIORITY_2]        = 0x3C,
288         [DMA_RING0_TIMEOUT]     = 0x2C,
289         [DMA_RING1_TIMEOUT]     = 0x30,
290         [DMA_RING2_TIMEOUT]     = 0x34,
291         [DMA_RING3_TIMEOUT]     = 0x38,
292         [DMA_RING4_TIMEOUT]     = 0x3c,
293         [DMA_RING5_TIMEOUT]     = 0x40,
294         [DMA_RING6_TIMEOUT]     = 0x44,
295         [DMA_RING7_TIMEOUT]     = 0x48,
296         [DMA_RING8_TIMEOUT]     = 0x4c,
297         [DMA_RING9_TIMEOUT]     = 0x50,
298         [DMA_RING10_TIMEOUT]    = 0x54,
299         [DMA_RING11_TIMEOUT]    = 0x58,
300         [DMA_RING12_TIMEOUT]    = 0x5c,
301         [DMA_RING13_TIMEOUT]    = 0x60,
302         [DMA_RING14_TIMEOUT]    = 0x64,
303         [DMA_RING15_TIMEOUT]    = 0x68,
304         [DMA_RING16_TIMEOUT]    = 0x6C,
305 };
306
307 static const u8 bcmgenet_dma_regs_v1[] = {
308         [DMA_CTRL]              = 0x00,
309         [DMA_STATUS]            = 0x04,
310         [DMA_SCB_BURST_SIZE]    = 0x0C,
311         [DMA_ARB_CTRL]          = 0x30,
312         [DMA_PRIORITY_0]        = 0x34,
313         [DMA_PRIORITY_1]        = 0x38,
314         [DMA_PRIORITY_2]        = 0x3C,
315         [DMA_RING0_TIMEOUT]     = 0x2C,
316         [DMA_RING1_TIMEOUT]     = 0x30,
317         [DMA_RING2_TIMEOUT]     = 0x34,
318         [DMA_RING3_TIMEOUT]     = 0x38,
319         [DMA_RING4_TIMEOUT]     = 0x3c,
320         [DMA_RING5_TIMEOUT]     = 0x40,
321         [DMA_RING6_TIMEOUT]     = 0x44,
322         [DMA_RING7_TIMEOUT]     = 0x48,
323         [DMA_RING8_TIMEOUT]     = 0x4c,
324         [DMA_RING9_TIMEOUT]     = 0x50,
325         [DMA_RING10_TIMEOUT]    = 0x54,
326         [DMA_RING11_TIMEOUT]    = 0x58,
327         [DMA_RING12_TIMEOUT]    = 0x5c,
328         [DMA_RING13_TIMEOUT]    = 0x60,
329         [DMA_RING14_TIMEOUT]    = 0x64,
330         [DMA_RING15_TIMEOUT]    = 0x68,
331         [DMA_RING16_TIMEOUT]    = 0x6C,
332 };
333
334 /* Set at runtime once bcmgenet version is known */
335 static const u8 *bcmgenet_dma_regs;
336
337 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
338 {
339         return netdev_priv(dev_get_drvdata(dev));
340 }
341
342 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
343                                       enum dma_reg r)
344 {
345         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
346                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
347 }
348
349 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
350                                         u32 val, enum dma_reg r)
351 {
352         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
353                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
354 }
355
356 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
357                                       enum dma_reg r)
358 {
359         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
360                               DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
361 }
362
363 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
364                                         u32 val, enum dma_reg r)
365 {
366         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
367                         DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
368 }
369
370 /* RDMA/TDMA ring registers and accessors
371  * we merge the common fields and just prefix with T/D the registers
372  * having different meaning depending on the direction
373  */
374 enum dma_ring_reg {
375         TDMA_READ_PTR = 0,
376         RDMA_WRITE_PTR = TDMA_READ_PTR,
377         TDMA_READ_PTR_HI,
378         RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
379         TDMA_CONS_INDEX,
380         RDMA_PROD_INDEX = TDMA_CONS_INDEX,
381         TDMA_PROD_INDEX,
382         RDMA_CONS_INDEX = TDMA_PROD_INDEX,
383         DMA_RING_BUF_SIZE,
384         DMA_START_ADDR,
385         DMA_START_ADDR_HI,
386         DMA_END_ADDR,
387         DMA_END_ADDR_HI,
388         DMA_MBUF_DONE_THRESH,
389         TDMA_FLOW_PERIOD,
390         RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
391         TDMA_WRITE_PTR,
392         RDMA_READ_PTR = TDMA_WRITE_PTR,
393         TDMA_WRITE_PTR_HI,
394         RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
395 };
396
397 /* GENET v4 supports 40-bits pointer addressing
398  * for obvious reasons the LO and HI word parts
399  * are contiguous, but this offsets the other
400  * registers.
401  */
402 static const u8 genet_dma_ring_regs_v4[] = {
403         [TDMA_READ_PTR]                 = 0x00,
404         [TDMA_READ_PTR_HI]              = 0x04,
405         [TDMA_CONS_INDEX]               = 0x08,
406         [TDMA_PROD_INDEX]               = 0x0C,
407         [DMA_RING_BUF_SIZE]             = 0x10,
408         [DMA_START_ADDR]                = 0x14,
409         [DMA_START_ADDR_HI]             = 0x18,
410         [DMA_END_ADDR]                  = 0x1C,
411         [DMA_END_ADDR_HI]               = 0x20,
412         [DMA_MBUF_DONE_THRESH]          = 0x24,
413         [TDMA_FLOW_PERIOD]              = 0x28,
414         [TDMA_WRITE_PTR]                = 0x2C,
415         [TDMA_WRITE_PTR_HI]             = 0x30,
416 };
417
418 static const u8 genet_dma_ring_regs_v123[] = {
419         [TDMA_READ_PTR]                 = 0x00,
420         [TDMA_CONS_INDEX]               = 0x04,
421         [TDMA_PROD_INDEX]               = 0x08,
422         [DMA_RING_BUF_SIZE]             = 0x0C,
423         [DMA_START_ADDR]                = 0x10,
424         [DMA_END_ADDR]                  = 0x14,
425         [DMA_MBUF_DONE_THRESH]          = 0x18,
426         [TDMA_FLOW_PERIOD]              = 0x1C,
427         [TDMA_WRITE_PTR]                = 0x20,
428 };
429
430 /* Set at runtime once GENET version is known */
431 static const u8 *genet_dma_ring_regs;
432
433 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
434                                            unsigned int ring,
435                                            enum dma_ring_reg r)
436 {
437         return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
438                               (DMA_RING_SIZE * ring) +
439                               genet_dma_ring_regs[r]);
440 }
441
442 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
443                                              unsigned int ring, u32 val,
444                                              enum dma_ring_reg r)
445 {
446         bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
447                         (DMA_RING_SIZE * ring) +
448                         genet_dma_ring_regs[r]);
449 }
450
451 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
452                                            unsigned int ring,
453                                            enum dma_ring_reg r)
454 {
455         return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
456                               (DMA_RING_SIZE * ring) +
457                               genet_dma_ring_regs[r]);
458 }
459
460 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
461                                              unsigned int ring, u32 val,
462                                              enum dma_ring_reg r)
463 {
464         bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
465                         (DMA_RING_SIZE * ring) +
466                         genet_dma_ring_regs[r]);
467 }
468
469 static int bcmgenet_begin(struct net_device *dev)
470 {
471         struct bcmgenet_priv *priv = netdev_priv(dev);
472
473         /* Turn on the clock */
474         return clk_prepare_enable(priv->clk);
475 }
476
477 static void bcmgenet_complete(struct net_device *dev)
478 {
479         struct bcmgenet_priv *priv = netdev_priv(dev);
480
481         /* Turn off the clock */
482         clk_disable_unprepare(priv->clk);
483 }
484
485 static int bcmgenet_get_link_ksettings(struct net_device *dev,
486                                        struct ethtool_link_ksettings *cmd)
487 {
488         if (!netif_running(dev))
489                 return -EINVAL;
490
491         if (!dev->phydev)
492                 return -ENODEV;
493
494         phy_ethtool_ksettings_get(dev->phydev, cmd);
495
496         return 0;
497 }
498
499 static int bcmgenet_set_link_ksettings(struct net_device *dev,
500                                        const struct ethtool_link_ksettings *cmd)
501 {
502         if (!netif_running(dev))
503                 return -EINVAL;
504
505         if (!dev->phydev)
506                 return -ENODEV;
507
508         return phy_ethtool_ksettings_set(dev->phydev, cmd);
509 }
510
511 static int bcmgenet_set_rx_csum(struct net_device *dev,
512                                 netdev_features_t wanted)
513 {
514         struct bcmgenet_priv *priv = netdev_priv(dev);
515         u32 rbuf_chk_ctrl;
516         bool rx_csum_en;
517
518         rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
519
520         rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
521
522         /* enable rx checksumming */
523         if (rx_csum_en)
524                 rbuf_chk_ctrl |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
525         else
526                 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
527         priv->desc_rxchk_en = rx_csum_en;
528
529         /* If UniMAC forwards CRC, we need to skip over it to get
530          * a valid CHK bit to be set in the per-packet status word
531         */
532         if (rx_csum_en && priv->crc_fwd_en)
533                 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
534         else
535                 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
536
537         bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
538
539         return 0;
540 }
541
542 static int bcmgenet_set_tx_csum(struct net_device *dev,
543                                 netdev_features_t wanted)
544 {
545         struct bcmgenet_priv *priv = netdev_priv(dev);
546         bool desc_64b_en;
547         u32 tbuf_ctrl, rbuf_ctrl;
548
549         tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
550         rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
551
552         desc_64b_en = !!(wanted & NETIF_F_HW_CSUM);
553
554         /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
555         if (desc_64b_en) {
556                 tbuf_ctrl |= RBUF_64B_EN;
557                 rbuf_ctrl |= RBUF_64B_EN;
558         } else {
559                 tbuf_ctrl &= ~RBUF_64B_EN;
560                 rbuf_ctrl &= ~RBUF_64B_EN;
561         }
562         priv->desc_64b_en = desc_64b_en;
563
564         bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
565         bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
566
567         return 0;
568 }
569
570 static int bcmgenet_set_features(struct net_device *dev,
571                                  netdev_features_t features)
572 {
573         netdev_features_t changed = features ^ dev->features;
574         netdev_features_t wanted = dev->wanted_features;
575         int ret = 0;
576
577         if (changed & NETIF_F_HW_CSUM)
578                 ret = bcmgenet_set_tx_csum(dev, wanted);
579         if (changed & (NETIF_F_RXCSUM))
580                 ret = bcmgenet_set_rx_csum(dev, wanted);
581
582         return ret;
583 }
584
585 static u32 bcmgenet_get_msglevel(struct net_device *dev)
586 {
587         struct bcmgenet_priv *priv = netdev_priv(dev);
588
589         return priv->msg_enable;
590 }
591
592 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
593 {
594         struct bcmgenet_priv *priv = netdev_priv(dev);
595
596         priv->msg_enable = level;
597 }
598
599 static int bcmgenet_get_coalesce(struct net_device *dev,
600                                  struct ethtool_coalesce *ec)
601 {
602         struct bcmgenet_priv *priv = netdev_priv(dev);
603         struct bcmgenet_rx_ring *ring;
604         unsigned int i;
605
606         ec->tx_max_coalesced_frames =
607                 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
608                                          DMA_MBUF_DONE_THRESH);
609         ec->rx_max_coalesced_frames =
610                 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
611                                          DMA_MBUF_DONE_THRESH);
612         ec->rx_coalesce_usecs =
613                 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
614
615         for (i = 0; i < priv->hw_params->rx_queues; i++) {
616                 ring = &priv->rx_rings[i];
617                 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
618         }
619         ring = &priv->rx_rings[DESC_INDEX];
620         ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
621
622         return 0;
623 }
624
625 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
626                                      u32 usecs, u32 pkts)
627 {
628         struct bcmgenet_priv *priv = ring->priv;
629         unsigned int i = ring->index;
630         u32 reg;
631
632         bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
633
634         reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
635         reg &= ~DMA_TIMEOUT_MASK;
636         reg |= DIV_ROUND_UP(usecs * 1000, 8192);
637         bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
638 }
639
640 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
641                                           struct ethtool_coalesce *ec)
642 {
643         struct dim_cq_moder moder;
644         u32 usecs, pkts;
645
646         ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
647         ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
648         usecs = ring->rx_coalesce_usecs;
649         pkts = ring->rx_max_coalesced_frames;
650
651         if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
652                 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
653                 usecs = moder.usec;
654                 pkts = moder.pkts;
655         }
656
657         ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
658         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
659 }
660
661 static int bcmgenet_set_coalesce(struct net_device *dev,
662                                  struct ethtool_coalesce *ec)
663 {
664         struct bcmgenet_priv *priv = netdev_priv(dev);
665         unsigned int i;
666
667         /* Base system clock is 125Mhz, DMA timeout is this reference clock
668          * divided by 1024, which yields roughly 8.192us, our maximum value
669          * has to fit in the DMA_TIMEOUT_MASK (16 bits)
670          */
671         if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
672             ec->tx_max_coalesced_frames == 0 ||
673             ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
674             ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
675                 return -EINVAL;
676
677         if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
678                 return -EINVAL;
679
680         /* GENET TDMA hardware does not support a configurable timeout, but will
681          * always generate an interrupt either after MBDONE packets have been
682          * transmitted, or when the ring is empty.
