Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[sfrench/cifs-2.6.git] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
39
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE           0x2FC
42 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
55
56 #define PRCM_AVS_VOLTAGE                0
57 #define PRCM_AVS_VOLTAGE_MASK           0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP          6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE           7
61 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
62
63 #define PRCM_BOOT_STATUS        0xFFF
64 #define PRCM_ROMCODE_A2P        0xFFE
65 #define PRCM_ROMCODE_P2A        0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
67
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
69
70 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
78
79 /* Req Mailboxes */
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
86
87 /* Ack Mailboxes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
94
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS          0
97 #define MB0H_CONFIG_WAKEUPS_EXE         1
98 #define MB0H_READ_WAKEUP_ACK            3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
100
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
103
104 /* Mailbox 0 REQs */
105 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
111
112 /* Mailbox 0 ACKs */
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
120
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
128
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF    0x1
134 #define PLL_SOC0_ON     0x2
135 #define PLL_SOC1_OFF    0x4
136 #define PLL_SOC1_ON     0x8
137
138 /* Mailbox 1 ACKs */
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
143
144 /* Mailbox 2 headers */
145 #define MB2H_DPS        0x0
146 #define MB2H_AUTO_PWR   0x1
147
148 /* Mailbox 2 REQs */
149 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
159
160 /* Mailbox 2 ACKs */
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
163
164 /* Mailbox 3 headers */
165 #define MB3H_ANC        0x0
166 #define MB3H_SIDETONE   0x1
167 #define MB3H_SYSCLK     0xE
168
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
177
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT   0x0
180 #define MB4H_MEM_ST     0x1
181 #define MB4H_HOTDOG     0x12
182 #define MB4H_HOTMON     0x13
183 #define MB4H_HOT_PERIOD 0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN   0x17
186 #define MB4H_A9WDOG_DIS  0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
189
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW                       BIT(0)
200 #define HOTMON_CONFIG_HIGH                      BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS                     0
207 #define A9WDOG_ID_MASK                          0xf
208
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN               BIT(3)
217
218 /* Mailbox 5 ACKs */
219 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
223
224 #define NUM_MB 8
225 #define MBOX_BIT BIT
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
227
228 /*
229  * Wakeups/IRQs
230  */
231
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
261
262 static struct {
263         bool valid;
264         struct prcmu_fw_version version;
265 } fw_info;
266
267 static struct irq_domain *db8500_irq_domain;
268
269 /*
270  * This vector maps irq numbers to the bits in the bit field used in
271  * communication with the PRCMU firmware.
272  *
273  * The reason for having this is to keep the irq numbers contiguous even though
274  * the bits in the bit field are not. (The bits also have a tendency to move
275  * around, to further complicate matters.)
276  */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
304
305 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
306         IRQ_ENTRY(RTC),
307         IRQ_ENTRY(RTT0),
308         IRQ_ENTRY(RTT1),
309         IRQ_ENTRY(HSI0),
310         IRQ_ENTRY(HSI1),
311         IRQ_ENTRY(CA_WAKE),
312         IRQ_ENTRY(USB),
313         IRQ_ENTRY(ABB),
314         IRQ_ENTRY(ABB_FIFO),
315         IRQ_ENTRY(CA_SLEEP),
316         IRQ_ENTRY(ARM),
317         IRQ_ENTRY(HOTMON_LOW),
318         IRQ_ENTRY(HOTMON_HIGH),
319         IRQ_ENTRY(MODEM_SW_RESET_REQ),
320         IRQ_ENTRY(GPIO0),
321         IRQ_ENTRY(GPIO1),
322         IRQ_ENTRY(GPIO2),
323         IRQ_ENTRY(GPIO3),
324         IRQ_ENTRY(GPIO4),
325         IRQ_ENTRY(GPIO5),
326         IRQ_ENTRY(GPIO6),
327         IRQ_ENTRY(GPIO7),
328         IRQ_ENTRY(GPIO8)
329 };
330
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
334         WAKEUP_ENTRY(RTC),
335         WAKEUP_ENTRY(RTT0),
336         WAKEUP_ENTRY(RTT1),
337         WAKEUP_ENTRY(HSI0),
338         WAKEUP_ENTRY(HSI1),
339         WAKEUP_ENTRY(USB),
340         WAKEUP_ENTRY(ABB),
341         WAKEUP_ENTRY(ABB_FIFO),
342         WAKEUP_ENTRY(ARM)
343 };
344
345 /*
346  * mb0_transfer - state needed for mailbox 0 communication.
347  * @lock:               The transaction lock.
348  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
349  *                      the request data.
350  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
351  * @req:                Request data that need to persist between requests.
352  */
353 static struct {
354         spinlock_t lock;
355         spinlock_t dbb_irqs_lock;
356         struct work_struct mask_work;
357         struct mutex ac_wake_lock;
358         struct completion ac_wake_work;
359         struct {
360                 u32 dbb_irqs;
361                 u32 dbb_wakeups;
362                 u32 abb_events;
363         } req;
364 } mb0_transfer;
365
366 /*
367  * mb1_transfer - state needed for mailbox 1 communication.
368  * @lock:       The transaction lock.
369  * @work:       The transaction completion structure.
370  * @ape_opp:    The current APE OPP.
371  * @ack:        Reply ("acknowledge") data.
372  */
373 static struct {
374         struct mutex lock;
375         struct completion work;
376         u8 ape_opp;
377         struct {
378                 u8 header;
379                 u8 arm_opp;
380                 u8 ape_opp;
381                 u8 ape_voltage_status;
382         } ack;
383 } mb1_transfer;
384
385 /*
386  * mb2_transfer - state needed for mailbox 2 communication.
387  * @lock:            The transaction lock.
388  * @work:            The transaction completion structure.
389  * @auto_pm_lock:    The autonomous power management configuration lock.
390  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391  * @req:             Request data that need to persist between requests.
392  * @ack:             Reply ("acknowledge") data.
393  */
394 static struct {
395         struct mutex lock;
396         struct completion work;
397         spinlock_t auto_pm_lock;
398         bool auto_pm_enabled;
399         struct {
400                 u8 status;
401         } ack;
402 } mb2_transfer;
403
404 /*
405  * mb3_transfer - state needed for mailbox 3 communication.
406  * @lock:               The request lock.
407  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
408  * @sysclk_work:        Work structure used for sysclk requests.
409  */
410 static struct {
411         spinlock_t lock;
412         struct mutex sysclk_lock;
413         struct completion sysclk_work;
414 } mb3_transfer;
415
416 /*
417  * mb4_transfer - state needed for mailbox 4 communication.
418  * @lock:       The transaction lock.
419  * @work:       The transaction completion structure.
420  */
421 static struct {
422         struct mutex lock;
423         struct completion work;
424 } mb4_transfer;
425
426 /*
427  * mb5_transfer - state needed for mailbox 5 communication.
428  * @lock:       The transaction lock.
429  * @work:       The transaction completion structure.
430  * @ack:        Reply ("acknowledge") data.
431  */
432 static struct {
433         struct mutex lock;
434         struct completion work;
435         struct {
436                 u8 status;
437                 u8 value;
438         } ack;
439 } mb5_transfer;
440
441 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
442
443 /* Spinlocks */
444 static DEFINE_SPINLOCK(prcmu_lock);
445 static DEFINE_SPINLOCK(clkout_lock);
446
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem void *tcdm_base;
449 static __iomem void *prcmu_base;
450
451 struct clk_mgt {
452         u32 offset;
453         u32 pllsw;
454         int branch;
455         bool clk38div;
456 };
457
458 enum {
459         PLL_RAW,
460         PLL_FIX,
461         PLL_DIV
462 };
463
464 static DEFINE_SPINLOCK(clk_mgt_lock);
465
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467         { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
469         CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
470         CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
471         CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
472         CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
473         CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
474         CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
475         CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
476         CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
477         CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
478         CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
479         CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
480         CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
481         CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
482         CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
483         CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
484         CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
485         CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
486         CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
487         CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
488         CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
489         CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
490         CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
491         CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
492         CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
493         CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
494         CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
495         CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
496         CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
497         CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
498 };
499
500 struct dsiclk {
501         u32 divsel_mask;
502         u32 divsel_shift;
503         u32 divsel;
504 };
505
506 static struct dsiclk dsiclk[2] = {
507         {
508                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
509                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
510                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
511         },
512         {
513                 .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
514                 .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
515                 .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
516         }
517 };
518
519 struct dsiescclk {
520         u32 en;
521         u32 div_mask;
522         u32 div_shift;
523 };
524
525 static struct dsiescclk dsiescclk[3] = {
526         {
527                 .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
528                 .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
529                 .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
530         },
531         {
532                 .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
533                 .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
534                 .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
535         },
536         {
537                 .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
538                 .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
539                 .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
540         }
541 };
542
543
544 /*
545 * Used by MCDE to setup all necessary PRCMU registers
546 */
547 #define PRCMU_RESET_DSIPLL              0x00004000
548 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
549
550 #define PRCMU_CLK_PLL_DIV_SHIFT         0
551 #define PRCMU_CLK_PLL_SW_SHIFT          5
552 #define PRCMU_CLK_38                    (1 << 9)
553 #define PRCMU_CLK_38_SRC                (1 << 10)
554 #define PRCMU_CLK_38_DIV                (1 << 11)
555
556 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
557 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
558
559 /* DPI 50000000 Hz */
560 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
561                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
562 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
563
564 /* D=101, N=1, R=4, SELDIV2=0 */
565 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
566
567 #define PRCMU_ENABLE_PLLDSI             0x00000001
568 #define PRCMU_DISABLE_PLLDSI            0x00000000
569 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
570 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
571 /* ESC clk, div0=1, div1=1, div2=3 */
572 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
573 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
574 #define PRCMU_DSI_RESET_SW              0x00000007
575
576 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
577
578 int db8500_prcmu_enable_dsipll(void)
579 {
580         int i;
581
582         /* Clear DSIPLL_RESETN */
583         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
584         /* Unclamp DSIPLL in/out */
585         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
586
