Merge tag 'nand/for-5.7' into mtd/next
[sfrench/cifs-2.6.git] / drivers / mtd / spi-nor / controllers / cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Cadence QSPI Controller
4  *
5  * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6  */
7 #include <linux/clk.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/mtd/spi-nor.h>
23 #include <linux/of_device.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/spi/spi.h>
30 #include <linux/timer.h>
31
32 #define CQSPI_NAME                      "cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT            16
34
35 /* Quirks */
36 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
37
38 /* Capabilities mask */
39 #define CQSPI_BASE_HWCAPS_MASK                                  \
40         (SNOR_HWCAPS_READ | SNOR_HWCAPS_READ_FAST |             \
41         SNOR_HWCAPS_READ_1_1_2 | SNOR_HWCAPS_READ_1_1_4 |       \
42         SNOR_HWCAPS_PP)
43
44 struct cqspi_st;
45
46 struct cqspi_flash_pdata {
47         struct spi_nor  nor;
48         struct cqspi_st *cqspi;
49         u32             clk_rate;
50         u32             read_delay;
51         u32             tshsl_ns;
52         u32             tsd2d_ns;
53         u32             tchsh_ns;
54         u32             tslch_ns;
55         u8              inst_width;
56         u8              addr_width;
57         u8              data_width;
58         u8              cs;
59         bool            registered;
60         bool            use_direct_mode;
61 };
62
63 struct cqspi_st {
64         struct platform_device  *pdev;
65
66         struct clk              *clk;
67         unsigned int            sclk;
68
69         void __iomem            *iobase;
70         void __iomem            *ahb_base;
71         resource_size_t         ahb_size;
72         struct completion       transfer_complete;
73         struct mutex            bus_mutex;
74
75         struct dma_chan         *rx_chan;
76         struct completion       rx_dma_complete;
77         dma_addr_t              mmap_phys_base;
78
79         int                     current_cs;
80         int                     current_page_size;
81         int                     current_erase_size;
82         int                     current_addr_width;
83         unsigned long           master_ref_clk_hz;
84         bool                    is_decoded_cs;
85         u32                     fifo_depth;
86         u32                     fifo_width;
87         bool                    rclk_en;
88         u32                     trigger_address;
89         u32                     wr_delay;
90         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
91 };
92
93 struct cqspi_driver_platdata {
94         u32 hwcaps_mask;
95         u8 quirks;
96 };
97
98 /* Operation timeout value */
99 #define CQSPI_TIMEOUT_MS                        500
100 #define CQSPI_READ_TIMEOUT_MS                   10
101
102 /* Instruction type */
103 #define CQSPI_INST_TYPE_SINGLE                  0
104 #define CQSPI_INST_TYPE_DUAL                    1
105 #define CQSPI_INST_TYPE_QUAD                    2
106 #define CQSPI_INST_TYPE_OCTAL                   3
107
108 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
109 #define CQSPI_DUMMY_BYTES_MAX                   4
110 #define CQSPI_DUMMY_CLKS_MAX                    31
111
112 #define CQSPI_STIG_DATA_LEN_MAX                 8
113
114 /* Register map */
115 #define CQSPI_REG_CONFIG                        0x00
116 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
117 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
118 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
119 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
120 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
121 #define CQSPI_REG_CONFIG_BAUD_LSB               19
122 #define CQSPI_REG_CONFIG_IDLE_LSB               31
123 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
124 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
125
126 #define CQSPI_REG_RD_INSTR                      0x04
127 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
128 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
129 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
130 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
131 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
132 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
133 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
134 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
135 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
136 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
137
138 #define CQSPI_REG_WR_INSTR                      0x08
139 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
140 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
141 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
142
143 #define CQSPI_REG_DELAY                         0x0C
144 #define CQSPI_REG_DELAY_TSLCH_LSB               0
145 #define CQSPI_REG_DELAY_TCHSH_LSB               8
146 #define CQSPI_REG_DELAY_TSD2D_LSB               16
147 #define CQSPI_REG_DELAY_TSHSL_LSB               24
148 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
149 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
150 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
151 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
152
153 #define CQSPI_REG_READCAPTURE                   0x10
154 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
155 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
156 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
157
158 #define CQSPI_REG_SIZE                          0x14
159 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
160 #define CQSPI_REG_SIZE_PAGE_LSB                 4
161 #define CQSPI_REG_SIZE_BLOCK_LSB                16
162 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
163 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
164 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
165
166 #define CQSPI_REG_SRAMPARTITION                 0x18
167 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
168
169 #define CQSPI_REG_DMA                           0x20
170 #define CQSPI_REG_DMA_SINGLE_LSB                0
171 #define CQSPI_REG_DMA_BURST_LSB                 8
172 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
173 #define CQSPI_REG_DMA_BURST_MASK                0xFF
174
175 #define CQSPI_REG_REMAP                         0x24
176 #define CQSPI_REG_MODE_BIT                      0x28
177
178 #define CQSPI_REG_SDRAMLEVEL                    0x2C
179 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
180 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
181 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
182 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
183
184 #define CQSPI_REG_IRQSTATUS                     0x40
185 #define CQSPI_REG_IRQMASK                       0x44
186
187 #define CQSPI_REG_INDIRECTRD                    0x60
188 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
189 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
190 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
191
192 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
193 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
194 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
195
196 #define CQSPI_REG_CMDCTRL                       0x90
197 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
198 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
199 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
200 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
201 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
202 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
203 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
204 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
205 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
207 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
209
210 #define CQSPI_REG_INDIRECTWR                    0x70
211 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
212 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
213 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
214
215 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
216 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
217 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
218
219 #define CQSPI_REG_CMDADDRESS                    0x94