683          */
684         if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
685             ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
686             ec->use_adaptive_tx_coalesce)
687                 return -EOPNOTSUPP;
688
689         /* Program all TX queues with the same values, as there is no
690          * ethtool knob to do coalescing on a per-queue basis
691          */
692         for (i = 0; i < priv->hw_params->tx_queues; i++)
693                 bcmgenet_tdma_ring_writel(priv, i,
694                                           ec->tx_max_coalesced_frames,
695                                           DMA_MBUF_DONE_THRESH);
696         bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
697                                   ec->tx_max_coalesced_frames,
698                                   DMA_MBUF_DONE_THRESH);
699
700         for (i = 0; i < priv->hw_params->rx_queues; i++)
701                 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
702         bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
703
704         return 0;
705 }
706
707 /* standard ethtool support functions. */
708 enum bcmgenet_stat_type {
709         BCMGENET_STAT_NETDEV = -1,
710         BCMGENET_STAT_MIB_RX,
711         BCMGENET_STAT_MIB_TX,
712         BCMGENET_STAT_RUNT,
713         BCMGENET_STAT_MISC,
714         BCMGENET_STAT_SOFT,
715 };
716
717 struct bcmgenet_stats {
718         char stat_string[ETH_GSTRING_LEN];
719         int stat_sizeof;
720         int stat_offset;
721         enum bcmgenet_stat_type type;
722         /* reg offset from UMAC base for misc counters */
723         u16 reg_offset;
724 };
725
726 #define STAT_NETDEV(m) { \
727         .stat_string = __stringify(m), \
728         .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
729         .stat_offset = offsetof(struct net_device_stats, m), \
730         .type = BCMGENET_STAT_NETDEV, \
731 }
732
733 #define STAT_GENET_MIB(str, m, _type) { \
734         .stat_string = str, \
735         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
736         .stat_offset = offsetof(struct bcmgenet_priv, m), \
737         .type = _type, \
738 }
739
740 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
741 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
742 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
743 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
744
745 #define STAT_GENET_MISC(str, m, offset) { \
746         .stat_string = str, \
747         .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
748         .stat_offset = offsetof(struct bcmgenet_priv, m), \
749         .type = BCMGENET_STAT_MISC, \
750         .reg_offset = offset, \
751 }
752
753 #define STAT_GENET_Q(num) \
754         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
755                         tx_rings[num].packets), \
756         STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
757                         tx_rings[num].bytes), \
758         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
759                         rx_rings[num].bytes),    \
760         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
761                         rx_rings[num].packets), \
762         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
763                         rx_rings[num].errors), \
764         STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
765                         rx_rings[num].dropped)
766
767 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
768  * between the end of TX stats and the beginning of the RX RUNT
769  */
770 #define BCMGENET_STAT_OFFSET    0xc
771
772 /* Hardware counters must be kept in sync because the order/offset
773  * is important here (order in structure declaration = order in hardware)
774  */
775 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
776         /* general stats */
777         STAT_NETDEV(rx_packets),
778         STAT_NETDEV(tx_packets),
779         STAT_NETDEV(rx_bytes),
780         STAT_NETDEV(tx_bytes),
781         STAT_NETDEV(rx_errors),
782         STAT_NETDEV(tx_errors),
783         STAT_NETDEV(rx_dropped),
784         STAT_NETDEV(tx_dropped),
785         STAT_NETDEV(multicast),
786         /* UniMAC RSV counters */
787         STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
788         STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
789         STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
790         STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
791         STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
792         STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
793         STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
794         STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
795         STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
796         STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
797         STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
798         STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
799         STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
800         STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
801         STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
802         STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
803         STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
804         STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
805         STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
806         STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
807         STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
808         STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
809         STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
810         STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
811         STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
812         STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
813         STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
814         STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
815         STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
816         /* UniMAC TSV counters */
817         STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
818         STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
819         STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
820         STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
821         STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
822         STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
823         STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
824         STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
825         STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
826         STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
827         STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
828         STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
829         STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
830         STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
831         STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
832         STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
833         STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
834         STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
835         STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
836         STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
837         STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
838         STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
839         STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
840         STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
841         STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
842         STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
843         STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
844         STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
845         STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
846         /* UniMAC RUNT counters */
847         STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
848         STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
849         STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
850         STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
851         /* Misc UniMAC counters */
852         STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
853                         UMAC_RBUF_OVFL_CNT_V1),
854         STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
855                         UMAC_RBUF_ERR_CNT_V1),
856         STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
857         STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
858         STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
859         STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
860         /* Per TX queues */
861         STAT_GENET_Q(0),
862         STAT_GENET_Q(1),
863         STAT_GENET_Q(2),
864         STAT_GENET_Q(3),
865         STAT_GENET_Q(16),
866 };
867
868 #define BCMGENET_STATS_LEN      ARRAY_SIZE(bcmgenet_gstrings_stats)
869
870 static void bcmgenet_get_drvinfo(struct net_device *dev,
871                                  struct ethtool_drvinfo *info)
872 {
873         strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
874         strlcpy(info->version, "v2.0", sizeof(info->version));
875 }
876
877 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
878 {
879         switch (string_set) {
880         case ETH_SS_STATS:
881                 return BCMGENET_STATS_LEN;
882         default:
883                 return -EOPNOTSUPP;
884         }
885 }
886
887 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
888                                  u8 *data)
889 {
890         int i;
891
892         switch (stringset) {
893         case ETH_SS_STATS:
894                 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
895                         memcpy(data + i * ETH_GSTRING_LEN,
896                                bcmgenet_gstrings_stats[i].stat_string,
897                                ETH_GSTRING_LEN);
898                 }
899                 break;
900         }
901 }
902
903 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
904 {
905         u16 new_offset;
906         u32 val;
907
908         switch (offset) {
909         case UMAC_RBUF_OVFL_CNT_V1:
910                 if (GENET_IS_V2(priv))
911                         new_offset = RBUF_OVFL_CNT_V2;
912                 else
913                         new_offset = RBUF_OVFL_CNT_V3PLUS;
914
915                 val = bcmgenet_rbuf_readl(priv, new_offset);
916                 /* clear if overflowed */
917                 if (val == ~0)
918                         bcmgenet_rbuf_writel(priv, 0, new_offset);
919                 break;
920         case UMAC_RBUF_ERR_CNT_V1:
921                 if (GENET_IS_V2(priv))
922                         new_offset = RBUF_ERR_CNT_V2;
923                 else
924                         new_offset = RBUF_ERR_CNT_V3PLUS;
925
926                 val = bcmgenet_rbuf_readl(priv, new_offset);
927                 /* clear if overflowed */
928                 if (val == ~0)
929                         bcmgenet_rbuf_writel(priv, 0, new_offset);
930                 break;
931         default:
932                 val = bcmgenet_umac_readl(priv, offset);
933                 /* clear if overflowed */
934                 if (val == ~0)
935                         bcmgenet_umac_writel(priv, 0, offset);
936                 break;
937         }
938
939         return val;
940 }
941
942 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
943 {
944         int i, j = 0;
945
946         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
947                 const struct bcmgenet_stats *s;
948                 u8 offset = 0;
949                 u32 val = 0;
950                 char *p;
951
952                 s = &bcmgenet_gstrings_stats[i];
953                 switch (s->type) {
954                 case BCMGENET_STAT_NETDEV:
955                 case BCMGENET_STAT_SOFT:
956                         continue;
957                 case BCMGENET_STAT_RUNT:
958                         offset += BCMGENET_STAT_OFFSET;
959                         /* fall through */
960                 case BCMGENET_STAT_MIB_TX:
961                         offset += BCMGENET_STAT_OFFSET;
962                         /* fall through */
963                 case BCMGENET_STAT_MIB_RX:
964                         val = bcmgenet_umac_readl(priv,
965                                                   UMAC_MIB_START + j + offset);
966                         offset = 0;     /* Reset Offset */
967                         break;
968                 case BCMGENET_STAT_MISC:
969                         if (GENET_IS_V1(priv)) {
970                                 val = bcmgenet_umac_readl(priv, s->reg_offset);
971                                 /* clear if overflowed */
972                                 if (val == ~0)
973                                         bcmgenet_umac_writel(priv, 0,
974                                                              s->reg_offset);
975                         } else {
976                                 val = bcmgenet_update_stat_misc(priv,
977                                                                 s->reg_offset);
978                         }
979                         break;
980                 }
981
982                 j += s->stat_sizeof;
983                 p = (char *)priv + s->stat_offset;
984                 *(u32 *)p = val;
985         }
986 }
987
988 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
989                                        struct ethtool_stats *stats,
990                                        u64 *data)
991 {
992         struct bcmgenet_priv *priv = netdev_priv(dev);
993         int i;
994
995         if (netif_running(dev))
996                 bcmgenet_update_mib_counters(priv);
997
998         for (i = 0; i < BCMGENET_STATS_LEN; i++) {
999                 const struct bcmgenet_stats *s;
1000                 char *p;
1001
1002                 s = &bcmgenet_gstrings_stats[i];
1003                 if (s->type == BCMGENET_STAT_NETDEV)
1004                         p = (char *)&dev->stats;
1005                 else
1006                         p = (char *)priv;
1007                 p += s->stat_offset;
1008                 if (sizeof(unsigned long) != sizeof(u32) &&
1009                     s->stat_sizeof == sizeof(unsigned long))
1010                         data[i] = *(unsigned long *)p;
1011                 else
1012                         data[i] = *(u32 *)p;
1013         }
1014 }
1015
1016 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1017 {
1018         struct bcmgenet_priv *priv = netdev_priv(dev);
1019         u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1020         u32 reg;
1021
1022         if (enable && !priv->clk_eee_enabled) {
1023                 clk_prepare_enable(priv->clk_eee);
1024                 priv->clk_eee_enabled = true;
1025         }
1026
1027         reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1028         if (enable)
1029                 reg |= EEE_EN;
1030         else
1031                 reg &= ~EEE_EN;
1032         bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1033
1034         /* Enable EEE and switch to a 27Mhz clock automatically */
1035         reg = bcmgenet_readl(priv->base + off);
1036         if (enable)
1037                 reg |= TBUF_EEE_EN | TBUF_PM_EN;
1038         else
1039                 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1040         bcmgenet_writel(reg, priv->base + off);
1041
1042         /* Do the same for thing for RBUF */
1043         reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1044         if (enable)
1045                 reg |= RBUF_EEE_EN | RBUF_PM_EN;
1046         else
1047                 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1048         bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1049
1050         if (!enable && priv->clk_eee_enabled) {
1051                 clk_disable_unprepare(priv->clk_eee);
1052                 priv->clk_eee_enabled = false;
1053         }
1054
1055         priv->eee.eee_enabled = enable;
1056         priv->eee.eee_active = enable;
1057 }
1058
1059 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1060 {
1061         struct bcmgenet_priv *priv = netdev_priv(dev);
1062         struct ethtool_eee *p = &priv->eee;
1063
1064         if (GENET_IS_V1(priv))
1065                 return -EOPNOTSUPP;
1066
1067         if (!dev->phydev)
1068                 return -ENODEV;
1069
1070         e->eee_enabled = p->eee_enabled;
1071         e->eee_active = p->eee_active;
1072         e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1073
1074         return phy_ethtool_get_eee(dev->phydev, e);
1075 }
1076
1077 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1078 {
1079         struct bcmgenet_priv *priv = netdev_priv(dev);
1080         struct ethtool_eee *p = &priv->eee;
1081         int ret = 0;
1082
1083         if (GENET_IS_V1(priv))
1084                 return -EOPNOTSUPP;
1085
1086         if (!dev->phydev)
1087                 return -ENODEV;
1088
1089         p->eee_enabled = e->eee_enabled;
1090
1091         if (!p->eee_enabled) {
1092                 bcmgenet_eee_enable_set(dev, false);
1093         } else {
1094                 ret = phy_init_eee(dev->phydev, 0);
1095                 if (ret) {
1096                         netif_err(priv, hw, dev, "EEE initialization failed\n");
1097                         return ret;
1098                 }
1099
