Merge tag 'gpio-v4.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / sdma.c
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/spinlock.h>
49 #include <linux/seqlock.h>
50 #include <linux/netdevice.h>
51 #include <linux/moduleparam.h>
52 #include <linux/bitops.h>
53 #include <linux/timer.h>
54 #include <linux/vmalloc.h>
55 #include <linux/highmem.h>
56
57 #include "hfi.h"
58 #include "common.h"
59 #include "qp.h"
60 #include "sdma.h"
61 #include "iowait.h"
62 #include "trace.h"
63
64 /* must be a power of 2 >= 64 <= 32768 */
65 #define SDMA_DESCQ_CNT 2048
66 #define SDMA_DESC_INTR 64
67 #define INVALID_TAIL 0xffff
68
69 static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
70 module_param(sdma_descq_cnt, uint, S_IRUGO);
71 MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
72
73 static uint sdma_idle_cnt = 250;
74 module_param(sdma_idle_cnt, uint, S_IRUGO);
75 MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
76
77 uint mod_num_sdma;
78 module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
79 MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
80
81 static uint sdma_desct_intr = SDMA_DESC_INTR;
82 module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
84
85 #define SDMA_WAIT_BATCH_SIZE 20
86 /* max wait time for a SDMA engine to indicate it has halted */
87 #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
88 /* all SDMA engine errors that cause a halt */
89
90 #define SD(name) SEND_DMA_##name
91 #define ALL_SDMA_ENG_HALT_ERRS \
92         (SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
93         | SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
94         | SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
95         | SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
96         | SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
97         | SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
98         | SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
99         | SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
100         | SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
101         | SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
102         | SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
103         | SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
104         | SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
105         | SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
106         | SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
107         | SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
108         | SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
109         | SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
110
111 /* sdma_sendctrl operations */
112 #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
113 #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
114 #define SDMA_SENDCTRL_OP_HALT      BIT(2)
115 #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
116
117 /* handle long defines */
118 #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
119 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
120 #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
121 SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
122
123 static const char * const sdma_state_names[] = {
124         [sdma_state_s00_hw_down]                = "s00_HwDown",
125         [sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
126         [sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
127         [sdma_state_s20_idle]                   = "s20_Idle",
128         [sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
129         [sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
130         [sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
131         [sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
132         [sdma_state_s80_hw_freeze]              = "s80_HwFreeze",
133         [sdma_state_s82_freeze_sw_clean]        = "s82_FreezeSwClean",
134         [sdma_state_s99_running]                = "s99_Running",
135 };
136
137 #ifdef CONFIG_SDMA_VERBOSITY
138 static const char * const sdma_event_names[] = {
139         [sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
140         [sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
141         [sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
142         [sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
143         [sdma_event_e30_go_running]   = "e30_GoRunning",
144         [sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
145         [sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
146         [sdma_event_e60_hw_halted]    = "e60_HwHalted",
147         [sdma_event_e70_go_idle]      = "e70_GoIdle",
148         [sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
149         [sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
150         [sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
151         [sdma_event_e85_link_down]    = "e85_LinkDown",
152         [sdma_event_e90_sw_halted]    = "e90_SwHalted",
153 };
154 #endif
155
156 static const struct sdma_set_state_action sdma_action_table[] = {
157         [sdma_state_s00_hw_down] = {
158                 .go_s99_running_tofalse = 1,
159                 .op_enable = 0,
160                 .op_intenable = 0,
161                 .op_halt = 0,
162                 .op_cleanup = 0,
163         },
164         [sdma_state_s10_hw_start_up_halt_wait] = {
165                 .op_enable = 0,
166                 .op_intenable = 0,
167                 .op_halt = 1,
168                 .op_cleanup = 0,
169         },
170         [sdma_state_s15_hw_start_up_clean_wait] = {
171                 .op_enable = 0,
172                 .op_intenable = 1,
173                 .op_halt = 0,
174                 .op_cleanup = 1,
175         },
176         [sdma_state_s20_idle] = {
177                 .op_enable = 0,
178                 .op_intenable = 1,
179                 .op_halt = 0,
180                 .op_cleanup = 0,
181         },
182         [sdma_state_s30_sw_clean_up_wait] = {
183                 .op_enable = 0,
184                 .op_intenable = 0,
185                 .op_halt = 0,
186                 .op_cleanup = 0,
187         },
188         [sdma_state_s40_hw_clean_up_wait] = {
189                 .op_enable = 0,
190                 .op_intenable = 0,
191                 .op_halt = 0,
192                 .op_cleanup = 1,
193         },
194         [sdma_state_s50_hw_halt_wait] = {
195                 .op_enable = 0,
196                 .op_intenable = 0,
197                 .op_halt = 0,
198                 .op_cleanup = 0,
199         },
200         [sdma_state_s60_idle_halt_wait] = {
201                 .go_s99_running_tofalse = 1,
202                 .op_enable = 0,
203                 .op_intenable = 0,
204                 .op_halt = 1,
205                 .op_cleanup = 0,
206         },
207         [sdma_state_s80_hw_freeze] = {
208                 .op_enable = 0,
209                 .op_intenable = 0,
210                 .op_halt = 0,
211                 .op_cleanup = 0,
212         },
213         [sdma_state_s82_freeze_sw_clean] = {
214                 .op_enable = 0,
215                 .op_intenable = 0,
216                 .op_halt = 0,
217                 .op_cleanup = 0,
218         },
219         [sdma_state_s99_running] = {
220                 .op_enable = 1,
221                 .op_intenable = 1,
222                 .op_halt = 0,
223                 .op_cleanup = 0,
224                 .go_s99_running_totrue = 1,
225         },
226 };
227
228 #define SDMA_TAIL_UPDATE_THRESH 0x1F
229
230 /* declare all statics here rather than keep sorting */
231 static void sdma_complete(struct kref *);
232 static void sdma_finalput(struct sdma_state *);
233 static void sdma_get(struct sdma_state *);
234 static void sdma_hw_clean_up_task(unsigned long);
235 static void sdma_put(struct sdma_state *);
236 static void sdma_set_state(struct sdma_engine *, enum sdma_states);
237 static void sdma_start_hw_clean_up(struct sdma_engine *);
238 static void sdma_sw_clean_up_task(unsigned long);
239 static void sdma_sendctrl(struct sdma_engine *, unsigned);
240 static void init_sdma_regs(struct sdma_engine *, u32, uint);
241 static void sdma_process_event(
242         struct sdma_engine *sde,
243         enum sdma_events event);
244 static void __sdma_process_event(
245         struct sdma_engine *sde,
246         enum sdma_events event);
247 static void dump_sdma_state(struct sdma_engine *sde);
248 static void sdma_make_progress(struct sdma_engine *sde, u64 status);
249 static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
250 static void sdma_flush_descq(struct sdma_engine *sde);
251
252 /**
253  * sdma_state_name() - return state string from enum
254  * @state: state
255  */
256 static const char *sdma_state_name(enum sdma_states state)
257 {
258         return sdma_state_names[state];
259 }
260
261 static void sdma_get(struct sdma_state *ss)
262 {
263         kref_get(&ss->kref);
264 }
265
266 static void sdma_complete(struct kref *kref)
267 {
268         struct sdma_state *ss =
269                 container_of(kref, struct sdma_state, kref);
270
271         complete(&ss->comp);
272 }
273
274 static void sdma_put(struct sdma_state *ss)
275 {
276         kref_put(&ss->kref, sdma_complete);
277 }
278
279 static void sdma_finalput(struct sdma_state *ss)
280 {
281         sdma_put(ss);
282         wait_for_completion(&ss->comp);
283 }
284
285 static inline void write_sde_csr(
286         struct sdma_engine *sde,
287         u32 offset0,
288         u64 value)
289 {
290         write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
291 }
292
293 static inline u64 read_sde_csr(
294         struct sdma_engine *sde,
295         u32 offset0)
296 {
297         return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
298 }
299
300 /*
301  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
302  * sdma engine 'sde' to drop to 0.
303  */
304 static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
305                                         int pause)
306 {
307         u64 off = 8 * sde->this_idx;
308         struct hfi1_devdata *dd = sde->dd;
309         int lcnt = 0;
310         u64 reg_prev;
311         u64 reg = 0;
312
313         while (1) {
314                 reg_prev = reg;
315                 reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
316
317                 reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
318                 reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
319                 if (reg == 0)
320                         break;
321                 /* counter is reest if accupancy count changes */
322                 if (reg != reg_prev)
323                         lcnt = 0;
324                 if (lcnt++ > 500) {
325                         /* timed out - bounce the link */
326                         dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
327                                    __func__, sde->this_idx, (u32)reg);
328                         queue_work(dd->pport->link_wq,
329                                    &dd->pport->link_bounce_work);
330                         break;
331                 }
332                 udelay(1);
333         }
334 }
335
336 /*
337  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
338  * and pause for credit return.
339  */
340 void sdma_wait(struct hfi1_devdata *dd)
341 {
342         int i;
343
344         for (i = 0; i < dd->num_sdma; i++) {
345                 struct sdma_engine *sde = &dd->per_sdma[i];
346
347                 sdma_wait_for_packet_egress(sde, 0);
348         }
349 }
350
351 static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
352 {
353         u64 reg;
354
355         if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
356                 return;
357         reg = cnt;
358         reg &= SD(DESC_CNT_CNT_MASK);
359         reg <<= SD(DESC_CNT_CNT_SHIFT);
360         write_sde_csr(sde, SD(DESC_CNT), reg);
361 }
362
363 static inline void complete_tx(struct sdma_engine *sde,
364                                struct sdma_txreq *tx,
365                                int res)
366 {
367         /* protect against complete modifying */
368         struct iowait *wait = tx->wait;
369         callback_t complete = tx->complete;
370
371 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
372         trace_hfi1_sdma_out_sn(sde, tx->sn);
373         if (WARN_ON_ONCE(sde->head_sn != tx->sn))
374                 dd_dev_err(sde->dd, "expected %llu got %llu\n",
375                            sde->head_sn, tx->sn);
376         sde->head_sn++;
377 #endif
378         __sdma_txclean(sde->dd, tx);
379         if (complete)
380                 (*complete)(tx, res);
381         if (wait && iowait_sdma_dec(wait))
382                 iowait_drain_wakeup(wait);
383 }
384
385 /*
386  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
387  *
388  * Depending on timing there can be txreqs in two places:
389  * - in the descq ring
390  * - in the flush list
391  *
392  * To avoid ordering issues the descq ring needs to be flushed
393  * first followed by the flush list.
394  *
395  * This routine is called from two places
396  * - From a work queue item
397  * - Directly from the state machine just before setting the
398  *   state to running
399  *
400  * Must be called with head_lock held
401  *
402  */
403 static void sdma_flush(struct sdma_engine *sde)
404 {
405         struct sdma_txreq *txp, *txp_next;
406         LIST_HEAD(flushlist);
407         unsigned long flags;
408
409         /* flush from head to tail */
410         sdma_flush_descq(sde);
411         spin_lock_irqsave(&sde->flushlist_lock, flags);
412         /* copy flush list */
413         list_for_each_entry_safe(txp, txp_next, &sde->flushlist, list) {
414                 list_del_init(&txp->list);
415                 list_add_tail(&txp->list, &flushlist);
416         }
417         spin_unlock_irqrestore(&sde->flushlist_lock, flags);
418         /* flush from flush list */
419         list_for_each_entry_safe(txp, txp_next, &flushlist, list)
420                 complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
421 }
422
423 /*
424  * Fields a work request for flushing the descq ring
425  * and the flush list
426  *
427  * If the engine has been brought to running during
428  * the scheduling delay, the flush is ignored, assuming
429  * that the process of bringing the engine to running
430  * would have done this flush prior to going to running.
431  *
432  */
433 static void sdma_field_flush(struct work_struct *work)
434 {
435         unsigned long flags;
436         struct sdma_engine *sde =
437                 container_of(work, struct sdma_engine, flush_worker);
438
439         write_seqlock_irqsave(&sde->head_lock, flags);
440         if (!__sdma_running(sde))
441                 sdma_flush(sde);
442         write_sequnlock_irqrestore(&sde->head_lock, flags);
443 }
444
445 static void sdma_err_halt_wait(struct work_struct *work)
446 {
447         struct sdma_engine *sde = container_of(work, struct sdma_engine,
448                                                 err_halt_worker);
449         u64 statuscsr;
450         unsigned long timeout;
451
452         timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
453         while (1) {
454                 statuscsr = read_sde_csr(sde, SD(STATUS));
455                 statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
456                 if (statuscsr)
457                         break;
458                 if (time_after(jiffies, timeout)) {
459                         dd_dev_err(sde->dd,
460                                    "SDMA engine %d - timeout waiting for engine to halt\n",
461                                    sde->this_idx);
462                         /*
463                          * Continue anyway.  This could happen if there was
464                          * an uncorrectable error in the wrong spot.