220 #define CQSPI_REG_CMDREADDATALOWER              0xA0
221 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
222 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
223 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
224
225 /* Interrupt status bits */
226 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
227 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
228 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
229 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
230 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
231 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
232 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
233 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
234
235 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
236                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
237                                          CQSPI_REG_IRQ_IND_COMP)
238
239 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
240                                          CQSPI_REG_IRQ_WATERMARK        | \
241                                          CQSPI_REG_IRQ_UNDERFLOW)
242
243 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
244
245 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
246 {
247         u32 val;
248
249         return readl_relaxed_poll_timeout(reg, val,
250                                           (((clr ? ~val : val) & mask) == mask),
251                                           10, CQSPI_TIMEOUT_MS * 1000);
252 }
253
254 static bool cqspi_is_idle(struct cqspi_st *cqspi)
255 {
256         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
257
258         return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
259 }
260
261 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
262 {
263         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
264
265         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
266         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
267 }
268
269 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
270 {
271         struct cqspi_st *cqspi = dev;
272         unsigned int irq_status;
273
274         /* Read interrupt status */
275         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
276
277         /* Clear interrupt */
278         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
279
280         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
281
282         if (irq_status)
283                 complete(&cqspi->transfer_complete);
284
285         return IRQ_HANDLED;
286 }
287
288 static unsigned int cqspi_calc_rdreg(struct spi_nor *nor)
289 {
290         struct cqspi_flash_pdata *f_pdata = nor->priv;
291         u32 rdreg = 0;
292
293         rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
294         rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
295         rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
296
297         return rdreg;
298 }
299
300 static int cqspi_wait_idle(struct cqspi_st *cqspi)
301 {
302         const unsigned int poll_idle_retry = 3;
303         unsigned int count = 0;
304         unsigned long timeout;
305
306         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
307         while (1) {
308                 /*
309                  * Read few times in succession to ensure the controller
310                  * is indeed idle, that is, the bit does not transition
311                  * low again.
312                  */
313                 if (cqspi_is_idle(cqspi))
314                         count++;
315                 else
316                         count = 0;
317
318                 if (count >= poll_idle_retry)
319                         return 0;
320
321                 if (time_after(jiffies, timeout)) {
322                         /* Timeout, in busy mode. */
323                         dev_err(&cqspi->pdev->dev,
324                                 "QSPI is still busy after %dms timeout.\n",
325                                 CQSPI_TIMEOUT_MS);
326                         return -ETIMEDOUT;
327                 }
328
329                 cpu_relax();
330         }
331 }
332
333 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
334 {
335         void __iomem *reg_base = cqspi->iobase;
336         int ret;
337
338         /* Write the CMDCTRL without start execution. */
339         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
340         /* Start execute */
341         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
342         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
343
344         /* Polling for completion. */
345         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
346                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
347         if (ret) {
348                 dev_err(&cqspi->pdev->dev,
349                         "Flash command execution timed out.\n");
350                 return ret;
351         }
352
353         /* Polling QSPI idle status. */
354         return cqspi_wait_idle(cqspi);
355 }
356
357 static int cqspi_command_read(struct spi_nor *nor, u8 opcode,
358                               u8 *rxbuf, size_t n_rx)
359 {
360         struct cqspi_flash_pdata *f_pdata = nor->priv;
361         struct cqspi_st *cqspi = f_pdata->cqspi;
362         void __iomem *reg_base = cqspi->iobase;
363         unsigned int rdreg;
364         unsigned int reg;
365         size_t read_len;
366         int status;
367
368         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
369                 dev_err(nor->dev,
370                         "Invalid input argument, len %zu rxbuf 0x%p\n",
371                         n_rx, rxbuf);
372                 return -EINVAL;
373         }
374
375         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
376
377         rdreg = cqspi_calc_rdreg(nor);
378         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
379
380         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
381
382         /* 0 means 1 byte. */
383         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
384                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
385         status = cqspi_exec_flash_cmd(cqspi, reg);
386         if (status)
387                 return status;
388
389         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
390
391         /* Put the read value into rx_buf */
392         read_len = (n_rx > 4) ? 4 : n_rx;
393         memcpy(rxbuf, &reg, read_len);
394         rxbuf += read_len;
395
396         if (n_rx > 4) {
397                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
398
399                 read_len = n_rx - read_len;
400                 memcpy(rxbuf, &reg, read_len);
401         }
402
403         return 0;
404 }
405
406 static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
407                                const u8 *txbuf, size_t n_tx)
408 {
409         struct cqspi_flash_pdata *f_pdata = nor->priv;
410         struct cqspi_st *cqspi = f_pdata->cqspi;
411         void __iomem *reg_base = cqspi->iobase;
412         unsigned int reg;
413         unsigned int data;
414         size_t write_len;
415         int ret;
416
417         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
418                 dev_err(nor->dev,
419                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
420                         n_tx, txbuf);
421                 return -EINVAL;
422         }
423
424         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
425         if (n_tx) {
426                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
427                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
428                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
429                 data = 0;
430                 write_len = (n_tx > 4) ? 4 : n_tx;
431                 memcpy(&data, txbuf, write_len);
432                 txbuf += write_len;
433                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
434
435                 if (n_tx > 4) {
436                         data = 0;
437                         write_len = n_tx - 4;
438                         memcpy(&data, txbuf, write_len);
439                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
440                 }
441         }
442         ret = cqspi_exec_flash_cmd(cqspi, reg);
443         return ret;
444 }
445
