Merge tag 'input-for-v6.5-rc0' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor...
[sfrench/cifs-2.6.git] / drivers / mtd / nand / raw / atmel / nand-controller.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright 2017 ATMEL
4  * Copyright 2017 Free Electrons
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  *
8  * Derived from the atmel_nand.c driver which contained the following
9  * copyrights:
10  *
11  *   Copyright 2003 Rick Bronson
12  *
13  *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
14  *      Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
15  *
16  *   Derived from drivers/mtd/spia.c (removed in v3.8)
17  *      Copyright 2000 Steven J. Hill (sjhill@cotw.com)
18  *
19  *
20  *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
21  *      Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
22  *
23  *   Derived from Das U-Boot source code
24  *      (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
25  *      Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
26  *
27  *   Add Programmable Multibit ECC support for various AT91 SoC
28  *      Copyright 2012 ATMEL, Hong Xu
29  *
30  *   Add Nand Flash Controller support for SAMA5 SoC
31  *      Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
32  *
33  * A few words about the naming convention in this file. This convention
34  * applies to structure and function names.
35  *
36  * Prefixes:
37  *
38  * - atmel_nand_: all generic structures/functions
39  * - atmel_smc_nand_: all structures/functions specific to the SMC interface
40  *                    (at91sam9 and avr32 SoCs)
41  * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
42  *                     (sama5 SoCs and later)
43  * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
44  *               that is available in the HSMC block
45  * - <soc>_nand_: all SoC specific structures/functions
46  */
47
48 #include <linux/clk.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/genalloc.h>
52 #include <linux/gpio/consumer.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/mfd/syscon/atmel-matrix.h>
56 #include <linux/mfd/syscon/atmel-smc.h>
57 #include <linux/module.h>
58 #include <linux/mtd/rawnand.h>
59 #include <linux/of_address.h>
60 #include <linux/of_irq.h>
61 #include <linux/of_platform.h>
62 #include <linux/iopoll.h>
63 #include <linux/platform_device.h>
64 #include <linux/regmap.h>
65 #include <soc/at91/atmel-sfr.h>
66
67 #include "pmecc.h"
68
69 #define ATMEL_HSMC_NFC_CFG                      0x0
70 #define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)         (((x) / 4) << 24)
71 #define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK       GENMASK(30, 24)
72 #define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)        (((cyc) << 16) | ((mul) << 20))
73 #define ATMEL_HSMC_NFC_CFG_DTO_MAX              GENMASK(22, 16)
74 #define ATMEL_HSMC_NFC_CFG_RBEDGE               BIT(13)
75 #define ATMEL_HSMC_NFC_CFG_FALLING_EDGE         BIT(12)
76 #define ATMEL_HSMC_NFC_CFG_RSPARE               BIT(9)
77 #define ATMEL_HSMC_NFC_CFG_WSPARE               BIT(8)
78 #define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK        GENMASK(2, 0)
79 #define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)          (fls((x) / 512) - 1)
80
81 #define ATMEL_HSMC_NFC_CTRL                     0x4
82 #define ATMEL_HSMC_NFC_CTRL_EN                  BIT(0)
83 #define ATMEL_HSMC_NFC_CTRL_DIS                 BIT(1)
84
85 #define ATMEL_HSMC_NFC_SR                       0x8
86 #define ATMEL_HSMC_NFC_IER                      0xc
87 #define ATMEL_HSMC_NFC_IDR                      0x10
88 #define ATMEL_HSMC_NFC_IMR                      0x14
89 #define ATMEL_HSMC_NFC_SR_ENABLED               BIT(1)
90 #define ATMEL_HSMC_NFC_SR_RB_RISE               BIT(4)
91 #define ATMEL_HSMC_NFC_SR_RB_FALL               BIT(5)
92 #define ATMEL_HSMC_NFC_SR_BUSY                  BIT(8)
93 #define ATMEL_HSMC_NFC_SR_WR                    BIT(11)
94 #define ATMEL_HSMC_NFC_SR_CSID                  GENMASK(14, 12)
95 #define ATMEL_HSMC_NFC_SR_XFRDONE               BIT(16)
96 #define ATMEL_HSMC_NFC_SR_CMDDONE               BIT(17)
97 #define ATMEL_HSMC_NFC_SR_DTOE                  BIT(20)
98 #define ATMEL_HSMC_NFC_SR_UNDEF                 BIT(21)
99 #define ATMEL_HSMC_NFC_SR_AWB                   BIT(22)
100 #define ATMEL_HSMC_NFC_SR_NFCASE                BIT(23)
101 #define ATMEL_HSMC_NFC_SR_ERRORS                (ATMEL_HSMC_NFC_SR_DTOE | \
102                                                  ATMEL_HSMC_NFC_SR_UNDEF | \
103                                                  ATMEL_HSMC_NFC_SR_AWB | \
104                                                  ATMEL_HSMC_NFC_SR_NFCASE)
105 #define ATMEL_HSMC_NFC_SR_RBEDGE(x)             BIT((x) + 24)
106
107 #define ATMEL_HSMC_NFC_ADDR                     0x18
108 #define ATMEL_HSMC_NFC_BANK                     0x1c
109
110 #define ATMEL_NFC_MAX_RB_ID                     7
111
112 #define ATMEL_NFC_SRAM_SIZE                     0x2400
113
114 #define ATMEL_NFC_CMD(pos, cmd)                 ((cmd) << (((pos) * 8) + 2))
115 #define ATMEL_NFC_VCMD2                         BIT(18)
116 #define ATMEL_NFC_ACYCLE(naddrs)                ((naddrs) << 19)
117 #define ATMEL_NFC_CSID(cs)                      ((cs) << 22)
118 #define ATMEL_NFC_DATAEN                        BIT(25)
119 #define ATMEL_NFC_NFCWR                         BIT(26)
120
121 #define ATMEL_NFC_MAX_ADDR_CYCLES               5
122
123 #define ATMEL_NAND_ALE_OFFSET                   BIT(21)
124 #define ATMEL_NAND_CLE_OFFSET                   BIT(22)
125
126 #define DEFAULT_TIMEOUT_MS                      1000
127 #define MIN_DMA_LEN                             128
128
129 static bool atmel_nand_avoid_dma __read_mostly;
130
131 MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
132 module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);
133
134 enum atmel_nand_rb_type {
135         ATMEL_NAND_NO_RB,
136         ATMEL_NAND_NATIVE_RB,
137         ATMEL_NAND_GPIO_RB,
138 };
139
140 struct atmel_nand_rb {
141         enum atmel_nand_rb_type type;
142         union {
143                 struct gpio_desc *gpio;
144                 int id;
145         };
146 };
147
148 struct atmel_nand_cs {
149         int id;
150         struct atmel_nand_rb rb;
151         struct gpio_desc *csgpio;
152         struct {
153                 void __iomem *virt;
154                 dma_addr_t dma;
155         } io;
156
157         struct atmel_smc_cs_conf smcconf;
158 };
159
160 struct atmel_nand {
161         struct list_head node;
162         struct device *dev;
163         struct nand_chip base;
164         struct atmel_nand_cs *activecs;
165         struct atmel_pmecc_user *pmecc;
166         struct gpio_desc *cdgpio;
167         int numcs;
168         struct atmel_nand_cs cs[];
169 };
170
171 static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
172 {
173         return container_of(chip, struct atmel_nand, base);
174 }
175
176 enum atmel_nfc_data_xfer {
177         ATMEL_NFC_NO_DATA,
178         ATMEL_NFC_READ_DATA,
179         ATMEL_NFC_WRITE_DATA,
180 };
181
182 struct atmel_nfc_op {
183         u8 cs;
184         u8 ncmds;
185         u8 cmds[2];
186         u8 naddrs;
187         u8 addrs[5];
188         enum atmel_nfc_data_xfer data;
189         u32 wait;
190         u32 errors;
191 };
192
193 struct atmel_nand_controller;
194 struct atmel_nand_controller_caps;
195
196 struct atmel_nand_controller_ops {
197         int (*probe)(struct platform_device *pdev,
198                      const struct atmel_nand_controller_caps *caps);
199         int (*remove)(struct atmel_nand_controller *nc);
200         void (*nand_init)(struct atmel_nand_controller *nc,
201                           struct atmel_nand *nand);
202         int (*ecc_init)(struct nand_chip *chip);
203         int (*setup_interface)(struct atmel_nand *nand, int csline,
204                                const struct nand_interface_config *conf);
205         int (*exec_op)(struct atmel_nand *nand,
206                        const struct nand_operation *op, bool check_only);
207 };
208
209 struct atmel_nand_controller_caps {
210         bool has_dma;
211         bool legacy_of_bindings;
212         u32 ale_offs;
213         u32 cle_offs;
214         const char *ebi_csa_regmap_name;
215         const struct atmel_nand_controller_ops *ops;
216 };
217
218 struct atmel_nand_controller {
219         struct nand_controller base;
220         const struct atmel_nand_controller_caps *caps;
221         struct device *dev;
222         struct regmap *smc;
223         struct dma_chan *dmac;
224         struct atmel_pmecc *pmecc;
225         struct list_head chips;
226         struct clk *mck;
227 };
228
229 static inline struct atmel_nand_controller *
230 to_nand_controller(struct nand_controller *ctl)
231 {
232         return container_of(ctl, struct atmel_nand_controller, base);
233 }
234
235 struct atmel_smc_nand_ebi_csa_cfg {
236         u32 offs;
237         u32 nfd0_on_d16;
238 };
239
240 struct atmel_smc_nand_controller {
241         struct atmel_nand_controller base;
242         struct regmap *ebi_csa_regmap;
243         struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
244 };
245
246 static inline struct atmel_smc_nand_controller *
247 to_smc_nand_controller(struct nand_controller *ctl)
248 {
249         return container_of(to_nand_controller(ctl),
250                             struct atmel_smc_nand_controller, base);
251 }
252
253 struct atmel_hsmc_nand_controller {
254         struct atmel_nand_controller base;
255         struct {
256                 struct gen_pool *pool;
257                 void __iomem *virt;
258                 dma_addr_t dma;
259         } sram;
260         const struct atmel_hsmc_reg_layout *hsmc_layout;
261         struct regmap *io;
262         struct atmel_nfc_op op;
263         struct completion complete;
264         u32 cfg;
265         int irq;
266
267         /* Only used when instantiating from legacy DT bindings. */
268         struct clk *clk;
269 };
270
271 static inline struct atmel_hsmc_nand_controller *
272 to_hsmc_nand_controller(struct nand_controller *ctl)
273 {
274         return container_of(to_nand_controller(ctl),
275                             struct atmel_hsmc_nand_controller, base);
276 }
277
278 static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
279 {
280         op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
281         op->wait ^= status & op->wait;
282
283         return !op->wait || op->errors;
284 }
285
286 static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
287 {
288         struct atmel_hsmc_nand_controller *nc = data;
289         u32 sr, rcvd;
290         bool done;
291
292         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
293
294         rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
295         done = atmel_nfc_op_done(&nc->op, sr);
296
297         if (rcvd)
298                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
299
300         if (done)
301                 complete(&nc->complete);
302
303         return rcvd ? IRQ_HANDLED : IRQ_NONE;
304 }
305
306 static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
307                           unsigned int timeout_ms)
308 {
309         int ret;
310
311         if (!timeout_ms)
312                 timeout_ms = DEFAULT_TIMEOUT_MS;
313
314         if (poll) {
315                 u32 status;
316
317                 ret = regmap_read_poll_timeout(nc->base.smc,
318                                                ATMEL_HSMC_NFC_SR, status,
319                                                atmel_nfc_op_done(&nc->op,
320                                                                  status),
321                                                0, timeout_ms * 1000);
322         } else {
323                 init_completion(&nc->complete);
324                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
325                              nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
326                 ret = wait_for_completion_timeout(&nc->complete,
327                                                 msecs_to_jiffies(timeout_ms));
328                 if (!ret)
329                         ret = -ETIMEDOUT;
330                 else
331                         ret = 0;
332
333                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
334         }
335
336         if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
337                 dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
338                 ret = -ETIMEDOUT;
339         }
340
341         if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
342                 dev_err(nc->base.dev, "Access to an undefined area\n");
343                 ret = -EIO;
344         }
345
346         if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
347                 dev_err(nc->base.dev, "Access while busy\n");
348                 ret = -EIO;
349         }
350
351         if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
352                 dev_err(nc->base.dev, "Wrong access size\n");
353                 ret = -EIO;
