Merge tag 'qcom-drivers-for-5.1-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / net / can / dev.c
1 /*
2  * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3  * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4  * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the version 2 of the GNU General Public License
8  * as published by the Free Software Foundation
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/netdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/workqueue.h>
25 #include <linux/can.h>
26 #include <linux/can/dev.h>
27 #include <linux/can/skb.h>
28 #include <linux/can/netlink.h>
29 #include <linux/can/led.h>
30 #include <linux/of.h>
31 #include <net/rtnetlink.h>
32
33 #define MOD_DESC "CAN device driver interface"
34
35 MODULE_DESCRIPTION(MOD_DESC);
36 MODULE_LICENSE("GPL v2");
37 MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
38
39 /* CAN DLC to real data length conversion helpers */
40
41 static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
42                              8, 12, 16, 20, 24, 32, 48, 64};
43
44 /* get data length from can_dlc with sanitized can_dlc */
45 u8 can_dlc2len(u8 can_dlc)
46 {
47         return dlc2len[can_dlc & 0x0F];
48 }
49 EXPORT_SYMBOL_GPL(can_dlc2len);
50
51 static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,         /* 0 - 8 */
52                              9, 9, 9, 9,                        /* 9 - 12 */
53                              10, 10, 10, 10,                    /* 13 - 16 */
54                              11, 11, 11, 11,                    /* 17 - 20 */
55                              12, 12, 12, 12,                    /* 21 - 24 */
56                              13, 13, 13, 13, 13, 13, 13, 13,    /* 25 - 32 */
57                              14, 14, 14, 14, 14, 14, 14, 14,    /* 33 - 40 */
58                              14, 14, 14, 14, 14, 14, 14, 14,    /* 41 - 48 */
59                              15, 15, 15, 15, 15, 15, 15, 15,    /* 49 - 56 */
60                              15, 15, 15, 15, 15, 15, 15, 15};   /* 57 - 64 */
61
62 /* map the sanitized data length to an appropriate data length code */
63 u8 can_len2dlc(u8 len)
64 {
65         if (unlikely(len > 64))
66                 return 0xF;
67
68         return len2dlc[len];
69 }
70 EXPORT_SYMBOL_GPL(can_len2dlc);
71
72 #ifdef CONFIG_CAN_CALC_BITTIMING
73 #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
74 #define CAN_CALC_SYNC_SEG 1
75
76 /*
77  * Bit-timing calculation derived from:
78  *
79  * Code based on LinCAN sources and H8S2638 project
80  * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
81  * Copyright 2005      Stanislav Marek
82  * email: pisa@cmp.felk.cvut.cz
83  *
84  * Calculates proper bit-timing parameters for a specified bit-rate
85  * and sample-point, which can then be used to set the bit-timing
86  * registers of the CAN controller. You can find more information
87  * in the header file linux/can/netlink.h.
88  */
89 static int can_update_sample_point(const struct can_bittiming_const *btc,
90                           unsigned int sample_point_nominal, unsigned int tseg,
91                           unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
92                           unsigned int *sample_point_error_ptr)
93 {
94         unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
95         unsigned int sample_point, best_sample_point = 0;
96         unsigned int tseg1, tseg2;
97         int i;
98
99         for (i = 0; i <= 1; i++) {
100                 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i;
101                 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
102                 tseg1 = tseg - tseg2;
103                 if (tseg1 > btc->tseg1_max) {
104                         tseg1 = btc->tseg1_max;
105                         tseg2 = tseg - tseg1;
106                 }
107
108                 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG);
109                 sample_point_error = abs(sample_point_nominal - sample_point);
110
111                 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) {
112                         best_sample_point = sample_point;
113                         best_sample_point_error = sample_point_error;
114                         *tseg1_ptr = tseg1;
115                         *tseg2_ptr = tseg2;
116                 }
117         }
118
119         if (sample_point_error_ptr)
120                 *sample_point_error_ptr = best_sample_point_error;
121
122         return best_sample_point;
123 }
124
125 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
126                               const struct can_bittiming_const *btc)
127 {
128         struct can_priv *priv = netdev_priv(dev);
129         unsigned int bitrate;                   /* current bitrate */
130         unsigned int bitrate_error;             /* difference between current and nominal value */
131         unsigned int best_bitrate_error = UINT_MAX;
132         unsigned int sample_point_error;        /* difference between current and nominal value */
133         unsigned int best_sample_point_error = UINT_MAX;
134         unsigned int sample_point_nominal;      /* nominal sample point */
135         unsigned int best_tseg = 0;             /* current best value for tseg */
136         unsigned int best_brp = 0;              /* current best value for brp */
137         unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
138         u64 v64;
139
140         /* Use CiA recommended sample points */
141         if (bt->sample_point) {
142                 sample_point_nominal = bt->sample_point;
143         } else {
144                 if (bt->bitrate > 800000)
145                         sample_point_nominal = 750;
146                 else if (bt->bitrate > 500000)
147                         sample_point_nominal = 800;
148                 else
149                         sample_point_nominal = 875;
150         }
151
152         /* tseg even = round down, odd = round up */
153         for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
154              tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
155                 tsegall = CAN_CALC_SYNC_SEG + tseg / 2;
156
157                 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
