Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[sfrench/cifs-2.6.git] / drivers / mtd / nand / qcom_nandc.c
1 /*
2  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 #include <linux/dma/qcom_bam_dma.h>
26 #include <linux/dma-direct.h> /* XXX: drivers shall never use this directly! */
27
28 /* NANDc reg offsets */
29 #define NAND_FLASH_CMD                  0x00
30 #define NAND_ADDR0                      0x04
31 #define NAND_ADDR1                      0x08
32 #define NAND_FLASH_CHIP_SELECT          0x0c
33 #define NAND_EXEC_CMD                   0x10
34 #define NAND_FLASH_STATUS               0x14
35 #define NAND_BUFFER_STATUS              0x18
36 #define NAND_DEV0_CFG0                  0x20
37 #define NAND_DEV0_CFG1                  0x24
38 #define NAND_DEV0_ECC_CFG               0x28
39 #define NAND_DEV1_ECC_CFG               0x2c
40 #define NAND_DEV1_CFG0                  0x30
41 #define NAND_DEV1_CFG1                  0x34
42 #define NAND_READ_ID                    0x40
43 #define NAND_READ_STATUS                0x44
44 #define NAND_DEV_CMD0                   0xa0
45 #define NAND_DEV_CMD1                   0xa4
46 #define NAND_DEV_CMD2                   0xa8
47 #define NAND_DEV_CMD_VLD                0xac
48 #define SFLASHC_BURST_CFG               0xe0
49 #define NAND_ERASED_CW_DETECT_CFG       0xe8
50 #define NAND_ERASED_CW_DETECT_STATUS    0xec
51 #define NAND_EBI2_ECC_BUF_CFG           0xf0
52 #define FLASH_BUF_ACC                   0x100
53
54 #define NAND_CTRL                       0xf00
55 #define NAND_VERSION                    0xf08
56 #define NAND_READ_LOCATION_0            0xf20
57 #define NAND_READ_LOCATION_1            0xf24
58 #define NAND_READ_LOCATION_2            0xf28
59 #define NAND_READ_LOCATION_3            0xf2c
60
61 /* dummy register offsets, used by write_reg_dma */
62 #define NAND_DEV_CMD1_RESTORE           0xdead
63 #define NAND_DEV_CMD_VLD_RESTORE        0xbeef
64
65 /* NAND_FLASH_CMD bits */
66 #define PAGE_ACC                        BIT(4)
67 #define LAST_PAGE                       BIT(5)
68
69 /* NAND_FLASH_CHIP_SELECT bits */
70 #define NAND_DEV_SEL                    0
71 #define DM_EN                           BIT(2)
72
73 /* NAND_FLASH_STATUS bits */
74 #define FS_OP_ERR                       BIT(4)
75 #define FS_READY_BSY_N                  BIT(5)
76 #define FS_MPU_ERR                      BIT(8)
77 #define FS_DEVICE_STS_ERR               BIT(16)
78 #define FS_DEVICE_WP                    BIT(23)
79
80 /* NAND_BUFFER_STATUS bits */
81 #define BS_UNCORRECTABLE_BIT            BIT(8)
82 #define BS_CORRECTABLE_ERR_MSK          0x1f
83
84 /* NAND_DEVn_CFG0 bits */
85 #define DISABLE_STATUS_AFTER_WRITE      4
86 #define CW_PER_PAGE                     6
87 #define UD_SIZE_BYTES                   9
88 #define ECC_PARITY_SIZE_BYTES_RS        19
89 #define SPARE_SIZE_BYTES                23
90 #define NUM_ADDR_CYCLES                 27
91 #define STATUS_BFR_READ                 30
92 #define SET_RD_MODE_AFTER_STATUS        31
93
94 /* NAND_DEVn_CFG0 bits */
95 #define DEV0_CFG1_ECC_DISABLE           0
96 #define WIDE_FLASH                      1
97 #define NAND_RECOVERY_CYCLES            2
98 #define CS_ACTIVE_BSY                   5
99 #define BAD_BLOCK_BYTE_NUM              6
100 #define BAD_BLOCK_IN_SPARE_AREA         16
101 #define WR_RD_BSY_GAP                   17
102 #define ENABLE_BCH_ECC                  27
103
104 /* NAND_DEV0_ECC_CFG bits */
105 #define ECC_CFG_ECC_DISABLE             0
106 #define ECC_SW_RESET                    1
107 #define ECC_MODE                        4
108 #define ECC_PARITY_SIZE_BYTES_BCH       8
109 #define ECC_NUM_DATA_BYTES              16
110 #define ECC_FORCE_CLK_OPEN              30
111
112 /* NAND_DEV_CMD1 bits */
113 #define READ_ADDR                       0
114
115 /* NAND_DEV_CMD_VLD bits */
116 #define READ_START_VLD                  BIT(0)
117 #define READ_STOP_VLD                   BIT(1)
118 #define WRITE_START_VLD                 BIT(2)
119 #define ERASE_START_VLD                 BIT(3)
120 #define SEQ_READ_START_VLD              BIT(4)
121
122 /* NAND_EBI2_ECC_BUF_CFG bits */
123 #define NUM_STEPS                       0
124
125 /* NAND_ERASED_CW_DETECT_CFG bits */
126 #define ERASED_CW_ECC_MASK              1
127 #define AUTO_DETECT_RES                 0
128 #define MASK_ECC                        (1 << ERASED_CW_ECC_MASK)
129 #define RESET_ERASED_DET                (1 << AUTO_DETECT_RES)
130 #define ACTIVE_ERASED_DET               (0 << AUTO_DETECT_RES)
131 #define CLR_ERASED_PAGE_DET             (RESET_ERASED_DET | MASK_ECC)
132 #define SET_ERASED_PAGE_DET             (ACTIVE_ERASED_DET | MASK_ECC)
133
134 /* NAND_ERASED_CW_DETECT_STATUS bits */
135 #define PAGE_ALL_ERASED                 BIT(7)
136 #define CODEWORD_ALL_ERASED             BIT(6)
137 #define PAGE_ERASED                     BIT(5)
138 #define CODEWORD_ERASED                 BIT(4)
139 #define ERASED_PAGE                     (PAGE_ALL_ERASED | PAGE_ERASED)
140 #define ERASED_CW                       (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
141
142 /* NAND_READ_LOCATION_n bits */
143 #define READ_LOCATION_OFFSET            0
144 #define READ_LOCATION_SIZE              16
145 #define READ_LOCATION_LAST              31
146
147 /* Version Mask */
148 #define NAND_VERSION_MAJOR_MASK         0xf0000000
149 #define NAND_VERSION_MAJOR_SHIFT        28
150 #define NAND_VERSION_MINOR_MASK         0x0fff0000
151 #define NAND_VERSION_MINOR_SHIFT        16
152
153 /* NAND OP_CMDs */
154 #define PAGE_READ                       0x2
155 #define PAGE_READ_WITH_ECC              0x3
156 #define PAGE_READ_WITH_ECC_SPARE        0x4
157 #define PROGRAM_PAGE                    0x6
158 #define PAGE_PROGRAM_WITH_ECC           0x7
159 #define PROGRAM_PAGE_SPARE              0x9
160 #define BLOCK_ERASE                     0xa
161 #define FETCH_ID                        0xb
162 #define RESET_DEVICE                    0xd
163
164 /* Default Value for NAND_DEV_CMD_VLD */
165 #define NAND_DEV_CMD_VLD_VAL            (READ_START_VLD | WRITE_START_VLD | \
166                                          ERASE_START_VLD | SEQ_READ_START_VLD)
167
168 /* NAND_CTRL bits */
169 #define BAM_MODE_EN                     BIT(0)
170
171 /*
172  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
173  * the driver calls the chunks 'step' or 'codeword' interchangeably
174  */
175 #define NANDC_STEP_SIZE                 512
176
177 /*
178  * the largest page size we support is 8K, this will have 16 steps/codewords
179  * of 512 bytes each
180  */
181 #define MAX_NUM_STEPS                   (SZ_8K / NANDC_STEP_SIZE)
182
183 /* we read at most 3 registers per codeword scan */
184 #define MAX_REG_RD                      (3 * MAX_NUM_STEPS)
185
186 /* ECC modes supported by the controller */
187 #define ECC_NONE        BIT(0)
188 #define ECC_RS_4BIT     BIT(1)
189 #define ECC_BCH_4BIT    BIT(2)
190 #define ECC_BCH_8BIT    BIT(3)
191
192 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)   \
193 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,                  \
194               ((offset) << READ_LOCATION_OFFSET) |              \
195               ((size) << READ_LOCATION_SIZE) |                  \
196               ((is_last) << READ_LOCATION_LAST))
197
198 /*
199  * Returns the actual register address for all NAND_DEV_ registers
200  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
201  */
202 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
203
204 /* Returns the NAND register physical address */
205 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
206
207 /* Returns the dma address for reg read buffer */
208 #define reg_buf_dma_addr(chip, vaddr) \
209         ((chip)->reg_read_dma + \
210         ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
211
212 #define QPIC_PER_CW_CMD_ELEMENTS        32
213 #define QPIC_PER_CW_CMD_SGL             32
214 #define QPIC_PER_CW_DATA_SGL            8
215
216 /*
217  * Flags used in DMA descriptor preparation helper functions
218  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
219  */
220 /* Don't set the EOT in current tx BAM sgl */
221 #define NAND_BAM_NO_EOT                 BIT(0)
222 /* Set the NWD flag in current BAM sgl */
223 #define NAND_BAM_NWD                    BIT(1)
224 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
225 #define NAND_BAM_NEXT_SGL               BIT(2)
226 /*
227  * Erased codeword status is being used two times in single transfer so this
228  * flag will determine the current value of erased codeword status register
229  */
230 #define NAND_ERASED_CW_SET              BIT(4)
231
232 /*
233  * This data type corresponds to the BAM transaction which will be used for all
234  * NAND transfers.
235  * @bam_ce - the array of BAM command elements
236  * @cmd_sgl - sgl for NAND BAM command pipe
237  * @data_sgl - sgl for NAND BAM consumer/producer pipe
238  * @bam_ce_pos - the index in bam_ce which is available for next sgl
239  * @bam_ce_start - the index in bam_ce which marks the start position ce
240  *                 for current sgl. It will be used for size calculation
241  *                 for current sgl
242  * @cmd_sgl_pos - current index in command sgl.
243  * @cmd_sgl_start - start index in command sgl.
244  * @tx_sgl_pos - current index in data sgl for tx.
245  * @tx_sgl_start - start index in data sgl for tx.
246  * @rx_sgl_pos - current index in data sgl for rx.
247  * @rx_sgl_start - start index in data sgl for rx.
248  */
249 struct bam_transaction {
250         struct bam_cmd_element *bam_ce;
251         struct scatterlist *cmd_sgl;
252         struct scatterlist *data_sgl;
253         u32 bam_ce_pos;
254         u32 bam_ce_start;
255         u32 cmd_sgl_pos;
256         u32 cmd_sgl_start;
257         u32 tx_sgl_pos;
258         u32 tx_sgl_start;
259         u32 rx_sgl_pos;
260         u32 rx_sgl_start;
261 };
262
263 /*
264  * This data type corresponds to the nand dma descriptor
265  * @list - list for desc_info
266  * @dir - DMA transfer direction
267  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
268  *            ADM
269  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
270  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
271  * @dma_desc - low level DMA engine descriptor
272  */
273 struct desc_info {
274         struct list_head node;
275
276         enum dma_data_direction dir;
277         union {
278                 struct scatterlist adm_sgl;
279                 struct {
280                         struct scatterlist *bam_sgl;
281                         int sgl_cnt;
282                 };
283         };
284         struct dma_async_tx_descriptor *dma_desc;
285 };
286
287 /*
288  * holds the current register values that we want to write. acts as a contiguous
289  * chunk of memory which we use to write the controller registers through DMA.