465                          */
466                         break;
467                 }
468                 usleep_range(80, 120);
469         }
470
471         sdma_process_event(sde, sdma_event_e15_hw_halt_done);
472 }
473
474 static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
475 {
476         if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
477                 unsigned index;
478                 struct hfi1_devdata *dd = sde->dd;
479
480                 for (index = 0; index < dd->num_sdma; index++) {
481                         struct sdma_engine *curr_sdma = &dd->per_sdma[index];
482
483                         if (curr_sdma != sde)
484                                 curr_sdma->progress_check_head =
485                                                         curr_sdma->descq_head;
486                 }
487                 dd_dev_err(sde->dd,
488                            "SDMA engine %d - check scheduled\n",
489                                 sde->this_idx);
490                 mod_timer(&sde->err_progress_check_timer, jiffies + 10);
491         }
492 }
493
494 static void sdma_err_progress_check(struct timer_list *t)
495 {
496         unsigned index;
497         struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
498
499         dd_dev_err(sde->dd, "SDE progress check event\n");
500         for (index = 0; index < sde->dd->num_sdma; index++) {
501                 struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
502                 unsigned long flags;
503
504                 /* check progress on each engine except the current one */
505                 if (curr_sde == sde)
506                         continue;
507                 /*
508                  * We must lock interrupts when acquiring sde->lock,
509                  * to avoid a deadlock if interrupt triggers and spins on
510                  * the same lock on same CPU
511                  */
512                 spin_lock_irqsave(&curr_sde->tail_lock, flags);
513                 write_seqlock(&curr_sde->head_lock);
514
515                 /* skip non-running queues */
516                 if (curr_sde->state.current_state != sdma_state_s99_running) {
517                         write_sequnlock(&curr_sde->head_lock);
518                         spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
519                         continue;
520                 }
521
522                 if ((curr_sde->descq_head != curr_sde->descq_tail) &&
523                     (curr_sde->descq_head ==
524                                 curr_sde->progress_check_head))
525                         __sdma_process_event(curr_sde,
526                                              sdma_event_e90_sw_halted);
527                 write_sequnlock(&curr_sde->head_lock);
528                 spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
529         }
530         schedule_work(&sde->err_halt_worker);
531 }
532
533 static void sdma_hw_clean_up_task(unsigned long opaque)
534 {
535         struct sdma_engine *sde = (struct sdma_engine *)opaque;
536         u64 statuscsr;
537
538         while (1) {
539 #ifdef CONFIG_SDMA_VERBOSITY
540                 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
541                            sde->this_idx, slashstrip(__FILE__), __LINE__,
542                         __func__);
543 #endif
544                 statuscsr = read_sde_csr(sde, SD(STATUS));
545                 statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
546                 if (statuscsr)
547                         break;
548                 udelay(10);
549         }
550
551         sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
552 }
553
554 static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
555 {
556         return sde->tx_ring[sde->tx_head & sde->sdma_mask];
557 }
558
559 /*
560  * flush ring for recovery
561  */
562 static void sdma_flush_descq(struct sdma_engine *sde)
563 {
564         u16 head, tail;
565         int progress = 0;
566         struct sdma_txreq *txp = get_txhead(sde);
567
568         /* The reason for some of the complexity of this code is that
569          * not all descriptors have corresponding txps.  So, we have to
570          * be able to skip over descs until we wander into the range of
571          * the next txp on the list.
572          */
573         head = sde->descq_head & sde->sdma_mask;
574         tail = sde->descq_tail & sde->sdma_mask;
575         while (head != tail) {
576                 /* advance head, wrap if needed */
577                 head = ++sde->descq_head & sde->sdma_mask;
578                 /* if now past this txp's descs, do the callback */
579                 if (txp && txp->next_descq_idx == head) {
580                         /* remove from list */
581                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
582                         complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
583                         trace_hfi1_sdma_progress(sde, head, tail, txp);
584                         txp = get_txhead(sde);
585                 }
586                 progress++;
587         }
588         if (progress)
589                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
590 }
591
592 static void sdma_sw_clean_up_task(unsigned long opaque)
593 {
594         struct sdma_engine *sde = (struct sdma_engine *)opaque;
595         unsigned long flags;
596
597         spin_lock_irqsave(&sde->tail_lock, flags);
598         write_seqlock(&sde->head_lock);
599
600         /*
601          * At this point, the following should always be true:
602          * - We are halted, so no more descriptors are getting retired.
603          * - We are not running, so no one is submitting new work.
604          * - Only we can send the e40_sw_cleaned, so we can't start
605          *   running again until we say so.  So, the active list and
606          *   descq are ours to play with.
607          */
608
609         /*
610          * In the error clean up sequence, software clean must be called
611          * before the hardware clean so we can use the hardware head in
612          * the progress routine.  A hardware clean or SPC unfreeze will
613          * reset the hardware head.
614          *
615          * Process all retired requests. The progress routine will use the
616          * latest physical hardware head - we are not running so speed does
617          * not matter.
618          */
619         sdma_make_progress(sde, 0);
620
621         sdma_flush(sde);
622
623         /*
624          * Reset our notion of head and tail.
625          * Note that the HW registers have been reset via an earlier
626          * clean up.
627          */
628         sde->descq_tail = 0;
629         sde->descq_head = 0;
630         sde->desc_avail = sdma_descq_freecnt(sde);
631         *sde->head_dma = 0;
632
633         __sdma_process_event(sde, sdma_event_e40_sw_cleaned);
634
635         write_sequnlock(&sde->head_lock);
636         spin_unlock_irqrestore(&sde->tail_lock, flags);
637 }
638
639 static void sdma_sw_tear_down(struct sdma_engine *sde)
640 {
641         struct sdma_state *ss = &sde->state;
642
643         /* Releasing this reference means the state machine has stopped. */
644         sdma_put(ss);
645
646         /* stop waiting for all unfreeze events to complete */
647         atomic_set(&sde->dd->sdma_unfreeze_count, -1);
648         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
649 }
650
651 static void sdma_start_hw_clean_up(struct sdma_engine *sde)
652 {
653         tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
654 }
655
656 static void sdma_set_state(struct sdma_engine *sde,
657                            enum sdma_states next_state)
658 {
659         struct sdma_state *ss = &sde->state;
660         const struct sdma_set_state_action *action = sdma_action_table;
661         unsigned op = 0;
662
663         trace_hfi1_sdma_state(
664                 sde,
665                 sdma_state_names[ss->current_state],
666                 sdma_state_names[next_state]);
667
668         /* debugging bookkeeping */
669         ss->previous_state = ss->current_state;
670         ss->previous_op = ss->current_op;
671         ss->current_state = next_state;
672
673         if (ss->previous_state != sdma_state_s99_running &&
674             next_state == sdma_state_s99_running)
675                 sdma_flush(sde);
676
677         if (action[next_state].op_enable)
678                 op |= SDMA_SENDCTRL_OP_ENABLE;
679
680         if (action[next_state].op_intenable)
681                 op |= SDMA_SENDCTRL_OP_INTENABLE;
682
683         if (action[next_state].op_halt)
684                 op |= SDMA_SENDCTRL_OP_HALT;
685
686         if (action[next_state].op_cleanup)
687                 op |= SDMA_SENDCTRL_OP_CLEANUP;
688
689         if (action[next_state].go_s99_running_tofalse)
690                 ss->go_s99_running = 0;
691
692         if (action[next_state].go_s99_running_totrue)
693                 ss->go_s99_running = 1;
694
695         ss->current_op = op;
696         sdma_sendctrl(sde, ss->current_op);
697 }
698
699 /**
700  * sdma_get_descq_cnt() - called when device probed
701  *
702  * Return a validated descq count.
703  *
704  * This is currently only used in the verbs initialization to build the tx
705  * list.
706  *
707  * This will probably be deleted in favor of a more scalable approach to
708  * alloc tx's.
709  *
710  */
711 u16 sdma_get_descq_cnt(void)
712 {
713         u16 count = sdma_descq_cnt;
714
715         if (!count)
716                 return SDMA_DESCQ_CNT;
717         /* count must be a power of 2 greater than 64 and less than
718          * 32768.   Otherwise return default.
719          */
720         if (!is_power_of_2(count))
721                 return SDMA_DESCQ_CNT;
722         if (count < 64 || count > 32768)
723                 return SDMA_DESCQ_CNT;
724         return count;
725 }
726
727 /**
728  * sdma_engine_get_vl() - return vl for a given sdma engine
729  * @sde: sdma engine
730  *
731  * This function returns the vl mapped to a given engine, or an error if
732  * the mapping can't be found. The mapping fields are protected by RCU.
733  */
734 int sdma_engine_get_vl(struct sdma_engine *sde)
735 {
736         struct hfi1_devdata *dd = sde->dd;
737         struct sdma_vl_map *m;
738         u8 vl;
739
740         if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
741                 return -EINVAL;
742
743         rcu_read_lock();
744         m = rcu_dereference(dd->sdma_map);
745         if (unlikely(!m)) {
746                 rcu_read_unlock();
747                 return -EINVAL;
748         }
749         vl = m->engine_to_vl[sde->this_idx];
750         rcu_read_unlock();
751
752         return vl;
753 }
754
755 /**
756  * sdma_select_engine_vl() - select sdma engine
757  * @dd: devdata
758  * @selector: a spreading factor
759  * @vl: this vl
760  *
761  *
762  * This function returns an engine based on the selector and a vl.  The
763  * mapping fields are protected by RCU.
764  */
765 struct sdma_engine *sdma_select_engine_vl(
766         struct hfi1_devdata *dd,
767         u32 selector,
768         u8 vl)
769 {
770         struct sdma_vl_map *m;
771         struct sdma_map_elem *e;
772         struct sdma_engine *rval;
773
774         /* NOTE This should only happen if SC->VL changed after the initial
775          *      checks on the QP/AH
776          *      Default will return engine 0 below
777          */
778         if (vl >= num_vls) {
779                 rval = NULL;
780                 goto done;
781         }
782
783         rcu_read_lock();
784         m = rcu_dereference(dd->sdma_map);
785         if (unlikely(!m)) {
786                 rcu_read_unlock();
787                 return &dd->per_sdma[0];
788         }
789         e = m->map[vl & m->mask];
790         rval = e->sde[selector & e->mask];
791         rcu_read_unlock();
792
793 done:
794         rval =  !rval ? &dd->per_sdma[0] : rval;
795         trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
796         return rval;
797 }
798
799 /**
800  * sdma_select_engine_sc() - select sdma engine
801  * @dd: devdata
802  * @selector: a spreading factor
803  * @sc5: the 5 bit sc
804  *
805  *
806  * This function returns an engine based on the selector and an sc.
807  */
808 struct sdma_engine *sdma_select_engine_sc(
809         struct hfi1_devdata *dd,
810         u32 selector,
811         u8 sc5)
812 {
813         u8 vl = sc_to_vlt(dd, sc5);
814
815         return sdma_select_engine_vl(dd, selector, vl);
816 }
817
818 struct sdma_rht_map_elem {
819         u32 mask;
820         u8 ctr;
821         struct sdma_engine *sde[0];
822 };
823
824 struct sdma_rht_node {
825         unsigned long cpu_id;
826         struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
827         struct rhash_head node;
828 };
829
830 #define NR_CPUS_HINT 192
831
832 static const struct rhashtable_params sdma_rht_params = {
833         .nelem_hint = NR_CPUS_HINT,
834         .head_offset = offsetof(struct sdma_rht_node, node),
835         .key_offset = offsetof(struct sdma_rht_node, cpu_id),
836         .key_len = FIELD_SIZEOF(struct sdma_rht_node, cpu_id),
837         .max_size = NR_CPUS,
838         .min_size = 8,
839         .automatic_shrinking = true,
840 };
841
842 /*
843  * sdma_select_user_engine() - select sdma engine based on user setup
844  * @dd: devdata
845  * @selector: a spreading factor
846  * @vl: this vl
847  *
848  * This function returns an sdma engine for a user sdma request.
849  * User defined sdma engine affinity setting is honored when applicable,
850  * otherwise system default sdma engine mapping is used. To ensure correct
851  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
852  */
853 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
854                                             u32 selector, u8 vl)
855 {
856         struct sdma_rht_node *rht_node;
857         struct sdma_engine *sde = NULL;
858         const struct cpumask *current_mask = &current->cpus_allowed;
859         unsigned long cpu_id;
860
861         /*
862          * To ensure that always the same sdma engine(s) will be
863          * selected make sure the process is pinned to this CPU only.
