Merge tag 'uml-for-linus-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / mxc_nand.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
4  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5  */
6
7 #include <linux/delay.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/mtd/mtd.h>
12 #include <linux/mtd/rawnand.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/interrupt.h>
15 #include <linux/device.h>
16 #include <linux/platform_device.h>
17 #include <linux/clk.h>
18 #include <linux/err.h>
19 #include <linux/io.h>
20 #include <linux/irq.h>
21 #include <linux/completion.h>
22 #include <linux/of.h>
23
24 #define DRIVER_NAME "mxc_nand"
25
26 /* Addresses for NFC registers */
27 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
28 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
29 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
30 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
31 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
32 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
33 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
34 #define NFC_V21_RSLTSPARE_AREA          (host->regs + 0x10)
35 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
36 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
37 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
38 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
39 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
40 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
41 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
42 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
43 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
44 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
45 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
46 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
47 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
48 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
49
50 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
51 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
52 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
53 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
54 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
55 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
56 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
57 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
58 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
59 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
60
61 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
62
63 /*
64  * Operation modes for the NFC. Valid for v1, v2 and v3
65  * type controllers.
66  */
67 #define NFC_CMD                         (1 << 0)
68 #define NFC_ADDR                        (1 << 1)
69 #define NFC_INPUT                       (1 << 2)
70 #define NFC_OUTPUT                      (1 << 3)
71 #define NFC_ID                          (1 << 4)
72 #define NFC_STATUS                      (1 << 5)
73
74 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
75 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
76
77 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
78 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
79 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
80
81 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
82
83 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
84
85 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
86 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
87 #define NFC_V3_WRPROT_LOCK              (1 << 1)
88 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
89 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
90
91 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
92
93 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
94 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
95 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
96 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
97 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
98 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
99 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
100 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
101 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
102 #define NFC_V3_CONFIG2_PPB(x, shift)            (((x) & 0x3) << shift)
103 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
104 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
105 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
106 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
107
108 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
109 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
110 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
111 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
112 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
113 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
114 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
115
116 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
117 #define NFC_V3_IPC_CREQ                 (1 << 0)
118 #define NFC_V3_IPC_INT                  (1 << 31)
119
120 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
121
122 struct mxc_nand_host;
123
124 struct mxc_nand_devtype_data {
125         void (*preset)(struct mtd_info *);
126         int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc,
127                          int page);
128         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
129         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
130         void (*send_page)(struct mtd_info *, unsigned int);
131         void (*send_read_id)(struct mxc_nand_host *);
132         uint16_t (*get_dev_status)(struct mxc_nand_host *);
133         int (*check_int)(struct mxc_nand_host *);
134         void (*irq_control)(struct mxc_nand_host *, int);
135         u32 (*get_ecc_status)(struct mxc_nand_host *);
136         const struct mtd_ooblayout_ops *ooblayout;
137         void (*select_chip)(struct nand_chip *chip, int cs);
138         int (*setup_interface)(struct nand_chip *chip, int csline,
139                                const struct nand_interface_config *conf);
140         void (*enable_hwecc)(struct nand_chip *chip, bool enable);
141
142         /*
143          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
144          * (CONFIG1:INT_MSK is set). To handle this the driver uses
145          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
146          */
147         int irqpending_quirk;
148         int needs_ip;
149
150         size_t regs_offset;
151         size_t spare0_offset;
152         size_t axi_offset;
153
154         int spare_len;
155         int eccbytes;
156         int eccsize;
157         int ppb_shift;
158 };
159
160 struct mxc_nand_host {
161         struct nand_chip        nand;
162         struct device           *dev;
163
164         void __iomem            *spare0;
165         void __iomem            *main_area0;
166
167         void __iomem            *base;
168         void __iomem            *regs;
169         void __iomem            *regs_axi;
170         void __iomem            *regs_ip;
171         int                     status_request;
172         struct clk              *clk;
173         int                     clk_act;
174         int                     irq;
175         int                     eccsize;
176         int                     used_oobsize;
177         int                     active_cs;
178
179         struct completion       op_completion;
180
181         uint8_t                 *data_buf;
182         unsigned int            buf_start;
183
184         const struct mxc_nand_devtype_data *devtype_data;
185 };
186
187 static const char * const part_probes[] = {
188         "cmdlinepart", "RedBoot", "ofpart", NULL };
189
190 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
191 {
192         int i;
193         u32 *t = trg;
194         const __iomem u32 *s = src;
195
196         for (i = 0; i < (size >> 2); i++)
197                 *t++ = __raw_readl(s++);
198 }
199
200 static void memcpy16_fromio(void *trg, const void __iomem  *src, size_t size)
201 {
202         int i;
203         u16 *t = trg;
204         const __iomem u16 *s = src;
205
206         /* We assume that src (IO) is always 32bit aligned */
207         if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
208                 memcpy32_fromio(trg, src, size);
209                 return;
210         }
211
212         for (i = 0; i < (size >> 1); i++)
213                 *t++ = __raw_readw(s++);
214 }
215
216 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
217 {
218         /* __iowrite32_copy use 32bit size values so divide by 4 */
219         __iowrite32_copy(trg, src, size / 4);
220 }
221
222 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
223 {
224         int i;
225         __iomem u16 *t = trg;
226         const u16 *s = src;
227
228         /* We assume that trg (IO) is always 32bit aligned */
229         if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
230                 memcpy32_toio(trg, src, size);
231                 return;
232         }
233
234         for (i = 0; i < (size >> 1); i++)
235                 __raw_writew(*s++, t++);
236 }
237
238 /*
239  * The controller splits a page into data chunks of 512 bytes + partial oob.
240  * There are writesize / 512 such chunks, the size of the partial oob parts is
241  * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
242  * contains additionally the byte lost by rounding (if any).
243  * This function handles the needed shuffling between host->data_buf (which
244  * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
245  * spare) and the NFC buffer.