587         /* Set DSI PLL FREQ */
588         writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
589         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
590         /* Enable Escape clocks */
591         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
592
593         /* Start DSI PLL */
594         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
595         /* Reset DSI PLL */
596         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
597         for (i = 0; i < 10; i++) {
598                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
599                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
600                         break;
601                 udelay(100);
602         }
603         /* Set DSIPLL_RESETN */
604         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
605         return 0;
606 }
607
608 int db8500_prcmu_disable_dsipll(void)
609 {
610         /* Disable dsi pll */
611         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
612         /* Disable  escapeclock */
613         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
614         return 0;
615 }
616
617 int db8500_prcmu_set_display_clocks(void)
618 {
619         unsigned long flags;
620
621         spin_lock_irqsave(&clk_mgt_lock, flags);
622
623         /* Grab the HW semaphore. */
624         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
625                 cpu_relax();
626
627         writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
628         writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
629         writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
630
631         /* Release the HW semaphore. */
632         writel(0, PRCM_SEM);
633
634         spin_unlock_irqrestore(&clk_mgt_lock, flags);
635
636         return 0;
637 }
638
639 u32 db8500_prcmu_read(unsigned int reg)
640 {
641         return readl(prcmu_base + reg);
642 }
643
644 void db8500_prcmu_write(unsigned int reg, u32 value)
645 {
646         unsigned long flags;
647
648         spin_lock_irqsave(&prcmu_lock, flags);
649         writel(value, (prcmu_base + reg));
650         spin_unlock_irqrestore(&prcmu_lock, flags);
651 }
652
653 void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
654 {
655         u32 val;
656         unsigned long flags;
657
658         spin_lock_irqsave(&prcmu_lock, flags);
659         val = readl(prcmu_base + reg);
660         val = ((val & ~mask) | (value & mask));
661         writel(val, (prcmu_base + reg));
662         spin_unlock_irqrestore(&prcmu_lock, flags);
663 }
664
665 struct prcmu_fw_version *prcmu_get_fw_version(void)
666 {
667         return fw_info.valid ? &fw_info.version : NULL;
668 }
669
670 bool prcmu_has_arm_maxopp(void)
671 {
672         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
673                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
674 }
675
676 /**
677  * prcmu_set_rc_a2p - This function is used to run few power state sequences
678  * @val: Value to be set, i.e. transition requested
679  * Returns: 0 on success, -EINVAL on invalid argument
680  *
681  * This function is used to run the following power state sequences -
682  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
683  */
684 int prcmu_set_rc_a2p(enum romcode_write val)
685 {
686         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
687                 return -EINVAL;
688         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
689         return 0;
690 }
691
692 /**
693  * prcmu_get_rc_p2a - This function is used to get power state sequences
694  * Returns: the power transition that has last happened
695  *
696  * This function can return the following transitions-
697  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
698  */
699 enum romcode_read prcmu_get_rc_p2a(void)
700 {
701         return readb(tcdm_base + PRCM_ROMCODE_P2A);
702 }
703
704 /**
705  * prcmu_get_current_mode - Return the current XP70 power mode
706  * Returns: Returns the current AP(ARM) power mode: init,
707  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
708  */
709 enum ap_pwrst prcmu_get_xp70_current_state(void)
710 {
711         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
712 }
713
714 /**
715  * prcmu_config_clkout - Configure one of the programmable clock outputs.
716  * @clkout:     The CLKOUT number (0 or 1).
717  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
718  * @div:        The divider to be applied.
719  *
720  * Configures one of the programmable clock outputs (CLKOUTs).
721  * @div should be in the range [1,63] to request a configuration, or 0 to
722  * inform that the configuration is no longer requested.
723  */
724 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
725 {
726         static int requests[2];
727         int r = 0;
728         unsigned long flags;
729         u32 val;
730         u32 bits;
731         u32 mask;
732         u32 div_mask;
733
734         BUG_ON(clkout > 1);
735         BUG_ON(div > 63);
736         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
737
738         if (!div && !requests[clkout])
739                 return -EINVAL;
740
741         if (clkout == 0) {
742                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
743                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
744                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
745                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
746         } else {
747                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
748                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
749                         PRCM_CLKOCR_CLK1TYPE);
750                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
751                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
752         }
753         bits &= mask;
754
755         spin_lock_irqsave(&clkout_lock, flags);
756
757         val = readl(PRCM_CLKOCR);
758         if (val & div_mask) {
759                 if (div) {
760                         if ((val & mask) != bits) {
761                                 r = -EBUSY;
762                                 goto unlock_and_return;
763                         }
764                 } else {
765                         if ((val & mask & ~div_mask) != bits) {
766                                 r = -EINVAL;
767                                 goto unlock_and_return;
768                         }
769                 }
770         }
771         writel((bits | (val & ~mask)), PRCM_CLKOCR);
772         requests[clkout] += (div ? 1 : -1);
773
774 unlock_and_return:
775         spin_unlock_irqrestore(&clkout_lock, flags);
776
777         return r;
778 }
779
780 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
781 {
782         unsigned long flags;
783
784         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
785
786         spin_lock_irqsave(&mb0_transfer.lock, flags);
787
788         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
789                 cpu_relax();
790
791         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
792         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
793         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
794         writeb((keep_ulp_clk ? 1 : 0),
795                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
796         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
797         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
798
799         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
800
801         return 0;
802 }
803
804 u8 db8500_prcmu_get_power_state_result(void)
805 {
806         return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
807 }
808
809 /* This function should only be called while mb0_transfer.lock is held. */
810 static void config_wakeups(void)
811 {
812         const u8 header[2] = {
813                 MB0H_CONFIG_WAKEUPS_EXE,
814                 MB0H_CONFIG_WAKEUPS_SLEEP
815         };
816         static u32 last_dbb_events;
817         static u32 last_abb_events;
818         u32 dbb_events;
819         u32 abb_events;
820         unsigned int i;
821
822         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
823         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
824
825         abb_events = mb0_transfer.req.abb_events;
826
827         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
828                 return;
829
830         for (i = 0; i < 2; i++) {
831                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
832                         cpu_relax();
833                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
834                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
835                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
836                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
837         }
838         last_dbb_events = dbb_events;
839         last_abb_events = abb_events;
840 }
841
842 void db8500_prcmu_enable_wakeups(u32 wakeups)
843 {
844         unsigned long flags;
845         u32 bits;
846         int i;
847
848         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
849
850         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
851                 if (wakeups & BIT(i))
852                         bits |= prcmu_wakeup_bit[i];
853         }
854
855         spin_lock_irqsave(&mb0_transfer.lock, flags);
856
857         mb0_transfer.req.dbb_wakeups = bits;
858         config_wakeups();
859
860         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
861 }
862
863 void db8500_prcmu_config_abb_event_readout(u32 abb_events)
864 {
865         unsigned long flags;
866
867         spin_lock_irqsave(&mb0_transfer.lock, flags);
868
869         mb0_transfer.req.abb_events = abb_events;
870         config_wakeups();
871
872         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
873 }
874
875 void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
876 {
877         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
878                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
879         else
880                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
881 }
882
883 /**
884  * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
885  * @opp: The new ARM operating point to which transition is to be made
886  * Returns: 0 on success, non-zero on failure
887  *
888  * This function sets the the operating point of the ARM.
889  */
890 int db8500_prcmu_set_arm_opp(u8 opp)
891 {
892         int r;
893
894         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
895                 return -EINVAL;
896
897         r = 0;
898
899         mutex_lock(&mb1_transfer.lock);
900
901         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
902                 cpu_relax();
903
904         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
905         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
906         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
907
908         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
909         wait_for_completion(&mb1_transfer.work);
910
911         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
912                 (mb1_transfer.ack.arm_opp != opp))
913                 r = -EIO;
914
915         mutex_unlock(&mb1_transfer.lock);
916
917         return r;
918 }
919
920 /**
921  * db8500_prcmu_get_arm_opp - get the current ARM OPP
922  *
923  * Returns: the current ARM OPP
924  */
925 int db8500_prcmu_get_arm_opp(void)
926 {
927         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
928 }
929
930 /**
931  * db8500_prcmu_get_ddr_opp - get the current DDR OPP
932  *
933  * Returns: the current DDR OPP
934  */
935 int db8500_prcmu_get_ddr_opp(void)
936 {
937         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
938 }
939
940 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
941 static void request_even_slower_clocks(bool enable)
942 {
943         u32 clock_reg[] = {
944                 PRCM_ACLK_MGT,
945                 PRCM_DMACLK_MGT
946         };
947         unsigned long flags;
948         unsigned int i;
949
950         spin_lock_irqsave(&clk_mgt_lock, flags);
951
952         /* Grab the HW semaphore. */
953         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
954                 cpu_relax();
955
956         for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
957                 u32 val;
958                 u32 div;
959
960                 val = readl(prcmu_base + clock_reg[i]);
961                 div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
962                 if (enable) {
963                         if ((div <= 1) || (div > 15)) {
964                                 pr_err("prcmu: Bad clock divider %d in %s\n",
965                                         div, __func__);
966                                 goto unlock_and_return;
967                         }
968                         div <<= 1;
969                 } else {
970                         if (div <= 2)
971                                 goto unlock_and_return;
972                         div >>= 1;
973                 }
974                 val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
975                         (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
976                 writel(val, prcmu_base + clock_reg[i]);
977         }
978
979 unlock_and_return:
980         /* Release the HW semaphore. */
981         writel(0, PRCM_SEM);
982
983         spin_unlock_irqrestore(&clk_mgt_lock, flags);
984 }
985
986 /**
987  * db8500_set_ape_opp - set the appropriate APE OPP
988  * @opp: The new APE operating point to which transition is to be made
989  * Returns: 0 on success, non-zero on failure
990  *
991  * This function sets the operating point of the APE.
