Merge tag 'i3c/for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / nand_hynix.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017 Free Electrons
4  * Copyright (C) 2017 NextThing Co
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  */
8
9 #include <linux/sizes.h>
10 #include <linux/slab.h>
11
12 #include "internals.h"
13
14 #define NAND_HYNIX_CMD_SET_PARAMS       0x36
15 #define NAND_HYNIX_CMD_APPLY_PARAMS     0x16
16
17 #define NAND_HYNIX_1XNM_RR_REPEAT       8
18
19 /**
20  * struct hynix_read_retry - read-retry data
21  * @nregs: number of register to set when applying a new read-retry mode
22  * @regs: register offsets (NAND chip dependent)
23  * @values: array of values to set in registers. The array size is equal to
24  *          (nregs * nmodes)
25  */
26 struct hynix_read_retry {
27         int nregs;
28         const u8 *regs;
29         u8 values[];
30 };
31
32 /**
33  * struct hynix_nand - private Hynix NAND struct
34  * @read_retry: read-retry information
35  */
36 struct hynix_nand {
37         const struct hynix_read_retry *read_retry;
38 };
39
40 /**
41  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
42  *                               area
43  * @nregs: number of hynix private registers to set before reading the reading
44  *         the OTP area
45  * @regs: registers that should be configured
46  * @values: values that should be set in regs
47  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
48  *        chip
49  * @size: size of the read-retry OTP section
50  */
51 struct hynix_read_retry_otp {
52         int nregs;
53         const u8 *regs;
54         const u8 *values;
55         int page;
56         int size;
57 };
58
59 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
60 {
61         u8 jedecid[5] = { };
62         int ret;
63
64         ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
65         if (ret)
66                 return false;
67
68         return !strncmp("JEDEC", jedecid, sizeof(jedecid));
69 }
70
71 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
72 {
73         if (nand_has_exec_op(chip)) {
74                 struct nand_op_instr instrs[] = {
75                         NAND_OP_CMD(cmd, 0),
76                 };
77                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
78
79                 return nand_exec_op(chip, &op);
80         }
81
82         chip->legacy.cmdfunc(chip, cmd, -1, -1);
83
84         return 0;
85 }
86
87 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
88 {
89         u16 column = ((u16)addr << 8) | addr;
90
91         if (nand_has_exec_op(chip)) {
92                 struct nand_op_instr instrs[] = {
93                         NAND_OP_ADDR(1, &addr, 0),
94                         NAND_OP_8BIT_DATA_OUT(1, &val, 0),
95                 };
96                 struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
97
98                 return nand_exec_op(chip, &op);
99         }
100
101         chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
102         chip->legacy.write_byte(chip, val);
103
104         return 0;
105 }
106
107 static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
108 {
109         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
110         const u8 *values;
111         int i, ret;
112
113         values = hynix->read_retry->values +
114                  (retry_mode * hynix->read_retry->nregs);
115
116         /* Enter 'Set Hynix Parameters' mode */
117         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
118         if (ret)
119                 return ret;
120
121         /*
122          * Configure the NAND in the requested read-retry mode.
123          * This is done by setting pre-defined values in internal NAND
124          * registers.
125          *
126          * The set of registers is NAND specific, and the values are either
127          * predefined or extracted from an OTP area on the NAND (values are
128          * probably tweaked at production in this case).
129          */
130         for (i = 0; i < hynix->read_retry->nregs; i++) {
131                 ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
132                                               values[i]);
133                 if (ret)
134                         return ret;
135         }
136
137         /* Apply the new settings. */
138         return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
139 }
140
141 /**
142  * hynix_get_majority - get the value that is occurring the most in a given
143  *                      set of values
144  * @in: the array of values to test
145  * @repeat: the size of the in array
146  * @out: pointer used to store the output value
147  *
148  * This function implements the 'majority check' logic that is supposed to
149  * overcome the unreliability of MLC NANDs when reading the OTP area storing
150  * the read-retry parameters.
151  *
152  * It's based on a pretty simple assumption: if we repeat the same value
153  * several times and then take the one that is occurring the most, we should
154  * find the correct value.
155  * Let's hope this dummy algorithm prevents us from losing the read-retry
156  * parameters.
157  */
158 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
159 {
160         int i, j, half = repeat / 2;
161
162         /*
163          * We only test the first half of the in array because we must ensure
164          * that the value is at least occurring repeat / 2 times.
