ahci: don't ignore result code of ahci_reset_controller()
[sfrench/cifs-2.6.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include <linux/module.h>
10 #include <linux/device-mapper.h>
11 #include <linux/dm-io.h>
12 #include <linux/vmalloc.h>
13 #include <linux/sort.h>
14 #include <linux/rbtree.h>
15 #include <linux/delay.h>
16 #include <linux/random.h>
17 #include <crypto/hash.h>
18 #include <crypto/skcipher.h>
19 #include <linux/async_tx.h>
20 #include "dm-bufio.h"
21
22 #define DM_MSG_PREFIX "integrity"
23
24 #define DEFAULT_INTERLEAVE_SECTORS      32768
25 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
26 #define DEFAULT_BUFFER_SECTORS          128
27 #define DEFAULT_JOURNAL_WATERMARK       50
28 #define DEFAULT_SYNC_MSEC               10000
29 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
30 #define MIN_LOG2_INTERLEAVE_SECTORS     3
31 #define MAX_LOG2_INTERLEAVE_SECTORS     31
32 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
33
34 /*
35  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
36  * so it should not be enabled in the official kernel
37  */
38 //#define DEBUG_PRINT
39 //#define INTERNAL_VERIFY
40
41 /*
42  * On disk structures
43  */
44
45 #define SB_MAGIC                        "integrt"
46 #define SB_VERSION                      1
47 #define SB_SECTORS                      8
48 #define MAX_SECTORS_PER_BLOCK           8
49
50 struct superblock {
51         __u8 magic[8];
52         __u8 version;
53         __u8 log2_interleave_sectors;
54         __u16 integrity_tag_size;
55         __u32 journal_sections;
56         __u64 provided_data_sectors;    /* userspace uses this value */
57         __u32 flags;
58         __u8 log2_sectors_per_block;
59 };
60
61 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
62
63 #define JOURNAL_ENTRY_ROUNDUP           8
64
65 typedef __u64 commit_id_t;
66 #define JOURNAL_MAC_PER_SECTOR          8
67
68 struct journal_entry {
69         union {
70                 struct {
71                         __u32 sector_lo;
72                         __u32 sector_hi;
73                 } s;
74                 __u64 sector;
75         } u;
76         commit_id_t last_bytes[0];
77         /* __u8 tag[0]; */
78 };
79
80 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
81
82 #if BITS_PER_LONG == 64
83 #define journal_entry_set_sector(je, x)         do { smp_wmb(); ACCESS_ONCE((je)->u.sector) = cpu_to_le64(x); } while (0)
84 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
85 #elif defined(CONFIG_LBDAF)
86 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32((x) >> 32); } while (0)
87 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
88 #else
89 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); ACCESS_ONCE((je)->u.s.sector_hi) = cpu_to_le32(0); } while (0)
90 #define journal_entry_get_sector(je)            le32_to_cpu((je)->u.s.sector_lo)
91 #endif
92 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
93 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
94 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
95 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
96
97 #define JOURNAL_BLOCK_SECTORS           8
98 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
99 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
100
101 struct journal_sector {
102         __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
103         __u8 mac[JOURNAL_MAC_PER_SECTOR];
104         commit_id_t commit_id;
105 };
106
107 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
108
109 #define METADATA_PADDING_SECTORS        8
110
111 #define N_COMMIT_IDS                    4
112
113 static unsigned char prev_commit_seq(unsigned char seq)
114 {
115         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
116 }
117
118 static unsigned char next_commit_seq(unsigned char seq)
119 {
120         return (seq + 1) % N_COMMIT_IDS;
121 }
122
123 /*
124  * In-memory structures
125  */
126
127 struct journal_node {
128         struct rb_node node;
129         sector_t sector;
130 };
131
132 struct alg_spec {
133         char *alg_string;
134         char *key_string;
135         __u8 *key;
136         unsigned key_size;
137 };
138
139 struct dm_integrity_c {
140         struct dm_dev *dev;
141         unsigned tag_size;
142         __s8 log2_tag_size;
143         sector_t start;
144         mempool_t *journal_io_mempool;
145         struct dm_io_client *io;
146         struct dm_bufio_client *bufio;
147         struct workqueue_struct *metadata_wq;
148         struct superblock *sb;
149         unsigned journal_pages;
150         struct page_list *journal;
151         struct page_list *journal_io;
152         struct page_list *journal_xor;
153
154         struct crypto_skcipher *journal_crypt;
155         struct scatterlist **journal_scatterlist;
156         struct scatterlist **journal_io_scatterlist;
157         struct skcipher_request **sk_requests;
158
159         struct crypto_shash *journal_mac;
160
161         struct journal_node *journal_tree;
162         struct rb_root journal_tree_root;
163
164         sector_t provided_data_sectors;
165
166         unsigned short journal_entry_size;
167         unsigned char journal_entries_per_sector;
168         unsigned char journal_section_entries;
169         unsigned short journal_section_sectors;
170         unsigned journal_sections;
171         unsigned journal_entries;
172         sector_t device_sectors;
173         unsigned initial_sectors;
174         unsigned metadata_run;
175         __s8 log2_metadata_run;
176         __u8 log2_buffer_sectors;
177         __u8 sectors_per_block;
178
179         unsigned char mode;
180         bool suspending;
181
182         int failed;
183
184         struct crypto_shash *internal_hash;
185
186         /* these variables are locked with endio_wait.lock */
187         struct rb_root in_progress;
188         wait_queue_head_t endio_wait;
189         struct workqueue_struct *wait_wq;
190
191         unsigned char commit_seq;
192         commit_id_t commit_ids[N_COMMIT_IDS];
193
194         unsigned committed_section;
195         unsigned n_committed_sections;
196
197         unsigned uncommitted_section;
198         unsigned n_uncommitted_sections;
199
200         unsigned free_section;
201         unsigned char free_section_entry;
202         unsigned free_sectors;
203
204         unsigned free_sectors_threshold;
205
206         struct workqueue_struct *commit_wq;
207         struct work_struct commit_work;
208
209         struct workqueue_struct *writer_wq;
210         struct work_struct writer_work;
211
212         struct bio_list flush_bio_list;
213
214         unsigned long autocommit_jiffies;
215         struct timer_list autocommit_timer;
216         unsigned autocommit_msec;
217
218         wait_queue_head_t copy_to_journal_wait;
219
220         struct completion crypto_backoff;
221
222         bool journal_uptodate;
223         bool just_formatted;
224
225         struct alg_spec internal_hash_alg;
226         struct alg_spec journal_crypt_alg;
227         struct alg_spec journal_mac_alg;
228 };
229
230 struct dm_integrity_range {
231         sector_t logical_sector;
232         unsigned n_sectors;
233         struct rb_node node;
234 };
235
236 struct dm_integrity_io {
237         struct work_struct work;
238
239         struct dm_integrity_c *ic;
240         bool write;
241         bool fua;
242
243         struct dm_integrity_range range;
244
245         sector_t metadata_block;
246         unsigned metadata_offset;
247
248         atomic_t in_flight;
249         blk_status_t bi_status;
250
251         struct completion *completion;
252
253         struct gendisk *orig_bi_disk;
254         u8 orig_bi_partno;
255         bio_end_io_t *orig_bi_end_io;
256         struct bio_integrity_payload *orig_bi_integrity;
257         struct bvec_iter orig_bi_iter;
258 };
259
260 struct journal_completion {
261         struct dm_integrity_c *ic;
262         atomic_t in_flight;
263         struct completion comp;
264 };
265
266 struct journal_io {
267         struct dm_integrity_range range;
268         struct journal_completion *comp;
269 };
270
271 static struct kmem_cache *journal_io_cache;
272
273 #define JOURNAL_IO_MEMPOOL      32
274
275 #ifdef DEBUG_PRINT
276 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
277 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
278 {
279         va_list args;
280         va_start(args, msg);
281         vprintk(msg, args);
282         va_end(args);
283         if (len)
284                 pr_cont(":");
285         while (len) {
286                 pr_cont(" %02x", *bytes);
287                 bytes++;
288                 len--;
289         }
290         pr_cont("\n");
291 }
292 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
293 #else
294 #define DEBUG_print(x, ...)                     do { } while (0)
295 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
296 #endif
297
298 /*
299  * DM Integrity profile, protection is performed layer above (dm-crypt)
300  */
301 static struct blk_integrity_profile dm_integrity_profile = {
302         .name                   = "DM-DIF-EXT-TAG",
303         .generate_fn            = NULL,
304         .verify_fn              = NULL,
305 };
306
307 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
308 static void integrity_bio_wait(struct work_struct *w);
309 static void dm_integrity_dtr(struct dm_target *ti);
310
311 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
312 {
313         if (!cmpxchg(&ic->failed, 0, err))
314                 DMERR("Error on %s: %d", msg, err);
315 }
316
317 static int dm_integrity_failed(struct dm_integrity_c *ic)
318 {
319         return ACCESS_ONCE(ic->failed);
320 }
321
322 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
323                                           unsigned j, unsigned char seq)
324 {
325         /*
326          * Xor the number with section and sector, so that if a piece of
327          * journal is written at wrong place, it is detected.