246  */
247 static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf)
248 {
249         struct nand_chip *this = mtd_to_nand(mtd);
250         struct mxc_nand_host *host = nand_get_controller_data(this);
251         u16 i, oob_chunk_size;
252         u16 num_chunks = mtd->writesize / 512;
253
254         u8 *d = buf;
255         u8 __iomem *s = host->spare0;
256         u16 sparebuf_size = host->devtype_data->spare_len;
257
258         /* size of oob chunk for all but possibly the last one */
259         oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
260
261         if (bfrom) {
262                 for (i = 0; i < num_chunks - 1; i++)
263                         memcpy16_fromio(d + i * oob_chunk_size,
264                                         s + i * sparebuf_size,
265                                         oob_chunk_size);
266
267                 /* the last chunk */
268                 memcpy16_fromio(d + i * oob_chunk_size,
269                                 s + i * sparebuf_size,
270                                 host->used_oobsize - i * oob_chunk_size);
271         } else {
272                 for (i = 0; i < num_chunks - 1; i++)
273                         memcpy16_toio(&s[i * sparebuf_size],
274                                       &d[i * oob_chunk_size],
275                                       oob_chunk_size);
276
277                 /* the last chunk */
278                 memcpy16_toio(&s[i * sparebuf_size],
279                               &d[i * oob_chunk_size],
280                               host->used_oobsize - i * oob_chunk_size);
281         }
282 }
283
284 /*
285  * MXC NANDFC can only perform full page+spare or spare-only read/write.  When
286  * the upper layers perform a read/write buf operation, the saved column address
287  * is used to index into the full page. So usually this function is called with
288  * column == 0 (unless no column cycle is needed indicated by column == -1)
289  */
290 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
291 {
292         struct nand_chip *nand_chip = mtd_to_nand(mtd);
293         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
294
295         /* Write out column address, if necessary */
296         if (column != -1) {
297                 host->devtype_data->send_addr(host, column & 0xff,
298                                               page_addr == -1);
299                 if (mtd->writesize > 512)
300                         /* another col addr cycle for 2k page */
301                         host->devtype_data->send_addr(host,
302                                                       (column >> 8) & 0xff,
303                                                       false);
304         }
305
306         /* Write out page address, if necessary */
307         if (page_addr != -1) {
308                 /* paddr_0 - p_addr_7 */
309                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
310
311                 if (mtd->writesize > 512) {
312                         if (mtd->size >= 0x10000000) {
313                                 /* paddr_8 - paddr_15 */
314                                 host->devtype_data->send_addr(host,
315                                                 (page_addr >> 8) & 0xff,
316                                                 false);
317                                 host->devtype_data->send_addr(host,
318                                                 (page_addr >> 16) & 0xff,
319                                                 true);
320                         } else
321                                 /* paddr_8 - paddr_15 */
322                                 host->devtype_data->send_addr(host,
323                                                 (page_addr >> 8) & 0xff, true);
324                 } else {
325                         if (nand_chip->options & NAND_ROW_ADDR_3) {
326                                 /* paddr_8 - paddr_15 */
327                                 host->devtype_data->send_addr(host,
328                                                 (page_addr >> 8) & 0xff,
329                                                 false);
330                                 host->devtype_data->send_addr(host,
331                                                 (page_addr >> 16) & 0xff,
332                                                 true);
333                         } else
334                                 /* paddr_8 - paddr_15 */
335                                 host->devtype_data->send_addr(host,
336                                                 (page_addr >> 8) & 0xff, true);
337                 }
338         }
339 }
340
341 static int check_int_v3(struct mxc_nand_host *host)
342 {
343         uint32_t tmp;
344
345         tmp = readl(NFC_V3_IPC);
346         if (!(tmp & NFC_V3_IPC_INT))
347                 return 0;
348
349         tmp &= ~NFC_V3_IPC_INT;
350         writel(tmp, NFC_V3_IPC);
351
352         return 1;
353 }
354
355 static int check_int_v1_v2(struct mxc_nand_host *host)
356 {
357         uint32_t tmp;
358
359         tmp = readw(NFC_V1_V2_CONFIG2);
360         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
361                 return 0;
362
363         if (!host->devtype_data->irqpending_quirk)
364                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
365
366         return 1;
367 }
368
369 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
370 {
371         uint16_t tmp;
372
373         tmp = readw(NFC_V1_V2_CONFIG1);
374
375         if (activate)
376                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
377         else
378                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
379
380         writew(tmp, NFC_V1_V2_CONFIG1);
381 }
382
383 static void irq_control_v3(struct mxc_nand_host *host, int activate)
384 {
385         uint32_t tmp;
386
387         tmp = readl(NFC_V3_CONFIG2);
388
389         if (activate)
390                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
391         else
392                 tmp |= NFC_V3_CONFIG2_INT_MSK;
393
394         writel(tmp, NFC_V3_CONFIG2);
395 }
396
397 static void irq_control(struct mxc_nand_host *host, int activate)
398 {
399         if (host->devtype_data->irqpending_quirk) {
400                 if (activate)
401                         enable_irq(host->irq);
402                 else
403                         disable_irq_nosync(host->irq);
404         } else {
405                 host->devtype_data->irq_control(host, activate);
406         }
407 }
408
409 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
410 {
411         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
412 }
413
414 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
415 {
416         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
417 }
418
419 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
420 {
421         return readl(NFC_V3_ECC_STATUS_RESULT);
422 }
423
424 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
425 {
426         struct mxc_nand_host *host = dev_id;
427
428         if (!host->devtype_data->check_int(host))
429                 return IRQ_NONE;
430
431         irq_control(host, 0);
432
433         complete(&host->op_completion);
434
435         return IRQ_HANDLED;
436 }
437
438 /* This function polls the NANDFC to wait for the basic operation to
439  * complete by checking the INT bit of config2 register.
440  */
441 static int wait_op_done(struct mxc_nand_host *host, int useirq)
442 {
443         int ret = 0;
444
445         /*
446          * If operation is already complete, don't bother to setup an irq or a
447          * loop.