158                 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
159
160                 /* choose brp step which is possible in system */
161                 brp = (brp / btc->brp_inc) * btc->brp_inc;
162                 if ((brp < btc->brp_min) || (brp > btc->brp_max))
163                         continue;
164
165                 bitrate = priv->clock.freq / (brp * tsegall);
166                 bitrate_error = abs(bt->bitrate - bitrate);
167
168                 /* tseg brp biterror */
169                 if (bitrate_error > best_bitrate_error)
170                         continue;
171
172                 /* reset sample point error if we have a better bitrate */
173                 if (bitrate_error < best_bitrate_error)
174                         best_sample_point_error = UINT_MAX;
175
176                 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error);
177                 if (sample_point_error > best_sample_point_error)
178                         continue;
179
180                 best_sample_point_error = sample_point_error;
181                 best_bitrate_error = bitrate_error;
182                 best_tseg = tseg / 2;
183                 best_brp = brp;
184
185                 if (bitrate_error == 0 && sample_point_error == 0)
186                         break;
187         }
188
189         if (best_bitrate_error) {
190                 /* Error in one-tenth of a percent */
191                 v64 = (u64)best_bitrate_error * 1000;
192                 do_div(v64, bt->bitrate);
193                 bitrate_error = (u32)v64;
194                 if (bitrate_error > CAN_CALC_MAX_ERROR) {
195                         netdev_err(dev,
196                                    "bitrate error %d.%d%% too high\n",
197                                    bitrate_error / 10, bitrate_error % 10);
198                         return -EDOM;
199                 }
200                 netdev_warn(dev, "bitrate error %d.%d%%\n",
201                             bitrate_error / 10, bitrate_error % 10);
202         }
203
204         /* real sample point */
205         bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg,
206                                           &tseg1, &tseg2, NULL);
207
208         v64 = (u64)best_brp * 1000 * 1000 * 1000;
209         do_div(v64, priv->clock.freq);
210         bt->tq = (u32)v64;
211         bt->prop_seg = tseg1 / 2;
212         bt->phase_seg1 = tseg1 - bt->prop_seg;
213         bt->phase_seg2 = tseg2;
214
215         /* check for sjw user settings */
216         if (!bt->sjw || !btc->sjw_max) {
217                 bt->sjw = 1;
218         } else {
219                 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
220                 if (bt->sjw > btc->sjw_max)
221                         bt->sjw = btc->sjw_max;
222                 /* bt->sjw must not be higher than tseg2 */
223                 if (tseg2 < bt->sjw)
224                         bt->sjw = tseg2;
225         }
226
227         bt->brp = best_brp;
228
229         /* real bitrate */
230         bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2));
231
232         return 0;
233 }
234 #else /* !CONFIG_CAN_CALC_BITTIMING */
235 static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
236                               const struct can_bittiming_const *btc)
237 {
238         netdev_err(dev, "bit-timing calculation not available\n");
239         return -EINVAL;
240 }
241 #endif /* CONFIG_CAN_CALC_BITTIMING */
242
243 /*
244  * Checks the validity of the specified bit-timing parameters prop_seg,
245  * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
246  * prescaler value brp. You can find more information in the header
247  * file linux/can/netlink.h.
248  */
249 static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
250                                const struct can_bittiming_const *btc)
251 {
252         struct can_priv *priv = netdev_priv(dev);
253         int tseg1, alltseg;
254         u64 brp64;
255
256         tseg1 = bt->prop_seg + bt->phase_seg1;
257         if (!bt->sjw)
258                 bt->sjw = 1;
259         if (bt->sjw > btc->sjw_max ||
260             tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
261             bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
262                 return -ERANGE;
263
264         brp64 = (u64)priv->clock.freq * (u64)bt->tq;
265         if (btc->brp_inc > 1)
266                 do_div(brp64, btc->brp_inc);
267         brp64 += 500000000UL - 1;
268         do_div(brp64, 1000000000UL); /* the practicable BRP */
269         if (btc->brp_inc > 1)
270                 brp64 *= btc->brp_inc;
271         bt->brp = (u32)brp64;
272
273         if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
274                 return -EINVAL;
275
276         alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
277         bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
278         bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
279
280         return 0;
281 }
282
283 /* Checks the validity of predefined bitrate settings */
284 static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt,
285                                 const u32 *bitrate_const,
286                                 const unsigned int bitrate_const_cnt)
287 {
288         struct can_priv *priv = netdev_priv(dev);
289         unsigned int i;
290
291         for (i = 0; i < bitrate_const_cnt; i++) {
292                 if (bt->bitrate == bitrate_const[i])
293                         break;
294         }
295
296         if (i >= priv->bitrate_const_cnt)
297                 return -EINVAL;
298
299         return 0;
300 }
301
302 static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
303                              const struct can_bittiming_const *btc,
304                              const u32 *bitrate_const,
305                              const unsigned int bitrate_const_cnt)
306 {
307         int err;
308
309         /*
310          * Depending on the given can_bittiming parameter structure the CAN
311          * timing parameters are calculated based on the provided bitrate OR
312          * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
313          * provided directly which are then checked and fixed up.