290  */
291 struct nandc_regs {
292         __le32 cmd;
293         __le32 addr0;
294         __le32 addr1;
295         __le32 chip_sel;
296         __le32 exec;
297
298         __le32 cfg0;
299         __le32 cfg1;
300         __le32 ecc_bch_cfg;
301
302         __le32 clrflashstatus;
303         __le32 clrreadstatus;
304
305         __le32 cmd1;
306         __le32 vld;
307
308         __le32 orig_cmd1;
309         __le32 orig_vld;
310
311         __le32 ecc_buf_cfg;
312         __le32 read_location0;
313         __le32 read_location1;
314         __le32 read_location2;
315         __le32 read_location3;
316
317         __le32 erased_cw_detect_cfg_clr;
318         __le32 erased_cw_detect_cfg_set;
319 };
320
321 /*
322  * NAND controller data struct
323  *
324  * @controller:                 base controller structure
325  * @host_list:                  list containing all the chips attached to the
326  *                              controller
327  * @dev:                        parent device
328  * @base:                       MMIO base
329  * @base_phys:                  physical base address of controller registers
330  * @base_dma:                   dma base address of controller registers
331  * @core_clk:                   controller clock
332  * @aon_clk:                    another controller clock
333  *
334  * @chan:                       dma channel
335  * @cmd_crci:                   ADM DMA CRCI for command flow control
336  * @data_crci:                  ADM DMA CRCI for data flow control
337  * @desc_list:                  DMA descriptor list (list of desc_infos)
338  *
339  * @data_buffer:                our local DMA buffer for page read/writes,
340  *                              used when we can't use the buffer provided
341  *                              by upper layers directly
342  * @buf_size/count/start:       markers for chip->read_buf/write_buf functions
343  * @reg_read_buf:               local buffer for reading back registers via DMA
344  * @reg_read_dma:               contains dma address for register read buffer
345  * @reg_read_pos:               marker for data read in reg_read_buf
346  *
347  * @regs:                       a contiguous chunk of memory for DMA register
348  *                              writes. contains the register values to be
349  *                              written to controller
350  * @cmd1/vld:                   some fixed controller register values
351  * @props:                      properties of current NAND controller,
352  *                              initialized via DT match data
353  * @max_cwperpage:              maximum QPIC codewords required. calculated
354  *                              from all connected NAND devices pagesize
355  */
356 struct qcom_nand_controller {
357         struct nand_hw_control controller;
358         struct list_head host_list;
359
360         struct device *dev;
361
362         void __iomem *base;
363         phys_addr_t base_phys;
364         dma_addr_t base_dma;
365
366         struct clk *core_clk;
367         struct clk *aon_clk;
368
369         union {
370                 /* will be used only by QPIC for BAM DMA */
371                 struct {
372                         struct dma_chan *tx_chan;
373                         struct dma_chan *rx_chan;
374                         struct dma_chan *cmd_chan;
375                 };
376
377                 /* will be used only by EBI2 for ADM DMA */
378                 struct {
379                         struct dma_chan *chan;
380                         unsigned int cmd_crci;
381                         unsigned int data_crci;
382                 };
383         };
384
385         struct list_head desc_list;
386         struct bam_transaction *bam_txn;
387
388         u8              *data_buffer;
389         int             buf_size;
390         int             buf_count;
391         int             buf_start;
392         unsigned int    max_cwperpage;
393
394         __le32 *reg_read_buf;
395         dma_addr_t reg_read_dma;
396         int reg_read_pos;
397
398         struct nandc_regs *regs;
399
400         u32 cmd1, vld;
401         const struct qcom_nandc_props *props;
402 };
403
404 /*
405  * NAND chip structure
406  *
407  * @chip:                       base NAND chip structure
408  * @node:                       list node to add itself to host_list in
409  *                              qcom_nand_controller
410  *
411  * @cs:                         chip select value for this chip
412  * @cw_size:                    the number of bytes in a single step/codeword
413  *                              of a page, consisting of all data, ecc, spare
414  *                              and reserved bytes
415  * @cw_data:                    the number of bytes within a codeword protected
416  *                              by ECC
417  * @use_ecc:                    request the controller to use ECC for the
418  *                              upcoming read/write
419  * @bch_enabled:                flag to tell whether BCH ECC mode is used
420  * @ecc_bytes_hw:               ECC bytes used by controller hardware for this
421  *                              chip
422  * @status:                     value to be returned if NAND_CMD_STATUS command
423  *                              is executed
424  * @last_command:               keeps track of last command on this chip. used
425  *                              for reading correct status
426  *
427  * @cfg0, cfg1, cfg0_raw..:     NANDc register configurations needed for
428  *                              ecc/non-ecc mode for the current nand flash
429  *                              device
430  */
431 struct qcom_nand_host {
432         struct nand_chip chip;
433         struct list_head node;
434
435         int cs;
436         int cw_size;
437         int cw_data;
438         bool use_ecc;
439         bool bch_enabled;
440         int ecc_bytes_hw;
441         int spare_bytes;
442         int bbm_size;
443         u8 status;
444         int last_command;
445
446         u32 cfg0, cfg1;
447         u32 cfg0_raw, cfg1_raw;
448         u32 ecc_buf_cfg;
449         u32 ecc_bch_cfg;
450         u32 clrflashstatus;
451         u32 clrreadstatus;
452 };
453
454 /*
455  * This data type corresponds to the NAND controller properties which varies
456  * among different NAND controllers.
457  * @ecc_modes - ecc mode for NAND
458  * @is_bam - whether NAND controller is using BAM
459  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
460  */
461 struct qcom_nandc_props {
462         u32 ecc_modes;
463         bool is_bam;
464         u32 dev_cmd_reg_start;
465 };
466
467 /* Frees the BAM transaction memory */
468 static void free_bam_transaction(struct qcom_nand_controller *nandc)
469 {
470         struct bam_transaction *bam_txn = nandc->bam_txn;
471
472         devm_kfree(nandc->dev, bam_txn);
473 }
474
475 /* Allocates and Initializes the BAM transaction */
476 static struct bam_transaction *
477 alloc_bam_transaction(struct qcom_nand_controller *nandc)
478 {
479         struct bam_transaction *bam_txn;
480         size_t bam_txn_size;
481         unsigned int num_cw = nandc->max_cwperpage;
482         void *bam_txn_buf;
483
484         bam_txn_size =
485                 sizeof(*bam_txn) + num_cw *
486                 ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
487                 (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
488                 (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
489
490         bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
491         if (!bam_txn_buf)
492                 return NULL;
493
494         bam_txn = bam_txn_buf;
495         bam_txn_buf += sizeof(*bam_txn);
496
497         bam_txn->bam_ce = bam_txn_buf;
498         bam_txn_buf +=
499                 sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
500
501         bam_txn->cmd_sgl = bam_txn_buf;
502         bam_txn_buf +=
503                 sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
504
505         bam_txn->data_sgl = bam_txn_buf;
506
507         return bam_txn;
508 }
509
510 /* Clears the BAM transaction indexes */
511 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
512 {
513         struct bam_transaction *bam_txn = nandc->bam_txn;
514
515         if (!nandc->props->is_bam)
516                 return;
517
518         bam_txn->bam_ce_pos = 0;
519         bam_txn->bam_ce_start = 0;
520         bam_txn->cmd_sgl_pos = 0;
521         bam_txn->cmd_sgl_start = 0;
522         bam_txn->tx_sgl_pos = 0;
523         bam_txn->tx_sgl_start = 0;
524         bam_txn->rx_sgl_pos = 0;
525         bam_txn->rx_sgl_start = 0;
526
527         sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
528                       QPIC_PER_CW_CMD_SGL);
529         sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
530                       QPIC_PER_CW_DATA_SGL);
531 }
532
533 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
534 {
535         return container_of(chip, struct qcom_nand_host, chip);
536 }
537
538 static inline struct qcom_nand_controller *
539 get_qcom_nand_controller(struct nand_chip *chip)
540 {
541         return container_of(chip->controller, struct qcom_nand_controller,
542                             controller);
543 }
544
545 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
546 {
547         return ioread32(nandc->base + offset);
548 }
549
550 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
551                                u32 val)
552 {
553         iowrite32(val, nandc->base + offset);
554 }
555
556 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
557                                           bool is_cpu)
558 {
559         if (!nandc->props->is_bam)
560                 return;
561
562         if (is_cpu)
563                 dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
564                                         MAX_REG_RD *
565                                         sizeof(*nandc->reg_read_buf),
566                                         DMA_FROM_DEVICE);
567         else
568                 dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
569                                            MAX_REG_RD *
570                                            sizeof(*nandc->reg_read_buf),
571                                            DMA_FROM_DEVICE);
572 }
573
574 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
575 {
576         switch (offset) {
577         case NAND_FLASH_CMD:
578                 return &regs->cmd;
579         case NAND_ADDR0:
580                 return &regs->addr0;
581         case NAND_ADDR1:
582                 return &regs->addr1;
583         case NAND_FLASH_CHIP_SELECT:
584                 return &regs->chip_sel;
585         case NAND_EXEC_CMD:
586                 return &regs->exec;
587         case NAND_FLASH_STATUS:
588                 return &regs->clrflashstatus;
589         case NAND_DEV0_CFG0:
590                 return &regs->cfg0;
591         case NAND_DEV0_CFG1:
592                 return &regs->cfg1;
593         case NAND_DEV0_ECC_CFG:
594                 return &regs->ecc_bch_cfg;
595         case NAND_READ_STATUS:
596                 return &regs->clrreadstatus;
597         case NAND_DEV_CMD1:
598                 return &regs->cmd1;
599         case NAND_DEV_CMD1_RESTORE:
600                 return &regs->orig_cmd1;
601         case NAND_DEV_CMD_VLD:
602                 return &regs->vld;
603         case NAND_DEV_CMD_VLD_RESTORE:
604                 return &regs->orig_vld;
605         case NAND_EBI2_ECC_BUF_CFG:
606                 return &regs->ecc_buf_cfg;
607         case NAND_READ_LOCATION_0:
608                 return &regs->read_location0;
609         case NAND_READ_LOCATION_1:
610                 return &regs->read_location1;
611         case NAND_READ_LOCATION_2:
612                 return &regs->read_location2;
613         case NAND_READ_LOCATION_3:
614                 return &regs->read_location3;
615         default:
616                 return NULL;
617         }
618 }
619
620 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
621                           u32 val)
622 {
623         struct nandc_regs *regs = nandc->regs;
624         __le32 *reg;
625
626         reg = offset_to_nandc_reg(regs, offset);
627
628         if (reg)
629                 *reg = cpu_to_le32(val);
630 }
631
632 /* helper to configure address register values */
633 static void set_address(struct qcom_nand_host *host, u16 column, int page)
634 {
635         struct nand_chip *chip = &host->chip;
636         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
637
638         if (chip->options & NAND_BUSWIDTH_16)
639                 column >>= 1;
640
641         nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
642         nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
643 }
644
645 /*
646  * update_rw_regs:      set up read/write register values, these will be
647  *                      written to the NAND controller registers via DMA
648  *
649  * @num_cw:             number of steps for the read/write operation
650  * @read:               read or write operation
651  */
652 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
653 {
654         struct nand_chip *chip = &host->chip;
655         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
656         u32 cmd, cfg0, cfg1, ecc_bch_cfg;
657
658         if (read) {
659                 if (host->use_ecc)
660                         cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
661                 else
662                         cmd = PAGE_READ | PAGE_ACC | LAST_PAGE;
663         } else {
664                         cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
665         }
666
667         if (host->use_ecc) {
668                 cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
669                                 (num_cw - 1) << CW_PER_PAGE;
670
671                 cfg1 = host->cfg1;
672                 ecc_bch_cfg = host->ecc_bch_cfg;
673         } else {
674                 cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
675                                 (num_cw - 1) << CW_PER_PAGE;
676
677                 cfg1 = host->cfg1_raw;
678                 ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
679         }
680
681         nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
682         nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
683         nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
684         nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
685         nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
686         nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
687         nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
688         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
689
690         if (read)
691                 nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
692                                    host->cw_data : host->cw_size, 1);
693 }
694
695 /*
696  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
697  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
698  * which will be submitted to DMA engine.