328          */
329         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
330 }
331
332 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
333                                 sector_t *area, sector_t *offset)
334 {
335         __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
336
337         *area = data_sector >> log2_interleave_sectors;
338         *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
339 }
340
341 #define sector_to_block(ic, n)                                          \
342 do {                                                                    \
343         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
344         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
345 } while (0)
346
347 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
348                                             sector_t offset, unsigned *metadata_offset)
349 {
350         __u64 ms;
351         unsigned mo;
352
353         ms = area << ic->sb->log2_interleave_sectors;
354         if (likely(ic->log2_metadata_run >= 0))
355                 ms += area << ic->log2_metadata_run;
356         else
357                 ms += area * ic->metadata_run;
358         ms >>= ic->log2_buffer_sectors;
359
360         sector_to_block(ic, offset);
361
362         if (likely(ic->log2_tag_size >= 0)) {
363                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
364                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
365         } else {
366                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
367                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
368         }
369         *metadata_offset = mo;
370         return ms;
371 }
372
373 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
374 {
375         sector_t result;
376
377         result = area << ic->sb->log2_interleave_sectors;
378         if (likely(ic->log2_metadata_run >= 0))
379                 result += (area + 1) << ic->log2_metadata_run;
380         else
381                 result += (area + 1) * ic->metadata_run;
382
383         result += (sector_t)ic->initial_sectors + offset;
384         return result;
385 }
386
387 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
388 {
389         if (unlikely(*sec_ptr >= ic->journal_sections))
390                 *sec_ptr -= ic->journal_sections;
391 }
392
393 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
394 {
395         struct dm_io_request io_req;
396         struct dm_io_region io_loc;
397
398         io_req.bi_op = op;
399         io_req.bi_op_flags = op_flags;
400         io_req.mem.type = DM_IO_KMEM;
401         io_req.mem.ptr.addr = ic->sb;
402         io_req.notify.fn = NULL;
403         io_req.client = ic->io;
404         io_loc.bdev = ic->dev->bdev;
405         io_loc.sector = ic->start;
406         io_loc.count = SB_SECTORS;
407
408         return dm_io(&io_req, 1, &io_loc, NULL);
409 }
410
411 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
412                                  bool e, const char *function)
413 {
414 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
415         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
416
417         if (unlikely(section >= ic->journal_sections) ||
418             unlikely(offset >= limit)) {
419                 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
420                         function, section, offset, ic->journal_sections, limit);
421                 BUG();
422         }
423 #endif
424 }
425
426 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
427                                unsigned *pl_index, unsigned *pl_offset)
428 {
429         unsigned sector;
430
431         access_journal_check(ic, section, offset, false, "page_list_location");
432
433         sector = section * ic->journal_section_sectors + offset;
434
435         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
436         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
437 }
438
439 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
440                                                unsigned section, unsigned offset, unsigned *n_sectors)
441 {
442         unsigned pl_index, pl_offset;
443         char *va;
444
445         page_list_location(ic, section, offset, &pl_index, &pl_offset);
446
447         if (n_sectors)
448                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
449
450         va = lowmem_page_address(pl[pl_index].page);
451
452         return (struct journal_sector *)(va + pl_offset);
453 }
454
455 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
456 {
457         return access_page_list(ic, ic->journal, section, offset, NULL);
458 }
459
460 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
461 {
462         unsigned rel_sector, offset;
463         struct journal_sector *js;
464
465         access_journal_check(ic, section, n, true, "access_journal_entry");
466
467         rel_sector = n % JOURNAL_BLOCK_SECTORS;
468         offset = n / JOURNAL_BLOCK_SECTORS;
469
470         js = access_journal(ic, section, rel_sector);
471         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
472 }
473
474 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
475 {
476         n <<= ic->sb->log2_sectors_per_block;
477
478         n += JOURNAL_BLOCK_SECTORS;
479
480         access_journal_check(ic, section, n, false, "access_journal_data");
481
482         return access_journal(ic, section, n);
483 }
484
485 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
486 {
487         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
488         int r;
489         unsigned j, size;
490
491         desc->tfm = ic->journal_mac;
492         desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
493
494         r = crypto_shash_init(desc);
495         if (unlikely(r)) {
496                 dm_integrity_io_error(ic, "crypto_shash_init", r);
497                 goto err;
498         }
499
500         for (j = 0; j < ic->journal_section_entries; j++) {
501                 struct journal_entry *je = access_journal_entry(ic, section, j);
502                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
503                 if (unlikely(r)) {
504                         dm_integrity_io_error(ic, "crypto_shash_update", r);
505                         goto err;
506                 }
507         }
508
509         size = crypto_shash_digestsize(ic->journal_mac);
510
511         if (likely(size <= JOURNAL_MAC_SIZE)) {
512                 r = crypto_shash_final(desc, result);
513                 if (unlikely(r)) {
514                         dm_integrity_io_error(ic, "crypto_shash_final", r);
515                         goto err;
516                 }
517                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
518         } else {
519                 __u8 digest[size];
520                 r = crypto_shash_final(desc, digest);
521                 if (unlikely(r)) {
522                         dm_integrity_io_error(ic, "crypto_shash_final", r);
523                         goto err;
524                 }
525                 memcpy(result, digest, JOURNAL_MAC_SIZE);
526         }
527
528         return;
529 err:
530         memset(result, 0, JOURNAL_MAC_SIZE);
531 }
532
533 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
534 {
535         __u8 result[JOURNAL_MAC_SIZE];
536         unsigned j;
537
538         if (!ic->journal_mac)
539                 return;
540
541         section_mac(ic, section, result);
542
543         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
544                 struct journal_sector *js = access_journal(ic, section, j);
545
546                 if (likely(wr))
547                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
548                 else {
549                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
550                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
551                 }
552         }
553 }
554
555 static void complete_journal_op(void *context)
556 {
557         struct journal_completion *comp = context;
558         BUG_ON(!atomic_read(&comp->in_flight));
559         if (likely(atomic_dec_and_test(&comp->in_flight)))
560                 complete(&comp->comp);
561 }
562
563 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
564                         unsigned n_sections, struct journal_completion *comp)
565 {
566         struct async_submit_ctl submit;
567         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
568         unsigned pl_index, pl_offset, section_index;
569         struct page_list *source_pl, *target_pl;
570
571         if (likely(encrypt)) {
572                 source_pl = ic->journal;
573                 target_pl = ic->journal_io;
574         } else {
575                 source_pl = ic->journal_io;
576                 target_pl = ic->journal;
577         }
578
579         page_list_location(ic, section, 0, &pl_index, &pl_offset);
580
581         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
582
583         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
584
585         section_index = pl_index;
586
587         do {
588                 size_t this_step;
589                 struct page *src_pages[2];
590                 struct page *dst_page;
591
592                 while (unlikely(pl_index == section_index)) {
593                         unsigned dummy;
594                         if (likely(encrypt))
595                                 rw_section_mac(ic, section, true);
596                         section++;
597                         n_sections--;
598                         if (!n_sections)
599                                 break;
600                         page_list_location(ic, section, 0, &section_index, &dummy);
601                 }
602
603                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
604                 dst_page = target_pl[pl_index].page;
605                 src_pages[0] = source_pl[pl_index].page;
606                 src_pages[1] = ic->journal_xor[pl_index].page;
607
608                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
609
610                 pl_index++;
611                 pl_offset = 0;
612                 n_bytes -= this_step;
613         } while (n_bytes);
614
615         BUG_ON(n_sections);
616
617         async_tx_issue_pending_all();
618 }
619
620 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
621 {
622         struct journal_completion *comp = req->data;
623         if (unlikely(err)) {
624                 if (likely(err == -EINPROGRESS)) {
625                         complete(&comp->ic->crypto_backoff);
626                         return;
627                 }
628                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
629         }
630         complete_journal_op(comp);
631 }
632
633 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
634 {
635         int r;
636         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
637                                       complete_journal_encrypt, comp);
638         if (likely(encrypt))
639                 r = crypto_skcipher_encrypt(req);
640         else
641                 r = crypto_skcipher_decrypt(req);
642         if (likely(!r))
643                 return false;
644         if (likely(r == -EINPROGRESS))
645                 return true;
646         if (likely(r == -EBUSY)) {
647                 wait_for_completion(&comp->ic->crypto_backoff);
648                 reinit_completion(&comp->ic->crypto_backoff);
649                 return true;
650         }
651         dm_integrity_io_error(comp->ic, "encrypt", r);
652         return false;
653 }
654
655 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
656                           unsigned n_sections, struct journal_completion *comp)
657 {
658         struct scatterlist **source_sg;
659         struct scatterlist **target_sg;
660
661         atomic_add(2, &comp->in_flight);
662
663         if (likely(encrypt)) {
664                 source_sg = ic->journal_scatterlist;
665                 target_sg = ic->journal_io_scatterlist;
666         } else {
667                 source_sg = ic->journal_io_scatterlist;
668                 target_sg = ic->journal_scatterlist;
669         }
670
671         do {
672                 struct skcipher_request *req;
673                 unsigned ivsize;
674                 char *iv;
675
676                 if (likely(encrypt))
677                         rw_section_mac(ic, section, true);
678
679                 req = ic->sk_requests[section];
680                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
681                 iv = req->iv;
682
683                 memcpy(iv, iv + ivsize, ivsize);
684
685                 req->src = source_sg[section];
686                 req->dst = target_sg[section];
687
688                 if (unlikely(do_crypt(encrypt, req, comp)))
689                         atomic_inc(&comp->in_flight);
690
691                 section++;
692                 n_sections--;
693         } while (n_sections);
694
695         atomic_dec(&comp->in_flight);
696         complete_journal_op(comp);
697 }
698
699 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
700                             unsigned n_sections, struct journal_completion *comp)
701 {
702         if (ic->journal_xor)
703                 return xor_journal(ic, encrypt, section, n_sections, comp);
704         else
705                 return crypt_journal(ic, encrypt, section, n_sections, comp);
706 }
707
708 static void complete_journal_io(unsigned long error, void *context)
709 {
710         struct journal_completion *comp = context;
711         if (unlikely(error != 0))
712                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
713         complete_journal_op(comp);
714 }
715
716 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
717                        unsigned n_sections, struct journal_completion *comp)
718 {
719         struct dm_io_request io_req;
720         struct dm_io_region io_loc;
721         unsigned sector, n_sectors, pl_index, pl_offset;
722         int r;
723
724         if (unlikely(dm_integrity_failed(ic))) {
725                 if (comp)
726                         complete_journal_io(-1UL, comp);
727                 return;
728         }
729
730         sector = section * ic->journal_section_sectors;
731         n_sectors = n_sections * ic->journal_section_sectors;
732
733         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
734         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
735
736         io_req.bi_op = op;
737         io_req.bi_op_flags = op_flags;
738         io_req.mem.type = DM_IO_PAGE_LIST;
739         if (ic->journal_io)
740                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
741         else
742                 io_req.mem.ptr.pl = &ic->journal[pl_index];
743         io_req.mem.offset = pl_offset;
744         if (likely(comp != NULL)) {
745                 io_req.notify.fn = complete_journal_io;
746                 io_req.notify.context = comp;
747         } else {
748                 io_req.notify.fn = NULL;
749         }
750         io_req.client = ic->io;
751         io_loc.bdev = ic->dev->bdev;
752         io_loc.sector = ic->start + SB_SECTORS + sector;
753         io_loc.count = n_sectors;
754
755         r = dm_io(&io_req, 1, &io_loc, NULL);
756         if (unlikely(r)) {
757                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
758                 if (comp) {
759                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
760                         complete_journal_io(-1UL, comp);
761                 }
762         }
763 }
764
765 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
766 {
767         struct journal_completion io_comp;
768         struct journal_completion crypt_comp_1;
769         struct journal_completion crypt_comp_2;
770         unsigned i;
771
772         io_comp.ic = ic;
773         io_comp.comp = COMPLETION_INITIALIZER_ONSTACK(io_comp.comp);
774
775         if (commit_start + commit_sections <= ic->journal_sections) {
776                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
777                 if (ic->journal_io) {
778                         crypt_comp_1.ic = ic;
779                         crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
780                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
781                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
782                         wait_for_completion_io(&crypt_comp_1.comp);
783                 } else {
784                         for (i = 0; i < commit_sections; i++)
785                                 rw_section_mac(ic, commit_start + i, true);
786                 }
787                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
788                            commit_sections, &io_comp);
789         } else {
790                 unsigned to_end;
791                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
792                 to_end = ic->journal_sections - commit_start;
793                 if (ic->journal_io) {
794                         crypt_comp_1.ic = ic;
795                         crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
796                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
797                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
798                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
799                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
800                                 crypt_comp_1.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_1.comp);
801                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
802                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
803                                 wait_for_completion_io(&crypt_comp_1.comp);
804                         } else {
805                                 crypt_comp_2.ic = ic;
806                                 crypt_comp_2.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp_2.comp);
807                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
808                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
809                                 wait_for_completion_io(&crypt_comp_1.comp);
810                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
811                                 wait_for_completion_io(&crypt_comp_2.comp);
812                         }
813                 } else {
814                         for (i = 0; i < to_end; i++)
815                                 rw_section_mac(ic, commit_start + i, true);
816                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
817                         for (i = 0; i < commit_sections - to_end; i++)
818                                 rw_section_mac(ic, i, true);
819                 }
820                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
821         }
822
823         wait_for_completion_io(&io_comp.comp);
824 }
825
826 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
827                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
828 {
829         struct dm_io_request io_req;
830         struct dm_io_region io_loc;
831         int r;
832         unsigned sector, pl_index, pl_offset;
833
834         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
835
836         if (unlikely(dm_integrity_failed(ic))) {
837                 fn(-1UL, data);