314          */
315         if (!bt->tq && bt->bitrate && btc)
316                 err = can_calc_bittiming(dev, bt, btc);
317         else if (bt->tq && !bt->bitrate && btc)
318                 err = can_fixup_bittiming(dev, bt, btc);
319         else if (!bt->tq && bt->bitrate && bitrate_const)
320                 err = can_validate_bitrate(dev, bt, bitrate_const,
321                                            bitrate_const_cnt);
322         else
323                 err = -EINVAL;
324
325         return err;
326 }
327
328 static void can_update_state_error_stats(struct net_device *dev,
329                                          enum can_state new_state)
330 {
331         struct can_priv *priv = netdev_priv(dev);
332
333         if (new_state <= priv->state)
334                 return;
335
336         switch (new_state) {
337         case CAN_STATE_ERROR_WARNING:
338                 priv->can_stats.error_warning++;
339                 break;
340         case CAN_STATE_ERROR_PASSIVE:
341                 priv->can_stats.error_passive++;
342                 break;
343         case CAN_STATE_BUS_OFF:
344                 priv->can_stats.bus_off++;
345                 break;
346         default:
347                 break;
348         }
349 }
350
351 static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
352 {
353         switch (state) {
354         case CAN_STATE_ERROR_ACTIVE:
355                 return CAN_ERR_CRTL_ACTIVE;
356         case CAN_STATE_ERROR_WARNING:
357                 return CAN_ERR_CRTL_TX_WARNING;
358         case CAN_STATE_ERROR_PASSIVE:
359                 return CAN_ERR_CRTL_TX_PASSIVE;
360         default:
361                 return 0;
362         }
363 }
364
365 static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
366 {
367         switch (state) {
368         case CAN_STATE_ERROR_ACTIVE:
369                 return CAN_ERR_CRTL_ACTIVE;
370         case CAN_STATE_ERROR_WARNING:
371                 return CAN_ERR_CRTL_RX_WARNING;
372         case CAN_STATE_ERROR_PASSIVE:
373                 return CAN_ERR_CRTL_RX_PASSIVE;
374         default:
375                 return 0;
376         }
377 }
378
379 void can_change_state(struct net_device *dev, struct can_frame *cf,
380                       enum can_state tx_state, enum can_state rx_state)
381 {
382         struct can_priv *priv = netdev_priv(dev);
383         enum can_state new_state = max(tx_state, rx_state);
384
385         if (unlikely(new_state == priv->state)) {
386                 netdev_warn(dev, "%s: oops, state did not change", __func__);
387                 return;
388         }
389
390         netdev_dbg(dev, "New error state: %d\n", new_state);
391
392         can_update_state_error_stats(dev, new_state);
393         priv->state = new_state;
394
395         if (!cf)
396                 return;
397
398         if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
399                 cf->can_id |= CAN_ERR_BUSOFF;
400                 return;
401         }
402
403         cf->can_id |= CAN_ERR_CRTL;
404         cf->data[1] |= tx_state >= rx_state ?
405                        can_tx_state_to_frame(dev, tx_state) : 0;
406         cf->data[1] |= tx_state <= rx_state ?
407                        can_rx_state_to_frame(dev, rx_state) : 0;
408 }
409 EXPORT_SYMBOL_GPL(can_change_state);
410
411 /*
412  * Local echo of CAN messages
413  *
414  * CAN network devices *should* support a local echo functionality
415  * (see Documentation/networking/can.rst). To test the handling of CAN
416  * interfaces that do not support the local echo both driver types are
417  * implemented. In the case that the driver does not support the echo
418  * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
419  * to perform the echo as a fallback solution.
420  */
421 static void can_flush_echo_skb(struct net_device *dev)
422 {
423         struct can_priv *priv = netdev_priv(dev);
424         struct net_device_stats *stats = &dev->stats;
425         int i;
426
427         for (i = 0; i < priv->echo_skb_max; i++) {
428                 if (priv->echo_skb[i]) {
429                         kfree_skb(priv->echo_skb[i]);
430                         priv->echo_skb[i] = NULL;
431                         stats->tx_dropped++;
432                         stats->tx_aborted_errors++;
433                 }
434         }
435 }
436
437 /*
438  * Put the skb on the stack to be looped backed locally lateron
439  *
440  * The function is typically called in the start_xmit function
441  * of the device driver. The driver must protect access to
442  * priv->echo_skb, if necessary.
443  */
444 void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
445                       unsigned int idx)
446 {
447         struct can_priv *priv = netdev_priv(dev);
448
449         BUG_ON(idx >= priv->echo_skb_max);
450
451         /* check flag whether this packet has to be looped back */
452         if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
453             (skb->protocol != htons(ETH_P_CAN) &&
454              skb->protocol != htons(ETH_P_CANFD))) {
455                 kfree_skb(skb);
456                 return;
457         }
458
459         if (!priv->echo_skb[idx]) {
460
461                 skb = can_create_echo_skb(skb);
462                 if (!skb)
463                         return;
464
465                 /* make settings for echo to reduce code in irq context */
466                 skb->pkt_type = PACKET_BROADCAST;
467                 skb->ip_summed = CHECKSUM_UNNECESSARY;
468                 skb->dev = dev;
469
470                 /* save this skb for tx interrupt echo handling */
471                 priv->echo_skb[idx] = skb;
472         } else {
473                 /* locking problem with netif_stop_queue() ?? */
474                 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
475                 kfree_skb(skb);
476         }
477 }
478 EXPORT_SYMBOL_GPL(can_put_echo_skb);
479
480 struct sk_buff *__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr)
481 {
482         struct can_priv *priv = netdev_priv(dev);
483
484         if (idx >= priv->echo_skb_max) {
485                 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n",
486                            __func__, idx, priv->echo_skb_max);
487                 return NULL;
488         }
489
490         if (priv->echo_skb[idx]) {
491                 /* Using "struct canfd_frame::len" for the frame
492                  * length is supported on both CAN and CANFD frames.