446 static int cqspi_command_write_addr(struct spi_nor *nor,
447                                     const u8 opcode, const unsigned int addr)
448 {
449         struct cqspi_flash_pdata *f_pdata = nor->priv;
450         struct cqspi_st *cqspi = f_pdata->cqspi;
451         void __iomem *reg_base = cqspi->iobase;
452         unsigned int reg;
453
454         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
455         reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
456         reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
457                 << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
458
459         writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
460
461         return cqspi_exec_flash_cmd(cqspi, reg);
462 }
463
464 static int cqspi_read_setup(struct spi_nor *nor)
465 {
466         struct cqspi_flash_pdata *f_pdata = nor->priv;
467         struct cqspi_st *cqspi = f_pdata->cqspi;
468         void __iomem *reg_base = cqspi->iobase;
469         unsigned int dummy_clk = 0;
470         unsigned int reg;
471
472         reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
473         reg |= cqspi_calc_rdreg(nor);
474
475         /* Setup dummy clock cycles */
476         dummy_clk = nor->read_dummy;
477         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
478                 dummy_clk = CQSPI_DUMMY_CLKS_MAX;
479
480         if (dummy_clk / 8) {
481                 reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
482                 /* Set mode bits high to ensure chip doesn't enter XIP */
483                 writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
484
485                 /* Need to subtract the mode byte (8 clocks). */
486                 if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
487                         dummy_clk -= 8;
488
489                 if (dummy_clk)
490                         reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
491                                << CQSPI_REG_RD_INSTR_DUMMY_LSB;
492         }
493
494         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
495
496         /* Set address width */
497         reg = readl(reg_base + CQSPI_REG_SIZE);
498         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
499         reg |= (nor->addr_width - 1);
500         writel(reg, reg_base + CQSPI_REG_SIZE);
501         return 0;
502 }
503
504 static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
505                                        loff_t from_addr, const size_t n_rx)
506 {
507         struct cqspi_flash_pdata *f_pdata = nor->priv;
508         struct cqspi_st *cqspi = f_pdata->cqspi;
509         void __iomem *reg_base = cqspi->iobase;
510         void __iomem *ahb_base = cqspi->ahb_base;
511         unsigned int remaining = n_rx;
512         unsigned int mod_bytes = n_rx % 4;
513         unsigned int bytes_to_read = 0;
514         u8 *rxbuf_end = rxbuf + n_rx;
515         int ret = 0;
516
517         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
518         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
519
520         /* Clear all interrupts. */
521         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
522
523         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
524
525         reinit_completion(&cqspi->transfer_complete);
526         writel(CQSPI_REG_INDIRECTRD_START_MASK,
527                reg_base + CQSPI_REG_INDIRECTRD);
528
529         while (remaining > 0) {
530                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
531                                 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
532                         ret = -ETIMEDOUT;
533
534                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
535
536                 if (ret && bytes_to_read == 0) {
537                         dev_err(nor->dev, "Indirect read timeout, no bytes\n");
538                         goto failrd;
539                 }
540
541                 while (bytes_to_read != 0) {
542                         unsigned int word_remain = round_down(remaining, 4);
543
544                         bytes_to_read *= cqspi->fifo_width;
545                         bytes_to_read = bytes_to_read > remaining ?
546                                         remaining : bytes_to_read;
547                         bytes_to_read = round_down(bytes_to_read, 4);
548                         /* Read 4 byte word chunks then single bytes */
549                         if (bytes_to_read) {
550                                 ioread32_rep(ahb_base, rxbuf,
551                                              (bytes_to_read / 4));
552                         } else if (!word_remain && mod_bytes) {
553                                 unsigned int temp = ioread32(ahb_base);
554
555                                 bytes_to_read = mod_bytes;
556                                 memcpy(rxbuf, &temp, min((unsigned int)
557                                                          (rxbuf_end - rxbuf),
558                                                          bytes_to_read));
559                         }
560                         rxbuf += bytes_to_read;
561                         remaining -= bytes_to_read;
562                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
563                 }
564
565                 if (remaining > 0)
566                         reinit_completion(&cqspi->transfer_complete);
567         }
568
569         /* Check indirect done status */
570         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
571                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
572         if (ret) {
573                 dev_err(nor->dev,
574                         "Indirect read completion error (%i)\n", ret);
575                 goto failrd;
576         }
577
578         /* Disable interrupt */
579         writel(0, reg_base + CQSPI_REG_IRQMASK);
580
581         /* Clear indirect completion status */
582         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
583
584         return 0;
585
586 failrd:
587         /* Disable interrupt */
588         writel(0, reg_base + CQSPI_REG_IRQMASK);
589
590         /* Cancel the indirect read */
591         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
592                reg_base + CQSPI_REG_INDIRECTRD);
593         return ret;
594 }
595
596 static int cqspi_write_setup(struct spi_nor *nor)
597 {
598         unsigned int reg;
599         struct cqspi_flash_pdata *f_pdata = nor->priv;
600         struct cqspi_st *cqspi = f_pdata->cqspi;
601         void __iomem *reg_base = cqspi->iobase;
602
603         /* Set opcode. */
604         reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
605         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
606         reg = cqspi_calc_rdreg(nor);
607         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
608
609         reg = readl(reg_base + CQSPI_REG_SIZE);
610         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
611         reg |= (nor->addr_width - 1);
612         writel(reg, reg_base + CQSPI_REG_SIZE);
613         return 0;
614 }
615
616 static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
617                                         const u8 *txbuf, const size_t n_tx)
618 {
619         const unsigned int page_size = nor->page_size;
620         struct cqspi_flash_pdata *f_pdata = nor->priv;
621         struct cqspi_st *cqspi = f_pdata->cqspi;
622         void __iomem *reg_base = cqspi->iobase;
623         unsigned int remaining = n_tx;
624         unsigned int write_bytes;
625         int ret;
626
627         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
628         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
629
630         /* Clear all interrupts. */
631         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
632
633         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
634
635         reinit_completion(&cqspi->transfer_complete);
636         writel(CQSPI_REG_INDIRECTWR_START_MASK,
637                reg_base + CQSPI_REG_INDIRECTWR);
638         /*
639          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
640          * Controller programming sequence, couple of cycles of
641          * QSPI_REF_CLK delay is required for the above bit to
642          * be internally synchronized by the QSPI module. Provide 5
643          * cycles of delay.