1100                 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1101                 bcmgenet_eee_enable_set(dev, true);
1102         }
1103
1104         return phy_ethtool_set_eee(dev->phydev, e);
1105 }
1106
1107 /* standard ethtool support functions. */
1108 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1109         .begin                  = bcmgenet_begin,
1110         .complete               = bcmgenet_complete,
1111         .get_strings            = bcmgenet_get_strings,
1112         .get_sset_count         = bcmgenet_get_sset_count,
1113         .get_ethtool_stats      = bcmgenet_get_ethtool_stats,
1114         .get_drvinfo            = bcmgenet_get_drvinfo,
1115         .get_link               = ethtool_op_get_link,
1116         .get_msglevel           = bcmgenet_get_msglevel,
1117         .set_msglevel           = bcmgenet_set_msglevel,
1118         .get_wol                = bcmgenet_get_wol,
1119         .set_wol                = bcmgenet_set_wol,
1120         .get_eee                = bcmgenet_get_eee,
1121         .set_eee                = bcmgenet_set_eee,
1122         .nway_reset             = phy_ethtool_nway_reset,
1123         .get_coalesce           = bcmgenet_get_coalesce,
1124         .set_coalesce           = bcmgenet_set_coalesce,
1125         .get_link_ksettings     = bcmgenet_get_link_ksettings,
1126         .set_link_ksettings     = bcmgenet_set_link_ksettings,
1127         .get_ts_info            = ethtool_op_get_ts_info,
1128 };
1129
1130 /* Power down the unimac, based on mode. */
1131 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1132                                 enum bcmgenet_power_mode mode)
1133 {
1134         int ret = 0;
1135         u32 reg;
1136
1137         switch (mode) {
1138         case GENET_POWER_CABLE_SENSE:
1139                 phy_detach(priv->dev->phydev);
1140                 break;
1141
1142         case GENET_POWER_WOL_MAGIC:
1143                 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1144                 break;
1145
1146         case GENET_POWER_PASSIVE:
1147                 /* Power down LED */
1148                 if (priv->hw_params->flags & GENET_HAS_EXT) {
1149                         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1150                         if (GENET_IS_V5(priv))
1151                                 reg |= EXT_PWR_DOWN_PHY_EN |
1152                                        EXT_PWR_DOWN_PHY_RD |
1153                                        EXT_PWR_DOWN_PHY_SD |
1154                                        EXT_PWR_DOWN_PHY_RX |
1155                                        EXT_PWR_DOWN_PHY_TX |
1156                                        EXT_IDDQ_GLBL_PWR;
1157                         else
1158                                 reg |= EXT_PWR_DOWN_PHY;
1159
1160                         reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1161                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1162
1163                         bcmgenet_phy_power_set(priv->dev, false);
1164                 }
1165                 break;
1166         default:
1167                 break;
1168         }
1169
1170         return ret;
1171 }
1172
1173 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1174                               enum bcmgenet_power_mode mode)
1175 {
1176         u32 reg;
1177
1178         if (!(priv->hw_params->flags & GENET_HAS_EXT))
1179                 return;
1180
1181         reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1182
1183         switch (mode) {
1184         case GENET_POWER_PASSIVE:
1185                 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1186                 if (GENET_IS_V5(priv)) {
1187                         reg &= ~(EXT_PWR_DOWN_PHY_EN |
1188                                  EXT_PWR_DOWN_PHY_RD |
1189                                  EXT_PWR_DOWN_PHY_SD |
1190                                  EXT_PWR_DOWN_PHY_RX |
1191                                  EXT_PWR_DOWN_PHY_TX |
1192                                  EXT_IDDQ_GLBL_PWR);
1193                         reg |=   EXT_PHY_RESET;
1194                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1195                         mdelay(1);
1196
1197                         reg &=  ~EXT_PHY_RESET;
1198                 } else {
1199                         reg &= ~EXT_PWR_DOWN_PHY;
1200                         reg |= EXT_PWR_DN_EN_LD;
1201                 }
1202                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1203                 bcmgenet_phy_power_set(priv->dev, true);
1204                 break;
1205
1206         case GENET_POWER_CABLE_SENSE:
1207                 /* enable APD */
1208                 if (!GENET_IS_V5(priv)) {
1209                         reg |= EXT_PWR_DN_EN_LD;
1210                         bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1211                 }
1212                 break;
1213         case GENET_POWER_WOL_MAGIC:
1214                 bcmgenet_wol_power_up_cfg(priv, mode);
1215                 return;
1216         default:
1217                 break;
1218         }
1219 }
1220
1221 /* ioctl handle special commands that are not present in ethtool. */
1222 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1223 {
1224         if (!netif_running(dev))
1225                 return -EINVAL;
1226
1227         if (!dev->phydev)
1228                 return -ENODEV;
1229
1230         return phy_mii_ioctl(dev->phydev, rq, cmd);
1231 }
1232
1233 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1234                                          struct bcmgenet_tx_ring *ring)
1235 {
1236         struct enet_cb *tx_cb_ptr;
1237
1238         tx_cb_ptr = ring->cbs;
1239         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1240
1241         /* Advancing local write pointer */
1242         if (ring->write_ptr == ring->end_ptr)
1243                 ring->write_ptr = ring->cb_ptr;
1244         else
1245                 ring->write_ptr++;
1246
1247         return tx_cb_ptr;
1248 }
1249
1250 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1251                                          struct bcmgenet_tx_ring *ring)
1252 {
1253         struct enet_cb *tx_cb_ptr;
1254
1255         tx_cb_ptr = ring->cbs;
1256         tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1257
1258         /* Rewinding local write pointer */
1259         if (ring->write_ptr == ring->cb_ptr)
1260                 ring->write_ptr = ring->end_ptr;
1261         else
1262                 ring->write_ptr--;
1263
1264         return tx_cb_ptr;
1265 }
1266
1267 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1268 {
1269         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1270                                  INTRL2_CPU_MASK_SET);
1271 }
1272
1273 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1274 {
1275         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1276                                  INTRL2_CPU_MASK_CLEAR);
1277 }
1278
1279 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1280 {
1281         bcmgenet_intrl2_1_writel(ring->priv,
1282                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1283                                  INTRL2_CPU_MASK_SET);
1284 }
1285
1286 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1287 {
1288         bcmgenet_intrl2_1_writel(ring->priv,
1289                                  1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1290                                  INTRL2_CPU_MASK_CLEAR);
1291 }
1292
1293 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1294 {
1295         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1296                                  INTRL2_CPU_MASK_SET);
1297 }
1298
1299 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1300 {
1301         bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1302                                  INTRL2_CPU_MASK_CLEAR);
1303 }
1304
1305 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1306 {
1307         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1308                                  INTRL2_CPU_MASK_CLEAR);
1309 }
1310
1311 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1312 {
1313         bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1314                                  INTRL2_CPU_MASK_SET);
1315 }
1316
1317 /* Simple helper to free a transmit control block's resources
1318  * Returns an skb when the last transmit control block associated with the
1319  * skb is freed.  The skb should be freed by the caller if necessary.
1320  */
1321 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1322                                            struct enet_cb *cb)
1323 {
1324         struct sk_buff *skb;
1325
1326         skb = cb->skb;
1327
1328         if (skb) {
1329                 cb->skb = NULL;
1330                 if (cb == GENET_CB(skb)->first_cb)
1331                         dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1332                                          dma_unmap_len(cb, dma_len),
1333                                          DMA_TO_DEVICE);
1334                 else
1335                         dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1336                                        dma_unmap_len(cb, dma_len),
1337                                        DMA_TO_DEVICE);
1338                 dma_unmap_addr_set(cb, dma_addr, 0);
1339
1340                 if (cb == GENET_CB(skb)->last_cb)
1341                         return skb;
1342
1343         } else if (dma_unmap_addr(cb, dma_addr)) {
1344                 dma_unmap_page(dev,
1345                                dma_unmap_addr(cb, dma_addr),
1346                                dma_unmap_len(cb, dma_len),
1347                                DMA_TO_DEVICE);
1348                 dma_unmap_addr_set(cb, dma_addr, 0);
1349         }
1350
1351         return NULL;
1352 }
1353
1354 /* Simple helper to free a receive control block's resources */
1355 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1356                                            struct enet_cb *cb)
1357 {
1358         struct sk_buff *skb;
1359
1360         skb = cb->skb;
1361         cb->skb = NULL;
1362
1363         if (dma_unmap_addr(cb, dma_addr)) {
1364                 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1365                                  dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1366                 dma_unmap_addr_set(cb, dma_addr, 0);
1367         }
1368
1369         return skb;
1370 }
1371
1372 /* Unlocked version of the reclaim routine */
1373 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1374                                           struct bcmgenet_tx_ring *ring)
1375 {
1376         struct bcmgenet_priv *priv = netdev_priv(dev);
1377         unsigned int txbds_processed = 0;
1378         unsigned int bytes_compl = 0;
1379         unsigned int pkts_compl = 0;
1380         unsigned int txbds_ready;
1381         unsigned int c_index;
1382         struct sk_buff *skb;
1383
1384         /* Clear status before servicing to reduce spurious interrupts */
1385         if (ring->index == DESC_INDEX)
1386                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1387                                          INTRL2_CPU_CLEAR);
1388         else
1389                 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1390                                          INTRL2_CPU_CLEAR);
1391
1392         /* Compute how many buffers are transmitted since last xmit call */
1393         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1394                 & DMA_C_INDEX_MASK;
1395         txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1396
1397         netif_dbg(priv, tx_done, dev,
1398                   "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1399                   __func__, ring->index, ring->c_index, c_index, txbds_ready);
1400
1401         /* Reclaim transmitted buffers */
1402         while (txbds_processed < txbds_ready) {
1403                 skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1404                                           &priv->tx_cbs[ring->clean_ptr]);
1405                 if (skb) {
1406                         pkts_compl++;
1407                         bytes_compl += GENET_CB(skb)->bytes_sent;
1408                         dev_consume_skb_any(skb);
1409                 }
1410
1411                 txbds_processed++;
1412                 if (likely(ring->clean_ptr < ring->end_ptr))
1413                         ring->clean_ptr++;
1414                 else
1415                         ring->clean_ptr = ring->cb_ptr;
1416         }
1417
1418         ring->free_bds += txbds_processed;
1419         ring->c_index = c_index;
1420
1421         ring->packets += pkts_compl;
1422         ring->bytes += bytes_compl;
1423
1424         netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1425                                   pkts_compl, bytes_compl);
1426
1427         return txbds_processed;
1428 }
1429
1430 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1431                                 struct bcmgenet_tx_ring *ring)
1432 {
1433         unsigned int released;
1434
1435         spin_lock_bh(&ring->lock);
1436         released = __bcmgenet_tx_reclaim(dev, ring);
1437         spin_unlock_bh(&ring->lock);
1438
1439         return released;
1440 }
1441
1442 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1443 {
1444         struct bcmgenet_tx_ring *ring =
1445                 container_of(napi, struct bcmgenet_tx_ring, napi);
1446         unsigned int work_done = 0;
1447         struct netdev_queue *txq;
1448
1449         spin_lock(&ring->lock);
1450         work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1451         if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1452                 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1453                 netif_tx_wake_queue(txq);
1454         }
1455         spin_unlock(&ring->lock);
1456
1457         if (work_done == 0) {
1458                 napi_complete(napi);
1459                 ring->int_enable(ring);
1460
1461                 return 0;
1462         }
1463
1464         return budget;
1465 }
1466
1467 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1468 {
1469         struct bcmgenet_priv *priv = netdev_priv(dev);
1470         int i;
1471
1472         if (netif_is_multiqueue(dev)) {
1473                 for (i = 0; i < priv->hw_params->tx_queues; i++)
1474                         bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1475         }
1476
1477         bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1478 }
1479
1480 /* Reallocate the SKB to put enough headroom in front of it and insert
1481  * the transmit checksum offsets in the descriptors
1482  */
1483 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1484                                             struct sk_buff *skb)
1485 {
1486         struct status_64 *status = NULL;
1487         struct sk_buff *new_skb;
1488         u16 offset;
1489         u8 ip_proto;
1490         __be16 ip_ver;
1491         u32 tx_csum_info;
1492
1493         if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1494                 /* If 64 byte status block enabled, must make sure skb has
1495                  * enough headroom for us to insert 64B status block.
1496                  */
1497                 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1498                 dev_kfree_skb(skb);
1499                 if (!new_skb) {
1500                         dev->stats.tx_dropped++;
1501                         return NULL;
1502                 }
1503                 skb = new_skb;
1504         }
1505
1506         skb_push(skb, sizeof(*status));
1507         status = (struct status_64 *)skb->data;
1508
1509         if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1510                 ip_ver = skb->protocol;
1511                 switch (ip_ver) {
1512                 case htons(ETH_P_IP):
1513                         ip_proto = ip_hdr(skb)->protocol;
1514                         break;
1515                 case htons(ETH_P_IPV6):
1516                         ip_proto = ipv6_hdr(skb)->nexthdr;
1517                         break;
1518                 default:
1519                         /* don't use UDP flag */
1520                         ip_proto = 0;
1521                         break;
1522                 }
1523
1524                 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1525                 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1526                                 (offset + skb->csum_offset) |
1527                                 STATUS_TX_CSUM_LV;
1528
1529                 /* Set the special UDP flag for UDP */
1530                 if (ip_proto == IPPROTO_UDP)
1531                         tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1532
1533                 status->tx_csum_info = tx_csum_info;
1534         }
1535
1536         return skb;
1537 }
1538
1539 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1540 {
1541         struct bcmgenet_priv *priv = netdev_priv(dev);
1542         struct device *kdev = &priv->pdev->dev;
1543         struct bcmgenet_tx_ring *ring = NULL;
1544         struct enet_cb *tx_cb_ptr;
1545         struct netdev_queue *txq;
1546         int nr_frags, index;
1547         dma_addr_t mapping;
1548         unsigned int size;
1549         skb_frag_t *frag;
1550         u32 len_stat;
1551         int ret;
1552         int i;
1553
1554         index = skb_get_queue_mapping(skb);
1555         /* Mapping strategy:
1556          * queue_mapping = 0, unclassified, packet xmited through ring16
1557          * queue_mapping = 1, goes to ring 0. (highest priority queue
1558          * queue_mapping = 2, goes to ring 1.
1559          * queue_mapping = 3, goes to ring 2.
1560          * queue_mapping = 4, goes to ring 3.