699  */
700 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
701                                   struct dma_chan *chan,
702                                   unsigned long flags)
703 {
704         struct desc_info *desc;
705         struct scatterlist *sgl;
706         unsigned int sgl_cnt;
707         int ret;
708         struct bam_transaction *bam_txn = nandc->bam_txn;
709         enum dma_transfer_direction dir_eng;
710         struct dma_async_tx_descriptor *dma_desc;
711
712         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
713         if (!desc)
714                 return -ENOMEM;
715
716         if (chan == nandc->cmd_chan) {
717                 sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
718                 sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
719                 bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
720                 dir_eng = DMA_MEM_TO_DEV;
721                 desc->dir = DMA_TO_DEVICE;
722         } else if (chan == nandc->tx_chan) {
723                 sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
724                 sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
725                 bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
726                 dir_eng = DMA_MEM_TO_DEV;
727                 desc->dir = DMA_TO_DEVICE;
728         } else {
729                 sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
730                 sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
731                 bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
732                 dir_eng = DMA_DEV_TO_MEM;
733                 desc->dir = DMA_FROM_DEVICE;
734         }
735
736         sg_mark_end(sgl + sgl_cnt - 1);
737         ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
738         if (ret == 0) {
739                 dev_err(nandc->dev, "failure in mapping desc\n");
740                 kfree(desc);
741                 return -ENOMEM;
742         }
743
744         desc->sgl_cnt = sgl_cnt;
745         desc->bam_sgl = sgl;
746
747         dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
748                                            flags);
749
750         if (!dma_desc) {
751                 dev_err(nandc->dev, "failure in prep desc\n");
752                 dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
753                 kfree(desc);
754                 return -EINVAL;
755         }
756
757         desc->dma_desc = dma_desc;
758
759         list_add_tail(&desc->node, &nandc->desc_list);
760
761         return 0;
762 }
763
764 /*
765  * Prepares the command descriptor for BAM DMA which will be used for NAND
766  * register reads and writes. The command descriptor requires the command
767  * to be formed in command element type so this function uses the command
768  * element from bam transaction ce array and fills the same with required
769  * data. A single SGL can contain multiple command elements so
770  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
771  * after the current command element.
772  */
773 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
774                                  int reg_off, const void *vaddr,
775                                  int size, unsigned int flags)
776 {
777         int bam_ce_size;
778         int i, ret;
779         struct bam_cmd_element *bam_ce_buffer;
780         struct bam_transaction *bam_txn = nandc->bam_txn;
781
782         bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
783
784         /* fill the command desc */
785         for (i = 0; i < size; i++) {
786                 if (read)
787                         bam_prep_ce(&bam_ce_buffer[i],
788                                     nandc_reg_phys(nandc, reg_off + 4 * i),
789                                     BAM_READ_COMMAND,
790                                     reg_buf_dma_addr(nandc,
791                                                      (__le32 *)vaddr + i));
792                 else
793                         bam_prep_ce_le32(&bam_ce_buffer[i],
794                                          nandc_reg_phys(nandc, reg_off + 4 * i),
795                                          BAM_WRITE_COMMAND,
796                                          *((__le32 *)vaddr + i));
797         }
798
799         bam_txn->bam_ce_pos += size;
800
801         /* use the separate sgl after this command */
802         if (flags & NAND_BAM_NEXT_SGL) {
803                 bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
804                 bam_ce_size = (bam_txn->bam_ce_pos -
805                                 bam_txn->bam_ce_start) *
806                                 sizeof(struct bam_cmd_element);
807                 sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
808                            bam_ce_buffer, bam_ce_size);
809                 bam_txn->cmd_sgl_pos++;
810                 bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
811
812                 if (flags & NAND_BAM_NWD) {
813                         ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
814                                                      DMA_PREP_FENCE |
815                                                      DMA_PREP_CMD);
816                         if (ret)
817                                 return ret;
818                 }
819         }
820
821         return 0;
822 }
823
824 /*
825  * Prepares the data descriptor for BAM DMA which will be used for NAND
826  * data reads and writes.
827  */
828 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
829                                   const void *vaddr,
830                                   int size, unsigned int flags)
831 {
832         int ret;
833         struct bam_transaction *bam_txn = nandc->bam_txn;
834
835         if (read) {
836                 sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
837                            vaddr, size);
838                 bam_txn->rx_sgl_pos++;
839         } else {
840                 sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
841                            vaddr, size);
842                 bam_txn->tx_sgl_pos++;
843
844                 /*
845                  * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
846                  * is not set, form the DMA descriptor
847                  */
848                 if (!(flags & NAND_BAM_NO_EOT)) {
849                         ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
850                                                      DMA_PREP_INTERRUPT);
851                         if (ret)
852                                 return ret;
853                 }
854         }
855
856         return 0;
857 }
858
859 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
860                              int reg_off, const void *vaddr, int size,
861                              bool flow_control)
862 {
863         struct desc_info *desc;
864         struct dma_async_tx_descriptor *dma_desc;
865         struct scatterlist *sgl;
866         struct dma_slave_config slave_conf;
867         enum dma_transfer_direction dir_eng;
868         int ret;
869
870         desc = kzalloc(sizeof(*desc), GFP_KERNEL);
871         if (!desc)
872                 return -ENOMEM;
873
874         sgl = &desc->adm_sgl;
875
876         sg_init_one(sgl, vaddr, size);
877
878         if (read) {
879                 dir_eng = DMA_DEV_TO_MEM;
880                 desc->dir = DMA_FROM_DEVICE;
881         } else {
882                 dir_eng = DMA_MEM_TO_DEV;
883                 desc->dir = DMA_TO_DEVICE;
884         }
885
886         ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
887         if (ret == 0) {
888                 ret = -ENOMEM;
889                 goto err;
890         }
891
892         memset(&slave_conf, 0x00, sizeof(slave_conf));
893
894         slave_conf.device_fc = flow_control;
895         if (read) {
896                 slave_conf.src_maxburst = 16;
897                 slave_conf.src_addr = nandc->base_dma + reg_off;
898                 slave_conf.slave_id = nandc->data_crci;
899         } else {
900                 slave_conf.dst_maxburst = 16;
901                 slave_conf.dst_addr = nandc->base_dma + reg_off;
902                 slave_conf.slave_id = nandc->cmd_crci;
903         }
904
905         ret = dmaengine_slave_config(nandc->chan, &slave_conf);
906         if (ret) {
907                 dev_err(nandc->dev, "failed to configure dma channel\n");
908                 goto err;
909         }
910
911         dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
912         if (!dma_desc) {
913                 dev_err(nandc->dev, "failed to prepare desc\n");
914                 ret = -EINVAL;
915                 goto err;
916         }
917
918         desc->dma_desc = dma_desc;
919
920         list_add_tail(&desc->node, &nandc->desc_list);
921
922         return 0;
923 err:
924         kfree(desc);
925
926         return ret;
927 }
928
929 /*
930  * read_reg_dma:        prepares a descriptor to read a given number of
931  *                      contiguous registers to the reg_read_buf pointer
932  *
933  * @first:              offset of the first register in the contiguous block
934  * @num_regs:           number of registers to read
935  * @flags:              flags to control DMA descriptor preparation
936  */
937 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
938                         int num_regs, unsigned int flags)
939 {
940         bool flow_control = false;
941         void *vaddr;
942
943         vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
944         nandc->reg_read_pos += num_regs;
945
946         if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
947                 first = dev_cmd_reg_addr(nandc, first);
948
949         if (nandc->props->is_bam)
950                 return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
951                                              num_regs, flags);
952
953         if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
954                 flow_control = true;
955
956         return prep_adm_dma_desc(nandc, true, first, vaddr,
957                                  num_regs * sizeof(u32), flow_control);
958 }
959
960 /*
961  * write_reg_dma:       prepares a descriptor to write a given number of
962  *                      contiguous registers
963  *
964  * @first:              offset of the first register in the contiguous block
965  * @num_regs:           number of registers to write
966  * @flags:              flags to control DMA descriptor preparation
967  */
968 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
969                          int num_regs, unsigned int flags)
970 {
971         bool flow_control = false;
972         struct nandc_regs *regs = nandc->regs;
973         void *vaddr;
974
975         vaddr = offset_to_nandc_reg(regs, first);
976
977         if (first == NAND_ERASED_CW_DETECT_CFG) {
978                 if (flags & NAND_ERASED_CW_SET)
979                         vaddr = &regs->erased_cw_detect_cfg_set;
980                 else
981                         vaddr = &regs->erased_cw_detect_cfg_clr;
982         }
983
984         if (first == NAND_EXEC_CMD)
985                 flags |= NAND_BAM_NWD;
986
987         if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
988                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
989
990         if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
991                 first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
992
993         if (nandc->props->is_bam)
994                 return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
995                                              num_regs, flags);
996
997         if (first == NAND_FLASH_CMD)
998                 flow_control = true;
999
1000         return prep_adm_dma_desc(nandc, false, first, vaddr,
1001                                  num_regs * sizeof(u32), flow_control);
1002 }
1003
1004 /*
1005  * read_data_dma:       prepares a DMA descriptor to transfer data from the
1006  *                      controller's internal buffer to the buffer 'vaddr'
1007  *
1008  * @reg_off:            offset within the controller's data buffer
1009  * @vaddr:              virtual address of the buffer we want to write to
1010  * @size:               DMA transaction size in bytes
1011  * @flags:              flags to control DMA descriptor preparation
1012  */
1013 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1014                          const u8 *vaddr, int size, unsigned int flags)
1015 {
1016         if (nandc->props->is_bam)
1017                 return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1018
1019         return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1020 }
1021
1022 /*
1023  * write_data_dma:      prepares a DMA descriptor to transfer data from
1024  *                      'vaddr' to the controller's internal buffer
1025  *
1026  * @reg_off:            offset within the controller's data buffer
1027  * @vaddr:              virtual address of the buffer we want to read from
1028  * @size:               DMA transaction size in bytes
1029  * @flags:              flags to control DMA descriptor preparation
1030  */
1031 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1032                           const u8 *vaddr, int size, unsigned int flags)
1033 {
1034         if (nandc->props->is_bam)
1035                 return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1036
1037         return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1038 }
1039
1040 /*
1041  * Helper to prepare DMA descriptors for configuring registers
1042  * before reading a NAND page.
1043  */
1044 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1045 {
1046         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1047         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1048         write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1049         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1050         write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1051                       NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1052 }
1053
1054 /*
1055  * Helper to prepare DMA descriptors for configuring registers
1056  * before reading each codeword in NAND page.
