Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[sfrench/cifs-2.6.git] / drivers / mtd / mtdconcat.c
1 /*
2  * MTD device concatenation layer
3  *
4  * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
5  * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
6  *
7  * NAND support by Christian Gan <cgan@iders.ca>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/types.h>
30 #include <linux/backing-dev.h>
31
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/concat.h>
34
35 #include <asm/div64.h>
36
37 /*
38  * Our storage structure:
39  * Subdev points to an array of pointers to struct mtd_info objects
40  * which is allocated along with this structure
41  *
42  */
43 struct mtd_concat {
44         struct mtd_info mtd;
45         int num_subdev;
46         struct mtd_info **subdev;
47 };
48
49 /*
50  * how to calculate the size required for the above structure,
51  * including the pointer array subdev points to:
52  */
53 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)    \
54         ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
55
56 /*
57  * Given a pointer to the MTD object in the mtd_concat structure,
58  * we can retrieve the pointer to that structure with this macro.
59  */
60 #define CONCAT(x)  ((struct mtd_concat *)(x))
61
62 /*
63  * MTD methods which look up the relevant subdevice, translate the
64  * effective address and pass through to the subdevice.
65  */
66
67 static int
68 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
69             size_t * retlen, u_char * buf)
70 {
71         struct mtd_concat *concat = CONCAT(mtd);
72         int ret = 0, err;
73         int i;
74
75         for (i = 0; i < concat->num_subdev; i++) {
76                 struct mtd_info *subdev = concat->subdev[i];
77                 size_t size, retsize;
78
79                 if (from >= subdev->size) {
80                         /* Not destined for this subdev */
81                         size = 0;
82                         from -= subdev->size;
83                         continue;
84                 }
85                 if (from + len > subdev->size)
86                         /* First part goes into this subdev */
87                         size = subdev->size - from;
88                 else
89                         /* Entire transaction goes into this subdev */
90                         size = len;
91
92                 err = mtd_read(subdev, from, size, &retsize, buf);
93
94                 /* Save information about bitflips! */
95                 if (unlikely(err)) {
96                         if (mtd_is_eccerr(err)) {
97                                 mtd->ecc_stats.failed++;
98                                 ret = err;
99                         } else if (mtd_is_bitflip(err)) {
100                                 mtd->ecc_stats.corrected++;
101                                 /* Do not overwrite -EBADMSG !! */
102                                 if (!ret)
103                                         ret = err;
104                         } else
105                                 return err;
106                 }
107
108                 *retlen += retsize;
109                 len -= size;
110                 if (len == 0)
111                         return ret;
112
113                 buf += size;
114                 from = 0;
115         }
116         return -EINVAL;
117 }
118
119 static int
120 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121              size_t * retlen, const u_char * buf)
122 {
123         struct mtd_concat *concat = CONCAT(mtd);
124         int err = -EINVAL;
125         int i;
126
127         for (i = 0; i < concat->num_subdev; i++) {
128                 struct mtd_info *subdev = concat->subdev[i];
129                 size_t size, retsize;
130
131                 if (to >= subdev->size) {
132                         size = 0;
133                         to -= subdev->size;
134                         continue;
135                 }
136                 if (to + len > subdev->size)
137                         size = subdev->size - to;
138                 else
139                         size = len;
140
141                 err = mtd_write(subdev, to, size, &retsize, buf);
142                 if (err)
143                         break;
144
145                 *retlen += retsize;
146                 len -= size;
147                 if (len == 0)
148                         break;
149
150                 err = -EINVAL;
151                 buf += size;
152                 to = 0;
153         }
154         return err;
155 }
156
157 static int
158 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159                 unsigned long count, loff_t to, size_t * retlen)
160 {
161         struct mtd_concat *concat = CONCAT(mtd);
162         struct kvec *vecs_copy;
163         unsigned long entry_low, entry_high;
164         size_t total_len = 0;
165         int i;
166         int err = -EINVAL;
167
168         /* Calculate total length of data */
169         for (i = 0; i < count; i++)
170                 total_len += vecs[i].iov_len;
171
172         /* Check alignment */
173         if (mtd->writesize > 1) {
174                 uint64_t __to = to;
175                 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176                         return -EINVAL;
177         }
178
179         /* make a copy of vecs */
180         vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181         if (!vecs_copy)
182                 return -ENOMEM;
183
184         entry_low = 0;
185         for (i = 0; i < concat->num_subdev; i++) {
186                 struct mtd_info *subdev = concat->subdev[i];
187                 size_t size, wsize, retsize, old_iov_len;