448          */
449         if (host->devtype_data->check_int(host))
450                 return 0;
451
452         if (useirq) {
453                 unsigned long timeout;
454
455                 reinit_completion(&host->op_completion);
456
457                 irq_control(host, 1);
458
459                 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
460                 if (!timeout && !host->devtype_data->check_int(host)) {
461                         dev_dbg(host->dev, "timeout waiting for irq\n");
462                         ret = -ETIMEDOUT;
463                 }
464         } else {
465                 int max_retries = 8000;
466                 int done;
467
468                 do {
469                         udelay(1);
470
471                         done = host->devtype_data->check_int(host);
472                         if (done)
473                                 break;
474
475                 } while (--max_retries);
476
477                 if (!done) {
478                         dev_dbg(host->dev, "timeout polling for completion\n");
479                         ret = -ETIMEDOUT;
480                 }
481         }
482
483         WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
484
485         return ret;
486 }
487
488 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
489 {
490         /* fill command */
491         writel(cmd, NFC_V3_FLASH_CMD);
492
493         /* send out command */
494         writel(NFC_CMD, NFC_V3_LAUNCH);
495
496         /* Wait for operation to complete */
497         wait_op_done(host, useirq);
498 }
499
500 /* This function issues the specified command to the NAND device and
501  * waits for completion. */
502 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
503 {
504         dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
505
506         writew(cmd, NFC_V1_V2_FLASH_CMD);
507         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
508
509         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
510                 int max_retries = 100;
511                 /* Reset completion is indicated by NFC_CONFIG2 */
512                 /* being set to 0 */
513                 while (max_retries-- > 0) {
514                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
515                                 break;
516                         }
517                         udelay(1);
518                 }
519                 if (max_retries < 0)
520                         dev_dbg(host->dev, "%s: RESET failed\n", __func__);
521         } else {
522                 /* Wait for operation to complete */
523                 wait_op_done(host, useirq);
524         }
525 }
526
527 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
528 {
529         /* fill address */
530         writel(addr, NFC_V3_FLASH_ADDR0);
531
532         /* send out address */
533         writel(NFC_ADDR, NFC_V3_LAUNCH);
534
535         wait_op_done(host, 0);
536 }
537
538 /* This function sends an address (or partial address) to the
539  * NAND device. The address is used to select the source/destination for
540  * a NAND command. */
541 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
542 {
543         dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast);
544
545         writew(addr, NFC_V1_V2_FLASH_ADDR);
546         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
547
548         /* Wait for operation to complete */
549         wait_op_done(host, islast);
550 }
551
552 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
553 {
554         struct nand_chip *nand_chip = mtd_to_nand(mtd);
555         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
556         uint32_t tmp;
557
558         tmp = readl(NFC_V3_CONFIG1);
559         tmp &= ~(7 << 4);
560         writel(tmp, NFC_V3_CONFIG1);
561
562         /* transfer data from NFC ram to nand */
563         writel(ops, NFC_V3_LAUNCH);
564
565         wait_op_done(host, false);
566 }
567
568 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
569 {
570         struct nand_chip *nand_chip = mtd_to_nand(mtd);
571         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
572
573         /* NANDFC buffer 0 is used for page read/write */
574         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
575
576         writew(ops, NFC_V1_V2_CONFIG2);
577
578         /* Wait for operation to complete */
579         wait_op_done(host, true);
580 }
581
582 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
583 {
584         struct nand_chip *nand_chip = mtd_to_nand(mtd);
585         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
586         int bufs, i;
587
588         if (mtd->writesize > 512)
589                 bufs = 4;
590         else
591                 bufs = 1;
592
593         for (i = 0; i < bufs; i++) {
594
595                 /* NANDFC buffer 0 is used for page read/write */
596                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
597
598                 writew(ops, NFC_V1_V2_CONFIG2);
599
600                 /* Wait for operation to complete */
601                 wait_op_done(host, true);
602         }
603 }
604
605 static void send_read_id_v3(struct mxc_nand_host *host)
606 {
607         /* Read ID into main buffer */
608         writel(NFC_ID, NFC_V3_LAUNCH);
609
610         wait_op_done(host, true);
611
612         memcpy32_fromio(host->data_buf, host->main_area0, 16);
613 }
614
615 /* Request the NANDFC to perform a read of the NAND device ID. */
616 static void send_read_id_v1_v2(struct mxc_nand_host *host)
617 {
618         /* NANDFC buffer 0 is used for device ID output */
619         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
620
621         writew(NFC_ID, NFC_V1_V2_CONFIG2);
622
623         /* Wait for operation to complete */
624         wait_op_done(host, true);
625
626         memcpy32_fromio(host->data_buf, host->main_area0, 16);
627 }
628
629 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
630 {
631         writew(NFC_STATUS, NFC_V3_LAUNCH);
632         wait_op_done(host, true);
633
634         return readl(NFC_V3_CONFIG1) >> 16;
635 }
636
637 /* This function requests the NANDFC to perform a read of the
638  * NAND device status and returns the current status. */
639 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
640 {
641         void __iomem *main_buf = host->main_area0;
642         uint32_t store;
643         uint16_t ret;
644
645         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
646
647         /*
648          * The device status is stored in main_area0. To
649          * prevent corruption of the buffer save the value
650          * and restore it afterwards.
651          */
652         store = readl(main_buf);
653
654         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
655         wait_op_done(host, true);
656
657         ret = readw(main_buf);
658
659         writel(store, main_buf);
660
661         return ret;
662 }
663
664 static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable)
665 {
666         struct mxc_nand_host *host = nand_get_controller_data(chip);
667         uint16_t config1;
668
669         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
670                 return;
671
672         config1 = readw(NFC_V1_V2_CONFIG1);
673
674         if (enable)
675                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
676         else
677                 config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN;
678
679         writew(config1, NFC_V1_V2_CONFIG1);
680 }
681
682 static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable)
683 {
684         struct mxc_nand_host *host = nand_get_controller_data(chip);
685         uint32_t config2;
686
687         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
688                 return;
689
690         config2 = readl(NFC_V3_CONFIG2);
691
692         if (enable)
693                 config2 |= NFC_V3_CONFIG2_ECC_EN;
694         else
695                 config2 &= ~NFC_V3_CONFIG2_ECC_EN;
696
697         writel(config2, NFC_V3_CONFIG2);
698 }
699
700 /* This functions is used by upper layer to checks if device is ready */
701 static int mxc_nand_dev_ready(struct nand_chip *chip)
702 {
703         /*
704          * NFC handles R/B internally. Therefore, this function
705          * always returns status as ready.
706          */
707         return 1;
708 }
709
710 static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob,
711                                  bool ecc, int page)
712 {
713         struct mtd_info *mtd = nand_to_mtd(chip);
714         struct mxc_nand_host *host = nand_get_controller_data(chip);
715         unsigned int bitflips_corrected = 0;
716         int no_subpages;
717         int i;
718
719         host->devtype_data->enable_hwecc(chip, ecc);
720
721         host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
722         mxc_do_addr_cycle(mtd, 0, page);
723
724         if (mtd->writesize > 512)
725                 host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true);
726
727         no_subpages = mtd->writesize >> 9;
728
729         for (i = 0; i < no_subpages; i++) {
730                 uint16_t ecc_stats;
731
732                 /* NANDFC buffer 0 is used for page read/write */
733                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
734
735                 writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2);
736
737                 /* Wait for operation to complete */
738                 wait_op_done(host, true);
739
740                 ecc_stats = get_ecc_status_v1(host);
741
742                 ecc_stats >>= 2;
743
744                 if (buf && ecc) {
745                         switch (ecc_stats & 0x3) {
746                         case 0:
747                         default:
748                                 break;
749                         case 1:
750                                 mtd->ecc_stats.corrected++;
751                                 bitflips_corrected = 1;
752                                 break;
753                         case 2:
754                                 mtd->ecc_stats.failed++;
755                                 break;
756                         }
757                 }
758         }
759
760         if (buf)
761                 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
762         if (oob)
763                 copy_spare(mtd, true, oob);
764
765         return bitflips_corrected;
766 }
767
768 static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf,
769                                     void *oob, bool ecc, int page)
770 {
771         struct mtd_info *mtd = nand_to_mtd(chip);
772         struct mxc_nand_host *host = nand_get_controller_data(chip);
773         unsigned int max_bitflips = 0;
774         u32 ecc_stat, err;
775         int no_subpages;
776         u8 ecc_bit_mask, err_limit;
777
778         host->devtype_data->enable_hwecc(chip, ecc);
779
780         host->devtype_data->send_cmd(host, NAND_CMD_READ0, false);
781         mxc_do_addr_cycle(mtd, 0, page);