1057  */
1058 static void config_nand_cw_read(struct qcom_nand_controller *nandc)
1059 {
1060         if (nandc->props->is_bam)
1061                 write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1062                               NAND_BAM_NEXT_SGL);
1063
1064         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1065         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1066
1067         read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1068         read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1069                      NAND_BAM_NEXT_SGL);
1070 }
1071
1072 /*
1073  * Helper to prepare dma descriptors to configure registers needed for reading a
1074  * single codeword in page
1075  */
1076 static void config_nand_single_cw_page_read(struct qcom_nand_controller *nandc)
1077 {
1078         config_nand_page_read(nandc);
1079         config_nand_cw_read(nandc);
1080 }
1081
1082 /*
1083  * Helper to prepare DMA descriptors used to configure registers needed for
1084  * before writing a NAND page.
1085  */
1086 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1087 {
1088         write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1089         write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1090         write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1091                       NAND_BAM_NEXT_SGL);
1092 }
1093
1094 /*
1095  * Helper to prepare DMA descriptors for configuring registers
1096  * before writing each codeword in NAND page.
1097  */
1098 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1099 {
1100         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1101         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1102
1103         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1104
1105         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1106         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1107 }
1108
1109 /*
1110  * the following functions are used within chip->cmdfunc() to perform different
1111  * NAND_CMD_* commands
1112  */
1113
1114 /* sets up descriptors for NAND_CMD_PARAM */
1115 static int nandc_param(struct qcom_nand_host *host)
1116 {
1117         struct nand_chip *chip = &host->chip;
1118         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1119
1120         /*
1121          * NAND_CMD_PARAM is called before we know much about the FLASH chip
1122          * in use. we configure the controller to perform a raw read of 512
1123          * bytes to read onfi params
1124          */
1125         nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE);
1126         nandc_set_reg(nandc, NAND_ADDR0, 0);
1127         nandc_set_reg(nandc, NAND_ADDR1, 0);
1128         nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1129                                         | 512 << UD_SIZE_BYTES
1130                                         | 5 << NUM_ADDR_CYCLES
1131                                         | 0 << SPARE_SIZE_BYTES);
1132         nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1133                                         | 0 << CS_ACTIVE_BSY
1134                                         | 17 << BAD_BLOCK_BYTE_NUM
1135                                         | 1 << BAD_BLOCK_IN_SPARE_AREA
1136                                         | 2 << WR_RD_BSY_GAP
1137                                         | 0 << WIDE_FLASH
1138                                         | 1 << DEV0_CFG1_ECC_DISABLE);
1139         nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1140
1141         /* configure CMD1 and VLD for ONFI param probing */
1142         nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1143                       (nandc->vld & ~READ_START_VLD));
1144         nandc_set_reg(nandc, NAND_DEV_CMD1,
1145                       (nandc->cmd1 & ~(0xFF << READ_ADDR))
1146                       | NAND_CMD_PARAM << READ_ADDR);
1147
1148         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1149
1150         nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1151         nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1152         nandc_set_read_loc(nandc, 0, 0, 512, 1);
1153
1154         write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1155         write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1156
1157         nandc->buf_count = 512;
1158         memset(nandc->data_buffer, 0xff, nandc->buf_count);
1159
1160         config_nand_single_cw_page_read(nandc);
1161
1162         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1163                       nandc->buf_count, 0);
1164
1165         /* restore CMD1 and VLD regs */
1166         write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1167         write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1168
1169         return 0;
1170 }
1171
1172 /* sets up descriptors for NAND_CMD_ERASE1 */
1173 static int erase_block(struct qcom_nand_host *host, int page_addr)
1174 {
1175         struct nand_chip *chip = &host->chip;
1176         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1177
1178         nandc_set_reg(nandc, NAND_FLASH_CMD,
1179                       BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1180         nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1181         nandc_set_reg(nandc, NAND_ADDR1, 0);
1182         nandc_set_reg(nandc, NAND_DEV0_CFG0,
1183                       host->cfg0_raw & ~(7 << CW_PER_PAGE));
1184         nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1185         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1186         nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1187         nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1188
1189         write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1190         write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1191         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1192
1193         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1194
1195         write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1196         write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1197
1198         return 0;
1199 }
1200
1201 /* sets up descriptors for NAND_CMD_READID */
1202 static int read_id(struct qcom_nand_host *host, int column)
1203 {
1204         struct nand_chip *chip = &host->chip;
1205         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1206
1207         if (column == -1)
1208                 return 0;
1209
1210         nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID);
1211         nandc_set_reg(nandc, NAND_ADDR0, column);
1212         nandc_set_reg(nandc, NAND_ADDR1, 0);
1213         nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1214                       nandc->props->is_bam ? 0 : DM_EN);
1215         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1216
1217         write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1218         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1219
1220         read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1221
1222         return 0;
1223 }
1224
1225 /* sets up descriptors for NAND_CMD_RESET */
1226 static int reset(struct qcom_nand_host *host)
1227 {
1228         struct nand_chip *chip = &host->chip;
1229         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1230
1231         nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE);
1232         nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1233
1234         write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1235         write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1236
1237         read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1238
1239         return 0;
1240 }
1241
1242 /* helpers to submit/free our list of dma descriptors */
1243 static int submit_descs(struct qcom_nand_controller *nandc)
1244 {
1245         struct desc_info *desc;
1246         dma_cookie_t cookie = 0;
1247         struct bam_transaction *bam_txn = nandc->bam_txn;
1248         int r;
1249
1250         if (nandc->props->is_bam) {
1251                 if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1252                         r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1253                         if (r)
1254                                 return r;
1255                 }
1256
1257                 if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1258                         r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1259                                                    DMA_PREP_INTERRUPT);
1260                         if (r)
1261                                 return r;
1262                 }
1263
1264                 if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1265                         r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1266                                                    DMA_PREP_CMD);
1267                         if (r)
1268                                 return r;
1269                 }
1270         }
1271
1272         list_for_each_entry(desc, &nandc->desc_list, node)
1273                 cookie = dmaengine_submit(desc->dma_desc);
1274
1275         if (nandc->props->is_bam) {
1276                 dma_async_issue_pending(nandc->tx_chan);
1277                 dma_async_issue_pending(nandc->rx_chan);
1278
1279                 if (dma_sync_wait(nandc->cmd_chan, cookie) != DMA_COMPLETE)
1280                         return -ETIMEDOUT;
1281         } else {
1282                 if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1283                         return -ETIMEDOUT;
1284         }
1285
1286         return 0;
1287 }
1288
1289 static void free_descs(struct qcom_nand_controller *nandc)
1290 {
1291         struct desc_info *desc, *n;
1292
1293         list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1294                 list_del(&desc->node);
1295
1296                 if (nandc->props->is_bam)
1297                         dma_unmap_sg(nandc->dev, desc->bam_sgl,
1298                                      desc->sgl_cnt, desc->dir);
1299                 else
1300                         dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1301                                      desc->dir);
1302
1303                 kfree(desc);
1304         }
1305 }
1306
1307 /* reset the register read buffer for next NAND operation */
1308 static void clear_read_regs(struct qcom_nand_controller *nandc)
1309 {
1310         nandc->reg_read_pos = 0;
1311         nandc_read_buffer_sync(nandc, false);
1312 }
1313
1314 static void pre_command(struct qcom_nand_host *host, int command)
1315 {
1316         struct nand_chip *chip = &host->chip;
1317         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1318
1319         nandc->buf_count = 0;
1320         nandc->buf_start = 0;
1321         host->use_ecc = false;
1322         host->last_command = command;
1323
1324         clear_read_regs(nandc);
1325
1326         if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1327             command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1328                 clear_bam_transaction(nandc);
1329 }
1330
1331 /*
1332  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1333  * privately maintained status byte, this status byte can be read after
1334  * NAND_CMD_STATUS is called
1335  */
1336 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1337 {
1338         struct nand_chip *chip = &host->chip;
1339         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1340         struct nand_ecc_ctrl *ecc = &chip->ecc;
1341         int num_cw;
1342         int i;
1343
1344         num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1345         nandc_read_buffer_sync(nandc, true);
1346
1347         for (i = 0; i < num_cw; i++) {
1348                 u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1349
1350                 if (flash_status & FS_MPU_ERR)
1351                         host->status &= ~NAND_STATUS_WP;
1352
1353                 if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1354                                                  (flash_status &
1355                                                   FS_DEVICE_STS_ERR)))
1356                         host->status |= NAND_STATUS_FAIL;
1357         }
1358 }
1359
1360 static void post_command(struct qcom_nand_host *host, int command)
1361 {
1362         struct nand_chip *chip = &host->chip;
1363         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1364
1365         switch (command) {
1366         case NAND_CMD_READID:
1367                 nandc_read_buffer_sync(nandc, true);
1368                 memcpy(nandc->data_buffer, nandc->reg_read_buf,
1369                        nandc->buf_count);
1370                 break;
1371         case NAND_CMD_PAGEPROG:
1372         case NAND_CMD_ERASE1:
1373                 parse_erase_write_errors(host, command);
1374                 break;
1375         default:
1376                 break;
1377         }
1378 }
1379
1380 /*
1381  * Implements chip->cmdfunc. It's  only used for a limited set of commands.
1382  * The rest of the commands wouldn't be called by upper layers. For example,
1383  * NAND_CMD_READOOB would never be called because we have our own versions
1384  * of read_oob ops for nand_ecc_ctrl.
1385  */
1386 static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
1387                                int column, int page_addr)
1388 {
1389         struct nand_chip *chip = mtd_to_nand(mtd);
1390         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1391         struct nand_ecc_ctrl *ecc = &chip->ecc;
1392         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1393         bool wait = false;
1394         int ret = 0;
1395
1396         pre_command(host, command);
1397
1398         switch (command) {
1399         case NAND_CMD_RESET:
1400                 ret = reset(host);
1401                 wait = true;
1402                 break;
1403
1404         case NAND_CMD_READID:
1405                 nandc->buf_count = 4;
1406                 ret = read_id(host, column);
1407                 wait = true;
1408                 break;
1409
1410         case NAND_CMD_PARAM:
1411                 ret = nandc_param(host);
1412                 wait = true;
1413                 break;
1414
1415         case NAND_CMD_ERASE1:
1416                 ret = erase_block(host, page_addr);
1417                 wait = true;
1418                 break;
1419
1420         case NAND_CMD_READ0:
1421                 /* we read the entire page for now */
1422                 WARN_ON(column != 0);
1423
1424                 host->use_ecc = true;
1425                 set_address(host, 0, page_addr);
1426                 update_rw_regs(host, ecc->steps, true);
1427                 break;
1428
1429         case NAND_CMD_SEQIN:
1430                 WARN_ON(column != 0);
1431                 set_address(host, 0, page_addr);
1432                 break;
1433
1434         case NAND_CMD_PAGEPROG:
1435         case NAND_CMD_STATUS:
1436         case NAND_CMD_NONE:
1437         default:
1438                 break;
1439         }
1440
1441         if (ret) {
1442                 dev_err(nandc->dev, "failure executing command %d\n",
1443                         command);
1444                 free_descs(nandc);
1445                 return;
1446         }
1447
1448         if (wait) {
1449                 ret = submit_descs(nandc);
1450                 if (ret)
1451                         dev_err(nandc->dev,
1452                                 "failure submitting descs for command %d\n",
1453                                 command);
1454         }
1455
1456         free_descs(nandc);
1457
1458         post_command(host, command);
1459 }
1460
1461 /*
1462  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1463  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1464  *
1465  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1466  * but it notifies that it is an erased CW by placing special characters at
1467  * certain offsets in the buffer.