165          *
166          * This loop is suboptimal since we may count the occurrences of the
167          * same value several time, but we are doing that on small sets, which
168          * makes it acceptable.
169          */
170         for (i = 0; i < half; i++) {
171                 int cnt = 0;
172                 u8 val = in[i];
173
174                 /* Count all values that are matching the one at index i. */
175                 for (j = i + 1; j < repeat; j++) {
176                         if (in[j] == val)
177                                 cnt++;
178                 }
179
180                 /* We found a value occurring more than repeat / 2. */
181                 if (cnt > half) {
182                         *out = val;
183                         return 0;
184                 }
185         }
186
187         return -EIO;
188 }
189
190 static int hynix_read_rr_otp(struct nand_chip *chip,
191                              const struct hynix_read_retry_otp *info,
192                              void *buf)
193 {
194         int i, ret;
195
196         ret = nand_reset_op(chip);
197         if (ret)
198                 return ret;
199
200         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
201         if (ret)
202                 return ret;
203
204         for (i = 0; i < info->nregs; i++) {
205                 ret = hynix_nand_reg_write_op(chip, info->regs[i],
206                                               info->values[i]);
207                 if (ret)
208                         return ret;
209         }
210
211         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
212         if (ret)
213                 return ret;
214
215         /* Sequence to enter OTP mode? */
216         ret = hynix_nand_cmd_op(chip, 0x17);
217         if (ret)
218                 return ret;
219
220         ret = hynix_nand_cmd_op(chip, 0x4);
221         if (ret)
222                 return ret;
223
224         ret = hynix_nand_cmd_op(chip, 0x19);
225         if (ret)
226                 return ret;
227
228         /* Now read the page */
229         ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
230         if (ret)
231                 return ret;
232
233         /* Put everything back to normal */
234         ret = nand_reset_op(chip);
235         if (ret)
236                 return ret;
237
238         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
239         if (ret)
240                 return ret;
241
242         ret = hynix_nand_reg_write_op(chip, 0x38, 0);
243         if (ret)
244                 return ret;
245
246         ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
247         if (ret)
248                 return ret;
249
250         return nand_read_page_op(chip, 0, 0, NULL, 0);
251 }
252
253 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS                           0
254 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS                       8
255 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)            \
256         (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
257
258 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
259                                    int mode, int reg, bool inv, u8 *val)
260 {
261         u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
262         int val_offs = (mode * nregs) + reg;
263         int set_size = nmodes * nregs;
264         int i, ret;
265
266         for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
267                 int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
268
269                 tmp[i] = buf[val_offs + set_offs];
270         }
271
272         ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
273         if (ret)
274                 return ret;
275
276         if (inv)
277                 *val = ~*val;
278
279         return 0;
280 }
281
282 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
283         0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
284 };
285
286 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
287                                   const struct hynix_read_retry_otp *info)
288 {
289         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
290         struct hynix_read_retry *rr = NULL;
291         int ret, i, j;
292         u8 nregs, nmodes;
293         u8 *buf;
294
295         buf = kmalloc(info->size, GFP_KERNEL);
296         if (!buf)
297                 return -ENOMEM;
298
299         ret = hynix_read_rr_otp(chip, info, buf);
300         if (ret)
301                 goto out;
302
303         ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
304                                  &nmodes);
305         if (ret)
306                 goto out;
307
308         ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
309                                  NAND_HYNIX_1XNM_RR_REPEAT,
310                                  &nregs);
311         if (ret)
312                 goto out;
313
314         rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
315         if (!rr) {
316                 ret = -ENOMEM;
317                 goto out;
318         }
319
320         for (i = 0; i < nmodes; i++) {
321                 for (j = 0; j < nregs; j++) {
322                         u8 *val = rr->values + (i * nregs);
323
324                         ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
325                                                       false, val);
326                         if (!ret)
327                                 continue;
328
329                         ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
330                                                       true, val);
331                         if (ret)
332                                 goto out;
333                 }
334         }
335
336         rr->nregs = nregs;
337         rr->regs = hynix_1xnm_mlc_read_retry_regs;
338         hynix->read_retry = rr;
339         chip->ops.setup_read_retry = hynix_nand_setup_read_retry;
340         chip->read_retries = nmodes;
341
342 out:
343         kfree(buf);
344
345         if (ret)
346                 kfree(rr);
347
348         return ret;
349 }
350
351 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
352 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
353
354 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
355         {
356                 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
357                 .regs = hynix_mlc_1xnm_rr_otp_regs,
358                 .values = hynix_mlc_1xnm_rr_otp_values,
359                 .page = 0x21f,
360                 .size = 784
361         },
362         {
363                 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
364                 .regs = hynix_mlc_1xnm_rr_otp_regs,
365                 .values = hynix_mlc_1xnm_rr_otp_values,
366                 .page = 0x200,
367                 .size = 528,
368         },
369 };
370
371 static int hynix_nand_rr_init(struct nand_chip *chip)
372 {
373         int i, ret = 0;
374         bool valid_jedecid;
375
376         valid_jedecid = hynix_nand_has_valid_jedecid(chip);
377
378         /*
379          * We only support read-retry for 1xnm NANDs, and those NANDs all
380          * expose a valid JEDEC ID.