188
189                 if (to >= subdev->size) {
190                         to -= subdev->size;
191                         continue;
192                 }
193
194                 size = min_t(uint64_t, total_len, subdev->size - to);
195                 wsize = size; /* store for future use */
196
197                 entry_high = entry_low;
198                 while (entry_high < count) {
199                         if (size <= vecs_copy[entry_high].iov_len)
200                                 break;
201                         size -= vecs_copy[entry_high++].iov_len;
202                 }
203
204                 old_iov_len = vecs_copy[entry_high].iov_len;
205                 vecs_copy[entry_high].iov_len = size;
206
207                 err = mtd_writev(subdev, &vecs_copy[entry_low],
208                                  entry_high - entry_low + 1, to, &retsize);
209
210                 vecs_copy[entry_high].iov_len = old_iov_len - size;
211                 vecs_copy[entry_high].iov_base += size;
212
213                 entry_low = entry_high;
214
215                 if (err)
216                         break;
217
218                 *retlen += retsize;
219                 total_len -= wsize;
220
221                 if (total_len == 0)
222                         break;
223
224                 err = -EINVAL;
225                 to = 0;
226         }
227
228         kfree(vecs_copy);
229         return err;
230 }
231
232 static int
233 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
234 {
235         struct mtd_concat *concat = CONCAT(mtd);
236         struct mtd_oob_ops devops = *ops;
237         int i, err, ret = 0;
238
239         ops->retlen = ops->oobretlen = 0;
240
241         for (i = 0; i < concat->num_subdev; i++) {
242                 struct mtd_info *subdev = concat->subdev[i];
243
244                 if (from >= subdev->size) {
245                         from -= subdev->size;
246                         continue;
247                 }
248
249                 /* partial read ? */
250                 if (from + devops.len > subdev->size)
251                         devops.len = subdev->size - from;
252
253                 err = mtd_read_oob(subdev, from, &devops);
254                 ops->retlen += devops.retlen;
255                 ops->oobretlen += devops.oobretlen;
256
257                 /* Save information about bitflips! */
258                 if (unlikely(err)) {
259                         if (mtd_is_eccerr(err)) {
260                                 mtd->ecc_stats.failed++;
261                                 ret = err;
262                         } else if (mtd_is_bitflip(err)) {
263                                 mtd->ecc_stats.corrected++;
264                                 /* Do not overwrite -EBADMSG !! */
265                                 if (!ret)
266                                         ret = err;
267                         } else
268                                 return err;
269                 }
270
271                 if (devops.datbuf) {
272                         devops.len = ops->len - ops->retlen;
273                         if (!devops.len)
274                                 return ret;
275                         devops.datbuf += devops.retlen;
276                 }
277                 if (devops.oobbuf) {
278                         devops.ooblen = ops->ooblen - ops->oobretlen;
279                         if (!devops.ooblen)
280                                 return ret;
281                         devops.oobbuf += ops->oobretlen;
282                 }
283
284                 from = 0;
285         }
286         return -EINVAL;
287 }
288
289 static int
290 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
291 {
292         struct mtd_concat *concat = CONCAT(mtd);
293         struct mtd_oob_ops devops = *ops;
294         int i, err;
295
296         if (!(mtd->flags & MTD_WRITEABLE))
297                 return -EROFS;
298
299         ops->retlen = ops->oobretlen = 0;
300
301         for (i = 0; i < concat->num_subdev; i++) {
302                 struct mtd_info *subdev = concat->subdev[i];
303
304                 if (to >= subdev->size) {
305                         to -= subdev->size;
306                         continue;
307                 }
308
309                 /* partial write ? */
310                 if (to + devops.len > subdev->size)
311                         devops.len = subdev->size - to;
312
313                 err = mtd_write_oob(subdev, to, &devops);
314                 ops->retlen += devops.retlen;
315                 ops->oobretlen += devops.oobretlen;
316                 if (err)
317                         return err;
318
319                 if (devops.datbuf) {
320                         devops.len = ops->len - ops->retlen;
321                         if (!devops.len)
322                                 return 0;
323                         devops.datbuf += devops.retlen;
324                 }
325                 if (devops.oobbuf) {
326                         devops.ooblen = ops->ooblen - ops->oobretlen;
327                         if (!devops.ooblen)
328                                 return 0;
329                         devops.oobbuf += devops.oobretlen;
330                 }
331                 to = 0;
332         }
333         return -EINVAL;
334 }
335
336 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
337 {
338         struct mtd_concat *concat = CONCAT(mtd);
339         struct mtd_info *subdev;
340         int i, err;
341         uint64_t length, offset = 0;
342         struct erase_info *erase;
343
344         /*
345          * Check for proper erase block alignment of the to-be-erased area.
