ACPI: PM: s2idle: Always set up EC GPE for system wakeup
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / verbs.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <rdma/ib_mad.h>
49 #include <rdma/ib_user_verbs.h>
50 #include <linux/io.h>
51 #include <linux/module.h>
52 #include <linux/utsname.h>
53 #include <linux/rculist.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <rdma/opa_addr.h>
57
58 #include "hfi.h"
59 #include "common.h"
60 #include "device.h"
61 #include "trace.h"
62 #include "qp.h"
63 #include "verbs_txreq.h"
64 #include "debugfs.h"
65 #include "vnic.h"
66 #include "fault.h"
67 #include "affinity.h"
68
69 static unsigned int hfi1_lkey_table_size = 16;
70 module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
71                    S_IRUGO);
72 MODULE_PARM_DESC(lkey_table_size,
73                  "LKEY table size in bits (2^n, 1 <= n <= 23)");
74
75 static unsigned int hfi1_max_pds = 0xFFFF;
76 module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
77 MODULE_PARM_DESC(max_pds,
78                  "Maximum number of protection domains to support");
79
80 static unsigned int hfi1_max_ahs = 0xFFFF;
81 module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
82 MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
83
84 unsigned int hfi1_max_cqes = 0x2FFFFF;
85 module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
86 MODULE_PARM_DESC(max_cqes,
87                  "Maximum number of completion queue entries to support");
88
89 unsigned int hfi1_max_cqs = 0x1FFFF;
90 module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
91 MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
92
93 unsigned int hfi1_max_qp_wrs = 0x3FFF;
94 module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
95 MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
96
97 unsigned int hfi1_max_qps = 32768;
98 module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
99 MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
100
101 unsigned int hfi1_max_sges = 0x60;
102 module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
103 MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
104
105 unsigned int hfi1_max_mcast_grps = 16384;
106 module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
107 MODULE_PARM_DESC(max_mcast_grps,
108                  "Maximum number of multicast groups to support");
109
110 unsigned int hfi1_max_mcast_qp_attached = 16;
111 module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
112                    uint, S_IRUGO);
113 MODULE_PARM_DESC(max_mcast_qp_attached,
114                  "Maximum number of attached QPs to support");
115
116 unsigned int hfi1_max_srqs = 1024;
117 module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
118 MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
119
120 unsigned int hfi1_max_srq_sges = 128;
121 module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
122 MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
123
124 unsigned int hfi1_max_srq_wrs = 0x1FFFF;
125 module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
126 MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
127
128 unsigned short piothreshold = 256;
129 module_param(piothreshold, ushort, S_IRUGO);
130 MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
131
132 static unsigned int sge_copy_mode;
133 module_param(sge_copy_mode, uint, S_IRUGO);
134 MODULE_PARM_DESC(sge_copy_mode,
135                  "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
136
137 static void verbs_sdma_complete(
138         struct sdma_txreq *cookie,
139         int status);
140
141 static int pio_wait(struct rvt_qp *qp,
142                     struct send_context *sc,
143                     struct hfi1_pkt_state *ps,
144                     u32 flag);
145
146 /* Length of buffer to create verbs txreq cache name */
147 #define TXREQ_NAME_LEN 24
148
149 /* 16B trailing buffer */
150 static const u8 trail_buf[MAX_16B_PADDING];
151
152 static uint wss_threshold = 80;
153 module_param(wss_threshold, uint, S_IRUGO);
154 MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
155 static uint wss_clean_period = 256;
156 module_param(wss_clean_period, uint, S_IRUGO);
157 MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
158
159 /*
160  * Translate ib_wr_opcode into ib_wc_opcode.
161  */
162 const enum ib_wc_opcode ib_hfi1_wc_opcode[] = {
163         [IB_WR_RDMA_WRITE] = IB_WC_RDMA_WRITE,
164         [IB_WR_TID_RDMA_WRITE] = IB_WC_RDMA_WRITE,
165         [IB_WR_RDMA_WRITE_WITH_IMM] = IB_WC_RDMA_WRITE,
166         [IB_WR_SEND] = IB_WC_SEND,
167         [IB_WR_SEND_WITH_IMM] = IB_WC_SEND,
168         [IB_WR_RDMA_READ] = IB_WC_RDMA_READ,
169         [IB_WR_TID_RDMA_READ] = IB_WC_RDMA_READ,
170         [IB_WR_ATOMIC_CMP_AND_SWP] = IB_WC_COMP_SWAP,
171         [IB_WR_ATOMIC_FETCH_AND_ADD] = IB_WC_FETCH_ADD,
172         [IB_WR_SEND_WITH_INV] = IB_WC_SEND,
173         [IB_WR_LOCAL_INV] = IB_WC_LOCAL_INV,
174         [IB_WR_REG_MR] = IB_WC_REG_MR
175 };
176
177 /*
178  * Length of header by opcode, 0 --> not supported
179  */
180 const u8 hdr_len_by_opcode[256] = {
181         /* RC */
182         [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
183         [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
184         [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
185         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
186         [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
187         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
188         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
189         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
190         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
191         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
192         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
193         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
194         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
195         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
196         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
197         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
198         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
199         [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
200         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
201         [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
202         [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
203         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
204         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
205         [IB_OPCODE_TID_RDMA_READ_REQ]                 = 12 + 8 + 36,
206         [IB_OPCODE_TID_RDMA_READ_RESP]                = 12 + 8 + 36,
207         [IB_OPCODE_TID_RDMA_WRITE_REQ]                = 12 + 8 + 36,
208         [IB_OPCODE_TID_RDMA_WRITE_RESP]               = 12 + 8 + 36,
209         [IB_OPCODE_TID_RDMA_WRITE_DATA]               = 12 + 8 + 36,
210         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST]          = 12 + 8 + 36,
211         [IB_OPCODE_TID_RDMA_ACK]                      = 12 + 8 + 36,
212         [IB_OPCODE_TID_RDMA_RESYNC]                   = 12 + 8 + 36,
213         /* UC */
214         [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
215         [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
216         [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
217         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
218         [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
219         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
220         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
221         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
222         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
223         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
224         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
225         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
226         /* UD */
227         [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
228         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
229 };
230
231 static const opcode_handler opcode_handler_tbl[256] = {
232         /* RC */
233         [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
234         [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
235         [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
236         [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
237         [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
238         [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
239         [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
240         [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
241         [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
242         [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
243         [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
244         [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
245         [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
246         [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
247         [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
248         [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
249         [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
250         [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
251         [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
252         [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
253         [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
254         [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
255         [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
256
257         /* TID RDMA has separate handlers for different opcodes.*/
258         [IB_OPCODE_TID_RDMA_WRITE_REQ]       = &hfi1_rc_rcv_tid_rdma_write_req,
259         [IB_OPCODE_TID_RDMA_WRITE_RESP]      = &hfi1_rc_rcv_tid_rdma_write_resp,
260         [IB_OPCODE_TID_RDMA_WRITE_DATA]      = &hfi1_rc_rcv_tid_rdma_write_data,
261         [IB_OPCODE_TID_RDMA_WRITE_DATA_LAST] = &hfi1_rc_rcv_tid_rdma_write_data,
262         [IB_OPCODE_TID_RDMA_READ_REQ]        = &hfi1_rc_rcv_tid_rdma_read_req,
263         [IB_OPCODE_TID_RDMA_READ_RESP]       = &hfi1_rc_rcv_tid_rdma_read_resp,
264         [IB_OPCODE_TID_RDMA_RESYNC]          = &hfi1_rc_rcv_tid_rdma_resync,
265         [IB_OPCODE_TID_RDMA_ACK]             = &hfi1_rc_rcv_tid_rdma_ack,
266
267         /* UC */
268         [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
269         [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
270         [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
271         [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
272         [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
273         [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
274         [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
275         [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
276         [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
277         [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
278         [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
279         [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
280         /* UD */
281         [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
282         [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
283         /* CNP */
284         [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
285 };
286
287 #define OPMASK 0x1f
288
289 static const u32 pio_opmask[BIT(3)] = {
290         /* RC */
291         [IB_OPCODE_RC >> 5] =
292                 BIT(RC_OP(SEND_ONLY) & OPMASK) |
293                 BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
294                 BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
295                 BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
296                 BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
297                 BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
298                 BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
299                 BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
300                 BIT(RC_OP(FETCH_ADD) & OPMASK),
301         /* UC */
302         [IB_OPCODE_UC >> 5] =
303                 BIT(UC_OP(SEND_ONLY) & OPMASK) |
304                 BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
305                 BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
306                 BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
307 };
308
309 /*
310  * System image GUID.