992  */
993 int db8500_prcmu_set_ape_opp(u8 opp)
994 {
995         int r = 0;
996
997         if (opp == mb1_transfer.ape_opp)
998                 return 0;
999
1000         mutex_lock(&mb1_transfer.lock);
1001
1002         if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1003                 request_even_slower_clocks(false);
1004
1005         if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1006                 goto skip_message;
1007
1008         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009                 cpu_relax();
1010
1011         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1012         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1013         writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1014                 (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1015
1016         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1017         wait_for_completion(&mb1_transfer.work);
1018
1019         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1020                 (mb1_transfer.ack.ape_opp != opp))
1021                 r = -EIO;
1022
1023 skip_message:
1024         if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1025                 (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1026                 request_even_slower_clocks(true);
1027         if (!r)
1028                 mb1_transfer.ape_opp = opp;
1029
1030         mutex_unlock(&mb1_transfer.lock);
1031
1032         return r;
1033 }
1034
1035 /**
1036  * db8500_prcmu_get_ape_opp - get the current APE OPP
1037  *
1038  * Returns: the current APE OPP
1039  */
1040 int db8500_prcmu_get_ape_opp(void)
1041 {
1042         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1043 }
1044
1045 /**
1046  * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1047  * @enable: true to request the higher voltage, false to drop a request.
1048  *
1049  * Calls to this function to enable and disable requests must be balanced.
1050  */
1051 int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1052 {
1053         int r = 0;
1054         u8 header;
1055         static unsigned int requests;
1056
1057         mutex_lock(&mb1_transfer.lock);
1058
1059         if (enable) {
1060                 if (0 != requests++)
1061                         goto unlock_and_return;
1062                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
1063         } else {
1064                 if (requests == 0) {
1065                         r = -EIO;
1066                         goto unlock_and_return;
1067                 } else if (1 != requests--) {
1068                         goto unlock_and_return;
1069                 }
1070                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
1071         }
1072
1073         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1074                 cpu_relax();
1075
1076         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1077
1078         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1079         wait_for_completion(&mb1_transfer.work);
1080
1081         if ((mb1_transfer.ack.header != header) ||
1082                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1083                 r = -EIO;
1084
1085 unlock_and_return:
1086         mutex_unlock(&mb1_transfer.lock);
1087
1088         return r;
1089 }
1090
1091 /**
1092  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1093  *
1094  * This function releases the power state requirements of a USB wakeup.
1095  */
1096 int prcmu_release_usb_wakeup_state(void)
1097 {
1098         int r = 0;
1099
1100         mutex_lock(&mb1_transfer.lock);
1101
1102         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1103                 cpu_relax();
1104
1105         writeb(MB1H_RELEASE_USB_WAKEUP,
1106                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1107
1108         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1109         wait_for_completion(&mb1_transfer.work);
1110
1111         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1112                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1113                 r = -EIO;
1114
1115         mutex_unlock(&mb1_transfer.lock);
1116
1117         return r;
1118 }
1119
1120 static int request_pll(u8 clock, bool enable)
1121 {
1122         int r = 0;
1123
1124         if (clock == PRCMU_PLLSOC0)
1125                 clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1126         else if (clock == PRCMU_PLLSOC1)
1127                 clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1128         else
1129                 return -EINVAL;
1130
1131         mutex_lock(&mb1_transfer.lock);
1132
1133         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1134                 cpu_relax();
1135
1136         writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1137         writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1138
1139         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1140         wait_for_completion(&mb1_transfer.work);
1141
1142         if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1143                 r = -EIO;
1144
1145         mutex_unlock(&mb1_transfer.lock);
1146
1147         return r;
1148 }
1149
1150 /**
1151  * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1152  * @epod_id: The EPOD to set
1153  * @epod_state: The new EPOD state
1154  *
1155  * This function sets the state of a EPOD (power domain). It may not be called
1156  * from interrupt context.
1157  */
1158 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1159 {
1160         int r = 0;
1161         bool ram_retention = false;
1162         int i;
1163
1164         /* check argument */
1165         BUG_ON(epod_id >= NUM_EPOD_ID);
1166
1167         /* set flag if retention is possible */
1168         switch (epod_id) {
1169         case EPOD_ID_SVAMMDSP:
1170         case EPOD_ID_SIAMMDSP:
1171         case EPOD_ID_ESRAM12:
1172         case EPOD_ID_ESRAM34:
1173                 ram_retention = true;
1174                 break;
1175         }
1176
1177         /* check argument */
1178         BUG_ON(epod_state > EPOD_STATE_ON);
1179         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1180
1181         /* get lock */
1182         mutex_lock(&mb2_transfer.lock);
1183
1184         /* wait for mailbox */
1185         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1186                 cpu_relax();
1187
1188         /* fill in mailbox */
1189         for (i = 0; i < NUM_EPOD_ID; i++)
1190                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1191         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1192
1193         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1194
1195         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1196
1197         /*
1198          * The current firmware version does not handle errors correctly,
1199          * and we cannot recover if there is an error.
1200          * This is expected to change when the firmware is updated.
1201          */
1202         if (!wait_for_completion_timeout(&mb2_transfer.work,
1203                         msecs_to_jiffies(20000))) {
1204                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1205                         __func__);
1206                 r = -EIO;
1207                 goto unlock_and_return;
1208         }
1209
1210         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1211                 r = -EIO;
1212
1213 unlock_and_return:
1214         mutex_unlock(&mb2_transfer.lock);
1215         return r;
1216 }
1217
1218 /**
1219  * prcmu_configure_auto_pm - Configure autonomous power management.
1220  * @sleep: Configuration for ApSleep.
1221  * @idle:  Configuration for ApIdle.
1222  */
1223 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1224         struct prcmu_auto_pm_config *idle)
1225 {
1226         u32 sleep_cfg;
1227         u32 idle_cfg;
1228         unsigned long flags;
1229
1230         BUG_ON((sleep == NULL) || (idle == NULL));
1231
1232         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1233         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1234         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1235         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1236         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1237         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1238
1239         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1240         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1241         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1242         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1243         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1244         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1245
1246         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1247
1248         /*
1249          * The autonomous power management configuration is done through
1250          * fields in mailbox 2, but these fields are only used as shared
1251          * variables - i.e. there is no need to send a message.
1252          */
1253         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1254         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1255
1256         mb2_transfer.auto_pm_enabled =
1257                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1258                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1259                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1260                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1261
1262         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1263 }
1264 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1265
1266 bool prcmu_is_auto_pm_enabled(void)
1267 {
1268         return mb2_transfer.auto_pm_enabled;
1269 }
1270
1271 static int request_sysclk(bool enable)
1272 {
1273         int r;
1274         unsigned long flags;
1275
1276         r = 0;
1277
1278         mutex_lock(&mb3_transfer.sysclk_lock);
1279
1280         spin_lock_irqsave(&mb3_transfer.lock, flags);
1281
1282         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1283                 cpu_relax();
1284
1285         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1286
1287         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1288         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1289
1290         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1291
1292         /*
1293          * The firmware only sends an ACK if we want to enable the
1294          * SysClk, and it succeeds.
1295          */
1296         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1297                         msecs_to_jiffies(20000))) {
1298                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1299                         __func__);
1300                 r = -EIO;
1301         }
1302
1303         mutex_unlock(&mb3_transfer.sysclk_lock);
1304
1305         return r;
1306 }
1307
1308 static int request_timclk(bool enable)
1309 {
1310         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1311
1312         if (!enable)
1313                 val |= PRCM_TCR_STOP_TIMERS;
1314         writel(val, PRCM_TCR);
1315
1316         return 0;
1317 }
1318
1319 static int request_clock(u8 clock, bool enable)
1320 {
1321         u32 val;
1322         unsigned long flags;
1323
1324         spin_lock_irqsave(&clk_mgt_lock, flags);
1325
1326         /* Grab the HW semaphore. */
1327         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1328                 cpu_relax();
1329
1330         val = readl(prcmu_base + clk_mgt[clock].offset);
1331         if (enable) {
1332                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1333         } else {
1334                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1335                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1336         }
1337         writel(val, prcmu_base + clk_mgt[clock].offset);
1338
1339         /* Release the HW semaphore. */
1340         writel(0, PRCM_SEM);
1341
1342         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1343
1344         return 0;
1345 }
1346
1347 static int request_sga_clock(u8 clock, bool enable)
1348 {
1349         u32 val;
1350         int ret;
1351
1352         if (enable) {
1353                 val = readl(PRCM_CGATING_BYPASS);
1354                 writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1355         }
1356
1357         ret = request_clock(clock, enable);
1358
1359         if (!ret && !enable) {
1360                 val = readl(PRCM_CGATING_BYPASS);
1361                 writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1362         }
1363
1364         return ret;
1365 }
1366
1367 static inline bool plldsi_locked(void)
1368 {
1369         return (readl(PRCM_PLLDSI_LOCKP) &
1370                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1371                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1372                 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1373                  PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1374 }
1375
1376 static int request_plldsi(bool enable)
1377 {
1378         int r = 0;
1379         u32 val;
1380
1381         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1382                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1383                 PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1384
1385         val = readl(PRCM_PLLDSI_ENABLE);
1386         if (enable)
1387                 val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1388         else
1389                 val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1390         writel(val, PRCM_PLLDSI_ENABLE);
1391
1392         if (enable) {
1393                 unsigned int i;
1394                 bool locked = plldsi_locked();
1395
1396                 for (i = 10; !locked && (i > 0); --i) {
1397                         udelay(100);
1398                         locked = plldsi_locked();
1399                 }
1400                 if (locked) {
1401                         writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1402                                 PRCM_APE_RESETN_SET);
1403                 } else {
1404                         writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405                                 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1406                                 PRCM_MMIP_LS_CLAMP_SET);
1407                         val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1408                         writel(val, PRCM_PLLDSI_ENABLE);
1409                         r = -EAGAIN;
1410                 }
1411         } else {
1412                 writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1413         }
1414         return r;
1415 }
1416
1417 static int request_dsiclk(u8 n, bool enable)
1418 {
1419         u32 val;
1420
1421         val = readl(PRCM_DSI_PLLOUT_SEL);
1422         val &= ~dsiclk[n].divsel_mask;
1423         val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1424                 dsiclk[n].divsel_shift);
1425         writel(val, PRCM_DSI_PLLOUT_SEL);
1426         return 0;
1427 }
1428
1429 static int request_dsiescclk(u8 n, bool enable)
1430 {
1431         u32 val;
1432
1433         val = readl(PRCM_DSITVCLK_DIV);
1434         enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1435         writel(val, PRCM_DSITVCLK_DIV);
1436         return 0;
1437 }
1438
1439 /**
1440  * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1441  * @clock:      The clock for which the request is made.