346          * It is easier to do this based on the super device's erase
347          * region info rather than looking at each particular sub-device
348          * in turn.
349          */
350         if (!concat->mtd.numeraseregions) {
351                 /* the easy case: device has uniform erase block size */
352                 if (instr->addr & (concat->mtd.erasesize - 1))
353                         return -EINVAL;
354                 if (instr->len & (concat->mtd.erasesize - 1))
355                         return -EINVAL;
356         } else {
357                 /* device has variable erase size */
358                 struct mtd_erase_region_info *erase_regions =
359                     concat->mtd.eraseregions;
360
361                 /*
362                  * Find the erase region where the to-be-erased area begins:
363                  */
364                 for (i = 0; i < concat->mtd.numeraseregions &&
365                      instr->addr >= erase_regions[i].offset; i++) ;
366                 --i;
367
368                 /*
369                  * Now erase_regions[i] is the region in which the
370                  * to-be-erased area begins. Verify that the starting
371                  * offset is aligned to this region's erase size:
372                  */
373                 if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
374                         return -EINVAL;
375
376                 /*
377                  * now find the erase region where the to-be-erased area ends:
378                  */
379                 for (; i < concat->mtd.numeraseregions &&
380                      (instr->addr + instr->len) >= erase_regions[i].offset;
381                      ++i) ;
382                 --i;
383                 /*
384                  * check if the ending offset is aligned to this region's erase size
385                  */
386                 if (i < 0 || ((instr->addr + instr->len) &
387                                         (erase_regions[i].erasesize - 1)))
388                         return -EINVAL;
389         }
390
391         /* make a local copy of instr to avoid modifying the caller's struct */
392         erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
393
394         if (!erase)
395                 return -ENOMEM;
396
397         *erase = *instr;
398         length = instr->len;
399
400         /*
401          * find the subdevice where the to-be-erased area begins, adjust
402          * starting offset to be relative to the subdevice start
403          */
404         for (i = 0; i < concat->num_subdev; i++) {
405                 subdev = concat->subdev[i];
406                 if (subdev->size <= erase->addr) {
407                         erase->addr -= subdev->size;
408                         offset += subdev->size;
409                 } else {
410                         break;
411                 }
412         }
413
414         /* must never happen since size limit has been verified above */
415         BUG_ON(i >= concat->num_subdev);
416
417         /* now do the erase: */
418         err = 0;
419         for (; length > 0; i++) {
420                 /* loop for all subdevices affected by this request */
421                 subdev = concat->subdev[i];     /* get current subdevice */
422
423                 /* limit length to subdevice's size: */
424                 if (erase->addr + length > subdev->size)
425                         erase->len = subdev->size - erase->addr;
426                 else
427                         erase->len = length;
428
429                 length -= erase->len;
430                 if ((err = mtd_erase(subdev, erase))) {
431                         /* sanity check: should never happen since
432                          * block alignment has been checked above */
433                         BUG_ON(err == -EINVAL);
434                         if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
435                                 instr->fail_addr = erase->fail_addr + offset;
436                         break;
437                 }
438                 /*
439                  * erase->addr specifies the offset of the area to be
440                  * erased *within the current subdevice*. It can be
441                  * non-zero only the first time through this loop, i.e.
442                  * for the first subdevice where blocks need to be erased.
443                  * All the following erases must begin at the start of the
444                  * current subdevice, i.e. at offset zero.