311  */
312 __be64 ib_hfi1_sys_image_guid;
313
314 /*
315  * Make sure the QP is ready and able to accept the given opcode.
316  */
317 static inline opcode_handler qp_ok(struct hfi1_packet *packet)
318 {
319         if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
320                 return NULL;
321         if (((packet->opcode & RVT_OPCODE_QP_MASK) ==
322              packet->qp->allowed_ops) ||
323             (packet->opcode == IB_OPCODE_CNP))
324                 return opcode_handler_tbl[packet->opcode];
325
326         return NULL;
327 }
328
329 static u64 hfi1_fault_tx(struct rvt_qp *qp, u8 opcode, u64 pbc)
330 {
331 #ifdef CONFIG_FAULT_INJECTION
332         if ((opcode & IB_OPCODE_MSP) == IB_OPCODE_MSP) {
333                 /*
334                  * In order to drop non-IB traffic we
335                  * set PbcInsertHrc to NONE (0x2).
336                  * The packet will still be delivered
337                  * to the receiving node but a
338                  * KHdrHCRCErr (KDETH packet with a bad
339                  * HCRC) will be triggered and the
340                  * packet will not be delivered to the
341                  * correct context.
342                  */
343                 pbc &= ~PBC_INSERT_HCRC_SMASK;
344                 pbc |= (u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT;
345         } else {
346                 /*
347                  * In order to drop regular verbs
348                  * traffic we set the PbcTestEbp
349                  * flag. The packet will still be
350                  * delivered to the receiving node but
351                  * a 'late ebp error' will be
352                  * triggered and will be dropped.
353                  */
354                 pbc |= PBC_TEST_EBP;
355         }
356 #endif
357         return pbc;
358 }
359
360 static opcode_handler tid_qp_ok(int opcode, struct hfi1_packet *packet)
361 {
362         if (packet->qp->ibqp.qp_type != IB_QPT_RC ||
363             !(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
364                 return NULL;
365         if ((opcode & RVT_OPCODE_QP_MASK) == IB_OPCODE_TID_RDMA)
366                 return opcode_handler_tbl[opcode];
367         return NULL;
368 }
369
370 void hfi1_kdeth_eager_rcv(struct hfi1_packet *packet)
371 {
372         struct hfi1_ctxtdata *rcd = packet->rcd;
373         struct ib_header *hdr = packet->hdr;
374         u32 tlen = packet->tlen;
375         struct hfi1_pportdata *ppd = rcd->ppd;
376         struct hfi1_ibport *ibp = &ppd->ibport_data;
377         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
378         opcode_handler opcode_handler;
379         unsigned long flags;
380         u32 qp_num;
381         int lnh;
382         u8 opcode;
383
384         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
385         if (unlikely(tlen < 15 * sizeof(u32)))
386                 goto drop;
387
388         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
389         if (lnh != HFI1_LRH_BTH)
390                 goto drop;
391
392         packet->ohdr = &hdr->u.oth;
393         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
394
395         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
396         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
397
398         /* verbs_qp can be picked up from any tid_rdma header struct */
399         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_req.verbs_qp) &
400                 RVT_QPN_MASK;
401
402         rcu_read_lock();
403         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
404         if (!packet->qp)
405                 goto drop_rcu;
406         spin_lock_irqsave(&packet->qp->r_lock, flags);
407         opcode_handler = tid_qp_ok(opcode, packet);
408         if (likely(opcode_handler))
409                 opcode_handler(packet);
410         else
411                 goto drop_unlock;
412         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
413         rcu_read_unlock();
414
415         return;
416 drop_unlock:
417         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
418 drop_rcu:
419         rcu_read_unlock();
420 drop:
421         ibp->rvp.n_pkt_drops++;
422 }
423
424 void hfi1_kdeth_expected_rcv(struct hfi1_packet *packet)
425 {
426         struct hfi1_ctxtdata *rcd = packet->rcd;
427         struct ib_header *hdr = packet->hdr;
428         u32 tlen = packet->tlen;
429         struct hfi1_pportdata *ppd = rcd->ppd;
430         struct hfi1_ibport *ibp = &ppd->ibport_data;
431         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
432         opcode_handler opcode_handler;
433         unsigned long flags;
434         u32 qp_num;
435         int lnh;
436         u8 opcode;
437
438         /* DW == LRH (2) + BTH (3) + KDETH (9) + CRC (1) */
439         if (unlikely(tlen < 15 * sizeof(u32)))
440                 goto drop;
441
442         lnh = be16_to_cpu(hdr->lrh[0]) & 3;
443         if (lnh != HFI1_LRH_BTH)
444                 goto drop;
445
446         packet->ohdr = &hdr->u.oth;
447         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
448
449         opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
450         inc_opstats(tlen, &rcd->opstats->stats[opcode]);
451
452         /* verbs_qp can be picked up from any tid_rdma header struct */
453         qp_num = be32_to_cpu(packet->ohdr->u.tid_rdma.r_rsp.verbs_qp) &
454                 RVT_QPN_MASK;
455
456         rcu_read_lock();
457         packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
458         if (!packet->qp)
459                 goto drop_rcu;
460         spin_lock_irqsave(&packet->qp->r_lock, flags);
461         opcode_handler = tid_qp_ok(opcode, packet);
462         if (likely(opcode_handler))
463                 opcode_handler(packet);
464         else
465                 goto drop_unlock;
466         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
467         rcu_read_unlock();
468
469         return;
470 drop_unlock:
471         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
472 drop_rcu:
473         rcu_read_unlock();
474 drop:
475         ibp->rvp.n_pkt_drops++;
476 }
477
478 static int hfi1_do_pkey_check(struct hfi1_packet *packet)
479 {
480         struct hfi1_ctxtdata *rcd = packet->rcd;
481         struct hfi1_pportdata *ppd = rcd->ppd;
482         struct hfi1_16b_header *hdr = packet->hdr;
483         u16 pkey;
484
485         /* Pkey check needed only for bypass packets */
486         if (packet->etype != RHF_RCV_TYPE_BYPASS)
487                 return 0;
488
489         /* Perform pkey check */
490         pkey = hfi1_16B_get_pkey(hdr);
491         return ingress_pkey_check(ppd, pkey, packet->sc,
492                                   packet->qp->s_pkey_index,
493                                   packet->slid, true);
494 }
495
496 static inline void hfi1_handle_packet(struct hfi1_packet *packet,
497                                       bool is_mcast)
498 {
499         u32 qp_num;
500         struct hfi1_ctxtdata *rcd = packet->rcd;
501         struct hfi1_pportdata *ppd = rcd->ppd;
502         struct hfi1_ibport *ibp = rcd_to_iport(rcd);
503         struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
504         opcode_handler packet_handler;
505         unsigned long flags;
506
507         inc_opstats(packet->tlen, &rcd->opstats->stats[packet->opcode]);
508
509         if (unlikely(is_mcast)) {
510                 struct rvt_mcast *mcast;
511                 struct rvt_mcast_qp *p;
512
513                 if (!packet->grh)
514                         goto drop;
515                 mcast = rvt_mcast_find(&ibp->rvp,
516                                        &packet->grh->dgid,
517                                        opa_get_lid(packet->dlid, 9B));
518                 if (!mcast)
519                         goto drop;
520                 list_for_each_entry_rcu(p, &mcast->qp_list, list) {
521                         packet->qp = p->qp;
522                         if (hfi1_do_pkey_check(packet))
523                                 goto drop;
524                         spin_lock_irqsave(&packet->qp->r_lock, flags);
525                         packet_handler = qp_ok(packet);
526                         if (likely(packet_handler))
527                                 packet_handler(packet);
528                         else
529                                 ibp->rvp.n_pkt_drops++;
530                         spin_unlock_irqrestore(&packet->qp->r_lock, flags);
531                 }
532                 /*
533                  * Notify rvt_multicast_detach() if it is waiting for us
534                  * to finish.
535                  */
536                 if (atomic_dec_return(&mcast->refcount) <= 1)
537                         wake_up(&mcast->wait);
538         } else {
539                 /* Get the destination QP number. */
540                 if (packet->etype == RHF_RCV_TYPE_BYPASS &&
541                     hfi1_16B_get_l4(packet->hdr) == OPA_16B_L4_FM)
542                         qp_num = hfi1_16B_get_dest_qpn(packet->mgmt);
543                 else
544                         qp_num = ib_bth_get_qpn(packet->ohdr);
545
546                 rcu_read_lock();
547                 packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
548                 if (!packet->qp)
549                         goto unlock_drop;
550
551                 if (hfi1_do_pkey_check(packet))
552                         goto unlock_drop;
553
554                 spin_lock_irqsave(&packet->qp->r_lock, flags);
555                 packet_handler = qp_ok(packet);
556                 if (likely(packet_handler))
557                         packet_handler(packet);
558                 else
559                         ibp->rvp.n_pkt_drops++;
560                 spin_unlock_irqrestore(&packet->qp->r_lock, flags);
561                 rcu_read_unlock();
562         }
563         return;
564 unlock_drop:
565         rcu_read_unlock();
566 drop:
567         ibp->rvp.n_pkt_drops++;
568 }
569
570 /**
571  * hfi1_ib_rcv - process an incoming packet
572  * @packet: data packet information
573  *
574  * This is called to process an incoming packet at interrupt level.