381          */
382         if (valid_jedecid) {
383                 u8 nand_tech = chip->id.data[5] >> 4;
384
385                 /* 1xnm technology */
386                 if (nand_tech == 4) {
387                         for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
388                              i++) {
389                                 /*
390                                  * FIXME: Hynix recommend to copy the
391                                  * read-retry OTP area into a normal page.
392                                  */
393                                 ret = hynix_mlc_1xnm_rr_init(chip,
394                                                 hynix_mlc_1xnm_rr_otps);
395                                 if (!ret)
396                                         break;
397                         }
398                 }
399         }
400
401         if (ret)
402                 pr_warn("failed to initialize read-retry infrastructure");
403
404         return 0;
405 }
406
407 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
408                                        bool valid_jedecid)
409 {
410         struct mtd_info *mtd = nand_to_mtd(chip);
411         struct nand_memory_organization *memorg;
412         u8 oobsize;
413
414         memorg = nanddev_get_memorg(&chip->base);
415
416         oobsize = ((chip->id.data[3] >> 2) & 0x3) |
417                   ((chip->id.data[3] >> 4) & 0x4);
418
419         if (valid_jedecid) {
420                 switch (oobsize) {
421                 case 0:
422                         memorg->oobsize = 2048;
423                         break;
424                 case 1:
425                         memorg->oobsize = 1664;
426                         break;
427                 case 2:
428                         memorg->oobsize = 1024;
429                         break;
430                 case 3:
431                         memorg->oobsize = 640;
432                         break;
433                 default:
434                         /*
435                          * We should never reach this case, but if that
436                          * happens, this probably means Hynix decided to use
437                          * a different extended ID format, and we should find
438                          * a way to support it.
439                          */
440                         WARN(1, "Invalid OOB size");
441                         break;
442                 }
443         } else {
444                 switch (oobsize) {
445                 case 0:
446                         memorg->oobsize = 128;
447                         break;
448                 case 1:
449                         memorg->oobsize = 224;
450                         break;
451                 case 2:
452                         memorg->oobsize = 448;
453                         break;
454                 case 3:
455                         memorg->oobsize = 64;
456                         break;
457                 case 4:
458                         memorg->oobsize = 32;
459                         break;
460                 case 5:
461                         memorg->oobsize = 16;
462                         break;
463                 case 6:
464                         memorg->oobsize = 640;
465                         break;
466                 default:
467                         /*
468                          * We should never reach this case, but if that
469                          * happens, this probably means Hynix decided to use
470                          * a different extended ID format, and we should find
471                          * a way to support it.
472                          */
473                         WARN(1, "Invalid OOB size");
474                         break;
475                 }
476
477                 /*
478                  * The datasheet of H27UCG8T2BTR mentions that the "Redundant
479                  * Area Size" is encoded "per 8KB" (page size). This chip uses
480                  * a page size of 16KiB. The datasheet mentions an OOB size of
481                  * 1.280 bytes, but the OOB size encoded in the ID bytes (using
482                  * the existing logic above) is 640 bytes.
483                  * Update the OOB size for this chip by taking the value
484                  * determined above and scaling it to the actual page size (so
485                  * the actual OOB size for this chip is: 640 * 16k / 8k).