864          */
865         if (cpumask_weight(current_mask) != 1)
866                 goto out;
867
868         cpu_id = smp_processor_id();
869         rcu_read_lock();
870         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu_id,
871                                           sdma_rht_params);
872
873         if (rht_node && rht_node->map[vl]) {
874                 struct sdma_rht_map_elem *map = rht_node->map[vl];
875
876                 sde = map->sde[selector & map->mask];
877         }
878         rcu_read_unlock();
879
880         if (sde)
881                 return sde;
882
883 out:
884         return sdma_select_engine_vl(dd, selector, vl);
885 }
886
887 static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
888 {
889         int i;
890
891         for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
892                 map->sde[map->ctr + i] = map->sde[i];
893 }
894
895 static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
896                                  struct sdma_engine *sde)
897 {
898         unsigned int i, pow;
899
900         /* only need to check the first ctr entries for a match */
901         for (i = 0; i < map->ctr; i++) {
902                 if (map->sde[i] == sde) {
903                         memmove(&map->sde[i], &map->sde[i + 1],
904                                 (map->ctr - i - 1) * sizeof(map->sde[0]));
905                         map->ctr--;
906                         pow = roundup_pow_of_two(map->ctr ? : 1);
907                         map->mask = pow - 1;
908                         sdma_populate_sde_map(map);
909                         break;
910                 }
911         }
912 }
913
914 /*
915  * Prevents concurrent reads and writes of the sdma engine cpu_mask
916  */
917 static DEFINE_MUTEX(process_to_sde_mutex);
918
919 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
920                                 size_t count)
921 {
922         struct hfi1_devdata *dd = sde->dd;
923         cpumask_var_t mask, new_mask;
924         unsigned long cpu;
925         int ret, vl, sz;
926         struct sdma_rht_node *rht_node;
927
928         vl = sdma_engine_get_vl(sde);
929         if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
930                 return -EINVAL;
931
932         ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
933         if (!ret)
934                 return -ENOMEM;
935
936         ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
937         if (!ret) {
938                 free_cpumask_var(mask);
939                 return -ENOMEM;
940         }
941         ret = cpulist_parse(buf, mask);
942         if (ret)
943                 goto out_free;
944
945         if (!cpumask_subset(mask, cpu_online_mask)) {
946                 dd_dev_warn(sde->dd, "Invalid CPU mask\n");
947                 ret = -EINVAL;
948                 goto out_free;
949         }
950
951         sz = sizeof(struct sdma_rht_map_elem) +
952                         (TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
953
954         mutex_lock(&process_to_sde_mutex);
955
956         for_each_cpu(cpu, mask) {
957                 /* Check if we have this already mapped */
958                 if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
959                         cpumask_set_cpu(cpu, new_mask);
960                         continue;
961                 }
962
963                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
964                                                   sdma_rht_params);
965                 if (!rht_node) {
966                         rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
967                         if (!rht_node) {
968                                 ret = -ENOMEM;
969                                 goto out;
970                         }
971
972                         rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
973                         if (!rht_node->map[vl]) {
974                                 kfree(rht_node);
975                                 ret = -ENOMEM;
976                                 goto out;
977                         }
978                         rht_node->cpu_id = cpu;
979                         rht_node->map[vl]->mask = 0;
980                         rht_node->map[vl]->ctr = 1;
981                         rht_node->map[vl]->sde[0] = sde;
982
983                         ret = rhashtable_insert_fast(dd->sdma_rht,
984                                                      &rht_node->node,
985                                                      sdma_rht_params);
986                         if (ret) {
987                                 kfree(rht_node->map[vl]);
988                                 kfree(rht_node);
989                                 dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
990                                            cpu);
991                                 goto out;
992                         }
993
994                 } else {
995                         int ctr, pow;
996
997                         /* Add new user mappings */
998                         if (!rht_node->map[vl])
999                                 rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
1000
1001                         if (!rht_node->map[vl]) {
1002                                 ret = -ENOMEM;
1003                                 goto out;
1004                         }
1005
1006                         rht_node->map[vl]->ctr++;
1007                         ctr = rht_node->map[vl]->ctr;
1008                         rht_node->map[vl]->sde[ctr - 1] = sde;
1009                         pow = roundup_pow_of_two(ctr);
1010                         rht_node->map[vl]->mask = pow - 1;
1011
1012                         /* Populate the sde map table */
1013                         sdma_populate_sde_map(rht_node->map[vl]);
1014                 }
1015                 cpumask_set_cpu(cpu, new_mask);
1016         }
1017
1018         /* Clean up old mappings */
1019         for_each_cpu(cpu, cpu_online_mask) {
1020                 struct sdma_rht_node *rht_node;
1021
1022                 /* Don't cleanup sdes that are set in the new mask */
1023                 if (cpumask_test_cpu(cpu, mask))
1024                         continue;
1025
1026                 rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
1027                                                   sdma_rht_params);
1028                 if (rht_node) {
1029                         bool empty = true;
1030                         int i;
1031
1032                         /* Remove mappings for old sde */
1033                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1034                                 if (rht_node->map[i])
1035                                         sdma_cleanup_sde_map(rht_node->map[i],
1036                                                              sde);
1037
1038                         /* Free empty hash table entries */
1039                         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1040                                 if (!rht_node->map[i])
1041                                         continue;
1042
1043                                 if (rht_node->map[i]->ctr) {
1044                                         empty = false;
1045                                         break;
1046                                 }
1047                         }
1048
1049                         if (empty) {
1050                                 ret = rhashtable_remove_fast(dd->sdma_rht,
1051                                                              &rht_node->node,
1052                                                              sdma_rht_params);
1053                                 WARN_ON(ret);
1054
1055                                 for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1056                                         kfree(rht_node->map[i]);
1057
1058                                 kfree(rht_node);
1059                         }
1060                 }
1061         }
1062
1063         cpumask_copy(&sde->cpu_mask, new_mask);
1064 out:
1065         mutex_unlock(&process_to_sde_mutex);
1066 out_free:
1067         free_cpumask_var(mask);
1068         free_cpumask_var(new_mask);
1069         return ret ? : strnlen(buf, PAGE_SIZE);
1070 }
1071
1072 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
1073 {
1074         mutex_lock(&process_to_sde_mutex);
1075         if (cpumask_empty(&sde->cpu_mask))
1076                 snprintf(buf, PAGE_SIZE, "%s\n", "empty");
1077         else
1078                 cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
1079         mutex_unlock(&process_to_sde_mutex);
1080         return strnlen(buf, PAGE_SIZE);
1081 }
1082
1083 static void sdma_rht_free(void *ptr, void *arg)
1084 {
1085         struct sdma_rht_node *rht_node = ptr;
1086         int i;
1087
1088         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
1089                 kfree(rht_node->map[i]);
1090
1091         kfree(rht_node);
1092 }
1093
1094 /**
1095  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
1096  * @s: seq file
1097  * @dd: hfi1_devdata
1098  * @cpuid: cpu id
1099  *
1100  * This routine dumps the process to sde mappings per cpu
1101  */
1102 void sdma_seqfile_dump_cpu_list(struct seq_file *s,
1103                                 struct hfi1_devdata *dd,
1104                                 unsigned long cpuid)
1105 {
1106         struct sdma_rht_node *rht_node;
1107         int i, j;
1108
1109         rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
1110                                           sdma_rht_params);
1111         if (!rht_node)
1112                 return;
1113
1114         seq_printf(s, "cpu%3lu: ", cpuid);
1115         for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
1116                 if (!rht_node->map[i] || !rht_node->map[i]->ctr)
1117                         continue;
1118
1119                 seq_printf(s, " vl%d: [", i);
1120
1121                 for (j = 0; j < rht_node->map[i]->ctr; j++) {
1122                         if (!rht_node->map[i]->sde[j])
1123                                 continue;
1124
1125                         if (j > 0)
1126                                 seq_puts(s, ",");
1127
1128                         seq_printf(s, " sdma%2d",
1129                                    rht_node->map[i]->sde[j]->this_idx);
1130                 }
1131                 seq_puts(s, " ]");
1132         }
1133
1134         seq_puts(s, "\n");
1135 }
1136
1137 /*
1138  * Free the indicated map struct
1139  */
1140 static void sdma_map_free(struct sdma_vl_map *m)
1141 {
1142         int i;
1143
1144         for (i = 0; m && i < m->actual_vls; i++)
1145                 kfree(m->map[i]);
1146         kfree(m);
1147 }
1148
1149 /*
1150  * Handle RCU callback
1151  */
1152 static void sdma_map_rcu_callback(struct rcu_head *list)
1153 {
1154         struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
1155
1156         sdma_map_free(m);
1157 }
1158
1159 /**
1160  * sdma_map_init - called when # vls change
1161  * @dd: hfi1_devdata
1162  * @port: port number
1163  * @num_vls: number of vls
1164  * @vl_engines: per vl engine mapping (optional)
1165  *
1166  * This routine changes the mapping based on the number of vls.
1167  *
1168  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
1169  * implies auto computing the loading and giving each VLs a uniform
1170  * distribution of engines per VL.
1171  *
1172  * The auto algorithm computes the sde_per_vl and the number of extra
1173  * engines.  Any extra engines are added from the last VL on down.
1174  *
1175  * rcu locking is used here to control access to the mapping fields.
1176  *
1177  * If either the num_vls or num_sdma are non-power of 2, the array sizes
1178  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
1179  * up to the next highest power of 2 and the first entry is reused
1180  * in a round robin fashion.
1181  *
1182  * If an error occurs the map change is not done and the mapping is
1183  * not changed.
1184  *
1185  */
1186 int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
1187 {
1188         int i, j;
1189         int extra, sde_per_vl;
1190         int engine = 0;
1191         u8 lvl_engines[OPA_MAX_VLS];
1192         struct sdma_vl_map *oldmap, *newmap;
1193
1194         if (!(dd->flags & HFI1_HAS_SEND_DMA))
1195                 return 0;
1196
1197         if (!vl_engines) {
1198                 /* truncate divide */
1199                 sde_per_vl = dd->num_sdma / num_vls;
1200                 /* extras */
1201                 extra = dd->num_sdma % num_vls;
1202                 vl_engines = lvl_engines;
1203                 /* add extras from last vl down */
1204                 for (i = num_vls - 1; i >= 0; i--, extra--)
1205                         vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
1206         }
1207         /* build new map */
1208         newmap = kzalloc(
1209                 sizeof(struct sdma_vl_map) +
1210                         roundup_pow_of_two(num_vls) *
1211                         sizeof(struct sdma_map_elem *),
1212                 GFP_KERNEL);
1213         if (!newmap)
1214                 goto bail;
1215         newmap->actual_vls = num_vls;
1216         newmap->vls = roundup_pow_of_two(num_vls);
1217         newmap->mask = (1 << ilog2(newmap->vls)) - 1;
1218         /* initialize back-map */
1219         for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
1220                 newmap->engine_to_vl[i] = -1;
1221         for (i = 0; i < newmap->vls; i++) {
1222                 /* save for wrap around */
1223                 int first_engine = engine;
1224
1225                 if (i < newmap->actual_vls) {
1226                         int sz = roundup_pow_of_two(vl_engines[i]);
1227
1228                         /* only allocate once */
1229                         newmap->map[i] = kzalloc(
1230                                 sizeof(struct sdma_map_elem) +
1231                                         sz * sizeof(struct sdma_engine *),
1232                                 GFP_KERNEL);
1233                         if (!newmap->map[i])
1234                                 goto bail;
1235                         newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
1236                         /* assign engines */
1237                         for (j = 0; j < sz; j++) {
1238                                 newmap->map[i]->sde[j] =
1239                                         &dd->per_sdma[engine];
1240                                 if (++engine >= first_engine + vl_engines[i])
1241                                         /* wrap back to first engine */
1242                                         engine = first_engine;
1243                         }
1244                         /* assign back-map */
1245                         for (j = 0; j < vl_engines[i]; j++)
1246                                 newmap->engine_to_vl[first_engine + j] = i;
1247                 } else {
1248                         /* just re-use entry without allocating */
1249                         newmap->map[i] = newmap->map[i % num_vls];
1250                 }
1251                 engine = first_engine + vl_engines[i];
1252         }
1253         /* newmap in hand, save old map */
1254         spin_lock_irq(&dd->sde_map_lock);
1255         oldmap = rcu_dereference_protected(dd->sdma_map,
1256                                            lockdep_is_held(&dd->sde_map_lock));
1257
1258         /* publish newmap */
1259         rcu_assign_pointer(dd->sdma_map, newmap);
1260
1261         spin_unlock_irq(&dd->sde_map_lock);
1262         /* success, free any old map after grace period */
1263         if (oldmap)
1264                 call_rcu(&oldmap->list, sdma_map_rcu_callback);
1265         return 0;
1266 bail:
1267         /* free any partial allocation */
1268         sdma_map_free(newmap);
1269         return -ENOMEM;
1270 }
1271
1272 /**
1273  * sdma_clean()  Clean up allocated memory
1274  * @dd:          struct hfi1_devdata
1275  * @num_engines: num sdma engines
1276  *
1277  * This routine can be called regardless of the success of
1278  * sdma_init()
1279  */
1280 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
1281 {
1282         size_t i;
1283         struct sdma_engine *sde;
1284
1285         if (dd->sdma_pad_dma) {
1286                 dma_free_coherent(&dd->pcidev->dev, 4,
1287                                   (void *)dd->sdma_pad_dma,
1288                                   dd->sdma_pad_phys);
1289                 dd->sdma_pad_dma = NULL;
1290                 dd->sdma_pad_phys = 0;
1291         }
1292         if (dd->sdma_heads_dma) {
1293                 dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
1294                                   (void *)dd->sdma_heads_dma,
1295                                   dd->sdma_heads_phys);
1296                 dd->sdma_heads_dma = NULL;
1297                 dd->sdma_heads_phys = 0;
1298         }
1299         for (i = 0; dd->per_sdma && i < num_engines; ++i) {
1300                 sde = &dd->per_sdma[i];
1301
1302                 sde->head_dma = NULL;
1303                 sde->head_phys = 0;
1304
1305                 if (sde->descq) {
1306                         dma_free_coherent(
1307                                 &dd->pcidev->dev,
1308                                 sde->descq_cnt * sizeof(u64[2]),
1309                                 sde->descq,
1310                                 sde->descq_phys
1311                         );
1312                         sde->descq = NULL;
1313                         sde->descq_phys = 0;
1314                 }
1315                 kvfree(sde->tx_ring);
1316                 sde->tx_ring = NULL;
1317         }
1318         spin_lock_irq(&dd->sde_map_lock);
1319         sdma_map_free(rcu_access_pointer(dd->sdma_map));
1320         RCU_INIT_POINTER(dd->sdma_map, NULL);
1321         spin_unlock_irq(&dd->sde_map_lock);
1322         synchronize_rcu();
1323         kfree(dd->per_sdma);
1324         dd->per_sdma = NULL;
1325
1326         if (dd->sdma_rht) {
1327                 rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
1328                 kfree(dd->sdma_rht);
1329                 dd->sdma_rht = NULL;
1330         }
1331 }
1332
1333 /**
1334  * sdma_init() - called when device probed
1335  * @dd: hfi1_devdata
1336  * @port: port number (currently only zero)
1337  *
1338  * Initializes each sde and its csrs.