575  */
576 void hfi1_ib_rcv(struct hfi1_packet *packet)
577 {
578         struct hfi1_ctxtdata *rcd = packet->rcd;
579
580         trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
581         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
582 }
583
584 void hfi1_16B_rcv(struct hfi1_packet *packet)
585 {
586         struct hfi1_ctxtdata *rcd = packet->rcd;
587
588         trace_input_ibhdr(rcd->dd, packet, false);
589         hfi1_handle_packet(packet, hfi1_check_mcast(packet->dlid));
590 }
591
592 /*
593  * This is called from a timer to check for QPs
594  * which need kernel memory in order to send a packet.
595  */
596 static void mem_timer(struct timer_list *t)
597 {
598         struct hfi1_ibdev *dev = from_timer(dev, t, mem_timer);
599         struct list_head *list = &dev->memwait;
600         struct rvt_qp *qp = NULL;
601         struct iowait *wait;
602         unsigned long flags;
603         struct hfi1_qp_priv *priv;
604
605         write_seqlock_irqsave(&dev->iowait_lock, flags);
606         if (!list_empty(list)) {
607                 wait = list_first_entry(list, struct iowait, list);
608                 qp = iowait_to_qp(wait);
609                 priv = qp->priv;
610                 list_del_init(&priv->s_iowait.list);
611                 priv->s_iowait.lock = NULL;
612                 /* refcount held until actual wake up */
613                 if (!list_empty(list))
614                         mod_timer(&dev->mem_timer, jiffies + 1);
615         }
616         write_sequnlock_irqrestore(&dev->iowait_lock, flags);
617
618         if (qp)
619                 hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
620 }
621
622 /*
623  * This is called with progress side lock held.
624  */
625 /* New API */
626 static void verbs_sdma_complete(
627         struct sdma_txreq *cookie,
628         int status)
629 {
630         struct verbs_txreq *tx =
631                 container_of(cookie, struct verbs_txreq, txreq);
632         struct rvt_qp *qp = tx->qp;
633
634         spin_lock(&qp->s_lock);
635         if (tx->wqe) {
636                 rvt_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
637         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
638                 struct hfi1_opa_header *hdr;
639
640                 hdr = &tx->phdr.hdr;
641                 if (unlikely(status == SDMA_TXREQ_S_ABORTED))
642                         hfi1_rc_verbs_aborted(qp, hdr);
643                 hfi1_rc_send_complete(qp, hdr);
644         }
645         spin_unlock(&qp->s_lock);
646
647         hfi1_put_txreq(tx);
648 }
649
650 void hfi1_wait_kmem(struct rvt_qp *qp)
651 {
652         struct hfi1_qp_priv *priv = qp->priv;
653         struct ib_qp *ibqp = &qp->ibqp;
654         struct ib_device *ibdev = ibqp->device;
655         struct hfi1_ibdev *dev = to_idev(ibdev);
656
657         if (list_empty(&priv->s_iowait.list)) {
658                 if (list_empty(&dev->memwait))
659                         mod_timer(&dev->mem_timer, jiffies + 1);
660                 qp->s_flags |= RVT_S_WAIT_KMEM;
661                 list_add_tail(&priv->s_iowait.list, &dev->memwait);
662                 priv->s_iowait.lock = &dev->iowait_lock;
663                 trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
664                 rvt_get_qp(qp);
665         }
666 }
667
668 static int wait_kmem(struct hfi1_ibdev *dev,
669                      struct rvt_qp *qp,
670                      struct hfi1_pkt_state *ps)
671 {
672         unsigned long flags;
673         int ret = 0;
674
675         spin_lock_irqsave(&qp->s_lock, flags);
676         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
677                 write_seqlock(&dev->iowait_lock);
678                 list_add_tail(&ps->s_txreq->txreq.list,
679                               &ps->wait->tx_head);
680                 hfi1_wait_kmem(qp);
681                 write_sequnlock(&dev->iowait_lock);
682                 hfi1_qp_unbusy(qp, ps->wait);
683                 ret = -EBUSY;
684         }
685         spin_unlock_irqrestore(&qp->s_lock, flags);
686
687         return ret;
688 }
689
690 /*
691  * This routine calls txadds for each sg entry.
692  *
693  * Add failures will revert the sge cursor
694  */
695 static noinline int build_verbs_ulp_payload(
696         struct sdma_engine *sde,
697         u32 length,
698         struct verbs_txreq *tx)
699 {
700         struct rvt_sge_state *ss = tx->ss;
701         struct rvt_sge *sg_list = ss->sg_list;
702         struct rvt_sge sge = ss->sge;
703         u8 num_sge = ss->num_sge;
704         u32 len;
705         int ret = 0;
706
707         while (length) {
708                 len = rvt_get_sge_length(&ss->sge, length);
709                 WARN_ON_ONCE(len == 0);
710                 ret = sdma_txadd_kvaddr(
711                         sde->dd,
712                         &tx->txreq,
713                         ss->sge.vaddr,
714                         len);
715                 if (ret)
716                         goto bail_txadd;
717                 rvt_update_sge(ss, len, false);
718                 length -= len;
719         }
720         return ret;
721 bail_txadd:
722         /* unwind cursor */
723         ss->sge = sge;
724         ss->num_sge = num_sge;
725         ss->sg_list = sg_list;
726         return ret;
727 }
728
729 /**
730  * update_tx_opstats - record stats by opcode
731  * @qp; the qp
732  * @ps: transmit packet state
733  * @plen: the plen in dwords
734  *
735  * This is a routine to record the tx opstats after a
736  * packet has been presented to the egress mechanism.
737  */
738 static void update_tx_opstats(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
739                               u32 plen)
740 {
741 #ifdef CONFIG_DEBUG_FS
742         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
743         struct hfi1_opcode_stats_perctx *s = get_cpu_ptr(dd->tx_opstats);
744
745         inc_opstats(plen * 4, &s->stats[ps->opcode]);
746         put_cpu_ptr(s);
747 #endif
748 }
749
750 /*
751  * Build the number of DMA descriptors needed to send length bytes of data.
752  *
753  * NOTE: DMA mapping is held in the tx until completed in the ring or
754  *       the tx desc is freed without having been submitted to the ring
755  *
756  * This routine ensures all the helper routine calls succeed.
757  */
758 /* New API */
759 static int build_verbs_tx_desc(
760         struct sdma_engine *sde,
761         u32 length,
762         struct verbs_txreq *tx,
763         struct hfi1_ahg_info *ahg_info,
764         u64 pbc)
765 {
766         int ret = 0;
767         struct hfi1_sdma_header *phdr = &tx->phdr;
768         u16 hdrbytes = (tx->hdr_dwords + sizeof(pbc) / 4) << 2;
769         u8 extra_bytes = 0;
770
771         if (tx->phdr.hdr.hdr_type) {
772                 /*
773                  * hdrbytes accounts for PBC. Need to subtract 8 bytes
774                  * before calculating padding.