782
783         if (mtd->writesize > 512)
784                 host->devtype_data->send_cmd(host,
785                                 NAND_CMD_READSTART, true);
786
787         host->devtype_data->send_page(mtd, NFC_OUTPUT);
788
789         if (buf)
790                 memcpy32_fromio(buf, host->main_area0, mtd->writesize);
791         if (oob)
792                 copy_spare(mtd, true, oob);
793
794         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
795         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
796
797         no_subpages = mtd->writesize >> 9;
798
799         ecc_stat = host->devtype_data->get_ecc_status(host);
800
801         do {
802                 err = ecc_stat & ecc_bit_mask;
803                 if (err > err_limit) {
804                         mtd->ecc_stats.failed++;
805                 } else {
806                         mtd->ecc_stats.corrected += err;
807                         max_bitflips = max_t(unsigned int, max_bitflips, err);
808                 }
809
810                 ecc_stat >>= 4;
811         } while (--no_subpages);
812
813         return max_bitflips;
814 }
815
816 static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf,
817                               int oob_required, int page)
818 {
819         struct mxc_nand_host *host = nand_get_controller_data(chip);
820         void *oob_buf;
821
822         if (oob_required)
823                 oob_buf = chip->oob_poi;
824         else
825                 oob_buf = NULL;
826
827         return host->devtype_data->read_page(chip, buf, oob_buf, 1, page);
828 }
829
830 static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
831                                   int oob_required, int page)
832 {
833         struct mxc_nand_host *host = nand_get_controller_data(chip);
834         void *oob_buf;
835
836         if (oob_required)
837                 oob_buf = chip->oob_poi;
838         else
839                 oob_buf = NULL;
840
841         return host->devtype_data->read_page(chip, buf, oob_buf, 0, page);
842 }
843
844 static int mxc_nand_read_oob(struct nand_chip *chip, int page)
845 {
846         struct mxc_nand_host *host = nand_get_controller_data(chip);
847
848         return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0,
849                                              page);
850 }
851
852 static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf,
853                                bool ecc, int page)
854 {
855         struct mtd_info *mtd = nand_to_mtd(chip);
856         struct mxc_nand_host *host = nand_get_controller_data(chip);
857
858         host->devtype_data->enable_hwecc(chip, ecc);
859
860         host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false);
861         mxc_do_addr_cycle(mtd, 0, page);
862
863         memcpy32_toio(host->main_area0, buf, mtd->writesize);
864         copy_spare(mtd, false, chip->oob_poi);
865
866         host->devtype_data->send_page(mtd, NFC_INPUT);
867         host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true);
868         mxc_do_addr_cycle(mtd, 0, page);
869
870         return 0;
871 }
872
873 static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf,
874                                    int oob_required, int page)
875 {
876         return mxc_nand_write_page(chip, buf, true, page);
877 }
878
879 static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
880                                    int oob_required, int page)
881 {
882         return mxc_nand_write_page(chip, buf, false, page);
883 }
884
885 static int mxc_nand_write_oob(struct nand_chip *chip, int page)
886 {
887         struct mtd_info *mtd = nand_to_mtd(chip);
888         struct mxc_nand_host *host = nand_get_controller_data(chip);
889
890         memset(host->data_buf, 0xff, mtd->writesize);
891
892         return mxc_nand_write_page(chip, host->data_buf, false, page);
893 }
894
895 static u_char mxc_nand_read_byte(struct nand_chip *nand_chip)
896 {
897         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
898         uint8_t ret;
899
900         /* Check for status request */
901         if (host->status_request)
902                 return host->devtype_data->get_dev_status(host) & 0xFF;
903
904         if (nand_chip->options & NAND_BUSWIDTH_16) {
905                 /* only take the lower byte of each word */
906                 ret = *(uint16_t *)(host->data_buf + host->buf_start);
907
908                 host->buf_start += 2;
909         } else {
910                 ret = *(uint8_t *)(host->data_buf + host->buf_start);
911                 host->buf_start++;
912         }
913
914         dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
915         return ret;
916 }
917
918 /* Write data of length len to buffer buf. The data to be
919  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
920  * Operation by the NFC, the data is written to NAND Flash */
921 static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf,
922                                int len)
923 {
924         struct mtd_info *mtd = nand_to_mtd(nand_chip);
925         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
926         u16 col = host->buf_start;
927         int n = mtd->oobsize + mtd->writesize - col;
928
929         n = min(n, len);
930
931         memcpy(host->data_buf + col, buf, n);
932
933         host->buf_start += n;
934 }
935
936 /* Read the data buffer from the NAND Flash. To read the data from NAND
937  * Flash first the data output cycle is initiated by the NFC, which copies
938  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
939  */
940 static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf,
941                               int len)
942 {
943         struct mtd_info *mtd = nand_to_mtd(nand_chip);
944         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
945         u16 col = host->buf_start;
946         int n = mtd->oobsize + mtd->writesize - col;
947
948         n = min(n, len);
949
950         memcpy(buf, host->data_buf + col, n);
951
952         host->buf_start += n;
953 }
954
955 /* This function is used by upper layer for select and
956  * deselect of the NAND chip */
957 static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip)
958 {
959         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
960
961         if (chip == -1) {
962                 /* Disable the NFC clock */
963                 if (host->clk_act) {
964                         clk_disable_unprepare(host->clk);
965                         host->clk_act = 0;
966                 }
967                 return;
968         }
969
970         if (!host->clk_act) {
971                 /* Enable the NFC clock */
972                 clk_prepare_enable(host->clk);
973                 host->clk_act = 1;
974         }
975 }
976
977 static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip)
978 {
979         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
980
981         if (chip == -1) {
982                 /* Disable the NFC clock */
983                 if (host->clk_act) {
984                         clk_disable_unprepare(host->clk);
985                         host->clk_act = 0;
986                 }
987                 return;
988         }
989
990         if (!host->clk_act) {
991                 /* Enable the NFC clock */
992                 clk_prepare_enable(host->clk);
993                 host->clk_act = 1;
994         }
995
996         host->active_cs = chip;
997         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
998 }
999
1000 #define MXC_V1_ECCBYTES         5
1001
1002 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
1003                                 struct mtd_oob_region *oobregion)
1004 {
1005         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1006
1007         if (section >= nand_chip->ecc.steps)
1008                 return -ERANGE;
1009
1010         oobregion->offset = (section * 16) + 6;
1011         oobregion->length = MXC_V1_ECCBYTES;
1012
1013         return 0;
1014 }
1015
1016 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
1017                                  struct mtd_oob_region *oobregion)
1018 {
1019         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1020
1021         if (section > nand_chip->ecc.steps)
1022                 return -ERANGE;
1023
1024         if (!section) {
1025                 if (mtd->writesize <= 512) {
1026                         oobregion->offset = 0;
1027                         oobregion->length = 5;
1028                 } else {
1029                         oobregion->offset = 2;
1030                         oobregion->length = 4;
1031                 }
1032         } else {
1033                 oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6;
1034                 if (section < nand_chip->ecc.steps)
1035                         oobregion->length = (section * 16) + 6 -
1036                                             oobregion->offset;
1037                 else
1038                         oobregion->length = mtd->oobsize - oobregion->offset;
1039         }
1040
1041         return 0;
1042 }
1043
1044 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
1045         .ecc = mxc_v1_ooblayout_ecc,
1046         .free = mxc_v1_ooblayout_free,
1047 };
1048
1049 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
1050                                 struct mtd_oob_region *oobregion)
1051 {
1052         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1053         int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1054
1055         if (section >= nand_chip->ecc.steps)
1056                 return -ERANGE;
1057
1058         oobregion->offset = (section * stepsize) + 7;
1059         oobregion->length = nand_chip->ecc.bytes;
1060
1061         return 0;
1062 }
1063
1064 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
1065                                  struct mtd_oob_region *oobregion)
1066 {
1067         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1068         int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
1069
1070         if (section >= nand_chip->ecc.steps)
1071                 return -ERANGE;
1072
1073         if (!section) {
1074                 if (mtd->writesize <= 512) {
1075                         oobregion->offset = 0;
1076                         oobregion->length = 5;
1077                 } else {
1078                         oobregion->offset = 2;
1079                         oobregion->length = 4;
1080                 }
1081         } else {
1082                 oobregion->offset = section * stepsize;
1083                 oobregion->length = 7;
1084         }
1085
1086         return 0;
1087 }
1088
1089 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
1090         .ecc = mxc_v2_ooblayout_ecc,
1091         .free = mxc_v2_ooblayout_free,
1092 };
1093
1094 /*
1095  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
1096  * on how much oob the nand chip has. For 8bit ecc we need at least
1097  * 26 bytes of oob data per 512 byte block.