1442  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1443  *
1444  * This function should only be used by the clock implementation.
1445  * Do not use it from any other place!
1446  */
1447 int db8500_prcmu_request_clock(u8 clock, bool enable)
1448 {
1449         if (clock == PRCMU_SGACLK)
1450                 return request_sga_clock(clock, enable);
1451         else if (clock < PRCMU_NUM_REG_CLOCKS)
1452                 return request_clock(clock, enable);
1453         else if (clock == PRCMU_TIMCLK)
1454                 return request_timclk(enable);
1455         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1456                 return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1457         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1458                 return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1459         else if (clock == PRCMU_PLLDSI)
1460                 return request_plldsi(enable);
1461         else if (clock == PRCMU_SYSCLK)
1462                 return request_sysclk(enable);
1463         else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1464                 return request_pll(clock, enable);
1465         else
1466                 return -EINVAL;
1467 }
1468
1469 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1470         int branch)
1471 {
1472         u64 rate;
1473         u32 val;
1474         u32 d;
1475         u32 div = 1;
1476
1477         val = readl(reg);
1478
1479         rate = src_rate;
1480         rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1481
1482         d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1483         if (d > 1)
1484                 div *= d;
1485
1486         d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1487         if (d > 1)
1488                 div *= d;
1489
1490         if (val & PRCM_PLL_FREQ_SELDIV2)
1491                 div *= 2;
1492
1493         if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1494                 (val & PRCM_PLL_FREQ_DIV2EN) &&
1495                 ((reg == PRCM_PLLSOC0_FREQ) ||
1496                  (reg == PRCM_PLLARM_FREQ) ||
1497                  (reg == PRCM_PLLDDR_FREQ))))
1498                 div *= 2;
1499
1500         (void)do_div(rate, div);
1501
1502         return (unsigned long)rate;
1503 }
1504
1505 #define ROOT_CLOCK_RATE 38400000
1506
1507 static unsigned long clock_rate(u8 clock)
1508 {
1509         u32 val;
1510         u32 pllsw;
1511         unsigned long rate = ROOT_CLOCK_RATE;
1512
1513         val = readl(prcmu_base + clk_mgt[clock].offset);
1514
1515         if (val & PRCM_CLK_MGT_CLK38) {
1516                 if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1517                         rate /= 2;
1518                 return rate;
1519         }
1520
1521         val |= clk_mgt[clock].pllsw;
1522         pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1523
1524         if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1525                 rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1526         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1527                 rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1528         else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1529                 rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1530         else
1531                 return 0;
1532
1533         if ((clock == PRCMU_SGACLK) &&
1534                 (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1535                 u64 r = (rate * 10);
1536
1537                 (void)do_div(r, 25);
1538                 return (unsigned long)r;
1539         }
1540         val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1541         if (val)
1542                 return rate / val;
1543         else
1544                 return 0;
1545 }
1546
1547 static unsigned long armss_rate(void)
1548 {
1549         u32 r;
1550         unsigned long rate;
1551
1552         r = readl(PRCM_ARM_CHGCLKREQ);
1553
1554         if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1555                 /* External ARMCLKFIX clock */
1556
1557                 rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1558
1559                 /* Check PRCM_ARM_CHGCLKREQ divider */
1560                 if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1561                         rate /= 2;
1562
1563                 /* Check PRCM_ARMCLKFIX_MGT divider */
1564                 r = readl(PRCM_ARMCLKFIX_MGT);
1565                 r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1566                 rate /= r;
1567
1568         } else {/* ARM PLL */
1569                 rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1570         }
1571
1572         return rate;
1573 }
1574
1575 static unsigned long dsiclk_rate(u8 n)
1576 {
1577         u32 divsel;
1578         u32 div = 1;
1579
1580         divsel = readl(PRCM_DSI_PLLOUT_SEL);
1581         divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1582
1583         if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1584                 divsel = dsiclk[n].divsel;
1585         else
1586                 dsiclk[n].divsel = divsel;
1587
1588         switch (divsel) {
1589         case PRCM_DSI_PLLOUT_SEL_PHI_4:
1590                 div *= 2;
1591         case PRCM_DSI_PLLOUT_SEL_PHI_2:
1592                 div *= 2;
1593         case PRCM_DSI_PLLOUT_SEL_PHI:
1594                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1595                         PLL_RAW) / div;
1596         default:
1597                 return 0;
1598         }
1599 }
1600
1601 static unsigned long dsiescclk_rate(u8 n)
1602 {
1603         u32 div;
1604
1605         div = readl(PRCM_DSITVCLK_DIV);
1606         div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1607         return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1608 }
1609
1610 unsigned long prcmu_clock_rate(u8 clock)
1611 {
1612         if (clock < PRCMU_NUM_REG_CLOCKS)
1613                 return clock_rate(clock);
1614         else if (clock == PRCMU_TIMCLK)
1615                 return ROOT_CLOCK_RATE / 16;
1616         else if (clock == PRCMU_SYSCLK)
1617                 return ROOT_CLOCK_RATE;
1618         else if (clock == PRCMU_PLLSOC0)
1619                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1620         else if (clock == PRCMU_PLLSOC1)
1621                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1622         else if (clock == PRCMU_ARMSS)
1623                 return armss_rate();
1624         else if (clock == PRCMU_PLLDDR)
1625                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1626         else if (clock == PRCMU_PLLDSI)
1627                 return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1628                         PLL_RAW);
1629         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1630                 return dsiclk_rate(clock - PRCMU_DSI0CLK);
1631         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1632                 return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1633         else
1634                 return 0;
1635 }
1636
1637 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1638 {
1639         if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1640                 return ROOT_CLOCK_RATE;
1641         clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1642         if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1643                 return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1644         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1645                 return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1646         else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1647                 return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1648         else
1649                 return 0;
1650 }
1651
1652 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1653 {
1654         u32 div;
1655
1656         div = (src_rate / rate);
1657         if (div == 0)
1658                 return 1;
1659         if (rate < (src_rate / div))
1660                 div++;
1661         return div;
1662 }
1663
1664 static long round_clock_rate(u8 clock, unsigned long rate)
1665 {
1666         u32 val;
1667         u32 div;
1668         unsigned long src_rate;
1669         long rounded_rate;
1670
1671         val = readl(prcmu_base + clk_mgt[clock].offset);
1672         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1673                 clk_mgt[clock].branch);
1674         div = clock_divider(src_rate, rate);
1675         if (val & PRCM_CLK_MGT_CLK38) {
1676                 if (clk_mgt[clock].clk38div) {
1677                         if (div > 2)
1678                                 div = 2;
1679                 } else {
1680                         div = 1;
1681                 }
1682         } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1683                 u64 r = (src_rate * 10);
1684
1685                 (void)do_div(r, 25);
1686                 if (r <= rate)
1687                         return (unsigned long)r;
1688         }
1689         rounded_rate = (src_rate / min(div, (u32)31));
1690
1691         return rounded_rate;
1692 }
1693
1694 static const unsigned long armss_freqs[] = {
1695         200000000,
1696         400000000,
1697         800000000,
1698         998400000
1699 };
1700
1701 static long round_armss_rate(unsigned long rate)
1702 {
1703         unsigned long freq = 0;
1704         int i;
1705
1706         /* Find the corresponding arm opp from the cpufreq table. */
1707         for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1708                 freq = armss_freqs[i];
1709                 if (rate <= freq)
1710                         break;
1711         }
1712
1713         /* Return the last valid value, even if a match was not found. */
1714         return freq;
1715 }
1716
1717 #define MIN_PLL_VCO_RATE 600000000ULL
1718 #define MAX_PLL_VCO_RATE 1680640000ULL
1719
1720 static long round_plldsi_rate(unsigned long rate)
1721 {
1722         long rounded_rate = 0;
1723         unsigned long src_rate;
1724         unsigned long rem;
1725         u32 r;
1726
1727         src_rate = clock_rate(PRCMU_HDMICLK);
1728         rem = rate;
1729
1730         for (r = 7; (rem > 0) && (r > 0); r--) {
1731                 u64 d;
1732
1733                 d = (r * rate);
1734                 (void)do_div(d, src_rate);
1735                 if (d < 6)
1736                         d = 6;
1737                 else if (d > 255)
1738                         d = 255;
1739                 d *= src_rate;
1740                 if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1741                         ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1742                         continue;
1743                 (void)do_div(d, r);
1744                 if (rate < d) {
1745                         if (rounded_rate == 0)
1746                                 rounded_rate = (long)d;
1747                         break;
1748                 }
1749                 if ((rate - d) < rem) {
1750                         rem = (rate - d);
1751                         rounded_rate = (long)d;
1752                 }
1753         }
1754         return rounded_rate;
1755 }
1756
1757 static long round_dsiclk_rate(unsigned long rate)
1758 {
1759         u32 div;
1760         unsigned long src_rate;
1761         long rounded_rate;
1762
1763         src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1764                 PLL_RAW);
1765         div = clock_divider(src_rate, rate);
1766         rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1767
1768         return rounded_rate;
1769 }
1770
1771 static long round_dsiescclk_rate(unsigned long rate)
1772 {
1773         u32 div;
1774         unsigned long src_rate;
1775         long rounded_rate;
1776
1777         src_rate = clock_rate(PRCMU_TVCLK);
1778         div = clock_divider(src_rate, rate);
1779         rounded_rate = (src_rate / min(div, (u32)255));
1780
1781         return rounded_rate;
1782 }
1783
1784 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1785 {
1786         if (clock < PRCMU_NUM_REG_CLOCKS)
1787                 return round_clock_rate(clock, rate);
1788         else if (clock == PRCMU_ARMSS)
1789                 return round_armss_rate(rate);
1790         else if (clock == PRCMU_PLLDSI)
1791                 return round_plldsi_rate(rate);
1792         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1793                 return round_dsiclk_rate(rate);
1794         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1795                 return round_dsiescclk_rate(rate);
1796         else
1797                 return (long)prcmu_clock_rate(clock);
1798 }
1799
1800 static void set_clock_rate(u8 clock, unsigned long rate)
1801 {
1802         u32 val;
1803         u32 div;
1804         unsigned long src_rate;
1805         unsigned long flags;
1806
1807         spin_lock_irqsave(&clk_mgt_lock, flags);
1808
1809         /* Grab the HW semaphore. */
1810         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1811                 cpu_relax();
1812
1813         val = readl(prcmu_base + clk_mgt[clock].offset);
1814         src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1815                 clk_mgt[clock].branch);