775                  */
776                 extra_bytes = hfi1_get_16b_padding(hdrbytes - 8, length) +
777                               (SIZE_OF_CRC << 2) + SIZE_OF_LT;
778         }
779         if (!ahg_info->ahgcount) {
780                 ret = sdma_txinit_ahg(
781                         &tx->txreq,
782                         ahg_info->tx_flags,
783                         hdrbytes + length +
784                         extra_bytes,
785                         ahg_info->ahgidx,
786                         0,
787                         NULL,
788                         0,
789                         verbs_sdma_complete);
790                 if (ret)
791                         goto bail_txadd;
792                 phdr->pbc = cpu_to_le64(pbc);
793                 ret = sdma_txadd_kvaddr(
794                         sde->dd,
795                         &tx->txreq,
796                         phdr,
797                         hdrbytes);
798                 if (ret)
799                         goto bail_txadd;
800         } else {
801                 ret = sdma_txinit_ahg(
802                         &tx->txreq,
803                         ahg_info->tx_flags,
804                         length,
805                         ahg_info->ahgidx,
806                         ahg_info->ahgcount,
807                         ahg_info->ahgdesc,
808                         hdrbytes,
809                         verbs_sdma_complete);
810                 if (ret)
811                         goto bail_txadd;
812         }
813         /* add the ulp payload - if any. tx->ss can be NULL for acks */
814         if (tx->ss) {
815                 ret = build_verbs_ulp_payload(sde, length, tx);
816                 if (ret)
817                         goto bail_txadd;
818         }
819
820         /* add icrc, lt byte, and padding to flit */
821         if (extra_bytes)
822                 ret = sdma_txadd_kvaddr(sde->dd, &tx->txreq,
823                                         (void *)trail_buf, extra_bytes);
824
825 bail_txadd:
826         return ret;
827 }
828
829 static u64 update_hcrc(u8 opcode, u64 pbc)
830 {
831         if ((opcode & IB_OPCODE_TID_RDMA) == IB_OPCODE_TID_RDMA) {
832                 pbc &= ~PBC_INSERT_HCRC_SMASK;
833                 pbc |= (u64)PBC_IHCRC_LKDETH << PBC_INSERT_HCRC_SHIFT;
834         }
835         return pbc;
836 }
837
838 int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
839                         u64 pbc)
840 {
841         struct hfi1_qp_priv *priv = qp->priv;
842         struct hfi1_ahg_info *ahg_info = priv->s_ahg;
843         u32 hdrwords = ps->s_txreq->hdr_dwords;
844         u32 len = ps->s_txreq->s_cur_size;
845         u32 plen;
846         struct hfi1_ibdev *dev = ps->dev;
847         struct hfi1_pportdata *ppd = ps->ppd;
848         struct verbs_txreq *tx;
849         u8 sc5 = priv->s_sc;
850         int ret;
851         u32 dwords;
852
853         if (ps->s_txreq->phdr.hdr.hdr_type) {
854                 u8 extra_bytes = hfi1_get_16b_padding((hdrwords << 2), len);
855
856                 dwords = (len + extra_bytes + (SIZE_OF_CRC << 2) +
857                           SIZE_OF_LT) >> 2;
858         } else {
859                 dwords = (len + 3) >> 2;
860         }
861         plen = hdrwords + dwords + sizeof(pbc) / 4;
862
863         tx = ps->s_txreq;
864         if (!sdma_txreq_built(&tx->txreq)) {
865                 if (likely(pbc == 0)) {
866                         u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
867
868                         /* No vl15 here */
869                         /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
870                         if (ps->s_txreq->phdr.hdr.hdr_type)
871                                 pbc |= PBC_PACKET_BYPASS |
872                                        PBC_INSERT_BYPASS_ICRC;
873                         else
874                                 pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
875
876                         if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
877                                 pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
878                         pbc = create_pbc(ppd,
879                                          pbc,
880                                          qp->srate_mbps,
881                                          vl,
882                                          plen);
883
884                         /* Update HCRC based on packet opcode */
885                         pbc = update_hcrc(ps->opcode, pbc);
886                 }
887                 tx->wqe = qp->s_wqe;
888                 ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
889                 if (unlikely(ret))
890                         goto bail_build;
891         }
892         ret =  sdma_send_txreq(tx->sde, ps->wait, &tx->txreq, ps->pkts_sent);
893         if (unlikely(ret < 0)) {
894                 if (ret == -ECOMM)
895                         goto bail_ecomm;
896                 return ret;
897         }
898
899         update_tx_opstats(qp, ps, plen);
900         trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
901                                 &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
902         return ret;
903
904 bail_ecomm:
905         /* The current one got "sent" */
906         return 0;
907 bail_build:
908         ret = wait_kmem(dev, qp, ps);
909         if (!ret) {
910                 /* free txreq - bad state */
911                 hfi1_put_txreq(ps->s_txreq);
912                 ps->s_txreq = NULL;
913         }
914         return ret;
915 }
916
917 /*
918  * If we are now in the error state, return zero to flush the
919  * send work request.
920  */
921 static int pio_wait(struct rvt_qp *qp,
922                     struct send_context *sc,
923                     struct hfi1_pkt_state *ps,
924                     u32 flag)
925 {
926         struct hfi1_qp_priv *priv = qp->priv;
927         struct hfi1_devdata *dd = sc->dd;
928         unsigned long flags;
929         int ret = 0;
930
931         /*
932          * Note that as soon as want_buffer() is called and
933          * possibly before it returns, sc_piobufavail()
934          * could be called. Therefore, put QP on the I/O wait list before
935          * enabling the PIO avail interrupt.
936          */
937         spin_lock_irqsave(&qp->s_lock, flags);
938         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
939                 write_seqlock(&sc->waitlock);
940                 list_add_tail(&ps->s_txreq->txreq.list,
941                               &ps->wait->tx_head);
942                 if (list_empty(&priv->s_iowait.list)) {
943                         struct hfi1_ibdev *dev = &dd->verbs_dev;
944                         int was_empty;
945
946                         dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
947                         dev->n_piodrain += !!(flag & HFI1_S_WAIT_PIO_DRAIN);
948                         qp->s_flags |= flag;
949                         was_empty = list_empty(&sc->piowait);
950                         iowait_get_priority(&priv->s_iowait);
951                         iowait_queue(ps->pkts_sent, &priv->s_iowait,
952                                      &sc->piowait);
953                         priv->s_iowait.lock = &sc->waitlock;
954                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
955                         rvt_get_qp(qp);
956                         /* counting: only call wantpiobuf_intr if first user */
957                         if (was_empty)
958                                 hfi1_sc_wantpiobuf_intr(sc, 1);
959                 }
960                 write_sequnlock(&sc->waitlock);
961                 hfi1_qp_unbusy(qp, ps->wait);
962                 ret = -EBUSY;
963         }
964         spin_unlock_irqrestore(&qp->s_lock, flags);
965         return ret;
966 }
967
968 static void verbs_pio_complete(void *arg, int code)
969 {
970         struct rvt_qp *qp = (struct rvt_qp *)arg;
971         struct hfi1_qp_priv *priv = qp->priv;
972
973         if (iowait_pio_dec(&priv->s_iowait))
974                 iowait_drain_wakeup(&priv->s_iowait);
975 }
976
977 int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
978                         u64 pbc)
979 {
980         struct hfi1_qp_priv *priv = qp->priv;
981         u32 hdrwords = ps->s_txreq->hdr_dwords;
982         struct rvt_sge_state *ss = ps->s_txreq->ss;
983         u32 len = ps->s_txreq->s_cur_size;
984         u32 dwords;
985         u32 plen;
986         struct hfi1_pportdata *ppd = ps->ppd;
987         u32 *hdr;
988         u8 sc5;
989         unsigned long flags = 0;
990         struct send_context *sc;
991         struct pio_buf *pbuf;
992         int wc_status = IB_WC_SUCCESS;
993         int ret = 0;
994         pio_release_cb cb = NULL;
995         u8 extra_bytes = 0;
996
997         if (ps->s_txreq->phdr.hdr.hdr_type) {
998                 u8 pad_size = hfi1_get_16b_padding((hdrwords << 2), len);
999
1000                 extra_bytes = pad_size + (SIZE_OF_CRC << 2) + SIZE_OF_LT;
1001                 dwords = (len + extra_bytes) >> 2;
1002                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.opah;
1003         } else {
1004                 dwords = (len + 3) >> 2;
1005                 hdr = (u32 *)&ps->s_txreq->phdr.hdr.ibh;
1006         }
1007         plen = hdrwords + dwords + sizeof(pbc) / 4;
1008
1009         /* only RC/UC use complete */
1010         switch (qp->ibqp.qp_type) {
1011         case IB_QPT_RC:
1012         case IB_QPT_UC:
1013                 cb = verbs_pio_complete;
1014                 break;
1015         default:
1016                 break;
1017         }
1018
1019         /* vl15 special case taken care of in ud.c */
1020         sc5 = priv->s_sc;
1021         sc = ps->s_txreq->psc;
1022
1023         if (likely(pbc == 0)) {
1024                 u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1025
1026                 /* set PBC_DC_INFO bit (aka SC[4]) in pbc */
1027                 if (ps->s_txreq->phdr.hdr.hdr_type)
1028                         pbc |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC;
1029                 else
1030                         pbc |= (ib_is_sc5(sc5) << PBC_DC_INFO_SHIFT);
1031
1032                 if (unlikely(hfi1_dbg_should_fault_tx(qp, ps->opcode)))
1033                         pbc = hfi1_fault_tx(qp, ps->opcode, pbc);
1034                 pbc = create_pbc(ppd, pbc, qp->srate_mbps, vl, plen);
1035
1036                 /* Update HCRC based on packet opcode */
1037                 pbc = update_hcrc(ps->opcode, pbc);
1038         }
1039         if (cb)
1040                 iowait_pio_inc(&priv->s_iowait);
1041         pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1042         if (unlikely(IS_ERR_OR_NULL(pbuf))) {
1043                 if (cb)
1044                         verbs_pio_complete(qp, 0);
1045                 if (IS_ERR(pbuf)) {
1046                         /*
1047                          * If we have filled the PIO buffers to capacity and are
1048                          * not in an active state this request is not going to
1049                          * go out to so just complete it with an error or else a
1050                          * ULP or the core may be stuck waiting.