1339  * Interrupts are not required to be enabled.
1340  *
1341  * Returns:
1342  * 0 - success, -errno on failure
1343  */
1344 int sdma_init(struct hfi1_devdata *dd, u8 port)
1345 {
1346         unsigned this_idx;
1347         struct sdma_engine *sde;
1348         struct rhashtable *tmp_sdma_rht;
1349         u16 descq_cnt;
1350         void *curr_head;
1351         struct hfi1_pportdata *ppd = dd->pport + port;
1352         u32 per_sdma_credits;
1353         uint idle_cnt = sdma_idle_cnt;
1354         size_t num_engines = chip_sdma_engines(dd);
1355         int ret = -ENOMEM;
1356
1357         if (!HFI1_CAP_IS_KSET(SDMA)) {
1358                 HFI1_CAP_CLEAR(SDMA_AHG);
1359                 return 0;
1360         }
1361         if (mod_num_sdma &&
1362             /* can't exceed chip support */
1363             mod_num_sdma <= chip_sdma_engines(dd) &&
1364             /* count must be >= vls */
1365             mod_num_sdma >= num_vls)
1366                 num_engines = mod_num_sdma;
1367
1368         dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
1369         dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
1370         dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
1371                     chip_sdma_mem_size(dd));
1372
1373         per_sdma_credits =
1374                 chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
1375
1376         /* set up freeze waitqueue */
1377         init_waitqueue_head(&dd->sdma_unfreeze_wq);
1378         atomic_set(&dd->sdma_unfreeze_count, 0);
1379
1380         descq_cnt = sdma_get_descq_cnt();
1381         dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
1382                     num_engines, descq_cnt);
1383
1384         /* alloc memory for array of send engines */
1385         dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
1386                                     GFP_KERNEL, dd->node);
1387         if (!dd->per_sdma)
1388                 return ret;
1389
1390         idle_cnt = ns_to_cclock(dd, idle_cnt);
1391         if (idle_cnt)
1392                 dd->default_desc1 =
1393                         SDMA_DESC1_HEAD_TO_HOST_FLAG;
1394         else
1395                 dd->default_desc1 =
1396                         SDMA_DESC1_INT_REQ_FLAG;
1397
1398         if (!sdma_desct_intr)
1399                 sdma_desct_intr = SDMA_DESC_INTR;
1400
1401         /* Allocate memory for SendDMA descriptor FIFOs */
1402         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1403                 sde = &dd->per_sdma[this_idx];
1404                 sde->dd = dd;
1405                 sde->ppd = ppd;
1406                 sde->this_idx = this_idx;
1407                 sde->descq_cnt = descq_cnt;
1408                 sde->desc_avail = sdma_descq_freecnt(sde);
1409                 sde->sdma_shift = ilog2(descq_cnt);
1410                 sde->sdma_mask = (1 << sde->sdma_shift) - 1;
1411
1412                 /* Create a mask specifically for each interrupt source */
1413                 sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
1414                                            this_idx);
1415                 sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
1416                                                 this_idx);
1417                 sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
1418                                             this_idx);
1419                 /* Create a combined mask to cover all 3 interrupt sources */
1420                 sde->imask = sde->int_mask | sde->progress_mask |
1421                              sde->idle_mask;
1422
1423                 spin_lock_init(&sde->tail_lock);
1424                 seqlock_init(&sde->head_lock);
1425                 spin_lock_init(&sde->senddmactrl_lock);
1426                 spin_lock_init(&sde->flushlist_lock);
1427                 /* insure there is always a zero bit */
1428                 sde->ahg_bits = 0xfffffffe00000000ULL;
1429
1430                 sdma_set_state(sde, sdma_state_s00_hw_down);
1431
1432                 /* set up reference counting */
1433                 kref_init(&sde->state.kref);
1434                 init_completion(&sde->state.comp);
1435
1436                 INIT_LIST_HEAD(&sde->flushlist);
1437                 INIT_LIST_HEAD(&sde->dmawait);
1438
1439                 sde->tail_csr =
1440                         get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
1441
1442                 tasklet_init(&sde->sdma_hw_clean_up_task, sdma_hw_clean_up_task,
1443                              (unsigned long)sde);
1444
1445                 tasklet_init(&sde->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
1446                              (unsigned long)sde);
1447                 INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
1448                 INIT_WORK(&sde->flush_worker, sdma_field_flush);
1449
1450                 sde->progress_check_head = 0;
1451
1452                 timer_setup(&sde->err_progress_check_timer,
1453                             sdma_err_progress_check, 0);
1454
1455                 sde->descq = dma_zalloc_coherent(
1456                         &dd->pcidev->dev,
1457                         descq_cnt * sizeof(u64[2]),
1458                         &sde->descq_phys,
1459                         GFP_KERNEL
1460                 );
1461                 if (!sde->descq)
1462                         goto bail;
1463                 sde->tx_ring =
1464                         kvzalloc_node(array_size(descq_cnt,
1465                                                  sizeof(struct sdma_txreq *)),
1466                                       GFP_KERNEL, dd->node);
1467                 if (!sde->tx_ring)
1468                         goto bail;
1469         }
1470
1471         dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
1472         /* Allocate memory for DMA of head registers to memory */
1473         dd->sdma_heads_dma = dma_zalloc_coherent(
1474                 &dd->pcidev->dev,
1475                 dd->sdma_heads_size,
1476                 &dd->sdma_heads_phys,
1477                 GFP_KERNEL
1478         );
1479         if (!dd->sdma_heads_dma) {
1480                 dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
1481                 goto bail;
1482         }
1483
1484         /* Allocate memory for pad */
1485         dd->sdma_pad_dma = dma_zalloc_coherent(
1486                 &dd->pcidev->dev,
1487                 sizeof(u32),
1488                 &dd->sdma_pad_phys,
1489                 GFP_KERNEL
1490         );
1491         if (!dd->sdma_pad_dma) {
1492                 dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
1493                 goto bail;
1494         }
1495
1496         /* assign each engine to different cacheline and init registers */
1497         curr_head = (void *)dd->sdma_heads_dma;
1498         for (this_idx = 0; this_idx < num_engines; ++this_idx) {
1499                 unsigned long phys_offset;
1500
1501                 sde = &dd->per_sdma[this_idx];
1502
1503                 sde->head_dma = curr_head;
1504                 curr_head += L1_CACHE_BYTES;
1505                 phys_offset = (unsigned long)sde->head_dma -
1506                               (unsigned long)dd->sdma_heads_dma;
1507                 sde->head_phys = dd->sdma_heads_phys + phys_offset;
1508                 init_sdma_regs(sde, per_sdma_credits, idle_cnt);
1509         }
1510         dd->flags |= HFI1_HAS_SEND_DMA;
1511         dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
1512         dd->num_sdma = num_engines;
1513         ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
1514         if (ret < 0)
1515                 goto bail;
1516
1517         tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
1518         if (!tmp_sdma_rht) {
1519                 ret = -ENOMEM;
1520                 goto bail;
1521         }
1522
1523         ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
1524         if (ret < 0)
1525                 goto bail;
1526         dd->sdma_rht = tmp_sdma_rht;
1527
1528         dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
1529         return 0;
1530
1531 bail:
1532         sdma_clean(dd, num_engines);
1533         return ret;
1534 }
1535
1536 /**
1537  * sdma_all_running() - called when the link goes up
1538  * @dd: hfi1_devdata
1539  *
1540  * This routine moves all engines to the running state.
1541  */
1542 void sdma_all_running(struct hfi1_devdata *dd)
1543 {
1544         struct sdma_engine *sde;
1545         unsigned int i;
1546
1547         /* move all engines to running */
1548         for (i = 0; i < dd->num_sdma; ++i) {
1549                 sde = &dd->per_sdma[i];
1550                 sdma_process_event(sde, sdma_event_e30_go_running);
1551         }
1552 }
1553
1554 /**
1555  * sdma_all_idle() - called when the link goes down
1556  * @dd: hfi1_devdata
1557  *
1558  * This routine moves all engines to the idle state.
1559  */
1560 void sdma_all_idle(struct hfi1_devdata *dd)
1561 {
1562         struct sdma_engine *sde;
1563         unsigned int i;
1564
1565         /* idle all engines */
1566         for (i = 0; i < dd->num_sdma; ++i) {
1567                 sde = &dd->per_sdma[i];
1568                 sdma_process_event(sde, sdma_event_e70_go_idle);
1569         }
1570 }
1571
1572 /**
1573  * sdma_start() - called to kick off state processing for all engines
1574  * @dd: hfi1_devdata
1575  *
1576  * This routine is for kicking off the state processing for all required
1577  * sdma engines.  Interrupts need to be working at this point.
1578  *
1579  */
1580 void sdma_start(struct hfi1_devdata *dd)
1581 {
1582         unsigned i;
1583         struct sdma_engine *sde;
1584
1585         /* kick off the engines state processing */
1586         for (i = 0; i < dd->num_sdma; ++i) {
1587                 sde = &dd->per_sdma[i];
1588                 sdma_process_event(sde, sdma_event_e10_go_hw_start);
1589         }
1590 }
1591
1592 /**
1593  * sdma_exit() - used when module is removed
1594  * @dd: hfi1_devdata
1595  */
1596 void sdma_exit(struct hfi1_devdata *dd)
1597 {
1598         unsigned this_idx;
1599         struct sdma_engine *sde;
1600
1601         for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
1602                         ++this_idx) {
1603                 sde = &dd->per_sdma[this_idx];
1604                 if (!list_empty(&sde->dmawait))
1605                         dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
1606                                    sde->this_idx);
1607                 sdma_process_event(sde, sdma_event_e00_go_hw_down);
1608
1609                 del_timer_sync(&sde->err_progress_check_timer);
1610
1611                 /*
1612                  * This waits for the state machine to exit so it is not
1613                  * necessary to kill the sdma_sw_clean_up_task to make sure
1614                  * it is not running.