1468  *
1469  * verify if the page is erased or not, and fix up the page for RS ECC by
1470  * replacing the special characters with 0xff.
1471  */
1472 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1473 {
1474         u8 empty1, empty2;
1475
1476         /*
1477          * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1478          * is erased by looking for 0x54s at offsets 3 and 175 from the
1479          * beginning of each codeword
1480          */
1481
1482         empty1 = data_buf[3];
1483         empty2 = data_buf[175];
1484
1485         /*
1486          * if the erased codework markers, if they exist override them with
1487          * 0xffs
1488          */
1489         if ((empty1 == 0x54 && empty2 == 0xff) ||
1490             (empty1 == 0xff && empty2 == 0x54)) {
1491                 data_buf[3] = 0xff;
1492                 data_buf[175] = 0xff;
1493         }
1494
1495         /*
1496          * check if the entire chunk contains 0xffs or not. if it doesn't, then
1497          * restore the original values at the special offsets
1498          */
1499         if (memchr_inv(data_buf, 0xff, data_len)) {
1500                 data_buf[3] = empty1;
1501                 data_buf[175] = empty2;
1502
1503                 return false;
1504         }
1505
1506         return true;
1507 }
1508
1509 struct read_stats {
1510         __le32 flash;
1511         __le32 buffer;
1512         __le32 erased_cw;
1513 };
1514
1515 /*
1516  * reads back status registers set by the controller to notify page read
1517  * errors. this is equivalent to what 'ecc->correct()' would do.
1518  */
1519 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1520                              u8 *oob_buf)
1521 {
1522         struct nand_chip *chip = &host->chip;
1523         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1524         struct mtd_info *mtd = nand_to_mtd(chip);
1525         struct nand_ecc_ctrl *ecc = &chip->ecc;
1526         unsigned int max_bitflips = 0;
1527         struct read_stats *buf;
1528         int i;
1529
1530         buf = (struct read_stats *)nandc->reg_read_buf;
1531         nandc_read_buffer_sync(nandc, true);
1532
1533         for (i = 0; i < ecc->steps; i++, buf++) {
1534                 u32 flash, buffer, erased_cw;
1535                 int data_len, oob_len;
1536
1537                 if (i == (ecc->steps - 1)) {
1538                         data_len = ecc->size - ((ecc->steps - 1) << 2);
1539                         oob_len = ecc->steps << 2;
1540                 } else {
1541                         data_len = host->cw_data;
1542                         oob_len = 0;
1543                 }
1544
1545                 flash = le32_to_cpu(buf->flash);
1546                 buffer = le32_to_cpu(buf->buffer);
1547                 erased_cw = le32_to_cpu(buf->erased_cw);
1548
1549                 if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1550                         bool erased;
1551
1552                         /* ignore erased codeword errors */
1553                         if (host->bch_enabled) {
1554                                 erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1555                                          true : false;
1556                         } else {
1557                                 erased = erased_chunk_check_and_fixup(data_buf,
1558                                                                       data_len);
1559                         }
1560
1561                         if (erased) {
1562                                 data_buf += data_len;
1563                                 if (oob_buf)
1564                                         oob_buf += oob_len + ecc->bytes;
1565                                 continue;
1566                         }
1567
1568                         if (buffer & BS_UNCORRECTABLE_BIT) {
1569                                 int ret, ecclen, extraooblen;
1570                                 void *eccbuf;
1571
1572                                 eccbuf = oob_buf ? oob_buf + oob_len : NULL;
1573                                 ecclen = oob_buf ? host->ecc_bytes_hw : 0;
1574                                 extraooblen = oob_buf ? oob_len : 0;
1575
1576                                 /*
1577                                  * make sure it isn't an erased page reported
1578                                  * as not-erased by HW because of a few bitflips
1579                                  */
1580                                 ret = nand_check_erased_ecc_chunk(data_buf,
1581                                         data_len, eccbuf, ecclen, oob_buf,
1582                                         extraooblen, ecc->strength);
1583                                 if (ret < 0) {
1584                                         mtd->ecc_stats.failed++;
1585                                 } else {
1586                                         mtd->ecc_stats.corrected += ret;
1587                                         max_bitflips =
1588                                                 max_t(unsigned int, max_bitflips, ret);
1589                                 }
1590                         }
1591                 } else {
1592                         unsigned int stat;
1593
1594                         stat = buffer & BS_CORRECTABLE_ERR_MSK;
1595                         mtd->ecc_stats.corrected += stat;
1596                         max_bitflips = max(max_bitflips, stat);
1597                 }
1598
1599                 data_buf += data_len;
1600                 if (oob_buf)
1601                         oob_buf += oob_len + ecc->bytes;
1602         }
1603
1604         return max_bitflips;
1605 }
1606
1607 /*
1608  * helper to perform the actual page read operation, used by ecc->read_page(),
1609  * ecc->read_oob()
1610  */
1611 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1612                          u8 *oob_buf)
1613 {
1614         struct nand_chip *chip = &host->chip;
1615         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1616         struct nand_ecc_ctrl *ecc = &chip->ecc;
1617         int i, ret;
1618
1619         config_nand_page_read(nandc);
1620
1621         /* queue cmd descs for each codeword */
1622         for (i = 0; i < ecc->steps; i++) {
1623                 int data_size, oob_size;
1624
1625                 if (i == (ecc->steps - 1)) {
1626                         data_size = ecc->size - ((ecc->steps - 1) << 2);
1627                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1628                                    host->spare_bytes;
1629                 } else {
1630                         data_size = host->cw_data;
1631                         oob_size = host->ecc_bytes_hw + host->spare_bytes;
1632                 }
1633
1634                 if (nandc->props->is_bam) {
1635                         if (data_buf && oob_buf) {
1636                                 nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1637                                 nandc_set_read_loc(nandc, 1, data_size,
1638                                                    oob_size, 1);
1639                         } else if (data_buf) {
1640                                 nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1641                         } else {
1642                                 nandc_set_read_loc(nandc, 0, data_size,
1643                                                    oob_size, 1);
1644                         }
1645                 }
1646
1647                 config_nand_cw_read(nandc);
1648
1649                 if (data_buf)
1650                         read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1651                                       data_size, 0);
1652
1653                 /*
1654                  * when ecc is enabled, the controller doesn't read the real
1655                  * or dummy bad block markers in each chunk. To maintain a
1656                  * consistent layout across RAW and ECC reads, we just
1657                  * leave the real/dummy BBM offsets empty (i.e, filled with
1658                  * 0xffs)
1659                  */
1660                 if (oob_buf) {
1661                         int j;
1662
1663                         for (j = 0; j < host->bbm_size; j++)
1664                                 *oob_buf++ = 0xff;
1665
1666                         read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1667                                       oob_buf, oob_size, 0);
1668                 }
1669
1670                 if (data_buf)
1671                         data_buf += data_size;
1672                 if (oob_buf)
1673                         oob_buf += oob_size;
1674         }
1675
1676         ret = submit_descs(nandc);
1677         if (ret)
1678                 dev_err(nandc->dev, "failure to read page/oob\n");
1679
1680         free_descs(nandc);
1681
1682         return ret;
1683 }
1684
1685 /*
1686  * a helper that copies the last step/codeword of a page (containing free oob)
1687  * into our local buffer
1688  */
1689 static int copy_last_cw(struct qcom_nand_host *host, int page)
1690 {
1691         struct nand_chip *chip = &host->chip;
1692         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1693         struct nand_ecc_ctrl *ecc = &chip->ecc;
1694         int size;
1695         int ret;
1696
1697         clear_read_regs(nandc);
1698
1699         size = host->use_ecc ? host->cw_data : host->cw_size;
1700
1701         /* prepare a clean read buffer */
1702         memset(nandc->data_buffer, 0xff, size);
1703
1704         set_address(host, host->cw_size * (ecc->steps - 1), page);
1705         update_rw_regs(host, 1, true);
1706
1707         config_nand_single_cw_page_read(nandc);
1708
1709         read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1710
1711         ret = submit_descs(nandc);
1712         if (ret)
1713                 dev_err(nandc->dev, "failed to copy last codeword\n");
1714
1715         free_descs(nandc);
1716
1717         return ret;
1718 }
1719
1720 /* implements ecc->read_page() */
1721 static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1722                                 uint8_t *buf, int oob_required, int page)
1723 {
1724         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1725         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1726         u8 *data_buf, *oob_buf = NULL;
1727         int ret;
1728
1729         nand_read_page_op(chip, page, 0, NULL, 0);
1730         data_buf = buf;
1731         oob_buf = oob_required ? chip->oob_poi : NULL;
1732
1733         clear_bam_transaction(nandc);
1734         ret = read_page_ecc(host, data_buf, oob_buf);
1735         if (ret) {
1736                 dev_err(nandc->dev, "failure to read page\n");
1737                 return ret;
1738         }
1739
1740         return parse_read_errors(host, data_buf, oob_buf);
1741 }
1742
1743 /* implements ecc->read_page_raw() */
1744 static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1745                                     struct nand_chip *chip, uint8_t *buf,
1746                                     int oob_required, int page)
1747 {
1748         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1749         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1750         u8 *data_buf, *oob_buf;
1751         struct nand_ecc_ctrl *ecc = &chip->ecc;
1752         int i, ret;
1753         int read_loc;
1754
1755         nand_read_page_op(chip, page, 0, NULL, 0);
1756         data_buf = buf;
1757         oob_buf = chip->oob_poi;
1758
1759         host->use_ecc = false;
1760
1761         clear_bam_transaction(nandc);
1762         update_rw_regs(host, ecc->steps, true);
1763         config_nand_page_read(nandc);
1764
1765         for (i = 0; i < ecc->steps; i++) {
1766                 int data_size1, data_size2, oob_size1, oob_size2;
1767                 int reg_off = FLASH_BUF_ACC;
1768
1769                 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1770                 oob_size1 = host->bbm_size;
1771
1772                 if (i == (ecc->steps - 1)) {
1773                         data_size2 = ecc->size - data_size1 -
1774                                      ((ecc->steps - 1) << 2);
1775                         oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1776                                     host->spare_bytes;
1777                 } else {
1778                         data_size2 = host->cw_data - data_size1;
1779                         oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1780                 }
1781
1782                 if (nandc->props->is_bam) {
1783                         read_loc = 0;
1784                         nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1785                         read_loc += data_size1;
1786
1787                         nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1788                         read_loc += oob_size1;
1789
1790                         nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1791                         read_loc += data_size2;
1792
1793                         nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1794                 }
1795
1796                 config_nand_cw_read(nandc);
1797
1798                 read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1799                 reg_off += data_size1;
1800                 data_buf += data_size1;
1801
1802                 read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1803                 reg_off += oob_size1;
1804                 oob_buf += oob_size1;
1805
1806                 read_data_dma(nandc, reg_off, data_buf, data_size2, 0);
1807                 reg_off += data_size2;
1808                 data_buf += data_size2;
1809
1810                 read_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
1811                 oob_buf += oob_size2;
1812         }
1813
1814         ret = submit_descs(nandc);
1815         if (ret)
1816                 dev_err(nandc->dev, "failure to read raw page\n");
1817
1818         free_descs(nandc);
1819
1820         return 0;
1821 }
1822
1823 /* implements ecc->read_oob() */
1824 static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1825                                int page)
1826 {
1827         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1828         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1829         struct nand_ecc_ctrl *ecc = &chip->ecc;
1830         int ret;
1831
1832         clear_read_regs(nandc);
1833         clear_bam_transaction(nandc);
1834
1835         host->use_ecc = true;
1836         set_address(host, 0, page);
1837         update_rw_regs(host, ecc->steps, true);
1838
1839         ret = read_page_ecc(host, NULL, chip->oob_poi);
1840         if (ret)
1841                 dev_err(nandc->dev, "failure to read oob\n");
1842
1843         return ret;
1844 }
1845
1846 /* implements ecc->write_page() */
1847 static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1848                                  const uint8_t *buf, int oob_required, int page)
1849 {
1850         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1851         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1852         struct nand_ecc_ctrl *ecc = &chip->ecc;
1853         u8 *data_buf, *oob_buf;
1854         int i, ret;
1855
1856         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1857
1858         clear_read_regs(nandc);
1859         clear_bam_transaction(nandc);
1860
1861         data_buf = (u8 *)buf;
1862         oob_buf = chip->oob_poi;
1863
1864         host->use_ecc = true;
1865         update_rw_regs(host, ecc->steps, false);
1866         config_nand_page_write(nandc);
1867
1868         for (i = 0; i < ecc->steps; i++) {
1869                 int data_size, oob_size;
1870
1871                 if (i == (ecc->steps - 1)) {
1872                         data_size = ecc->size - ((ecc->steps - 1) << 2);
1873                         oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1874                                    host->spare_bytes;
1875                 } else {
1876                         data_size = host->cw_data;
1877                         oob_size = ecc->bytes;
1878                 }
1879
1880
1881                 write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
1882                                i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
1883
1884                 /*
1885                  * when ECC is enabled, we don't really need to write anything
1886                  * to oob for the first n - 1 codewords since these oob regions
1887                  * just contain ECC bytes that's written by the controller
1888                  * itself. For the last codeword, we skip the bbm positions and
1889                  * write to the free oob area.