838                 return;
839         }
840
841         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
842
843         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
844         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
845
846         io_req.bi_op = REQ_OP_WRITE;
847         io_req.bi_op_flags = 0;
848         io_req.mem.type = DM_IO_PAGE_LIST;
849         io_req.mem.ptr.pl = &ic->journal[pl_index];
850         io_req.mem.offset = pl_offset;
851         io_req.notify.fn = fn;
852         io_req.notify.context = data;
853         io_req.client = ic->io;
854         io_loc.bdev = ic->dev->bdev;
855         io_loc.sector = ic->start + target;
856         io_loc.count = n_sectors;
857
858         r = dm_io(&io_req, 1, &io_loc, NULL);
859         if (unlikely(r)) {
860                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
861                 fn(-1UL, data);
862         }
863 }
864
865 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
866 {
867         struct rb_node **n = &ic->in_progress.rb_node;
868         struct rb_node *parent;
869
870         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
871
872         parent = NULL;
873
874         while (*n) {
875                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
876
877                 parent = *n;
878                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
879                         n = &range->node.rb_left;
880                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
881                         n = &range->node.rb_right;
882                 } else {
883                         return false;
884                 }
885         }
886
887         rb_link_node(&new_range->node, parent, n);
888         rb_insert_color(&new_range->node, &ic->in_progress);
889
890         return true;
891 }
892
893 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
894 {
895         rb_erase(&range->node, &ic->in_progress);
896         wake_up_locked(&ic->endio_wait);
897 }
898
899 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
900 {
901         unsigned long flags;
902
903         spin_lock_irqsave(&ic->endio_wait.lock, flags);
904         remove_range_unlocked(ic, range);
905         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
906 }
907
908 static void init_journal_node(struct journal_node *node)
909 {
910         RB_CLEAR_NODE(&node->node);
911         node->sector = (sector_t)-1;
912 }
913
914 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
915 {
916         struct rb_node **link;
917         struct rb_node *parent;
918
919         node->sector = sector;
920         BUG_ON(!RB_EMPTY_NODE(&node->node));
921
922         link = &ic->journal_tree_root.rb_node;
923         parent = NULL;
924
925         while (*link) {
926                 struct journal_node *j;
927                 parent = *link;
928                 j = container_of(parent, struct journal_node, node);
929                 if (sector < j->sector)
930                         link = &j->node.rb_left;
931                 else
932                         link = &j->node.rb_right;
933         }
934
935         rb_link_node(&node->node, parent, link);
936         rb_insert_color(&node->node, &ic->journal_tree_root);
937 }
938
939 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
940 {
941         BUG_ON(RB_EMPTY_NODE(&node->node));
942         rb_erase(&node->node, &ic->journal_tree_root);
943         init_journal_node(node);
944 }
945
946 #define NOT_FOUND       (-1U)
947
948 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
949 {
950         struct rb_node *n = ic->journal_tree_root.rb_node;
951         unsigned found = NOT_FOUND;
952         *next_sector = (sector_t)-1;
953         while (n) {
954                 struct journal_node *j = container_of(n, struct journal_node, node);
955                 if (sector == j->sector) {
956                         found = j - ic->journal_tree;
957                 }
958                 if (sector < j->sector) {
959                         *next_sector = j->sector;
960                         n = j->node.rb_left;
961                 } else {
962                         n = j->node.rb_right;
963                 }
964         }
965
966         return found;
967 }
968
969 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
970 {
971         struct journal_node *node, *next_node;
972         struct rb_node *next;
973
974         if (unlikely(pos >= ic->journal_entries))
975                 return false;
976         node = &ic->journal_tree[pos];
977         if (unlikely(RB_EMPTY_NODE(&node->node)))
978                 return false;
979         if (unlikely(node->sector != sector))
980                 return false;
981
982         next = rb_next(&node->node);
983         if (unlikely(!next))
984                 return true;
985
986         next_node = container_of(next, struct journal_node, node);
987         return next_node->sector != sector;
988 }
989
990 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
991 {
992         struct rb_node *next;
993         struct journal_node *next_node;
994         unsigned next_section;
995
996         BUG_ON(RB_EMPTY_NODE(&node->node));
997
998         next = rb_next(&node->node);
999         if (unlikely(!next))
1000                 return false;
1001
1002         next_node = container_of(next, struct journal_node, node);
1003
1004         if (next_node->sector != node->sector)
1005                 return false;
1006
1007         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1008         if (next_section >= ic->committed_section &&
1009             next_section < ic->committed_section + ic->n_committed_sections)
1010                 return true;
1011         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1012                 return true;
1013
1014         return false;
1015 }
1016
1017 #define TAG_READ        0
1018 #define TAG_WRITE       1
1019 #define TAG_CMP         2
1020
1021 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1022                                unsigned *metadata_offset, unsigned total_size, int op)
1023 {
1024         do {
1025                 unsigned char *data, *dp;
1026                 struct dm_buffer *b;
1027                 unsigned to_copy;
1028                 int r;
1029
1030                 r = dm_integrity_failed(ic);
1031                 if (unlikely(r))
1032                         return r;
1033
1034                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1035                 if (unlikely(IS_ERR(data)))
1036                         return PTR_ERR(data);
1037
1038                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1039                 dp = data + *metadata_offset;
1040                 if (op == TAG_READ) {
1041                         memcpy(tag, dp, to_copy);
1042                 } else if (op == TAG_WRITE) {
1043                         memcpy(dp, tag, to_copy);
1044                         dm_bufio_mark_buffer_dirty(b);
1045                 } else  {
1046                         /* e.g.: op == TAG_CMP */
1047                         if (unlikely(memcmp(dp, tag, to_copy))) {
1048                                 unsigned i;
1049
1050                                 for (i = 0; i < to_copy; i++) {
1051                                         if (dp[i] != tag[i])
1052                                                 break;
1053                                         total_size--;
1054                                 }
1055                                 dm_bufio_release(b);
1056                                 return total_size;
1057                         }
1058                 }
1059                 dm_bufio_release(b);
1060
1061                 tag += to_copy;
1062                 *metadata_offset += to_copy;
1063                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1064                         (*metadata_block)++;
1065                         *metadata_offset = 0;
1066                 }
1067                 total_size -= to_copy;
1068         } while (unlikely(total_size));
1069
1070         return 0;
1071 }
1072
1073 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1074 {
1075         int r;
1076         r = dm_bufio_write_dirty_buffers(ic->bufio);
1077         if (unlikely(r))
1078                 dm_integrity_io_error(ic, "writing tags", r);
1079 }
1080
1081 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1082 {
1083         DECLARE_WAITQUEUE(wait, current);
1084         __add_wait_queue(&ic->endio_wait, &wait);
1085         __set_current_state(TASK_UNINTERRUPTIBLE);
1086         spin_unlock_irq(&ic->endio_wait.lock);
1087         io_schedule();
1088         spin_lock_irq(&ic->endio_wait.lock);
1089         __remove_wait_queue(&ic->endio_wait, &wait);
1090 }
1091
1092 static void autocommit_fn(unsigned long data)
1093 {
1094         struct dm_integrity_c *ic = (struct dm_integrity_c *)data;
1095
1096         if (likely(!dm_integrity_failed(ic)))
1097                 queue_work(ic->commit_wq, &ic->commit_work);
1098 }
1099
1100 static void schedule_autocommit(struct dm_integrity_c *ic)
1101 {
1102         if (!timer_pending(&ic->autocommit_timer))
1103                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1104 }
1105
1106 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1107 {
1108         struct bio *bio;
1109         unsigned long flags;
1110
1111         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1112         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1113         bio_list_add(&ic->flush_bio_list, bio);
1114         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1115
1116         queue_work(ic->commit_wq, &ic->commit_work);
1117 }
1118
1119 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1120 {
1121         int r = dm_integrity_failed(ic);
1122         if (unlikely(r) && !bio->bi_status)
1123                 bio->bi_status = errno_to_blk_status(r);
1124         bio_endio(bio);
1125 }
1126
1127 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1128 {
1129         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1130
1131         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1132                 submit_flush_bio(ic, dio);
1133         else
1134                 do_endio(ic, bio);
1135 }
1136
1137 static void dec_in_flight(struct dm_integrity_io *dio)
1138 {
1139         if (atomic_dec_and_test(&dio->in_flight)) {
1140                 struct dm_integrity_c *ic = dio->ic;
1141                 struct bio *bio;
1142
1143                 remove_range(ic, &dio->range);
1144
1145                 if (unlikely(dio->write))
1146                         schedule_autocommit(ic);
1147
1148                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1149
1150                 if (unlikely(dio->bi_status) && !bio->bi_status)
1151                         bio->bi_status = dio->bi_status;
1152                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1153                         dio->range.logical_sector += dio->range.n_sectors;
1154                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1155                         INIT_WORK(&dio->work, integrity_bio_wait);
1156                         queue_work(ic->wait_wq, &dio->work);
1157                         return;
1158                 }
1159                 do_endio_flush(ic, dio);
1160         }
1161 }
1162
1163 static void integrity_end_io(struct bio *bio)
1164 {
1165         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1166
1167         bio->bi_iter = dio->orig_bi_iter;
1168         bio->bi_disk = dio->orig_bi_disk;
1169         bio->bi_partno = dio->orig_bi_partno;
1170         if (dio->orig_bi_integrity) {
1171                 bio->bi_integrity = dio->orig_bi_integrity;
1172                 bio->bi_opf |= REQ_INTEGRITY;
1173         }
1174         bio->bi_end_io = dio->orig_bi_end_io;
1175
1176         if (dio->completion)
1177                 complete(dio->completion);
1178
1179         dec_in_flight(dio);
1180 }
1181
1182 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1183                                       const char *data, char *result)
1184 {
1185         __u64 sector_le = cpu_to_le64(sector);
1186         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1187         int r;
1188         unsigned digest_size;
1189
1190         req->tfm = ic->internal_hash;
1191         req->flags = 0;
1192
1193         r = crypto_shash_init(req);
1194         if (unlikely(r < 0)) {
1195                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1196                 goto failed;
1197         }
1198
1199         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1200         if (unlikely(r < 0)) {
1201                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1202                 goto failed;
1203         }
1204
1205         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1206         if (unlikely(r < 0)) {
1207                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1208                 goto failed;
1209         }
1210
1211         r = crypto_shash_final(req, result);
1212         if (unlikely(r < 0)) {
1213                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1214                 goto failed;
1215         }
1216
1217         digest_size = crypto_shash_digestsize(ic->internal_hash);
1218         if (unlikely(digest_size < ic->tag_size))
1219                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1220
1221         return;
1222
1223 failed:
1224         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1225         get_random_bytes(result, ic->tag_size);
1226 }
1227
1228 static void integrity_metadata(struct work_struct *w)
1229 {
1230         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1231         struct dm_integrity_c *ic = dio->ic;
1232
1233         int r;
1234
1235         if (ic->internal_hash) {
1236                 struct bvec_iter iter;
1237                 struct bio_vec bv;
1238                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1239                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1240                 char *checksums;
1241                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1242                 char checksums_onstack[ic->tag_size + extra_space];
1243                 unsigned sectors_to_process = dio->range.n_sectors;
1244                 sector_t sector = dio->range.logical_sector;
1245
1246                 if (unlikely(ic->mode == 'R'))
1247                         goto skip_io;
1248
1249                 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1250                                     GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1251                 if (!checksums)
1252                         checksums = checksums_onstack;
1253
1254                 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1255                         unsigned pos;
1256                         char *mem, *checksums_ptr;
1257
1258 again:
1259                         mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1260                         pos = 0;
1261                         checksums_ptr = checksums;
1262                         do {
1263                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1264                                 checksums_ptr += ic->tag_size;
1265                                 sectors_to_process -= ic->sectors_per_block;
1266                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1267                                 sector += ic->sectors_per_block;
1268                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1269                         kunmap_atomic(mem);
1270
1271                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1272                                                 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1273                         if (unlikely(r)) {
1274                                 if (r > 0) {
1275                                         DMERR("Checksum failed at sector 0x%llx",
1276                                               (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1277                                         r = -EILSEQ;
1278                                 }
1279                                 if (likely(checksums != checksums_onstack))
1280                                         kfree(checksums);
1281                                 goto error;
1282                         }
1283
1284                         if (!sectors_to_process)
1285                                 break;
1286
1287                         if (unlikely(pos < bv.bv_len)) {
1288                                 bv.bv_offset += pos;
1289                                 bv.bv_len -= pos;
1290                                 goto again;
1291                         }
1292                 }
1293
1294                 if (likely(checksums != checksums_onstack))
1295                         kfree(checksums);
1296         } else {
1297                 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1298
1299                 if (bip) {
1300                         struct bio_vec biv;
1301                         struct bvec_iter iter;
1302                         unsigned data_to_process = dio->range.n_sectors;
1303                         sector_to_block(ic, data_to_process);
1304                         data_to_process *= ic->tag_size;
1305
1306                         bip_for_each_vec(biv, bip, iter) {
1307                                 unsigned char *tag;
1308                                 unsigned this_len;
1309
1310                                 BUG_ON(PageHighMem(biv.bv_page));
1311                                 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1312                                 this_len = min(biv.bv_len, data_to_process);
1313                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1314                                                         this_len, !dio->write ? TAG_READ : TAG_WRITE);
1315                                 if (unlikely(r))
1316                                         goto error;
1317                                 data_to_process -= this_len;
1318                                 if (!data_to_process)
1319                                         break;
1320                         }
1321                 }
1322         }
1323 skip_io:
1324         dec_in_flight(dio);
1325         return;
1326 error:
1327         dio->bi_status = errno_to_blk_status(r);
1328         dec_in_flight(dio);
1329 }
1330
1331 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1332 {
1333         struct dm_integrity_c *ic = ti->private;
1334         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1335         struct bio_integrity_payload *bip;
1336
1337         sector_t area, offset;
1338
1339         dio->ic = ic;
1340         dio->bi_status = 0;
1341
1342         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1343                 submit_flush_bio(ic, dio);
1344                 return DM_MAPIO_SUBMITTED;
1345         }
1346
1347         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1348         dio->write = bio_op(bio) == REQ_OP_WRITE;
1349         dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1350         if (unlikely(dio->fua)) {
1351                 /*
1352                  * Don't pass down the FUA flag because we have to flush
1353                  * disk cache anyway.