493                  */
494                 struct sk_buff *skb = priv->echo_skb[idx];
495                 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
496                 u8 len = cf->len;
497
498                 *len_ptr = len;
499                 priv->echo_skb[idx] = NULL;
500
501                 return skb;
502         }
503
504         return NULL;
505 }
506
507 /*
508  * Get the skb from the stack and loop it back locally
509  *
510  * The function is typically called when the TX done interrupt
511  * is handled in the device driver. The driver must protect
512  * access to priv->echo_skb, if necessary.
513  */
514 unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
515 {
516         struct sk_buff *skb;
517         u8 len;
518
519         skb = __can_get_echo_skb(dev, idx, &len);
520         if (!skb)
521                 return 0;
522
523         netif_rx(skb);
524
525         return len;
526 }
527 EXPORT_SYMBOL_GPL(can_get_echo_skb);
528
529 /*
530   * Remove the skb from the stack and free it.
531   *
532   * The function is typically called when TX failed.
533   */
534 void can_free_echo_skb(struct net_device *dev, unsigned int idx)
535 {
536         struct can_priv *priv = netdev_priv(dev);
537
538         BUG_ON(idx >= priv->echo_skb_max);
539
540         if (priv->echo_skb[idx]) {
541                 dev_kfree_skb_any(priv->echo_skb[idx]);
542                 priv->echo_skb[idx] = NULL;
543         }
544 }
545 EXPORT_SYMBOL_GPL(can_free_echo_skb);
546
547 /*
548  * CAN device restart for bus-off recovery
549  */
550 static void can_restart(struct net_device *dev)
551 {
552         struct can_priv *priv = netdev_priv(dev);
553         struct net_device_stats *stats = &dev->stats;
554         struct sk_buff *skb;
555         struct can_frame *cf;
556         int err;
557
558         BUG_ON(netif_carrier_ok(dev));
559
560         /*
561          * No synchronization needed because the device is bus-off and
562          * no messages can come in or go out.
563          */
564         can_flush_echo_skb(dev);
565
566         /* send restart message upstream */
567         skb = alloc_can_err_skb(dev, &cf);
568         if (skb == NULL) {
569                 err = -ENOMEM;
570                 goto restart;
571         }
572         cf->can_id |= CAN_ERR_RESTARTED;
573
574         netif_rx(skb);
575
576         stats->rx_packets++;
577         stats->rx_bytes += cf->can_dlc;
578
579 restart:
580         netdev_dbg(dev, "restarted\n");
581         priv->can_stats.restarts++;
582
583         /* Now restart the device */
584         err = priv->do_set_mode(dev, CAN_MODE_START);
585
586         netif_carrier_on(dev);
587         if (err)
588                 netdev_err(dev, "Error %d during restart", err);
589 }
590
591 static void can_restart_work(struct work_struct *work)
592 {
593         struct delayed_work *dwork = to_delayed_work(work);
594         struct can_priv *priv = container_of(dwork, struct can_priv, restart_work);
595
596         can_restart(priv->dev);
597 }
598
599 int can_restart_now(struct net_device *dev)
600 {
601         struct can_priv *priv = netdev_priv(dev);
602
603         /*
604          * A manual restart is only permitted if automatic restart is
605          * disabled and the device is in the bus-off state
606          */
607         if (priv->restart_ms)
608                 return -EINVAL;
609         if (priv->state != CAN_STATE_BUS_OFF)
610                 return -EBUSY;
611
612         cancel_delayed_work_sync(&priv->restart_work);
613         can_restart(dev);
614
615         return 0;
616 }
617
618 /*
619  * CAN bus-off
620  *
621  * This functions should be called when the device goes bus-off to
622  * tell the netif layer that no more packets can be sent or received.
623  * If enabled, a timer is started to trigger bus-off recovery.
624  */
625 void can_bus_off(struct net_device *dev)
626 {
627         struct can_priv *priv = netdev_priv(dev);
628
629         netdev_info(dev, "bus-off\n");
630
631         netif_carrier_off(dev);
632
633         if (priv->restart_ms)
634                 schedule_delayed_work(&priv->restart_work,
635                                       msecs_to_jiffies(priv->restart_ms));
636 }
637 EXPORT_SYMBOL_GPL(can_bus_off);
638
639 static void can_setup(struct net_device *dev)
640 {
641         dev->type = ARPHRD_CAN;
642         dev->mtu = CAN_MTU;
643         dev->hard_header_len = 0;
644         dev->addr_len = 0;
645         dev->tx_queue_len = 10;
646
647         /* New-style flags. */
648         dev->flags = IFF_NOARP;
649         dev->features = NETIF_F_HW_CSUM;
650 }
651
652 struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
653 {
654         struct sk_buff *skb;
655
656         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
657                                sizeof(struct can_frame));
658         if (unlikely(!skb))
659                 return NULL;
660
661         skb->protocol = htons(ETH_P_CAN);
662         skb->pkt_type = PACKET_BROADCAST;
663         skb->ip_summed = CHECKSUM_UNNECESSARY;
664
665         skb_reset_mac_header(skb);
666         skb_reset_network_header(skb);
667         skb_reset_transport_header(skb);
668
669         can_skb_reserve(skb);
670         can_skb_prv(skb)->ifindex = dev->ifindex;
671         can_skb_prv(skb)->skbcnt = 0;
672
673         *cf = skb_put_zero(skb, sizeof(struct can_frame));
674
675         return skb;
676 }
677 EXPORT_SYMBOL_GPL(alloc_can_skb);
678
679 struct sk_buff *alloc_canfd_skb(struct net_device *dev,
680                                 struct canfd_frame **cfd)
681 {
682         struct sk_buff *skb;
683
684         skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
685                                sizeof(struct canfd_frame));