1615                  */
1616                 sdma_finalput(&sde->state);
1617         }
1618 }
1619
1620 /*
1621  * unmap the indicated descriptor
1622  */
1623 static inline void sdma_unmap_desc(
1624         struct hfi1_devdata *dd,
1625         struct sdma_desc *descp)
1626 {
1627         switch (sdma_mapping_type(descp)) {
1628         case SDMA_MAP_SINGLE:
1629                 dma_unmap_single(
1630                         &dd->pcidev->dev,
1631                         sdma_mapping_addr(descp),
1632                         sdma_mapping_len(descp),
1633                         DMA_TO_DEVICE);
1634                 break;
1635         case SDMA_MAP_PAGE:
1636                 dma_unmap_page(
1637                         &dd->pcidev->dev,
1638                         sdma_mapping_addr(descp),
1639                         sdma_mapping_len(descp),
1640                         DMA_TO_DEVICE);
1641                 break;
1642         }
1643 }
1644
1645 /*
1646  * return the mode as indicated by the first
1647  * descriptor in the tx.
1648  */
1649 static inline u8 ahg_mode(struct sdma_txreq *tx)
1650 {
1651         return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
1652                 >> SDMA_DESC1_HEADER_MODE_SHIFT;
1653 }
1654
1655 /**
1656  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
1657  * @dd: hfi1_devdata for unmapping
1658  * @tx: tx request to clean
1659  *
1660  * This is used in the progress routine to clean the tx or
1661  * by the ULP to toss an in-process tx build.
1662  *
1663  * The code can be called multiple times without issue.
1664  *
1665  */
1666 void __sdma_txclean(
1667         struct hfi1_devdata *dd,
1668         struct sdma_txreq *tx)
1669 {
1670         u16 i;
1671
1672         if (tx->num_desc) {
1673                 u8 skip = 0, mode = ahg_mode(tx);
1674
1675                 /* unmap first */
1676                 sdma_unmap_desc(dd, &tx->descp[0]);
1677                 /* determine number of AHG descriptors to skip */
1678                 if (mode > SDMA_AHG_APPLY_UPDATE1)
1679                         skip = mode >> 1;
1680                 for (i = 1 + skip; i < tx->num_desc; i++)
1681                         sdma_unmap_desc(dd, &tx->descp[i]);
1682                 tx->num_desc = 0;
1683         }
1684         kfree(tx->coalesce_buf);
1685         tx->coalesce_buf = NULL;
1686         /* kmalloc'ed descp */
1687         if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
1688                 tx->desc_limit = ARRAY_SIZE(tx->descs);
1689                 kfree(tx->descp);
1690         }
1691 }
1692
1693 static inline u16 sdma_gethead(struct sdma_engine *sde)
1694 {
1695         struct hfi1_devdata *dd = sde->dd;
1696         int use_dmahead;
1697         u16 hwhead;
1698
1699 #ifdef CONFIG_SDMA_VERBOSITY
1700         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1701                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1702 #endif
1703
1704 retry:
1705         use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
1706                                         (dd->flags & HFI1_HAS_SDMA_TIMEOUT);
1707         hwhead = use_dmahead ?
1708                 (u16)le64_to_cpu(*sde->head_dma) :
1709                 (u16)read_sde_csr(sde, SD(HEAD));
1710
1711         if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
1712                 u16 cnt;
1713                 u16 swtail;
1714                 u16 swhead;
1715                 int sane;
1716
1717                 swhead = sde->descq_head & sde->sdma_mask;
1718                 /* this code is really bad for cache line trading */
1719                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1720                 cnt = sde->descq_cnt;
1721
1722                 if (swhead < swtail)
1723                         /* not wrapped */
1724                         sane = (hwhead >= swhead) & (hwhead <= swtail);
1725                 else if (swhead > swtail)
1726                         /* wrapped around */
1727                         sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
1728                                 (hwhead <= swtail);
1729                 else
1730                         /* empty */
1731                         sane = (hwhead == swhead);
1732
1733                 if (unlikely(!sane)) {
1734                         dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
1735                                    sde->this_idx,
1736                                    use_dmahead ? "dma" : "kreg",
1737                                    hwhead, swhead, swtail, cnt);
1738                         if (use_dmahead) {
1739                                 /* try one more time, using csr */
1740                                 use_dmahead = 0;
1741                                 goto retry;
1742                         }
1743                         /* proceed as if no progress */
1744                         hwhead = swhead;
1745                 }
1746         }
1747         return hwhead;
1748 }
1749
1750 /*
1751  * This is called when there are send DMA descriptors that might be
1752  * available.
1753  *
1754  * This is called with head_lock held.
1755  */
1756 static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
1757 {
1758         struct iowait *wait, *nw;
1759         struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
1760         uint i, n = 0, seq, max_idx = 0;
1761         struct sdma_txreq *stx;
1762         struct hfi1_ibdev *dev = &sde->dd->verbs_dev;
1763         u8 max_starved_cnt = 0;
1764
1765 #ifdef CONFIG_SDMA_VERBOSITY
1766         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
1767                    slashstrip(__FILE__), __LINE__, __func__);
1768         dd_dev_err(sde->dd, "avail: %u\n", avail);
1769 #endif
1770
1771         do {
1772                 seq = read_seqbegin(&dev->iowait_lock);
1773                 if (!list_empty(&sde->dmawait)) {
1774                         /* at least one item */
1775                         write_seqlock(&dev->iowait_lock);
1776                         /* Harvest waiters wanting DMA descriptors */
1777                         list_for_each_entry_safe(
1778                                         wait,
1779                                         nw,
1780                                         &sde->dmawait,
1781                                         list) {
1782                                 u16 num_desc = 0;
1783
1784                                 if (!wait->wakeup)
1785                                         continue;
1786                                 if (n == ARRAY_SIZE(waits))
1787                                         break;
1788                                 if (!list_empty(&wait->tx_head)) {
1789                                         stx = list_first_entry(
1790                                                 &wait->tx_head,
1791                                                 struct sdma_txreq,
1792                                                 list);
1793                                         num_desc = stx->num_desc;
1794                                 }
1795                                 if (num_desc > avail)
1796                                         break;
1797                                 avail -= num_desc;
1798                                 /* Find the most starved wait memeber */
1799                                 iowait_starve_find_max(wait, &max_starved_cnt,
1800                                                        n, &max_idx);
1801                                 list_del_init(&wait->list);
1802                                 waits[n++] = wait;
1803                         }
1804                         write_sequnlock(&dev->iowait_lock);
1805                         break;
1806                 }
1807         } while (read_seqretry(&dev->iowait_lock, seq));
1808
1809         /* Schedule the most starved one first */
1810         if (n)
1811                 waits[max_idx]->wakeup(waits[max_idx], SDMA_AVAIL_REASON);
1812
1813         for (i = 0; i < n; i++)
1814                 if (i != max_idx)
1815                         waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
1816 }
1817
1818 /* head_lock must be held */
1819 static void sdma_make_progress(struct sdma_engine *sde, u64 status)
1820 {
1821         struct sdma_txreq *txp = NULL;
1822         int progress = 0;
1823         u16 hwhead, swhead;
1824         int idle_check_done = 0;
1825
1826         hwhead = sdma_gethead(sde);
1827
1828         /* The reason for some of the complexity of this code is that
1829          * not all descriptors have corresponding txps.  So, we have to
1830          * be able to skip over descs until we wander into the range of
1831          * the next txp on the list.
1832          */
1833
1834 retry:
1835         txp = get_txhead(sde);
1836         swhead = sde->descq_head & sde->sdma_mask;
1837         trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1838         while (swhead != hwhead) {
1839                 /* advance head, wrap if needed */
1840                 swhead = ++sde->descq_head & sde->sdma_mask;
1841
1842                 /* if now past this txp's descs, do the callback */
1843                 if (txp && txp->next_descq_idx == swhead) {
1844                         /* remove from list */
1845                         sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
1846                         complete_tx(sde, txp, SDMA_TXREQ_S_OK);
1847                         /* see if there is another txp */
1848                         txp = get_txhead(sde);
1849                 }
1850                 trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
1851                 progress++;
1852         }
1853
1854         /*
1855          * The SDMA idle interrupt is not guaranteed to be ordered with respect
1856          * to updates to the the dma_head location in host memory. The head
1857          * value read might not be fully up to date. If there are pending
1858          * descriptors and the SDMA idle interrupt fired then read from the
1859          * CSR SDMA head instead to get the latest value from the hardware.
1860          * The hardware SDMA head should be read at most once in this invocation
1861          * of sdma_make_progress(..) which is ensured by idle_check_done flag
1862          */
1863         if ((status & sde->idle_mask) && !idle_check_done) {
1864                 u16 swtail;
1865
1866                 swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
1867                 if (swtail != hwhead) {
1868                         hwhead = (u16)read_sde_csr(sde, SD(HEAD));
1869                         idle_check_done = 1;
1870                         goto retry;
1871                 }
1872         }
1873
1874         sde->last_status = status;
1875         if (progress)
1876                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
1877 }
1878
1879 /*
1880  * sdma_engine_interrupt() - interrupt handler for engine
1881  * @sde: sdma engine
1882  * @status: sdma interrupt reason
1883  *
1884  * Status is a mask of the 3 possible interrupts for this engine.  It will
1885  * contain bits _only_ for this SDMA engine.  It will contain at least one
1886  * bit, it may contain more.
1887  */
1888 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
1889 {
1890         trace_hfi1_sdma_engine_interrupt(sde, status);
1891         write_seqlock(&sde->head_lock);
1892         sdma_set_desc_cnt(sde, sdma_desct_intr);
1893         if (status & sde->idle_mask)
1894                 sde->idle_int_cnt++;
1895         else if (status & sde->progress_mask)
1896                 sde->progress_int_cnt++;
1897         else if (status & sde->int_mask)
1898                 sde->sdma_int_cnt++;
1899         sdma_make_progress(sde, status);
1900         write_sequnlock(&sde->head_lock);
1901 }
1902
1903 /**
1904  * sdma_engine_error() - error handler for engine
1905  * @sde: sdma engine
1906  * @status: sdma interrupt reason
1907  */
1908 void sdma_engine_error(struct sdma_engine *sde, u64 status)
1909 {
1910         unsigned long flags;
1911
1912 #ifdef CONFIG_SDMA_VERBOSITY
1913         dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
1914                    sde->this_idx,
1915                    (unsigned long long)status,
1916                    sdma_state_names[sde->state.current_state]);
1917 #endif
1918         spin_lock_irqsave(&sde->tail_lock, flags);
1919         write_seqlock(&sde->head_lock);
1920         if (status & ALL_SDMA_ENG_HALT_ERRS)
1921                 __sdma_process_event(sde, sdma_event_e60_hw_halted);
1922         if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
1923                 dd_dev_err(sde->dd,
1924                            "SDMA (%u) engine error: 0x%llx state %s\n",
1925                            sde->this_idx,
1926                            (unsigned long long)status,
1927                            sdma_state_names[sde->state.current_state]);
1928                 dump_sdma_state(sde);
1929         }
1930         write_sequnlock(&sde->head_lock);
1931         spin_unlock_irqrestore(&sde->tail_lock, flags);
1932 }
1933
1934 static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
1935 {
1936         u64 set_senddmactrl = 0;
1937         u64 clr_senddmactrl = 0;
1938         unsigned long flags;
1939
1940 #ifdef CONFIG_SDMA_VERBOSITY
1941         dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
1942                    sde->this_idx,
1943                    (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
1944                    (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
1945                    (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
1946                    (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
1947 #endif
1948
1949         if (op & SDMA_SENDCTRL_OP_ENABLE)
1950                 set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1951         else
1952                 clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
1953
1954         if (op & SDMA_SENDCTRL_OP_INTENABLE)
1955                 set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1956         else
1957                 clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
1958
1959         if (op & SDMA_SENDCTRL_OP_HALT)
1960                 set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1961         else
1962                 clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
1963
1964         spin_lock_irqsave(&sde->senddmactrl_lock, flags);
1965
1966         sde->p_senddmactrl |= set_senddmactrl;
1967         sde->p_senddmactrl &= ~clr_senddmactrl;
1968
1969         if (op & SDMA_SENDCTRL_OP_CLEANUP)
1970                 write_sde_csr(sde, SD(CTRL),
1971                               sde->p_senddmactrl |
1972                               SD(CTRL_SDMA_CLEANUP_SMASK));
1973         else
1974                 write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
1975
1976         spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
1977
1978 #ifdef CONFIG_SDMA_VERBOSITY
1979         sdma_dumpstate(sde);
1980 #endif
1981 }
1982
1983 static void sdma_setlengen(struct sdma_engine *sde)
1984 {
1985 #ifdef CONFIG_SDMA_VERBOSITY
1986         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
1987                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
1988 #endif
1989
1990         /*
1991          * Set SendDmaLenGen and clear-then-set the MSB of the generation
1992          * count to enable generation checking and load the internal
1993          * generation counter.