445                  */
446                 erase->addr = 0;
447                 offset += subdev->size;
448         }
449         kfree(erase);
450
451         return err;
452 }
453
454 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
455 {
456         struct mtd_concat *concat = CONCAT(mtd);
457         int i, err = -EINVAL;
458
459         for (i = 0; i < concat->num_subdev; i++) {
460                 struct mtd_info *subdev = concat->subdev[i];
461                 uint64_t size;
462
463                 if (ofs >= subdev->size) {
464                         size = 0;
465                         ofs -= subdev->size;
466                         continue;
467                 }
468                 if (ofs + len > subdev->size)
469                         size = subdev->size - ofs;
470                 else
471                         size = len;
472
473                 err = mtd_lock(subdev, ofs, size);
474                 if (err)
475                         break;
476
477                 len -= size;
478                 if (len == 0)
479                         break;
480
481                 err = -EINVAL;
482                 ofs = 0;
483         }
484
485         return err;
486 }
487
488 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
489 {
490         struct mtd_concat *concat = CONCAT(mtd);
491         int i, err = 0;
492
493         for (i = 0; i < concat->num_subdev; i++) {
494                 struct mtd_info *subdev = concat->subdev[i];
495                 uint64_t size;
496
497                 if (ofs >= subdev->size) {
498                         size = 0;
499                         ofs -= subdev->size;
500                         continue;
501                 }
502                 if (ofs + len > subdev->size)
503                         size = subdev->size - ofs;
504                 else
505                         size = len;
506
507                 err = mtd_unlock(subdev, ofs, size);
508                 if (err)
509                         break;
510
511                 len -= size;
512                 if (len == 0)
513                         break;
514
515                 err = -EINVAL;
516                 ofs = 0;
517         }
518
519         return err;
520 }
521
522 static void concat_sync(struct mtd_info *mtd)
523 {
524         struct mtd_concat *concat = CONCAT(mtd);
525         int i;
526
527         for (i = 0; i < concat->num_subdev; i++) {
528                 struct mtd_info *subdev = concat->subdev[i];
529                 mtd_sync(subdev);
530         }
531 }
532
533 static int concat_suspend(struct mtd_info *mtd)
534 {
535         struct mtd_concat *concat = CONCAT(mtd);
536         int i, rc = 0;
537
538         for (i = 0; i < concat->num_subdev; i++) {
539                 struct mtd_info *subdev = concat->subdev[i];
540                 if ((rc = mtd_suspend(subdev)) < 0)
541                         return rc;
542         }
543         return rc;
544 }
545
546 static void concat_resume(struct mtd_info *mtd)
547 {
548         struct mtd_concat *concat = CONCAT(mtd);
549         int i;
550
551         for (i = 0; i < concat->num_subdev; i++) {
552                 struct mtd_info *subdev = concat->subdev[i];
553                 mtd_resume(subdev);
554         }
555 }
556
557 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
558 {
559         struct mtd_concat *concat = CONCAT(mtd);
560         int i, res = 0;
561
562         if (!mtd_can_have_bb(concat->subdev[0]))
563                 return res;
564
565         for (i = 0; i < concat->num_subdev; i++) {
566                 struct mtd_info *subdev = concat->subdev[i];
567
568                 if (ofs >= subdev->size) {
569                         ofs -= subdev->size;
570                         continue;
571                 }
572
573                 res = mtd_block_isbad(subdev, ofs);
574                 break;
575         }
576
577         return res;
578 }
579
580 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
581 {
582         struct mtd_concat *concat = CONCAT(mtd);
583         int i, err = -EINVAL;
584
585         for (i = 0; i < concat->num_subdev; i++) {
586                 struct mtd_info *subdev = concat->subdev[i];
587
588                 if (ofs >= subdev->size) {
589                         ofs -= subdev->size;
590                         continue;
591                 }
592
593                 err = mtd_block_markbad(subdev, ofs);
594                 if (!err)
595                         mtd->ecc_stats.badblocks++;
596                 break;
597         }
598
599         return err;
600 }
601
602 /*
603  * This function constructs a virtual MTD device by concatenating
604  * num_devs MTD devices. A pointer to the new device object is
605  * stored to *new_dev upon success. This function does _not_
606  * register any devices: this is the caller's responsibility.
607  */
608 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],   /* subdevices to concatenate */
609                                    int num_devs,        /* number of subdevices      */
610                                    const char *name)
611 {                               /* name for the new device   */
612         int i;
613         size_t size;
614         struct mtd_concat *concat;
615         uint32_t max_erasesize, curr_erasesize;
616         int num_erase_region;
617         int max_writebufsize = 0;
618
619         printk(KERN_NOTICE "Concatenating MTD devices:\n");
620         for (i = 0; i < num_devs; i++)
621                 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
622         printk(KERN_NOTICE "into device \"%s\"\n", name);
623
624         /* allocate the device structure */
625         size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
626         concat = kzalloc(size, GFP_KERNEL);
627         if (!concat) {
628                 printk
629                     ("memory allocation error while creating concatenated device \"%s\"\n",
630                      name);
631                 return NULL;
632         }
633         concat->subdev = (struct mtd_info **) (concat + 1);
634
635         /*
636          * Set up the new "super" device's MTD object structure, check for
637          * incompatibilities between the subdevices.