644          */
645         if (cqspi->wr_delay)
646                 ndelay(cqspi->wr_delay);
647
648         while (remaining > 0) {
649                 size_t write_words, mod_bytes;
650
651                 write_bytes = remaining > page_size ? page_size : remaining;
652                 write_words = write_bytes / 4;
653                 mod_bytes = write_bytes % 4;
654                 /* Write 4 bytes at a time then single bytes. */
655                 if (write_words) {
656                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
657                         txbuf += (write_words * 4);
658                 }
659                 if (mod_bytes) {
660                         unsigned int temp = 0xFFFFFFFF;
661
662                         memcpy(&temp, txbuf, mod_bytes);
663                         iowrite32(temp, cqspi->ahb_base);
664                         txbuf += mod_bytes;
665                 }
666
667                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
668                                         msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
669                         dev_err(nor->dev, "Indirect write timeout\n");
670                         ret = -ETIMEDOUT;
671                         goto failwr;
672                 }
673
674                 remaining -= write_bytes;
675
676                 if (remaining > 0)
677                         reinit_completion(&cqspi->transfer_complete);
678         }
679
680         /* Check indirect done status */
681         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
682                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
683         if (ret) {
684                 dev_err(nor->dev,
685                         "Indirect write completion error (%i)\n", ret);
686                 goto failwr;
687         }
688
689         /* Disable interrupt. */
690         writel(0, reg_base + CQSPI_REG_IRQMASK);
691
692         /* Clear indirect completion status */
693         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
694
695         cqspi_wait_idle(cqspi);
696
697         return 0;
698
699 failwr:
700         /* Disable interrupt. */
701         writel(0, reg_base + CQSPI_REG_IRQMASK);
702
703         /* Cancel the indirect write */
704         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
705                reg_base + CQSPI_REG_INDIRECTWR);
706         return ret;
707 }
708
709 static void cqspi_chipselect(struct spi_nor *nor)
710 {
711         struct cqspi_flash_pdata *f_pdata = nor->priv;
712         struct cqspi_st *cqspi = f_pdata->cqspi;
713         void __iomem *reg_base = cqspi->iobase;
714         unsigned int chip_select = f_pdata->cs;
715         unsigned int reg;
716
717         reg = readl(reg_base + CQSPI_REG_CONFIG);
718         if (cqspi->is_decoded_cs) {
719                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
720         } else {
721                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
722
723                 /* Convert CS if without decoder.
724                  * CS0 to 4b'1110
725                  * CS1 to 4b'1101
726                  * CS2 to 4b'1011
727                  * CS3 to 4b'0111
728                  */
729                 chip_select = 0xF & ~(1 << chip_select);
730         }
731
732         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
733                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
734         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
735             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
736         writel(reg, reg_base + CQSPI_REG_CONFIG);
737 }
738
739 static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
740 {
741         struct cqspi_flash_pdata *f_pdata = nor->priv;
742         struct cqspi_st *cqspi = f_pdata->cqspi;
743         void __iomem *iobase = cqspi->iobase;
744         unsigned int reg;
745
746         /* configure page size and block size. */
747         reg = readl(iobase + CQSPI_REG_SIZE);
748         reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
749         reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
750         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
751         reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
752         reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
753         reg |= (nor->addr_width - 1);
754         writel(reg, iobase + CQSPI_REG_SIZE);
755
756         /* configure the chip select */
757         cqspi_chipselect(nor);
758
759         /* Store the new configuration of the controller */
760         cqspi->current_page_size = nor->page_size;
761         cqspi->current_erase_size = nor->mtd.erasesize;
762         cqspi->current_addr_width = nor->addr_width;
763 }
764
765 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
766                                            const unsigned int ns_val)
767 {
768         unsigned int ticks;
769
770         ticks = ref_clk_hz / 1000;      /* kHz */
771         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
772
773         return ticks;
774 }
775
776 static void cqspi_delay(struct spi_nor *nor)
777 {
778         struct cqspi_flash_pdata *f_pdata = nor->priv;
779         struct cqspi_st *cqspi = f_pdata->cqspi;
780         void __iomem *iobase = cqspi->iobase;
781         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
782         unsigned int tshsl, tchsh, tslch, tsd2d;
783         unsigned int reg;
784         unsigned int tsclk;
785
786         /* calculate the number of ref ticks for one sclk tick */
787         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
788
789         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
790         /* this particular value must be at least one sclk */
791         if (tshsl < tsclk)
792                 tshsl = tsclk;
793
794         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
795         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
796         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
797
798         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
799                << CQSPI_REG_DELAY_TSHSL_LSB;
800         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
801                 << CQSPI_REG_DELAY_TCHSH_LSB;
802         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
803                 << CQSPI_REG_DELAY_TSLCH_LSB;
804         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
805                 << CQSPI_REG_DELAY_TSD2D_LSB;