1994          */
1995         write_sde_csr(sde, SD(LEN_GEN),
1996                       (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
1997         write_sde_csr(sde, SD(LEN_GEN),
1998                       ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
1999                       (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
2000 }
2001
2002 static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
2003 {
2004         /* Commit writes to memory and advance the tail on the chip */
2005         smp_wmb(); /* see get_txhead() */
2006         writeq(tail, sde->tail_csr);
2007 }
2008
2009 /*
2010  * This is called when changing to state s10_hw_start_up_halt_wait as
2011  * a result of send buffer errors or send DMA descriptor errors.
2012  */
2013 static void sdma_hw_start_up(struct sdma_engine *sde)
2014 {
2015         u64 reg;
2016
2017 #ifdef CONFIG_SDMA_VERBOSITY
2018         dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2019                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2020 #endif
2021
2022         sdma_setlengen(sde);
2023         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2024         *sde->head_dma = 0;
2025
2026         reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
2027               SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
2028         write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
2029 }
2030
2031 /*
2032  * set_sdma_integrity
2033  *
2034  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
2035  */
2036 static void set_sdma_integrity(struct sdma_engine *sde)
2037 {
2038         struct hfi1_devdata *dd = sde->dd;
2039
2040         write_sde_csr(sde, SD(CHECK_ENABLE),
2041                       hfi1_pkt_base_sdma_integrity(dd));
2042 }
2043
2044 static void init_sdma_regs(
2045         struct sdma_engine *sde,
2046         u32 credits,
2047         uint idle_cnt)
2048 {
2049         u8 opval, opmask;
2050 #ifdef CONFIG_SDMA_VERBOSITY
2051         struct hfi1_devdata *dd = sde->dd;
2052
2053         dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
2054                    sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
2055 #endif
2056
2057         write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
2058         sdma_setlengen(sde);
2059         sdma_update_tail(sde, 0); /* Set SendDmaTail */
2060         write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
2061         write_sde_csr(sde, SD(DESC_CNT), 0);
2062         write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
2063         write_sde_csr(sde, SD(MEMORY),
2064                       ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
2065                       ((u64)(credits * sde->this_idx) <<
2066                        SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
2067         write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
2068         set_sdma_integrity(sde);
2069         opmask = OPCODE_CHECK_MASK_DISABLED;
2070         opval = OPCODE_CHECK_VAL_DISABLED;
2071         write_sde_csr(sde, SD(CHECK_OPCODE),
2072                       (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
2073                       (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
2074 }
2075
2076 #ifdef CONFIG_SDMA_VERBOSITY
2077
2078 #define sdma_dumpstate_helper0(reg) do { \
2079                 csr = read_csr(sde->dd, reg); \
2080                 dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
2081         } while (0)
2082
2083 #define sdma_dumpstate_helper(reg) do { \
2084                 csr = read_sde_csr(sde, reg); \
2085                 dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
2086                         #reg, sde->this_idx, csr); \
2087         } while (0)
2088
2089 #define sdma_dumpstate_helper2(reg) do { \
2090                 csr = read_csr(sde->dd, reg + (8 * i)); \
2091                 dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
2092                                 #reg, i, csr); \
2093         } while (0)
2094
2095 void sdma_dumpstate(struct sdma_engine *sde)
2096 {
2097         u64 csr;
2098         unsigned i;
2099
2100         sdma_dumpstate_helper(SD(CTRL));
2101         sdma_dumpstate_helper(SD(STATUS));
2102         sdma_dumpstate_helper0(SD(ERR_STATUS));
2103         sdma_dumpstate_helper0(SD(ERR_MASK));
2104         sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
2105         sdma_dumpstate_helper(SD(ENG_ERR_MASK));
2106
2107         for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
2108                 sdma_dumpstate_helper2(CCE_INT_STATUS);
2109                 sdma_dumpstate_helper2(CCE_INT_MASK);
2110                 sdma_dumpstate_helper2(CCE_INT_BLOCKED);
2111         }
2112
2113         sdma_dumpstate_helper(SD(TAIL));
2114         sdma_dumpstate_helper(SD(HEAD));
2115         sdma_dumpstate_helper(SD(PRIORITY_THLD));
2116         sdma_dumpstate_helper(SD(IDLE_CNT));
2117         sdma_dumpstate_helper(SD(RELOAD_CNT));
2118         sdma_dumpstate_helper(SD(DESC_CNT));
2119         sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
2120         sdma_dumpstate_helper(SD(MEMORY));
2121         sdma_dumpstate_helper0(SD(ENGINES));
2122         sdma_dumpstate_helper0(SD(MEM_SIZE));
2123         /* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
2124         sdma_dumpstate_helper(SD(BASE_ADDR));
2125         sdma_dumpstate_helper(SD(LEN_GEN));
2126         sdma_dumpstate_helper(SD(HEAD_ADDR));
2127         sdma_dumpstate_helper(SD(CHECK_ENABLE));
2128         sdma_dumpstate_helper(SD(CHECK_VL));
2129         sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
2130         sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
2131         sdma_dumpstate_helper(SD(CHECK_SLID));
2132         sdma_dumpstate_helper(SD(CHECK_OPCODE));
2133 }
2134 #endif
2135
2136 static void dump_sdma_state(struct sdma_engine *sde)
2137 {
2138         struct hw_sdma_desc *descqp;
2139         u64 desc[2];
2140         u64 addr;
2141         u8 gen;
2142         u16 len;
2143         u16 head, tail, cnt;
2144
2145         head = sde->descq_head & sde->sdma_mask;
2146         tail = sde->descq_tail & sde->sdma_mask;
2147         cnt = sdma_descq_freecnt(sde);
2148
2149         dd_dev_err(sde->dd,
2150                    "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
2151                    sde->this_idx, head, tail, cnt,
2152                    !list_empty(&sde->flushlist));
2153
2154         /* print info for each entry in the descriptor queue */
2155         while (head != tail) {
2156                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2157
2158                 descqp = &sde->descq[head];
2159                 desc[0] = le64_to_cpu(descqp->qw[0]);
2160                 desc[1] = le64_to_cpu(descqp->qw[1]);
2161                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2162                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2163                                 'H' : '-';
2164                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2165                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2166                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2167                         & SDMA_DESC0_PHY_ADDR_MASK;
2168                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2169                         & SDMA_DESC1_GENERATION_MASK;
2170                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2171                         & SDMA_DESC0_BYTE_COUNT_MASK;
2172                 dd_dev_err(sde->dd,
2173                            "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2174                            head, flags, addr, gen, len);
2175                 dd_dev_err(sde->dd,
2176                            "\tdesc0:0x%016llx desc1 0x%016llx\n",
2177                            desc[0], desc[1]);
2178                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2179                         dd_dev_err(sde->dd,
2180                                    "\taidx: %u amode: %u alen: %u\n",
2181                                    (u8)((desc[1] &
2182                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2183                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2184                                    (u8)((desc[1] &
2185                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2186                                         SDMA_DESC1_HEADER_MODE_SHIFT),
2187                                    (u8)((desc[1] &
2188                                          SDMA_DESC1_HEADER_DWS_SMASK) >>
2189                                         SDMA_DESC1_HEADER_DWS_SHIFT));
2190                 head++;
2191                 head &= sde->sdma_mask;
2192         }
2193 }
2194
2195 #define SDE_FMT \
2196         "SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
2197 /**
2198  * sdma_seqfile_dump_sde() - debugfs dump of sde
2199  * @s: seq file
2200  * @sde: send dma engine to dump
2201  *
2202  * This routine dumps the sde to the indicated seq file.
2203  */
2204 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
2205 {
2206         u16 head, tail;
2207         struct hw_sdma_desc *descqp;
2208         u64 desc[2];
2209         u64 addr;
2210         u8 gen;
2211         u16 len;
2212
2213         head = sde->descq_head & sde->sdma_mask;
2214         tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
2215         seq_printf(s, SDE_FMT, sde->this_idx,
2216                    sde->cpu,
2217                    sdma_state_name(sde->state.current_state),
2218                    (unsigned long long)read_sde_csr(sde, SD(CTRL)),
2219                    (unsigned long long)read_sde_csr(sde, SD(STATUS)),
2220                    (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
2221                    (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
2222                    (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
2223                    (unsigned long long)le64_to_cpu(*sde->head_dma),
2224                    (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
2225                    (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
2226                    (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
2227                    (unsigned long long)sde->last_status,
2228                    (unsigned long long)sde->ahg_bits,
2229                    sde->tx_tail,
2230                    sde->tx_head,
2231                    sde->descq_tail,
2232                    sde->descq_head,
2233                    !list_empty(&sde->flushlist),
2234                    sde->descq_full_count,
2235                    (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
2236
2237         /* print info for each entry in the descriptor queue */
2238         while (head != tail) {
2239                 char flags[6] = { 'x', 'x', 'x', 'x', 0 };
2240
2241                 descqp = &sde->descq[head];
2242                 desc[0] = le64_to_cpu(descqp->qw[0]);
2243                 desc[1] = le64_to_cpu(descqp->qw[1]);
2244                 flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
2245                 flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
2246                                 'H' : '-';
2247                 flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
2248                 flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
2249                 addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
2250                         & SDMA_DESC0_PHY_ADDR_MASK;
2251                 gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
2252                         & SDMA_DESC1_GENERATION_MASK;
2253                 len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
2254                         & SDMA_DESC0_BYTE_COUNT_MASK;
2255                 seq_printf(s,
2256                            "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
2257                            head, flags, addr, gen, len);
2258                 if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
2259                         seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
2260                                    (u8)((desc[1] &
2261                                          SDMA_DESC1_HEADER_INDEX_SMASK) >>
2262                                         SDMA_DESC1_HEADER_INDEX_SHIFT),
2263                                    (u8)((desc[1] &
2264                                          SDMA_DESC1_HEADER_MODE_SMASK) >>
2265                                         SDMA_DESC1_HEADER_MODE_SHIFT));
2266                 head = (head + 1) & sde->sdma_mask;
2267         }
2268 }
2269
2270 /*
2271  * add the generation number into
2272  * the qw1 and return
2273  */
2274 static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
2275 {
2276         u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
2277
2278         qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
2279         qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
2280                         << SDMA_DESC1_GENERATION_SHIFT;
2281         return qw1;
2282 }
2283
2284 /*
2285  * This routine submits the indicated tx
2286  *
2287  * Space has already been guaranteed and
2288  * tail side of ring is locked.
2289  *
2290  * The hardware tail update is done
2291  * in the caller and that is facilitated
2292  * by returning the new tail.
2293  *
2294  * There is special case logic for ahg
2295  * to not add the generation number for
2296  * up to 2 descriptors that follow the
2297  * first descriptor.
2298  *
2299  */
2300 static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
2301 {
2302         int i;
2303         u16 tail;
2304         struct sdma_desc *descp = tx->descp;
2305         u8 skip = 0, mode = ahg_mode(tx);
2306
2307         tail = sde->descq_tail & sde->sdma_mask;
2308         sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2309         sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
2310         trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
2311                                    tail, &sde->descq[tail]);
2312         tail = ++sde->descq_tail & sde->sdma_mask;
2313         descp++;
2314         if (mode > SDMA_AHG_APPLY_UPDATE1)
2315                 skip = mode >> 1;
2316         for (i = 1; i < tx->num_desc; i++, descp++) {
2317                 u64 qw1;
2318
2319                 sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
2320                 if (skip) {
2321                         /* edits don't have generation */
2322                         qw1 = descp->qw[1];
2323                         skip--;
2324                 } else {
2325                         /* replace generation with real one for non-edits */
2326                         qw1 = add_gen(sde, descp->qw[1]);
2327                 }
2328                 sde->descq[tail].qw[1] = cpu_to_le64(qw1);
2329                 trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
2330                                            tail, &sde->descq[tail]);
2331                 tail = ++sde->descq_tail & sde->sdma_mask;
2332         }
2333         tx->next_descq_idx = tail;
2334 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2335         tx->sn = sde->tail_sn++;
2336         trace_hfi1_sdma_in_sn(sde, tx->sn);
2337         WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
2338 #endif
2339         sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
2340         sde->desc_avail -= tx->num_desc;
2341         return tail;
2342 }
2343
2344 /*
2345  * Check for progress
2346  */
2347 static int sdma_check_progress(
2348         struct sdma_engine *sde,
2349         struct iowait *wait,
2350         struct sdma_txreq *tx,
2351         bool pkts_sent)
2352 {
2353         int ret;
2354
2355         sde->desc_avail = sdma_descq_freecnt(sde);
2356         if (tx->num_desc <= sde->desc_avail)
2357                 return -EAGAIN;
2358         /* pulse the head_lock */
2359         if (wait && wait->sleep) {
2360                 unsigned seq;
2361
2362                 seq = raw_seqcount_begin(
2363                         (const seqcount_t *)&sde->head_lock.seqcount);
2364                 ret = wait->sleep(sde, wait, tx, seq, pkts_sent);
2365                 if (ret == -EAGAIN)
2366                         sde->desc_avail = sdma_descq_freecnt(sde);
2367         } else {
2368                 ret = -EBUSY;
2369         }
2370         return ret;
2371 }
2372
2373 /**
2374  * sdma_send_txreq() - submit a tx req to ring
2375  * @sde: sdma engine to use
2376  * @wait: wait structure to use when full (may be NULL)
2377  * @tx: sdma_txreq to submit
2378  * @pkts_sent: has any packet been sent yet?