486                  */
487                 if (chip->id.data[1] == 0xde)
488                         memorg->oobsize *= memorg->pagesize / SZ_8K;
489         }
490
491         mtd->oobsize = memorg->oobsize;
492 }
493
494 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
495                                                 bool valid_jedecid)
496 {
497         struct nand_device *base = &chip->base;
498         struct nand_ecc_props requirements = {};
499         u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
500
501         if (valid_jedecid) {
502                 /* Reference: H27UCG8T2E datasheet */
503                 requirements.step_size = 1024;
504
505                 switch (ecc_level) {
506                 case 0:
507                         requirements.step_size = 0;
508                         requirements.strength = 0;
509                         break;
510                 case 1:
511                         requirements.strength = 4;
512                         break;
513                 case 2:
514                         requirements.strength = 24;
515                         break;
516                 case 3:
517                         requirements.strength = 32;
518                         break;
519                 case 4:
520                         requirements.strength = 40;
521                         break;
522                 case 5:
523                         requirements.strength = 50;
524                         break;
525                 case 6:
526                         requirements.strength = 60;
527                         break;
528                 default:
529                         /*
530                          * We should never reach this case, but if that
531                          * happens, this probably means Hynix decided to use
532                          * a different extended ID format, and we should find
533                          * a way to support it.
534                          */
535                         WARN(1, "Invalid ECC requirements");
536                 }
537         } else {
538                 /*
539                  * The ECC requirements field meaning depends on the
540                  * NAND technology.
541                  */
542                 u8 nand_tech = chip->id.data[5] & 0x7;
543
544                 if (nand_tech < 3) {
545                         /* > 26nm, reference: H27UBG8T2A datasheet */
546                         if (ecc_level < 5) {
547                                 requirements.step_size = 512;
548                                 requirements.strength = 1 << ecc_level;
549                         } else if (ecc_level < 7) {
550                                 if (ecc_level == 5)
551                                         requirements.step_size = 2048;
552                                 else
553                                         requirements.step_size = 1024;
554                                 requirements.strength = 24;
555                         } else {
556                                 /*
557                                  * We should never reach this case, but if that
558                                  * happens, this probably means Hynix decided
559                                  * to use a different extended ID format, and
560                                  * we should find a way to support it.
561                                  */
562                                 WARN(1, "Invalid ECC requirements");
563                         }
564                 } else {
565                         /* <= 26nm, reference: H27UBG8T2B datasheet */
566                         if (!ecc_level) {
567                                 requirements.step_size = 0;
568                                 requirements.strength = 0;
569                         } else if (ecc_level < 5) {
570                                 requirements.step_size = 512;
571                                 requirements.strength = 1 << (ecc_level - 1);
572                         } else {
573                                 requirements.step_size = 1024;
574                                 requirements.strength = 24 +
575                                                         (8 * (ecc_level - 5));
576                         }
577                 }
578         }
579
580         nanddev_set_ecc_requirements(base, &requirements);
581 }
582
583 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
584                                                        bool valid_jedecid)
585 {
586         u8 nand_tech;
587
588         /* We need scrambling on all TLC NANDs*/
589         if (nanddev_bits_per_cell(&chip->base) > 2)
590                 chip->options |= NAND_NEED_SCRAMBLING;
591
592         /* And on MLC NANDs with sub-3xnm process */
593         if (valid_jedecid) {
594                 nand_tech = chip->id.data[5] >> 4;
595
596                 /* < 3xnm */
597                 if (nand_tech > 0)
598                         chip->options |= NAND_NEED_SCRAMBLING;
599         } else {
600                 nand_tech = chip->id.data[5] & 0x7;
601
602                 /* < 32nm */
603                 if (nand_tech > 2)
604                         chip->options |= NAND_NEED_SCRAMBLING;
605         }
606 }
607
608 static void hynix_nand_decode_id(struct nand_chip *chip)
609 {
610         struct mtd_info *mtd = nand_to_mtd(chip);
611         struct nand_memory_organization *memorg;
612         bool valid_jedecid;
613         u8 tmp;
614
615         memorg = nanddev_get_memorg(&chip->base);
616
617         /*
618          * Exclude all SLC NANDs from this advanced detection scheme.
619          * According to the ranges defined in several datasheets, it might
620          * appear that even SLC NANDs could fall in this extended ID scheme.
621          * If that the case rework the test to let SLC NANDs go through the
622          * detection process.