1816         div = clock_divider(src_rate, rate);
1817         if (val & PRCM_CLK_MGT_CLK38) {
1818                 if (clk_mgt[clock].clk38div) {
1819                         if (div > 1)
1820                                 val |= PRCM_CLK_MGT_CLK38DIV;
1821                         else
1822                                 val &= ~PRCM_CLK_MGT_CLK38DIV;
1823                 }
1824         } else if (clock == PRCMU_SGACLK) {
1825                 val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1826                         PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1827                 if (div == 3) {
1828                         u64 r = (src_rate * 10);
1829
1830                         (void)do_div(r, 25);
1831                         if (r <= rate) {
1832                                 val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1833                                 div = 0;
1834                         }
1835                 }
1836                 val |= min(div, (u32)31);
1837         } else {
1838                 val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1839                 val |= min(div, (u32)31);
1840         }
1841         writel(val, prcmu_base + clk_mgt[clock].offset);
1842
1843         /* Release the HW semaphore. */
1844         writel(0, PRCM_SEM);
1845
1846         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1847 }
1848
1849 static int set_armss_rate(unsigned long rate)
1850 {
1851         unsigned long freq;
1852         u8 opps[] = { ARM_EXTCLK, ARM_50_OPP, ARM_100_OPP, ARM_MAX_OPP };
1853         int i;
1854
1855         /* Find the corresponding arm opp from the cpufreq table. */
1856         for (i = 0; i < ARRAY_SIZE(armss_freqs); i++) {
1857                 freq = armss_freqs[i];
1858                 if (rate == freq)
1859                         break;
1860         }
1861
1862         if (rate != freq)
1863                 return -EINVAL;
1864
1865         /* Set the new arm opp. */
1866         pr_debug("SET ARM OPP 0x%02x\n", opps[i]);
1867         return db8500_prcmu_set_arm_opp(opps[i]);
1868 }
1869
1870 static int set_plldsi_rate(unsigned long rate)
1871 {
1872         unsigned long src_rate;
1873         unsigned long rem;
1874         u32 pll_freq = 0;
1875         u32 r;
1876
1877         src_rate = clock_rate(PRCMU_HDMICLK);
1878         rem = rate;
1879
1880         for (r = 7; (rem > 0) && (r > 0); r--) {
1881                 u64 d;
1882                 u64 hwrate;
1883
1884                 d = (r * rate);
1885                 (void)do_div(d, src_rate);
1886                 if (d < 6)
1887                         d = 6;
1888                 else if (d > 255)
1889                         d = 255;
1890                 hwrate = (d * src_rate);
1891                 if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1892                         ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1893                         continue;
1894                 (void)do_div(hwrate, r);
1895                 if (rate < hwrate) {
1896                         if (pll_freq == 0)
1897                                 pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1898                                         (r << PRCM_PLL_FREQ_R_SHIFT));
1899                         break;
1900                 }
1901                 if ((rate - hwrate) < rem) {
1902                         rem = (rate - hwrate);
1903                         pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1904                                 (r << PRCM_PLL_FREQ_R_SHIFT));
1905                 }
1906         }
1907         if (pll_freq == 0)
1908                 return -EINVAL;
1909
1910         pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1911         writel(pll_freq, PRCM_PLLDSI_FREQ);
1912
1913         return 0;
1914 }
1915
1916 static void set_dsiclk_rate(u8 n, unsigned long rate)
1917 {
1918         u32 val;
1919         u32 div;
1920
1921         div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1922                         clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1923
1924         dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1925                            (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1926                            /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1927
1928         val = readl(PRCM_DSI_PLLOUT_SEL);
1929         val &= ~dsiclk[n].divsel_mask;
1930         val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1931         writel(val, PRCM_DSI_PLLOUT_SEL);
1932 }
1933
1934 static void set_dsiescclk_rate(u8 n, unsigned long rate)
1935 {
1936         u32 val;
1937         u32 div;
1938
1939         div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1940         val = readl(PRCM_DSITVCLK_DIV);
1941         val &= ~dsiescclk[n].div_mask;
1942         val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1943         writel(val, PRCM_DSITVCLK_DIV);
1944 }
1945
1946 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1947 {
1948         if (clock < PRCMU_NUM_REG_CLOCKS)
1949                 set_clock_rate(clock, rate);
1950         else if (clock == PRCMU_ARMSS)
1951                 return set_armss_rate(rate);
1952         else if (clock == PRCMU_PLLDSI)
1953                 return set_plldsi_rate(rate);
1954         else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1955                 set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1956         else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1957                 set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1958         return 0;
1959 }
1960
1961 int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1962 {
1963         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1964             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1965                 return -EINVAL;
1966
1967         mutex_lock(&mb4_transfer.lock);
1968
1969         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1970                 cpu_relax();
1971
1972         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1973         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1974                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1975         writeb(DDR_PWR_STATE_ON,
1976                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1977         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1978
1979         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1980         wait_for_completion(&mb4_transfer.work);
1981
1982         mutex_unlock(&mb4_transfer.lock);
1983
1984         return 0;
1985 }
1986
1987 int db8500_prcmu_config_hotdog(u8 threshold)
1988 {
1989         mutex_lock(&mb4_transfer.lock);
1990
1991         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1992                 cpu_relax();
1993
1994         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1995         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1996
1997         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1998         wait_for_completion(&mb4_transfer.work);
1999
2000         mutex_unlock(&mb4_transfer.lock);
2001
2002         return 0;
2003 }
2004
2005 int db8500_prcmu_config_hotmon(u8 low, u8 high)
2006 {
2007         mutex_lock(&mb4_transfer.lock);
2008
2009         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2010                 cpu_relax();
2011
2012         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2013         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2014         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2015                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2016         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2017
2018         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2019         wait_for_completion(&mb4_transfer.work);
2020
2021         mutex_unlock(&mb4_transfer.lock);
2022
2023         return 0;
2024 }
2025 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon);
2026
2027 static int config_hot_period(u16 val)
2028 {
2029         mutex_lock(&mb4_transfer.lock);
2030
2031         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2032                 cpu_relax();
2033
2034         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2035         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2036
2037         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2038         wait_for_completion(&mb4_transfer.work);
2039
2040         mutex_unlock(&mb4_transfer.lock);
2041
2042         return 0;
2043 }
2044
2045 int db8500_prcmu_start_temp_sense(u16 cycles32k)
2046 {
2047         if (cycles32k == 0xFFFF)
2048                 return -EINVAL;
2049
2050         return config_hot_period(cycles32k);
2051 }
2052 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense);
2053
2054 int db8500_prcmu_stop_temp_sense(void)
2055 {
2056         return config_hot_period(0xFFFF);
2057 }
2058 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense);
2059
2060 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2061 {
2062
2063         mutex_lock(&mb4_transfer.lock);
2064
2065         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2066                 cpu_relax();
2067
2068         writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2069         writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2070         writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2071         writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2072
2073         writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2074
2075         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2076         wait_for_completion(&mb4_transfer.work);
2077
2078         mutex_unlock(&mb4_transfer.lock);
2079
2080         return 0;
2081
2082 }
2083
2084 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2085 {
2086         BUG_ON(num == 0 || num > 0xf);
2087         return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2088                             sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2089                             A9WDOG_AUTO_OFF_DIS);
2090 }
2091 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2092
2093 int db8500_prcmu_enable_a9wdog(u8 id)
2094 {
2095         return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2096 }
2097 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2098
2099 int db8500_prcmu_disable_a9wdog(u8 id)
2100 {
2101         return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2102 }
2103 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2104
2105 int db8500_prcmu_kick_a9wdog(u8 id)
2106 {
2107         return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2108 }
2109 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2110
2111 /*
2112  * timeout is 28 bit, in ms.
2113  */
2114 int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2115 {
2116         return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2117                             (id & A9WDOG_ID_MASK) |
2118                             /*
2119                              * Put the lowest 28 bits of timeout at
2120                              * offset 4. Four first bits are used for id.
2121                              */
2122                             (u8)((timeout << 4) & 0xf0),
2123                             (u8)((timeout >> 4) & 0xff),
2124                             (u8)((timeout >> 12) & 0xff),
2125                             (u8)((timeout >> 20) & 0xff));
2126 }
2127 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2128
2129 /**
2130  * prcmu_abb_read() - Read register value(s) from the ABB.
2131  * @slave:      The I2C slave address.
2132  * @reg:        The (start) register address.
2133  * @value:      The read out value(s).
2134  * @size:       The number of registers to read.
2135  *
2136  * Reads register value(s) from the ABB.
2137  * @size has to be 1 for the current firmware version.
2138  */
2139 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2140 {
2141         int r;
2142
2143         if (size != 1)
2144                 return -EINVAL;
2145
2146         mutex_lock(&mb5_transfer.lock);
2147
2148         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2149                 cpu_relax();
2150
2151         writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2152         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2153         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2154         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2155         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2156
2157         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2158
2159         if (!wait_for_completion_timeout(&mb5_transfer.work,
2160                                 msecs_to_jiffies(20000))) {
2161                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2162                         __func__);
2163                 r = -EIO;
2164         } else {
2165                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2166         }
2167
2168         if (!r)
2169                 *value = mb5_transfer.ack.value;
2170
2171         mutex_unlock(&mb5_transfer.lock);
2172
2173         return r;
2174 }
2175
2176 /**
2177  * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2178  * @slave:      The I2C slave address.