1890                  */
1891                 if (i == (ecc->steps - 1)) {
1892                         oob_buf += host->bbm_size;
1893
1894                         write_data_dma(nandc, FLASH_BUF_ACC + data_size,
1895                                        oob_buf, oob_size, 0);
1896                 }
1897
1898                 config_nand_cw_write(nandc);
1899
1900                 data_buf += data_size;
1901                 oob_buf += oob_size;
1902         }
1903
1904         ret = submit_descs(nandc);
1905         if (ret)
1906                 dev_err(nandc->dev, "failure to write page\n");
1907
1908         free_descs(nandc);
1909
1910         if (!ret)
1911                 ret = nand_prog_page_end_op(chip);
1912
1913         return ret;
1914 }
1915
1916 /* implements ecc->write_page_raw() */
1917 static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
1918                                      struct nand_chip *chip, const uint8_t *buf,
1919                                      int oob_required, int page)
1920 {
1921         struct qcom_nand_host *host = to_qcom_nand_host(chip);
1922         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1923         struct nand_ecc_ctrl *ecc = &chip->ecc;
1924         u8 *data_buf, *oob_buf;
1925         int i, ret;
1926
1927         nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1928         clear_read_regs(nandc);
1929         clear_bam_transaction(nandc);
1930
1931         data_buf = (u8 *)buf;
1932         oob_buf = chip->oob_poi;
1933
1934         host->use_ecc = false;
1935         update_rw_regs(host, ecc->steps, false);
1936         config_nand_page_write(nandc);
1937
1938         for (i = 0; i < ecc->steps; i++) {
1939                 int data_size1, data_size2, oob_size1, oob_size2;
1940                 int reg_off = FLASH_BUF_ACC;
1941
1942                 data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1943                 oob_size1 = host->bbm_size;
1944
1945                 if (i == (ecc->steps - 1)) {
1946                         data_size2 = ecc->size - data_size1 -
1947                                      ((ecc->steps - 1) << 2);
1948                         oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1949                                     host->spare_bytes;
1950                 } else {
1951                         data_size2 = host->cw_data - data_size1;
1952                         oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1953                 }
1954
1955                 write_data_dma(nandc, reg_off, data_buf, data_size1,
1956                                NAND_BAM_NO_EOT);
1957                 reg_off += data_size1;
1958                 data_buf += data_size1;
1959
1960                 write_data_dma(nandc, reg_off, oob_buf, oob_size1,
1961                                NAND_BAM_NO_EOT);
1962                 reg_off += oob_size1;
1963                 oob_buf += oob_size1;
1964
1965                 write_data_dma(nandc, reg_off, data_buf, data_size2,
1966                                NAND_BAM_NO_EOT);
1967                 reg_off += data_size2;
1968                 data_buf += data_size2;
1969
1970                 write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
1971                 oob_buf += oob_size2;
1972
1973                 config_nand_cw_write(nandc);
1974         }
1975
1976         ret = submit_descs(nandc);
1977         if (ret)
1978                 dev_err(nandc->dev, "failure to write raw page\n");
1979
1980         free_descs(nandc);
1981
1982         if (!ret)
1983                 ret = nand_prog_page_end_op(chip);
1984
1985         return ret;
1986 }
1987
1988 /*
1989  * implements ecc->write_oob()
1990  *
1991  * the NAND controller cannot write only data or only oob within a codeword,
1992  * since ecc is calculated for the combined codeword. we first copy the
1993  * entire contents for the last codeword(data + oob), replace the old oob
1994  * with the new one in chip->oob_poi, and then write the entire codeword.
1995  * this read-copy-write operation results in a slight performance loss.
1996  */
1997 static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1998                                 int page)
1999 {
2000         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2001         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2002         struct nand_ecc_ctrl *ecc = &chip->ecc;
2003         u8 *oob = chip->oob_poi;
2004         int data_size, oob_size;
2005         int ret;
2006
2007         host->use_ecc = true;
2008
2009         clear_bam_transaction(nandc);
2010         ret = copy_last_cw(host, page);
2011         if (ret)
2012                 return ret;
2013
2014         clear_read_regs(nandc);
2015         clear_bam_transaction(nandc);
2016
2017         /* calculate the data and oob size for the last codeword/step */
2018         data_size = ecc->size - ((ecc->steps - 1) << 2);
2019         oob_size = mtd->oobavail;
2020
2021         /* override new oob content to last codeword */
2022         mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2023                                     0, mtd->oobavail);
2024
2025         set_address(host, host->cw_size * (ecc->steps - 1), page);
2026         update_rw_regs(host, 1, false);
2027
2028         config_nand_page_write(nandc);
2029         write_data_dma(nandc, FLASH_BUF_ACC,
2030                        nandc->data_buffer, data_size + oob_size, 0);
2031         config_nand_cw_write(nandc);
2032
2033         ret = submit_descs(nandc);
2034
2035         free_descs(nandc);
2036
2037         if (ret) {
2038                 dev_err(nandc->dev, "failure to write oob\n");
2039                 return -EIO;
2040         }
2041
2042         return nand_prog_page_end_op(chip);
2043 }
2044
2045 static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
2046 {
2047         struct nand_chip *chip = mtd_to_nand(mtd);
2048         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2049         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2050         struct nand_ecc_ctrl *ecc = &chip->ecc;
2051         int page, ret, bbpos, bad = 0;
2052         u32 flash_status;
2053
2054         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2055
2056         /*
2057          * configure registers for a raw sub page read, the address is set to
2058          * the beginning of the last codeword, we don't care about reading ecc
2059          * portion of oob. we just want the first few bytes from this codeword
2060          * that contains the BBM
2061          */
2062         host->use_ecc = false;
2063
2064         clear_bam_transaction(nandc);
2065         ret = copy_last_cw(host, page);
2066         if (ret)
2067                 goto err;
2068
2069         flash_status = le32_to_cpu(nandc->reg_read_buf[0]);
2070
2071         if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) {
2072                 dev_warn(nandc->dev, "error when trying to read BBM\n");
2073                 goto err;
2074         }
2075
2076         bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2077
2078         bad = nandc->data_buffer[bbpos] != 0xff;
2079
2080         if (chip->options & NAND_BUSWIDTH_16)
2081                 bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2082 err:
2083         return bad;
2084 }
2085
2086 static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
2087 {
2088         struct nand_chip *chip = mtd_to_nand(mtd);
2089         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2090         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2091         struct nand_ecc_ctrl *ecc = &chip->ecc;
2092         int page, ret;
2093
2094         clear_read_regs(nandc);
2095         clear_bam_transaction(nandc);
2096
2097         /*
2098          * to mark the BBM as bad, we flash the entire last codeword with 0s.
2099          * we don't care about the rest of the content in the codeword since
2100          * we aren't going to use this block again
2101          */
2102         memset(nandc->data_buffer, 0x00, host->cw_size);
2103
2104         page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2105
2106         /* prepare write */
2107         host->use_ecc = false;
2108         set_address(host, host->cw_size * (ecc->steps - 1), page);
2109         update_rw_regs(host, 1, false);
2110
2111         config_nand_page_write(nandc);
2112         write_data_dma(nandc, FLASH_BUF_ACC,
2113                        nandc->data_buffer, host->cw_size, 0);
2114         config_nand_cw_write(nandc);
2115
2116         ret = submit_descs(nandc);
2117
2118         free_descs(nandc);
2119
2120         if (ret) {
2121                 dev_err(nandc->dev, "failure to update BBM\n");
2122                 return -EIO;
2123         }
2124
2125         return nand_prog_page_end_op(chip);
2126 }
2127
2128 /*
2129  * the three functions below implement chip->read_byte(), chip->read_buf()
2130  * and chip->write_buf() respectively. these aren't used for
2131  * reading/writing page data, they are used for smaller data like reading
2132  * id, status etc
2133  */
2134 static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
2135 {
2136         struct nand_chip *chip = mtd_to_nand(mtd);
2137         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2138         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2139         u8 *buf = nandc->data_buffer;
2140         u8 ret = 0x0;
2141
2142         if (host->last_command == NAND_CMD_STATUS) {
2143                 ret = host->status;
2144
2145                 host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2146
2147                 return ret;
2148         }
2149
2150         if (nandc->buf_start < nandc->buf_count)
2151                 ret = buf[nandc->buf_start++];
2152
2153         return ret;
2154 }
2155
2156 static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
2157 {
2158         struct nand_chip *chip = mtd_to_nand(mtd);
2159         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2160         int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2161
2162         memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2163         nandc->buf_start += real_len;
2164 }
2165
2166 static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
2167                                  int len)
2168 {
2169         struct nand_chip *chip = mtd_to_nand(mtd);
2170         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2171         int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2172
2173         memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2174
2175         nandc->buf_start += real_len;
2176 }
2177
2178 /* we support only one external chip for now */
2179 static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
2180 {
2181         struct nand_chip *chip = mtd_to_nand(mtd);
2182         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2183
2184         if (chipnr <= 0)
2185                 return;
2186
2187         dev_warn(nandc->dev, "invalid chip select\n");
2188 }
2189
2190 /*
2191  * NAND controller page layout info
2192  *
2193  * Layout with ECC enabled:
2194  *
2195  * |----------------------|  |---------------------------------|
2196  * |           xx.......yy|  |             *********xx.......yy|
2197  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2198  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2199  * |           xx.......yy|  |             *********xx.......yy|
2200  * |----------------------|  |---------------------------------|
2201  *     codeword 1,2..n-1                  codeword n
2202  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2203  *
2204  * n = Number of codewords in the page
2205  * . = ECC bytes
2206  * * = Spare/free bytes
2207  * x = Unused byte(s)
2208  * y = Reserved byte(s)
2209  *
2210  * 2K page: n = 4, spare = 16 bytes
2211  * 4K page: n = 8, spare = 32 bytes
2212  * 8K page: n = 16, spare = 64 bytes
2213  *
2214  * the qcom nand controller operates at a sub page/codeword level. each
2215  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2216  * the number of ECC bytes vary based on the ECC strength and the bus width.