354         }
355
356         return ret;
357 }
358
359 static void atmel_nand_dma_transfer_finished(void *data)
360 {
361         struct completion *finished = data;
362
363         complete(finished);
364 }
365
366 static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
367                                    void *buf, dma_addr_t dev_dma, size_t len,
368                                    enum dma_data_direction dir)
369 {
370         DECLARE_COMPLETION_ONSTACK(finished);
371         dma_addr_t src_dma, dst_dma, buf_dma;
372         struct dma_async_tx_descriptor *tx;
373         dma_cookie_t cookie;
374
375         buf_dma = dma_map_single(nc->dev, buf, len, dir);
376         if (dma_mapping_error(nc->dev, dev_dma)) {
377                 dev_err(nc->dev,
378                         "Failed to prepare a buffer for DMA access\n");
379                 goto err;
380         }
381
382         if (dir == DMA_FROM_DEVICE) {
383                 src_dma = dev_dma;
384                 dst_dma = buf_dma;
385         } else {
386                 src_dma = buf_dma;
387                 dst_dma = dev_dma;
388         }
389
390         tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
391                                        DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
392         if (!tx) {
393                 dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
394                 goto err_unmap;
395         }
396
397         tx->callback = atmel_nand_dma_transfer_finished;
398         tx->callback_param = &finished;
399
400         cookie = dmaengine_submit(tx);
401         if (dma_submit_error(cookie)) {
402                 dev_err(nc->dev, "Failed to do DMA tx_submit\n");
403                 goto err_unmap;
404         }
405
406         dma_async_issue_pending(nc->dmac);
407         wait_for_completion(&finished);
408         dma_unmap_single(nc->dev, buf_dma, len, dir);
409
410         return 0;
411
412 err_unmap:
413         dma_unmap_single(nc->dev, buf_dma, len, dir);
414
415 err:
416         dev_dbg(nc->dev, "Fall back to CPU I/O\n");
417
418         return -EIO;
419 }
420
421 static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
422 {
423         u8 *addrs = nc->op.addrs;
424         unsigned int op = 0;
425         u32 addr, val;
426         int i, ret;
427
428         nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
429
430         for (i = 0; i < nc->op.ncmds; i++)
431                 op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
432
433         if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
434                 regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
435
436         op |= ATMEL_NFC_CSID(nc->op.cs) |
437               ATMEL_NFC_ACYCLE(nc->op.naddrs);
438
439         if (nc->op.ncmds > 1)
440                 op |= ATMEL_NFC_VCMD2;
441
442         addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
443                (addrs[3] << 24);
444
445         if (nc->op.data != ATMEL_NFC_NO_DATA) {
446                 op |= ATMEL_NFC_DATAEN;
447                 nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
448
449                 if (nc->op.data == ATMEL_NFC_WRITE_DATA)
450                         op |= ATMEL_NFC_NFCWR;
451         }
452
453         /* Clear all flags. */
454         regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
455
456         /* Send the command. */
457         regmap_write(nc->io, op, addr);
458
459         ret = atmel_nfc_wait(nc, poll, 0);
460         if (ret)
461                 dev_err(nc->base.dev,
462                         "Failed to send NAND command (err = %d)!",
463                         ret);
464
465         /* Reset the op state. */
466         memset(&nc->op, 0, sizeof(nc->op));
467
468         return ret;
469 }
470
471 static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
472                                unsigned int len, bool force_8bit)
473 {
474         struct atmel_nand_controller *nc;
475
476         nc = to_nand_controller(nand->base.controller);
477
478         /*
479          * If the controller supports DMA, the buffer address is DMA-able and
480          * len is long enough to make DMA transfers profitable, let's trigger
481          * a DMA transfer. If it fails, fallback to PIO mode.
482          */
483         if (nc->dmac && virt_addr_valid(buf) &&
484             len >= MIN_DMA_LEN && !force_8bit &&
485             !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
486                                      DMA_FROM_DEVICE))
487                 return;
488
489         if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
490                 ioread16_rep(nand->activecs->io.virt, buf, len / 2);
491         else
492                 ioread8_rep(nand->activecs->io.virt, buf, len);
493 }
494
495 static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
496                                 unsigned int len, bool force_8bit)
497 {
498         struct atmel_nand_controller *nc;
499
500         nc = to_nand_controller(nand->base.controller);
501
502         /*
503          * If the controller supports DMA, the buffer address is DMA-able and
504          * len is long enough to make DMA transfers profitable, let's trigger
505          * a DMA transfer. If it fails, fallback to PIO mode.
506          */
507         if (nc->dmac && virt_addr_valid(buf) &&
508             len >= MIN_DMA_LEN && !force_8bit &&
509             !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
510                                      len, DMA_TO_DEVICE))
511                 return;
512
513         if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
514                 iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
515         else
516                 iowrite8_rep(nand->activecs->io.virt, buf, len);
517 }
518
519 static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
520 {
521         if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
522                 return nand_soft_waitrdy(&nand->base, timeout_ms);
523
524         return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
525                                  timeout_ms);
526 }
527
528 static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
529                                    unsigned int timeout_ms)
530 {
531         struct atmel_hsmc_nand_controller *nc;
532         u32 status, mask;
533
534         if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
535                 return atmel_nand_waitrdy(nand, timeout_ms);
536
537         nc = to_hsmc_nand_controller(nand->base.controller);
538         mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
539         return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
540                                                status, status & mask,
541                                                10, timeout_ms * 1000);
542 }
543
544 static void atmel_nand_select_target(struct atmel_nand *nand,
545                                      unsigned int cs)
546 {
547         nand->activecs = &nand->cs[cs];
548 }
549
550 static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
551                                           unsigned int cs)
552 {
553         struct mtd_info *mtd = nand_to_mtd(&nand->base);
554         struct atmel_hsmc_nand_controller *nc;
555         u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
556                   ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
557                   ATMEL_HSMC_NFC_CFG_RSPARE;
558
559         nand->activecs = &nand->cs[cs];
560         nc = to_hsmc_nand_controller(nand->base.controller);
561         if (nc->cfg == cfg)
562                 return;
563
564         regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
565                            ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
566                            ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
567                            ATMEL_HSMC_NFC_CFG_RSPARE |
568                            ATMEL_HSMC_NFC_CFG_WSPARE,
569                            cfg);
570         nc->cfg = cfg;
571 }
572
573 static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
574                                      const struct nand_op_instr *instr)
575 {
576         struct atmel_nand_controller *nc;
577         unsigned int i;
578
579         nc = to_nand_controller(nand->base.controller);
580         switch (instr->type) {
581         case NAND_OP_CMD_INSTR:
582                 writeb(instr->ctx.cmd.opcode,
583                        nand->activecs->io.virt + nc->caps->cle_offs);
584                 return 0;
585         case NAND_OP_ADDR_INSTR:
586                 for (i = 0; i < instr->ctx.addr.naddrs; i++)
587                         writeb(instr->ctx.addr.addrs[i],
588                                nand->activecs->io.virt + nc->caps->ale_offs);
589                 return 0;
590         case NAND_OP_DATA_IN_INSTR:
591                 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
592                                    instr->ctx.data.len,
593                                    instr->ctx.data.force_8bit);
594                 return 0;
595         case NAND_OP_DATA_OUT_INSTR:
596                 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
597                                     instr->ctx.data.len,
598                                     instr->ctx.data.force_8bit);
599                 return 0;
600         case NAND_OP_WAITRDY_INSTR:
601                 return atmel_nand_waitrdy(nand,
602                                           instr->ctx.waitrdy.timeout_ms);
603         default:
604                 break;
605         }
606
607         return -EINVAL;
608 }
609
610 static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
611                                   const struct nand_operation *op,
612                                   bool check_only)
613 {
614         unsigned int i;
615         int ret = 0;
616
617         if (check_only)
618                 return 0;
619
620         atmel_nand_select_target(nand, op->cs);
621         gpiod_set_value(nand->activecs->csgpio, 0);
622         for (i = 0; i < op->ninstrs; i++) {
623                 ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
624                 if (ret)
625                         break;
626         }
627         gpiod_set_value(nand->activecs->csgpio, 1);
628
629         return ret;
630 }
631
632 static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
633                                     const struct nand_subop *subop)
634 {
635         struct atmel_nand *nand = to_atmel_nand(chip);
636         struct atmel_hsmc_nand_controller *nc;
637         unsigned int i, j;
638
639         nc = to_hsmc_nand_controller(chip->controller);
640
641         nc->op.cs = nand->activecs->id;
642         for (i = 0; i < subop->ninstrs; i++) {
643                 const struct nand_op_instr *instr = &subop->instrs[i];
644
645                 if (instr->type == NAND_OP_CMD_INSTR) {
646                         nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
647                         continue;
648                 }
649
650                 for (j = nand_subop_get_addr_start_off(subop, i);
651                      j < nand_subop_get_num_addr_cyc(subop, i); j++) {
652                         nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
653                         nc->op.naddrs++;
654                 }
655         }
656
657         return atmel_nfc_exec_op(nc, true);
658 }
659
660 static int atmel_hsmc_exec_rw(struct nand_chip *chip,
661                               const struct nand_subop *subop)
662 {
663         const struct nand_op_instr *instr = subop->instrs;
664         struct atmel_nand *nand = to_atmel_nand(chip);
665
666         if (instr->type == NAND_OP_DATA_IN_INSTR)
667                 atmel_nand_data_in(nand, instr->ctx.data.buf.in,
668                                    instr->ctx.data.len,
669                                    instr->ctx.data.force_8bit);
670         else
671                 atmel_nand_data_out(nand, instr->ctx.data.buf.out,
672                                     instr->ctx.data.len,
673                                     instr->ctx.data.force_8bit);
674
675         return 0;
676 }
677
678 static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
679                                    const struct nand_subop *subop)
680 {
681         const struct nand_op_instr *instr = subop->instrs;
682         struct atmel_nand *nand = to_atmel_nand(chip);
683
684         return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
685 }
686
687 static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
688         NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
689                 NAND_OP_PARSER_PAT_CMD_ELEM(true),
690                 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
691                 NAND_OP_PARSER_PAT_CMD_ELEM(true)),
692         NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
693                 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
694         NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