623          */
624         if (chip->id.len < 6 || nand_is_slc(chip)) {
625                 nand_decode_ext_id(chip);
626                 return;
627         }
628
629         /* Extract pagesize */
630         memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
631         mtd->writesize = memorg->pagesize;
632
633         tmp = (chip->id.data[3] >> 4) & 0x3;
634         /*
635          * When bit7 is set that means we start counting at 1MiB, otherwise
636          * we start counting at 128KiB and shift this value the content of
637          * ID[3][4:5].
638          * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
639          * this case the erasesize is set to 768KiB.
640          */
641         if (chip->id.data[3] & 0x80) {
642                 memorg->pages_per_eraseblock = (SZ_1M << tmp) /
643                                                memorg->pagesize;
644                 mtd->erasesize = SZ_1M << tmp;
645         } else if (tmp == 3) {
646                 memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
647                                                memorg->pagesize;
648                 mtd->erasesize = SZ_512K + SZ_256K;
649         } else {
650                 memorg->pages_per_eraseblock = (SZ_128K << tmp) /
651                                                memorg->pagesize;
652                 mtd->erasesize = SZ_128K << tmp;
653         }
654
655         /*
656          * Modern Toggle DDR NANDs have a valid JEDECID even though they are
657          * not exposing a valid JEDEC parameter table.
658          * These NANDs use a different NAND ID scheme.
659          */
660         valid_jedecid = hynix_nand_has_valid_jedecid(chip);
661
662         hynix_nand_extract_oobsize(chip, valid_jedecid);
663         hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
664         hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
665 }
666
667 static void hynix_nand_cleanup(struct nand_chip *chip)
668 {
669         struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
670
671         if (!hynix)
672                 return;
673
674         kfree(hynix->read_retry);
675         kfree(hynix);
676         nand_set_manufacturer_data(chip, NULL);
677 }
678
679 static int
680 h27ucg8t2atrbc_choose_interface_config(struct nand_chip *chip,
681                                        struct nand_interface_config *iface)
682 {
683         onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 4);
684
685         return nand_choose_best_sdr_timings(chip, iface, NULL);
686 }
687
688 static int h27ucg8t2etrbc_init(struct nand_chip *chip)
689 {
690         struct mtd_info *mtd = nand_to_mtd(chip);
691
692         chip->options |= NAND_NEED_SCRAMBLING;
693         mtd_set_pairing_scheme(mtd, &dist3_pairing_scheme);
694
695         return 0;
696 }
697
698 static int hynix_nand_init(struct nand_chip *chip)
699 {
700         struct hynix_nand *hynix;
701         int ret;
702
703         if (!nand_is_slc(chip))
704                 chip->options |= NAND_BBM_LASTPAGE;
705         else
706                 chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
707
708         hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
709         if (!hynix)
710                 return -ENOMEM;
711
712         nand_set_manufacturer_data(chip, hynix);
713
714         if (!strncmp("H27UCG8T2ATR-BC", chip->parameters.model,
715                      sizeof("H27UCG8T2ATR-BC") - 1))
716                 chip->ops.choose_interface_config =
717                         h27ucg8t2atrbc_choose_interface_config;
718
719         if (!strncmp("H27UCG8T2ETR-BC", chip->parameters.model,
720                      sizeof("H27UCG8T2ETR-BC") - 1))
721                 h27ucg8t2etrbc_init(chip);
722
723         ret = hynix_nand_rr_init(chip);
724         if (ret)
725                 hynix_nand_cleanup(chip);
726
727         return ret;
728 }
729
730 static void hynix_fixup_onfi_param_page(struct nand_chip *chip,
731                                         struct nand_onfi_params *p)
732 {
733         /*
734          * Certain chips might report a 0 on sdr_timing_mode field
735          * (bytes 129-130). This has been seen on H27U4G8F2GDA-BI.
736          * According to ONFI specification, bit 0 of this field "shall be 1".
737          * Forcibly set this bit.
738          */
739         p->sdr_timing_modes |= cpu_to_le16(BIT(0));
740 }
741
742 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
743         .detect = hynix_nand_decode_id,
744         .init = hynix_nand_init,
745         .cleanup = hynix_nand_cleanup,
746         .fixup_onfi_param_page = hynix_fixup_onfi_param_page,
747 };