638          */
639         concat->mtd.type = subdev[0]->type;
640         concat->mtd.flags = subdev[0]->flags;
641         concat->mtd.size = subdev[0]->size;
642         concat->mtd.erasesize = subdev[0]->erasesize;
643         concat->mtd.writesize = subdev[0]->writesize;
644
645         for (i = 0; i < num_devs; i++)
646                 if (max_writebufsize < subdev[i]->writebufsize)
647                         max_writebufsize = subdev[i]->writebufsize;
648         concat->mtd.writebufsize = max_writebufsize;
649
650         concat->mtd.subpage_sft = subdev[0]->subpage_sft;
651         concat->mtd.oobsize = subdev[0]->oobsize;
652         concat->mtd.oobavail = subdev[0]->oobavail;
653         if (subdev[0]->_writev)
654                 concat->mtd._writev = concat_writev;
655         if (subdev[0]->_read_oob)
656                 concat->mtd._read_oob = concat_read_oob;
657         if (subdev[0]->_write_oob)
658                 concat->mtd._write_oob = concat_write_oob;
659         if (subdev[0]->_block_isbad)
660                 concat->mtd._block_isbad = concat_block_isbad;
661         if (subdev[0]->_block_markbad)
662                 concat->mtd._block_markbad = concat_block_markbad;
663
664         concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
665
666         concat->subdev[0] = subdev[0];
667
668         for (i = 1; i < num_devs; i++) {
669                 if (concat->mtd.type != subdev[i]->type) {
670                         kfree(concat);
671                         printk("Incompatible device type on \"%s\"\n",
672                                subdev[i]->name);
673                         return NULL;
674                 }
675                 if (concat->mtd.flags != subdev[i]->flags) {
676                         /*
677                          * Expect all flags except MTD_WRITEABLE to be
678                          * equal on all subdevices.
679                          */
680                         if ((concat->mtd.flags ^ subdev[i]->
681                              flags) & ~MTD_WRITEABLE) {
682                                 kfree(concat);
683                                 printk("Incompatible device flags on \"%s\"\n",
684                                        subdev[i]->name);
685                                 return NULL;
686                         } else
687                                 /* if writeable attribute differs,
688                                    make super device writeable */
689                                 concat->mtd.flags |=
690                                     subdev[i]->flags & MTD_WRITEABLE;
691                 }
692
693                 concat->mtd.size += subdev[i]->size;
694                 concat->mtd.ecc_stats.badblocks +=
695                         subdev[i]->ecc_stats.badblocks;
696                 if (concat->mtd.writesize   !=  subdev[i]->writesize ||
697                     concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
698                     concat->mtd.oobsize    !=  subdev[i]->oobsize ||
699                     !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
700                     !concat->mtd._write_oob != !subdev[i]->_write_oob) {
701                         kfree(concat);
702                         printk("Incompatible OOB or ECC data on \"%s\"\n",
703                                subdev[i]->name);
704                         return NULL;
705                 }
706                 concat->subdev[i] = subdev[i];
707
708         }
709
710         mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
711
712         concat->num_subdev = num_devs;
713         concat->mtd.name = name;
714
715         concat->mtd._erase = concat_erase;
716         concat->mtd._read = concat_read;
717         concat->mtd._write = concat_write;
718         concat->mtd._sync = concat_sync;
719         concat->mtd._lock = concat_lock;
720         concat->mtd._unlock = concat_unlock;
721         concat->mtd._suspend = concat_suspend;
722         concat->mtd._resume = concat_resume;
723
724         /*
725          * Combine the erase block size info of the subdevices:
726          *
727          * first, walk the map of the new device and see how
728          * many changes in erase size we have
729          */
730         max_erasesize = curr_erasesize = subdev[0]->erasesize;
731         num_erase_region = 1;
732         for (i = 0; i < num_devs; i++) {
733                 if (subdev[i]->numeraseregions == 0) {
734                         /* current subdevice has uniform erase size */
735                         if (subdev[i]->erasesize != curr_erasesize) {
736                                 /* if it differs from the last subdevice's erase size, count it */
737                                 ++num_erase_region;
738                                 curr_erasesize = subdev[i]->erasesize;
739                                 if (curr_erasesize > max_erasesize)
740                                         max_erasesize = curr_erasesize;
741                         }
742                 } else {
743                         /* current subdevice has variable erase size */
744                         int j;
745                         for (j = 0; j < subdev[i]->numeraseregions; j++) {
746
747                                 /* walk the list of erase regions, count any changes */
748                                 if (subdev[i]->eraseregions[j].erasesize !=
749                                     curr_erasesize) {
750                                         ++num_erase_region;
751                                         curr_erasesize =
752                                             subdev[i]->eraseregions[j].