695                 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
696         NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
697                 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
698 );
699
700 static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
701                                    const struct nand_operation *op,
702                                    bool check_only)
703 {
704         int ret;
705
706         if (check_only)
707                 return nand_op_parser_exec_op(&nand->base,
708                                               &atmel_hsmc_op_parser, op, true);
709
710         atmel_hsmc_nand_select_target(nand, op->cs);
711         ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
712                                      false);
713
714         return ret;
715 }
716
717 static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
718                                    bool oob_required)
719 {
720         struct mtd_info *mtd = nand_to_mtd(chip);
721         struct atmel_hsmc_nand_controller *nc;
722         int ret = -EIO;
723
724         nc = to_hsmc_nand_controller(chip->controller);
725
726         if (nc->base.dmac)
727                 ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
728                                               nc->sram.dma, mtd->writesize,
729                                               DMA_TO_DEVICE);
730
731         /* Falling back to CPU copy. */
732         if (ret)
733                 memcpy_toio(nc->sram.virt, buf, mtd->writesize);
734
735         if (oob_required)
736                 memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
737                             mtd->oobsize);
738 }
739
740 static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
741                                      bool oob_required)
742 {
743         struct mtd_info *mtd = nand_to_mtd(chip);
744         struct atmel_hsmc_nand_controller *nc;
745         int ret = -EIO;
746
747         nc = to_hsmc_nand_controller(chip->controller);
748
749         if (nc->base.dmac)
750                 ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
751                                               mtd->writesize, DMA_FROM_DEVICE);
752
753         /* Falling back to CPU copy. */
754         if (ret)
755                 memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
756
757         if (oob_required)
758                 memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
759                               mtd->oobsize);
760 }
761
762 static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
763 {
764         struct mtd_info *mtd = nand_to_mtd(chip);
765         struct atmel_hsmc_nand_controller *nc;
766
767         nc = to_hsmc_nand_controller(chip->controller);
768
769         if (column >= 0) {
770                 nc->op.addrs[nc->op.naddrs++] = column;
771
772                 /*
773                  * 2 address cycles for the column offset on large page NANDs.
774                  */
775                 if (mtd->writesize > 512)
776                         nc->op.addrs[nc->op.naddrs++] = column >> 8;
777         }
778
779         if (page >= 0) {
780                 nc->op.addrs[nc->op.naddrs++] = page;
781                 nc->op.addrs[nc->op.naddrs++] = page >> 8;
782
783                 if (chip->options & NAND_ROW_ADDR_3)
784                         nc->op.addrs[nc->op.naddrs++] = page >> 16;
785         }
786 }
787
788 static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
789 {
790         struct atmel_nand *nand = to_atmel_nand(chip);
791         struct atmel_nand_controller *nc;
792         int ret;
793
794         nc = to_nand_controller(chip->controller);
795
796         if (raw)
797                 return 0;
798
799         ret = atmel_pmecc_enable(nand->pmecc, op);
800         if (ret)
801                 dev_err(nc->dev,
802                         "Failed to enable ECC engine (err = %d)\n", ret);
803
804         return ret;
805 }
806
807 static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
808 {
809         struct atmel_nand *nand = to_atmel_nand(chip);
810
811         if (!raw)
812                 atmel_pmecc_disable(nand->pmecc);
813 }
814
815 static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
816 {
817         struct atmel_nand *nand = to_atmel_nand(chip);
818         struct mtd_info *mtd = nand_to_mtd(chip);
819         struct atmel_nand_controller *nc;
820         struct mtd_oob_region oobregion;
821         void *eccbuf;
822         int ret, i;
823
824         nc = to_nand_controller(chip->controller);
825
826         if (raw)
827                 return 0;
828
829         ret = atmel_pmecc_wait_rdy(nand->pmecc);
830         if (ret) {
831                 dev_err(nc->dev,
832                         "Failed to transfer NAND page data (err = %d)\n",
833                         ret);
834                 return ret;
835         }
836
837         mtd_ooblayout_ecc(mtd, 0, &oobregion);
838         eccbuf = chip->oob_poi + oobregion.offset;
839
840         for (i = 0; i < chip->ecc.steps; i++) {
841                 atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
842                                                    eccbuf);
843                 eccbuf += chip->ecc.bytes;
844         }
845
846         return 0;
847 }
848
849 static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
850                                          bool raw)
851 {
852         struct atmel_nand *nand = to_atmel_nand(chip);
853         struct mtd_info *mtd = nand_to_mtd(chip);
854         struct atmel_nand_controller *nc;
855         struct mtd_oob_region oobregion;
856         int ret, i, max_bitflips = 0;
857         void *databuf, *eccbuf;
858
859         nc = to_nand_controller(chip->controller);
860
861         if (raw)
862                 return 0;
863
864         ret = atmel_pmecc_wait_rdy(nand->pmecc);
865         if (ret) {
866                 dev_err(nc->dev,
867                         "Failed to read NAND page data (err = %d)\n",
868                         ret);
869                 return ret;
870         }
871
872         mtd_ooblayout_ecc(mtd, 0, &oobregion);
873         eccbuf = chip->oob_poi + oobregion.offset;
874         databuf = buf;
875
876         for (i = 0; i < chip->ecc.steps; i++) {
877                 ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
878                                                  eccbuf);
879                 if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
880                         ret = nand_check_erased_ecc_chunk(databuf,
881                                                           chip->ecc.size,
882                                                           eccbuf,
883                                                           chip->ecc.bytes,
884                                                           NULL, 0,
885                                                           chip->ecc.strength);
886
887                 if (ret >= 0) {
888                         mtd->ecc_stats.corrected += ret;
889                         max_bitflips = max(ret, max_bitflips);
890                 } else {
891                         mtd->ecc_stats.failed++;
892                 }
893
894                 databuf += chip->ecc.size;
895                 eccbuf += chip->ecc.bytes;
896         }
897
898         return max_bitflips;
899 }
900
901 static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
902                                      bool oob_required, int page, bool raw)
903 {
904         struct mtd_info *mtd = nand_to_mtd(chip);
905         struct atmel_nand *nand = to_atmel_nand(chip);
906         int ret;
907
908         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
909
910         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
911         if (ret)
912                 return ret;
913
914         nand_write_data_op(chip, buf, mtd->writesize, false);
915
916         ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
917         if (ret) {
918                 atmel_pmecc_disable(nand->pmecc);
919                 return ret;
920         }
921
922         atmel_nand_pmecc_disable(chip, raw);
923
924         nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
925
926         return nand_prog_page_end_op(chip);
927 }
928
929 static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
930                                        int oob_required, int page)
931 {
932         return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
933 }
934
935 static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
936                                            const u8 *buf, int oob_required,
937                                            int page)
938 {
939         return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
940 }
941
942 static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
943                                     bool oob_required, int page, bool raw)
944 {
945         struct mtd_info *mtd = nand_to_mtd(chip);
946         int ret;
947
948         nand_read_page_op(chip, page, 0, NULL, 0);
949
950         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
951         if (ret)
952                 return ret;
953
954         ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
955         if (ret)
956                 goto out_disable;
957
958         ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
959         if (ret)
960                 goto out_disable;
961
962         ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
963
964 out_disable:
965         atmel_nand_pmecc_disable(chip, raw);
966
967         return ret;
968 }
969
970 static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
971                                       int oob_required, int page)
972 {
973         return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
974 }
975
976 static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
977                                           int oob_required, int page)
978 {
979         return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
980 }
981
982 static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
983                                           const u8 *buf, bool oob_required,
984                                           int page, bool raw)
985 {
986         struct mtd_info *mtd = nand_to_mtd(chip);
987         struct atmel_nand *nand = to_atmel_nand(chip);
988         struct atmel_hsmc_nand_controller *nc;
989         int ret;
990
991         atmel_hsmc_nand_select_target(nand, chip->cur_cs);
992         nc = to_hsmc_nand_controller(chip->controller);
993
994         atmel_nfc_copy_to_sram(chip, buf, false);
995
996         nc->op.cmds[0] = NAND_CMD_SEQIN;
997         nc->op.ncmds = 1;
998         atmel_nfc_set_op_addr(chip, page, 0x0);
999         nc->op.cs = nand->activecs->id;
1000         nc->op.data = ATMEL_NFC_WRITE_DATA;
1001
1002         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
1003         if (ret)
1004                 return ret;
1005
1006         ret = atmel_nfc_exec_op(nc, false);
1007         if (ret) {
1008                 atmel_nand_pmecc_disable(chip, raw);
1009                 dev_err(nc->base.dev,
1010                         "Failed to transfer NAND page data (err = %d)\n",
1011                         ret);
1012                 return ret;
1013         }
1014
1015         ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
1016
1017         atmel_nand_pmecc_disable(chip, raw);
1018
1019         if (ret)
1020                 return ret;
1021
1022         nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
1023
1024         return nand_prog_page_end_op(chip);
1025 }
1026
1027 static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
1028                                             const u8 *buf, int oob_required,
1029                                             int page)
1030 {
1031         return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1032                                               false);
1033 }
1034
1035 static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
1036                                                 const u8 *buf,
1037                                                 int oob_required, int page)
1038 {
1039         return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
1040                                               true);
1041 }
1042
1043 static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
1044                                          bool oob_required, int page,
1045                                          bool raw)
1046 {
1047         struct mtd_info *mtd = nand_to_mtd(chip);
1048         struct atmel_nand *nand = to_atmel_nand(chip);
1049         struct atmel_hsmc_nand_controller *nc;
1050         int ret;
1051
1052         atmel_hsmc_nand_select_target(nand, chip->cur_cs);
1053         nc = to_hsmc_nand_controller(chip->controller);
1054
1055         /*
1056          * Optimized read page accessors only work when the NAND R/B pin is
1057          * connected to a native SoC R/B pin. If that's not the case, fallback
1058          * to the non-optimized one.