2179  * @reg:        The (start) register address.
2180  * @value:      The value(s) to write.
2181  * @mask:       The mask(s) to use.
2182  * @size:       The number of registers to write.
2183  *
2184  * Writes masked register value(s) to the ABB.
2185  * For each @value, only the bits set to 1 in the corresponding @mask
2186  * will be written. The other bits are not changed.
2187  * @size has to be 1 for the current firmware version.
2188  */
2189 int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2190 {
2191         int r;
2192
2193         if (size != 1)
2194                 return -EINVAL;
2195
2196         mutex_lock(&mb5_transfer.lock);
2197
2198         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2199                 cpu_relax();
2200
2201         writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2202         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2203         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2204         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2205         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2206
2207         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2208
2209         if (!wait_for_completion_timeout(&mb5_transfer.work,
2210                                 msecs_to_jiffies(20000))) {
2211                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2212                         __func__);
2213                 r = -EIO;
2214         } else {
2215                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2216         }
2217
2218         mutex_unlock(&mb5_transfer.lock);
2219
2220         return r;
2221 }
2222
2223 /**
2224  * prcmu_abb_write() - Write register value(s) to the ABB.
2225  * @slave:      The I2C slave address.
2226  * @reg:        The (start) register address.
2227  * @value:      The value(s) to write.
2228  * @size:       The number of registers to write.
2229  *
2230  * Writes register value(s) to the ABB.
2231  * @size has to be 1 for the current firmware version.
2232  */
2233 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2234 {
2235         u8 mask = ~0;
2236
2237         return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2238 }
2239
2240 /**
2241  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2242  */
2243 int prcmu_ac_wake_req(void)
2244 {
2245         u32 val;
2246         int ret = 0;
2247
2248         mutex_lock(&mb0_transfer.ac_wake_lock);
2249
2250         val = readl(PRCM_HOSTACCESS_REQ);
2251         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2252                 goto unlock_and_return;
2253
2254         atomic_set(&ac_wake_req_state, 1);
2255
2256         /*
2257          * Force Modem Wake-up before hostaccess_req ping-pong.
2258          * It prevents Modem to enter in Sleep while acking the hostaccess
2259          * request. The 31us delay has been calculated by HWI.
2260          */
2261         val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2262         writel(val, PRCM_HOSTACCESS_REQ);
2263
2264         udelay(31);
2265
2266         val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2267         writel(val, PRCM_HOSTACCESS_REQ);
2268
2269         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2270                         msecs_to_jiffies(5000))) {
2271                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2272                         __func__);
2273                 ret = -EFAULT;
2274         }
2275
2276 unlock_and_return:
2277         mutex_unlock(&mb0_transfer.ac_wake_lock);
2278         return ret;
2279 }
2280
2281 /**
2282  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2283  */
2284 void prcmu_ac_sleep_req(void)
2285 {
2286         u32 val;
2287
2288         mutex_lock(&mb0_transfer.ac_wake_lock);
2289
2290         val = readl(PRCM_HOSTACCESS_REQ);
2291         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2292                 goto unlock_and_return;
2293
2294         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2295                 PRCM_HOSTACCESS_REQ);
2296
2297         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2298                         msecs_to_jiffies(5000))) {
2299                 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2300                         __func__);
2301         }
2302
2303         atomic_set(&ac_wake_req_state, 0);
2304
2305 unlock_and_return:
2306         mutex_unlock(&mb0_transfer.ac_wake_lock);
2307 }
2308
2309 bool db8500_prcmu_is_ac_wake_requested(void)
2310 {
2311         return (atomic_read(&ac_wake_req_state) != 0);
2312 }
2313
2314 /**
2315  * db8500_prcmu_system_reset - System reset
2316  *
2317  * Saves the reset reason code and then sets the APE_SOFTRST register which
2318  * fires interrupt to fw
2319  */
2320 void db8500_prcmu_system_reset(u16 reset_code)
2321 {
2322         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2323         writel(1, PRCM_APE_SOFTRST);
2324 }
2325
2326 /**
2327  * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2328  *
2329  * Retrieves the reset reason code stored by prcmu_system_reset() before
2330  * last restart.
2331  */
2332 u16 db8500_prcmu_get_reset_code(void)
2333 {
2334         return readw(tcdm_base + PRCM_SW_RST_REASON);
2335 }
2336
2337 /**
2338  * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2339  */
2340 void db8500_prcmu_modem_reset(void)
2341 {
2342         mutex_lock(&mb1_transfer.lock);
2343
2344         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2345                 cpu_relax();
2346
2347         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2348         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2349         wait_for_completion(&mb1_transfer.work);
2350
2351         /*
2352          * No need to check return from PRCMU as modem should go in reset state
2353          * This state is already managed by upper layer
2354          */
2355
2356         mutex_unlock(&mb1_transfer.lock);
2357 }
2358
2359 static void ack_dbb_wakeup(void)
2360 {
2361         unsigned long flags;
2362
2363         spin_lock_irqsave(&mb0_transfer.lock, flags);
2364
2365         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2366                 cpu_relax();
2367
2368         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2369         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2370
2371         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2372 }
2373
2374 static inline void print_unknown_header_warning(u8 n, u8 header)
2375 {
2376         pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2377                 header, n);
2378 }
2379
2380 static bool read_mailbox_0(void)
2381 {
2382         bool r;
2383         u32 ev;
2384         unsigned int n;
2385         u8 header;
2386
2387         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2388         switch (header) {
2389         case MB0H_WAKEUP_EXE:
2390         case MB0H_WAKEUP_SLEEP:
2391                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2392                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2393                 else
2394                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2395
2396                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2397                         complete(&mb0_transfer.ac_wake_work);
2398                 if (ev & WAKEUP_BIT_SYSCLK_OK)
2399                         complete(&mb3_transfer.sysclk_work);
2400
2401                 ev &= mb0_transfer.req.dbb_irqs;
2402
2403                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2404                         if (ev & prcmu_irq_bit[n])
2405                                 generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2406                 }
2407                 r = true;
2408                 break;
2409         default:
2410                 print_unknown_header_warning(0, header);
2411                 r = false;
2412                 break;
2413         }
2414         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2415         return r;
2416 }
2417
2418 static bool read_mailbox_1(void)
2419 {
2420         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2421         mb1_transfer.ack.arm_opp = readb(tcdm_base +
2422                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
2423         mb1_transfer.ack.ape_opp = readb(tcdm_base +
2424                 PRCM_ACK_MB1_CURRENT_APE_OPP);
2425         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2426                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2427         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2428         complete(&mb1_transfer.work);
2429         return false;
2430 }
2431
2432 static bool read_mailbox_2(void)
2433 {
2434         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2435         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2436         complete(&mb2_transfer.work);
2437         return false;
2438 }
2439
2440 static bool read_mailbox_3(void)
2441 {
2442         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2443         return false;
2444 }
2445
2446 static bool read_mailbox_4(void)
2447 {
2448         u8 header;
2449         bool do_complete = true;
2450
2451         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2452         switch (header) {
2453         case MB4H_MEM_ST:
2454         case MB4H_HOTDOG:
2455         case MB4H_HOTMON:
2456         case MB4H_HOT_PERIOD:
2457         case MB4H_A9WDOG_CONF:
2458         case MB4H_A9WDOG_EN:
2459         case MB4H_A9WDOG_DIS:
2460         case MB4H_A9WDOG_LOAD:
2461         case MB4H_A9WDOG_KICK:
2462                 break;
2463         default:
2464                 print_unknown_header_warning(4, header);
2465                 do_complete = false;
2466                 break;
2467         }
2468
2469         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2470
2471         if (do_complete)
2472                 complete(&mb4_transfer.work);
2473
2474         return false;
2475 }
2476
2477 static bool read_mailbox_5(void)
2478 {
2479         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2480         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2481         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2482         complete(&mb5_transfer.work);
2483         return false;
2484 }
2485
2486 static bool read_mailbox_6(void)
2487 {
2488         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2489         return false;
2490 }
2491
2492 static bool read_mailbox_7(void)
2493 {
2494         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2495         return false;
2496 }
2497
2498 static bool (* const read_mailbox[NUM_MB])(void) = {
2499         read_mailbox_0,
2500         read_mailbox_1,
2501         read_mailbox_2,
2502         read_mailbox_3,
2503         read_mailbox_4,
2504         read_mailbox_5,
2505         read_mailbox_6,
2506         read_mailbox_7
2507 };
2508
2509 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2510 {
2511         u32 bits;
2512         u8 n;
2513         irqreturn_t r;
2514
2515         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2516         if (unlikely(!bits))
2517                 return IRQ_NONE;
2518
2519         r = IRQ_HANDLED;
2520         for (n = 0; bits; n++) {
2521                 if (bits & MBOX_BIT(n)) {
2522                         bits -= MBOX_BIT(n);
2523                         if (read_mailbox[n]())
2524                                 r = IRQ_WAKE_THREAD;
2525                 }
2526         }
2527         return r;
2528 }
2529
2530 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2531 {
2532         ack_dbb_wakeup();
2533         return IRQ_HANDLED;
2534 }
2535
2536 static void prcmu_mask_work(struct work_struct *work)
2537 {
2538         unsigned long flags;
2539
2540         spin_lock_irqsave(&mb0_transfer.lock, flags);
2541
2542         config_wakeups();
2543
2544         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2545 }
2546
2547 static void prcmu_irq_mask(struct irq_data *d)
2548 {
2549         unsigned long flags;
2550
2551         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2552
2553         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2554
2555         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2556
2557         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2558                 schedule_work(&mb0_transfer.mask_work);
2559 }
2560
2561 static void prcmu_irq_unmask(struct irq_data *d)
2562 {
2563         unsigned long flags;
2564
2565         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2566
2567         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2568
2569         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2570