1561          */
1562         if (index == 0)
1563                 index = DESC_INDEX;
1564         else
1565                 index -= 1;
1566
1567         ring = &priv->tx_rings[index];
1568         txq = netdev_get_tx_queue(dev, ring->queue);
1569
1570         nr_frags = skb_shinfo(skb)->nr_frags;
1571
1572         spin_lock(&ring->lock);
1573         if (ring->free_bds <= (nr_frags + 1)) {
1574                 if (!netif_tx_queue_stopped(txq)) {
1575                         netif_tx_stop_queue(txq);
1576                         netdev_err(dev,
1577                                    "%s: tx ring %d full when queue %d awake\n",
1578                                    __func__, index, ring->queue);
1579                 }
1580                 ret = NETDEV_TX_BUSY;
1581                 goto out;
1582         }
1583
1584         if (skb_padto(skb, ETH_ZLEN)) {
1585                 ret = NETDEV_TX_OK;
1586                 goto out;
1587         }
1588
1589         /* Retain how many bytes will be sent on the wire, without TSB inserted
1590          * by transmit checksum offload
1591          */
1592         GENET_CB(skb)->bytes_sent = skb->len;
1593
1594         /* set the SKB transmit checksum */
1595         if (priv->desc_64b_en) {
1596                 skb = bcmgenet_put_tx_csum(dev, skb);
1597                 if (!skb) {
1598                         ret = NETDEV_TX_OK;
1599                         goto out;
1600                 }
1601         }
1602
1603         for (i = 0; i <= nr_frags; i++) {
1604                 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1605
1606                 BUG_ON(!tx_cb_ptr);
1607
1608                 if (!i) {
1609                         /* Transmit single SKB or head of fragment list */
1610                         GENET_CB(skb)->first_cb = tx_cb_ptr;
1611                         size = skb_headlen(skb);
1612                         mapping = dma_map_single(kdev, skb->data, size,
1613                                                  DMA_TO_DEVICE);
1614                 } else {
1615                         /* xmit fragment */
1616                         frag = &skb_shinfo(skb)->frags[i - 1];
1617                         size = skb_frag_size(frag);
1618                         mapping = skb_frag_dma_map(kdev, frag, 0, size,
1619                                                    DMA_TO_DEVICE);
1620                 }
1621
1622                 ret = dma_mapping_error(kdev, mapping);
1623                 if (ret) {
1624                         priv->mib.tx_dma_failed++;
1625                         netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1626                         ret = NETDEV_TX_OK;
1627                         goto out_unmap_frags;
1628                 }
1629                 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1630                 dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1631
1632                 tx_cb_ptr->skb = skb;
1633
1634                 len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1635                            (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1636
1637                 if (!i) {
1638                         len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1639                         if (skb->ip_summed == CHECKSUM_PARTIAL)
1640                                 len_stat |= DMA_TX_DO_CSUM;
1641                 }
1642                 if (i == nr_frags)
1643                         len_stat |= DMA_EOP;
1644
1645                 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1646         }
1647
1648         GENET_CB(skb)->last_cb = tx_cb_ptr;
1649         skb_tx_timestamp(skb);
1650
1651         /* Decrement total BD count and advance our write pointer */
1652         ring->free_bds -= nr_frags + 1;
1653         ring->prod_index += nr_frags + 1;
1654         ring->prod_index &= DMA_P_INDEX_MASK;
1655
1656         netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1657
1658         if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1659                 netif_tx_stop_queue(txq);
1660
1661         if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1662                 /* Packets are ready, update producer index */
1663                 bcmgenet_tdma_ring_writel(priv, ring->index,
1664                                           ring->prod_index, TDMA_PROD_INDEX);
1665 out:
1666         spin_unlock(&ring->lock);
1667
1668         return ret;
1669
1670 out_unmap_frags:
1671         /* Back up for failed control block mapping */
1672         bcmgenet_put_txcb(priv, ring);
1673
1674         /* Unmap successfully mapped control blocks */
1675         while (i-- > 0) {
1676                 tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1677                 bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1678         }
1679
1680         dev_kfree_skb(skb);
1681         goto out;
1682 }
1683
1684 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1685                                           struct enet_cb *cb)
1686 {
1687         struct device *kdev = &priv->pdev->dev;
1688         struct sk_buff *skb;
1689         struct sk_buff *rx_skb;
1690         dma_addr_t mapping;
1691
1692         /* Allocate a new Rx skb */
1693         skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1694         if (!skb) {
1695                 priv->mib.alloc_rx_buff_failed++;
1696                 netif_err(priv, rx_err, priv->dev,
1697                           "%s: Rx skb allocation failed\n", __func__);
1698                 return NULL;
1699         }
1700
1701         /* DMA-map the new Rx skb */
1702         mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1703                                  DMA_FROM_DEVICE);
1704         if (dma_mapping_error(kdev, mapping)) {
1705                 priv->mib.rx_dma_failed++;
1706                 dev_kfree_skb_any(skb);
1707                 netif_err(priv, rx_err, priv->dev,
1708                           "%s: Rx skb DMA mapping failed\n", __func__);
1709                 return NULL;
1710         }
1711
1712         /* Grab the current Rx skb from the ring and DMA-unmap it */
1713         rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1714
1715         /* Put the new Rx skb on the ring */
1716         cb->skb = skb;
1717         dma_unmap_addr_set(cb, dma_addr, mapping);
1718         dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1719         dmadesc_set_addr(priv, cb->bd_addr, mapping);
1720
1721         /* Return the current Rx skb to caller */
1722         return rx_skb;
1723 }
1724
1725 /* bcmgenet_desc_rx - descriptor based rx process.
1726  * this could be called from bottom half, or from NAPI polling method.
1727  */
1728 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1729                                      unsigned int budget)
1730 {
1731         struct bcmgenet_priv *priv = ring->priv;
1732         struct net_device *dev = priv->dev;
1733         struct enet_cb *cb;
1734         struct sk_buff *skb;
1735         u32 dma_length_status;
1736         unsigned long dma_flag;
1737         int len;
1738         unsigned int rxpktprocessed = 0, rxpkttoprocess;
1739         unsigned int bytes_processed = 0;
1740         unsigned int p_index, mask;
1741         unsigned int discards;
1742
1743         /* Clear status before servicing to reduce spurious interrupts */
1744         if (ring->index == DESC_INDEX) {
1745                 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1746                                          INTRL2_CPU_CLEAR);
1747         } else {
1748                 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1749                 bcmgenet_intrl2_1_writel(priv,
1750                                          mask,
1751                                          INTRL2_CPU_CLEAR);
1752         }
1753
1754         p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1755
1756         discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1757                    DMA_P_INDEX_DISCARD_CNT_MASK;
1758         if (discards > ring->old_discards) {
1759                 discards = discards - ring->old_discards;
1760                 ring->errors += discards;
1761                 ring->old_discards += discards;
1762
1763                 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1764                 if (ring->old_discards >= 0xC000) {
1765                         ring->old_discards = 0;
1766                         bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1767                                                   RDMA_PROD_INDEX);
1768                 }
1769         }
1770
1771         p_index &= DMA_P_INDEX_MASK;
1772         rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1773
1774         netif_dbg(priv, rx_status, dev,
1775                   "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1776
1777         while ((rxpktprocessed < rxpkttoprocess) &&
1778                (rxpktprocessed < budget)) {
1779                 cb = &priv->rx_cbs[ring->read_ptr];
1780                 skb = bcmgenet_rx_refill(priv, cb);
1781
1782                 if (unlikely(!skb)) {
1783                         ring->dropped++;
1784                         goto next;
1785                 }
1786
1787                 if (!priv->desc_64b_en) {
1788                         dma_length_status =
1789                                 dmadesc_get_length_status(priv, cb->bd_addr);
1790                 } else {
1791                         struct status_64 *status;
1792                         __be16 rx_csum;
1793
1794                         status = (struct status_64 *)skb->data;
1795                         dma_length_status = status->length_status;
1796                         rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1797                         if (priv->desc_rxchk_en) {
1798                                 skb->csum = (__force __wsum)ntohs(rx_csum);
1799                                 skb->ip_summed = CHECKSUM_COMPLETE;
1800                         }
1801                 }
1802
1803                 /* DMA flags and length are still valid no matter how
1804                  * we got the Receive Status Vector (64B RSB or register)
1805                  */
1806                 dma_flag = dma_length_status & 0xffff;
1807                 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1808
1809                 netif_dbg(priv, rx_status, dev,
1810                           "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1811                           __func__, p_index, ring->c_index,
1812                           ring->read_ptr, dma_length_status);
1813
1814                 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1815                         netif_err(priv, rx_status, dev,
1816                                   "dropping fragmented packet!\n");
1817                         ring->errors++;
1818                         dev_kfree_skb_any(skb);
1819                         goto next;
1820                 }
1821
1822                 /* report errors */
1823                 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1824                                                 DMA_RX_OV |
1825                                                 DMA_RX_NO |
1826                                                 DMA_RX_LG |
1827                                                 DMA_RX_RXER))) {
1828                         netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1829                                   (unsigned int)dma_flag);
1830                         if (dma_flag & DMA_RX_CRC_ERROR)
1831                                 dev->stats.rx_crc_errors++;
1832                         if (dma_flag & DMA_RX_OV)
1833                                 dev->stats.rx_over_errors++;
1834                         if (dma_flag & DMA_RX_NO)
1835                                 dev->stats.rx_frame_errors++;
1836                         if (dma_flag & DMA_RX_LG)
1837                                 dev->stats.rx_length_errors++;
1838                         dev->stats.rx_errors++;
1839                         dev_kfree_skb_any(skb);
1840                         goto next;
1841                 } /* error packet */
1842
1843                 skb_put(skb, len);
1844                 if (priv->desc_64b_en) {
1845                         skb_pull(skb, 64);
1846                         len -= 64;
1847                 }
1848
1849                 /* remove hardware 2bytes added for IP alignment */
1850                 skb_pull(skb, 2);
1851                 len -= 2;
1852
1853                 if (priv->crc_fwd_en) {
1854                         skb_trim(skb, len - ETH_FCS_LEN);
1855                         len -= ETH_FCS_LEN;
1856                 }
1857
1858                 bytes_processed += len;
1859
1860                 /*Finish setting up the received SKB and send it to the kernel*/
1861                 skb->protocol = eth_type_trans(skb, priv->dev);
1862                 ring->packets++;
1863                 ring->bytes += len;
1864                 if (dma_flag & DMA_RX_MULT)
1865                         dev->stats.multicast++;
1866
1867                 /* Notify kernel */
1868                 napi_gro_receive(&ring->napi, skb);
1869                 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1870
1871 next:
1872                 rxpktprocessed++;
1873                 if (likely(ring->read_ptr < ring->end_ptr))
1874                         ring->read_ptr++;
1875                 else
1876                         ring->read_ptr = ring->cb_ptr;
1877
1878                 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1879                 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1880         }
1881
1882         ring->dim.bytes = bytes_processed;
1883         ring->dim.packets = rxpktprocessed;
1884
1885         return rxpktprocessed;
1886 }
1887
1888 /* Rx NAPI polling method */
1889 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1890 {
1891         struct bcmgenet_rx_ring *ring = container_of(napi,
1892                         struct bcmgenet_rx_ring, napi);
1893         struct dim_sample dim_sample = {};
1894         unsigned int work_done;
1895
1896         work_done = bcmgenet_desc_rx(ring, budget);
1897
1898         if (work_done < budget) {
1899                 napi_complete_done(napi, work_done);
1900                 ring->int_enable(ring);
1901         }
1902
1903         if (ring->dim.use_dim) {
1904                 dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1905                                   ring->dim.bytes, &dim_sample);
1906                 net_dim(&ring->dim.dim, dim_sample);
1907         }
1908
1909         return work_done;
1910 }
1911
1912 static void bcmgenet_dim_work(struct work_struct *work)
1913 {
1914         struct dim *dim = container_of(work, struct dim, work);
1915         struct bcmgenet_net_dim *ndim =
1916                         container_of(dim, struct bcmgenet_net_dim, dim);
1917         struct bcmgenet_rx_ring *ring =
1918                         container_of(ndim, struct bcmgenet_rx_ring, dim);
1919         struct dim_cq_moder cur_profile =
1920                         net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1921
1922         bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1923         dim->state = DIM_START_MEASURE;
1924 }
1925
1926 /* Assign skb to RX DMA descriptor. */
1927 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1928                                      struct bcmgenet_rx_ring *ring)
1929 {
1930         struct enet_cb *cb;
1931         struct sk_buff *skb;
1932         int i;
1933
1934         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1935
1936         /* loop here for each buffer needing assign */
1937         for (i = 0; i < ring->size; i++) {
1938                 cb = ring->cbs + i;
1939                 skb = bcmgenet_rx_refill(priv, cb);
1940                 if (skb)
1941                         dev_consume_skb_any(skb);
1942                 if (!cb->skb)
1943                         return -ENOMEM;
1944         }
1945
1946         return 0;
1947 }
1948
1949 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1950 {
1951         struct sk_buff *skb;
1952         struct enet_cb *cb;
1953         int i;
1954
1955         for (i = 0; i < priv->num_rx_bds; i++) {
1956                 cb = &priv->rx_cbs[i];
1957
1958                 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1959                 if (skb)
1960                         dev_consume_skb_any(skb);
1961         }
1962 }
1963
1964 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1965 {
1966         u32 reg;
1967