2217  *
2218  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2219  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2220  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2221  *
2222  * When we access a page with ECC enabled, the reserved bytes(s) are not
2223  * accessible at all. When reading, we fill up these unreadable positions
2224  * with 0xffs. When writing, the controller skips writing the inaccessible
2225  * bytes.
2226  *
2227  * Layout with ECC disabled:
2228  *
2229  * |------------------------------|  |---------------------------------------|
2230  * |         yy          xx.......|  |         bb          *********xx.......|
2231  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2232  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2233  * |         yy          xx.......|  |         bb          *********xx.......|
2234  * |------------------------------|  |---------------------------------------|
2235  *         codeword 1,2..n-1                        codeword n
2236  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2237  *
2238  * n = Number of codewords in the page
2239  * . = ECC bytes
2240  * * = Spare/free bytes
2241  * x = Unused byte(s)
2242  * y = Dummy Bad Bock byte(s)
2243  * b = Real Bad Block byte(s)
2244  * size1/size2 = function of codeword size and 'n'
2245  *
2246  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2247  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2248  * Block Markers. In the last codeword, this position contains the real BBM
2249  *
2250  * In order to have a consistent layout between RAW and ECC modes, we assume
2251  * the following OOB layout arrangement:
2252  *
2253  * |-----------|  |--------------------|
2254  * |yyxx.......|  |bb*********xx.......|
2255  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2256  * |yyxx.......|  |bb*********xx.......|
2257  * |yyxx.......|  |bb*********xx.......|
2258  * |-----------|  |--------------------|
2259  *  first n - 1       nth OOB region
2260  *  OOB regions
2261  *
2262  * n = Number of codewords in the page
2263  * . = ECC bytes
2264  * * = FREE OOB bytes
2265  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2266  * x = Unused byte(s)
2267  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2268  *
2269  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2270  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2271  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2272  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2273  * the sum of the three).
2274  */
2275 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2276                                    struct mtd_oob_region *oobregion)
2277 {
2278         struct nand_chip *chip = mtd_to_nand(mtd);
2279         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2280         struct nand_ecc_ctrl *ecc = &chip->ecc;
2281
2282         if (section > 1)
2283                 return -ERANGE;
2284
2285         if (!section) {
2286                 oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2287                                     host->bbm_size;
2288                 oobregion->offset = 0;
2289         } else {
2290                 oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2291                 oobregion->offset = mtd->oobsize - oobregion->length;
2292         }
2293
2294         return 0;
2295 }
2296
2297 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2298                                      struct mtd_oob_region *oobregion)
2299 {
2300         struct nand_chip *chip = mtd_to_nand(mtd);
2301         struct qcom_nand_host *host = to_qcom_nand_host(chip);
2302         struct nand_ecc_ctrl *ecc = &chip->ecc;
2303
2304         if (section)
2305                 return -ERANGE;
2306
2307         oobregion->length = ecc->steps * 4;
2308         oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2309
2310         return 0;
2311 }
2312
2313 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2314         .ecc = qcom_nand_ooblayout_ecc,
2315         .free = qcom_nand_ooblayout_free,
2316 };
2317
2318 static int qcom_nand_host_setup(struct qcom_nand_host *host)
2319 {
2320         struct nand_chip *chip = &host->chip;
2321         struct mtd_info *mtd = nand_to_mtd(chip);
2322         struct nand_ecc_ctrl *ecc = &chip->ecc;
2323         struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2324         int cwperpage, bad_block_byte;
2325         bool wide_bus;
2326         int ecc_mode = 1;
2327
2328         /*
2329          * the controller requires each step consists of 512 bytes of data.
2330          * bail out if DT has populated a wrong step size.
2331          */
2332         if (ecc->size != NANDC_STEP_SIZE) {
2333                 dev_err(nandc->dev, "invalid ecc size\n");
2334                 return -EINVAL;
2335         }
2336
2337         wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2338
2339         if (ecc->strength >= 8) {
2340                 /* 8 bit ECC defaults to BCH ECC on all platforms */
2341                 host->bch_enabled = true;
2342                 ecc_mode = 1;
2343
2344                 if (wide_bus) {
2345                         host->ecc_bytes_hw = 14;
2346                         host->spare_bytes = 0;
2347                         host->bbm_size = 2;
2348                 } else {
2349                         host->ecc_bytes_hw = 13;
2350                         host->spare_bytes = 2;
2351                         host->bbm_size = 1;
2352                 }
2353         } else {
2354                 /*
2355                  * if the controller supports BCH for 4 bit ECC, the controller
2356                  * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2357                  * always 10 bytes
2358                  */
2359                 if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2360                         /* BCH */
2361                         host->bch_enabled = true;
2362                         ecc_mode = 0;
2363
2364                         if (wide_bus) {
2365                                 host->ecc_bytes_hw = 8;
2366                                 host->spare_bytes = 2;
2367                                 host->bbm_size = 2;
2368                         } else {
2369                                 host->ecc_bytes_hw = 7;
2370                                 host->spare_bytes = 4;
2371                                 host->bbm_size = 1;
2372                         }
2373                 } else {
2374                         /* RS */
2375                         host->ecc_bytes_hw = 10;
2376
2377                         if (wide_bus) {
2378                                 host->spare_bytes = 0;
2379                                 host->bbm_size = 2;
2380                         } else {
2381                                 host->spare_bytes = 1;
2382                                 host->bbm_size = 1;
2383                         }
2384                 }
2385         }
2386
2387         /*
2388          * we consider ecc->bytes as the sum of all the non-data content in a
2389          * step. It gives us a clean representation of the oob area (even if
2390          * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2391          * ECC and 12 bytes for 4 bit ECC
2392          */
2393         ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2394
2395         ecc->read_page          = qcom_nandc_read_page;
2396         ecc->read_page_raw      = qcom_nandc_read_page_raw;
2397         ecc->read_oob           = qcom_nandc_read_oob;
2398         ecc->write_page         = qcom_nandc_write_page;
2399         ecc->write_page_raw     = qcom_nandc_write_page_raw;
2400         ecc->write_oob          = qcom_nandc_write_oob;
2401
2402         ecc->mode = NAND_ECC_HW;
2403
2404         mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2405
2406         cwperpage = mtd->writesize / ecc->size;
2407         nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2408                                      cwperpage);
2409
2410         /*
2411          * DATA_UD_BYTES varies based on whether the read/write command protects
2412          * spare data with ECC too. We protect spare data by default, so we set
2413          * it to main + spare data, which are 512 and 4 bytes respectively.
2414          */
2415         host->cw_data = 516;
2416
2417         /*
2418          * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2419          * for 8 bit ECC
2420          */
2421         host->cw_size = host->cw_data + ecc->bytes;
2422
2423         if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) {
2424                 dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n");
2425                 return -EINVAL;
2426         }
2427
2428         bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2429
2430         host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2431                                 | host->cw_data << UD_SIZE_BYTES
2432                                 | 0 << DISABLE_STATUS_AFTER_WRITE
2433                                 | 5 << NUM_ADDR_CYCLES
2434                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2435                                 | 0 << STATUS_BFR_READ
2436                                 | 1 << SET_RD_MODE_AFTER_STATUS
2437                                 | host->spare_bytes << SPARE_SIZE_BYTES;
2438
2439         host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2440                                 | 0 <<  CS_ACTIVE_BSY
2441                                 | bad_block_byte << BAD_BLOCK_BYTE_NUM
2442                                 | 0 << BAD_BLOCK_IN_SPARE_AREA
2443                                 | 2 << WR_RD_BSY_GAP
2444                                 | wide_bus << WIDE_FLASH
2445                                 | host->bch_enabled << ENABLE_BCH_ECC;
2446
2447         host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2448                                 | host->cw_size << UD_SIZE_BYTES
2449                                 | 5 << NUM_ADDR_CYCLES
2450                                 | 0 << SPARE_SIZE_BYTES;
2451
2452         host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2453                                 | 0 << CS_ACTIVE_BSY
2454                                 | 17 << BAD_BLOCK_BYTE_NUM
2455                                 | 1 << BAD_BLOCK_IN_SPARE_AREA
2456                                 | 2 << WR_RD_BSY_GAP
2457                                 | wide_bus << WIDE_FLASH
2458                                 | 1 << DEV0_CFG1_ECC_DISABLE;
2459
2460         host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2461                                 | 0 << ECC_SW_RESET
2462                                 | host->cw_data << ECC_NUM_DATA_BYTES
2463                                 | 1 << ECC_FORCE_CLK_OPEN
2464                                 | ecc_mode << ECC_MODE
2465                                 | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2466
2467         host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2468
2469         host->clrflashstatus = FS_READY_BSY_N;
2470         host->clrreadstatus = 0xc0;
2471         nandc->regs->erased_cw_detect_cfg_clr =
2472                 cpu_to_le32(CLR_ERASED_PAGE_DET);
2473         nandc->regs->erased_cw_detect_cfg_set =
2474                 cpu_to_le32(SET_ERASED_PAGE_DET);
2475
2476         dev_dbg(nandc->dev,
2477                 "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2478                 host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2479                 host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2480                 cwperpage);
2481
2482         return 0;
2483 }
2484
2485 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2486 {
2487         int ret;
2488
2489         ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2490         if (ret) {
2491                 dev_err(nandc->dev, "failed to set DMA mask\n");
2492                 return ret;
2493         }
2494
2495         /*
2496          * we use the internal buffer for reading ONFI params, reading small
2497          * data like ID and status, and preforming read-copy-write operations
2498          * when writing to a codeword partially. 532 is the maximum possible
2499          * size of a codeword for our nand controller
2500          */
2501         nandc->buf_size = 532;
2502
2503         nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2504                                         GFP_KERNEL);
2505         if (!nandc->data_buffer)
2506                 return -ENOMEM;
2507
2508         nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2509                                         GFP_KERNEL);
2510         if (!nandc->regs)
2511                 return -ENOMEM;
2512
2513         nandc->reg_read_buf = devm_kzalloc(nandc->dev,
2514                                 MAX_REG_RD * sizeof(*nandc->reg_read_buf),
2515                                 GFP_KERNEL);
2516         if (!nandc->reg_read_buf)
2517                 return -ENOMEM;
2518
2519         if (nandc->props->is_bam) {
2520                 nandc->reg_read_dma =
2521                         dma_map_single(nandc->dev, nandc->reg_read_buf,
2522                                        MAX_REG_RD *
2523                                        sizeof(*nandc->reg_read_buf),
2524                                        DMA_FROM_DEVICE);
2525                 if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2526                         dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2527                         return -EIO;
2528                 }
2529
2530                 nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2531                 if (!nandc->tx_chan) {
2532                         dev_err(nandc->dev, "failed to request tx channel\n");
2533                         return -ENODEV;
2534                 }
2535
2536                 nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2537                 if (!nandc->rx_chan) {
2538                         dev_err(nandc->dev, "failed to request rx channel\n");
2539                         return -ENODEV;
2540                 }
2541
2542                 nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2543                 if (!nandc->cmd_chan) {
2544                         dev_err(nandc->dev, "failed to request cmd channel\n");
2545                         return -ENODEV;
2546                 }
2547
2548                 /*
2549                  * Initially allocate BAM transaction to read ONFI param page.