686         if (unlikely(!skb))
687                 return NULL;
688
689         skb->protocol = htons(ETH_P_CANFD);
690         skb->pkt_type = PACKET_BROADCAST;
691         skb->ip_summed = CHECKSUM_UNNECESSARY;
692
693         skb_reset_mac_header(skb);
694         skb_reset_network_header(skb);
695         skb_reset_transport_header(skb);
696
697         can_skb_reserve(skb);
698         can_skb_prv(skb)->ifindex = dev->ifindex;
699         can_skb_prv(skb)->skbcnt = 0;
700
701         *cfd = skb_put_zero(skb, sizeof(struct canfd_frame));
702
703         return skb;
704 }
705 EXPORT_SYMBOL_GPL(alloc_canfd_skb);
706
707 struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
708 {
709         struct sk_buff *skb;
710
711         skb = alloc_can_skb(dev, cf);
712         if (unlikely(!skb))
713                 return NULL;
714
715         (*cf)->can_id = CAN_ERR_FLAG;
716         (*cf)->can_dlc = CAN_ERR_DLC;
717
718         return skb;
719 }
720 EXPORT_SYMBOL_GPL(alloc_can_err_skb);
721
722 /*
723  * Allocate and setup space for the CAN network device
724  */
725 struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max,
726                                     unsigned int txqs, unsigned int rxqs)
727 {
728         struct net_device *dev;
729         struct can_priv *priv;
730         int size;
731
732         if (echo_skb_max)
733                 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
734                         echo_skb_max * sizeof(struct sk_buff *);
735         else
736                 size = sizeof_priv;
737
738         dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup,
739                                txqs, rxqs);
740         if (!dev)
741                 return NULL;
742
743         priv = netdev_priv(dev);
744         priv->dev = dev;
745
746         if (echo_skb_max) {
747                 priv->echo_skb_max = echo_skb_max;
748                 priv->echo_skb = (void *)priv +
749                         ALIGN(sizeof_priv, sizeof(struct sk_buff *));
750         }
751
752         priv->state = CAN_STATE_STOPPED;
753
754         INIT_DELAYED_WORK(&priv->restart_work, can_restart_work);
755
756         return dev;
757 }
758 EXPORT_SYMBOL_GPL(alloc_candev_mqs);
759
760 /*
761  * Free space of the CAN network device
762  */
763 void free_candev(struct net_device *dev)
764 {
765         free_netdev(dev);
766 }
767 EXPORT_SYMBOL_GPL(free_candev);
768
769 /*
770  * changing MTU and control mode for CAN/CANFD devices
771  */
772 int can_change_mtu(struct net_device *dev, int new_mtu)
773 {
774         struct can_priv *priv = netdev_priv(dev);
775
776         /* Do not allow changing the MTU while running */
777         if (dev->flags & IFF_UP)
778                 return -EBUSY;
779
780         /* allow change of MTU according to the CANFD ability of the device */
781         switch (new_mtu) {
782         case CAN_MTU:
783                 /* 'CANFD-only' controllers can not switch to CAN_MTU */
784                 if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
785                         return -EINVAL;
786
787                 priv->ctrlmode &= ~CAN_CTRLMODE_FD;
788                 break;
789
790         case CANFD_MTU:
791                 /* check for potential CANFD ability */
792                 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
793                     !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
794                         return -EINVAL;
795
796                 priv->ctrlmode |= CAN_CTRLMODE_FD;
797                 break;
798
799         default:
800                 return -EINVAL;
801         }
802
803         dev->mtu = new_mtu;
804         return 0;
805 }
806 EXPORT_SYMBOL_GPL(can_change_mtu);
807
808 /*
809  * Common open function when the device gets opened.
810  *
811  * This function should be called in the open function of the device
812  * driver.
813  */
814 int open_candev(struct net_device *dev)
815 {
816         struct can_priv *priv = netdev_priv(dev);
817
818         if (!priv->bittiming.bitrate) {
819                 netdev_err(dev, "bit-timing not yet defined\n");
820                 return -EINVAL;
821         }
822
823         /* For CAN FD the data bitrate has to be >= the arbitration bitrate */
824         if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
825             (!priv->data_bittiming.bitrate ||
826              (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
827                 netdev_err(dev, "incorrect/missing data bit-timing\n");
828                 return -EINVAL;
829         }
830
831         /* Switch carrier on if device was stopped while in bus-off state */
832         if (!netif_carrier_ok(dev))
833                 netif_carrier_on(dev);
834
835         return 0;
836 }
837 EXPORT_SYMBOL_GPL(open_candev);
838
839 #ifdef CONFIG_OF
840 /* Common function that can be used to understand the limitation of
841  * a transceiver when it provides no means to determine these limitations
842  * at runtime.
843  */
844 void of_can_transceiver(struct net_device *dev)
845 {
846         struct device_node *dn;
847         struct can_priv *priv = netdev_priv(dev);
848         struct device_node *np = dev->dev.parent->of_node;
849         int ret;
850
851         dn = of_get_child_by_name(np, "can-transceiver");
852         if (!dn)
853                 return;
854
855         ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max);
856         if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max))
857                 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n");
858 }
859 EXPORT_SYMBOL_GPL(of_can_transceiver);
860 #endif
861
862 /*
863  * Common close function for cleanup before the device gets closed.