2379  *
2380  * The call submits the tx into the ring.  If a iowait structure is non-NULL
2381  * the packet will be queued to the list in wait.
2382  *
2383  * Return:
2384  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
2385  * ring (wait == NULL)
2386  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2387  */
2388 int sdma_send_txreq(struct sdma_engine *sde,
2389                     struct iowait *wait,
2390                     struct sdma_txreq *tx,
2391                     bool pkts_sent)
2392 {
2393         int ret = 0;
2394         u16 tail;
2395         unsigned long flags;
2396
2397         /* user should have supplied entire packet */
2398         if (unlikely(tx->tlen))
2399                 return -EINVAL;
2400         tx->wait = wait;
2401         spin_lock_irqsave(&sde->tail_lock, flags);
2402 retry:
2403         if (unlikely(!__sdma_running(sde)))
2404                 goto unlock_noconn;
2405         if (unlikely(tx->num_desc > sde->desc_avail))
2406                 goto nodesc;
2407         tail = submit_tx(sde, tx);
2408         if (wait)
2409                 iowait_sdma_inc(wait);
2410         sdma_update_tail(sde, tail);
2411 unlock:
2412         spin_unlock_irqrestore(&sde->tail_lock, flags);
2413         return ret;
2414 unlock_noconn:
2415         if (wait)
2416                 iowait_sdma_inc(wait);
2417         tx->next_descq_idx = 0;
2418 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2419         tx->sn = sde->tail_sn++;
2420         trace_hfi1_sdma_in_sn(sde, tx->sn);
2421 #endif
2422         spin_lock(&sde->flushlist_lock);
2423         list_add_tail(&tx->list, &sde->flushlist);
2424         spin_unlock(&sde->flushlist_lock);
2425         if (wait) {
2426                 wait->tx_count++;
2427                 wait->count += tx->num_desc;
2428         }
2429         schedule_work(&sde->flush_worker);
2430         ret = -ECOMM;
2431         goto unlock;
2432 nodesc:
2433         ret = sdma_check_progress(sde, wait, tx, pkts_sent);
2434         if (ret == -EAGAIN) {
2435                 ret = 0;
2436                 goto retry;
2437         }
2438         sde->descq_full_count++;
2439         goto unlock;
2440 }
2441
2442 /**
2443  * sdma_send_txlist() - submit a list of tx req to ring
2444  * @sde: sdma engine to use
2445  * @wait: wait structure to use when full (may be NULL)
2446  * @tx_list: list of sdma_txreqs to submit
2447  * @count: pointer to a u32 which, after return will contain the total number of
2448  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
2449  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
2450  *         which are added to SDMA engine flush list if the SDMA engine state is
2451  *         not running.
2452  *
2453  * The call submits the list into the ring.
2454  *
2455  * If the iowait structure is non-NULL and not equal to the iowait list
2456  * the unprocessed part of the list  will be appended to the list in wait.
2457  *
2458  * In all cases, the tx_list will be updated so the head of the tx_list is
2459  * the list of descriptors that have yet to be transmitted.
2460  *
2461  * The intent of this call is to provide a more efficient
2462  * way of submitting multiple packets to SDMA while holding the tail
2463  * side locking.
2464  *
2465  * Return:
2466  * 0 - Success,
2467  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
2468  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
2469  */
2470 int sdma_send_txlist(struct sdma_engine *sde, struct iowait *wait,
2471                      struct list_head *tx_list, u32 *count_out)
2472 {
2473         struct sdma_txreq *tx, *tx_next;
2474         int ret = 0;
2475         unsigned long flags;
2476         u16 tail = INVALID_TAIL;
2477         u32 submit_count = 0, flush_count = 0, total_count;
2478
2479         spin_lock_irqsave(&sde->tail_lock, flags);
2480 retry:
2481         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2482                 tx->wait = wait;
2483                 if (unlikely(!__sdma_running(sde)))
2484                         goto unlock_noconn;
2485                 if (unlikely(tx->num_desc > sde->desc_avail))
2486                         goto nodesc;
2487                 if (unlikely(tx->tlen)) {
2488                         ret = -EINVAL;
2489                         goto update_tail;
2490                 }
2491                 list_del_init(&tx->list);
2492                 tail = submit_tx(sde, tx);
2493                 submit_count++;
2494                 if (tail != INVALID_TAIL &&
2495                     (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
2496                         sdma_update_tail(sde, tail);
2497                         tail = INVALID_TAIL;
2498                 }
2499         }
2500 update_tail:
2501         total_count = submit_count + flush_count;
2502         if (wait) {
2503                 iowait_sdma_add(wait, total_count);
2504                 iowait_starve_clear(submit_count > 0, wait);
2505         }
2506         if (tail != INVALID_TAIL)
2507                 sdma_update_tail(sde, tail);
2508         spin_unlock_irqrestore(&sde->tail_lock, flags);
2509         *count_out = total_count;
2510         return ret;
2511 unlock_noconn:
2512         spin_lock(&sde->flushlist_lock);
2513         list_for_each_entry_safe(tx, tx_next, tx_list, list) {
2514                 tx->wait = wait;
2515                 list_del_init(&tx->list);
2516                 tx->next_descq_idx = 0;
2517 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
2518                 tx->sn = sde->tail_sn++;
2519                 trace_hfi1_sdma_in_sn(sde, tx->sn);
2520 #endif
2521                 list_add_tail(&tx->list, &sde->flushlist);
2522                 flush_count++;
2523                 if (wait) {
2524                         wait->tx_count++;
2525                         wait->count += tx->num_desc;
2526                 }
2527         }
2528         spin_unlock(&sde->flushlist_lock);
2529         schedule_work(&sde->flush_worker);
2530         ret = -ECOMM;
2531         goto update_tail;
2532 nodesc:
2533         ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
2534         if (ret == -EAGAIN) {
2535                 ret = 0;
2536                 goto retry;
2537         }
2538         sde->descq_full_count++;
2539         goto update_tail;
2540 }
2541
2542 static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
2543 {
2544         unsigned long flags;
2545
2546         spin_lock_irqsave(&sde->tail_lock, flags);
2547         write_seqlock(&sde->head_lock);
2548
2549         __sdma_process_event(sde, event);
2550
2551         if (sde->state.current_state == sdma_state_s99_running)
2552                 sdma_desc_avail(sde, sdma_descq_freecnt(sde));
2553
2554         write_sequnlock(&sde->head_lock);
2555         spin_unlock_irqrestore(&sde->tail_lock, flags);
2556 }
2557
2558 static void __sdma_process_event(struct sdma_engine *sde,
2559                                  enum sdma_events event)
2560 {
2561         struct sdma_state *ss = &sde->state;
2562         int need_progress = 0;
2563
2564         /* CONFIG SDMA temporary */
2565 #ifdef CONFIG_SDMA_VERBOSITY
2566         dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
2567                    sdma_state_names[ss->current_state],
2568                    sdma_event_names[event]);
2569 #endif
2570
2571         switch (ss->current_state) {
2572         case sdma_state_s00_hw_down:
2573                 switch (event) {
2574                 case sdma_event_e00_go_hw_down:
2575                         break;
2576                 case sdma_event_e30_go_running:
2577                         /*
2578                          * If down, but running requested (usually result
2579                          * of link up, then we need to start up.
2580                          * This can happen when hw down is requested while
2581                          * bringing the link up with traffic active on
2582                          * 7220, e.g.
2583                          */
2584                         ss->go_s99_running = 1;
2585                         /* fall through -- and start dma engine */
2586                 case sdma_event_e10_go_hw_start:
2587                         /* This reference means the state machine is started */
2588                         sdma_get(&sde->state);
2589                         sdma_set_state(sde,
2590                                        sdma_state_s10_hw_start_up_halt_wait);
2591                         break;
2592                 case sdma_event_e15_hw_halt_done:
2593                         break;
2594                 case sdma_event_e25_hw_clean_up_done:
2595                         break;
2596                 case sdma_event_e40_sw_cleaned:
2597                         sdma_sw_tear_down(sde);
2598                         break;
2599                 case sdma_event_e50_hw_cleaned:
2600                         break;
2601                 case sdma_event_e60_hw_halted:
2602                         break;
2603                 case sdma_event_e70_go_idle:
2604                         break;
2605                 case sdma_event_e80_hw_freeze:
2606                         break;
2607                 case sdma_event_e81_hw_frozen:
2608                         break;
2609                 case sdma_event_e82_hw_unfreeze:
2610                         break;
2611                 case sdma_event_e85_link_down:
2612                         break;
2613                 case sdma_event_e90_sw_halted:
2614                         break;
2615                 }
2616                 break;
2617
2618         case sdma_state_s10_hw_start_up_halt_wait:
2619                 switch (event) {
2620                 case sdma_event_e00_go_hw_down:
2621                         sdma_set_state(sde, sdma_state_s00_hw_down);
2622                         sdma_sw_tear_down(sde);
2623                         break;
2624                 case sdma_event_e10_go_hw_start:
2625                         break;
2626                 case sdma_event_e15_hw_halt_done:
2627                         sdma_set_state(sde,
2628                                        sdma_state_s15_hw_start_up_clean_wait);
2629                         sdma_start_hw_clean_up(sde);
2630                         break;
2631                 case sdma_event_e25_hw_clean_up_done:
2632                         break;
2633                 case sdma_event_e30_go_running:
2634                         ss->go_s99_running = 1;
2635                         break;
2636                 case sdma_event_e40_sw_cleaned:
2637                         break;
2638                 case sdma_event_e50_hw_cleaned:
2639                         break;
2640                 case sdma_event_e60_hw_halted:
2641                         schedule_work(&sde->err_halt_worker);
2642                         break;
2643                 case sdma_event_e70_go_idle:
2644                         ss->go_s99_running = 0;
2645                         break;
2646                 case sdma_event_e80_hw_freeze:
2647                         break;
2648                 case sdma_event_e81_hw_frozen:
2649                         break;
2650                 case sdma_event_e82_hw_unfreeze:
2651                         break;
2652                 case sdma_event_e85_link_down:
2653                         break;
2654                 case sdma_event_e90_sw_halted:
2655                         break;
2656                 }
2657                 break;
2658
2659         case sdma_state_s15_hw_start_up_clean_wait:
2660                 switch (event) {
2661                 case sdma_event_e00_go_hw_down:
2662                         sdma_set_state(sde, sdma_state_s00_hw_down);
2663                         sdma_sw_tear_down(sde);
2664                         break;
2665                 case sdma_event_e10_go_hw_start:
2666                         break;
2667                 case sdma_event_e15_hw_halt_done:
2668                         break;
2669                 case sdma_event_e25_hw_clean_up_done:
2670                         sdma_hw_start_up(sde);
2671                         sdma_set_state(sde, ss->go_s99_running ?