1354                  */
1355                 bio->bi_opf &= ~REQ_FUA;
1356         }
1357         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1358                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1359                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1360                       (unsigned long long)ic->provided_data_sectors);
1361                 return DM_MAPIO_KILL;
1362         }
1363         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1364                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1365                       ic->sectors_per_block,
1366                       (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1367                 return DM_MAPIO_KILL;
1368         }
1369
1370         if (ic->sectors_per_block > 1) {
1371                 struct bvec_iter iter;
1372                 struct bio_vec bv;
1373                 bio_for_each_segment(bv, bio, iter) {
1374                         if (unlikely((bv.bv_offset | bv.bv_len) & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1375                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1376                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1377                                 return DM_MAPIO_KILL;
1378                         }
1379                 }
1380         }
1381
1382         bip = bio_integrity(bio);
1383         if (!ic->internal_hash) {
1384                 if (bip) {
1385                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1386                         if (ic->log2_tag_size >= 0)
1387                                 wanted_tag_size <<= ic->log2_tag_size;
1388                         else
1389                                 wanted_tag_size *= ic->tag_size;
1390                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1391                                 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1392                                 return DM_MAPIO_KILL;
1393                         }
1394                 }
1395         } else {
1396                 if (unlikely(bip != NULL)) {
1397                         DMERR("Unexpected integrity data when using internal hash");
1398                         return DM_MAPIO_KILL;
1399                 }
1400         }
1401
1402         if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1403                 return DM_MAPIO_KILL;
1404
1405         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1406         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1407         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1408
1409         dm_integrity_map_continue(dio, true);
1410         return DM_MAPIO_SUBMITTED;
1411 }
1412
1413 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1414                                  unsigned journal_section, unsigned journal_entry)
1415 {
1416         struct dm_integrity_c *ic = dio->ic;
1417         sector_t logical_sector;
1418         unsigned n_sectors;
1419
1420         logical_sector = dio->range.logical_sector;
1421         n_sectors = dio->range.n_sectors;
1422         do {
1423                 struct bio_vec bv = bio_iovec(bio);
1424                 char *mem;
1425
1426                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1427                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1428                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1429                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1430 retry_kmap:
1431                 mem = kmap_atomic(bv.bv_page);
1432                 if (likely(dio->write))
1433                         flush_dcache_page(bv.bv_page);
1434
1435                 do {
1436                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1437
1438                         if (unlikely(!dio->write)) {
1439                                 struct journal_sector *js;
1440                                 char *mem_ptr;
1441                                 unsigned s;
1442
1443                                 if (unlikely(journal_entry_is_inprogress(je))) {
1444                                         flush_dcache_page(bv.bv_page);
1445                                         kunmap_atomic(mem);
1446
1447                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1448                                         goto retry_kmap;
1449                                 }
1450                                 smp_rmb();
1451                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1452                                 js = access_journal_data(ic, journal_section, journal_entry);
1453                                 mem_ptr = mem + bv.bv_offset;
1454                                 s = 0;
1455                                 do {
1456                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1457                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1458                                         js++;
1459                                         mem_ptr += 1 << SECTOR_SHIFT;
1460                                 } while (++s < ic->sectors_per_block);
1461 #ifdef INTERNAL_VERIFY
1462                                 if (ic->internal_hash) {
1463                                         char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1464
1465                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1466                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1467                                                 DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1468                                                       (unsigned long long)logical_sector);
1469                                         }
1470                                 }
1471 #endif
1472                         }
1473
1474                         if (!ic->internal_hash) {
1475                                 struct bio_integrity_payload *bip = bio_integrity(bio);
1476                                 unsigned tag_todo = ic->tag_size;
1477                                 char *tag_ptr = journal_entry_tag(ic, je);
1478
1479                                 if (bip) do {
1480                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1481                                         unsigned tag_now = min(biv.bv_len, tag_todo);
1482                                         char *tag_addr;
1483                                         BUG_ON(PageHighMem(biv.bv_page));
1484                                         tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1485                                         if (likely(dio->write))
1486                                                 memcpy(tag_ptr, tag_addr, tag_now);
1487                                         else
1488                                                 memcpy(tag_addr, tag_ptr, tag_now);
1489                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1490                                         tag_ptr += tag_now;
1491                                         tag_todo -= tag_now;
1492                                 } while (unlikely(tag_todo)); else {
1493                                         if (likely(dio->write))
1494                                                 memset(tag_ptr, 0, tag_todo);
1495                                 }
1496                         }
1497
1498                         if (likely(dio->write)) {
1499                                 struct journal_sector *js;
1500                                 unsigned s;
1501
1502                                 js = access_journal_data(ic, journal_section, journal_entry);
1503                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1504
1505                                 s = 0;
1506                                 do {
1507                                         je->last_bytes[s] = js[s].commit_id;
1508                                 } while (++s < ic->sectors_per_block);
1509
1510                                 if (ic->internal_hash) {
1511                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1512                                         if (unlikely(digest_size > ic->tag_size)) {
1513                                                 char checksums_onstack[digest_size];
1514                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1515                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1516                                         } else
1517                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1518                                 }
1519
1520                                 journal_entry_set_sector(je, logical_sector);
1521                         }
1522                         logical_sector += ic->sectors_per_block;
1523
1524                         journal_entry++;
1525                         if (unlikely(journal_entry == ic->journal_section_entries)) {
1526                                 journal_entry = 0;
1527                                 journal_section++;
1528                                 wraparound_section(ic, &journal_section);
1529                         }
1530
1531                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1532                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1533
1534                 if (unlikely(!dio->write))
1535                         flush_dcache_page(bv.bv_page);
1536                 kunmap_atomic(mem);
1537         } while (n_sectors);
1538
1539         if (likely(dio->write)) {
1540                 smp_mb();
1541                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1542                         wake_up(&ic->copy_to_journal_wait);
1543                 if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1544                         queue_work(ic->commit_wq, &ic->commit_work);
1545                 } else {
1546                         schedule_autocommit(ic);
1547                 }
1548         } else {
1549                 remove_range(ic, &dio->range);
1550         }
1551
1552         if (unlikely(bio->bi_iter.bi_size)) {
1553                 sector_t area, offset;
1554
1555                 dio->range.logical_sector = logical_sector;
1556                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1557                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1558                 return true;
1559         }
1560
1561         return false;
1562 }
1563
1564 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1565 {
1566         struct dm_integrity_c *ic = dio->ic;
1567         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1568         unsigned journal_section, journal_entry;
1569         unsigned journal_read_pos;
1570         struct completion read_comp;
1571         bool need_sync_io = ic->internal_hash && !dio->write;
1572
1573         if (need_sync_io && from_map) {
1574                 INIT_WORK(&dio->work, integrity_bio_wait);
1575                 queue_work(ic->metadata_wq, &dio->work);
1576                 return;
1577         }
1578
1579 lock_retry:
1580         spin_lock_irq(&ic->endio_wait.lock);
1581 retry:
1582         if (unlikely(dm_integrity_failed(ic))) {
1583                 spin_unlock_irq(&ic->endio_wait.lock);
1584                 do_endio(ic, bio);
1585                 return;
1586         }
1587         dio->range.n_sectors = bio_sectors(bio);
1588         journal_read_pos = NOT_FOUND;
1589         if (likely(ic->mode == 'J')) {
1590                 if (dio->write) {
1591                         unsigned next_entry, i, pos;
1592                         unsigned ws, we, range_sectors;
1593
1594                         dio->range.n_sectors = min(dio->range.n_sectors,
1595                                                    ic->free_sectors << ic->sb->log2_sectors_per_block);
1596                         if (unlikely(!dio->range.n_sectors))
1597                                 goto sleep;
1598                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1599                         ic->free_sectors -= range_sectors;
1600                         journal_section = ic->free_section;
1601                         journal_entry = ic->free_section_entry;
1602
1603                         next_entry = ic->free_section_entry + range_sectors;
1604                         ic->free_section_entry = next_entry % ic->journal_section_entries;
1605                         ic->free_section += next_entry / ic->journal_section_entries;
1606                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1607                         wraparound_section(ic, &ic->free_section);
1608
1609                         pos = journal_section * ic->journal_section_entries + journal_entry;
1610                         ws = journal_section;
1611                         we = journal_entry;
1612                         i = 0;
1613                         do {
1614                                 struct journal_entry *je;
1615
1616                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1617                                 pos++;
1618                                 if (unlikely(pos >= ic->journal_entries))
1619                                         pos = 0;
1620
1621                                 je = access_journal_entry(ic, ws, we);
1622                                 BUG_ON(!journal_entry_is_unused(je));
1623                                 journal_entry_set_inprogress(je);
1624                                 we++;
1625                                 if (unlikely(we == ic->journal_section_entries)) {
1626                                         we = 0;
1627                                         ws++;
1628                                         wraparound_section(ic, &ws);
1629                                 }
1630                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1631
1632                         spin_unlock_irq(&ic->endio_wait.lock);
1633                         goto journal_read_write;
1634                 } else {
1635                         sector_t next_sector;
1636                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1637                         if (likely(journal_read_pos == NOT_FOUND)) {
1638                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1639                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
1640                         } else {
1641                                 unsigned i;
1642                                 unsigned jp = journal_read_pos + 1;
1643                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1644                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1645                                                 break;
1646                                 }
1647                                 dio->range.n_sectors = i;
1648                         }
1649                 }
1650         }
1651         if (unlikely(!add_new_range(ic, &dio->range))) {
1652                 /*
1653                  * We must not sleep in the request routine because it could
1654                  * stall bios on current->bio_list.
1655                  * So, we offload the bio to a workqueue if we have to sleep.