1098  */
1099 static int get_eccsize(struct mtd_info *mtd)
1100 {
1101         int oobbytes_per_512 = 0;
1102
1103         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
1104
1105         if (oobbytes_per_512 < 26)
1106                 return 4;
1107         else
1108                 return 8;
1109 }
1110
1111 static void preset_v1(struct mtd_info *mtd)
1112 {
1113         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1114         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1115         uint16_t config1 = 0;
1116
1117         if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST &&
1118             mtd->writesize)
1119                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1120
1121         if (!host->devtype_data->irqpending_quirk)
1122                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1123
1124         host->eccsize = 1;
1125
1126         writew(config1, NFC_V1_V2_CONFIG1);
1127         /* preset operation */
1128
1129         /* Unlock the internal RAM Buffer */
1130         writew(0x2, NFC_V1_V2_CONFIG);
1131
1132         /* Blocks to be unlocked */
1133         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1134         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1135
1136         /* Unlock Block Command for given address range */
1137         writew(0x4, NFC_V1_V2_WRPROT);
1138 }
1139
1140 static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline,
1141                                        const struct nand_interface_config *conf)
1142 {
1143         struct mxc_nand_host *host = nand_get_controller_data(chip);
1144         int tRC_min_ns, tRC_ps, ret;
1145         unsigned long rate, rate_round;
1146         const struct nand_sdr_timings *timings;
1147         u16 config1;
1148
1149         timings = nand_get_sdr_timings(conf);
1150         if (IS_ERR(timings))
1151                 return -ENOTSUPP;
1152
1153         config1 = readw(NFC_V1_V2_CONFIG1);
1154
1155         tRC_min_ns = timings->tRC_min / 1000;
1156         rate = 1000000000 / tRC_min_ns;
1157
1158         /*
1159          * For tRC < 30ns we have to use EDO mode. In this case the controller
1160          * does one access per clock cycle. Otherwise the controller does one
1161          * access in two clock cycles, thus we have to double the rate to the
1162          * controller.
1163          */
1164         if (tRC_min_ns < 30) {
1165                 rate_round = clk_round_rate(host->clk, rate);
1166                 config1 |= NFC_V2_CONFIG1_ONE_CYCLE;
1167                 tRC_ps = 1000000000 / (rate_round / 1000);
1168         } else {
1169                 rate *= 2;
1170                 rate_round = clk_round_rate(host->clk, rate);
1171                 config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE;
1172                 tRC_ps = 1000000000 / (rate_round / 1000 / 2);
1173         }
1174
1175         /*
1176          * The timing values compared against are from the i.MX25 Automotive
1177          * datasheet, Table 50. NFC Timing Parameters
1178          */
1179         if (timings->tCLS_min > tRC_ps - 1000 ||
1180             timings->tCLH_min > tRC_ps - 2000 ||
1181             timings->tCS_min > tRC_ps - 1000 ||
1182             timings->tCH_min > tRC_ps - 2000 ||
1183             timings->tWP_min > tRC_ps - 1500 ||
1184             timings->tALS_min > tRC_ps ||
1185             timings->tALH_min > tRC_ps - 3000 ||
1186             timings->tDS_min > tRC_ps ||
1187             timings->tDH_min > tRC_ps - 5000 ||
1188             timings->tWC_min > 2 * tRC_ps ||
1189             timings->tWH_min > tRC_ps - 2500 ||
1190             timings->tRR_min > 6 * tRC_ps ||
1191             timings->tRP_min > 3 * tRC_ps / 2 ||
1192             timings->tRC_min > 2 * tRC_ps ||
1193             timings->tREH_min > (tRC_ps / 2) - 2500) {
1194                 dev_dbg(host->dev, "Timing out of bounds\n");
1195                 return -EINVAL;
1196         }
1197
1198         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1199                 return 0;
1200
1201         ret = clk_set_rate(host->clk, rate);
1202         if (ret)
1203                 return ret;
1204
1205         writew(config1, NFC_V1_V2_CONFIG1);
1206
1207         dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round,
1208                 config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" :
1209                 "normal");
1210
1211         return 0;
1212 }
1213
1214 static void preset_v2(struct mtd_info *mtd)
1215 {
1216         struct nand_chip *nand_chip = mtd_to_nand(mtd);
1217         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1218         uint16_t config1 = 0;
1219
1220         config1 |= NFC_V2_CONFIG1_FP_INT;
1221
1222         if (!host->devtype_data->irqpending_quirk)
1223                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1224
1225         if (mtd->writesize) {
1226                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1227
1228                 if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1229                         config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1230
1231                 host->eccsize = get_eccsize(mtd);
1232                 if (host->eccsize == 4)
1233                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1234
1235                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1236         } else {
1237                 host->eccsize = 1;
1238         }
1239
1240         writew(config1, NFC_V1_V2_CONFIG1);
1241         /* preset operation */
1242
1243         /* spare area size in 16-bit half-words */
1244         writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA);
1245
1246         /* Unlock the internal RAM Buffer */
1247         writew(0x2, NFC_V1_V2_CONFIG);
1248
1249         /* Blocks to be unlocked */
1250         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1251         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1252         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1253         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1254         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1255         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1256         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1257         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1258
1259         /* Unlock Block Command for given address range */
1260         writew(0x4, NFC_V1_V2_WRPROT);
1261 }
1262
1263 static void preset_v3(struct mtd_info *mtd)
1264 {
1265         struct nand_chip *chip = mtd_to_nand(mtd);
1266         struct mxc_nand_host *host = nand_get_controller_data(chip);
1267         uint32_t config2, config3;
1268         int i, addr_phases;
1269
1270         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1271         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1272