1968         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1969         if (enable)
1970                 reg |= mask;
1971         else
1972                 reg &= ~mask;
1973         bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1974
1975         /* UniMAC stops on a packet boundary, wait for a full-size packet
1976          * to be processed
1977          */
1978         if (enable == 0)
1979                 usleep_range(1000, 2000);
1980 }
1981
1982 static void reset_umac(struct bcmgenet_priv *priv)
1983 {
1984         /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1985         bcmgenet_rbuf_ctrl_set(priv, 0);
1986         udelay(10);
1987
1988         /* disable MAC while updating its registers */
1989         bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1990
1991         /* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1992         bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1993 }
1994
1995 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1996 {
1997         /* Mask all interrupts.*/
1998         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1999         bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2000         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2001         bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2002 }
2003
2004 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2005 {
2006         u32 int0_enable = 0;
2007
2008         /* Monitor cable plug/unplugged event for internal PHY, external PHY
2009          * and MoCA PHY
2010          */
2011         if (priv->internal_phy) {
2012                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2013                 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2014                         int0_enable |= UMAC_IRQ_PHY_DET_R;
2015         } else if (priv->ext_phy) {
2016                 int0_enable |= UMAC_IRQ_LINK_EVENT;
2017         } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2018                 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2019                         int0_enable |= UMAC_IRQ_LINK_EVENT;
2020         }
2021         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2022 }
2023
2024 static void init_umac(struct bcmgenet_priv *priv)
2025 {
2026         struct device *kdev = &priv->pdev->dev;
2027         u32 reg;
2028         u32 int0_enable = 0;
2029
2030         dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2031
2032         reset_umac(priv);
2033
2034         /* clear tx/rx counter */
2035         bcmgenet_umac_writel(priv,
2036                              MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2037                              UMAC_MIB_CTRL);
2038         bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2039
2040         bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2041
2042         /* init rx registers, enable ip header optimization */
2043         reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2044         reg |= RBUF_ALIGN_2B;
2045         bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2046
2047         if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2048                 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2049
2050         bcmgenet_intr_disable(priv);
2051
2052         /* Configure backpressure vectors for MoCA */
2053         if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2054                 reg = bcmgenet_bp_mc_get(priv);
2055                 reg |= BIT(priv->hw_params->bp_in_en_shift);
2056
2057                 /* bp_mask: back pressure mask */
2058                 if (netif_is_multiqueue(priv->dev))
2059                         reg |= priv->hw_params->bp_in_mask;
2060                 else
2061                         reg &= ~priv->hw_params->bp_in_mask;
2062                 bcmgenet_bp_mc_set(priv, reg);
2063         }
2064
2065         /* Enable MDIO interrupts on GENET v3+ */
2066         if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2067                 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2068
2069         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2070
2071         dev_dbg(kdev, "done init umac\n");
2072 }
2073
2074 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2075                               void (*cb)(struct work_struct *work))
2076 {
2077         struct bcmgenet_net_dim *dim = &ring->dim;
2078
2079         INIT_WORK(&dim->dim.work, cb);
2080         dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2081         dim->event_ctr = 0;
2082         dim->packets = 0;
2083         dim->bytes = 0;
2084 }
2085
2086 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2087 {
2088         struct bcmgenet_net_dim *dim = &ring->dim;
2089         struct dim_cq_moder moder;
2090         u32 usecs, pkts;
2091
2092         usecs = ring->rx_coalesce_usecs;
2093         pkts = ring->rx_max_coalesced_frames;
2094
2095         /* If DIM was enabled, re-apply default parameters */
2096         if (dim->use_dim) {
2097                 moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2098                 usecs = moder.usec;
2099                 pkts = moder.pkts;
2100         }
2101
2102         bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2103 }
2104
2105 /* Initialize a Tx ring along with corresponding hardware registers */
2106 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2107                                   unsigned int index, unsigned int size,
2108                                   unsigned int start_ptr, unsigned int end_ptr)
2109 {
2110         struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2111         u32 words_per_bd = WORDS_PER_BD(priv);
2112         u32 flow_period_val = 0;
2113
2114         spin_lock_init(&ring->lock);
2115         ring->priv = priv;
2116         ring->index = index;
2117         if (index == DESC_INDEX) {
2118                 ring->queue = 0;
2119                 ring->int_enable = bcmgenet_tx_ring16_int_enable;
2120                 ring->int_disable = bcmgenet_tx_ring16_int_disable;
2121         } else {
2122                 ring->queue = index + 1;
2123                 ring->int_enable = bcmgenet_tx_ring_int_enable;
2124                 ring->int_disable = bcmgenet_tx_ring_int_disable;
2125         }
2126         ring->cbs = priv->tx_cbs + start_ptr;
2127         ring->size = size;
2128         ring->clean_ptr = start_ptr;
2129         ring->c_index = 0;
2130         ring->free_bds = size;
2131         ring->write_ptr = start_ptr;
2132         ring->cb_ptr = start_ptr;
2133         ring->end_ptr = end_ptr - 1;
2134         ring->prod_index = 0;
2135
2136         /* Set flow period for ring != 16 */
2137         if (index != DESC_INDEX)
2138                 flow_period_val = ENET_MAX_MTU_SIZE << 16;
2139
2140         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2141         bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2142         bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2143         /* Disable rate control for now */
2144         bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2145                                   TDMA_FLOW_PERIOD);
2146         bcmgenet_tdma_ring_writel(priv, index,
2147                                   ((size << DMA_RING_SIZE_SHIFT) |
2148                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2149
2150         /* Set start and end address, read and write pointers */
2151         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2152                                   DMA_START_ADDR);
2153         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2154                                   TDMA_READ_PTR);
2155         bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2156                                   TDMA_WRITE_PTR);
2157         bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2158                                   DMA_END_ADDR);
2159
2160         /* Initialize Tx NAPI */
2161         netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2162                        NAPI_POLL_WEIGHT);
2163 }
2164
2165 /* Initialize a RDMA ring */
2166 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2167                                  unsigned int index, unsigned int size,
2168                                  unsigned int start_ptr, unsigned int end_ptr)
2169 {
2170         struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2171         u32 words_per_bd = WORDS_PER_BD(priv);
2172         int ret;
2173
2174         ring->priv = priv;
2175         ring->index = index;
2176         if (index == DESC_INDEX) {
2177                 ring->int_enable = bcmgenet_rx_ring16_int_enable;
2178                 ring->int_disable = bcmgenet_rx_ring16_int_disable;
2179         } else {
2180                 ring->int_enable = bcmgenet_rx_ring_int_enable;
2181                 ring->int_disable = bcmgenet_rx_ring_int_disable;
2182         }
2183         ring->cbs = priv->rx_cbs + start_ptr;
2184         ring->size = size;
2185         ring->c_index = 0;
2186         ring->read_ptr = start_ptr;
2187         ring->cb_ptr = start_ptr;
2188         ring->end_ptr = end_ptr - 1;
2189
2190         ret = bcmgenet_alloc_rx_buffers(priv, ring);
2191         if (ret)
2192                 return ret;
2193
2194         bcmgenet_init_dim(ring, bcmgenet_dim_work);
2195         bcmgenet_init_rx_coalesce(ring);
2196
2197         /* Initialize Rx NAPI */
2198         netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2199                        NAPI_POLL_WEIGHT);
2200
2201         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2202         bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2203         bcmgenet_rdma_ring_writel(priv, index,
2204                                   ((size << DMA_RING_SIZE_SHIFT) |
2205                                    RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2206         bcmgenet_rdma_ring_writel(priv, index,
2207                                   (DMA_FC_THRESH_LO <<
2208                                    DMA_XOFF_THRESHOLD_SHIFT) |
2209                                    DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2210
2211         /* Set start and end address, read and write pointers */
2212         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2213                                   DMA_START_ADDR);
2214         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2215                                   RDMA_READ_PTR);
2216         bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2217                                   RDMA_WRITE_PTR);
2218         bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2219                                   DMA_END_ADDR);
2220
2221         return ret;
2222 }
2223
2224 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2225 {
2226         unsigned int i;
2227         struct bcmgenet_tx_ring *ring;
2228
2229         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2230                 ring = &priv->tx_rings[i];
2231                 napi_enable(&ring->napi);
2232                 ring->int_enable(ring);
2233         }
2234
2235         ring = &priv->tx_rings[DESC_INDEX];
2236         napi_enable(&ring->napi);
2237         ring->int_enable(ring);
2238 }
2239
2240 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2241 {
2242         unsigned int i;
2243         struct bcmgenet_tx_ring *ring;
2244
2245         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2246                 ring = &priv->tx_rings[i];
2247                 napi_disable(&ring->napi);
2248         }
2249
2250         ring = &priv->tx_rings[DESC_INDEX];
2251         napi_disable(&ring->napi);
2252 }
2253
2254 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2255 {
2256         unsigned int i;
2257         struct bcmgenet_tx_ring *ring;
2258
2259         for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2260                 ring = &priv->tx_rings[i];
2261                 netif_napi_del(&ring->napi);
2262         }
2263
2264         ring = &priv->tx_rings[DESC_INDEX];
2265         netif_napi_del(&ring->napi);
2266 }
2267
2268 /* Initialize Tx queues
2269  *
2270  * Queues 0-3 are priority-based, each one has 32 descriptors,
2271  * with queue 0 being the highest priority queue.
2272  *
2273  * Queue 16 is the default Tx queue with
2274  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2275  *
2276  * The transmit control block pool is then partitioned as follows:
2277  * - Tx queue 0 uses tx_cbs[0..31]
2278  * - Tx queue 1 uses tx_cbs[32..63]
2279  * - Tx queue 2 uses tx_cbs[64..95]
2280  * - Tx queue 3 uses tx_cbs[96..127]
2281  * - Tx queue 16 uses tx_cbs[128..255]
2282  */
2283 static void bcmgenet_init_tx_queues(struct net_device *dev)
2284 {
2285         struct bcmgenet_priv *priv = netdev_priv(dev);
2286         u32 i, dma_enable;
2287         u32 dma_ctrl, ring_cfg;
2288         u32 dma_priority[3] = {0, 0, 0};
2289
2290         dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2291         dma_enable = dma_ctrl & DMA_EN;
2292         dma_ctrl &= ~DMA_EN;
2293         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2294
2295         dma_ctrl = 0;
2296         ring_cfg = 0;
2297
2298         /* Enable strict priority arbiter mode */
2299         bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2300
2301         /* Initialize Tx priority queues */
2302         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2303                 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2304                                       i * priv->hw_params->tx_bds_per_q,
2305                                       (i + 1) * priv->hw_params->tx_bds_per_q);
2306                 ring_cfg |= (1 << i);
2307                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2308                 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2309                         ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2310         }
2311
2312         /* Initialize Tx default queue 16 */
2313         bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2314                               priv->hw_params->tx_queues *
2315                               priv->hw_params->tx_bds_per_q,
2316                               TOTAL_DESC);
2317         ring_cfg |= (1 << DESC_INDEX);
2318         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2319         dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2320                 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2321                  DMA_PRIO_REG_SHIFT(DESC_INDEX));
2322
2323         /* Set Tx queue priorities */
2324         bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2325         bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2326         bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2327
2328         /* Enable Tx queues */
2329         bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2330
2331         /* Enable Tx DMA */
2332         if (dma_enable)
2333                 dma_ctrl |= DMA_EN;
2334         bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2335 }
2336
2337 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2338 {
2339         unsigned int i;
2340         struct bcmgenet_rx_ring *ring;
2341
2342         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2343                 ring = &priv->rx_rings[i];
2344                 napi_enable(&ring->napi);
2345                 ring->int_enable(ring);
2346         }
2347
2348         ring = &priv->rx_rings[DESC_INDEX];
2349         napi_enable(&ring->napi);
2350         ring->int_enable(ring);
2351 }
2352
2353 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2354 {
2355         unsigned int i;
2356         struct bcmgenet_rx_ring *ring;
2357
2358         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2359                 ring = &priv->rx_rings[i];
2360                 napi_disable(&ring->napi);
2361                 cancel_work_sync(&ring->dim.dim.work);
2362         }
2363
2364         ring = &priv->rx_rings[DESC_INDEX];
2365         napi_disable(&ring->napi);
2366         cancel_work_sync(&ring->dim.dim.work);
2367 }
2368
2369 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2370 {
2371         unsigned int i;
2372         struct bcmgenet_rx_ring *ring;
2373
2374         for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2375                 ring = &priv->rx_rings[i];
2376                 netif_napi_del(&ring->napi);
2377         }
2378
2379         ring = &priv->rx_rings[DESC_INDEX];
2380         netif_napi_del(&ring->napi);
2381 }
2382
2383 /* Initialize Rx queues
2384  *
2385  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2386  * used to direct traffic to these queues.