1051                          */
1052                         hfi1_cdbg(
1053                                 PIO,
1054                                 "alloc failed. state not active, completing");
1055                         wc_status = IB_WC_GENERAL_ERR;
1056                         goto pio_bail;
1057                 } else {
1058                         /*
1059                          * This is a normal occurrence. The PIO buffs are full
1060                          * up but we are still happily sending, well we could be
1061                          * so lets continue to queue the request.
1062                          */
1063                         hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1064                         ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1065                         if (!ret)
1066                                 /* txreq not queued - free */
1067                                 goto bail;
1068                         /* tx consumed in wait */
1069                         return ret;
1070                 }
1071         }
1072
1073         if (dwords == 0) {
1074                 pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1075         } else {
1076                 seg_pio_copy_start(pbuf, pbc,
1077                                    hdr, hdrwords * 4);
1078                 if (ss) {
1079                         while (len) {
1080                                 void *addr = ss->sge.vaddr;
1081                                 u32 slen = rvt_get_sge_length(&ss->sge, len);
1082
1083                                 rvt_update_sge(ss, slen, false);
1084                                 seg_pio_copy_mid(pbuf, addr, slen);
1085                                 len -= slen;
1086                         }
1087                 }
1088                 /* add icrc, lt byte, and padding to flit */
1089                 if (extra_bytes)
1090                         seg_pio_copy_mid(pbuf, trail_buf, extra_bytes);
1091
1092                 seg_pio_copy_end(pbuf);
1093         }
1094
1095         update_tx_opstats(qp, ps, plen);
1096         trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1097                                &ps->s_txreq->phdr.hdr, ib_is_sc5(sc5));
1098
1099 pio_bail:
1100         spin_lock_irqsave(&qp->s_lock, flags);
1101         if (qp->s_wqe) {
1102                 rvt_send_complete(qp, qp->s_wqe, wc_status);
1103         } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1104                 if (unlikely(wc_status == IB_WC_GENERAL_ERR))
1105                         hfi1_rc_verbs_aborted(qp, &ps->s_txreq->phdr.hdr);
1106                 hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1107         }
1108         spin_unlock_irqrestore(&qp->s_lock, flags);
1109
1110         ret = 0;
1111
1112 bail:
1113         hfi1_put_txreq(ps->s_txreq);
1114         return ret;
1115 }
1116
1117 /*
1118  * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1119  * being an entry from the partition key table), return 0
1120  * otherwise. Use the matching criteria for egress partition keys
1121  * specified in the OPAv1 spec., section 9.1l.7.
1122  */
1123 static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1124 {
1125         u16 mkey = pkey & PKEY_LOW_15_MASK;
1126         u16 mentry = ent & PKEY_LOW_15_MASK;
1127
1128         if (mkey == mentry) {
1129                 /*
1130                  * If pkey[15] is set (full partition member),
1131                  * is bit 15 in the corresponding table element
1132                  * clear (limited member)?
1133                  */
1134                 if (pkey & PKEY_MEMBER_MASK)
1135                         return !!(ent & PKEY_MEMBER_MASK);
1136                 return 1;
1137         }
1138         return 0;
1139 }
1140
1141 /**
1142  * egress_pkey_check - check P_KEY of a packet
1143  * @ppd:  Physical IB port data
1144  * @slid: SLID for packet
1145  * @bkey: PKEY for header
1146  * @sc5:  SC for packet
1147  * @s_pkey_index: It will be used for look up optimization for kernel contexts
1148  * only. If it is negative value, then it means user contexts is calling this
1149  * function.
1150  *
1151  * It checks if hdr's pkey is valid.
1152  *
1153  * Return: 0 on success, otherwise, 1
1154  */
1155 int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1156                       u8 sc5, int8_t s_pkey_index)
1157 {
1158         struct hfi1_devdata *dd;
1159         int i;
1160         int is_user_ctxt_mechanism = (s_pkey_index < 0);
1161
1162         if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1163                 return 0;
1164
1165         /* If SC15, pkey[0:14] must be 0x7fff */
1166         if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1167                 goto bad;
1168
1169         /* Is the pkey = 0x0, or 0x8000? */
1170         if ((pkey & PKEY_LOW_15_MASK) == 0)
1171                 goto bad;
1172
1173         /*
1174          * For the kernel contexts only, if a qp is passed into the function,
1175          * the most likely matching pkey has index qp->s_pkey_index
1176          */
1177         if (!is_user_ctxt_mechanism &&
1178             egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1179                 return 0;
1180         }
1181
1182         for (i = 0; i < MAX_PKEY_VALUES; i++) {
1183                 if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1184                         return 0;
1185         }
1186 bad:
1187         /*
1188          * For the user-context mechanism, the P_KEY check would only happen
1189          * once per SDMA request, not once per packet.  Therefore, there's no
1190          * need to increment the counter for the user-context mechanism.
1191          */
1192         if (!is_user_ctxt_mechanism) {
1193                 incr_cntr64(&ppd->port_xmit_constraint_errors);
1194                 dd = ppd->dd;
1195                 if (!(dd->err_info_xmit_constraint.status &
1196                       OPA_EI_STATUS_SMASK)) {
1197                         dd->err_info_xmit_constraint.status |=
1198                                 OPA_EI_STATUS_SMASK;
1199                         dd->err_info_xmit_constraint.slid = slid;
1200                         dd->err_info_xmit_constraint.pkey = pkey;
1201                 }
1202         }
1203         return 1;
1204 }
1205
1206 /**
1207  * get_send_routine - choose an egress routine
1208  *
1209  * Choose an egress routine based on QP type
1210  * and size
1211  */
1212 static inline send_routine get_send_routine(struct rvt_qp *qp,
1213                                             struct hfi1_pkt_state *ps)
1214 {
1215         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1216         struct hfi1_qp_priv *priv = qp->priv;
1217         struct verbs_txreq *tx = ps->s_txreq;
1218
1219         if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1220                 return dd->process_pio_send;
1221         switch (qp->ibqp.qp_type) {
1222         case IB_QPT_SMI:
1223                 return dd->process_pio_send;
1224         case IB_QPT_GSI:
1225         case IB_QPT_UD:
1226                 break;
1227         case IB_QPT_UC:
1228         case IB_QPT_RC:
1229                 priv->s_running_pkt_size =
1230                         (tx->s_cur_size + priv->s_running_pkt_size) / 2;
1231                 if (piothreshold &&
1232                     priv->s_running_pkt_size <= min(piothreshold, qp->pmtu) &&
1233                     (BIT(ps->opcode & OPMASK) & pio_opmask[ps->opcode >> 5]) &&
1234                     iowait_sdma_pending(&priv->s_iowait) == 0 &&
1235                     !sdma_txreq_built(&tx->txreq))
1236                         return dd->process_pio_send;
1237                 break;
1238         default:
1239                 break;
1240         }
1241         return dd->process_dma_send;
1242 }
1243
1244 /**
1245  * hfi1_verbs_send - send a packet
1246  * @qp: the QP to send on
1247  * @ps: the state of the packet to send
1248  *
1249  * Return zero if packet is sent or queued OK.