1059          */
1060         if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
1061                 return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
1062                                                 raw);
1063
1064         nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
1065
1066         if (mtd->writesize > 512)
1067                 nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
1068
1069         atmel_nfc_set_op_addr(chip, page, 0x0);
1070         nc->op.cs = nand->activecs->id;
1071         nc->op.data = ATMEL_NFC_READ_DATA;
1072
1073         ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
1074         if (ret)
1075                 return ret;
1076
1077         ret = atmel_nfc_exec_op(nc, false);
1078         if (ret) {
1079                 atmel_nand_pmecc_disable(chip, raw);
1080                 dev_err(nc->base.dev,
1081                         "Failed to load NAND page data (err = %d)\n",
1082                         ret);
1083                 return ret;
1084         }
1085
1086         atmel_nfc_copy_from_sram(chip, buf, true);
1087
1088         ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
1089
1090         atmel_nand_pmecc_disable(chip, raw);
1091
1092         return ret;
1093 }
1094
1095 static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
1096                                            int oob_required, int page)
1097 {
1098         return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1099                                              false);
1100 }
1101
1102 static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
1103                                                u8 *buf, int oob_required,
1104                                                int page)
1105 {
1106         return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
1107                                              true);
1108 }
1109
1110 static int atmel_nand_pmecc_init(struct nand_chip *chip)
1111 {
1112         const struct nand_ecc_props *requirements =
1113                 nanddev_get_ecc_requirements(&chip->base);
1114         struct mtd_info *mtd = nand_to_mtd(chip);
1115         struct nand_device *nanddev = mtd_to_nanddev(mtd);
1116         struct atmel_nand *nand = to_atmel_nand(chip);
1117         struct atmel_nand_controller *nc;
1118         struct atmel_pmecc_user_req req;
1119
1120         nc = to_nand_controller(chip->controller);
1121
1122         if (!nc->pmecc) {
1123                 dev_err(nc->dev, "HW ECC not supported\n");
1124                 return -ENOTSUPP;
1125         }
1126
1127         if (nc->caps->legacy_of_bindings) {
1128                 u32 val;
1129
1130                 if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
1131                                           &val))
1132                         chip->ecc.strength = val;
1133
1134                 if (!of_property_read_u32(nc->dev->of_node,
1135                                           "atmel,pmecc-sector-size",
1136                                           &val))
1137                         chip->ecc.size = val;
1138         }
1139
1140         if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
1141                 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1142         else if (chip->ecc.strength)
1143                 req.ecc.strength = chip->ecc.strength;
1144         else if (requirements->strength)
1145                 req.ecc.strength = requirements->strength;
1146         else
1147                 req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
1148
1149         if (chip->ecc.size)
1150                 req.ecc.sectorsize = chip->ecc.size;
1151         else if (requirements->step_size)
1152                 req.ecc.sectorsize = requirements->step_size;
1153         else
1154                 req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
1155
1156         req.pagesize = mtd->writesize;
1157         req.oobsize = mtd->oobsize;
1158
1159         if (mtd->writesize <= 512) {
1160                 req.ecc.bytes = 4;
1161                 req.ecc.ooboffset = 0;
1162         } else {
1163                 req.ecc.bytes = mtd->oobsize - 2;
1164                 req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
1165         }
1166
1167         nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
1168         if (IS_ERR(nand->pmecc))
1169                 return PTR_ERR(nand->pmecc);
1170
1171         chip->ecc.algo = NAND_ECC_ALGO_BCH;
1172         chip->ecc.size = req.ecc.sectorsize;
1173         chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
1174         chip->ecc.strength = req.ecc.strength;
1175
1176         chip->options |= NAND_NO_SUBPAGE_WRITE;
1177
1178         mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1179
1180         return 0;
1181 }
1182
1183 static int atmel_nand_ecc_init(struct nand_chip *chip)
1184 {
1185         struct atmel_nand_controller *nc;
1186         int ret;
1187
1188         nc = to_nand_controller(chip->controller);
1189
1190         switch (chip->ecc.engine_type) {
1191         case NAND_ECC_ENGINE_TYPE_NONE:
1192         case NAND_ECC_ENGINE_TYPE_SOFT:
1193                 /*
1194                  * Nothing to do, the core will initialize everything for us.
1195                  */
1196                 break;
1197
1198         case NAND_ECC_ENGINE_TYPE_ON_HOST:
1199                 ret = atmel_nand_pmecc_init(chip);
1200                 if (ret)
1201                         return ret;
1202
1203                 chip->ecc.read_page = atmel_nand_pmecc_read_page;
1204                 chip->ecc.write_page = atmel_nand_pmecc_write_page;
1205                 chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
1206                 chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
1207                 break;
1208
1209         default:
1210                 /* Other modes are not supported. */
1211                 dev_err(nc->dev, "Unsupported ECC mode: %d\n",
1212                         chip->ecc.engine_type);
1213                 return -ENOTSUPP;
1214         }
1215
1216         return 0;
1217 }
1218
1219 static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
1220 {
1221         int ret;
1222
1223         ret = atmel_nand_ecc_init(chip);
1224         if (ret)
1225                 return ret;
1226
1227         if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
1228                 return 0;
1229
1230         /* Adjust the ECC operations for the HSMC IP. */
1231         chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
1232         chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
1233         chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
1234         chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
1235
1236         return 0;
1237 }
1238
1239 static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
1240                                         const struct nand_interface_config *conf,
1241                                         struct atmel_smc_cs_conf *smcconf)
1242 {
1243         u32 ncycles, totalcycles, timeps, mckperiodps;
1244         struct atmel_nand_controller *nc;
1245         int ret;
1246
1247         nc = to_nand_controller(nand->base.controller);
1248
1249         /* DDR interface not supported. */
1250         if (!nand_interface_is_sdr(conf))
1251                 return -ENOTSUPP;
1252
1253         /*
1254          * tRC < 30ns implies EDO mode. This controller does not support this
1255          * mode.
1256          */
1257         if (conf->timings.sdr.tRC_min < 30000)
1258                 return -ENOTSUPP;
1259
1260         atmel_smc_cs_conf_init(smcconf);
1261
1262         mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
1263         mckperiodps *= 1000;
1264
1265         /*
1266          * Set write pulse timing. This one is easy to extract:
1267          *
1268          * NWE_PULSE = tWP
1269          */
1270         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
1271         totalcycles = ncycles;
1272         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
1273                                           ncycles);
1274         if (ret)
1275                 return ret;
1276
1277         /*
1278          * The write setup timing depends on the operation done on the NAND.
1279          * All operations goes through the same data bus, but the operation
1280          * type depends on the address we are writing to (ALE/CLE address
1281          * lines).
1282          * Since we have no way to differentiate the different operations at
1283          * the SMC level, we must consider the worst case (the biggest setup
1284          * time among all operation types):
1285          *
1286          * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
1287          */
1288         timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
1289                       conf->timings.sdr.tALS_min);
1290         timeps = max(timeps, conf->timings.sdr.tDS_min);
1291         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1292         ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
1293         totalcycles += ncycles;
1294         ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
1295                                           ncycles);
1296         if (ret)
1297                 return ret;
1298
1299         /*
1300          * As for the write setup timing, the write hold timing depends on the
1301          * operation done on the NAND:
1302          *
1303          * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
1304          */
1305         timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
1306                       conf->timings.sdr.tALH_min);
1307         timeps = max3(timeps, conf->timings.sdr.tDH_min,
1308                       conf->timings.sdr.tWH_min);
1309         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1310         totalcycles += ncycles;
1311
1312         /*
1313          * The write cycle timing is directly matching tWC, but is also
1314          * dependent on the other timings on the setup and hold timings we
1315          * calculated earlier, which gives:
1316          *
1317          * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
1318          */
1319         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
1320         ncycles = max(totalcycles, ncycles);
1321         ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
1322                                           ncycles);
1323         if (ret)
1324                 return ret;
1325
1326         /*
1327          * We don't want the CS line to be toggled between each byte/word
1328          * transfer to the NAND. The only way to guarantee that is to have the
1329          * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1330          *
1331          * NCS_WR_PULSE = NWE_CYCLE
1332          */
1333         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
1334                                           ncycles);
1335         if (ret)
1336                 return ret;
1337
1338         /*
1339          * As for the write setup timing, the read hold timing depends on the
1340          * operation done on the NAND:
1341          *
1342          * NRD_HOLD = max(tREH, tRHOH)
1343          */
1344         timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
1345         ncycles = DIV_ROUND_UP(timeps, mckperiodps);
1346         totalcycles = ncycles;
1347
1348         /*
1349          * TDF = tRHZ - NRD_HOLD
1350          */
1351         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
1352         ncycles -= totalcycles;
1353
1354         /*
1355          * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
1356          * we might end up with a config that does not fit in the TDF field.
1357          * Just take the max value in this case and hope that the NAND is more
1358          * tolerant than advertised.