2571         if (d->irq != IRQ_PRCMU_CA_SLEEP)
2572                 schedule_work(&mb0_transfer.mask_work);
2573 }
2574
2575 static void noop(struct irq_data *d)
2576 {
2577 }
2578
2579 static struct irq_chip prcmu_irq_chip = {
2580         .name           = "prcmu",
2581         .irq_disable    = prcmu_irq_mask,
2582         .irq_ack        = noop,
2583         .irq_mask       = prcmu_irq_mask,
2584         .irq_unmask     = prcmu_irq_unmask,
2585 };
2586
2587 static char *fw_project_name(u32 project)
2588 {
2589         switch (project) {
2590         case PRCMU_FW_PROJECT_U8500:
2591                 return "U8500";
2592         case PRCMU_FW_PROJECT_U8400:
2593                 return "U8400";
2594         case PRCMU_FW_PROJECT_U9500:
2595                 return "U9500";
2596         case PRCMU_FW_PROJECT_U8500_MBB:
2597                 return "U8500 MBB";
2598         case PRCMU_FW_PROJECT_U8500_C1:
2599                 return "U8500 C1";
2600         case PRCMU_FW_PROJECT_U8500_C2:
2601                 return "U8500 C2";
2602         case PRCMU_FW_PROJECT_U8500_C3:
2603                 return "U8500 C3";
2604         case PRCMU_FW_PROJECT_U8500_C4:
2605                 return "U8500 C4";
2606         case PRCMU_FW_PROJECT_U9500_MBL:
2607                 return "U9500 MBL";
2608         case PRCMU_FW_PROJECT_U8500_MBL:
2609                 return "U8500 MBL";
2610         case PRCMU_FW_PROJECT_U8500_MBL2:
2611                 return "U8500 MBL2";
2612         case PRCMU_FW_PROJECT_U8520:
2613                 return "U8520 MBL";
2614         case PRCMU_FW_PROJECT_U8420:
2615                 return "U8420";
2616         case PRCMU_FW_PROJECT_U9540:
2617                 return "U9540";
2618         case PRCMU_FW_PROJECT_A9420:
2619                 return "A9420";
2620         case PRCMU_FW_PROJECT_L8540:
2621                 return "L8540";
2622         case PRCMU_FW_PROJECT_L8580:
2623                 return "L8580";
2624         default:
2625                 return "Unknown";
2626         }
2627 }
2628
2629 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2630                                 irq_hw_number_t hwirq)
2631 {
2632         irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2633                                 handle_simple_irq);
2634
2635         return 0;
2636 }
2637
2638 static const struct irq_domain_ops db8500_irq_ops = {
2639         .map    = db8500_irq_map,
2640         .xlate  = irq_domain_xlate_twocell,
2641 };
2642
2643 static int db8500_irq_init(struct device_node *np)
2644 {
2645         int i;
2646
2647         db8500_irq_domain = irq_domain_add_simple(
2648                 np, NUM_PRCMU_WAKEUPS, 0,
2649                 &db8500_irq_ops, NULL);
2650
2651         if (!db8500_irq_domain) {
2652                 pr_err("Failed to create irqdomain\n");
2653                 return -ENOSYS;
2654         }
2655
2656         /* All wakeups will be used, so create mappings for all */
2657         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2658                 irq_create_mapping(db8500_irq_domain, i);
2659
2660         return 0;
2661 }
2662
2663 static void dbx500_fw_version_init(struct platform_device *pdev,
2664                             u32 version_offset)
2665 {
2666         struct resource *res;
2667         void __iomem *tcpm_base;
2668         u32 version;
2669
2670         res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2671                                            "prcmu-tcpm");
2672         if (!res) {
2673                 dev_err(&pdev->dev,
2674                         "Error: no prcmu tcpm memory region provided\n");
2675                 return;
2676         }
2677         tcpm_base = ioremap(res->start, resource_size(res));
2678         if (!tcpm_base) {
2679                 dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2680                 return;
2681         }
2682
2683         version = readl(tcpm_base + version_offset);
2684         fw_info.version.project = (version & 0xFF);
2685         fw_info.version.api_version = (version >> 8) & 0xFF;
2686         fw_info.version.func_version = (version >> 16) & 0xFF;
2687         fw_info.version.errata = (version >> 24) & 0xFF;
2688         strncpy(fw_info.version.project_name,
2689                 fw_project_name(fw_info.version.project),
2690                 PRCMU_FW_PROJECT_NAME_LEN);
2691         fw_info.valid = true;
2692         pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2693                 fw_info.version.project_name,
2694                 fw_info.version.project,
2695                 fw_info.version.api_version,
2696                 fw_info.version.func_version,
2697                 fw_info.version.errata);
2698         iounmap(tcpm_base);
2699 }
2700
2701 void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2702 {
2703         /*
2704          * This is a temporary remap to bring up the clocks. It is
2705          * subsequently replaces with a real remap. After the merge of
2706          * the mailbox subsystem all of this early code goes away, and the
2707          * clock driver can probe independently. An early initcall will
2708          * still be needed, but it can be diverted into drivers/clk/ux500.
2709          */
2710         prcmu_base = ioremap(phy_base, size);
2711         if (!prcmu_base)
2712                 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2713
2714         spin_lock_init(&mb0_transfer.lock);
2715         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2716         mutex_init(&mb0_transfer.ac_wake_lock);
2717         init_completion(&mb0_transfer.ac_wake_work);
2718         mutex_init(&mb1_transfer.lock);
2719         init_completion(&mb1_transfer.work);
2720         mb1_transfer.ape_opp = APE_NO_CHANGE;
2721         mutex_init(&mb2_transfer.lock);
2722         init_completion(&mb2_transfer.work);
2723         spin_lock_init(&mb2_transfer.auto_pm_lock);
2724         spin_lock_init(&mb3_transfer.lock);
2725         mutex_init(&mb3_transfer.sysclk_lock);
2726         init_completion(&mb3_transfer.sysclk_work);
2727         mutex_init(&mb4_transfer.lock);
2728         init_completion(&mb4_transfer.work);
2729         mutex_init(&mb5_transfer.lock);
2730         init_completion(&mb5_transfer.work);
2731
2732         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2733 }
2734
2735 static void init_prcm_registers(void)
2736 {
2737         u32 val;
2738
2739         val = readl(PRCM_A9PL_FORCE_CLKEN);
2740         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2741                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2742         writel(val, (PRCM_A9PL_FORCE_CLKEN));
2743 }
2744
2745 /*
2746  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2747  */
2748 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2749         REGULATOR_SUPPLY("v-ape", NULL),
2750         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2751         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2752         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2753         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2754         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2755         /* "v-mmc" changed to "vcore" in the mainline kernel */
2756         REGULATOR_SUPPLY("vcore", "sdi0"),
2757         REGULATOR_SUPPLY("vcore", "sdi1"),
2758         REGULATOR_SUPPLY("vcore", "sdi2"),
2759         REGULATOR_SUPPLY("vcore", "sdi3"),
2760         REGULATOR_SUPPLY("vcore", "sdi4"),
2761         REGULATOR_SUPPLY("v-dma", "dma40.0"),
2762         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2763         /* "v-uart" changed to "vcore" in the mainline kernel */
2764         REGULATOR_SUPPLY("vcore", "uart0"),
2765         REGULATOR_SUPPLY("vcore", "uart1"),
2766         REGULATOR_SUPPLY("vcore", "uart2"),
2767         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2768         REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2769         REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2770 };
2771
2772 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2773         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2774         /* AV8100 regulator */
2775         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2776 };
2777
2778 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2779         REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2780         REGULATOR_SUPPLY("vsupply", "mcde"),
2781 };
2782
2783 /* SVA MMDSP regulator switch */
2784 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2785         REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2786 };
2787
2788 /* SVA pipe regulator switch */
2789 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2790         REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2791 };
2792
2793 /* SIA MMDSP regulator switch */
2794 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2795         REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2796 };
2797
2798 /* SIA pipe regulator switch */
2799 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2800         REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2801 };
2802
2803 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2804         REGULATOR_SUPPLY("v-mali", NULL),
2805 };
2806
2807 /* ESRAM1 and 2 regulator switch */
2808 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2809         REGULATOR_SUPPLY("esram12", "cm_control"),
2810 };
2811
2812 /* ESRAM3 and 4 regulator switch */
2813 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2814         REGULATOR_SUPPLY("v-esram34", "mcde"),
2815         REGULATOR_SUPPLY("esram34", "cm_control"),
2816         REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2817 };
2818
2819 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2820         [DB8500_REGULATOR_VAPE] = {
2821                 .constraints = {
2822                         .name = "db8500-vape",
2823                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2824                         .always_on = true,
2825                 },
2826                 .consumer_supplies = db8500_vape_consumers,
2827                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2828         },
2829         [DB8500_REGULATOR_VARM] = {
2830                 .constraints = {
2831                         .name = "db8500-varm",
2832                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2833                 },
2834         },
2835         [DB8500_REGULATOR_VMODEM] = {
2836                 .constraints = {
2837                         .name = "db8500-vmodem",
2838                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2839                 },
2840         },
2841         [DB8500_REGULATOR_VPLL] = {
2842                 .constraints = {
2843                         .name = "db8500-vpll",
2844                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2845                 },
2846         },
2847         [DB8500_REGULATOR_VSMPS1] = {
2848                 .constraints = {
2849                         .name = "db8500-vsmps1",
2850                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2851                 },
2852         },
2853         [DB8500_REGULATOR_VSMPS2] = {
2854                 .constraints = {
2855                         .name = "db8500-vsmps2",
2856                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857                 },
2858                 .consumer_supplies = db8500_vsmps2_consumers,
2859                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2860         },
2861         [DB8500_REGULATOR_VSMPS3] = {
2862                 .constraints = {
2863                         .name = "db8500-vsmps3",
2864                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865                 },
2866         },
2867         [DB8500_REGULATOR_VRF1] = {
2868                 .constraints = {
2869                         .name = "db8500-vrf1",
2870                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2871                 },
2872         },
2873         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2874                 /* dependency to u8500-vape is handled outside regulator framework */
2875                 .constraints = {
2876                         .name = "db8500-sva-mmdsp",
2877                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2878                 },
2879                 .consumer_supplies = db8500_svammdsp_consumers,
2880                 .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2881         },
2882         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2883                 .constraints = {
2884                         /* "ret" means "retention" */