864  *
865  * This function should be called in the close function of the device
866  * driver.
867  */
868 void close_candev(struct net_device *dev)
869 {
870         struct can_priv *priv = netdev_priv(dev);
871
872         cancel_delayed_work_sync(&priv->restart_work);
873         can_flush_echo_skb(dev);
874 }
875 EXPORT_SYMBOL_GPL(close_candev);
876
877 /*
878  * CAN netlink interface
879  */
880 static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
881         [IFLA_CAN_STATE]        = { .type = NLA_U32 },
882         [IFLA_CAN_CTRLMODE]     = { .len = sizeof(struct can_ctrlmode) },
883         [IFLA_CAN_RESTART_MS]   = { .type = NLA_U32 },
884         [IFLA_CAN_RESTART]      = { .type = NLA_U32 },
885         [IFLA_CAN_BITTIMING]    = { .len = sizeof(struct can_bittiming) },
886         [IFLA_CAN_BITTIMING_CONST]
887                                 = { .len = sizeof(struct can_bittiming_const) },
888         [IFLA_CAN_CLOCK]        = { .len = sizeof(struct can_clock) },
889         [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) },
890         [IFLA_CAN_DATA_BITTIMING]
891                                 = { .len = sizeof(struct can_bittiming) },
892         [IFLA_CAN_DATA_BITTIMING_CONST]
893                                 = { .len = sizeof(struct can_bittiming_const) },
894 };
895
896 static int can_validate(struct nlattr *tb[], struct nlattr *data[],
897                         struct netlink_ext_ack *extack)
898 {
899         bool is_can_fd = false;
900
901         /* Make sure that valid CAN FD configurations always consist of
902          * - nominal/arbitration bittiming
903          * - data bittiming
904          * - control mode with CAN_CTRLMODE_FD set
905          */
906
907         if (!data)
908                 return 0;
909
910         if (data[IFLA_CAN_CTRLMODE]) {
911                 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
912
913                 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
914         }
915
916         if (is_can_fd) {
917                 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
918                         return -EOPNOTSUPP;
919         }
920
921         if (data[IFLA_CAN_DATA_BITTIMING]) {
922                 if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
923                         return -EOPNOTSUPP;
924         }
925
926         return 0;
927 }
928
929 static int can_changelink(struct net_device *dev, struct nlattr *tb[],
930                           struct nlattr *data[],
931                           struct netlink_ext_ack *extack)
932 {
933         struct can_priv *priv = netdev_priv(dev);
934         int err;
935
936         /* We need synchronization with dev->stop() */
937         ASSERT_RTNL();
938
939         if (data[IFLA_CAN_BITTIMING]) {
940                 struct can_bittiming bt;
941
942                 /* Do not allow changing bittiming while running */
943                 if (dev->flags & IFF_UP)
944                         return -EBUSY;
945
946                 /* Calculate bittiming parameters based on
947                  * bittiming_const if set, otherwise pass bitrate
948                  * directly via do_set_bitrate(). Bail out if neither
949                  * is given.
950                  */
951                 if (!priv->bittiming_const && !priv->do_set_bittiming)
952                         return -EOPNOTSUPP;
953
954                 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
955                 err = can_get_bittiming(dev, &bt,
956                                         priv->bittiming_const,
957                                         priv->bitrate_const,
958                                         priv->bitrate_const_cnt);
959                 if (err)
960                         return err;
961
962                 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) {
963                         netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n",
964                                    priv->bitrate_max);
965                         return -EINVAL;
966                 }
967
968                 memcpy(&priv->bittiming, &bt, sizeof(bt));
969
970                 if (priv->do_set_bittiming) {
971                         /* Finally, set the bit-timing registers */
972                         err = priv->do_set_bittiming(dev);
973                         if (err)
974                                 return err;
975                 }
976         }
977
978         if (data[IFLA_CAN_CTRLMODE]) {
979                 struct can_ctrlmode *cm;
980                 u32 ctrlstatic;
981                 u32 maskedflags;
982
983                 /* Do not allow changing controller mode while running */
984                 if (dev->flags & IFF_UP)
985                         return -EBUSY;
986                 cm = nla_data(data[IFLA_CAN_CTRLMODE]);
987                 ctrlstatic = priv->ctrlmode_static;
988                 maskedflags = cm->flags & cm->mask;
989
990                 /* check whether provided bits are allowed to be passed */
991                 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
992                         return -EOPNOTSUPP;
993
994                 /* do not check for static fd-non-iso if 'fd' is disabled */
995                 if (!(maskedflags & CAN_CTRLMODE_FD))
996                         ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
997
998                 /* make sure static options are provided by configuration */
999                 if ((maskedflags & ctrlstatic) != ctrlstatic)
1000                         return -EOPNOTSUPP;
1001
1002                 /* clear bits to be modified and copy the flag values */
1003                 priv->ctrlmode &= ~cm->mask;
1004                 priv->ctrlmode |= maskedflags;
1005
1006                 /* CAN_CTRLMODE_FD can only be set when driver supports FD */
1007                 if (priv->ctrlmode & CAN_CTRLMODE_FD)
1008                         dev->mtu = CANFD_MTU;
1009                 else
1010                         dev->mtu = CAN_MTU;
1011         }
1012
1013         if (data[IFLA_CAN_RESTART_MS]) {
1014                 /* Do not allow changing restart delay while running */
1015                 if (dev->flags & IFF_UP)
1016                         return -EBUSY;
1017                 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
1018         }
1019
1020         if (data[IFLA_CAN_RESTART]) {
1021                 /* Do not allow a restart while not running */
1022                 if (!(dev->flags & IFF_UP))
1023                         return -EINVAL;
1024                 err = can_restart_now(dev);
1025                 if (err)
1026                         return err;
1027         }
1028
1029         if (data[IFLA_CAN_DATA_BITTIMING]) {
1030                 struct can_bittiming dbt;
1031
1032                 /* Do not allow changing bittiming while running */
1033                 if (dev->flags & IFF_UP)
1034                         return -EBUSY;
1035
1036                 /* Calculate bittiming parameters based on
1037                  * data_bittiming_const if set, otherwise pass bitrate
1038                  * directly via do_set_bitrate(). Bail out if neither
1039                  * is given.