1273         /* Unlock the internal RAM Buffer */
1274         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1275                         NFC_V3_WRPROT);
1276
1277         /* Blocks to be unlocked */
1278         for (i = 0; i < NAND_MAX_CHIPS; i++)
1279                 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1280
1281         writel(0, NFC_V3_IPC);
1282
1283         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1284                 NFC_V3_CONFIG2_2CMD_PHASES |
1285                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1286                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1287                 NFC_V3_CONFIG2_INT_MSK |
1288                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1289
1290         addr_phases = fls(chip->pagemask) >> 3;
1291
1292         if (mtd->writesize == 2048) {
1293                 config2 |= NFC_V3_CONFIG2_PS_2048;
1294                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1295         } else if (mtd->writesize == 4096) {
1296                 config2 |= NFC_V3_CONFIG2_PS_4096;
1297                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1298         } else {
1299                 config2 |= NFC_V3_CONFIG2_PS_512;
1300                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1301         }
1302
1303         if (mtd->writesize) {
1304                 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST)
1305                         config2 |= NFC_V3_CONFIG2_ECC_EN;
1306
1307                 config2 |= NFC_V3_CONFIG2_PPB(
1308                                 ffs(mtd->erasesize / mtd->writesize) - 6,
1309                                 host->devtype_data->ppb_shift);
1310                 host->eccsize = get_eccsize(mtd);
1311                 if (host->eccsize == 8)
1312                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1313         }
1314
1315         writel(config2, NFC_V3_CONFIG2);
1316
1317         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1318                         NFC_V3_CONFIG3_NO_SDMA |
1319                         NFC_V3_CONFIG3_RBB_MODE |
1320                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1321                         NFC_V3_CONFIG3_ADD_OP(0);
1322
1323         if (!(chip->options & NAND_BUSWIDTH_16))
1324                 config3 |= NFC_V3_CONFIG3_FW8;
1325
1326         writel(config3, NFC_V3_CONFIG3);
1327
1328         writel(0, NFC_V3_DELAY_LINE);
1329 }
1330
1331 /* Used by the upper layer to write command to NAND Flash for
1332  * different operations to be carried out on NAND Flash */
1333 static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command,
1334                              int column, int page_addr)
1335 {
1336         struct mtd_info *mtd = nand_to_mtd(nand_chip);
1337         struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1338
1339         dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1340               command, column, page_addr);
1341
1342         /* Reset command state information */
1343         host->status_request = false;
1344
1345         /* Command pre-processing step */
1346         switch (command) {
1347         case NAND_CMD_RESET:
1348                 host->devtype_data->preset(mtd);
1349                 host->devtype_data->send_cmd(host, command, false);
1350                 break;
1351
1352         case NAND_CMD_STATUS:
1353                 host->buf_start = 0;
1354                 host->status_request = true;
1355
1356                 host->devtype_data->send_cmd(host, command, true);
1357                 WARN_ONCE(column != -1 || page_addr != -1,
1358                           "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1359                           command, column, page_addr);
1360                 mxc_do_addr_cycle(mtd, column, page_addr);
1361                 break;
1362
1363         case NAND_CMD_READID:
1364                 host->devtype_data->send_cmd(host, command, true);
1365                 mxc_do_addr_cycle(mtd, column, page_addr);
1366                 host->devtype_data->send_read_id(host);
1367                 host->buf_start = 0;
1368                 break;
1369
1370         case NAND_CMD_ERASE1:
1371         case NAND_CMD_ERASE2:
1372                 host->devtype_data->send_cmd(host, command, false);
1373                 WARN_ONCE(column != -1,
1374                           "Unexpected column value (cmd=%u, col=%d)\n",
1375                           command, column);
1376                 mxc_do_addr_cycle(mtd, column, page_addr);
1377
1378                 break;
1379         case NAND_CMD_PARAM:
1380                 host->devtype_data->send_cmd(host, command, false);
1381                 mxc_do_addr_cycle(mtd, column, page_addr);
1382                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1383                 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1384                 host->buf_start = 0;
1385                 break;
1386         default:
1387                 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1388                           command);
1389                 break;
1390         }
1391 }
1392
1393 static int mxc_nand_set_features(struct nand_chip *chip, int addr,
1394                                  u8 *subfeature_param)
1395 {
1396         struct mtd_info *mtd = nand_to_mtd(chip);
1397         struct mxc_nand_host *host = nand_get_controller_data(chip);
1398         int i;
1399
1400         host->buf_start = 0;
1401
1402         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1403                 chip->legacy.write_byte(chip, subfeature_param[i]);
1404
1405         memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1406         host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false);
1407         mxc_do_addr_cycle(mtd, addr, -1);
1408         host->devtype_data->send_page(mtd, NFC_INPUT);
1409
1410         return 0;
1411 }
1412
1413 static int mxc_nand_get_features(struct nand_chip *chip, int addr,
1414                                  u8 *subfeature_param)
1415 {
1416         struct mtd_info *mtd = nand_to_mtd(chip);
1417         struct mxc_nand_host *host = nand_get_controller_data(chip);
1418         int i;
1419
1420         host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false);
1421         mxc_do_addr_cycle(mtd, addr, -1);
1422         host->devtype_data->send_page(mtd, NFC_OUTPUT);
1423         memcpy32_fromio(host->data_buf, host->main_area0, 512);
1424         host->buf_start = 0;
1425
1426         for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
1427                 *subfeature_param++ = chip->legacy.read_byte(chip);
1428
1429         return 0;
1430 }
1431
1432 /*
1433  * The generic flash bbt descriptors overlap with our ecc
1434  * hardware, so define some i.MX specific ones.