1656                  */
1657 sleep:
1658                 if (from_map) {
1659                         spin_unlock_irq(&ic->endio_wait.lock);
1660                         INIT_WORK(&dio->work, integrity_bio_wait);
1661                         queue_work(ic->wait_wq, &dio->work);
1662                         return;
1663                 } else {
1664                         sleep_on_endio_wait(ic);
1665                         goto retry;
1666                 }
1667         }
1668         spin_unlock_irq(&ic->endio_wait.lock);
1669
1670         if (unlikely(journal_read_pos != NOT_FOUND)) {
1671                 journal_section = journal_read_pos / ic->journal_section_entries;
1672                 journal_entry = journal_read_pos % ic->journal_section_entries;
1673                 goto journal_read_write;
1674         }
1675
1676         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1677
1678         if (need_sync_io) {
1679                 read_comp = COMPLETION_INITIALIZER_ONSTACK(read_comp);
1680                 dio->completion = &read_comp;
1681         } else
1682                 dio->completion = NULL;
1683
1684         dio->orig_bi_iter = bio->bi_iter;
1685
1686         dio->orig_bi_disk = bio->bi_disk;
1687         dio->orig_bi_partno = bio->bi_partno;
1688         bio_set_dev(bio, ic->dev->bdev);
1689
1690         dio->orig_bi_integrity = bio_integrity(bio);
1691         bio->bi_integrity = NULL;
1692         bio->bi_opf &= ~REQ_INTEGRITY;
1693
1694         dio->orig_bi_end_io = bio->bi_end_io;
1695         bio->bi_end_io = integrity_end_io;
1696
1697         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1698         bio->bi_iter.bi_sector += ic->start;
1699         generic_make_request(bio);
1700
1701         if (need_sync_io) {
1702                 wait_for_completion_io(&read_comp);
1703                 integrity_metadata(&dio->work);
1704         } else {
1705                 INIT_WORK(&dio->work, integrity_metadata);
1706                 queue_work(ic->metadata_wq, &dio->work);
1707         }
1708
1709         return;
1710
1711 journal_read_write:
1712         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1713                 goto lock_retry;
1714
1715         do_endio_flush(ic, dio);
1716 }
1717
1718
1719 static void integrity_bio_wait(struct work_struct *w)
1720 {
1721         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1722
1723         dm_integrity_map_continue(dio, false);
1724 }
1725
1726 static void pad_uncommitted(struct dm_integrity_c *ic)
1727 {
1728         if (ic->free_section_entry) {
1729                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1730                 ic->free_section_entry = 0;
1731                 ic->free_section++;
1732                 wraparound_section(ic, &ic->free_section);
1733                 ic->n_uncommitted_sections++;
1734         }
1735         WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1736                 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1737 }
1738
1739 static void integrity_commit(struct work_struct *w)
1740 {
1741         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1742         unsigned commit_start, commit_sections;
1743         unsigned i, j, n;
1744         struct bio *flushes;
1745
1746         del_timer(&ic->autocommit_timer);
1747
1748         spin_lock_irq(&ic->endio_wait.lock);
1749         flushes = bio_list_get(&ic->flush_bio_list);
1750         if (unlikely(ic->mode != 'J')) {
1751                 spin_unlock_irq(&ic->endio_wait.lock);
1752                 dm_integrity_flush_buffers(ic);
1753                 goto release_flush_bios;
1754         }
1755
1756         pad_uncommitted(ic);
1757         commit_start = ic->uncommitted_section;
1758         commit_sections = ic->n_uncommitted_sections;
1759         spin_unlock_irq(&ic->endio_wait.lock);
1760
1761         if (!commit_sections)
1762                 goto release_flush_bios;
1763
1764         i = commit_start;
1765         for (n = 0; n < commit_sections; n++) {
1766                 for (j = 0; j < ic->journal_section_entries; j++) {
1767                         struct journal_entry *je;
1768                         je = access_journal_entry(ic, i, j);
1769                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1770                 }
1771                 for (j = 0; j < ic->journal_section_sectors; j++) {
1772                         struct journal_sector *js;
1773                         js = access_journal(ic, i, j);
1774                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1775                 }
1776                 i++;
1777                 if (unlikely(i >= ic->journal_sections))
1778                         ic->commit_seq = next_commit_seq(ic->commit_seq);
1779                 wraparound_section(ic, &i);
1780         }
1781         smp_rmb();
1782
1783         write_journal(ic, commit_start, commit_sections);
1784
1785         spin_lock_irq(&ic->endio_wait.lock);
1786         ic->uncommitted_section += commit_sections;
1787         wraparound_section(ic, &ic->uncommitted_section);
1788         ic->n_uncommitted_sections -= commit_sections;
1789         ic->n_committed_sections += commit_sections;
1790         spin_unlock_irq(&ic->endio_wait.lock);
1791
1792         if (ACCESS_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1793                 queue_work(ic->writer_wq, &ic->writer_work);
1794
1795 release_flush_bios:
1796         while (flushes) {
1797                 struct bio *next = flushes->bi_next;
1798                 flushes->bi_next = NULL;
1799                 do_endio(ic, flushes);
1800                 flushes = next;
1801         }
1802 }
1803
1804 static void complete_copy_from_journal(unsigned long error, void *context)
1805 {
1806         struct journal_io *io = context;
1807         struct journal_completion *comp = io->comp;
1808         struct dm_integrity_c *ic = comp->ic;
1809         remove_range(ic, &io->range);
1810         mempool_free(io, ic->journal_io_mempool);
1811         if (unlikely(error != 0))
1812                 dm_integrity_io_error(ic, "copying from journal", -EIO);
1813         complete_journal_op(comp);
1814 }
1815
1816 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1817                                struct journal_entry *je)
1818 {
1819         unsigned s = 0;
1820         do {
1821                 js->commit_id = je->last_bytes[s];
1822                 js++;
1823         } while (++s < ic->sectors_per_block);
1824 }
1825
1826 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1827                              unsigned write_sections, bool from_replay)
1828 {
1829         unsigned i, j, n;
1830         struct journal_completion comp;
1831         struct blk_plug plug;
1832
1833         blk_start_plug(&plug);
1834
1835         comp.ic = ic;
1836         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1837         comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
1838
1839         i = write_start;
1840         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1841 #ifndef INTERNAL_VERIFY
1842                 if (unlikely(from_replay))
1843 #endif
1844                         rw_section_mac(ic, i, false);
1845                 for (j = 0; j < ic->journal_section_entries; j++) {
1846                         struct journal_entry *je = access_journal_entry(ic, i, j);
1847                         sector_t sec, area, offset;
1848                         unsigned k, l, next_loop;
1849                         sector_t metadata_block;
1850                         unsigned metadata_offset;
1851                         struct journal_io *io;
1852
1853                         if (journal_entry_is_unused(je))
1854                                 continue;
1855                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1856                         sec = journal_entry_get_sector(je);
1857                         if (unlikely(from_replay)) {
1858                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1859                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1860                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
1861                                 }
1862                         }
1863                         get_area_and_offset(ic, sec, &area, &offset);
1864                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1865                         for (k = j + 1; k < ic->journal_section_entries; k++) {
1866                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1867                                 sector_t sec2, area2, offset2;
1868                                 if (journal_entry_is_unused(je2))
1869                                         break;
1870                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1871                                 sec2 = journal_entry_get_sector(je2);
1872                                 get_area_and_offset(ic, sec2, &area2, &offset2);
1873                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1874                                         break;
1875                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1876                         }
1877                         next_loop = k - 1;
1878
1879                         io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1880                         io->comp = &comp;
1881                         io->range.logical_sector = sec;
1882                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1883
1884                         spin_lock_irq(&ic->endio_wait.lock);
1885                         while (unlikely(!add_new_range(ic, &io->range)))
1886                                 sleep_on_endio_wait(ic);
1887
1888                         if (likely(!from_replay)) {
1889                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1890
1891                                 /* don't write if there is newer committed sector */
1892                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1893                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
1894
1895                                         journal_entry_set_unused(je2);
1896                                         remove_journal_node(ic, &section_node[j]);
1897                                         j++;
1898                                         sec += ic->sectors_per_block;
1899                                         offset += ic->sectors_per_block;
1900                                 }
1901                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
1902                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1903
1904                                         journal_entry_set_unused(je2);
1905                                         remove_journal_node(ic, &section_node[k - 1]);
1906                                         k--;
1907                                 }
1908                                 if (j == k) {
1909                                         remove_range_unlocked(ic, &io->range);
1910                                         spin_unlock_irq(&ic->endio_wait.lock);
1911                                         mempool_free(io, ic->journal_io_mempool);
1912                                         goto skip_io;
1913                                 }
1914                                 for (l = j; l < k; l++) {
1915                                         remove_journal_node(ic, &section_node[l]);
1916                                 }
1917                         }
1918                         spin_unlock_irq(&ic->endio_wait.lock);
1919
1920                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1921                         for (l = j; l < k; l++) {
1922                                 int r;
1923                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
1924
1925                                 if (
1926 #ifndef INTERNAL_VERIFY
1927                                     unlikely(from_replay) &&
1928 #endif
1929                                     ic->internal_hash) {
1930                                         char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1931
1932                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1933                                                                   (char *)access_journal_data(ic, i, l), test_tag);
1934                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1935                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1936                                 }
1937
1938                                 journal_entry_set_unused(je2);
1939                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1940                                                         ic->tag_size, TAG_WRITE);
1941                                 if (unlikely(r)) {
1942                                         dm_integrity_io_error(ic, "reading tags", r);
1943                                 }
1944                         }
1945
1946                         atomic_inc(&comp.in_flight);
1947                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1948                                           (k - j) << ic->sb->log2_sectors_per_block,
1949                                           get_data_sector(ic, area, offset),
1950                                           complete_copy_from_journal, io);
1951 skip_io:
1952                         j = next_loop;
1953                 }
1954         }
1955
1956         dm_bufio_write_dirty_buffers_async(ic->bufio);
1957
1958         blk_finish_plug(&plug);
1959
1960         complete_journal_op(&comp);
1961         wait_for_completion_io(&comp.comp);
1962
1963         dm_integrity_flush_buffers(ic);
1964 }
1965
1966 static void integrity_writer(struct work_struct *w)
1967 {
1968         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1969         unsigned write_start, write_sections;
1970
1971         unsigned prev_free_sectors;
1972
1973         /* the following test is not needed, but it tests the replay code */
1974         if (ACCESS_ONCE(ic->suspending))
1975                 return;
1976
1977         spin_lock_irq(&ic->endio_wait.lock);
1978         write_start = ic->committed_section;
1979         write_sections = ic->n_committed_sections;
1980         spin_unlock_irq(&ic->endio_wait.lock);
1981
1982         if (!write_sections)
1983                 return;
1984
1985         do_journal_write(ic, write_start, write_sections, false);
1986
1987         spin_lock_irq(&ic->endio_wait.lock);
1988
1989         ic->committed_section += write_sections;
1990         wraparound_section(ic, &ic->committed_section);
1991         ic->n_committed_sections -= write_sections;
1992
1993         prev_free_sectors = ic->free_sectors;
1994         ic->free_sectors += write_sections * ic->journal_section_entries;
1995         if (unlikely(!prev_free_sectors))
1996                 wake_up_locked(&ic->endio_wait);
1997
1998         spin_unlock_irq(&ic->endio_wait.lock);
1999 }
2000
2001 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2002                          unsigned n_sections, unsigned char commit_seq)
2003 {
2004         unsigned i, j, n;
2005
2006         if (!n_sections)
2007                 return;
2008
2009         for (n = 0; n < n_sections; n++) {
2010                 i = start_section + n;
2011                 wraparound_section(ic, &i);
2012                 for (j = 0; j < ic->journal_section_sectors; j++) {
2013                         struct journal_sector *js = access_journal(ic, i, j);
2014                         memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2015                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2016                 }
2017                 for (j = 0; j < ic->journal_section_entries; j++) {
2018                         struct journal_entry *je = access_journal_entry(ic, i, j);
2019                         journal_entry_set_unused(je);
2020                 }
2021         }
2022
2023         write_journal(ic, start_section, n_sections);
2024 }
2025
2026 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2027 {
2028         unsigned char k;
2029         for (k = 0; k < N_COMMIT_IDS; k++) {
2030                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2031                         return k;
2032         }
2033         dm_integrity_io_error(ic, "journal commit id", -EIO);
2034         return -EIO;
2035 }
2036
2037 static void replay_journal(struct dm_integrity_c *ic)
2038 {
2039         unsigned i, j;
2040         bool used_commit_ids[N_COMMIT_IDS];
2041         unsigned max_commit_id_sections[N_COMMIT_IDS];
2042         unsigned write_start, write_sections;
2043         unsigned continue_section;
2044         bool journal_empty;
2045         unsigned char unused, last_used, want_commit_seq;
2046
2047         if (ic->mode == 'R')
2048                 return;
2049
2050         if (ic->journal_uptodate)
2051                 return;
2052
2053         last_used = 0;
2054         write_start = 0;
2055
2056         if (!ic->just_formatted) {
2057                 DEBUG_print("reading journal\n");
2058                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2059                 if (ic->journal_io)
2060                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2061                 if (ic->journal_io) {
2062                         struct journal_completion crypt_comp;
2063                         crypt_comp.ic = ic;
2064                         crypt_comp.comp = COMPLETION_INITIALIZER_ONSTACK(crypt_comp.comp);
2065                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2066                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2067                         wait_for_completion(&crypt_comp.comp);
2068                 }
2069                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2070         }
2071
2072         if (dm_integrity_failed(ic))
2073                 goto clear_journal;
2074
2075         journal_empty = true;
2076         memset(used_commit_ids, 0, sizeof used_commit_ids);
2077         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2078         for (i = 0; i < ic->journal_sections; i++) {
2079                 for (j = 0; j < ic->journal_section_sectors; j++) {
2080                         int k;
2081                         struct journal_sector *js = access_journal(ic, i, j);
2082                         k = find_commit_seq(ic, i, j, js->commit_id);
2083                         if (k < 0)
2084                                 goto clear_journal;
2085                         used_commit_ids[k] = true;
2086                         max_commit_id_sections[k] = i;
2087                 }
2088                 if (journal_empty) {
2089                         for (j = 0; j < ic->journal_section_entries; j++) {
2090                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2091                                 if (!journal_entry_is_unused(je)) {
2092                                         journal_empty = false;
2093                                         break;
2094                                 }
2095                         }
2096                 }
2097         }
2098
2099         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2100                 unused = N_COMMIT_IDS - 1;
2101                 while (unused && !used_commit_ids[unused - 1])
2102                         unused--;
2103         } else {
2104                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2105                         if (!used_commit_ids[unused])
2106                                 break;
2107                 if (unused == N_COMMIT_IDS) {
2108                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2109                         goto clear_journal;
2110                 }
2111         }
2112         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2113                     unused, used_commit_ids[0], used_commit_ids[1],
2114                     used_commit_ids[2], used_commit_ids[3]);
2115
2116         last_used = prev_commit_seq(unused);
2117         want_commit_seq = prev_commit_seq(last_used);
2118
2119         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2120                 journal_empty = true;
2121
2122         write_start = max_commit_id_sections[last_used] + 1;
2123         if (unlikely(write_start >= ic->journal_sections))
2124                 want_commit_seq = next_commit_seq(want_commit_seq);
2125         wraparound_section(ic, &write_start);
2126
2127         i = write_start;
2128         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2129                 for (j = 0; j < ic->journal_section_sectors; j++) {
2130                         struct journal_sector *js = access_journal(ic, i, j);
2131
2132                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2133                                 /*
2134                                  * This could be caused by crash during writing.