2387  *
2388  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2389  */
2390 static int bcmgenet_init_rx_queues(struct net_device *dev)
2391 {
2392         struct bcmgenet_priv *priv = netdev_priv(dev);
2393         u32 i;
2394         u32 dma_enable;
2395         u32 dma_ctrl;
2396         u32 ring_cfg;
2397         int ret;
2398
2399         dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2400         dma_enable = dma_ctrl & DMA_EN;
2401         dma_ctrl &= ~DMA_EN;
2402         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2403
2404         dma_ctrl = 0;
2405         ring_cfg = 0;
2406
2407         /* Initialize Rx priority queues */
2408         for (i = 0; i < priv->hw_params->rx_queues; i++) {
2409                 ret = bcmgenet_init_rx_ring(priv, i,
2410                                             priv->hw_params->rx_bds_per_q,
2411                                             i * priv->hw_params->rx_bds_per_q,
2412                                             (i + 1) *
2413                                             priv->hw_params->rx_bds_per_q);
2414                 if (ret)
2415                         return ret;
2416
2417                 ring_cfg |= (1 << i);
2418                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2419         }
2420
2421         /* Initialize Rx default queue 16 */
2422         ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2423                                     priv->hw_params->rx_queues *
2424                                     priv->hw_params->rx_bds_per_q,
2425                                     TOTAL_DESC);
2426         if (ret)
2427                 return ret;
2428
2429         ring_cfg |= (1 << DESC_INDEX);
2430         dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2431
2432         /* Enable rings */
2433         bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2434
2435         /* Configure ring as descriptor ring and re-enable DMA if enabled */
2436         if (dma_enable)
2437                 dma_ctrl |= DMA_EN;
2438         bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2439
2440         return 0;
2441 }
2442
2443 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2444 {
2445         int ret = 0;
2446         int timeout = 0;
2447         u32 reg;
2448         u32 dma_ctrl;
2449         int i;
2450
2451         /* Disable TDMA to stop add more frames in TX DMA */
2452         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2453         reg &= ~DMA_EN;
2454         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2455
2456         /* Check TDMA status register to confirm TDMA is disabled */
2457         while (timeout++ < DMA_TIMEOUT_VAL) {
2458                 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2459                 if (reg & DMA_DISABLED)
2460                         break;
2461
2462                 udelay(1);
2463         }
2464
2465         if (timeout == DMA_TIMEOUT_VAL) {
2466                 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2467                 ret = -ETIMEDOUT;
2468         }
2469
2470         /* Wait 10ms for packet drain in both tx and rx dma */
2471         usleep_range(10000, 20000);
2472
2473         /* Disable RDMA */
2474         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2475         reg &= ~DMA_EN;
2476         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2477
2478         timeout = 0;
2479         /* Check RDMA status register to confirm RDMA is disabled */
2480         while (timeout++ < DMA_TIMEOUT_VAL) {
2481                 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2482                 if (reg & DMA_DISABLED)
2483                         break;
2484
2485                 udelay(1);
2486         }
2487
2488         if (timeout == DMA_TIMEOUT_VAL) {
2489                 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2490                 ret = -ETIMEDOUT;
2491         }
2492
2493         dma_ctrl = 0;
2494         for (i = 0; i < priv->hw_params->rx_queues; i++)
2495                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2496         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2497         reg &= ~dma_ctrl;
2498         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2499
2500         dma_ctrl = 0;
2501         for (i = 0; i < priv->hw_params->tx_queues; i++)
2502                 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2503         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2504         reg &= ~dma_ctrl;
2505         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2506
2507         return ret;
2508 }
2509
2510 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2511 {
2512         struct netdev_queue *txq;
2513         int i;
2514
2515         bcmgenet_fini_rx_napi(priv);
2516         bcmgenet_fini_tx_napi(priv);
2517
2518         for (i = 0; i < priv->num_tx_bds; i++)
2519                 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2520                                                   priv->tx_cbs + i));
2521
2522         for (i = 0; i < priv->hw_params->tx_queues; i++) {
2523                 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2524                 netdev_tx_reset_queue(txq);
2525         }
2526
2527         txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2528         netdev_tx_reset_queue(txq);
2529
2530         bcmgenet_free_rx_buffers(priv);
2531         kfree(priv->rx_cbs);
2532         kfree(priv->tx_cbs);
2533 }
2534
2535 /* init_edma: Initialize DMA control register */
2536 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2537 {
2538         int ret;
2539         unsigned int i;
2540         struct enet_cb *cb;
2541
2542         netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2543
2544         /* Initialize common Rx ring structures */
2545         priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2546         priv->num_rx_bds = TOTAL_DESC;
2547         priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2548                                GFP_KERNEL);
2549         if (!priv->rx_cbs)
2550                 return -ENOMEM;
2551
2552         for (i = 0; i < priv->num_rx_bds; i++) {
2553                 cb = priv->rx_cbs + i;
2554                 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2555         }
2556
2557         /* Initialize common TX ring structures */
2558         priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2559         priv->num_tx_bds = TOTAL_DESC;
2560         priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2561                                GFP_KERNEL);
2562         if (!priv->tx_cbs) {
2563                 kfree(priv->rx_cbs);
2564                 return -ENOMEM;
2565         }
2566
2567         for (i = 0; i < priv->num_tx_bds; i++) {
2568                 cb = priv->tx_cbs + i;
2569                 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2570         }
2571
2572         /* Init rDma */
2573         bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2574                              DMA_SCB_BURST_SIZE);
2575
2576         /* Initialize Rx queues */
2577         ret = bcmgenet_init_rx_queues(priv->dev);
2578         if (ret) {
2579                 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2580                 bcmgenet_free_rx_buffers(priv);
2581                 kfree(priv->rx_cbs);
2582                 kfree(priv->tx_cbs);
2583                 return ret;
2584         }
2585
2586         /* Init tDma */
2587         bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2588                              DMA_SCB_BURST_SIZE);
2589
2590         /* Initialize Tx queues */
2591         bcmgenet_init_tx_queues(priv->dev);
2592
2593         return 0;
2594 }
2595
2596 /* Interrupt bottom half */
2597 static void bcmgenet_irq_task(struct work_struct *work)
2598 {
2599         unsigned int status;
2600         struct bcmgenet_priv *priv = container_of(
2601                         work, struct bcmgenet_priv, bcmgenet_irq_work);
2602
2603         netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2604
2605         spin_lock_irq(&priv->lock);
2606         status = priv->irq0_stat;
2607         priv->irq0_stat = 0;
2608         spin_unlock_irq(&priv->lock);
2609
2610         if (status & UMAC_IRQ_PHY_DET_R &&
2611             priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2612                 phy_init_hw(priv->dev->phydev);
2613                 genphy_config_aneg(priv->dev->phydev);
2614         }
2615
2616         /* Link UP/DOWN event */
2617         if (status & UMAC_IRQ_LINK_EVENT)
2618                 phy_mac_interrupt(priv->dev->phydev);
2619
2620 }
2621
2622 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2623 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2624 {
2625         struct bcmgenet_priv *priv = dev_id;
2626         struct bcmgenet_rx_ring *rx_ring;
2627         struct bcmgenet_tx_ring *tx_ring;
2628         unsigned int index, status;
2629
2630         /* Read irq status */
2631         status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2632                 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2633
2634         /* clear interrupts */
2635         bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2636
2637         netif_dbg(priv, intr, priv->dev,
2638                   "%s: IRQ=0x%x\n", __func__, status);
2639
2640         /* Check Rx priority queue interrupts */
2641         for (index = 0; index < priv->hw_params->rx_queues; index++) {
2642                 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2643                         continue;
2644
2645                 rx_ring = &priv->rx_rings[index];
2646                 rx_ring->dim.event_ctr++;
2647
2648                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2649                         rx_ring->int_disable(rx_ring);
2650                         __napi_schedule_irqoff(&rx_ring->napi);
2651                 }
2652         }
2653
2654         /* Check Tx priority queue interrupts */
2655         for (index = 0; index < priv->hw_params->tx_queues; index++) {
2656                 if (!(status & BIT(index)))
2657                         continue;
2658
2659                 tx_ring = &priv->tx_rings[index];
2660
2661                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2662                         tx_ring->int_disable(tx_ring);
2663                         __napi_schedule_irqoff(&tx_ring->napi);
2664                 }
2665         }
2666
2667         return IRQ_HANDLED;
2668 }
2669
2670 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2671 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2672 {
2673         struct bcmgenet_priv *priv = dev_id;
2674         struct bcmgenet_rx_ring *rx_ring;
2675         struct bcmgenet_tx_ring *tx_ring;
2676         unsigned int status;
2677         unsigned long flags;
2678
2679         /* Read irq status */
2680         status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2681                 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2682
2683         /* clear interrupts */
2684         bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2685
2686         netif_dbg(priv, intr, priv->dev,
2687                   "IRQ=0x%x\n", status);
2688
2689         if (status & UMAC_IRQ_RXDMA_DONE) {
2690                 rx_ring = &priv->rx_rings[DESC_INDEX];
2691                 rx_ring->dim.event_ctr++;
2692
2693                 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2694                         rx_ring->int_disable(rx_ring);
2695                         __napi_schedule_irqoff(&rx_ring->napi);
2696                 }
2697         }
2698
2699         if (status & UMAC_IRQ_TXDMA_DONE) {
2700                 tx_ring = &priv->tx_rings[DESC_INDEX];
2701
2702                 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2703                         tx_ring->int_disable(tx_ring);
2704                         __napi_schedule_irqoff(&tx_ring->napi);
2705                 }
2706         }
2707
2708         if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2709                 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2710                 wake_up(&priv->wq);
2711         }
2712
2713         /* all other interested interrupts handled in bottom half */
2714         status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2715         if (status) {
2716                 /* Save irq status for bottom-half processing. */
2717                 spin_lock_irqsave(&priv->lock, flags);
2718                 priv->irq0_stat |= status;
2719                 spin_unlock_irqrestore(&priv->lock, flags);
2720
2721                 schedule_work(&priv->bcmgenet_irq_work);
2722         }
2723
2724         return IRQ_HANDLED;
2725 }
2726
2727 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2728 {
2729         struct bcmgenet_priv *priv = dev_id;
2730
2731         pm_wakeup_event(&priv->pdev->dev, 0);
2732
2733         return IRQ_HANDLED;
2734 }
2735
2736 #ifdef CONFIG_NET_POLL_CONTROLLER
2737 static void bcmgenet_poll_controller(struct net_device *dev)
2738 {
2739         struct bcmgenet_priv *priv = netdev_priv(dev);
2740
2741         /* Invoke the main RX/TX interrupt handler */
2742         disable_irq(priv->irq0);
2743         bcmgenet_isr0(priv->irq0, priv);
2744         enable_irq(priv->irq0);
2745
2746         /* And the interrupt handler for RX/TX priority queues */
2747         disable_irq(priv->irq1);
2748         bcmgenet_isr1(priv->irq1, priv);
2749         enable_irq(priv->irq1);
2750 }
2751 #endif
2752
2753 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2754 {
2755         u32 reg;
2756
2757         reg = bcmgenet_rbuf_ctrl_get(priv);
2758         reg |= BIT(1);
2759         bcmgenet_rbuf_ctrl_set(priv, reg);
2760         udelay(10);
2761
2762         reg &= ~BIT(1);
2763         bcmgenet_rbuf_ctrl_set(priv, reg);
2764         udelay(10);
2765 }
2766
2767 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2768                                  unsigned char *addr)
2769 {
2770         bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2771                         (addr[2] << 8) | addr[3], UMAC_MAC0);
2772         bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2773 }
2774
2775 /* Returns a reusable dma control register value */
2776 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2777 {
2778         u32 reg;
2779         u32 dma_ctrl;
2780
2781         /* disable DMA */
2782         dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2783         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2784         reg &= ~dma_ctrl;
2785         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2786
2787         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2788         reg &= ~dma_ctrl;
2789         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2790
2791         bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2792         udelay(10);
2793         bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2794
2795         return dma_ctrl;
2796 }
2797
2798 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2799 {
2800         u32 reg;
2801
2802         reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2803         reg |= dma_ctrl;
2804         bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2805
2806         reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2807         reg |= dma_ctrl;
2808         bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2809 }
2810
2811 /* bcmgenet_hfb_clear
2812  *
2813  * Clear Hardware Filter Block and disable all filtering.
2814  */
2815 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2816 {
2817         u32 i;
2818
2819         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2820         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2821         bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2822
2823         for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2824                 bcmgenet_rdma_writel(priv, 0x0, i);
2825
2826         for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2827                 bcmgenet_hfb_reg_writel(priv, 0x0,
2828                                         HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2829
2830         for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2831                         priv->hw_params->hfb_filter_size; i++)
2832                 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2833 }
2834
2835 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2836 {
2837         if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2838                 return;
2839
2840         bcmgenet_hfb_clear(priv);
2841 }
2842
2843 static void bcmgenet_netif_start(struct net_device *dev)
2844 {
2845         struct bcmgenet_priv *priv = netdev_priv(dev);
2846
2847         /* Start the network engine */
2848         bcmgenet_enable_rx_napi(priv);
2849
2850         umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2851
2852         bcmgenet_enable_tx_napi(priv);
2853
2854         /* Monitor link interrupts now */
2855         bcmgenet_link_intr_enable(priv);
2856
2857         phy_start(dev->phydev);
2858 }
2859
2860 static int bcmgenet_open(struct net_device *dev)
2861 {
2862         struct bcmgenet_priv *priv = netdev_priv(dev);
2863         unsigned long dma_ctrl;
2864         u32 reg;
2865         int ret;
2866
2867         netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2868
2869         /* Turn on the clock */
2870         clk_prepare_enable(priv->clk);
2871
2872         /* If this is an internal GPHY, power it back on now, before UniMAC is
2873          * brought out of reset as absolutely no UniMAC activity is allowed
2874          */
2875         if (priv->internal_phy)
2876                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2877
2878         /* take MAC out of reset */
2879         bcmgenet_umac_reset(priv);
2880
2881         init_umac(priv);
2882
2883         /* Make sure we reflect the value of CRC_CMD_FWD */
2884         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2885         priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2886
2887         bcmgenet_set_hw_addr(priv, dev->dev_addr);
2888
2889         if (priv->internal_phy) {
2890                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2891                 reg |= EXT_ENERGY_DET_MASK;
2892                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2893         }
2894
2895         /* Disable RX/TX DMA and flush TX queues */
2896         dma_ctrl = bcmgenet_dma_disable(priv);
2897
2898         /* Reinitialize TDMA and RDMA and SW housekeeping */
2899         ret = bcmgenet_init_dma(priv);
2900         if (ret) {
2901                 netdev_err(dev, "failed to initialize DMA\n");
2902                 goto err_clk_disable;
2903         }
2904
2905         /* Always enable ring 16 - descriptor ring */
2906         bcmgenet_enable_dma(priv, dma_ctrl);
2907
2908         /* HFB init */
2909         bcmgenet_hfb_init(priv);
2910
2911         ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2912                           dev->name, priv);
2913         if (ret < 0) {
2914                 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2915                 goto err_fini_dma;
2916         }
2917
2918         ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2919                           dev->name, priv);
2920         if (ret < 0) {
2921                 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2922                 goto err_irq0;
2923         }
2924
2925         ret = bcmgenet_mii_probe(dev);
2926         if (ret) {
2927                 netdev_err(dev, "failed to connect to PHY\n");
2928                 goto err_irq1;
2929         }
2930
2931         bcmgenet_netif_start(dev);
2932
2933         netif_tx_start_all_queues(dev);
2934
2935         return 0;
2936
2937 err_irq1:
2938         free_irq(priv->irq1, priv);
2939 err_irq0:
2940         free_irq(priv->irq0, priv);
2941 err_fini_dma:
2942         bcmgenet_dma_teardown(priv);
2943         bcmgenet_fini_dma(priv);
2944 err_clk_disable:
2945         if (priv->internal_phy)
2946                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2947         clk_disable_unprepare(priv->clk);
2948         return ret;
2949 }
2950
2951 static void bcmgenet_netif_stop(struct net_device *dev)
2952 {
2953         struct bcmgenet_priv *priv = netdev_priv(dev);
2954
2955         bcmgenet_disable_tx_napi(priv);
2956         netif_tx_disable(dev);
2957
2958         /* Disable MAC receive */
2959         umac_enable_set(priv, CMD_RX_EN, false);
2960
2961         bcmgenet_dma_teardown(priv);
2962
2963         /* Disable MAC transmit. TX DMA disabled must be done before this */
2964         umac_enable_set(priv, CMD_TX_EN, false);
2965
2966         phy_stop(dev->phydev);
2967         bcmgenet_disable_rx_napi(priv);
2968         bcmgenet_intr_disable(priv);
2969
2970         /* Wait for pending work items to complete. Since interrupts are
2971          * disabled no new work will be scheduled.