1435  */
1436 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1437 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1438
1439 static struct nand_bbt_descr bbt_main_descr = {
1440         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1441             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1442         .offs = 0,
1443         .len = 4,
1444         .veroffs = 4,
1445         .maxblocks = 4,
1446         .pattern = bbt_pattern,
1447 };
1448
1449 static struct nand_bbt_descr bbt_mirror_descr = {
1450         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1451             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1452         .offs = 0,
1453         .len = 4,
1454         .veroffs = 4,
1455         .maxblocks = 4,
1456         .pattern = mirror_pattern,
1457 };
1458
1459 /* v1 + irqpending_quirk: i.MX21 */
1460 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1461         .preset = preset_v1,
1462         .read_page = mxc_nand_read_page_v1,
1463         .send_cmd = send_cmd_v1_v2,
1464         .send_addr = send_addr_v1_v2,
1465         .send_page = send_page_v1,
1466         .send_read_id = send_read_id_v1_v2,
1467         .get_dev_status = get_dev_status_v1_v2,
1468         .check_int = check_int_v1_v2,
1469         .irq_control = irq_control_v1_v2,
1470         .get_ecc_status = get_ecc_status_v1,
1471         .ooblayout = &mxc_v1_ooblayout_ops,
1472         .select_chip = mxc_nand_select_chip_v1_v3,
1473         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1474         .irqpending_quirk = 1,
1475         .needs_ip = 0,
1476         .regs_offset = 0xe00,
1477         .spare0_offset = 0x800,
1478         .spare_len = 16,
1479         .eccbytes = 3,
1480         .eccsize = 1,
1481 };
1482
1483 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1484 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1485         .preset = preset_v1,
1486         .read_page = mxc_nand_read_page_v1,
1487         .send_cmd = send_cmd_v1_v2,
1488         .send_addr = send_addr_v1_v2,
1489         .send_page = send_page_v1,
1490         .send_read_id = send_read_id_v1_v2,
1491         .get_dev_status = get_dev_status_v1_v2,
1492         .check_int = check_int_v1_v2,
1493         .irq_control = irq_control_v1_v2,
1494         .get_ecc_status = get_ecc_status_v1,
1495         .ooblayout = &mxc_v1_ooblayout_ops,
1496         .select_chip = mxc_nand_select_chip_v1_v3,
1497         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1498         .irqpending_quirk = 0,
1499         .needs_ip = 0,
1500         .regs_offset = 0xe00,
1501         .spare0_offset = 0x800,
1502         .axi_offset = 0,
1503         .spare_len = 16,
1504         .eccbytes = 3,
1505         .eccsize = 1,
1506 };
1507
1508 /* v21: i.MX25, i.MX35 */
1509 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1510         .preset = preset_v2,
1511         .read_page = mxc_nand_read_page_v2_v3,
1512         .send_cmd = send_cmd_v1_v2,
1513         .send_addr = send_addr_v1_v2,
1514         .send_page = send_page_v2,
1515         .send_read_id = send_read_id_v1_v2,
1516         .get_dev_status = get_dev_status_v1_v2,
1517         .check_int = check_int_v1_v2,
1518         .irq_control = irq_control_v1_v2,
1519         .get_ecc_status = get_ecc_status_v2,
1520         .ooblayout = &mxc_v2_ooblayout_ops,
1521         .select_chip = mxc_nand_select_chip_v2,
1522         .setup_interface = mxc_nand_v2_setup_interface,
1523         .enable_hwecc = mxc_nand_enable_hwecc_v1_v2,
1524         .irqpending_quirk = 0,
1525         .needs_ip = 0,
1526         .regs_offset = 0x1e00,
1527         .spare0_offset = 0x1000,
1528         .axi_offset = 0,
1529         .spare_len = 64,
1530         .eccbytes = 9,
1531         .eccsize = 0,
1532 };
1533
1534 /* v3.2a: i.MX51 */
1535 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1536         .preset = preset_v3,
1537         .read_page = mxc_nand_read_page_v2_v3,
1538         .send_cmd = send_cmd_v3,
1539         .send_addr = send_addr_v3,
1540         .send_page = send_page_v3,
1541         .send_read_id = send_read_id_v3,
1542         .get_dev_status = get_dev_status_v3,
1543         .check_int = check_int_v3,
1544         .irq_control = irq_control_v3,
1545         .get_ecc_status = get_ecc_status_v3,
1546         .ooblayout = &mxc_v2_ooblayout_ops,
1547         .select_chip = mxc_nand_select_chip_v1_v3,
1548         .enable_hwecc = mxc_nand_enable_hwecc_v3,
1549         .irqpending_quirk = 0,
1550         .needs_ip = 1,
1551         .regs_offset = 0,
1552         .spare0_offset = 0x1000,
1553         .axi_offset = 0x1e00,
1554         .spare_len = 64,
1555         .eccbytes = 0,
1556         .eccsize = 0,
1557         .ppb_shift = 7,
1558 };
1559
1560 /* v3.2b: i.MX53 */
1561 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1562         .preset = preset_v3,
1563         .read_page = mxc_nand_read_page_v2_v3,
1564         .send_cmd = send_cmd_v3,
1565         .send_addr = send_addr_v3,
1566         .send_page = send_page_v3,
1567         .send_read_id = send_read_id_v3,
1568         .get_dev_status = get_dev_status_v3,
1569         .check_int = check_int_v3,
1570         .irq_control = irq_control_v3,
1571         .get_ecc_status = get_ecc_status_v3,
1572         .ooblayout = &mxc_v2_ooblayout_ops,
1573         .select_chip = mxc_nand_select_chip_v1_v3,
1574         .enable_hwecc = mxc_nand_enable_hwecc_v3,
1575         .irqpending_quirk = 0,
1576         .needs_ip = 1,
1577         .regs_offset = 0,
1578         .spare0_offset = 0x1000,
1579         .axi_offset = 0x1e00,
1580         .spare_len = 64,
1581         .eccbytes = 0,
1582         .eccsize = 0,
1583         .ppb_shift = 8,
1584 };
1585
1586 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1587 {
1588         return host->devtype_data == &imx21_nand_devtype_data;
1589 }
1590
1591 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1592 {
1593         return host->devtype_data == &imx27_nand_devtype_data;
1594 }
1595
1596 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1597 {
1598         return host->devtype_data == &imx25_nand_devtype_data;
1599 }
1600
1601 static const struct of_device_id mxcnd_dt_ids[] = {
1602         { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, },
1603         { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, },
1604         { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, },
1605         { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, },
1606         { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, },
1607         { /* sentinel */ }
1608 };
1609 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1610
1611 static int mxcnd_attach_chip(struct nand_chip *chip)
1612 {
1613         struct mtd_info *mtd = nand_to_mtd(chip);
1614         struct mxc_nand_host *host = nand_get_controller_data(chip);
1615         struct device *dev = mtd->dev.parent;
1616
1617         chip->ecc.bytes = host->devtype_data->eccbytes;
1618         host->eccsize = host->devtype_data->eccsize;
1619         chip->ecc.size = 512;
1620         mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1621
1622         switch (chip->ecc.engine_type) {
1623         case NAND_ECC_ENGINE_TYPE_ON_HOST:
1624                 chip->ecc.read_page = mxc_nand_read_page;
1625                 chip->ecc.read_page_raw = mxc_nand_read_page_raw;
1626                 chip->ecc.read_oob = mxc_nand_read_oob;
1627                 chip->ecc.write_page = mxc_nand_write_page_ecc;
1628                 chip->ecc.write_page_raw = mxc_nand_write_page_raw;
1629                 chip->ecc.write_oob = mxc_nand_write_oob;
1630                 break;
1631
1632         case NAND_ECC_ENGINE_TYPE_SOFT:
1633                 break;
1634
1635         default:
1636                 return -EINVAL;
1637         }
1638
1639         if (chip->bbt_options & NAND_BBT_USE_FLASH) {
1640                 chip->bbt_td = &bbt_main_descr;
1641                 chip->bbt_md = &bbt_mirror_descr;
1642         }
1643
1644         /* Allocate the right size buffer now */
1645         devm_kfree(dev, (void *)host->data_buf);
1646         host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize,
1647                                       GFP_KERNEL);
1648         if (!host->data_buf)
1649                 return -ENOMEM;
1650
1651         /* Call preset again, with correct writesize chip time */
1652         host->devtype_data->preset(mtd);
1653
1654         if (!chip->ecc.bytes) {
1655                 if (host->eccsize == 8)
1656                         chip->ecc.bytes = 18;
1657                 else if (host->eccsize == 4)
1658                         chip->ecc.bytes = 9;
1659         }
1660
1661         /*
1662          * Experimentation shows that i.MX NFC can only handle up to 218 oob
1663          * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1664          * into copying invalid data to/from the spare IO buffer, as this
1665          * might cause ECC data corruption when doing sub-page write to a
1666          * partially written page.