2135                                  * We won't replay the inconsistent part of the
2136                                  * journal.
2137                                  */
2138                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2139                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2140                                 goto brk;
2141                         }
2142                 }
2143                 i++;
2144                 if (unlikely(i >= ic->journal_sections))
2145                         want_commit_seq = next_commit_seq(want_commit_seq);
2146                 wraparound_section(ic, &i);
2147         }
2148 brk:
2149
2150         if (!journal_empty) {
2151                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2152                             write_sections, write_start, want_commit_seq);
2153                 do_journal_write(ic, write_start, write_sections, true);
2154         }
2155
2156         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2157                 continue_section = write_start;
2158                 ic->commit_seq = want_commit_seq;
2159                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2160         } else {
2161                 unsigned s;
2162                 unsigned char erase_seq;
2163 clear_journal:
2164                 DEBUG_print("clearing journal\n");
2165
2166                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2167                 s = write_start;
2168                 init_journal(ic, s, 1, erase_seq);
2169                 s++;
2170                 wraparound_section(ic, &s);
2171                 if (ic->journal_sections >= 2) {
2172                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2173                         s += ic->journal_sections - 2;
2174                         wraparound_section(ic, &s);
2175                         init_journal(ic, s, 1, erase_seq);
2176                 }
2177
2178                 continue_section = 0;
2179                 ic->commit_seq = next_commit_seq(erase_seq);
2180         }
2181
2182         ic->committed_section = continue_section;
2183         ic->n_committed_sections = 0;
2184
2185         ic->uncommitted_section = continue_section;
2186         ic->n_uncommitted_sections = 0;
2187
2188         ic->free_section = continue_section;
2189         ic->free_section_entry = 0;
2190         ic->free_sectors = ic->journal_entries;
2191
2192         ic->journal_tree_root = RB_ROOT;
2193         for (i = 0; i < ic->journal_entries; i++)
2194                 init_journal_node(&ic->journal_tree[i]);
2195 }
2196
2197 static void dm_integrity_postsuspend(struct dm_target *ti)
2198 {
2199         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2200
2201         del_timer_sync(&ic->autocommit_timer);
2202
2203         ic->suspending = true;
2204
2205         queue_work(ic->commit_wq, &ic->commit_work);
2206         drain_workqueue(ic->commit_wq);
2207
2208         if (ic->mode == 'J') {
2209                 drain_workqueue(ic->writer_wq);
2210                 dm_integrity_flush_buffers(ic);
2211         }
2212
2213         ic->suspending = false;
2214
2215         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2216
2217         ic->journal_uptodate = true;
2218 }
2219
2220 static void dm_integrity_resume(struct dm_target *ti)
2221 {
2222         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2223
2224         replay_journal(ic);
2225 }
2226
2227 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2228                                 unsigned status_flags, char *result, unsigned maxlen)
2229 {
2230         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2231         unsigned arg_count;
2232         size_t sz = 0;
2233
2234         switch (type) {
2235         case STATUSTYPE_INFO:
2236                 result[0] = '\0';
2237                 break;
2238
2239         case STATUSTYPE_TABLE: {
2240                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2241                 watermark_percentage += ic->journal_entries / 2;
2242                 do_div(watermark_percentage, ic->journal_entries);
2243                 arg_count = 5;
2244                 arg_count += ic->sectors_per_block != 1;
2245                 arg_count += !!ic->internal_hash_alg.alg_string;
2246                 arg_count += !!ic->journal_crypt_alg.alg_string;
2247                 arg_count += !!ic->journal_mac_alg.alg_string;
2248                 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2249                        ic->tag_size, ic->mode, arg_count);
2250                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2251                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2252                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2253                 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2254                 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2255                 if (ic->sectors_per_block != 1)
2256                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2257
2258 #define EMIT_ALG(a, n)                                                  \
2259                 do {                                                    \
2260                         if (ic->a.alg_string) {                         \
2261                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
2262                                 if (ic->a.key_string)                   \
2263                                         DMEMIT(":%s", ic->a.key_string);\
2264                         }                                               \
2265                 } while (0)
2266                 EMIT_ALG(internal_hash_alg, "internal_hash");
2267                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2268                 EMIT_ALG(journal_mac_alg, "journal_mac");
2269                 break;
2270         }
2271         }
2272 }
2273
2274 static int dm_integrity_iterate_devices(struct dm_target *ti,
2275                                         iterate_devices_callout_fn fn, void *data)
2276 {
2277         struct dm_integrity_c *ic = ti->private;
2278
2279         return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2280 }
2281
2282 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2283 {
2284         struct dm_integrity_c *ic = ti->private;
2285
2286         if (ic->sectors_per_block > 1) {
2287                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2288                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2289                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2290         }
2291 }
2292
2293 static void calculate_journal_section_size(struct dm_integrity_c *ic)
2294 {
2295         unsigned sector_space = JOURNAL_SECTOR_DATA;
2296
2297         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2298         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2299                                          JOURNAL_ENTRY_ROUNDUP);
2300
2301         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2302                 sector_space -= JOURNAL_MAC_PER_SECTOR;
2303         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2304         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2305         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2306         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2307 }
2308
2309 static int calculate_device_limits(struct dm_integrity_c *ic)
2310 {
2311         __u64 initial_sectors;
2312         sector_t last_sector, last_area, last_offset;
2313
2314         calculate_journal_section_size(ic);
2315         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2316         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2317                 return -EINVAL;
2318         ic->initial_sectors = initial_sectors;
2319
2320         ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2321                                    (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2322         if (!(ic->metadata_run & (ic->metadata_run - 1)))
2323                 ic->log2_metadata_run = __ffs(ic->metadata_run);
2324         else
2325                 ic->log2_metadata_run = -1;
2326
2327         get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2328         last_sector = get_data_sector(ic, last_area, last_offset);
2329
2330         if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2331                 return -EINVAL;
2332
2333         return 0;
2334 }
2335
2336 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2337 {
2338         unsigned journal_sections;
2339         int test_bit;
2340
2341         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2342         memcpy(ic->sb->magic, SB_MAGIC, 8);
2343         ic->sb->version = SB_VERSION;
2344         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2345         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2346         if (ic->journal_mac_alg.alg_string)
2347                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2348
2349         calculate_journal_section_size(ic);
2350         journal_sections = journal_sectors / ic->journal_section_sectors;
2351         if (!journal_sections)
2352                 journal_sections = 1;
2353         ic->sb->journal_sections = cpu_to_le32(journal_sections);
2354
2355         if (!interleave_sectors)
2356                 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2357         ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2358         ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2359         ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2360
2361         ic->provided_data_sectors = 0;
2362         for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2363                 __u64 prev_data_sectors = ic->provided_data_sectors;
2364
2365                 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2366                 if (calculate_device_limits(ic))
2367                         ic->provided_data_sectors = prev_data_sectors;
2368         }
2369
2370         if (!ic->provided_data_sectors)
2371                 return -EINVAL;
2372
2373         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2374
2375         return 0;
2376 }
2377
2378 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2379 {
2380         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2381         struct blk_integrity bi;
2382
2383         memset(&bi, 0, sizeof(bi));
2384         bi.profile = &dm_integrity_profile;
2385         bi.tuple_size = ic->tag_size;
2386         bi.tag_size = bi.tuple_size;
2387         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2388
2389         blk_integrity_register(disk, &bi);
2390         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2391 }
2392
2393 static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2394 {
2395         unsigned i;
2396
2397         if (!pl)
2398                 return;
2399         for (i = 0; i < ic->journal_pages; i++)
2400                 if (pl[i].page)
2401                         __free_page(pl[i].page);
2402         kvfree(pl);
2403 }
2404
2405 static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2406 {
2407         size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2408         struct page_list *pl;
2409         unsigned i;
2410
2411         pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2412         if (!pl)
2413                 return NULL;
2414
2415         for (i = 0; i < ic->journal_pages; i++) {
2416                 pl[i].page = alloc_page(GFP_KERNEL);
2417                 if (!pl[i].page) {
2418                         dm_integrity_free_page_list(ic, pl);
2419                         return NULL;
2420                 }
2421                 if (i)
2422                         pl[i - 1].next = &pl[i];
2423         }
2424
2425         return pl;
2426 }
2427
2428 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2429 {
2430         unsigned i;
2431         for (i = 0; i < ic->journal_sections; i++)
2432                 kvfree(sl[i]);
2433         kfree(sl);
2434 }
2435
2436 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2437 {
2438         struct scatterlist **sl;
2439         unsigned i;
2440
2441         sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2442         if (!sl)
2443                 return NULL;
2444
2445         for (i = 0; i < ic->journal_sections; i++) {
2446                 struct scatterlist *s;
2447                 unsigned start_index, start_offset;
2448                 unsigned end_index, end_offset;
2449                 unsigned n_pages;
2450                 unsigned idx;
2451
2452                 page_list_location(ic, i, 0, &start_index, &start_offset);
2453                 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2454
2455                 n_pages = (end_index - start_index + 1);
2456
2457                 s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2458                 if (!s) {
2459                         dm_integrity_free_journal_scatterlist(ic, sl);
2460                         return NULL;
2461                 }
2462
2463                 sg_init_table(s, n_pages);
2464                 for (idx = start_index; idx <= end_index; idx++) {
2465                         char *va = lowmem_page_address(pl[idx].page);
2466                         unsigned start = 0, end = PAGE_SIZE;
2467                         if (idx == start_index)
2468                                 start = start_offset;
2469                         if (idx == end_index)
2470                                 end = end_offset + (1 << SECTOR_SHIFT);
2471                         sg_set_buf(&s[idx - start_index], va + start, end - start);
2472                 }
2473
2474                 sl[i] = s;
2475         }
2476
2477         return sl;
2478 }
2479
2480 static void free_alg(struct alg_spec *a)
2481 {
2482         kzfree(a->alg_string);
2483         kzfree(a->key);
2484         memset(a, 0, sizeof *a);
2485 }
2486
2487 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2488 {
2489         char *k;
2490
2491         free_alg(a);
2492
2493         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2494         if (!a->alg_string)
2495                 goto nomem;
2496
2497         k = strchr(a->alg_string, ':');
2498         if (k) {
2499                 *k = 0;
2500                 a->key_string = k + 1;
2501                 if (strlen(a->key_string) & 1)
2502                         goto inval;
2503
2504                 a->key_size = strlen(a->key_string) / 2;
2505                 a->key = kmalloc(a->key_size, GFP_KERNEL);
2506                 if (!a->key)
2507                         goto nomem;
2508                 if (hex2bin(a->key, a->key_string, a->key_size))
2509                         goto inval;
2510         }
2511
2512         return 0;
2513 inval:
2514         *error = error_inval;
2515         return -EINVAL;
2516 nomem:
2517         *error = "Out of memory for an argument";
2518         return -ENOMEM;
2519 }
2520
2521 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2522                    char *error_alg, char *error_key)
2523 {
2524         int r;
2525
2526         if (a->alg_string) {
2527                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2528                 if (IS_ERR(*hash)) {
2529                         *error = error_alg;
2530                         r = PTR_ERR(*hash);
2531                         *hash = NULL;
2532                         return r;
2533                 }
2534
2535                 if (a->key) {
2536                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
2537                         if (r) {
2538                                 *error = error_key;
2539                                 return r;
2540                         }
2541                 }
2542         }
2543
2544         return 0;
2545 }
2546
2547 static int create_journal(struct dm_integrity_c *ic, char **error)
2548 {
2549         int r = 0;
2550         unsigned i;
2551         __u64 journal_pages, journal_desc_size, journal_tree_size;
2552         unsigned char *crypt_data = NULL;
2553
2554         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2555         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2556         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2557         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2558
2559         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2560                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2561         journal_desc_size = journal_pages * sizeof(struct page_list);
2562         if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2563                 *error = "Journal doesn't fit into memory";
2564                 r = -ENOMEM;
2565                 goto bad;
2566         }
2567         ic->journal_pages = journal_pages;
2568
2569         ic->journal = dm_integrity_alloc_page_list(ic);
2570         if (!ic->journal) {
2571                 *error = "Could not allocate memory for journal";
2572                 r = -ENOMEM;
2573                 goto bad;
2574         }
2575         if (ic->journal_crypt_alg.alg_string) {
2576                 unsigned ivsize, blocksize;
2577                 struct journal_completion comp;
2578
2579                 comp.ic = ic;
2580                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2581                 if (IS_ERR(ic->journal_crypt)) {