2972          */
2973         cancel_work_sync(&priv->bcmgenet_irq_work);
2974
2975         priv->old_link = -1;
2976         priv->old_speed = -1;
2977         priv->old_duplex = -1;
2978         priv->old_pause = -1;
2979
2980         /* tx reclaim */
2981         bcmgenet_tx_reclaim_all(dev);
2982         bcmgenet_fini_dma(priv);
2983 }
2984
2985 static int bcmgenet_close(struct net_device *dev)
2986 {
2987         struct bcmgenet_priv *priv = netdev_priv(dev);
2988         int ret = 0;
2989
2990         netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2991
2992         bcmgenet_netif_stop(dev);
2993
2994         /* Really kill the PHY state machine and disconnect from it */
2995         phy_disconnect(dev->phydev);
2996
2997         free_irq(priv->irq0, priv);
2998         free_irq(priv->irq1, priv);
2999
3000         if (priv->internal_phy)
3001                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3002
3003         clk_disable_unprepare(priv->clk);
3004
3005         return ret;
3006 }
3007
3008 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3009 {
3010         struct bcmgenet_priv *priv = ring->priv;
3011         u32 p_index, c_index, intsts, intmsk;
3012         struct netdev_queue *txq;
3013         unsigned int free_bds;
3014         bool txq_stopped;
3015
3016         if (!netif_msg_tx_err(priv))
3017                 return;
3018
3019         txq = netdev_get_tx_queue(priv->dev, ring->queue);
3020
3021         spin_lock(&ring->lock);
3022         if (ring->index == DESC_INDEX) {
3023                 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3024                 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3025         } else {
3026                 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3027                 intmsk = 1 << ring->index;
3028         }
3029         c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3030         p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3031         txq_stopped = netif_tx_queue_stopped(txq);
3032         free_bds = ring->free_bds;
3033         spin_unlock(&ring->lock);
3034
3035         netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3036                   "TX queue status: %s, interrupts: %s\n"
3037                   "(sw)free_bds: %d (sw)size: %d\n"
3038                   "(sw)p_index: %d (hw)p_index: %d\n"
3039                   "(sw)c_index: %d (hw)c_index: %d\n"
3040                   "(sw)clean_p: %d (sw)write_p: %d\n"
3041                   "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3042                   ring->index, ring->queue,
3043                   txq_stopped ? "stopped" : "active",
3044                   intsts & intmsk ? "enabled" : "disabled",
3045                   free_bds, ring->size,
3046                   ring->prod_index, p_index & DMA_P_INDEX_MASK,
3047                   ring->c_index, c_index & DMA_C_INDEX_MASK,
3048                   ring->clean_ptr, ring->write_ptr,
3049                   ring->cb_ptr, ring->end_ptr);
3050 }
3051
3052 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3053 {
3054         struct bcmgenet_priv *priv = netdev_priv(dev);
3055         u32 int0_enable = 0;
3056         u32 int1_enable = 0;
3057         unsigned int q;
3058
3059         netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3060
3061         for (q = 0; q < priv->hw_params->tx_queues; q++)
3062                 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3063         bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3064
3065         bcmgenet_tx_reclaim_all(dev);
3066
3067         for (q = 0; q < priv->hw_params->tx_queues; q++)
3068                 int1_enable |= (1 << q);
3069
3070         int0_enable = UMAC_IRQ_TXDMA_DONE;
3071
3072         /* Re-enable TX interrupts if disabled */
3073         bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3074         bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3075
3076         netif_trans_update(dev);
3077
3078         dev->stats.tx_errors++;
3079
3080         netif_tx_wake_all_queues(dev);
3081 }
3082
3083 #define MAX_MDF_FILTER  17
3084
3085 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3086                                          unsigned char *addr,
3087                                          int *i)
3088 {
3089         bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3090                              UMAC_MDF_ADDR + (*i * 4));
3091         bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3092                              addr[4] << 8 | addr[5],
3093                              UMAC_MDF_ADDR + ((*i + 1) * 4));
3094         *i += 2;
3095 }
3096
3097 static void bcmgenet_set_rx_mode(struct net_device *dev)
3098 {
3099         struct bcmgenet_priv *priv = netdev_priv(dev);
3100         struct netdev_hw_addr *ha;
3101         int i, nfilter;
3102         u32 reg;
3103
3104         netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3105
3106         /* Number of filters needed */
3107         nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3108
3109         /*
3110          * Turn on promicuous mode for three scenarios
3111          * 1. IFF_PROMISC flag is set
3112          * 2. IFF_ALLMULTI flag is set
3113          * 3. The number of filters needed exceeds the number filters
3114          *    supported by the hardware.
3115         */
3116         reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3117         if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3118             (nfilter > MAX_MDF_FILTER)) {
3119                 reg |= CMD_PROMISC;
3120                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3121                 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3122                 return;
3123         } else {
3124                 reg &= ~CMD_PROMISC;
3125                 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3126         }
3127
3128         /* update MDF filter */
3129         i = 0;
3130         /* Broadcast */
3131         bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3132         /* my own address.*/
3133         bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3134
3135         /* Unicast */
3136         netdev_for_each_uc_addr(ha, dev)
3137                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3138
3139         /* Multicast */
3140         netdev_for_each_mc_addr(ha, dev)
3141                 bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3142
3143         /* Enable filters */
3144         reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3145         bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3146 }
3147
3148 /* Set the hardware MAC address. */
3149 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3150 {
3151         struct sockaddr *addr = p;
3152
3153         /* Setting the MAC address at the hardware level is not possible
3154          * without disabling the UniMAC RX/TX enable bits.
3155          */
3156         if (netif_running(dev))
3157                 return -EBUSY;
3158
3159         ether_addr_copy(dev->dev_addr, addr->sa_data);
3160
3161         return 0;
3162 }
3163
3164 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3165 {
3166         struct bcmgenet_priv *priv = netdev_priv(dev);
3167         unsigned long tx_bytes = 0, tx_packets = 0;
3168         unsigned long rx_bytes = 0, rx_packets = 0;
3169         unsigned long rx_errors = 0, rx_dropped = 0;
3170         struct bcmgenet_tx_ring *tx_ring;
3171         struct bcmgenet_rx_ring *rx_ring;
3172         unsigned int q;
3173
3174         for (q = 0; q < priv->hw_params->tx_queues; q++) {
3175                 tx_ring = &priv->tx_rings[q];
3176                 tx_bytes += tx_ring->bytes;
3177                 tx_packets += tx_ring->packets;
3178         }
3179         tx_ring = &priv->tx_rings[DESC_INDEX];
3180         tx_bytes += tx_ring->bytes;
3181         tx_packets += tx_ring->packets;
3182
3183         for (q = 0; q < priv->hw_params->rx_queues; q++) {
3184                 rx_ring = &priv->rx_rings[q];
3185
3186                 rx_bytes += rx_ring->bytes;
3187                 rx_packets += rx_ring->packets;
3188                 rx_errors += rx_ring->errors;
3189                 rx_dropped += rx_ring->dropped;
3190         }
3191         rx_ring = &priv->rx_rings[DESC_INDEX];
3192         rx_bytes += rx_ring->bytes;
3193         rx_packets += rx_ring->packets;
3194         rx_errors += rx_ring->errors;
3195         rx_dropped += rx_ring->dropped;
3196
3197         dev->stats.tx_bytes = tx_bytes;
3198         dev->stats.tx_packets = tx_packets;
3199         dev->stats.rx_bytes = rx_bytes;
3200         dev->stats.rx_packets = rx_packets;
3201         dev->stats.rx_errors = rx_errors;
3202         dev->stats.rx_missed_errors = rx_errors;
3203         return &dev->stats;
3204 }
3205
3206 static const struct net_device_ops bcmgenet_netdev_ops = {
3207         .ndo_open               = bcmgenet_open,
3208         .ndo_stop               = bcmgenet_close,
3209         .ndo_start_xmit         = bcmgenet_xmit,
3210         .ndo_tx_timeout         = bcmgenet_timeout,
3211         .ndo_set_rx_mode        = bcmgenet_set_rx_mode,
3212         .ndo_set_mac_address    = bcmgenet_set_mac_addr,
3213         .ndo_do_ioctl           = bcmgenet_ioctl,
3214         .ndo_set_features       = bcmgenet_set_features,
3215 #ifdef CONFIG_NET_POLL_CONTROLLER
3216         .ndo_poll_controller    = bcmgenet_poll_controller,
3217 #endif
3218         .ndo_get_stats          = bcmgenet_get_stats,
3219 };
3220
3221 /* Array of GENET hardware parameters/characteristics */
3222 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3223         [GENET_V1] = {
3224                 .tx_queues = 0,
3225                 .tx_bds_per_q = 0,
3226                 .rx_queues = 0,
3227                 .rx_bds_per_q = 0,
3228                 .bp_in_en_shift = 16,
3229                 .bp_in_mask = 0xffff,
3230                 .hfb_filter_cnt = 16,
3231                 .qtag_mask = 0x1F,
3232                 .hfb_offset = 0x1000,
3233                 .rdma_offset = 0x2000,
3234                 .tdma_offset = 0x3000,
3235                 .words_per_bd = 2,
3236         },
3237         [GENET_V2] = {
3238                 .tx_queues = 4,
3239                 .tx_bds_per_q = 32,
3240                 .rx_queues = 0,
3241                 .rx_bds_per_q = 0,
3242                 .bp_in_en_shift = 16,
3243                 .bp_in_mask = 0xffff,
3244                 .hfb_filter_cnt = 16,
3245                 .qtag_mask = 0x1F,
3246                 .tbuf_offset = 0x0600,
3247                 .hfb_offset = 0x1000,
3248                 .hfb_reg_offset = 0x2000,
3249                 .rdma_offset = 0x3000,
3250                 .tdma_offset = 0x4000,
3251                 .words_per_bd = 2,
3252                 .flags = GENET_HAS_EXT,
3253         },
3254         [GENET_V3] = {
3255                 .tx_queues = 4,
3256                 .tx_bds_per_q = 32,
3257                 .rx_queues = 0,
3258                 .rx_bds_per_q = 0,
3259                 .bp_in_en_shift = 17,
3260                 .bp_in_mask = 0x1ffff,
3261                 .hfb_filter_cnt = 48,
3262                 .hfb_filter_size = 128,
3263                 .qtag_mask = 0x3F,
3264                 .tbuf_offset = 0x0600,
3265                 .hfb_offset = 0x8000,
3266                 .hfb_reg_offset = 0xfc00,
3267                 .rdma_offset = 0x10000,
3268                 .tdma_offset = 0x11000,
3269                 .words_per_bd = 2,
3270                 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3271                          GENET_HAS_MOCA_LINK_DET,
3272         },
3273         [GENET_V4] = {
3274                 .tx_queues = 4,
3275                 .tx_bds_per_q = 32,
3276                 .rx_queues = 0,
3277                 .rx_bds_per_q = 0,
3278                 .bp_in_en_shift = 17,
3279                 .bp_in_mask = 0x1ffff,
3280                 .hfb_filter_cnt = 48,
3281                 .hfb_filter_size = 128,
3282                 .qtag_mask = 0x3F,
3283                 .tbuf_offset = 0x0600,
3284                 .hfb_offset = 0x8000,
3285                 .hfb_reg_offset = 0xfc00,
3286                 .rdma_offset = 0x2000,
3287                 .tdma_offset = 0x4000,
3288                 .words_per_bd = 3,
3289                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3290                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3291         },
3292         [GENET_V5] = {
3293                 .tx_queues = 4,
3294                 .tx_bds_per_q = 32,
3295                 .rx_queues = 0,
3296                 .rx_bds_per_q = 0,
3297                 .bp_in_en_shift = 17,
3298                 .bp_in_mask = 0x1ffff,
3299                 .hfb_filter_cnt = 48,
3300                 .hfb_filter_size = 128,
3301                 .qtag_mask = 0x3F,
3302                 .tbuf_offset = 0x0600,
3303                 .hfb_offset = 0x8000,
3304                 .hfb_reg_offset = 0xfc00,
3305                 .rdma_offset = 0x2000,
3306                 .tdma_offset = 0x4000,
3307                 .words_per_bd = 3,
3308                 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3309                          GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3310         },
3311 };
3312
3313 /* Infer hardware parameters from the detected GENET version */
3314 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3315 {
3316         struct bcmgenet_hw_params *params;
3317         u32 reg;
3318         u8 major;
3319         u16 gphy_rev;
3320
3321         if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3322                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3323                 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3324         } else if (GENET_IS_V3(priv)) {
3325                 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3326                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3327         } else if (GENET_IS_V2(priv)) {
3328                 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3329                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3330         } else if (GENET_IS_V1(priv)) {
3331                 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3332                 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3333         }
3334
3335         /* enum genet_version starts at 1 */
3336         priv->hw_params = &bcmgenet_hw_params[priv->version];
3337         params = priv->hw_params;
3338
3339         /* Read GENET HW version */
3340         reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3341         major = (reg >> 24 & 0x0f);
3342         if (major == 6)
3343                 major = 5;
3344         else if (major == 5)
3345                 major = 4;
3346         else if (major == 0)
3347                 major = 1;
3348         if (major != priv->version) {
3349                 dev_err(&priv->pdev->dev,
3350                         "GENET version mismatch, got: %d, configured for: %d\n",
3351                         major, priv->version);
3352         }
3353
3354         /* Print the GENET core version */
3355         dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3356                  major, (reg >> 16) & 0x0f, reg & 0xffff);
3357
3358         /* Store the integrated PHY revision for the MDIO probing function
3359          * to pass this information to the PHY driver. The PHY driver expects
3360          * to find the PHY major revision in bits 15:8 while the GENET register
3361          * stores that information in bits 7:0, account for that.