1359          */
1360         if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
1361                 ncycles = ATMEL_SMC_MODE_TDF_MAX;
1362         else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
1363                 ncycles = ATMEL_SMC_MODE_TDF_MIN;
1364
1365         smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
1366                          ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
1367
1368         /*
1369          * Read pulse timing directly matches tRP:
1370          *
1371          * NRD_PULSE = tRP
1372          */
1373         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
1374         totalcycles += ncycles;
1375         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
1376                                           ncycles);
1377         if (ret)
1378                 return ret;
1379
1380         /*
1381          * The write cycle timing is directly matching tWC, but is also
1382          * dependent on the setup and hold timings we calculated earlier,
1383          * which gives:
1384          *
1385          * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
1386          *
1387          * NRD_SETUP is always 0.
1388          */
1389         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
1390         ncycles = max(totalcycles, ncycles);
1391         ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
1392                                           ncycles);
1393         if (ret)
1394                 return ret;
1395
1396         /*
1397          * We don't want the CS line to be toggled between each byte/word
1398          * transfer from the NAND. The only way to guarantee that is to have
1399          * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
1400          *
1401          * NCS_RD_PULSE = NRD_CYCLE
1402          */
1403         ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
1404                                           ncycles);
1405         if (ret)
1406                 return ret;
1407
1408         /* Txxx timings are directly matching tXXX ones. */
1409         ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
1410         ret = atmel_smc_cs_conf_set_timing(smcconf,
1411                                            ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
1412                                            ncycles);
1413         if (ret)
1414                 return ret;
1415
1416         ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
1417         ret = atmel_smc_cs_conf_set_timing(smcconf,
1418                                            ATMEL_HSMC_TIMINGS_TADL_SHIFT,
1419                                            ncycles);
1420         /*
1421          * Version 4 of the ONFI spec mandates that tADL be at least 400
1422          * nanoseconds, but, depending on the master clock rate, 400 ns may not
1423          * fit in the tADL field of the SMC reg. We need to relax the check and
1424          * accept the -ERANGE return code.
1425          *
1426          * Note that previous versions of the ONFI spec had a lower tADL_min
1427          * (100 or 200 ns). It's not clear why this timing constraint got
1428          * increased but it seems most NANDs are fine with values lower than
1429          * 400ns, so we should be safe.
1430          */
1431         if (ret && ret != -ERANGE)
1432                 return ret;
1433
1434         ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
1435         ret = atmel_smc_cs_conf_set_timing(smcconf,
1436                                            ATMEL_HSMC_TIMINGS_TAR_SHIFT,
1437                                            ncycles);
1438         if (ret)
1439                 return ret;
1440
1441         ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
1442         ret = atmel_smc_cs_conf_set_timing(smcconf,
1443                                            ATMEL_HSMC_TIMINGS_TRR_SHIFT,
1444                                            ncycles);
1445         if (ret)
1446                 return ret;
1447
1448         ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
1449         ret = atmel_smc_cs_conf_set_timing(smcconf,
1450                                            ATMEL_HSMC_TIMINGS_TWB_SHIFT,
1451                                            ncycles);
1452         if (ret)
1453                 return ret;
1454
1455         /* Attach the CS line to the NFC logic. */
1456         smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
1457
1458         /* Set the appropriate data bus width. */
1459         if (nand->base.options & NAND_BUSWIDTH_16)
1460                 smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
1461
1462         /* Operate in NRD/NWE READ/WRITEMODE. */
1463         smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
1464                          ATMEL_SMC_MODE_WRITEMODE_NWE;
1465
1466         return 0;
1467 }
1468
1469 static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
1470                                         int csline,
1471                                         const struct nand_interface_config *conf)
1472 {
1473         struct atmel_nand_controller *nc;
1474         struct atmel_smc_cs_conf smcconf;
1475         struct atmel_nand_cs *cs;
1476         int ret;
1477
1478         nc = to_nand_controller(nand->base.controller);
1479
1480         ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1481         if (ret)
1482                 return ret;
1483
1484         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1485                 return 0;
1486
1487         cs = &nand->cs[csline];
1488         cs->smcconf = smcconf;
1489         atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
1490
1491         return 0;
1492 }
1493
1494 static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
1495                                         int csline,
1496                                         const struct nand_interface_config *conf)
1497 {
1498         struct atmel_hsmc_nand_controller *nc;
1499         struct atmel_smc_cs_conf smcconf;
1500         struct atmel_nand_cs *cs;
1501         int ret;
1502
1503         nc = to_hsmc_nand_controller(nand->base.controller);
1504
1505         ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
1506         if (ret)
1507                 return ret;
1508
1509         if (csline == NAND_DATA_IFACE_CHECK_ONLY)
1510                 return 0;
1511
1512         cs = &nand->cs[csline];
1513         cs->smcconf = smcconf;
1514
1515         if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
1516                 cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
1517
1518         atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
1519                                  &cs->smcconf);
1520
1521         return 0;
1522 }
1523
1524 static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
1525                                       const struct nand_interface_config *conf)
1526 {
1527         struct atmel_nand *nand = to_atmel_nand(chip);
1528         const struct nand_sdr_timings *sdr;
1529         struct atmel_nand_controller *nc;
1530
1531         sdr = nand_get_sdr_timings(conf);
1532         if (IS_ERR(sdr))
1533                 return PTR_ERR(sdr);
1534
1535         nc = to_nand_controller(nand->base.controller);
1536
1537         if (csline >= nand->numcs ||
1538             (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
1539                 return -EINVAL;
1540
1541         return nc->caps->ops->setup_interface(nand, csline, conf);
1542 }
1543
1544 static int atmel_nand_exec_op(struct nand_chip *chip,
1545                               const struct nand_operation *op,
1546                               bool check_only)
1547 {
1548         struct atmel_nand *nand = to_atmel_nand(chip);
1549         struct atmel_nand_controller *nc;
1550
1551         nc = to_nand_controller(nand->base.controller);
1552
1553         return nc->caps->ops->exec_op(nand, op, check_only);
1554 }
1555
1556 static void atmel_nand_init(struct atmel_nand_controller *nc,
1557                             struct atmel_nand *nand)
1558 {
1559         struct nand_chip *chip = &nand->base;
1560         struct mtd_info *mtd = nand_to_mtd(chip);
1561
1562         mtd->dev.parent = nc->dev;
1563         nand->base.controller = &nc->base;
1564
1565         if (!nc->mck || !nc->caps->ops->setup_interface)
1566                 chip->options |= NAND_KEEP_TIMINGS;
1567
1568         /*
1569          * Use a bounce buffer when the buffer passed by the MTD user is not
1570          * suitable for DMA.
1571          */
1572         if (nc->dmac)
1573                 chip->options |= NAND_USES_DMA;
1574
1575         /* Default to HW ECC if pmecc is available. */
1576         if (nc->pmecc)
1577                 chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1578 }
1579
1580 static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
1581                                 struct atmel_nand *nand)
1582 {
1583         struct nand_chip *chip = &nand->base;
1584         struct atmel_smc_nand_controller *smc_nc;
1585         int i;
1586
1587         atmel_nand_init(nc, nand);
1588
1589         smc_nc = to_smc_nand_controller(chip->controller);
1590         if (!smc_nc->ebi_csa_regmap)
1591                 return;
1592
1593         /* Attach the CS to the NAND Flash logic. */
1594         for (i = 0; i < nand->numcs; i++)
1595                 regmap_update_bits(smc_nc->ebi_csa_regmap,
1596                                    smc_nc->ebi_csa->offs,
1597                                    BIT(nand->cs[i].id), BIT(nand->cs[i].id));
1598
1599         if (smc_nc->ebi_csa->nfd0_on_d16)
1600                 regmap_update_bits(smc_nc->ebi_csa_regmap,
1601                                    smc_nc->ebi_csa->offs,
1602                                    smc_nc->ebi_csa->nfd0_on_d16,
1603                                    smc_nc->ebi_csa->nfd0_on_d16);
1604 }
1605
1606 static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
1607 {
1608         struct nand_chip *chip = &nand->base;
1609         struct mtd_info *mtd = nand_to_mtd(chip);
1610         int ret;
1611
1612         ret = mtd_device_unregister(mtd);
1613         if (ret)
1614                 return ret;
1615
1616         nand_cleanup(chip);
1617         list_del(&nand->node);
1618
1619         return 0;
1620 }
1621
1622 static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
1623                                             struct device_node *np,
1624                                             int reg_cells)
1625 {
1626         struct atmel_nand *nand;
1627         struct gpio_desc *gpio;
1628         int numcs, ret, i;
1629
1630         numcs = of_property_count_elems_of_size(np, "reg",
1631                                                 reg_cells * sizeof(u32));
1632         if (numcs < 1) {
1633                 dev_err(nc->dev, "Missing or invalid reg property\n");
1634                 return ERR_PTR(-EINVAL);
1635         }
1636
1637         nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
1638         if (!nand)
1639                 return ERR_PTR(-ENOMEM);
1640
1641         nand->numcs = numcs;
1642
1643         gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
1644                                      "det", GPIOD_IN, "nand-det");
1645         if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1646                 dev_err(nc->dev,
1647                         "Failed to get detect gpio (err = %ld)\n",
1648                         PTR_ERR(gpio));
1649                 return ERR_CAST(gpio);
1650         }
1651
1652         if (!IS_ERR(gpio))
1653                 nand->cdgpio = gpio;
1654
1655         for (i = 0; i < numcs; i++) {
1656                 struct resource res;
1657                 u32 val;
1658
1659                 ret = of_address_to_resource(np, 0, &res);
1660                 if (ret) {
1661                         dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1662                                 ret);
1663                         return ERR_PTR(ret);
1664                 }
1665
1666                 ret = of_property_read_u32_index(np, "reg", i * reg_cells,
1667                                                  &val);
1668                 if (ret) {
1669                         dev_err(nc->dev, "Invalid reg property (err = %d)\n",
1670                                 ret);
1671                         return ERR_PTR(ret);
1672                 }
1673
1674                 nand->cs[i].id = val;
1675
1676                 nand->cs[i].io.dma = res.start;
1677                 nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
1678                 if (IS_ERR(nand->cs[i].io.virt))
1679                         return ERR_CAST(nand->cs[i].io.virt);
1680
1681                 if (!of_property_read_u32(np, "atmel,rb", &val)) {
1682                         if (val > ATMEL_NFC_MAX_RB_ID)
1683                                 return ERR_PTR(-EINVAL);
1684
1685                         nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
1686                         nand->cs[i].rb.id = val;
1687                 } else {
1688                         gpio = devm_fwnode_gpiod_get_index(nc->dev,
1689                                                            of_fwnode_handle(np),
1690                                                            "rb", i, GPIOD_IN,
1691                                                            "nand-rb");
1692                         if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1693                                 dev_err(nc->dev,
1694                                         "Failed to get R/B gpio (err = %ld)\n",
1695                                         PTR_ERR(gpio));
1696                                 return ERR_CAST(gpio);
1697                         }
1698
1699                         if (!IS_ERR(gpio)) {
1700                                 nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
1701                                 nand->cs[i].rb.gpio = gpio;
1702                         }
1703                 }
1704
1705                 gpio = devm_fwnode_gpiod_get_index(nc->dev,
1706                                                    of_fwnode_handle(np),
1707                                                    "cs", i, GPIOD_OUT_HIGH,
1708                                                    "nand-cs");
1709                 if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
1710                         dev_err(nc->dev,
1711                                 "Failed to get CS gpio (err = %ld)\n",
1712                                 PTR_ERR(gpio));
1713                         return ERR_CAST(gpio);
1714                 }
1715
1716                 if (!IS_ERR(gpio))
1717                         nand->cs[i].csgpio = gpio;
1718         }
1719
1720         nand_set_flash_node(&nand->base, np);
1721
1722         return nand;
1723 }
1724
1725 static int
1726 atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
1727                                struct atmel_nand *nand)
1728 {
1729         struct nand_chip *chip = &nand->base;
1730         struct mtd_info *mtd = nand_to_mtd(chip);
1731         int ret;
1732
1733         /* No card inserted, skip this NAND. */
1734         if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
1735                 dev_info(nc->dev, "No SmartMedia card inserted.\n");
1736                 return 0;
1737         }
1738
1739         nc->caps->ops->nand_init(nc, nand);
1740
1741         ret = nand_scan(chip, nand->numcs);
1742         if (ret) {
1743                 dev_err(nc->dev, "NAND scan failed: %d\n", ret);
1744                 return ret;
1745         }
1746
1747         ret = mtd_device_register(mtd, NULL, 0);
1748         if (ret) {
1749                 dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
1750                 nand_cleanup(chip);
1751                 return ret;
1752         }
1753
1754         list_add_tail(&nand->node, &nc->chips);
1755
1756         return 0;
1757 }
1758
1759 static int
1760 atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
1761 {
1762         struct atmel_nand *nand, *tmp;
1763         int ret;
1764
1765         list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
1766                 ret = atmel_nand_controller_remove_nand(nand);
1767                 if (ret)
1768                         return ret;
1769         }
1770
1771         return 0;
1772 }
1773
1774 static int
1775 atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
1776 {
1777         struct device *dev = nc->dev;
1778         struct platform_device *pdev = to_platform_device(dev);
1779         struct atmel_nand *nand;
1780         struct gpio_desc *gpio;
1781         struct resource *res;
1782
1783         /*
1784          * Legacy bindings only allow connecting a single NAND with a unique CS
1785          * line to the controller.