1040                  */
1041                 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming)
1042                         return -EOPNOTSUPP;
1043
1044                 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
1045                        sizeof(dbt));
1046                 err = can_get_bittiming(dev, &dbt,
1047                                         priv->data_bittiming_const,
1048                                         priv->data_bitrate_const,
1049                                         priv->data_bitrate_const_cnt);
1050                 if (err)
1051                         return err;
1052
1053                 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) {
1054                         netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n",
1055                                    priv->bitrate_max);
1056                         return -EINVAL;
1057                 }
1058
1059                 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
1060
1061                 if (priv->do_set_data_bittiming) {
1062                         /* Finally, set the bit-timing registers */
1063                         err = priv->do_set_data_bittiming(dev);
1064                         if (err)
1065                                 return err;
1066                 }
1067         }
1068
1069         if (data[IFLA_CAN_TERMINATION]) {
1070                 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]);
1071                 const unsigned int num_term = priv->termination_const_cnt;
1072                 unsigned int i;
1073
1074                 if (!priv->do_set_termination)
1075                         return -EOPNOTSUPP;
1076
1077                 /* check whether given value is supported by the interface */
1078                 for (i = 0; i < num_term; i++) {
1079                         if (termval == priv->termination_const[i])
1080                                 break;
1081                 }
1082                 if (i >= num_term)
1083                         return -EINVAL;
1084
1085                 /* Finally, set the termination value */
1086                 err = priv->do_set_termination(dev, termval);
1087                 if (err)
1088                         return err;
1089
1090                 priv->termination = termval;
1091         }
1092
1093         return 0;
1094 }
1095
1096 static size_t can_get_size(const struct net_device *dev)
1097 {
1098         struct can_priv *priv = netdev_priv(dev);
1099         size_t size = 0;
1100
1101         if (priv->bittiming.bitrate)                            /* IFLA_CAN_BITTIMING */
1102                 size += nla_total_size(sizeof(struct can_bittiming));
1103         if (priv->bittiming_const)                              /* IFLA_CAN_BITTIMING_CONST */
1104                 size += nla_total_size(sizeof(struct can_bittiming_const));
1105         size += nla_total_size(sizeof(struct can_clock));       /* IFLA_CAN_CLOCK */
1106         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_STATE */
1107         size += nla_total_size(sizeof(struct can_ctrlmode));    /* IFLA_CAN_CTRLMODE */
1108         size += nla_total_size(sizeof(u32));                    /* IFLA_CAN_RESTART_MS */
1109         if (priv->do_get_berr_counter)                          /* IFLA_CAN_BERR_COUNTER */
1110                 size += nla_total_size(sizeof(struct can_berr_counter));
1111         if (priv->data_bittiming.bitrate)                       /* IFLA_CAN_DATA_BITTIMING */
1112                 size += nla_total_size(sizeof(struct can_bittiming));
1113         if (priv->data_bittiming_const)                         /* IFLA_CAN_DATA_BITTIMING_CONST */
1114                 size += nla_total_size(sizeof(struct can_bittiming_const));
1115         if (priv->termination_const) {
1116                 size += nla_total_size(sizeof(priv->termination));              /* IFLA_CAN_TERMINATION */
1117                 size += nla_total_size(sizeof(*priv->termination_const) *       /* IFLA_CAN_TERMINATION_CONST */
1118                                        priv->termination_const_cnt);
1119         }
1120         if (priv->bitrate_const)                                /* IFLA_CAN_BITRATE_CONST */
1121                 size += nla_total_size(sizeof(*priv->bitrate_const) *
1122                                        priv->bitrate_const_cnt);
1123         if (priv->data_bitrate_const)                           /* IFLA_CAN_DATA_BITRATE_CONST */
1124                 size += nla_total_size(sizeof(*priv->data_bitrate_const) *
1125                                        priv->data_bitrate_const_cnt);
1126         size += sizeof(priv->bitrate_max);                      /* IFLA_CAN_BITRATE_MAX */
1127
1128         return size;
1129 }
1130
1131 static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
1132 {
1133         struct can_priv *priv = netdev_priv(dev);
1134         struct can_ctrlmode cm = {.flags = priv->ctrlmode};
1135         struct can_berr_counter bec;
1136         enum can_state state = priv->state;
1137
1138         if (priv->do_get_state)
1139                 priv->do_get_state(dev, &state);
1140
1141         if ((priv->bittiming.bitrate &&
1142              nla_put(skb, IFLA_CAN_BITTIMING,
1143                      sizeof(priv->bittiming), &priv->bittiming)) ||
1144
1145             (priv->bittiming_const &&
1146              nla_put(skb, IFLA_CAN_BITTIMING_CONST,
1147                      sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
1148
1149             nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