1667          */
1668         host->used_oobsize = min(mtd->oobsize, 218U);
1669
1670         if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) {
1671                 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1672                         chip->ecc.strength = 1;
1673                 else
1674                         chip->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1675         }
1676
1677         return 0;
1678 }
1679
1680 static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr,
1681                                  const struct nand_interface_config *conf)
1682 {
1683         struct mxc_nand_host *host = nand_get_controller_data(chip);
1684
1685         return host->devtype_data->setup_interface(chip, chipnr, conf);
1686 }
1687
1688 static const struct nand_controller_ops mxcnd_controller_ops = {
1689         .attach_chip = mxcnd_attach_chip,
1690         .setup_interface = mxcnd_setup_interface,
1691 };
1692
1693 static int mxcnd_probe(struct platform_device *pdev)
1694 {
1695         struct nand_chip *this;
1696         struct mtd_info *mtd;
1697         struct mxc_nand_host *host;
1698         int err = 0;
1699
1700         /* Allocate memory for MTD device structure and private data */
1701         host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1702                         GFP_KERNEL);
1703         if (!host)
1704                 return -ENOMEM;
1705
1706         /* allocate a temporary buffer for the nand_scan_ident() */
1707         host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1708         if (!host->data_buf)
1709                 return -ENOMEM;
1710
1711         host->dev = &pdev->dev;
1712         /* structures must be linked */
1713         this = &host->nand;
1714         mtd = nand_to_mtd(this);
1715         mtd->dev.parent = &pdev->dev;
1716         mtd->name = DRIVER_NAME;
1717
1718         /* 50 us command delay time */
1719         this->legacy.chip_delay = 5;
1720
1721         nand_set_controller_data(this, host);
1722         nand_set_flash_node(this, pdev->dev.of_node);
1723         this->legacy.dev_ready = mxc_nand_dev_ready;
1724         this->legacy.cmdfunc = mxc_nand_command;
1725         this->legacy.read_byte = mxc_nand_read_byte;
1726         this->legacy.write_buf = mxc_nand_write_buf;
1727         this->legacy.read_buf = mxc_nand_read_buf;
1728         this->legacy.set_features = mxc_nand_set_features;
1729         this->legacy.get_features = mxc_nand_get_features;
1730
1731         host->clk = devm_clk_get(&pdev->dev, NULL);
1732         if (IS_ERR(host->clk))
1733                 return PTR_ERR(host->clk);
1734
1735         host->devtype_data = device_get_match_data(&pdev->dev);
1736
1737         if (!host->devtype_data->setup_interface)
1738                 this->options |= NAND_KEEP_TIMINGS;
1739
1740         if (host->devtype_data->needs_ip) {
1741                 host->regs_ip = devm_platform_ioremap_resource(pdev, 0);
1742                 if (IS_ERR(host->regs_ip))
1743                         return PTR_ERR(host->regs_ip);
1744
1745                 host->base = devm_platform_ioremap_resource(pdev, 1);
1746         } else {
1747                 host->base = devm_platform_ioremap_resource(pdev, 0);
1748         }
1749
1750         if (IS_ERR(host->base))
1751                 return PTR_ERR(host->base);
1752
1753         host->main_area0 = host->base;
1754
1755         if (host->devtype_data->regs_offset)
1756                 host->regs = host->base + host->devtype_data->regs_offset;
1757         host->spare0 = host->base + host->devtype_data->spare0_offset;
1758         if (host->devtype_data->axi_offset)
1759                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1760
1761         this->legacy.select_chip = host->devtype_data->select_chip;
1762
1763         init_completion(&host->op_completion);
1764
1765         host->irq = platform_get_irq(pdev, 0);
1766         if (host->irq < 0)
1767                 return host->irq;
1768
1769         /*
1770          * Use host->devtype_data->irq_control() here instead of irq_control()
1771          * because we must not disable_irq_nosync without having requested the
1772          * irq.
1773          */
1774         host->devtype_data->irq_control(host, 0);
1775
1776         err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1777                         0, DRIVER_NAME, host);
1778         if (err)
1779                 return err;
1780
1781         err = clk_prepare_enable(host->clk);
1782         if (err)
1783                 return err;
1784         host->clk_act = 1;
1785
1786         /*
1787          * Now that we "own" the interrupt make sure the interrupt mask bit is
1788          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1789          * on this machine.
1790          */
1791         if (host->devtype_data->irqpending_quirk) {
1792                 disable_irq_nosync(host->irq);
1793                 host->devtype_data->irq_control(host, 1);
1794         }
1795
1796         /* Scan the NAND device */
1797         this->legacy.dummy_controller.ops = &mxcnd_controller_ops;
1798         err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1);
1799         if (err)
1800                 goto escan;
1801
1802         /* Register the partitions */
1803         err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1804         if (err)
1805                 goto cleanup_nand;
1806
1807         platform_set_drvdata(pdev, host);
1808
1809         return 0;
1810
1811 cleanup_nand:
1812         nand_cleanup(this);
1813 escan:
1814         if (host->clk_act)
1815                 clk_disable_unprepare(host->clk);
1816
1817         return err;
1818 }
1819
1820 static void mxcnd_remove(struct platform_device *pdev)
1821 {
1822         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1823         struct nand_chip *chip = &host->nand;
1824         int ret;
1825
1826         ret = mtd_device_unregister(nand_to_mtd(chip));
1827         WARN_ON(ret);
1828         nand_cleanup(chip);
1829         if (host->clk_act)
1830                 clk_disable_unprepare(host->clk);
1831 }
1832
1833 static struct platform_driver mxcnd_driver = {
1834         .driver = {
1835                    .name = DRIVER_NAME,
1836                    .of_match_table = mxcnd_dt_ids,
1837         },
1838         .probe = mxcnd_probe,
1839         .remove_new = mxcnd_remove,
1840 };
1841 module_platform_driver(mxcnd_driver);
1842
1843 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1844 MODULE_DESCRIPTION("MXC NAND MTD driver");
1845 MODULE_LICENSE("GPL");