2550                  * After detecting all the devices, this BAM transaction will
2551                  * be freed and the next BAM tranasction will be allocated with
2552                  * maximum codeword size
2553                  */
2554                 nandc->max_cwperpage = 1;
2555                 nandc->bam_txn = alloc_bam_transaction(nandc);
2556                 if (!nandc->bam_txn) {
2557                         dev_err(nandc->dev,
2558                                 "failed to allocate bam transaction\n");
2559                         return -ENOMEM;
2560                 }
2561         } else {
2562                 nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2563                 if (!nandc->chan) {
2564                         dev_err(nandc->dev,
2565                                 "failed to request slave channel\n");
2566                         return -ENODEV;
2567                 }
2568         }
2569
2570         INIT_LIST_HEAD(&nandc->desc_list);
2571         INIT_LIST_HEAD(&nandc->host_list);
2572
2573         nand_hw_control_init(&nandc->controller);
2574
2575         return 0;
2576 }
2577
2578 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2579 {
2580         if (nandc->props->is_bam) {
2581                 if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2582                         dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2583                                          MAX_REG_RD *
2584                                          sizeof(*nandc->reg_read_buf),
2585                                          DMA_FROM_DEVICE);
2586
2587                 if (nandc->tx_chan)
2588                         dma_release_channel(nandc->tx_chan);
2589
2590                 if (nandc->rx_chan)
2591                         dma_release_channel(nandc->rx_chan);
2592
2593                 if (nandc->cmd_chan)
2594                         dma_release_channel(nandc->cmd_chan);
2595         } else {
2596                 if (nandc->chan)
2597                         dma_release_channel(nandc->chan);
2598         }
2599 }
2600
2601 /* one time setup of a few nand controller registers */
2602 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2603 {
2604         u32 nand_ctrl;
2605
2606         /* kill onenand */
2607         nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2608         nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2609                     NAND_DEV_CMD_VLD_VAL);
2610
2611         /* enable ADM or BAM DMA */
2612         if (nandc->props->is_bam) {
2613                 nand_ctrl = nandc_read(nandc, NAND_CTRL);
2614                 nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2615         } else {
2616                 nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2617         }
2618
2619         /* save the original values of these registers */
2620         nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2621         nandc->vld = NAND_DEV_CMD_VLD_VAL;
2622
2623         return 0;
2624 }
2625
2626 static int qcom_nand_host_init(struct qcom_nand_controller *nandc,
2627                                struct qcom_nand_host *host,
2628                                struct device_node *dn)
2629 {
2630         struct nand_chip *chip = &host->chip;
2631         struct mtd_info *mtd = nand_to_mtd(chip);
2632         struct device *dev = nandc->dev;
2633         int ret;
2634
2635         ret = of_property_read_u32(dn, "reg", &host->cs);
2636         if (ret) {
2637                 dev_err(dev, "can't get chip-select\n");
2638                 return -ENXIO;
2639         }
2640
2641         nand_set_flash_node(chip, dn);
2642         mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2643         if (!mtd->name)
2644                 return -ENOMEM;
2645
2646         mtd->owner = THIS_MODULE;
2647         mtd->dev.parent = dev;
2648
2649         chip->cmdfunc           = qcom_nandc_command;
2650         chip->select_chip       = qcom_nandc_select_chip;
2651         chip->read_byte         = qcom_nandc_read_byte;
2652         chip->read_buf          = qcom_nandc_read_buf;
2653         chip->write_buf         = qcom_nandc_write_buf;
2654         chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
2655         chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
2656
2657         /*
2658          * the bad block marker is readable only when we read the last codeword
2659          * of a page with ECC disabled. currently, the nand_base and nand_bbt
2660          * helpers don't allow us to read BB from a nand chip with ECC
2661          * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2662          * and block_markbad helpers until we permanently switch to using
2663          * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2664          */
2665         chip->block_bad         = qcom_nandc_block_bad;
2666         chip->block_markbad     = qcom_nandc_block_markbad;
2667
2668         chip->controller = &nandc->controller;
2669         chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2670                          NAND_SKIP_BBTSCAN;
2671
2672         /* set up initial status value */
2673         host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2674
2675         ret = nand_scan_ident(mtd, 1, NULL);
2676         if (ret)
2677                 return ret;
2678
2679         ret = qcom_nand_host_setup(host);
2680
2681         return ret;
2682 }
2683
2684 static int qcom_nand_mtd_register(struct qcom_nand_controller *nandc,
2685                                   struct qcom_nand_host *host,
2686                                   struct device_node *dn)
2687 {
2688         struct nand_chip *chip = &host->chip;
2689         struct mtd_info *mtd = nand_to_mtd(chip);
2690         int ret;
2691
2692         ret = nand_scan_tail(mtd);
2693         if (ret)
2694                 return ret;
2695
2696         ret = mtd_device_register(mtd, NULL, 0);
2697         if (ret)
2698                 nand_cleanup(mtd_to_nand(mtd));
2699
2700         return ret;
2701 }
2702
2703 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2704 {
2705         struct device *dev = nandc->dev;
2706         struct device_node *dn = dev->of_node, *child;
2707         struct qcom_nand_host *host, *tmp;
2708         int ret;
2709
2710         for_each_available_child_of_node(dn, child) {
2711                 host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2712                 if (!host) {
2713                         of_node_put(child);
2714                         return -ENOMEM;
2715                 }
2716
2717                 ret = qcom_nand_host_init(nandc, host, child);
2718                 if (ret) {
2719                         devm_kfree(dev, host);
2720                         continue;
2721                 }
2722
2723                 list_add_tail(&host->node, &nandc->host_list);
2724         }
2725
2726         if (list_empty(&nandc->host_list))
2727                 return -ENODEV;
2728
2729         if (nandc->props->is_bam) {
2730                 free_bam_transaction(nandc);
2731                 nandc->bam_txn = alloc_bam_transaction(nandc);
2732                 if (!nandc->bam_txn) {
2733                         dev_err(nandc->dev,
2734                                 "failed to allocate bam transaction\n");
2735                         return -ENOMEM;
2736                 }
2737         }
2738
2739         list_for_each_entry_safe(host, tmp, &nandc->host_list, node) {
2740                 ret = qcom_nand_mtd_register(nandc, host, child);
2741                 if (ret) {
2742                         list_del(&host->node);
2743                         devm_kfree(dev, host);
2744                 }
2745         }
2746
2747         if (list_empty(&nandc->host_list))
2748                 return -ENODEV;
2749
2750         return 0;
2751 }
2752
2753 /* parse custom DT properties here */
2754 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2755 {
2756         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2757         struct device_node *np = nandc->dev->of_node;
2758         int ret;
2759
2760         if (!nandc->props->is_bam) {
2761                 ret = of_property_read_u32(np, "qcom,cmd-crci",
2762                                            &nandc->cmd_crci);
2763                 if (ret) {
2764                         dev_err(nandc->dev, "command CRCI unspecified\n");
2765                         return ret;
2766                 }
2767
2768                 ret = of_property_read_u32(np, "qcom,data-crci",
2769                                            &nandc->data_crci);
2770                 if (ret) {
2771                         dev_err(nandc->dev, "data CRCI unspecified\n");
2772                         return ret;
2773                 }
2774         }
2775
2776         return 0;
2777 }
2778
2779 static int qcom_nandc_probe(struct platform_device *pdev)
2780 {
2781         struct qcom_nand_controller *nandc;
2782         const void *dev_data;
2783         struct device *dev = &pdev->dev;
2784         struct resource *res;
2785         int ret;
2786
2787         nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2788         if (!nandc)
2789                 return -ENOMEM;
2790
2791         platform_set_drvdata(pdev, nandc);
2792         nandc->dev = dev;
2793
2794         dev_data = of_device_get_match_data(dev);
2795         if (!dev_data) {
2796                 dev_err(&pdev->dev, "failed to get device data\n");
2797                 return -ENODEV;
2798         }
2799
2800         nandc->props = dev_data;
2801
2802         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2803         nandc->base = devm_ioremap_resource(dev, res);
2804         if (IS_ERR(nandc->base))
2805                 return PTR_ERR(nandc->base);
2806
2807         nandc->base_phys = res->start;
2808         nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start);
2809
2810         nandc->core_clk = devm_clk_get(dev, "core");
2811         if (IS_ERR(nandc->core_clk))
2812                 return PTR_ERR(nandc->core_clk);
2813
2814         nandc->aon_clk = devm_clk_get(dev, "aon");
2815         if (IS_ERR(nandc->aon_clk))
2816                 return PTR_ERR(nandc->aon_clk);
2817
2818         ret = qcom_nandc_parse_dt(pdev);
2819         if (ret)
2820                 return ret;
2821
2822         ret = qcom_nandc_alloc(nandc);
2823         if (ret)
2824                 goto err_core_clk;
2825
2826         ret = clk_prepare_enable(nandc->core_clk);
2827         if (ret)
2828                 goto err_core_clk;
2829
2830         ret = clk_prepare_enable(nandc->aon_clk);
2831         if (ret)
2832                 goto err_aon_clk;
2833
2834         ret = qcom_nandc_setup(nandc);
2835         if (ret)
2836                 goto err_setup;
2837
2838         ret = qcom_probe_nand_devices(nandc);
2839         if (ret)
2840                 goto err_setup;
2841
2842         return 0;
2843
2844 err_setup:
2845         clk_disable_unprepare(nandc->aon_clk);
2846 err_aon_clk:
2847         clk_disable_unprepare(nandc->core_clk);
2848 err_core_clk:
2849         qcom_nandc_unalloc(nandc);
2850
2851         return ret;
2852 }
2853
2854 static int qcom_nandc_remove(struct platform_device *pdev)
2855 {
2856         struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2857         struct qcom_nand_host *host;
2858
2859         list_for_each_entry(host, &nandc->host_list, node)
2860                 nand_release(nand_to_mtd(&host->chip));
2861
2862         qcom_nandc_unalloc(nandc);
2863
2864         clk_disable_unprepare(nandc->aon_clk);
2865         clk_disable_unprepare(nandc->core_clk);
2866
2867         return 0;
2868 }
2869
2870 static const struct qcom_nandc_props ipq806x_nandc_props = {
2871         .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
2872         .is_bam = false,
2873         .dev_cmd_reg_start = 0x0,
2874 };
2875
2876 static const struct qcom_nandc_props ipq4019_nandc_props = {
2877         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2878         .is_bam = true,
2879         .dev_cmd_reg_start = 0x0,
2880 };
2881
2882 static const struct qcom_nandc_props ipq8074_nandc_props = {
2883         .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2884         .is_bam = true,
2885         .dev_cmd_reg_start = 0x7000,
2886 };
2887
2888 /*
2889  * data will hold a struct pointer containing more differences once we support
2890  * more controller variants
2891  */
2892 static const struct of_device_id qcom_nandc_of_match[] = {
2893         {
2894                 .compatible = "qcom,ipq806x-nand",
2895                 .data = &ipq806x_nandc_props,
2896         },
2897         {
2898                 .compatible = "qcom,ipq4019-nand",
2899                 .data = &ipq4019_nandc_props,
2900         },
2901         {
2902                 .compatible = "qcom,ipq8074-nand",
2903                 .data = &ipq8074_nandc_props,
2904         },
2905         {}
2906 };
2907 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
2908
2909 static struct platform_driver qcom_nandc_driver = {
2910         .driver = {
2911                 .name = "qcom-nandc",
2912                 .of_match_table = qcom_nandc_of_match,
2913         },
2914         .probe   = qcom_nandc_probe,
2915         .remove  = qcom_nandc_remove,
2916 };
2917 module_platform_driver(qcom_nandc_driver);
2918
2919 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2920 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2921 MODULE_LICENSE("GPL v2");