753                                             erasesize;
754                                         if (curr_erasesize > max_erasesize)
755                                                 max_erasesize = curr_erasesize;
756                                 }
757                         }
758                 }
759         }
760
761         if (num_erase_region == 1) {
762                 /*
763                  * All subdevices have the same uniform erase size.
764                  * This is easy:
765                  */
766                 concat->mtd.erasesize = curr_erasesize;
767                 concat->mtd.numeraseregions = 0;
768         } else {
769                 uint64_t tmp64;
770
771                 /*
772                  * erase block size varies across the subdevices: allocate
773                  * space to store the data describing the variable erase regions
774                  */
775                 struct mtd_erase_region_info *erase_region_p;
776                 uint64_t begin, position;
777
778                 concat->mtd.erasesize = max_erasesize;
779                 concat->mtd.numeraseregions = num_erase_region;
780                 concat->mtd.eraseregions = erase_region_p =
781                     kmalloc_array(num_erase_region,
782                                   sizeof(struct mtd_erase_region_info),
783                                   GFP_KERNEL);
784                 if (!erase_region_p) {
785                         kfree(concat);
786                         printk
787                             ("memory allocation error while creating erase region list"
788                              " for device \"%s\"\n", name);
789                         return NULL;
790                 }
791
792                 /*
793                  * walk the map of the new device once more and fill in
794                  * in erase region info:
795                  */
796                 curr_erasesize = subdev[0]->erasesize;
797                 begin = position = 0;
798                 for (i = 0; i < num_devs; i++) {
799                         if (subdev[i]->numeraseregions == 0) {
800                                 /* current subdevice has uniform erase size */
801                                 if (subdev[i]->erasesize != curr_erasesize) {
802                                         /*
803                                          *  fill in an mtd_erase_region_info structure for the area
804                                          *  we have walked so far:
805                                          */
806                                         erase_region_p->offset = begin;
807                                         erase_region_p->erasesize =
808                                             curr_erasesize;
809                                         tmp64 = position - begin;
810                                         do_div(tmp64, curr_erasesize);
811                                         erase_region_p->numblocks = tmp64;
812                                         begin = position;
813
814                                         curr_erasesize = subdev[i]->erasesize;
815                                         ++erase_region_p;
816                                 }
817                                 position += subdev[i]->size;
818                         } else {
819                                 /* current subdevice has variable erase size */
820                                 int j;
821                                 for (j = 0; j < subdev[i]->numeraseregions; j++) {
822                                         /* walk the list of erase regions, count any changes */
823                                         if (subdev[i]->eraseregions[j].
824                                             erasesize != curr_erasesize) {
825                                                 erase_region_p->offset = begin;
826                                                 erase_region_p->erasesize =
827                                                     curr_erasesize;
828                                                 tmp64 = position - begin;
829                                                 do_div(tmp64, curr_erasesize);
830                                                 erase_region_p->numblocks = tmp64;
831                                                 begin = position;
832
833                                                 curr_erasesize =
834                                                     subdev[i]->eraseregions[j].
835                                                     erasesize;
836                                                 ++erase_region_p;
837                                         }
838                                         position +=
839                                             subdev[i]->eraseregions[j].
840                                             numblocks * (uint64_t)curr_erasesize;
841                                 }
842                         }
843                 }
844                 /* Now write the final entry */
845                 erase_region_p->offset = begin;
846                 erase_region_p->erasesize = curr_erasesize;
847                 tmp64 = position - begin;
848                 do_div(tmp64, curr_erasesize);
849                 erase_region_p->numblocks = tmp64;
850         }
851
852         return &concat->mtd;
853 }
854
855 /*
856  * This function destroys an MTD object obtained from concat_mtd_devs()
857  */
858
859 void mtd_concat_destroy(struct mtd_info *mtd)
860 {
861         struct mtd_concat *concat = CONCAT(mtd);
862         if (concat->mtd.numeraseregions)
863                 kfree(concat->mtd.eraseregions);
864         kfree(concat);
865 }
866
867 EXPORT_SYMBOL(mtd_concat_create);
868 EXPORT_SYMBOL(mtd_concat_destroy);
869
870 MODULE_LICENSE("GPL");
871 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
872 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");