1250  * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1251  */
1252 int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1253 {
1254         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1255         struct hfi1_qp_priv *priv = qp->priv;
1256         struct ib_other_headers *ohdr = NULL;
1257         send_routine sr;
1258         int ret;
1259         u16 pkey;
1260         u32 slid;
1261         u8 l4 = 0;
1262
1263         /* locate the pkey within the headers */
1264         if (ps->s_txreq->phdr.hdr.hdr_type) {
1265                 struct hfi1_16b_header *hdr = &ps->s_txreq->phdr.hdr.opah;
1266
1267                 l4 = hfi1_16B_get_l4(hdr);
1268                 if (l4 == OPA_16B_L4_IB_LOCAL)
1269                         ohdr = &hdr->u.oth;
1270                 else if (l4 == OPA_16B_L4_IB_GLOBAL)
1271                         ohdr = &hdr->u.l.oth;
1272
1273                 slid = hfi1_16B_get_slid(hdr);
1274                 pkey = hfi1_16B_get_pkey(hdr);
1275         } else {
1276                 struct ib_header *hdr = &ps->s_txreq->phdr.hdr.ibh;
1277                 u8 lnh = ib_get_lnh(hdr);
1278
1279                 if (lnh == HFI1_LRH_GRH)
1280                         ohdr = &hdr->u.l.oth;
1281                 else
1282                         ohdr = &hdr->u.oth;
1283                 slid = ib_get_slid(hdr);
1284                 pkey = ib_bth_get_pkey(ohdr);
1285         }
1286
1287         if (likely(l4 != OPA_16B_L4_FM))
1288                 ps->opcode = ib_bth_get_opcode(ohdr);
1289         else
1290                 ps->opcode = IB_OPCODE_UD_SEND_ONLY;
1291
1292         sr = get_send_routine(qp, ps);
1293         ret = egress_pkey_check(dd->pport, slid, pkey,
1294                                 priv->s_sc, qp->s_pkey_index);
1295         if (unlikely(ret)) {
1296                 /*
1297                  * The value we are returning here does not get propagated to
1298                  * the verbs caller. Thus we need to complete the request with
1299                  * error otherwise the caller could be sitting waiting on the
1300                  * completion event. Only do this for PIO. SDMA has its own
1301                  * mechanism for handling the errors. So for SDMA we can just
1302                  * return.
1303                  */
1304                 if (sr == dd->process_pio_send) {
1305                         unsigned long flags;
1306
1307                         hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1308                                   __func__);
1309                         spin_lock_irqsave(&qp->s_lock, flags);
1310                         rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1311                         spin_unlock_irqrestore(&qp->s_lock, flags);
1312                 }
1313                 return -EINVAL;
1314         }
1315         if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1316                 return pio_wait(qp,
1317                                 ps->s_txreq->psc,
1318                                 ps,
1319                                 HFI1_S_WAIT_PIO_DRAIN);
1320         return sr(qp, ps, 0);
1321 }
1322
1323 /**
1324  * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1325  * @dd: the device data structure
1326  */
1327 static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1328 {
1329         struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1330         u32 ver = dd->dc8051_ver;
1331
1332         memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1333
1334         rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 32) |
1335                 ((u64)(dc8051_ver_min(ver)) << 16) |
1336                 (u64)dc8051_ver_patch(ver);
1337
1338         rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1339                         IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1340                         IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1341                         IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1342                         IB_DEVICE_MEM_MGT_EXTENSIONS |
1343                         IB_DEVICE_RDMA_NETDEV_OPA_VNIC;
1344         rdi->dparms.props.page_size_cap = PAGE_SIZE;
1345         rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1346         rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1347         rdi->dparms.props.hw_ver = dd->minrev;
1348         rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1349         rdi->dparms.props.max_mr_size = U64_MAX;
1350         rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1351         rdi->dparms.props.max_qp = hfi1_max_qps;
1352         rdi->dparms.props.max_qp_wr =
1353                 (hfi1_max_qp_wrs >= HFI1_QP_WQE_INVALID ?
1354                  HFI1_QP_WQE_INVALID - 1 : hfi1_max_qp_wrs);
1355         rdi->dparms.props.max_send_sge = hfi1_max_sges;
1356         rdi->dparms.props.max_recv_sge = hfi1_max_sges;
1357         rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1358         rdi->dparms.props.max_cq = hfi1_max_cqs;
1359         rdi->dparms.props.max_ah = hfi1_max_ahs;
1360         rdi->dparms.props.max_cqe = hfi1_max_cqes;
1361         rdi->dparms.props.max_map_per_fmr = 32767;
1362         rdi->dparms.props.max_pd = hfi1_max_pds;
1363         rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1364         rdi->dparms.props.max_qp_init_rd_atom = 255;
1365         rdi->dparms.props.max_srq = hfi1_max_srqs;
1366         rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1367         rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1368         rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1369         rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1370         rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1371         rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1372         rdi->dparms.props.max_total_mcast_qp_attach =
1373                                         rdi->dparms.props.max_mcast_qp_attach *
1374                                         rdi->dparms.props.max_mcast_grp;
1375 }
1376
1377 static inline u16 opa_speed_to_ib(u16 in)
1378 {
1379         u16 out = 0;
1380
1381         if (in & OPA_LINK_SPEED_25G)
1382                 out |= IB_SPEED_EDR;
1383         if (in & OPA_LINK_SPEED_12_5G)
1384                 out |= IB_SPEED_FDR;
1385
1386         return out;
1387 }
1388
1389 /*
1390  * Convert a single OPA link width (no multiple flags) to an IB value.
1391  * A zero OPA link width means link down, which means the IB width value
1392  * is a don't care.
1393  */
1394 static inline u16 opa_width_to_ib(u16 in)
1395 {
1396         switch (in) {
1397         case OPA_LINK_WIDTH_1X:
1398         /* map 2x and 3x to 1x as they don't exist in IB */
1399         case OPA_LINK_WIDTH_2X:
1400         case OPA_LINK_WIDTH_3X:
1401                 return IB_WIDTH_1X;
1402         default: /* link down or unknown, return our largest width */
1403         case OPA_LINK_WIDTH_4X:
1404                 return IB_WIDTH_4X;
1405         }
1406 }
1407
1408 static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1409                       struct ib_port_attr *props)
1410 {
1411         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1412         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1413         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1414         u32 lid = ppd->lid;
1415
1416         /* props being zeroed by the caller, avoid zeroing it here */
1417         props->lid = lid ? lid : 0;
1418         props->lmc = ppd->lmc;
1419         /* OPA logical states match IB logical states */
1420         props->state = driver_lstate(ppd);
1421         props->phys_state = driver_pstate(ppd);
1422         props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1423         props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1424         /* see rate_show() in ib core/sysfs.c */
1425         props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1426         props->max_vl_num = ppd->vls_supported;
1427
1428         /* Once we are a "first class" citizen and have added the OPA MTUs to
1429          * the core we can advertise the larger MTU enum to the ULPs, for now
1430          * advertise only 4K.
1431          *
1432          * Those applications which are either OPA aware or pass the MTU enum
1433          * from the Path Records to us will get the new 8k MTU.  Those that
1434          * attempt to process the MTU enum may fail in various ways.
1435          */
1436         props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1437                                       4096 : hfi1_max_mtu), IB_MTU_4096);
1438         props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1439                 mtu_to_enum(ppd->ibmtu, IB_MTU_4096);
1440
1441         return 0;
1442 }
1443
1444 static int modify_device(struct ib_device *device,
1445                          int device_modify_mask,
1446                          struct ib_device_modify *device_modify)
1447 {
1448         struct hfi1_devdata *dd = dd_from_ibdev(device);
1449         unsigned i;
1450         int ret;
1451
1452         if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1453                                    IB_DEVICE_MODIFY_NODE_DESC)) {
1454                 ret = -EOPNOTSUPP;
1455                 goto bail;
1456         }
1457
1458         if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1459                 memcpy(device->node_desc, device_modify->node_desc,
1460                        IB_DEVICE_NODE_DESC_MAX);
1461                 for (i = 0; i < dd->num_pports; i++) {
1462                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1463
1464                         hfi1_node_desc_chg(ibp);
1465                 }
1466         }
1467
1468         if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1469                 ib_hfi1_sys_image_guid =
1470                         cpu_to_be64(device_modify->sys_image_guid);
1471                 for (i = 0; i < dd->num_pports; i++) {
1472                         struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1473
1474                         hfi1_sys_guid_chg(ibp);
1475                 }
1476         }
1477
1478         ret = 0;
1479
1480 bail:
1481         return ret;
1482 }
1483
1484 static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1485 {
1486         struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1487         struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1488         struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1489         int ret;
1490
1491         set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1492                              OPA_LINKDOWN_REASON_UNKNOWN);
1493         ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1494         return ret;
1495 }
1496
1497 static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1498                             int guid_index, __be64 *guid)
1499 {
1500         struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1501
1502         if (guid_index >= HFI1_GUIDS_PER_PORT)
1503                 return -EINVAL;
1504
1505         *guid = get_sguid(ibp, guid_index);
1506         return 0;
1507 }
1508
1509 /*
1510  * convert ah port,sl to sc
1511  */
1512 u8 ah_to_sc(struct ib_device *ibdev, struct rdma_ah_attr *ah)
1513 {
1514         struct hfi1_ibport *ibp = to_iport(ibdev, rdma_ah_get_port_num(ah));
1515
1516         return ibp->sl_to_sc[rdma_ah_get_sl(ah)];
1517 }
1518
1519 static int hfi1_check_ah(struct ib_device *ibdev, struct rdma_ah_attr *ah_attr)
1520 {
1521         struct hfi1_ibport *ibp;
1522         struct hfi1_pportdata *ppd;
1523         struct hfi1_devdata *dd;
1524         u8 sc5;
1525         u8 sl;
1526
1527         if (hfi1_check_mcast(rdma_ah_get_dlid(ah_attr)) &&
1528             !(rdma_ah_get_ah_flags(ah_attr) & IB_AH_GRH))
1529                 return -EINVAL;
1530
1531         /* test the mapping for validity */
1532         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1533         ppd = ppd_from_ibp(ibp);
1534         dd = dd_from_ppd(ppd);
1535
1536         sl = rdma_ah_get_sl(ah_attr);
1537         if (sl >= ARRAY_SIZE(ibp->sl_to_sc))
1538                 return -EINVAL;
1539
1540         sc5 = ibp->sl_to_sc[sl];
1541         if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1542                 return -EINVAL;
1543         return 0;
1544 }
1545
1546 static void hfi1_notify_new_ah(struct ib_device *ibdev,
1547                                struct rdma_ah_attr *ah_attr,
1548                                struct rvt_ah *ah)
1549 {
1550         struct hfi1_ibport *ibp;
1551         struct hfi1_pportdata *ppd;
1552         struct hfi1_devdata *dd;
1553         u8 sc5;
1554         struct rdma_ah_attr *attr = &ah->attr;
1555
1556         /*
1557          * Do not trust reading anything from rvt_ah at this point as it is not
1558          * done being setup. We can however modify things which we need to set.