2582                         *error = "Invalid journal cipher";
2583                         r = PTR_ERR(ic->journal_crypt);
2584                         ic->journal_crypt = NULL;
2585                         goto bad;
2586                 }
2587                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2588                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2589
2590                 if (ic->journal_crypt_alg.key) {
2591                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2592                                                    ic->journal_crypt_alg.key_size);
2593                         if (r) {
2594                                 *error = "Error setting encryption key";
2595                                 goto bad;
2596                         }
2597                 }
2598                 DEBUG_print("cipher %s, block size %u iv size %u\n",
2599                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2600
2601                 ic->journal_io = dm_integrity_alloc_page_list(ic);
2602                 if (!ic->journal_io) {
2603                         *error = "Could not allocate memory for journal io";
2604                         r = -ENOMEM;
2605                         goto bad;
2606                 }
2607
2608                 if (blocksize == 1) {
2609                         struct scatterlist *sg;
2610                         SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2611                         unsigned char iv[ivsize];
2612                         skcipher_request_set_tfm(req, ic->journal_crypt);
2613
2614                         ic->journal_xor = dm_integrity_alloc_page_list(ic);
2615                         if (!ic->journal_xor) {
2616                                 *error = "Could not allocate memory for journal xor";
2617                                 r = -ENOMEM;
2618                                 goto bad;
2619                         }
2620
2621                         sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2622                         if (!sg) {
2623                                 *error = "Unable to allocate sg list";
2624                                 r = -ENOMEM;
2625                                 goto bad;
2626                         }
2627                         sg_init_table(sg, ic->journal_pages + 1);
2628                         for (i = 0; i < ic->journal_pages; i++) {
2629                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
2630                                 clear_page(va);
2631                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
2632                         }
2633                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2634                         memset(iv, 0x00, ivsize);
2635
2636                         skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, iv);
2637                         comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2638                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2639                         if (do_crypt(true, req, &comp))
2640                                 wait_for_completion(&comp.comp);
2641                         kvfree(sg);
2642                         r = dm_integrity_failed(ic);
2643                         if (r) {
2644                                 *error = "Unable to encrypt journal";
2645                                 goto bad;
2646                         }
2647                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2648
2649                         crypto_free_skcipher(ic->journal_crypt);
2650                         ic->journal_crypt = NULL;
2651                 } else {
2652                         SKCIPHER_REQUEST_ON_STACK(req, ic->journal_crypt);
2653                         unsigned char iv[ivsize];
2654                         unsigned crypt_len = roundup(ivsize, blocksize);
2655
2656                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2657                         if (!crypt_data) {
2658                                 *error = "Unable to allocate crypt data";
2659                                 r = -ENOMEM;
2660                                 goto bad;
2661                         }
2662
2663                         skcipher_request_set_tfm(req, ic->journal_crypt);
2664
2665                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2666                         if (!ic->journal_scatterlist) {
2667                                 *error = "Unable to allocate sg list";
2668                                 r = -ENOMEM;
2669                                 goto bad;
2670                         }
2671                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2672                         if (!ic->journal_io_scatterlist) {
2673                                 *error = "Unable to allocate sg list";
2674                                 r = -ENOMEM;
2675                                 goto bad;
2676                         }
2677                         ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2678                         if (!ic->sk_requests) {
2679                                 *error = "Unable to allocate sk requests";
2680                                 r = -ENOMEM;
2681                                 goto bad;
2682                         }
2683                         for (i = 0; i < ic->journal_sections; i++) {
2684                                 struct scatterlist sg;
2685                                 struct skcipher_request *section_req;
2686                                 __u32 section_le = cpu_to_le32(i);
2687
2688                                 memset(iv, 0x00, ivsize);
2689                                 memset(crypt_data, 0x00, crypt_len);
2690                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2691
2692                                 sg_init_one(&sg, crypt_data, crypt_len);
2693                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, iv);
2694                                 comp.comp = COMPLETION_INITIALIZER_ONSTACK(comp.comp);
2695                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2696                                 if (do_crypt(true, req, &comp))
2697                                         wait_for_completion(&comp.comp);
2698
2699                                 r = dm_integrity_failed(ic);
2700                                 if (r) {
2701                                         *error = "Unable to generate iv";
2702                                         goto bad;
2703                                 }
2704
2705                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2706                                 if (!section_req) {
2707                                         *error = "Unable to allocate crypt request";
2708                                         r = -ENOMEM;
2709                                         goto bad;
2710                                 }
2711                                 section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2712                                 if (!section_req->iv) {
2713                                         skcipher_request_free(section_req);
2714                                         *error = "Unable to allocate iv";
2715                                         r = -ENOMEM;
2716                                         goto bad;
2717                                 }
2718                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2719                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2720                                 ic->sk_requests[i] = section_req;
2721                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2722                         }
2723                 }
2724         }
2725
2726         for (i = 0; i < N_COMMIT_IDS; i++) {
2727                 unsigned j;
2728 retest_commit_id:
2729                 for (j = 0; j < i; j++) {
2730                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
2731                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2732                                 goto retest_commit_id;
2733                         }
2734                 }
2735                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2736         }
2737
2738         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2739         if (journal_tree_size > ULONG_MAX) {
2740                 *error = "Journal doesn't fit into memory";
2741                 r = -ENOMEM;
2742                 goto bad;
2743         }
2744         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2745         if (!ic->journal_tree) {
2746                 *error = "Could not allocate memory for journal tree";
2747                 r = -ENOMEM;
2748         }
2749 bad:
2750         kfree(crypt_data);
2751         return r;
2752 }
2753
2754 /*
2755  * Construct a integrity mapping
2756  *
2757  * Arguments:
2758  *      device
2759  *      offset from the start of the device
2760  *      tag size
2761  *      D - direct writes, J - journal writes, R - recovery mode
2762  *      number of optional arguments
2763  *      optional arguments:
2764  *              journal_sectors
2765  *              interleave_sectors
2766  *              buffer_sectors
2767  *              journal_watermark
2768  *              commit_time
2769  *              internal_hash
2770  *              journal_crypt
2771  *              journal_mac
2772  *              block_size
2773  */
2774 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2775 {
2776         struct dm_integrity_c *ic;
2777         char dummy;
2778         int r;
2779         unsigned extra_args;
2780         struct dm_arg_set as;
2781         static struct dm_arg _args[] = {
2782                 {0, 9, "Invalid number of feature args"},
2783         };
2784         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2785         bool should_write_sb;
2786         __u64 threshold;
2787         unsigned long long start;
2788
2789 #define DIRECT_ARGUMENTS        4
2790
2791         if (argc <= DIRECT_ARGUMENTS) {
2792                 ti->error = "Invalid argument count";
2793                 return -EINVAL;
2794         }
2795
2796         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2797         if (!ic) {
2798                 ti->error = "Cannot allocate integrity context";
2799                 return -ENOMEM;
2800         }
2801         ti->private = ic;
2802         ti->per_io_data_size = sizeof(struct dm_integrity_io);
2803
2804         ic->in_progress = RB_ROOT;
2805         init_waitqueue_head(&ic->endio_wait);
2806         bio_list_init(&ic->flush_bio_list);
2807         init_waitqueue_head(&ic->copy_to_journal_wait);
2808         init_completion(&ic->crypto_backoff);
2809
2810         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2811         if (r) {
2812                 ti->error = "Device lookup failed";
2813                 goto bad;
2814         }
2815
2816         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2817                 ti->error = "Invalid starting offset";
2818                 r = -EINVAL;
2819                 goto bad;
2820         }
2821         ic->start = start;
2822
2823         if (strcmp(argv[2], "-")) {
2824                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2825                         ti->error = "Invalid tag size";
2826                         r = -EINVAL;
2827                         goto bad;
2828                 }
2829         }
2830
2831         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2832                 ic->mode = argv[3][0];
2833         else {
2834                 ti->error = "Invalid mode (expecting J, D, R)";
2835                 r = -EINVAL;
2836                 goto bad;
2837         }
2838
2839         ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2840         journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2841                         ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2842         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2843         buffer_sectors = DEFAULT_BUFFER_SECTORS;
2844         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2845         sync_msec = DEFAULT_SYNC_MSEC;
2846         ic->sectors_per_block = 1;
2847
2848         as.argc = argc - DIRECT_ARGUMENTS;
2849         as.argv = argv + DIRECT_ARGUMENTS;
2850         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2851         if (r)
2852                 goto bad;
2853
2854         while (extra_args--) {
2855                 const char *opt_string;
2856                 unsigned val;
2857                 opt_string = dm_shift_arg(&as);
2858                 if (!opt_string) {
2859                         r = -EINVAL;
2860                         ti->error = "Not enough feature arguments";
2861                         goto bad;
2862                 }
2863                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2864                         journal_sectors = val;
2865                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2866                         interleave_sectors = val;
2867                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2868                         buffer_sectors = val;
2869                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2870                         journal_watermark = val;
2871                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2872                         sync_msec = val;
2873                 else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2874                         if (val < 1 << SECTOR_SHIFT ||
2875                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2876                             (val & (val -1))) {
2877                                 r = -EINVAL;
2878                                 ti->error = "Invalid block_size argument";
2879                                 goto bad;
2880                         }
2881                         ic->sectors_per_block = val >> SECTOR_SHIFT;
2882                 } else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2883                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2884                                             "Invalid internal_hash argument");
2885                         if (r)
2886                                 goto bad;
2887                 } else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2888                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2889                                             "Invalid journal_crypt argument");
2890                         if (r)
2891                                 goto bad;
2892                 } else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2893                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
2894                                             "Invalid journal_mac argument");
2895                         if (r)
2896                                 goto bad;
2897                 } else {
2898                         r = -EINVAL;
2899                         ti->error = "Invalid argument";
2900                         goto bad;
2901                 }
2902         }
2903
2904         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2905                     "Invalid internal hash", "Error setting internal hash key");
2906         if (r)
2907                 goto bad;
2908
2909         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2910                     "Invalid journal mac", "Error setting journal mac key");
2911         if (r)
2912                 goto bad;
2913
2914         if (!ic->tag_size) {
2915                 if (!ic->internal_hash) {
2916                         ti->error = "Unknown tag size";
2917                         r = -EINVAL;
2918                         goto bad;
2919                 }
2920                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2921         }
2922         if (ic->tag_size > MAX_TAG_SIZE) {
2923                 ti->error = "Too big tag size";
2924                 r = -EINVAL;
2925                 goto bad;
2926         }
2927         if (!(ic->tag_size & (ic->tag_size - 1)))
2928                 ic->log2_tag_size = __ffs(ic->tag_size);
2929         else
2930                 ic->log2_tag_size = -1;
2931
2932         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2933         ic->autocommit_msec = sync_msec;
2934         setup_timer(&ic->autocommit_timer, autocommit_fn, (unsigned long)ic);
2935
2936         ic->io = dm_io_client_create();
2937         if (IS_ERR(ic->io)) {
2938                 r = PTR_ERR(ic->io);
2939                 ic->io = NULL;
2940                 ti->error = "Cannot allocate dm io";
2941                 goto bad;
2942         }
2943
2944         ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2945         if (!ic->journal_io_mempool) {
2946                 r = -ENOMEM;
2947                 ti->error = "Cannot allocate mempool";
2948                 goto bad;
2949         }
2950
2951         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2952                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2953         if (!ic->metadata_wq) {
2954                 ti->error = "Cannot allocate workqueue";
2955                 r = -ENOMEM;
2956                 goto bad;
2957         }
2958
2959         /*
2960          * If this workqueue were percpu, it would cause bio reordering
2961          * and reduced performance.