806         writel(reg, iobase + CQSPI_REG_DELAY);
807 }
808
809 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
810 {
811         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
812         void __iomem *reg_base = cqspi->iobase;
813         u32 reg, div;
814
815         /* Recalculate the baudrate divisor based on QSPI specification. */
816         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
817
818         reg = readl(reg_base + CQSPI_REG_CONFIG);
819         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
820         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
821         writel(reg, reg_base + CQSPI_REG_CONFIG);
822 }
823
824 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
825                                    const bool bypass,
826                                    const unsigned int delay)
827 {
828         void __iomem *reg_base = cqspi->iobase;
829         unsigned int reg;
830
831         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
832
833         if (bypass)
834                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
835         else
836                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
837
838         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
839                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
840
841         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
842                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
843
844         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
845 }
846
847 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
848 {
849         void __iomem *reg_base = cqspi->iobase;
850         unsigned int reg;
851
852         reg = readl(reg_base + CQSPI_REG_CONFIG);
853
854         if (enable)
855                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
856         else
857                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
858
859         writel(reg, reg_base + CQSPI_REG_CONFIG);
860 }
861
862 static void cqspi_configure(struct spi_nor *nor)
863 {
864         struct cqspi_flash_pdata *f_pdata = nor->priv;
865         struct cqspi_st *cqspi = f_pdata->cqspi;
866         const unsigned int sclk = f_pdata->clk_rate;
867         int switch_cs = (cqspi->current_cs != f_pdata->cs);
868         int switch_ck = (cqspi->sclk != sclk);
869
870         if ((cqspi->current_page_size != nor->page_size) ||
871             (cqspi->current_erase_size != nor->mtd.erasesize) ||
872             (cqspi->current_addr_width != nor->addr_width))
873                 switch_cs = 1;
874
875         if (switch_cs || switch_ck)
876                 cqspi_controller_enable(cqspi, 0);
877
878         /* Switch chip select. */
879         if (switch_cs) {
880                 cqspi->current_cs = f_pdata->cs;
881                 cqspi_configure_cs_and_sizes(nor);
882         }
883
884         /* Setup baudrate divisor and delays */
885         if (switch_ck) {
886                 cqspi->sclk = sclk;
887                 cqspi_config_baudrate_div(cqspi);
888                 cqspi_delay(nor);
889                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
890                                        f_pdata->read_delay);
891         }
892
893         if (switch_cs || switch_ck)
894                 cqspi_controller_enable(cqspi, 1);
895 }
896
897 static int cqspi_set_protocol(struct spi_nor *nor, const int read)
898 {
899         struct cqspi_flash_pdata *f_pdata = nor->priv;
900
901         f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
902         f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
903         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
904
905         if (read) {
906                 switch (nor->read_proto) {
907                 case SNOR_PROTO_1_1_1:
908                         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
909                         break;
910                 case SNOR_PROTO_1_1_2:
911                         f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
912                         break;
913                 case SNOR_PROTO_1_1_4:
914                         f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
915                         break;
916                 case SNOR_PROTO_1_1_8:
917                         f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
918                         break;
919                 default:
920                         return -EINVAL;
921                 }
922         }
923
924         cqspi_configure(nor);
925
926         return 0;
927 }
928
929 static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
930                            size_t len, const u_char *buf)
931 {
932         struct cqspi_flash_pdata *f_pdata = nor->priv;
933         struct cqspi_st *cqspi = f_pdata->cqspi;
934         int ret;
935
936         ret = cqspi_set_protocol(nor, 0);
937         if (ret)
938                 return ret;
939
940         ret = cqspi_write_setup(nor);
941         if (ret)
942                 return ret;
943
944         if (f_pdata->use_direct_mode) {
945                 memcpy_toio(cqspi->ahb_base + to, buf, len);
946                 ret = cqspi_wait_idle(cqspi);
947         } else {
948                 ret = cqspi_indirect_write_execute(nor, to, buf, len);
949         }
950         if (ret)
951                 return ret;
952
953         return len;
954 }
955
956 static void cqspi_rx_dma_callback(void *param)
957 {
958         struct cqspi_st *cqspi = param;
959
960         complete(&cqspi->rx_dma_complete);
961 }
962
963 static int cqspi_direct_read_execute(struct spi_nor *nor, u_char *buf,
964                                      loff_t from, size_t len)
965 {
966         struct cqspi_flash_pdata *f_pdata = nor->priv;
967         struct cqspi_st *cqspi = f_pdata->cqspi;
968         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
969         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
970         int ret = 0;
971         struct dma_async_tx_descriptor *tx;
972         dma_cookie_t cookie;
973         dma_addr_t dma_dst;
974
975         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
976                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
977                 return 0;
978         }
979
980         dma_dst = dma_map_single(nor->dev, buf, len, DMA_FROM_DEVICE);
981         if (dma_mapping_error(nor->dev, dma_dst)) {
982                 dev_err(nor->dev, "dma mapping failed\n");