1786          */
1787         nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
1788                             GFP_KERNEL);
1789         if (!nand)
1790                 return -ENOMEM;
1791
1792         nand->numcs = 1;
1793
1794         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1795         nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
1796         if (IS_ERR(nand->cs[0].io.virt))
1797                 return PTR_ERR(nand->cs[0].io.virt);
1798
1799         nand->cs[0].io.dma = res->start;
1800
1801         /*
1802          * The old driver was hardcoding the CS id to 3 for all sama5
1803          * controllers. Since this id is only meaningful for the sama5
1804          * controller we can safely assign this id to 3 no matter the
1805          * controller.
1806          * If one wants to connect a NAND to a different CS line, he will
1807          * have to use the new bindings.
1808          */
1809         nand->cs[0].id = 3;
1810
1811         /* R/B GPIO. */
1812         gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
1813         if (IS_ERR(gpio)) {
1814                 dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
1815                         PTR_ERR(gpio));
1816                 return PTR_ERR(gpio);
1817         }
1818
1819         if (gpio) {
1820                 nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
1821                 nand->cs[0].rb.gpio = gpio;
1822         }
1823
1824         /* CS GPIO. */
1825         gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
1826         if (IS_ERR(gpio)) {
1827                 dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
1828                         PTR_ERR(gpio));
1829                 return PTR_ERR(gpio);
1830         }
1831
1832         nand->cs[0].csgpio = gpio;
1833
1834         /* Card detect GPIO. */
1835         gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
1836         if (IS_ERR(gpio)) {
1837                 dev_err(dev,
1838                         "Failed to get detect gpio (err = %ld)\n",
1839                         PTR_ERR(gpio));
1840                 return PTR_ERR(gpio);
1841         }
1842
1843         nand->cdgpio = gpio;
1844
1845         nand_set_flash_node(&nand->base, nc->dev->of_node);
1846
1847         return atmel_nand_controller_add_nand(nc, nand);
1848 }
1849
1850 static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
1851 {
1852         struct device_node *np, *nand_np;
1853         struct device *dev = nc->dev;
1854         int ret, reg_cells;
1855         u32 val;
1856
1857         /* We do not retrieve the SMC syscon when parsing old DTs. */
1858         if (nc->caps->legacy_of_bindings)
1859                 return atmel_nand_controller_legacy_add_nands(nc);
1860
1861         np = dev->of_node;
1862
1863         ret = of_property_read_u32(np, "#address-cells", &val);
1864         if (ret) {
1865                 dev_err(dev, "missing #address-cells property\n");
1866                 return ret;
1867         }
1868
1869         reg_cells = val;
1870
1871         ret = of_property_read_u32(np, "#size-cells", &val);
1872         if (ret) {
1873                 dev_err(dev, "missing #size-cells property\n");
1874                 return ret;
1875         }
1876
1877         reg_cells += val;
1878
1879         for_each_child_of_node(np, nand_np) {
1880                 struct atmel_nand *nand;
1881
1882                 nand = atmel_nand_create(nc, nand_np, reg_cells);
1883                 if (IS_ERR(nand)) {
1884                         ret = PTR_ERR(nand);
1885                         goto err;
1886                 }
1887
1888                 ret = atmel_nand_controller_add_nand(nc, nand);
1889                 if (ret)
1890                         goto err;
1891         }
1892
1893         return 0;
1894
1895 err:
1896         atmel_nand_controller_remove_nands(nc);
1897
1898         return ret;
1899 }
1900
1901 static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
1902 {
1903         if (nc->dmac)
1904                 dma_release_channel(nc->dmac);
1905
1906         clk_put(nc->mck);
1907 }
1908
1909 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
1910         .offs = AT91SAM9260_MATRIX_EBICSA,
1911 };
1912
1913 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
1914         .offs = AT91SAM9261_MATRIX_EBICSA,
1915 };
1916
1917 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
1918         .offs = AT91SAM9263_MATRIX_EBI0CSA,
1919 };
1920
1921 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
1922         .offs = AT91SAM9RL_MATRIX_EBICSA,
1923 };
1924
1925 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
1926         .offs = AT91SAM9G45_MATRIX_EBICSA,
1927 };
1928
1929 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
1930         .offs = AT91SAM9N12_MATRIX_EBICSA,
1931 };
1932
1933 static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
1934         .offs = AT91SAM9X5_MATRIX_EBICSA,
1935 };
1936
1937 static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
1938         .offs = AT91_SFR_CCFG_EBICSA,
1939         .nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
1940 };
1941
1942 static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = {
1943         {
1944                 .compatible = "atmel,at91sam9260-matrix",
1945                 .data = &at91sam9260_ebi_csa,
1946         },
1947         {
1948                 .compatible = "atmel,at91sam9261-matrix",
1949                 .data = &at91sam9261_ebi_csa,
1950         },
1951         {
1952                 .compatible = "atmel,at91sam9263-matrix",
1953                 .data = &at91sam9263_ebi_csa,
1954         },
1955         {
1956                 .compatible = "atmel,at91sam9rl-matrix",
1957                 .data = &at91sam9rl_ebi_csa,
1958         },
1959         {
1960                 .compatible = "atmel,at91sam9g45-matrix",
1961                 .data = &at91sam9g45_ebi_csa,
1962         },
1963         {
1964                 .compatible = "atmel,at91sam9n12-matrix",
1965                 .data = &at91sam9n12_ebi_csa,
1966         },
1967         {
1968                 .compatible = "atmel,at91sam9x5-matrix",
1969                 .data = &at91sam9x5_ebi_csa,
1970         },
1971         {
1972                 .compatible = "microchip,sam9x60-sfr",
1973                 .data = &sam9x60_ebi_csa,
1974         },
1975         { /* sentinel */ },
1976 };
1977
1978 static int atmel_nand_attach_chip(struct nand_chip *chip)
1979 {
1980         struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
1981         struct atmel_nand *nand = to_atmel_nand(chip);
1982         struct mtd_info *mtd = nand_to_mtd(chip);
1983         int ret;
1984
1985         ret = nc->caps->ops->ecc_init(chip);
1986         if (ret)
1987                 return ret;
1988
1989         if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
1990                 /*
1991                  * We keep the MTD name unchanged to avoid breaking platforms
1992                  * where the MTD cmdline parser is used and the bootloader
1993                  * has not been updated to use the new naming scheme.
1994                  */
1995                 mtd->name = "atmel_nand";
1996         } else if (!mtd->name) {
1997                 /*
1998                  * If the new bindings are used and the bootloader has not been
1999                  * updated to pass a new mtdparts parameter on the cmdline, you
2000                  * should define the following property in your nand node:
2001                  *
2002                  *      label = "atmel_nand";
2003                  *
2004                  * This way, mtd->name will be set by the core when
2005                  * nand_set_flash_node() is called.