1559          */
1560
1561         ibp = to_iport(ibdev, rdma_ah_get_port_num(ah_attr));
1562         ppd = ppd_from_ibp(ibp);
1563         sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)];
1564         hfi1_update_ah_attr(ibdev, attr);
1565         hfi1_make_opa_lid(attr);
1566         dd = dd_from_ppd(ppd);
1567         ah->vl = sc_to_vlt(dd, sc5);
1568         if (ah->vl < num_vls || ah->vl == 15)
1569                 ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1570 }
1571
1572 /**
1573  * hfi1_get_npkeys - return the size of the PKEY table for context 0
1574  * @dd: the hfi1_ib device
1575  */
1576 unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1577 {
1578         return ARRAY_SIZE(dd->pport[0].pkeys);
1579 }
1580
1581 static void init_ibport(struct hfi1_pportdata *ppd)
1582 {
1583         struct hfi1_ibport *ibp = &ppd->ibport_data;
1584         size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1585         int i;
1586
1587         for (i = 0; i < sz; i++) {
1588                 ibp->sl_to_sc[i] = i;
1589                 ibp->sc_to_sl[i] = i;
1590         }
1591
1592         for (i = 0; i < RVT_MAX_TRAP_LISTS ; i++)
1593                 INIT_LIST_HEAD(&ibp->rvp.trap_lists[i].list);
1594         timer_setup(&ibp->rvp.trap_timer, hfi1_handle_trap_timer, 0);
1595
1596         spin_lock_init(&ibp->rvp.lock);
1597         /* Set the prefix to the default value (see ch. 4.1.1) */
1598         ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1599         ibp->rvp.sm_lid = 0;
1600         /*
1601          * Below should only set bits defined in OPA PortInfo.CapabilityMask
1602          * and PortInfo.CapabilityMask3
1603          */
1604         ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1605                 IB_PORT_CAP_MASK_NOTICE_SUP;
1606         ibp->rvp.port_cap3_flags = OPA_CAP_MASK3_IsSharedSpaceSupported;
1607         ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1608         ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1609         ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1610         ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1611         ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1612
1613         RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1614         RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1615 }
1616
1617 static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str)
1618 {
1619         struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1620         struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1621         u32 ver = dd_from_dev(dev)->dc8051_ver;
1622
1623         snprintf(str, IB_FW_VERSION_NAME_MAX, "%u.%u.%u", dc8051_ver_maj(ver),
1624                  dc8051_ver_min(ver), dc8051_ver_patch(ver));
1625 }
1626
1627 static const char * const driver_cntr_names[] = {
1628         /* must be element 0*/
1629         "DRIVER_KernIntr",
1630         "DRIVER_ErrorIntr",
1631         "DRIVER_Tx_Errs",
1632         "DRIVER_Rcv_Errs",
1633         "DRIVER_HW_Errs",
1634         "DRIVER_NoPIOBufs",
1635         "DRIVER_CtxtsOpen",
1636         "DRIVER_RcvLen_Errs",
1637         "DRIVER_EgrBufFull",
1638         "DRIVER_EgrHdrFull"
1639 };
1640
1641 static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1642 static const char **dev_cntr_names;
1643 static const char **port_cntr_names;
1644 int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1645 static int num_dev_cntrs;
1646 static int num_port_cntrs;
1647 static int cntr_names_initialized;
1648
1649 /*
1650  * Convert a list of names separated by '\n' into an array of NULL terminated
1651  * strings. Optionally some entries can be reserved in the array to hold extra
1652  * external strings.
1653  */
1654 static int init_cntr_names(const char *names_in,
1655                            const size_t names_len,
1656                            int num_extra_names,
1657                            int *num_cntrs,
1658                            const char ***cntr_names)
1659 {
1660         char *names_out, *p, **q;
1661         int i, n;
1662
1663         n = 0;
1664         for (i = 0; i < names_len; i++)
1665                 if (names_in[i] == '\n')
1666                         n++;
1667
1668         names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1669                             GFP_KERNEL);
1670         if (!names_out) {
1671                 *num_cntrs = 0;
1672                 *cntr_names = NULL;
1673                 return -ENOMEM;
1674         }
1675
1676         p = names_out + (n + num_extra_names) * sizeof(char *);
1677         memcpy(p, names_in, names_len);
1678
1679         q = (char **)names_out;
1680         for (i = 0; i < n; i++) {
1681                 q[i] = p;
1682                 p = strchr(p, '\n');
1683                 *p++ = '\0';
1684         }
1685
1686         *num_cntrs = n;
1687         *cntr_names = (const char **)names_out;
1688         return 0;
1689 }
1690
1691 static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1692                                             u8 port_num)
1693 {
1694         int i, err;
1695
1696         mutex_lock(&cntr_names_lock);
1697         if (!cntr_names_initialized) {
1698                 struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1699
1700                 err = init_cntr_names(dd->cntrnames,
1701                                       dd->cntrnameslen,
1702                                       num_driver_cntrs,
1703                                       &num_dev_cntrs,
1704                                       &dev_cntr_names);
1705                 if (err) {
1706                         mutex_unlock(&cntr_names_lock);
1707                         return NULL;
1708                 }
1709
1710                 for (i = 0; i < num_driver_cntrs; i++)
1711                         dev_cntr_names[num_dev_cntrs + i] =
1712                                 driver_cntr_names[i];
1713
1714                 err = init_cntr_names(dd->portcntrnames,
1715                                       dd->portcntrnameslen,
1716                                       0,
1717                                       &num_port_cntrs,
1718                                       &port_cntr_names);
1719                 if (err) {
1720                         kfree(dev_cntr_names);
1721                         dev_cntr_names = NULL;
1722                         mutex_unlock(&cntr_names_lock);
1723                         return NULL;
1724                 }
1725                 cntr_names_initialized = 1;
1726         }
1727         mutex_unlock(&cntr_names_lock);
1728
1729         if (!port_num)
1730                 return rdma_alloc_hw_stats_struct(
1731                                 dev_cntr_names,
1732                                 num_dev_cntrs + num_driver_cntrs,
1733                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1734         else
1735                 return rdma_alloc_hw_stats_struct(
1736                                 port_cntr_names,
1737                                 num_port_cntrs,
1738                                 RDMA_HW_STATS_DEFAULT_LIFESPAN);
1739 }
1740
1741 static u64 hfi1_sps_ints(void)
1742 {
1743         unsigned long index, flags;
1744         struct hfi1_devdata *dd;
1745         u64 sps_ints = 0;
1746
1747         xa_lock_irqsave(&hfi1_dev_table, flags);
1748         xa_for_each(&hfi1_dev_table, index, dd) {
1749                 sps_ints += get_all_cpu_total(dd->int_counter);
1750         }
1751         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1752         return sps_ints;
1753 }
1754
1755 static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1756                         u8 port, int index)
1757 {
1758         u64 *values;
1759         int count;
1760
1761         if (!port) {
1762                 u64 *stats = (u64 *)&hfi1_stats;
1763                 int i;
1764
1765                 hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1766                 values[num_dev_cntrs] = hfi1_sps_ints();
1767                 for (i = 1; i < num_driver_cntrs; i++)
1768                         values[num_dev_cntrs + i] = stats[i];
1769                 count = num_dev_cntrs + num_driver_cntrs;
1770         } else {
1771                 struct hfi1_ibport *ibp = to_iport(ibdev, port);
1772
1773                 hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1774                 count = num_port_cntrs;
1775         }
1776
1777         memcpy(stats->value, values, count * sizeof(u64));
1778         return count;
1779 }
1780
1781 static const struct ib_device_ops hfi1_dev_ops = {
1782         .owner = THIS_MODULE,
1783         .driver_id = RDMA_DRIVER_HFI1,
1784
1785         .alloc_hw_stats = alloc_hw_stats,
1786         .alloc_rdma_netdev = hfi1_vnic_alloc_rn,
1787         .get_dev_fw_str = hfi1_get_dev_fw_str,
1788         .get_hw_stats = get_hw_stats,
1789         .init_port = hfi1_create_port_files,
1790         .modify_device = modify_device,
1791         /* keep process mad in the driver */
1792         .process_mad = hfi1_process_mad,
1793 };
1794
1795 /**
1796  * hfi1_register_ib_device - register our device with the infiniband core
1797  * @dd: the device data structure
1798  * Return 0 if successful, errno if unsuccessful.