2885                         .name = "db8500-sva-mmdsp-ret",
2886                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2887                 },
2888         },
2889         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2890                 /* dependency to u8500-vape is handled outside regulator framework */
2891                 .constraints = {
2892                         .name = "db8500-sva-pipe",
2893                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2894                 },
2895                 .consumer_supplies = db8500_svapipe_consumers,
2896                 .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2897         },
2898         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2899                 /* dependency to u8500-vape is handled outside regulator framework */
2900                 .constraints = {
2901                         .name = "db8500-sia-mmdsp",
2902                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2903                 },
2904                 .consumer_supplies = db8500_siammdsp_consumers,
2905                 .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2906         },
2907         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2908                 .constraints = {
2909                         .name = "db8500-sia-mmdsp-ret",
2910                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911                 },
2912         },
2913         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2914                 /* dependency to u8500-vape is handled outside regulator framework */
2915                 .constraints = {
2916                         .name = "db8500-sia-pipe",
2917                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918                 },
2919                 .consumer_supplies = db8500_siapipe_consumers,
2920                 .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2921         },
2922         [DB8500_REGULATOR_SWITCH_SGA] = {
2923                 .supply_regulator = "db8500-vape",
2924                 .constraints = {
2925                         .name = "db8500-sga",
2926                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927                 },
2928                 .consumer_supplies = db8500_sga_consumers,
2929                 .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2930
2931         },
2932         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2933                 .supply_regulator = "db8500-vape",
2934                 .constraints = {
2935                         .name = "db8500-b2r2-mcde",
2936                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937                 },
2938                 .consumer_supplies = db8500_b2r2_mcde_consumers,
2939                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2940         },
2941         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2942                 /*
2943                  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2944                  * no need to hold Vape
2945                  */
2946                 .constraints = {
2947                         .name = "db8500-esram12",
2948                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2949                 },
2950                 .consumer_supplies = db8500_esram12_consumers,
2951                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2952         },
2953         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2954                 .constraints = {
2955                         .name = "db8500-esram12-ret",
2956                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2957                 },
2958         },
2959         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2960                 /*
2961                  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2962                  * no need to hold Vape
2963                  */
2964                 .constraints = {
2965                         .name = "db8500-esram34",
2966                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2967                 },
2968                 .consumer_supplies = db8500_esram34_consumers,
2969                 .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2970         },
2971         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2972                 .constraints = {
2973                         .name = "db8500-esram34-ret",
2974                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975                 },
2976         },
2977 };
2978
2979 static struct ux500_wdt_data db8500_wdt_pdata = {
2980         .timeout = 600, /* 10 minutes */
2981         .has_28_bits_resolution = true,
2982 };
2983 /*
2984  * Thermal Sensor
2985  */
2986
2987 static struct resource db8500_thsens_resources[] = {
2988         {
2989                 .name = "IRQ_HOTMON_LOW",
2990                 .start  = IRQ_PRCMU_HOTMON_LOW,
2991                 .end    = IRQ_PRCMU_HOTMON_LOW,
2992                 .flags  = IORESOURCE_IRQ,
2993         },
2994         {
2995                 .name = "IRQ_HOTMON_HIGH",
2996                 .start  = IRQ_PRCMU_HOTMON_HIGH,
2997                 .end    = IRQ_PRCMU_HOTMON_HIGH,
2998                 .flags  = IORESOURCE_IRQ,
2999         },
3000 };
3001
3002 static struct db8500_thsens_platform_data db8500_thsens_data = {
3003         .trip_points[0] = {
3004                 .temp = 70000,
3005                 .type = THERMAL_TRIP_ACTIVE,
3006                 .cdev_name = {
3007                         [0] = "thermal-cpufreq-0",
3008                 },
3009         },
3010         .trip_points[1] = {
3011                 .temp = 75000,
3012                 .type = THERMAL_TRIP_ACTIVE,
3013                 .cdev_name = {
3014                         [0] = "thermal-cpufreq-0",
3015                 },
3016         },
3017         .trip_points[2] = {
3018                 .temp = 80000,
3019                 .type = THERMAL_TRIP_ACTIVE,
3020                 .cdev_name = {
3021                         [0] = "thermal-cpufreq-0",
3022                 },
3023         },
3024         .trip_points[3] = {
3025                 .temp = 85000,
3026                 .type = THERMAL_TRIP_CRITICAL,
3027         },
3028         .num_trips = 4,
3029 };
3030
3031 static const struct mfd_cell common_prcmu_devs[] = {
3032         {
3033                 .name = "ux500_wdt",
3034                 .platform_data = &db8500_wdt_pdata,
3035                 .pdata_size = sizeof(db8500_wdt_pdata),
3036                 .id = -1,
3037         },
3038 };
3039
3040 static const struct mfd_cell db8500_prcmu_devs[] = {
3041         {
3042                 .name = "db8500-prcmu-regulators",
3043                 .of_compatible = "stericsson,db8500-prcmu-regulator",
3044                 .platform_data = &db8500_regulators,
3045                 .pdata_size = sizeof(db8500_regulators),
3046         },
3047         {
3048                 .name = "cpuidle-dbx500",
3049                 .of_compatible = "stericsson,cpuidle-dbx500",
3050         },
3051         {
3052                 .name = "db8500-thermal",
3053                 .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3054                 .resources = db8500_thsens_resources,
3055                 .platform_data = &db8500_thsens_data,
3056                 .pdata_size = sizeof(db8500_thsens_data),
3057         },
3058 };
3059
3060 static int db8500_prcmu_register_ab8500(struct device *parent)
3061 {
3062         struct device_node *np;
3063         struct resource ab8500_resource;
3064         const struct mfd_cell ab8500_cell = {
3065                 .name = "ab8500-core",
3066                 .of_compatible = "stericsson,ab8500",
3067                 .id = AB8500_VERSION_AB8500,
3068                 .resources = &ab8500_resource,
3069                 .num_resources = 1,
3070         };
3071
3072         if (!parent->of_node)
3073                 return -ENODEV;
3074
3075         /* Look up the device node, sneak the IRQ out of it */
3076         for_each_child_of_node(parent->of_node, np) {
3077                 if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3078                         break;
3079         }
3080         if (!np) {
3081                 dev_info(parent, "could not find AB8500 node in the device tree\n");
3082                 return -ENODEV;
3083         }
3084         of_irq_to_resource_table(np, &ab8500_resource, 1);
3085
3086         return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3087 }
3088
3089 /**
3090  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3091  *
3092  */
3093 static int db8500_prcmu_probe(struct platform_device *pdev)
3094 {
3095         struct device_node *np = pdev->dev.of_node;
3096         int irq = 0, err = 0;
3097         struct resource *res;
3098
3099         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3100         if (!res) {
3101                 dev_err(&pdev->dev, "no prcmu memory region provided\n");
3102                 return -EINVAL;
3103         }
3104         prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3105         if (!prcmu_base) {
3106                 dev_err(&pdev->dev,
3107                         "failed to ioremap prcmu register memory\n");
3108                 return -ENOMEM;
3109         }
3110         init_prcm_registers();
3111         dbx500_fw_version_init(pdev, DB8500_PRCMU_FW_VERSION_OFFSET);
3112         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3113         if (!res) {
3114                 dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3115                 return -EINVAL;
3116         }
3117         tcdm_base = devm_ioremap(&pdev->dev, res->start,
3118                         resource_size(res));
3119         if (!tcdm_base) {
3120                 dev_err(&pdev->dev,
3121                         "failed to ioremap prcmu-tcdm register memory\n");
3122                 return -ENOMEM;
3123         }
3124
3125         /* Clean up the mailbox interrupts after pre-kernel code. */
3126         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3127
3128         irq = platform_get_irq(pdev, 0);
3129         if (irq <= 0) {
3130                 dev_err(&pdev->dev, "no prcmu irq provided\n");
3131                 return irq;
3132         }
3133
3134         err = request_threaded_irq(irq, prcmu_irq_handler,
3135                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3136         if (err < 0) {
3137                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3138                 return err;
3139         }
3140
3141         db8500_irq_init(np);
3142
3143         prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3144
3145         err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3146                               ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3147         if (err) {
3148                 pr_err("prcmu: Failed to add subdevices\n");
3149                 return err;
3150         }
3151
3152         /* TODO: Remove restriction when clk definitions are available. */
3153         if (!of_machine_is_compatible("st-ericsson,u8540")) {
3154                 err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3155                                       ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3156                                       db8500_irq_domain);
3157                 if (err) {
3158                         mfd_remove_devices(&pdev->dev);
3159                         pr_err("prcmu: Failed to add subdevices\n");
3160                         return err;
3161                 }
3162         }
3163
3164         err = db8500_prcmu_register_ab8500(&pdev->dev);
3165         if (err) {
3166                 mfd_remove_devices(&pdev->dev);
3167                 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3168                 return err;
3169         }
3170
3171         pr_info("DB8500 PRCMU initialized\n");
3172         return err;
3173 }
3174 static const struct of_device_id db8500_prcmu_match[] = {
3175         { .compatible = "stericsson,db8500-prcmu"},
3176         { },
3177 };
3178
3179 static struct platform_driver db8500_prcmu_driver = {
3180         .driver = {
3181                 .name = "db8500-prcmu",
3182                 .of_match_table = db8500_prcmu_match,
3183         },
3184         .probe = db8500_prcmu_probe,
3185 };
3186
3187 static int __init db8500_prcmu_init(void)
3188 {
3189         return platform_driver_register(&db8500_prcmu_driver);
3190 }
3191
3192 core_initcall(db8500_prcmu_init);
3193
3194 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3195 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3196 MODULE_LICENSE("GPL v2");