2006                  */
2007                 mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
2008                                            "%s:nand.%d", dev_name(nc->dev),
2009                                            nand->cs[0].id);
2010                 if (!mtd->name) {
2011                         dev_err(nc->dev, "Failed to allocate mtd->name\n");
2012                         return -ENOMEM;
2013                 }
2014         }
2015
2016         return 0;
2017 }
2018
2019 static const struct nand_controller_ops atmel_nand_controller_ops = {
2020         .attach_chip = atmel_nand_attach_chip,
2021         .setup_interface = atmel_nand_setup_interface,
2022         .exec_op = atmel_nand_exec_op,
2023 };
2024
2025 static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
2026                                 struct platform_device *pdev,
2027                                 const struct atmel_nand_controller_caps *caps)
2028 {
2029         struct device *dev = &pdev->dev;
2030         struct device_node *np = dev->of_node;
2031         int ret;
2032
2033         nand_controller_init(&nc->base);
2034         nc->base.ops = &atmel_nand_controller_ops;
2035         INIT_LIST_HEAD(&nc->chips);
2036         nc->dev = dev;
2037         nc->caps = caps;
2038
2039         platform_set_drvdata(pdev, nc);
2040
2041         nc->pmecc = devm_atmel_pmecc_get(dev);
2042         if (IS_ERR(nc->pmecc))
2043                 return dev_err_probe(dev, PTR_ERR(nc->pmecc),
2044                                      "Could not get PMECC object\n");
2045
2046         if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
2047                 dma_cap_mask_t mask;
2048
2049                 dma_cap_zero(mask);
2050                 dma_cap_set(DMA_MEMCPY, mask);
2051
2052                 nc->dmac = dma_request_channel(mask, NULL, NULL);
2053                 if (!nc->dmac)
2054                         dev_err(nc->dev, "Failed to request DMA channel\n");
2055         }
2056
2057         /* We do not retrieve the SMC syscon when parsing old DTs. */
2058         if (nc->caps->legacy_of_bindings)
2059                 return 0;
2060
2061         nc->mck = of_clk_get(dev->parent->of_node, 0);
2062         if (IS_ERR(nc->mck)) {
2063                 dev_err(dev, "Failed to retrieve MCK clk\n");
2064                 ret = PTR_ERR(nc->mck);
2065                 goto out_release_dma;
2066         }
2067
2068         np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2069         if (!np) {
2070                 dev_err(dev, "Missing or invalid atmel,smc property\n");
2071                 ret = -EINVAL;
2072                 goto out_release_dma;
2073         }
2074
2075         nc->smc = syscon_node_to_regmap(np);
2076         of_node_put(np);
2077         if (IS_ERR(nc->smc)) {
2078                 ret = PTR_ERR(nc->smc);
2079                 dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
2080                 goto out_release_dma;
2081         }
2082
2083         return 0;
2084
2085 out_release_dma:
2086         if (nc->dmac)
2087                 dma_release_channel(nc->dmac);
2088
2089         return ret;
2090 }
2091
2092 static int
2093 atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
2094 {
2095         struct device *dev = nc->base.dev;
2096         const struct of_device_id *match;
2097         struct device_node *np;
2098         int ret;
2099
2100         /* We do not retrieve the EBICSA regmap when parsing old DTs. */
2101         if (nc->base.caps->legacy_of_bindings)
2102                 return 0;
2103
2104         np = of_parse_phandle(dev->parent->of_node,
2105                               nc->base.caps->ebi_csa_regmap_name, 0);
2106         if (!np)
2107                 return 0;
2108
2109         match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
2110         if (!match) {
2111                 of_node_put(np);
2112                 return 0;
2113         }
2114
2115         nc->ebi_csa_regmap = syscon_node_to_regmap(np);
2116         of_node_put(np);
2117         if (IS_ERR(nc->ebi_csa_regmap)) {
2118                 ret = PTR_ERR(nc->ebi_csa_regmap);
2119                 dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
2120                 return ret;
2121         }
2122
2123         nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;
2124
2125         /*
2126          * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
2127          * add 4 to ->ebi_csa->offs.
2128          */
2129         if (of_device_is_compatible(dev->parent->of_node,
2130                                     "atmel,at91sam9263-ebi1"))
2131                 nc->ebi_csa->offs += 4;
2132
2133         return 0;
2134 }
2135
2136 static int
2137 atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
2138 {
2139         struct regmap_config regmap_conf = {
2140                 .reg_bits = 32,
2141                 .val_bits = 32,
2142                 .reg_stride = 4,
2143         };
2144
2145         struct device *dev = nc->base.dev;
2146         struct device_node *nand_np, *nfc_np;
2147         void __iomem *iomem;
2148         struct resource res;
2149         int ret;
2150
2151         nand_np = dev->of_node;
2152         nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
2153         if (!nfc_np) {
2154                 dev_err(dev, "Could not find device node for sama5d3-nfc\n");
2155                 return -ENODEV;
2156         }
2157
2158         nc->clk = of_clk_get(nfc_np, 0);
2159         if (IS_ERR(nc->clk)) {
2160                 ret = PTR_ERR(nc->clk);
2161                 dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
2162                         ret);
2163                 goto out;
2164         }
2165
2166         ret = clk_prepare_enable(nc->clk);
2167         if (ret) {
2168                 dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
2169                         ret);
2170                 goto out;
2171         }
2172
2173         nc->irq = of_irq_get(nand_np, 0);
2174         if (nc->irq <= 0) {
2175                 ret = nc->irq ?: -ENXIO;
2176                 if (ret != -EPROBE_DEFER)
2177                         dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2178                                 ret);
2179                 goto out;
2180         }
2181
2182         ret = of_address_to_resource(nfc_np, 0, &res);
2183         if (ret) {
2184                 dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
2185                         ret);
2186                 goto out;
2187         }
2188
2189         iomem = devm_ioremap_resource(dev, &res);
2190         if (IS_ERR(iomem)) {
2191                 ret = PTR_ERR(iomem);
2192                 goto out;
2193         }
2194
2195         regmap_conf.name = "nfc-io";
2196         regmap_conf.max_register = resource_size(&res) - 4;
2197         nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2198         if (IS_ERR(nc->io)) {
2199                 ret = PTR_ERR(nc->io);
2200                 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2201                         ret);
2202                 goto out;
2203         }
2204
2205         ret = of_address_to_resource(nfc_np, 1, &res);
2206         if (ret) {
2207                 dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
2208                         ret);
2209                 goto out;
2210         }
2211
2212         iomem = devm_ioremap_resource(dev, &res);
2213         if (IS_ERR(iomem)) {
2214                 ret = PTR_ERR(iomem);
2215                 goto out;
2216         }
2217
2218         regmap_conf.name = "smc";
2219         regmap_conf.max_register = resource_size(&res) - 4;
2220         nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
2221         if (IS_ERR(nc->base.smc)) {
2222                 ret = PTR_ERR(nc->base.smc);
2223                 dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
2224                         ret);
2225                 goto out;
2226         }
2227
2228         ret = of_address_to_resource(nfc_np, 2, &res);
2229         if (ret) {
2230                 dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
2231                         ret);
2232                 goto out;
2233         }
2234
2235         nc->sram.virt = devm_ioremap_resource(dev, &res);
2236         if (IS_ERR(nc->sram.virt)) {
2237                 ret = PTR_ERR(nc->sram.virt);
2238                 goto out;
2239         }
2240
2241         nc->sram.dma = res.start;
2242
2243 out:
2244         of_node_put(nfc_np);
2245
2246         return ret;
2247 }
2248
2249 static int
2250 atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
2251 {
2252         struct device *dev = nc->base.dev;
2253         struct device_node *np;
2254         int ret;
2255
2256         np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
2257         if (!np) {
2258                 dev_err(dev, "Missing or invalid atmel,smc property\n");
2259                 return -EINVAL;
2260         }
2261
2262         nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
2263
2264         nc->irq = of_irq_get(np, 0);
2265         of_node_put(np);
2266         if (nc->irq <= 0) {
2267                 ret = nc->irq ?: -ENXIO;
2268                 if (ret != -EPROBE_DEFER)
2269                         dev_err(dev, "Failed to get IRQ number (err = %d)\n",
2270                                 ret);
2271                 return ret;
2272         }
2273
2274         np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
2275         if (!np) {
2276                 dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
2277                 return -EINVAL;
2278         }
2279
2280         nc->io = syscon_node_to_regmap(np);
2281         of_node_put(np);
2282         if (IS_ERR(nc->io)) {
2283                 ret = PTR_ERR(nc->io);
2284                 dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
2285                 return ret;
2286         }
2287
2288         nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
2289                                          "atmel,nfc-sram", 0);
2290         if (!nc->sram.pool) {
2291                 dev_err(nc->base.dev, "Missing SRAM\n");
2292                 return -ENOMEM;
2293         }
2294
2295         nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
2296                                                            ATMEL_NFC_SRAM_SIZE,
2297                                                            &nc->sram.dma);
2298         if (!nc->sram.virt) {
2299                 dev_err(nc->base.dev,
2300                         "Could not allocate memory from the NFC SRAM pool\n");
2301                 return -ENOMEM;
2302         }
2303
2304         return 0;
2305 }
2306
2307 static int
2308 atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
2309 {
2310         struct atmel_hsmc_nand_controller *hsmc_nc;
2311         int ret;
2312
2313         ret = atmel_nand_controller_remove_nands(nc);
2314         if (ret)
2315                 return ret;
2316
2317         hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
2318         regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2319                      ATMEL_HSMC_NFC_CTRL_DIS);
2320
2321         if (hsmc_nc->sram.pool)
2322                 gen_pool_free(hsmc_nc->sram.pool,
2323                               (unsigned long)hsmc_nc->sram.virt,
2324                               ATMEL_NFC_SRAM_SIZE);
2325
2326         if (hsmc_nc->clk) {
2327                 clk_disable_unprepare(hsmc_nc->clk);
2328                 clk_put(hsmc_nc->clk);
2329         }
2330
2331         atmel_nand_controller_cleanup(nc);
2332
2333         return 0;
2334 }
2335
2336 static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
2337                                 const struct atmel_nand_controller_caps *caps)
2338 {
2339         struct device *dev = &pdev->dev;
2340         struct atmel_hsmc_nand_controller *nc;
2341         int ret;
2342
2343         nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2344         if (!nc)
2345                 return -ENOMEM;
2346
2347         ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2348         if (ret)
2349                 return ret;
2350
2351         if (caps->legacy_of_bindings)
2352                 ret = atmel_hsmc_nand_controller_legacy_init(nc);
2353         else
2354                 ret = atmel_hsmc_nand_controller_init(nc);
2355
2356         if (ret)
2357                 return ret;
2358
2359         /* Make sure all irqs are masked before registering our IRQ handler. */
2360         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
2361         ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
2362                                IRQF_SHARED, "nfc", nc);
2363         if (ret) {
2364                 dev_err(dev,
2365                         "Could not get register NFC interrupt handler (err = %d)\n",
2366                         ret);
2367                 goto err;
2368         }
2369
2370         /* Initial NFC configuration. */
2371         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
2372                      ATMEL_HSMC_NFC_CFG_DTO_MAX);
2373         regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
2374                      ATMEL_HSMC_NFC_CTRL_EN);
2375
2376         ret = atmel_nand_controller_add_nands(&nc->base);
2377         if (ret)
2378                 goto err;
2379
2380         return 0;
2381
2382 err:
2383         atmel_hsmc_nand_controller_remove(&nc->base);
2384
2385         return ret;
2386 }
2387
2388 static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
2389         .probe = atmel_hsmc_nand_controller_probe,
2390         .remove = atmel_hsmc_nand_controller_remove,
2391         .ecc_init = atmel_hsmc_nand_ecc_init,
2392         .nand_init = atmel_nand_init,
2393         .setup_interface = atmel_hsmc_nand_setup_interface,
2394         .exec_op = atmel_hsmc_nand_exec_op,
2395 };
2396
2397 static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
2398         .has_dma = true,
2399         .ale_offs = BIT(21),
2400         .cle_offs = BIT(22),
2401         .ops = &atmel_hsmc_nc_ops,
2402 };
2403
2404 /* Only used to parse old bindings. */
2405 static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
2406         .has_dma = true,
2407         .ale_offs = BIT(21),
2408         .cle_offs = BIT(22),
2409         .ops = &atmel_hsmc_nc_ops,
2410         .legacy_of_bindings = true,
2411 };
2412
2413 static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
2414                                 const struct atmel_nand_controller_caps *caps)
2415 {
2416         struct device *dev = &pdev->dev;
2417         struct atmel_smc_nand_controller *nc;
2418         int ret;
2419
2420         nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
2421         if (!nc)
2422                 return -ENOMEM;
2423
2424         ret = atmel_nand_controller_init(&nc->base, pdev, caps);
2425         if (ret)
2426                 return ret;
2427
2428         ret = atmel_smc_nand_controller_init(nc);
2429         if (ret)
2430                 return ret;
2431
2432         return atmel_nand_controller_add_nands(&nc->base);
2433 }
2434
2435 static int
2436 atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
2437 {
2438         int ret;
2439
2440         ret = atmel_nand_controller_remove_nands(nc);
2441         if (ret)
2442                 return ret;
2443
2444         atmel_nand_controller_cleanup(nc);
2445
2446         return 0;
2447 }
2448
2449 /*
2450  * The SMC reg layout of at91rm9200 is completely different which prevents us
2451  * from re-using atmel_smc_nand_setup_interface() for the
2452  * ->setup_interface() hook.