983                 return -ENOMEM;
984         }
985         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
986                                        len, flags);
987         if (!tx) {
988                 dev_err(nor->dev, "device_prep_dma_memcpy error\n");
989                 ret = -EIO;
990                 goto err_unmap;
991         }
992
993         tx->callback = cqspi_rx_dma_callback;
994         tx->callback_param = cqspi;
995         cookie = tx->tx_submit(tx);
996         reinit_completion(&cqspi->rx_dma_complete);
997
998         ret = dma_submit_error(cookie);
999         if (ret) {
1000                 dev_err(nor->dev, "dma_submit_error %d\n", cookie);
1001                 ret = -EIO;
1002                 goto err_unmap;
1003         }
1004
1005         dma_async_issue_pending(cqspi->rx_chan);
1006         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1007                                          msecs_to_jiffies(len))) {
1008                 dmaengine_terminate_sync(cqspi->rx_chan);
1009                 dev_err(nor->dev, "DMA wait_for_completion_timeout\n");
1010                 ret = -ETIMEDOUT;
1011                 goto err_unmap;
1012         }
1013
1014 err_unmap:
1015         dma_unmap_single(nor->dev, dma_dst, len, DMA_FROM_DEVICE);
1016
1017         return ret;
1018 }
1019
1020 static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
1021                           size_t len, u_char *buf)
1022 {
1023         struct cqspi_flash_pdata *f_pdata = nor->priv;
1024         int ret;
1025
1026         ret = cqspi_set_protocol(nor, 1);
1027         if (ret)
1028                 return ret;
1029
1030         ret = cqspi_read_setup(nor);
1031         if (ret)
1032                 return ret;
1033
1034         if (f_pdata->use_direct_mode)
1035                 ret = cqspi_direct_read_execute(nor, buf, from, len);
1036         else
1037                 ret = cqspi_indirect_read_execute(nor, buf, from, len);
1038         if (ret)
1039                 return ret;
1040
1041         return len;
1042 }
1043
1044 static int cqspi_erase(struct spi_nor *nor, loff_t offs)
1045 {
1046         int ret;
1047
1048         ret = cqspi_set_protocol(nor, 0);
1049         if (ret)
1050                 return ret;
1051
1052         /* Send write enable, then erase commands. */
1053         ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
1054         if (ret)
1055                 return ret;
1056
1057         /* Set up command buffer. */
1058         ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
1059         if (ret)
1060                 return ret;
1061
1062         return 0;
1063 }
1064
1065 static int cqspi_prep(struct spi_nor *nor)
1066 {
1067         struct cqspi_flash_pdata *f_pdata = nor->priv;
1068         struct cqspi_st *cqspi = f_pdata->cqspi;
1069
1070         mutex_lock(&cqspi->bus_mutex);
1071
1072         return 0;
1073 }
1074
1075 static void cqspi_unprep(struct spi_nor *nor)
1076 {
1077         struct cqspi_flash_pdata *f_pdata = nor->priv;
1078         struct cqspi_st *cqspi = f_pdata->cqspi;
1079
1080         mutex_unlock(&cqspi->bus_mutex);
1081 }
1082
1083 static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, size_t len)
1084 {
1085         int ret;
1086
1087         ret = cqspi_set_protocol(nor, 0);
1088         if (!ret)
1089                 ret = cqspi_command_read(nor, opcode, buf, len);
1090
1091         return ret;
1092 }
1093
1094 static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, const u8 *buf,
1095                            size_t len)
1096 {
1097         int ret;
1098
1099         ret = cqspi_set_protocol(nor, 0);
1100         if (!ret)
1101                 ret = cqspi_command_write(nor, opcode, buf, len);
1102
1103         return ret;
1104 }
1105
1106 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1107                                     struct cqspi_flash_pdata *f_pdata,
1108                                     struct device_node *np)
1109 {
1110         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1111                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1112                 return -ENXIO;
1113         }
1114
1115         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1116                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1117                 return -ENXIO;
1118         }
1119
1120         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1121                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1122                 return -ENXIO;
1123         }
1124
1125         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1126                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1127                 return -ENXIO;
1128         }
1129
1130         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1131                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1132                 return -ENXIO;
1133         }
1134
1135         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1136                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1137                 return -ENXIO;
1138         }
1139
1140         return 0;
1141 }
1142
1143 static int cqspi_of_get_pdata(struct platform_device *pdev)
1144 {
1145         struct device_node *np = pdev->dev.of_node;
1146         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1147
1148         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1149
1150         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1151                 dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
1152                 return -ENXIO;
1153         }
1154
1155         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1156                 dev_err(&pdev->dev, "couldn't determine fifo-width\n");
1157                 return -ENXIO;
1158         }
1159
1160         if (of_property_read_u32(np, "cdns,trigger-address",
1161                                  &cqspi->trigger_address)) {
1162                 dev_err(&pdev->dev, "couldn't determine trigger-address\n");
1163                 return -ENXIO;
1164         }
1165
1166         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1167
1168         return 0;
1169 }
1170
1171 static void cqspi_controller_init(struct cqspi_st *cqspi)
1172 {
1173         u32 reg;
1174
1175         cqspi_controller_enable(cqspi, 0);
1176
1177         /* Configure the remap address register, no remap */
1178         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1179