3362          *
3363          * On newer chips, starting with PHY revision G0, a new scheme is
3364          * deployed similar to the Starfighter 2 switch with GPHY major
3365          * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3366          * is reserved as well as special value 0x01ff, we have a small
3367          * heuristic to check for the new GPHY revision and re-arrange things
3368          * so the GPHY driver is happy.
3369          */
3370         gphy_rev = reg & 0xffff;
3371
3372         if (GENET_IS_V5(priv)) {
3373                 /* The EPHY revision should come from the MDIO registers of
3374                  * the PHY not from GENET.
3375                  */
3376                 if (gphy_rev != 0) {
3377                         pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3378                                 gphy_rev);
3379                 }
3380         /* This is reserved so should require special treatment */
3381         } else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3382                 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3383                 return;
3384         /* This is the good old scheme, just GPHY major, no minor nor patch */
3385         } else if ((gphy_rev & 0xf0) != 0) {
3386                 priv->gphy_rev = gphy_rev << 8;
3387         /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3388         } else if ((gphy_rev & 0xff00) != 0) {
3389                 priv->gphy_rev = gphy_rev;
3390         }
3391
3392 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3393         if (!(params->flags & GENET_HAS_40BITS))
3394                 pr_warn("GENET does not support 40-bits PA\n");
3395 #endif
3396
3397         pr_debug("Configuration for version: %d\n"
3398                 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3399                 "BP << en: %2d, BP msk: 0x%05x\n"
3400                 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3401                 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3402                 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3403                 "Words/BD: %d\n",
3404                 priv->version,
3405                 params->tx_queues, params->tx_bds_per_q,
3406                 params->rx_queues, params->rx_bds_per_q,
3407                 params->bp_in_en_shift, params->bp_in_mask,
3408                 params->hfb_filter_cnt, params->qtag_mask,
3409                 params->tbuf_offset, params->hfb_offset,
3410                 params->hfb_reg_offset,
3411                 params->rdma_offset, params->tdma_offset,
3412                 params->words_per_bd);
3413 }
3414
3415 struct bcmgenet_plat_data {
3416         enum bcmgenet_version version;
3417         u32 dma_max_burst_length;
3418 };
3419
3420 static const struct bcmgenet_plat_data v1_plat_data = {
3421         .version = GENET_V1,
3422         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3423 };
3424
3425 static const struct bcmgenet_plat_data v2_plat_data = {
3426         .version = GENET_V2,
3427         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3428 };
3429
3430 static const struct bcmgenet_plat_data v3_plat_data = {
3431         .version = GENET_V3,
3432         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3433 };
3434
3435 static const struct bcmgenet_plat_data v4_plat_data = {
3436         .version = GENET_V4,
3437         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3438 };
3439
3440 static const struct bcmgenet_plat_data v5_plat_data = {
3441         .version = GENET_V5,
3442         .dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3443 };
3444
3445 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3446         .version = GENET_V5,
3447         .dma_max_burst_length = 0x08,
3448 };
3449
3450 static const struct of_device_id bcmgenet_match[] = {
3451         { .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3452         { .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3453         { .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3454         { .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3455         { .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3456         { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3457         { },
3458 };
3459 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3460
3461 static int bcmgenet_probe(struct platform_device *pdev)
3462 {
3463         struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3464         struct device_node *dn = pdev->dev.of_node;
3465         const struct of_device_id *of_id = NULL;
3466         const struct bcmgenet_plat_data *pdata;
3467         struct bcmgenet_priv *priv;
3468         struct net_device *dev;
3469         const void *macaddr;
3470         unsigned int i;
3471         int err = -EIO;
3472         const char *phy_mode_str;
3473
3474         /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3475         dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3476                                  GENET_MAX_MQ_CNT + 1);
3477         if (!dev) {
3478                 dev_err(&pdev->dev, "can't allocate net device\n");
3479                 return -ENOMEM;
3480         }
3481
3482         if (dn) {
3483                 of_id = of_match_node(bcmgenet_match, dn);
3484                 if (!of_id)
3485                         return -EINVAL;
3486         }
3487
3488         priv = netdev_priv(dev);
3489         priv->irq0 = platform_get_irq(pdev, 0);
3490         if (priv->irq0 < 0) {
3491                 err = priv->irq0;
3492                 goto err;
3493         }
3494         priv->irq1 = platform_get_irq(pdev, 1);
3495         if (priv->irq1 < 0) {
3496                 err = priv->irq1;
3497                 goto err;
3498         }
3499         priv->wol_irq = platform_get_irq_optional(pdev, 2);
3500
3501         if (dn)
3502                 macaddr = of_get_mac_address(dn);
3503         else
3504                 macaddr = pd->mac_address;
3505
3506         priv->base = devm_platform_ioremap_resource(pdev, 0);
3507         if (IS_ERR(priv->base)) {
3508                 err = PTR_ERR(priv->base);
3509                 goto err;
3510         }
3511
3512         spin_lock_init(&priv->lock);
3513
3514         SET_NETDEV_DEV(dev, &pdev->dev);
3515         dev_set_drvdata(&pdev->dev, dev);
3516         if (IS_ERR_OR_NULL(macaddr) || !is_valid_ether_addr(macaddr)) {
3517                 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3518                 eth_hw_addr_random(dev);
3519         } else {
3520                 ether_addr_copy(dev->dev_addr, macaddr);
3521         }
3522         dev->watchdog_timeo = 2 * HZ;
3523         dev->ethtool_ops = &bcmgenet_ethtool_ops;
3524         dev->netdev_ops = &bcmgenet_netdev_ops;
3525
3526         priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3527
3528         /* Set hardware features */
3529         dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3530                 NETIF_F_RXCSUM;
3531
3532         /* Request the WOL interrupt and advertise suspend if available */
3533         priv->wol_irq_disabled = true;
3534         err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3535                                dev->name, priv);
3536         if (!err)
3537                 device_set_wakeup_capable(&pdev->dev, 1);
3538
3539         /* Set the needed headroom to account for any possible
3540          * features enabling/disabling at runtime
3541          */
3542         dev->needed_headroom += 64;
3543
3544         netdev_boot_setup_check(dev);
3545
3546         priv->dev = dev;
3547         priv->pdev = pdev;
3548         if (of_id) {
3549                 pdata = of_id->data;
3550                 priv->version = pdata->version;
3551                 priv->dma_max_burst_length = pdata->dma_max_burst_length;
3552         } else {
3553                 priv->version = pd->genet_version;
3554                 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3555         }
3556
3557         priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3558         if (IS_ERR(priv->clk)) {
3559                 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3560                 priv->clk = NULL;
3561         }
3562
3563         clk_prepare_enable(priv->clk);
3564
3565         bcmgenet_set_hw_params(priv);
3566
3567         err = -EIO;
3568         if (priv->hw_params->flags & GENET_HAS_40BITS)
3569                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3570         if (err)
3571                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3572         if (err)
3573                 goto err;
3574
3575         /* Mii wait queue */
3576         init_waitqueue_head(&priv->wq);
3577         /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3578         priv->rx_buf_len = RX_BUF_LENGTH;
3579         INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3580
3581         priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3582         if (IS_ERR(priv->clk_wol)) {
3583                 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3584                 priv->clk_wol = NULL;
3585         }
3586
3587         priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3588         if (IS_ERR(priv->clk_eee)) {
3589                 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3590                 priv->clk_eee = NULL;
3591         }
3592
3593         /* If this is an internal GPHY, power it on now, before UniMAC is
3594          * brought out of reset as absolutely no UniMAC activity is allowed
3595          */
3596         if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3597             !strcasecmp(phy_mode_str, "internal"))
3598                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3599
3600         reset_umac(priv);
3601
3602         err = bcmgenet_mii_init(dev);
3603         if (err)
3604                 goto err_clk_disable;
3605
3606         /* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3607          * just the ring 16 descriptor based TX
3608          */
3609         netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3610         netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3611
3612         /* Set default coalescing parameters */
3613         for (i = 0; i < priv->hw_params->rx_queues; i++)
3614                 priv->rx_rings[i].rx_max_coalesced_frames = 1;
3615         priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3616
3617         /* libphy will determine the link state */
3618         netif_carrier_off(dev);
3619
3620         /* Turn off the main clock, WOL clock is handled separately */
3621         clk_disable_unprepare(priv->clk);
3622
3623         err = register_netdev(dev);
3624         if (err)
3625                 goto err;
3626
3627         return err;
3628
3629 err_clk_disable:
3630         clk_disable_unprepare(priv->clk);
3631 err:
3632         free_netdev(dev);
3633         return err;
3634 }
3635
3636 static int bcmgenet_remove(struct platform_device *pdev)
3637 {
3638         struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3639
3640         dev_set_drvdata(&pdev->dev, NULL);
3641         unregister_netdev(priv->dev);
3642         bcmgenet_mii_exit(priv->dev);
3643         free_netdev(priv->dev);
3644
3645         return 0;
3646 }
3647
3648 static void bcmgenet_shutdown(struct platform_device *pdev)
3649 {
3650         bcmgenet_remove(pdev);
3651 }
3652
3653 #ifdef CONFIG_PM_SLEEP
3654 static int bcmgenet_resume(struct device *d)
3655 {
3656         struct net_device *dev = dev_get_drvdata(d);
3657         struct bcmgenet_priv *priv = netdev_priv(dev);
3658         unsigned long dma_ctrl;
3659         int ret;
3660         u32 reg;
3661
3662         if (!netif_running(dev))
3663                 return 0;
3664
3665         /* Turn on the clock */
3666         ret = clk_prepare_enable(priv->clk);
3667         if (ret)
3668                 return ret;
3669
3670         /* If this is an internal GPHY, power it back on now, before UniMAC is
3671          * brought out of reset as absolutely no UniMAC activity is allowed
3672          */
3673         if (priv->internal_phy)
3674                 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3675
3676         bcmgenet_umac_reset(priv);
3677
3678         init_umac(priv);
3679
3680         /* From WOL-enabled suspend, switch to regular clock */
3681         if (priv->wolopts)
3682                 clk_disable_unprepare(priv->clk_wol);
3683
3684         phy_init_hw(dev->phydev);
3685
3686         /* Speed settings must be restored */
3687         genphy_config_aneg(dev->phydev);
3688         bcmgenet_mii_config(priv->dev, false);
3689
3690         bcmgenet_set_hw_addr(priv, dev->dev_addr);
3691
3692         if (priv->internal_phy) {
3693                 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3694                 reg |= EXT_ENERGY_DET_MASK;
3695                 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3696         }
3697
3698         if (priv->wolopts)
3699                 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3700
3701         /* Disable RX/TX DMA and flush TX queues */
3702         dma_ctrl = bcmgenet_dma_disable(priv);
3703
3704         /* Reinitialize TDMA and RDMA and SW housekeeping */
3705         ret = bcmgenet_init_dma(priv);
3706         if (ret) {
3707                 netdev_err(dev, "failed to initialize DMA\n");
3708                 goto out_clk_disable;
3709         }
3710
3711         /* Always enable ring 16 - descriptor ring */
3712         bcmgenet_enable_dma(priv, dma_ctrl);
3713
3714         if (!device_may_wakeup(d))
3715                 phy_resume(dev->phydev);
3716
3717         if (priv->eee.eee_enabled)
3718                 bcmgenet_eee_enable_set(dev, true);
3719
3720         bcmgenet_netif_start(dev);
3721
3722         netif_device_attach(dev);
3723
3724         return 0;
3725
3726 out_clk_disable:
3727         if (priv->internal_phy)
3728                 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3729         clk_disable_unprepare(priv->clk);
3730         return ret;
3731 }
3732
3733 static int bcmgenet_suspend(struct device *d)
3734 {
3735         struct net_device *dev = dev_get_drvdata(d);
3736         struct bcmgenet_priv *priv = netdev_priv(dev);
3737         int ret = 0;
3738
3739         if (!netif_running(dev))
3740                 return 0;
3741
3742         netif_device_detach(dev);
3743
3744         bcmgenet_netif_stop(dev);
3745
3746         if (!device_may_wakeup(d))
3747                 phy_suspend(dev->phydev);
3748
3749         /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3750         if (device_may_wakeup(d) && priv->wolopts) {
3751                 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3752                 clk_prepare_enable(priv->clk_wol);
3753         } else if (priv->internal_phy) {
3754                 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3755         }
3756
3757         /* Turn off the clocks */
3758         clk_disable_unprepare(priv->clk);
3759
3760         if (ret)
3761                 bcmgenet_resume(d);
3762
3763         return ret;
3764 }
3765 #endif /* CONFIG_PM_SLEEP */
3766
3767 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3768
3769 static struct platform_driver bcmgenet_driver = {
3770         .probe  = bcmgenet_probe,
3771         .remove = bcmgenet_remove,
3772         .shutdown = bcmgenet_shutdown,
3773         .driver = {
3774                 .name   = "bcmgenet",
3775                 .of_match_table = bcmgenet_match,
3776                 .pm     = &bcmgenet_pm_ops,
3777         },
3778 };
3779 module_platform_driver(bcmgenet_driver);
3780
3781 MODULE_AUTHOR("Broadcom Corporation");
3782 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3783 MODULE_ALIAS("platform:bcmgenet");
3784 MODULE_LICENSE("GPL");