2453  * At this point, there's no support for the at91rm9200 SMC IP, so we leave
2454  * ->setup_interface() unassigned.
2455  */
2456 static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
2457         .probe = atmel_smc_nand_controller_probe,
2458         .remove = atmel_smc_nand_controller_remove,
2459         .ecc_init = atmel_nand_ecc_init,
2460         .nand_init = atmel_smc_nand_init,
2461         .exec_op = atmel_smc_nand_exec_op,
2462 };
2463
2464 static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
2465         .ale_offs = BIT(21),
2466         .cle_offs = BIT(22),
2467         .ebi_csa_regmap_name = "atmel,matrix",
2468         .ops = &at91rm9200_nc_ops,
2469 };
2470
2471 static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
2472         .probe = atmel_smc_nand_controller_probe,
2473         .remove = atmel_smc_nand_controller_remove,
2474         .ecc_init = atmel_nand_ecc_init,
2475         .nand_init = atmel_smc_nand_init,
2476         .setup_interface = atmel_smc_nand_setup_interface,
2477         .exec_op = atmel_smc_nand_exec_op,
2478 };
2479
2480 static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
2481         .ale_offs = BIT(21),
2482         .cle_offs = BIT(22),
2483         .ebi_csa_regmap_name = "atmel,matrix",
2484         .ops = &atmel_smc_nc_ops,
2485 };
2486
2487 static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
2488         .ale_offs = BIT(22),
2489         .cle_offs = BIT(21),
2490         .ebi_csa_regmap_name = "atmel,matrix",
2491         .ops = &atmel_smc_nc_ops,
2492 };
2493
2494 static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
2495         .has_dma = true,
2496         .ale_offs = BIT(21),
2497         .cle_offs = BIT(22),
2498         .ebi_csa_regmap_name = "atmel,matrix",
2499         .ops = &atmel_smc_nc_ops,
2500 };
2501
2502 static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
2503         .has_dma = true,
2504         .ale_offs = BIT(21),
2505         .cle_offs = BIT(22),
2506         .ebi_csa_regmap_name = "microchip,sfr",
2507         .ops = &atmel_smc_nc_ops,
2508 };
2509
2510 /* Only used to parse old bindings. */
2511 static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
2512         .ale_offs = BIT(21),
2513         .cle_offs = BIT(22),
2514         .ops = &atmel_smc_nc_ops,
2515         .legacy_of_bindings = true,
2516 };
2517
2518 static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
2519         .ale_offs = BIT(22),
2520         .cle_offs = BIT(21),
2521         .ops = &atmel_smc_nc_ops,
2522         .legacy_of_bindings = true,
2523 };
2524
2525 static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
2526         .has_dma = true,
2527         .ale_offs = BIT(21),
2528         .cle_offs = BIT(22),
2529         .ops = &atmel_smc_nc_ops,
2530         .legacy_of_bindings = true,
2531 };
2532
2533 static const struct of_device_id atmel_nand_controller_of_ids[] = {
2534         {
2535                 .compatible = "atmel,at91rm9200-nand-controller",
2536                 .data = &atmel_rm9200_nc_caps,
2537         },
2538         {
2539                 .compatible = "atmel,at91sam9260-nand-controller",
2540                 .data = &atmel_sam9260_nc_caps,
2541         },
2542         {
2543                 .compatible = "atmel,at91sam9261-nand-controller",
2544                 .data = &atmel_sam9261_nc_caps,
2545         },
2546         {
2547                 .compatible = "atmel,at91sam9g45-nand-controller",
2548                 .data = &atmel_sam9g45_nc_caps,
2549         },
2550         {
2551                 .compatible = "atmel,sama5d3-nand-controller",
2552                 .data = &atmel_sama5_nc_caps,
2553         },
2554         {
2555                 .compatible = "microchip,sam9x60-nand-controller",
2556                 .data = &microchip_sam9x60_nc_caps,
2557         },
2558         /* Support for old/deprecated bindings: */
2559         {
2560                 .compatible = "atmel,at91rm9200-nand",
2561                 .data = &atmel_rm9200_nand_caps,
2562         },
2563         {
2564                 .compatible = "atmel,sama5d4-nand",
2565                 .data = &atmel_rm9200_nand_caps,
2566         },
2567         {
2568                 .compatible = "atmel,sama5d2-nand",
2569                 .data = &atmel_rm9200_nand_caps,
2570         },
2571         { /* sentinel */ },
2572 };
2573 MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
2574
2575 static int atmel_nand_controller_probe(struct platform_device *pdev)
2576 {
2577         const struct atmel_nand_controller_caps *caps;
2578
2579         if (pdev->id_entry)
2580                 caps = (void *)pdev->id_entry->driver_data;
2581         else
2582                 caps = of_device_get_match_data(&pdev->dev);
2583
2584         if (!caps) {
2585                 dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
2586                 return -EINVAL;
2587         }
2588
2589         if (caps->legacy_of_bindings) {
2590                 struct device_node *nfc_node;
2591                 u32 ale_offs = 21;
2592
2593                 /*
2594                  * If we are parsing legacy DT props and the DT contains a
2595                  * valid NFC node, forward the request to the sama5 logic.
2596                  */
2597                 nfc_node = of_get_compatible_child(pdev->dev.of_node,
2598                                                    "atmel,sama5d3-nfc");
2599                 if (nfc_node) {
2600                         caps = &atmel_sama5_nand_caps;
2601                         of_node_put(nfc_node);
2602                 }
2603
2604                 /*
2605                  * Even if the compatible says we are dealing with an
2606                  * at91rm9200 controller, the atmel,nand-has-dma specify that
2607                  * this controller supports DMA, which means we are in fact
2608                  * dealing with an at91sam9g45+ controller.
2609                  */
2610                 if (!caps->has_dma &&
2611                     of_property_read_bool(pdev->dev.of_node,
2612                                           "atmel,nand-has-dma"))
2613                         caps = &atmel_sam9g45_nand_caps;
2614
2615                 /*
2616                  * All SoCs except the at91sam9261 are assigning ALE to A21 and
2617                  * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
2618                  * actually dealing with an at91sam9261 controller.
2619                  */
2620                 of_property_read_u32(pdev->dev.of_node,
2621                                      "atmel,nand-addr-offset", &ale_offs);
2622                 if (ale_offs != 21)
2623                         caps = &atmel_sam9261_nand_caps;
2624         }
2625
2626         return caps->ops->probe(pdev, caps);
2627 }
2628
2629 static void atmel_nand_controller_remove(struct platform_device *pdev)
2630 {
2631         struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
2632
2633         WARN_ON(nc->caps->ops->remove(nc));
2634 }
2635
2636 static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
2637 {
2638         struct atmel_nand_controller *nc = dev_get_drvdata(dev);
2639         struct atmel_nand *nand;
2640
2641         if (nc->pmecc)
2642                 atmel_pmecc_reset(nc->pmecc);
2643
2644         list_for_each_entry(nand, &nc->chips, node) {
2645                 int i;
2646
2647                 for (i = 0; i < nand->numcs; i++)
2648                         nand_reset(&nand->base, i);
2649         }
2650
2651         return 0;
2652 }
2653
2654 static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
2655                          atmel_nand_controller_resume);
2656
2657 static struct platform_driver atmel_nand_controller_driver = {
2658         .driver = {
2659                 .name = "atmel-nand-controller",
2660                 .of_match_table = atmel_nand_controller_of_ids,
2661                 .pm = &atmel_nand_controller_pm_ops,
2662         },
2663         .probe = atmel_nand_controller_probe,
2664         .remove_new = atmel_nand_controller_remove,
2665 };
2666 module_platform_driver(atmel_nand_controller_driver);
2667
2668 MODULE_LICENSE("GPL");
2669 MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
2670 MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
2671 MODULE_ALIAS("platform:atmel-nand-controller");