1180         /* Disable all interrupts. */
1181         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1182
1183         /* Configure the SRAM split to 1:1 . */
1184         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1185
1186         /* Load indirect trigger address. */
1187         writel(cqspi->trigger_address,
1188                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1189
1190         /* Program read watermark -- 1/2 of the FIFO. */
1191         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1192                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1193         /* Program write watermark -- 1/8 of the FIFO. */
1194         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1195                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1196
1197         /* Enable Direct Access Controller */
1198         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1199         reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1200         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1201
1202         cqspi_controller_enable(cqspi, 1);
1203 }
1204
1205 static void cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1206 {
1207         dma_cap_mask_t mask;
1208
1209         dma_cap_zero(mask);
1210         dma_cap_set(DMA_MEMCPY, mask);
1211
1212         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1213         if (IS_ERR(cqspi->rx_chan)) {
1214                 dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
1215                 cqspi->rx_chan = NULL;
1216         }
1217         init_completion(&cqspi->rx_dma_complete);
1218 }
1219
1220 static const struct spi_nor_controller_ops cqspi_controller_ops = {
1221         .prepare = cqspi_prep,
1222         .unprepare = cqspi_unprep,
1223         .read_reg = cqspi_read_reg,
1224         .write_reg = cqspi_write_reg,
1225         .read = cqspi_read,
1226         .write = cqspi_write,
1227         .erase = cqspi_erase,
1228 };
1229
1230 static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
1231 {
1232         struct platform_device *pdev = cqspi->pdev;
1233         struct device *dev = &pdev->dev;
1234         const struct cqspi_driver_platdata *ddata;
1235         struct spi_nor_hwcaps hwcaps;
1236         struct cqspi_flash_pdata *f_pdata;
1237         struct spi_nor *nor;
1238         struct mtd_info *mtd;
1239         unsigned int cs;
1240         int i, ret;
1241
1242         ddata = of_device_get_match_data(dev);
1243         if (!ddata) {
1244                 dev_err(dev, "Couldn't find driver data\n");
1245                 return -EINVAL;
1246         }
1247         hwcaps.mask = ddata->hwcaps_mask;
1248
1249         /* Get flash device data */
1250         for_each_available_child_of_node(dev->of_node, np) {
1251                 ret = of_property_read_u32(np, "reg", &cs);
1252                 if (ret) {
1253                         dev_err(dev, "Couldn't determine chip select.\n");
1254                         goto err;
1255                 }
1256
1257                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1258                         ret = -EINVAL;
1259                         dev_err(dev, "Chip select %d out of range.\n", cs);
1260                         goto err;
1261                 }
1262
1263                 f_pdata = &cqspi->f_pdata[cs];
1264                 f_pdata->cqspi = cqspi;
1265                 f_pdata->cs = cs;
1266
1267                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1268                 if (ret)
1269                         goto err;
1270
1271                 nor = &f_pdata->nor;
1272                 mtd = &nor->mtd;
1273
1274                 mtd->priv = nor;
1275
1276                 nor->dev = dev;
1277                 spi_nor_set_flash_node(nor, np);
1278                 nor->priv = f_pdata;
1279                 nor->controller_ops = &cqspi_controller_ops;
1280
1281                 mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
1282                                            dev_name(dev), cs);
1283                 if (!mtd->name) {
1284                         ret = -ENOMEM;
1285                         goto err;
1286                 }
1287
1288                 ret = spi_nor_scan(nor, NULL, &hwcaps);
1289                 if (ret)
1290                         goto err;
1291
1292                 ret = mtd_device_register(mtd, NULL, 0);
1293                 if (ret)
1294                         goto err;
1295
1296                 f_pdata->registered = true;
1297
1298                 if (mtd->size <= cqspi->ahb_size) {
1299                         f_pdata->use_direct_mode = true;
1300                         dev_dbg(nor->dev, "using direct mode for %s\n",
1301                                 mtd->name);
1302
1303                         if (!cqspi->rx_chan)
1304                                 cqspi_request_mmap_dma(cqspi);
1305                 }
1306         }
1307
1308         return 0;
1309
1310 err:
1311         for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1312                 if (cqspi->f_pdata[i].registered)
1313                         mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1314         return ret;
1315 }
1316
1317 static int cqspi_probe(struct platform_device *pdev)
1318 {
1319         struct device_node *np = pdev->dev.of_node;
1320         struct device *dev = &pdev->dev;
1321         struct cqspi_st *cqspi;
1322         struct resource *res;
1323         struct resource *res_ahb;
1324         struct reset_control *rstc, *rstc_ocp;
1325         const struct cqspi_driver_platdata *ddata;
1326         int ret;
1327         int irq;
1328
1329         cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
1330         if (!cqspi)
1331                 return -ENOMEM;
1332
1333         mutex_init(&cqspi->bus_mutex);
1334         cqspi->pdev = pdev;
1335         platform_set_drvdata(pdev, cqspi);
1336
1337         /* Obtain configuration from OF. */
1338         ret = cqspi_of_get_pdata(pdev);
1339         if (ret) {
1340                 dev_err(dev, "Cannot get mandatory OF data.\n");
1341                 return -ENODEV;
1342         }
1343
1344         /* Obtain QSPI clock. */
1345         cqspi->clk = devm_clk_get(dev, NULL);
1346         if (IS_ERR(cqspi->clk)) {
1347                 dev_err(dev, "Cannot claim QSPI clock.\n");
1348                 return PTR_ERR(cqspi->clk);
1349         }
1350
1351         /* Obtain and remap controller address. */