1799  */
1800 int hfi1_register_ib_device(struct hfi1_devdata *dd)
1801 {
1802         struct hfi1_ibdev *dev = &dd->verbs_dev;
1803         struct ib_device *ibdev = &dev->rdi.ibdev;
1804         struct hfi1_pportdata *ppd = dd->pport;
1805         struct hfi1_ibport *ibp = &ppd->ibport_data;
1806         unsigned i;
1807         int ret;
1808
1809         for (i = 0; i < dd->num_pports; i++)
1810                 init_ibport(ppd + i);
1811
1812         /* Only need to initialize non-zero fields. */
1813
1814         timer_setup(&dev->mem_timer, mem_timer, 0);
1815
1816         seqlock_init(&dev->iowait_lock);
1817         seqlock_init(&dev->txwait_lock);
1818         INIT_LIST_HEAD(&dev->txwait);
1819         INIT_LIST_HEAD(&dev->memwait);
1820
1821         ret = verbs_txreq_init(dev);
1822         if (ret)
1823                 goto err_verbs_txreq;
1824
1825         /* Use first-port GUID as node guid */
1826         ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1827
1828         /*
1829          * The system image GUID is supposed to be the same for all
1830          * HFIs in a single system but since there can be other
1831          * device types in the system, we can't be sure this is unique.
1832          */
1833         if (!ib_hfi1_sys_image_guid)
1834                 ib_hfi1_sys_image_guid = ibdev->node_guid;
1835         ibdev->phys_port_cnt = dd->num_pports;
1836         ibdev->dev.parent = &dd->pcidev->dev;
1837
1838         ib_set_device_ops(ibdev, &hfi1_dev_ops);
1839
1840         strlcpy(ibdev->node_desc, init_utsname()->nodename,
1841                 sizeof(ibdev->node_desc));
1842
1843         /*
1844          * Fill in rvt info object.
1845          */
1846         dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1847         dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1848         dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1849         dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1850         dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1851         dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1852         dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1853         /*
1854          * Fill in rvt info device attributes.
1855          */
1856         hfi1_fill_device_attr(dd);
1857
1858         /* queue pair */
1859         dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1860         dd->verbs_dev.rdi.dparms.qpn_start = 0;
1861         dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1862         dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1863         dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1864         dd->verbs_dev.rdi.dparms.qpn_res_end =
1865         dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1866         dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1867         dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1868         dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1869         dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1870         dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA |
1871                                                 RDMA_CORE_CAP_OPA_AH;
1872         dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1873
1874         dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1875         dd->verbs_dev.rdi.driver_f.qp_priv_init = hfi1_qp_priv_init;
1876         dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1877         dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1878         dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1879         dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1880         dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1881         dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1882         dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1883         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1884         dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1885         dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1886         dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1887         dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1888         dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1889         dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1890         dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1891         dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1892         dd->verbs_dev.rdi.driver_f.notify_restart_rc = hfi1_restart_rc;
1893         dd->verbs_dev.rdi.driver_f.setup_wqe = hfi1_setup_wqe;
1894         dd->verbs_dev.rdi.driver_f.comp_vect_cpu_lookup =
1895                                                 hfi1_comp_vect_mappings_lookup;
1896
1897         /* completeion queue */
1898         dd->verbs_dev.rdi.ibdev.num_comp_vectors = dd->comp_vect_possible_cpus;
1899         dd->verbs_dev.rdi.dparms.node = dd->node;
1900
1901         /* misc settings */
1902         dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1903         dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1904         dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1905         dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1906         dd->verbs_dev.rdi.dparms.sge_copy_mode = sge_copy_mode;
1907         dd->verbs_dev.rdi.dparms.wss_threshold = wss_threshold;
1908         dd->verbs_dev.rdi.dparms.wss_clean_period = wss_clean_period;
1909         dd->verbs_dev.rdi.dparms.reserved_operations = 1;
1910         dd->verbs_dev.rdi.dparms.extra_rdma_atomic = HFI1_TID_RDMA_WRITE_CNT;
1911
1912         /* post send table */
1913         dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1914
1915         /* opcode translation table */
1916         dd->verbs_dev.rdi.wc_opcode = ib_hfi1_wc_opcode;
1917
1918         ppd = dd->pport;
1919         for (i = 0; i < dd->num_pports; i++, ppd++)
1920                 rvt_init_port(&dd->verbs_dev.rdi,
1921                               &ppd->ibport_data.rvp,
1922                               i,
1923                               ppd->pkeys);
1924
1925         rdma_set_device_sysfs_group(&dd->verbs_dev.rdi.ibdev,
1926                                     &ib_hfi1_attr_group);
1927
1928         ret = rvt_register_device(&dd->verbs_dev.rdi);
1929         if (ret)
1930                 goto err_verbs_txreq;
1931
1932         ret = hfi1_verbs_register_sysfs(dd);
1933         if (ret)
1934                 goto err_class;
1935
1936         return ret;
1937
1938 err_class:
1939         rvt_unregister_device(&dd->verbs_dev.rdi);
1940 err_verbs_txreq:
1941         verbs_txreq_exit(dev);
1942         dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1943         return ret;
1944 }
1945
1946 void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1947 {
1948         struct hfi1_ibdev *dev = &dd->verbs_dev;
1949
1950         hfi1_verbs_unregister_sysfs(dd);
1951
1952         rvt_unregister_device(&dd->verbs_dev.rdi);
1953
1954         if (!list_empty(&dev->txwait))
1955                 dd_dev_err(dd, "txwait list not empty!\n");
1956         if (!list_empty(&dev->memwait))
1957                 dd_dev_err(dd, "memwait list not empty!\n");
1958
1959         del_timer_sync(&dev->mem_timer);
1960         verbs_txreq_exit(dev);
1961
1962         mutex_lock(&cntr_names_lock);
1963         kfree(dev_cntr_names);
1964         kfree(port_cntr_names);
1965         dev_cntr_names = NULL;
1966         port_cntr_names = NULL;
1967         cntr_names_initialized = 0;
1968         mutex_unlock(&cntr_names_lock);
1969 }
1970
1971 void hfi1_cnp_rcv(struct hfi1_packet *packet)
1972 {
1973         struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1974         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1975         struct ib_header *hdr = packet->hdr;
1976         struct rvt_qp *qp = packet->qp;
1977         u32 lqpn, rqpn = 0;
1978         u16 rlid = 0;
1979         u8 sl, sc5, svc_type;
1980
1981         switch (packet->qp->ibqp.qp_type) {
1982         case IB_QPT_UC:
1983                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1984                 rqpn = qp->remote_qpn;
1985                 svc_type = IB_CC_SVCTYPE_UC;
1986                 break;
1987         case IB_QPT_RC:
1988                 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
1989                 rqpn = qp->remote_qpn;
1990                 svc_type = IB_CC_SVCTYPE_RC;
1991                 break;
1992         case IB_QPT_SMI:
1993         case IB_QPT_GSI:
1994         case IB_QPT_UD:
1995                 svc_type = IB_CC_SVCTYPE_UD;
1996                 break;
1997         default:
1998                 ibp->rvp.n_pkt_drops++;
1999                 return;
2000         }
2001
2002         sc5 = hfi1_9B_get_sc5(hdr, packet->rhf);
2003         sl = ibp->sc_to_sl[sc5];
2004         lqpn = qp->ibqp.qp_num;
2005
2006         process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
2007 }