2962          */
2963         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
2964         if (!ic->wait_wq) {
2965                 ti->error = "Cannot allocate workqueue";
2966                 r = -ENOMEM;
2967                 goto bad;
2968         }
2969
2970         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
2971         if (!ic->commit_wq) {
2972                 ti->error = "Cannot allocate workqueue";
2973                 r = -ENOMEM;
2974                 goto bad;
2975         }
2976         INIT_WORK(&ic->commit_work, integrity_commit);
2977
2978         if (ic->mode == 'J') {
2979                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
2980                 if (!ic->writer_wq) {
2981                         ti->error = "Cannot allocate workqueue";
2982                         r = -ENOMEM;
2983                         goto bad;
2984                 }
2985                 INIT_WORK(&ic->writer_work, integrity_writer);
2986         }
2987
2988         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
2989         if (!ic->sb) {
2990                 r = -ENOMEM;
2991                 ti->error = "Cannot allocate superblock area";
2992                 goto bad;
2993         }
2994
2995         r = sync_rw_sb(ic, REQ_OP_READ, 0);
2996         if (r) {
2997                 ti->error = "Error reading superblock";
2998                 goto bad;
2999         }
3000         should_write_sb = false;
3001         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3002                 if (ic->mode != 'R') {
3003                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3004                                 r = -EINVAL;
3005                                 ti->error = "The device is not initialized";
3006                                 goto bad;
3007                         }
3008                 }
3009
3010                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3011                 if (r) {
3012                         ti->error = "Could not initialize superblock";
3013                         goto bad;
3014                 }
3015                 if (ic->mode != 'R')
3016                         should_write_sb = true;
3017         }
3018
3019         if (ic->sb->version != SB_VERSION) {
3020                 r = -EINVAL;
3021                 ti->error = "Unknown version";
3022                 goto bad;
3023         }
3024         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3025                 r = -EINVAL;
3026                 ti->error = "Tag size doesn't match the information in superblock";
3027                 goto bad;
3028         }
3029         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3030                 r = -EINVAL;
3031                 ti->error = "Block size doesn't match the information in superblock";
3032                 goto bad;
3033         }
3034         if (!le32_to_cpu(ic->sb->journal_sections)) {
3035                 r = -EINVAL;
3036                 ti->error = "Corrupted superblock, journal_sections is 0";
3037                 goto bad;
3038         }
3039         /* make sure that ti->max_io_len doesn't overflow */
3040         if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3041             ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3042                 r = -EINVAL;
3043                 ti->error = "Invalid interleave_sectors in the superblock";
3044                 goto bad;
3045         }
3046         ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3047         if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3048                 /* test for overflow */
3049                 r = -EINVAL;
3050                 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3051                 goto bad;
3052         }
3053         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3054                 r = -EINVAL;
3055                 ti->error = "Journal mac mismatch";
3056                 goto bad;
3057         }
3058         r = calculate_device_limits(ic);
3059         if (r) {
3060                 ti->error = "The device is too small";
3061                 goto bad;
3062         }
3063         if (ti->len > ic->provided_data_sectors) {
3064                 r = -EINVAL;
3065                 ti->error = "Not enough provided sectors for requested mapping size";
3066                 goto bad;
3067         }
3068
3069         if (!buffer_sectors)
3070                 buffer_sectors = 1;
3071         ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT);
3072
3073         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3074         threshold += 50;
3075         do_div(threshold, 100);
3076         ic->free_sectors_threshold = threshold;
3077
3078         DEBUG_print("initialized:\n");
3079         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3080         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
3081         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3082         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
3083         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
3084         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3085         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
3086         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3087         DEBUG_print("   device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3088         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
3089         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
3090         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
3091         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3092                     (unsigned long long)ic->provided_data_sectors);
3093         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3094
3095         ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors),
3096                                            1, 0, NULL, NULL);
3097         if (IS_ERR(ic->bufio)) {
3098                 r = PTR_ERR(ic->bufio);
3099                 ti->error = "Cannot initialize dm-bufio";
3100                 ic->bufio = NULL;
3101                 goto bad;
3102         }
3103         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3104
3105         if (ic->mode != 'R') {
3106                 r = create_journal(ic, &ti->error);
3107                 if (r)
3108                         goto bad;
3109         }
3110
3111         if (should_write_sb) {
3112                 int r;
3113
3114                 init_journal(ic, 0, ic->journal_sections, 0);
3115                 r = dm_integrity_failed(ic);
3116                 if (unlikely(r)) {
3117                         ti->error = "Error initializing journal";
3118                         goto bad;
3119                 }
3120                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3121                 if (r) {
3122                         ti->error = "Error initializing superblock";
3123                         goto bad;
3124                 }
3125                 ic->just_formatted = true;
3126         }
3127
3128         r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3129         if (r)
3130                 goto bad;
3131
3132         if (!ic->internal_hash)
3133                 dm_integrity_set(ti, ic);
3134
3135         ti->num_flush_bios = 1;
3136         ti->flush_supported = true;
3137
3138         return 0;
3139 bad:
3140         dm_integrity_dtr(ti);
3141         return r;
3142 }
3143
3144 static void dm_integrity_dtr(struct dm_target *ti)
3145 {
3146         struct dm_integrity_c *ic = ti->private;
3147
3148         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3149
3150         if (ic->metadata_wq)
3151                 destroy_workqueue(ic->metadata_wq);
3152         if (ic->wait_wq)
3153                 destroy_workqueue(ic->wait_wq);
3154         if (ic->commit_wq)
3155                 destroy_workqueue(ic->commit_wq);
3156         if (ic->writer_wq)
3157                 destroy_workqueue(ic->writer_wq);
3158         if (ic->bufio)
3159                 dm_bufio_client_destroy(ic->bufio);
3160         mempool_destroy(ic->journal_io_mempool);
3161         if (ic->io)
3162                 dm_io_client_destroy(ic->io);
3163         if (ic->dev)
3164                 dm_put_device(ti, ic->dev);
3165         dm_integrity_free_page_list(ic, ic->journal);
3166         dm_integrity_free_page_list(ic, ic->journal_io);
3167         dm_integrity_free_page_list(ic, ic->journal_xor);
3168         if (ic->journal_scatterlist)
3169                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3170         if (ic->journal_io_scatterlist)
3171                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3172         if (ic->sk_requests) {
3173                 unsigned i;
3174
3175                 for (i = 0; i < ic->journal_sections; i++) {
3176                         struct skcipher_request *req = ic->sk_requests[i];
3177                         if (req) {
3178                                 kzfree(req->iv);
3179                                 skcipher_request_free(req);
3180                         }
3181                 }
3182                 kvfree(ic->sk_requests);
3183         }
3184         kvfree(ic->journal_tree);
3185         if (ic->sb)
3186                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3187
3188         if (ic->internal_hash)
3189                 crypto_free_shash(ic->internal_hash);
3190         free_alg(&ic->internal_hash_alg);
3191
3192         if (ic->journal_crypt)
3193                 crypto_free_skcipher(ic->journal_crypt);
3194         free_alg(&ic->journal_crypt_alg);
3195
3196         if (ic->journal_mac)
3197                 crypto_free_shash(ic->journal_mac);
3198         free_alg(&ic->journal_mac_alg);
3199
3200         kfree(ic);
3201 }
3202
3203 static struct target_type integrity_target = {
3204         .name                   = "integrity",
3205         .version                = {1, 0, 0},
3206         .module                 = THIS_MODULE,
3207         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3208         .ctr                    = dm_integrity_ctr,
3209         .dtr                    = dm_integrity_dtr,
3210         .map                    = dm_integrity_map,
3211         .postsuspend            = dm_integrity_postsuspend,
3212         .resume                 = dm_integrity_resume,
3213         .status                 = dm_integrity_status,
3214         .iterate_devices        = dm_integrity_iterate_devices,
3215         .io_hints               = dm_integrity_io_hints,
3216 };
3217
3218 int __init dm_integrity_init(void)
3219 {
3220         int r;
3221
3222         journal_io_cache = kmem_cache_create("integrity_journal_io",
3223                                              sizeof(struct journal_io), 0, 0, NULL);
3224         if (!journal_io_cache) {
3225                 DMERR("can't allocate journal io cache");
3226                 return -ENOMEM;
3227         }
3228
3229         r = dm_register_target(&integrity_target);
3230
3231         if (r < 0)
3232                 DMERR("register failed %d", r);
3233
3234         return r;
3235 }
3236
3237 void dm_integrity_exit(void)
3238 {
3239         dm_unregister_target(&integrity_target);
3240         kmem_cache_destroy(journal_io_cache);
3241 }
3242
3243 module_init(dm_integrity_init);
3244 module_exit(dm_integrity_exit);
3245
3246 MODULE_AUTHOR("Milan Broz");
3247 MODULE_AUTHOR("Mikulas Patocka");
3248 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3249 MODULE_LICENSE("GPL");