1352         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1353         cqspi->iobase = devm_ioremap_resource(dev, res);
1354         if (IS_ERR(cqspi->iobase)) {
1355                 dev_err(dev, "Cannot remap controller address.\n");
1356                 return PTR_ERR(cqspi->iobase);
1357         }
1358
1359         /* Obtain and remap AHB address. */
1360         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1361         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1362         if (IS_ERR(cqspi->ahb_base)) {
1363                 dev_err(dev, "Cannot remap AHB address.\n");
1364                 return PTR_ERR(cqspi->ahb_base);
1365         }
1366         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1367         cqspi->ahb_size = resource_size(res_ahb);
1368
1369         init_completion(&cqspi->transfer_complete);
1370
1371         /* Obtain IRQ line. */
1372         irq = platform_get_irq(pdev, 0);
1373         if (irq < 0)
1374                 return -ENXIO;
1375
1376         pm_runtime_enable(dev);
1377         ret = pm_runtime_get_sync(dev);
1378         if (ret < 0) {
1379                 pm_runtime_put_noidle(dev);
1380                 return ret;
1381         }
1382
1383         ret = clk_prepare_enable(cqspi->clk);
1384         if (ret) {
1385                 dev_err(dev, "Cannot enable QSPI clock.\n");
1386                 goto probe_clk_failed;
1387         }
1388
1389         /* Obtain QSPI reset control */
1390         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1391         if (IS_ERR(rstc)) {
1392                 dev_err(dev, "Cannot get QSPI reset.\n");
1393                 return PTR_ERR(rstc);
1394         }
1395
1396         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1397         if (IS_ERR(rstc_ocp)) {
1398                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1399                 return PTR_ERR(rstc_ocp);
1400         }
1401
1402         reset_control_assert(rstc);
1403         reset_control_deassert(rstc);
1404
1405         reset_control_assert(rstc_ocp);
1406         reset_control_deassert(rstc_ocp);
1407
1408         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1409         ddata  = of_device_get_match_data(dev);
1410         if (ddata && (ddata->quirks & CQSPI_NEEDS_WR_DELAY))
1411                 cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1412                                                    cqspi->master_ref_clk_hz);
1413
1414         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1415                                pdev->name, cqspi);
1416         if (ret) {
1417                 dev_err(dev, "Cannot request IRQ.\n");
1418                 goto probe_irq_failed;
1419         }
1420
1421         cqspi_wait_idle(cqspi);
1422         cqspi_controller_init(cqspi);
1423         cqspi->current_cs = -1;
1424         cqspi->sclk = 0;
1425
1426         ret = cqspi_setup_flash(cqspi, np);
1427         if (ret) {
1428                 dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
1429                 goto probe_setup_failed;
1430         }
1431
1432         return ret;
1433 probe_setup_failed:
1434         cqspi_controller_enable(cqspi, 0);
1435 probe_irq_failed:
1436         clk_disable_unprepare(cqspi->clk);
1437 probe_clk_failed:
1438         pm_runtime_put_sync(dev);
1439         pm_runtime_disable(dev);
1440         return ret;
1441 }
1442
1443 static int cqspi_remove(struct platform_device *pdev)
1444 {
1445         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1446         int i;
1447
1448         for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1449                 if (cqspi->f_pdata[i].registered)
1450                         mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1451
1452         cqspi_controller_enable(cqspi, 0);
1453
1454         if (cqspi->rx_chan)
1455                 dma_release_channel(cqspi->rx_chan);
1456
1457         clk_disable_unprepare(cqspi->clk);
1458
1459         pm_runtime_put_sync(&pdev->dev);
1460         pm_runtime_disable(&pdev->dev);
1461
1462         return 0;
1463 }
1464
1465 #ifdef CONFIG_PM_SLEEP
1466 static int cqspi_suspend(struct device *dev)
1467 {
1468         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1469
1470         cqspi_controller_enable(cqspi, 0);
1471         return 0;
1472 }
1473
1474 static int cqspi_resume(struct device *dev)
1475 {
1476         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1477
1478         cqspi_controller_enable(cqspi, 1);
1479         return 0;
1480 }
1481
1482 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1483         .suspend = cqspi_suspend,
1484         .resume = cqspi_resume,
1485 };
1486
1487 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1488 #else
1489 #define CQSPI_DEV_PM_OPS        NULL
1490 #endif
1491
1492 static const struct cqspi_driver_platdata cdns_qspi = {
1493         .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
1494 };
1495
1496 static const struct cqspi_driver_platdata k2g_qspi = {
1497         .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK,
1498         .quirks = CQSPI_NEEDS_WR_DELAY,
1499 };
1500
1501 static const struct cqspi_driver_platdata am654_ospi = {
1502         .hwcaps_mask = CQSPI_BASE_HWCAPS_MASK | SNOR_HWCAPS_READ_1_1_8,
1503         .quirks = CQSPI_NEEDS_WR_DELAY,
1504 };
1505
1506 static const struct of_device_id cqspi_dt_ids[] = {
1507         {
1508                 .compatible = "cdns,qspi-nor",
1509                 .data = &cdns_qspi,
1510         },
1511         {
1512                 .compatible = "ti,k2g-qspi",
1513                 .data = &k2g_qspi,
1514         },
1515         {
1516                 .compatible = "ti,am654-ospi",
1517                 .data = &am654_ospi,
1518         },
1519         { /* end of table */ }
1520 };
1521
1522 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1523
1524 static struct platform_driver cqspi_platform_driver = {
1525         .probe = cqspi_probe,
1526         .remove = cqspi_remove,
1527         .driver = {
1528                 .name = CQSPI_NAME,
1529                 .pm = CQSPI_DEV_PM_OPS,
1530                 .of_match_table = cqspi_dt_ids,
1531         },
1532 };
1533
1534 module_platform_driver(cqspi_platform_driver);
1535
1536 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1537 MODULE_LICENSE("GPL v2");
1538 MODULE_ALIAS("platform:" CQSPI_NAME);
1539 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1540 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");