1150             nla_put_u32(skb, IFLA_CAN_STATE, state) ||
1151             nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
1152             nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
1153
1154             (priv->do_get_berr_counter &&
1155              !priv->do_get_berr_counter(dev, &bec) &&
1156              nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
1157
1158             (priv->data_bittiming.bitrate &&
1159              nla_put(skb, IFLA_CAN_DATA_BITTIMING,
1160                      sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
1161
1162             (priv->data_bittiming_const &&
1163              nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
1164                      sizeof(*priv->data_bittiming_const),
1165                      priv->data_bittiming_const)) ||
1166
1167             (priv->termination_const &&
1168              (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) ||
1169               nla_put(skb, IFLA_CAN_TERMINATION_CONST,
1170                       sizeof(*priv->termination_const) *
1171                       priv->termination_const_cnt,
1172                       priv->termination_const))) ||
1173
1174             (priv->bitrate_const &&
1175              nla_put(skb, IFLA_CAN_BITRATE_CONST,
1176                      sizeof(*priv->bitrate_const) *
1177                      priv->bitrate_const_cnt,
1178                      priv->bitrate_const)) ||
1179
1180             (priv->data_bitrate_const &&
1181              nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST,
1182                      sizeof(*priv->data_bitrate_const) *
1183                      priv->data_bitrate_const_cnt,
1184                      priv->data_bitrate_const)) ||
1185
1186             (nla_put(skb, IFLA_CAN_BITRATE_MAX,
1187                      sizeof(priv->bitrate_max),
1188                      &priv->bitrate_max))
1189             )
1190
1191                 return -EMSGSIZE;
1192
1193         return 0;
1194 }
1195
1196 static size_t can_get_xstats_size(const struct net_device *dev)
1197 {
1198         return sizeof(struct can_device_stats);
1199 }
1200
1201 static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
1202 {
1203         struct can_priv *priv = netdev_priv(dev);
1204
1205         if (nla_put(skb, IFLA_INFO_XSTATS,
1206                     sizeof(priv->can_stats), &priv->can_stats))
1207                 goto nla_put_failure;
1208         return 0;
1209
1210 nla_put_failure:
1211         return -EMSGSIZE;
1212 }
1213
1214 static int can_newlink(struct net *src_net, struct net_device *dev,
1215                        struct nlattr *tb[], struct nlattr *data[],
1216                        struct netlink_ext_ack *extack)
1217 {
1218         return -EOPNOTSUPP;
1219 }
1220
1221 static void can_dellink(struct net_device *dev, struct list_head *head)
1222 {
1223         return;
1224 }
1225
1226 static struct rtnl_link_ops can_link_ops __read_mostly = {
1227         .kind           = "can",
1228         .maxtype        = IFLA_CAN_MAX,
1229         .policy         = can_policy,
1230         .setup          = can_setup,
1231         .validate       = can_validate,
1232         .newlink        = can_newlink,
1233         .changelink     = can_changelink,
1234         .dellink        = can_dellink,
1235         .get_size       = can_get_size,
1236         .fill_info      = can_fill_info,
1237         .get_xstats_size = can_get_xstats_size,
1238         .fill_xstats    = can_fill_xstats,
1239 };
1240
1241 /*
1242  * Register the CAN network device
1243  */
1244 int register_candev(struct net_device *dev)
1245 {
1246         struct can_priv *priv = netdev_priv(dev);
1247
1248         /* Ensure termination_const, termination_const_cnt and
1249          * do_set_termination consistency. All must be either set or
1250          * unset.
1251          */
1252         if ((!priv->termination_const != !priv->termination_const_cnt) ||
1253             (!priv->termination_const != !priv->do_set_termination))
1254                 return -EINVAL;
1255
1256         if (!priv->bitrate_const != !priv->bitrate_const_cnt)
1257                 return -EINVAL;
1258
1259         if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt)
1260                 return -EINVAL;
1261
1262         dev->rtnl_link_ops = &can_link_ops;
1263         return register_netdev(dev);
1264 }
1265 EXPORT_SYMBOL_GPL(register_candev);
1266
1267 /*
1268  * Unregister the CAN network device
1269  */
1270 void unregister_candev(struct net_device *dev)
1271 {
1272         unregister_netdev(dev);
1273 }
1274 EXPORT_SYMBOL_GPL(unregister_candev);
1275
1276 /*
1277  * Test if a network device is a candev based device
1278  * and return the can_priv* if so.
1279  */
1280 struct can_priv *safe_candev_priv(struct net_device *dev)
1281 {
1282         if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1283                 return NULL;
1284
1285         return netdev_priv(dev);
1286 }
1287 EXPORT_SYMBOL_GPL(safe_candev_priv);
1288
1289 static __init int can_dev_init(void)
1290 {
1291         int err;
1292
1293         can_led_notifier_init();
1294
1295         err = rtnl_link_register(&can_link_ops);
1296         if (!err)
1297                 printk(KERN_INFO MOD_DESC "\n");
1298
1299         return err;
1300 }
1301 module_init(can_dev_init);
1302
1303 static __exit void can_dev_exit(void)
1304 {
1305         rtnl_link_unregister(&can_link_ops);
1306
1307         can_led_notifier_exit();
1308 }
1309 module_exit(can_dev_exit);
1310
1311 MODULE_ALIAS_RTNL_LINK("can");