2672                                        sdma_state_s99_running :
2673                                        sdma_state_s20_idle);
2674                         break;
2675                 case sdma_event_e30_go_running:
2676                         ss->go_s99_running = 1;
2677                         break;
2678                 case sdma_event_e40_sw_cleaned:
2679                         break;
2680                 case sdma_event_e50_hw_cleaned:
2681                         break;
2682                 case sdma_event_e60_hw_halted:
2683                         break;
2684                 case sdma_event_e70_go_idle:
2685                         ss->go_s99_running = 0;
2686                         break;
2687                 case sdma_event_e80_hw_freeze:
2688                         break;
2689                 case sdma_event_e81_hw_frozen:
2690                         break;
2691                 case sdma_event_e82_hw_unfreeze:
2692                         break;
2693                 case sdma_event_e85_link_down:
2694                         break;
2695                 case sdma_event_e90_sw_halted:
2696                         break;
2697                 }
2698                 break;
2699
2700         case sdma_state_s20_idle:
2701                 switch (event) {
2702                 case sdma_event_e00_go_hw_down:
2703                         sdma_set_state(sde, sdma_state_s00_hw_down);
2704                         sdma_sw_tear_down(sde);
2705                         break;
2706                 case sdma_event_e10_go_hw_start:
2707                         break;
2708                 case sdma_event_e15_hw_halt_done:
2709                         break;
2710                 case sdma_event_e25_hw_clean_up_done:
2711                         break;
2712                 case sdma_event_e30_go_running:
2713                         sdma_set_state(sde, sdma_state_s99_running);
2714                         ss->go_s99_running = 1;
2715                         break;
2716                 case sdma_event_e40_sw_cleaned:
2717                         break;
2718                 case sdma_event_e50_hw_cleaned:
2719                         break;
2720                 case sdma_event_e60_hw_halted:
2721                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
2722                         schedule_work(&sde->err_halt_worker);
2723                         break;
2724                 case sdma_event_e70_go_idle:
2725                         break;
2726                 case sdma_event_e85_link_down:
2727                         /* fall through */
2728                 case sdma_event_e80_hw_freeze:
2729                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
2730                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2731                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2732                         break;
2733                 case sdma_event_e81_hw_frozen:
2734                         break;
2735                 case sdma_event_e82_hw_unfreeze:
2736                         break;
2737                 case sdma_event_e90_sw_halted:
2738                         break;
2739                 }
2740                 break;
2741
2742         case sdma_state_s30_sw_clean_up_wait:
2743                 switch (event) {
2744                 case sdma_event_e00_go_hw_down:
2745                         sdma_set_state(sde, sdma_state_s00_hw_down);
2746                         break;
2747                 case sdma_event_e10_go_hw_start:
2748                         break;
2749                 case sdma_event_e15_hw_halt_done:
2750                         break;
2751                 case sdma_event_e25_hw_clean_up_done:
2752                         break;
2753                 case sdma_event_e30_go_running:
2754                         ss->go_s99_running = 1;
2755                         break;
2756                 case sdma_event_e40_sw_cleaned:
2757                         sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
2758                         sdma_start_hw_clean_up(sde);
2759                         break;
2760                 case sdma_event_e50_hw_cleaned:
2761                         break;
2762                 case sdma_event_e60_hw_halted:
2763                         break;
2764                 case sdma_event_e70_go_idle:
2765                         ss->go_s99_running = 0;
2766                         break;
2767                 case sdma_event_e80_hw_freeze:
2768                         break;
2769                 case sdma_event_e81_hw_frozen:
2770                         break;
2771                 case sdma_event_e82_hw_unfreeze:
2772                         break;
2773                 case sdma_event_e85_link_down:
2774                         ss->go_s99_running = 0;
2775                         break;
2776                 case sdma_event_e90_sw_halted:
2777                         break;
2778                 }
2779                 break;
2780
2781         case sdma_state_s40_hw_clean_up_wait:
2782                 switch (event) {
2783                 case sdma_event_e00_go_hw_down:
2784                         sdma_set_state(sde, sdma_state_s00_hw_down);
2785                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2786                         break;
2787                 case sdma_event_e10_go_hw_start:
2788                         break;
2789                 case sdma_event_e15_hw_halt_done:
2790                         break;
2791                 case sdma_event_e25_hw_clean_up_done:
2792                         sdma_hw_start_up(sde);
2793                         sdma_set_state(sde, ss->go_s99_running ?
2794                                        sdma_state_s99_running :
2795                                        sdma_state_s20_idle);
2796                         break;
2797                 case sdma_event_e30_go_running:
2798                         ss->go_s99_running = 1;
2799                         break;
2800                 case sdma_event_e40_sw_cleaned:
2801                         break;
2802                 case sdma_event_e50_hw_cleaned:
2803                         break;
2804                 case sdma_event_e60_hw_halted:
2805                         break;
2806                 case sdma_event_e70_go_idle:
2807                         ss->go_s99_running = 0;
2808                         break;
2809                 case sdma_event_e80_hw_freeze:
2810                         break;
2811                 case sdma_event_e81_hw_frozen:
2812                         break;
2813                 case sdma_event_e82_hw_unfreeze:
2814                         break;
2815                 case sdma_event_e85_link_down:
2816                         ss->go_s99_running = 0;
2817                         break;
2818                 case sdma_event_e90_sw_halted:
2819                         break;
2820                 }
2821                 break;
2822
2823         case sdma_state_s50_hw_halt_wait:
2824                 switch (event) {
2825                 case sdma_event_e00_go_hw_down:
2826                         sdma_set_state(sde, sdma_state_s00_hw_down);
2827                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2828                         break;
2829                 case sdma_event_e10_go_hw_start:
2830                         break;
2831                 case sdma_event_e15_hw_halt_done:
2832                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2833                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2834                         break;
2835                 case sdma_event_e25_hw_clean_up_done:
2836                         break;
2837                 case sdma_event_e30_go_running:
2838                         ss->go_s99_running = 1;
2839                         break;
2840                 case sdma_event_e40_sw_cleaned:
2841                         break;
2842                 case sdma_event_e50_hw_cleaned:
2843                         break;
2844                 case sdma_event_e60_hw_halted:
2845                         schedule_work(&sde->err_halt_worker);
2846                         break;
2847                 case sdma_event_e70_go_idle:
2848                         ss->go_s99_running = 0;
2849                         break;
2850                 case sdma_event_e80_hw_freeze:
2851                         break;
2852                 case sdma_event_e81_hw_frozen:
2853                         break;
2854                 case sdma_event_e82_hw_unfreeze:
2855                         break;
2856                 case sdma_event_e85_link_down:
2857                         ss->go_s99_running = 0;
2858                         break;
2859                 case sdma_event_e90_sw_halted:
2860                         break;
2861                 }
2862                 break;
2863
2864         case sdma_state_s60_idle_halt_wait:
2865                 switch (event) {
2866                 case sdma_event_e00_go_hw_down:
2867                         sdma_set_state(sde, sdma_state_s00_hw_down);
2868                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2869                         break;
2870                 case sdma_event_e10_go_hw_start:
2871                         break;
2872                 case sdma_event_e15_hw_halt_done:
2873                         sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
2874                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2875                         break;
2876                 case sdma_event_e25_hw_clean_up_done:
2877                         break;
2878                 case sdma_event_e30_go_running:
2879                         ss->go_s99_running = 1;
2880                         break;
2881                 case sdma_event_e40_sw_cleaned:
2882                         break;
2883                 case sdma_event_e50_hw_cleaned:
2884                         break;
2885                 case sdma_event_e60_hw_halted:
2886                         schedule_work(&sde->err_halt_worker);
2887                         break;
2888                 case sdma_event_e70_go_idle:
2889                         ss->go_s99_running = 0;
2890                         break;
2891                 case sdma_event_e80_hw_freeze:
2892                         break;
2893                 case sdma_event_e81_hw_frozen:
2894                         break;
2895                 case sdma_event_e82_hw_unfreeze:
2896                         break;
2897                 case sdma_event_e85_link_down:
2898                         break;
2899                 case sdma_event_e90_sw_halted:
2900                         break;
2901                 }
2902                 break;
2903
2904         case sdma_state_s80_hw_freeze:
2905                 switch (event) {
2906                 case sdma_event_e00_go_hw_down:
2907                         sdma_set_state(sde, sdma_state_s00_hw_down);
2908                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2909                         break;
2910                 case sdma_event_e10_go_hw_start:
2911                         break;
2912                 case sdma_event_e15_hw_halt_done:
2913                         break;
2914                 case sdma_event_e25_hw_clean_up_done:
2915                         break;
2916                 case sdma_event_e30_go_running:
2917                         ss->go_s99_running = 1;
2918                         break;
2919                 case sdma_event_e40_sw_cleaned:
2920                         break;
2921                 case sdma_event_e50_hw_cleaned:
2922                         break;
2923                 case sdma_event_e60_hw_halted:
2924                         break;
2925                 case sdma_event_e70_go_idle:
2926                         ss->go_s99_running = 0;
2927                         break;
2928                 case sdma_event_e80_hw_freeze:
2929                         break;
2930                 case sdma_event_e81_hw_frozen:
2931                         sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
2932                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2933                         break;
2934                 case sdma_event_e82_hw_unfreeze:
2935                         break;
2936                 case sdma_event_e85_link_down:
2937                         break;
2938                 case sdma_event_e90_sw_halted:
2939                         break;
2940                 }
2941                 break;
2942
2943         case sdma_state_s82_freeze_sw_clean:
2944                 switch (event) {
2945                 case sdma_event_e00_go_hw_down:
2946                         sdma_set_state(sde, sdma_state_s00_hw_down);
2947                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2948                         break;
2949                 case sdma_event_e10_go_hw_start:
2950                         break;
2951                 case sdma_event_e15_hw_halt_done:
2952                         break;
2953                 case sdma_event_e25_hw_clean_up_done:
2954                         break;
2955                 case sdma_event_e30_go_running:
2956                         ss->go_s99_running = 1;
2957                         break;
2958                 case sdma_event_e40_sw_cleaned:
2959                         /* notify caller this engine is done cleaning */
2960                         atomic_dec(&sde->dd->sdma_unfreeze_count);
2961                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
2962                         break;
2963                 case sdma_event_e50_hw_cleaned:
2964                         break;
2965                 case sdma_event_e60_hw_halted:
2966                         break;
2967                 case sdma_event_e70_go_idle:
2968                         ss->go_s99_running = 0;
2969                         break;
2970                 case sdma_event_e80_hw_freeze:
2971                         break;
2972                 case sdma_event_e81_hw_frozen:
2973                         break;
2974                 case sdma_event_e82_hw_unfreeze:
2975                         sdma_hw_start_up(sde);
2976                         sdma_set_state(sde, ss->go_s99_running ?
2977                                        sdma_state_s99_running :
2978                                        sdma_state_s20_idle);
2979                         break;
2980                 case sdma_event_e85_link_down:
2981                         break;
2982                 case sdma_event_e90_sw_halted:
2983                         break;
2984                 }
2985                 break;
2986
2987         case sdma_state_s99_running:
2988                 switch (event) {
2989                 case sdma_event_e00_go_hw_down:
2990                         sdma_set_state(sde, sdma_state_s00_hw_down);
2991                         tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
2992                         break;
2993                 case sdma_event_e10_go_hw_start:
2994                         break;
2995                 case sdma_event_e15_hw_halt_done:
2996                         break;
2997                 case sdma_event_e25_hw_clean_up_done:
2998                         break;
2999                 case sdma_event_e30_go_running:
3000                         break;
3001                 case sdma_event_e40_sw_cleaned:
3002                         break;
3003                 case sdma_event_e50_hw_cleaned:
3004                         break;
3005                 case sdma_event_e60_hw_halted:
3006                         need_progress = 1;
3007                         sdma_err_progress_check_schedule(sde);
3008                         /* fall through */
3009                 case sdma_event_e90_sw_halted:
3010                         /*
3011                         * SW initiated halt does not perform engines
3012                         * progress check
3013                         */
3014                         sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
3015                         schedule_work(&sde->err_halt_worker);
3016                         break;
3017                 case sdma_event_e70_go_idle:
3018                         sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
3019                         break;
3020                 case sdma_event_e85_link_down:
3021                         ss->go_s99_running = 0;
3022                         /* fall through */
3023                 case sdma_event_e80_hw_freeze:
3024                         sdma_set_state(sde, sdma_state_s80_hw_freeze);
3025                         atomic_dec(&sde->dd->sdma_unfreeze_count);
3026                         wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
3027                         break;
3028                 case sdma_event_e81_hw_frozen:
3029                         break;
3030                 case sdma_event_e82_hw_unfreeze:
3031                         break;
3032                 }
3033                 break;
3034         }
3035
3036         ss->last_event = event;
3037         if (need_progress)
3038                 sdma_make_progress(sde, 0);
3039 }
3040
3041 /*
3042  * _extend_sdma_tx_descs() - helper to extend txreq
3043  *
3044  * This is called once the initial nominal allocation
3045  * of descriptors in the sdma_txreq is exhausted.
3046  *
3047  * The code will bump the allocation up to the max
3048  * of MAX_DESC (64) descriptors. There doesn't seem
3049  * much point in an interim step. The last descriptor
3050  * is reserved for coalesce buffer in order to support
3051  * cases where input packet has >MAX_DESC iovecs.
3052  *
3053  */
3054 static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3055 {
3056         int i;
3057
3058         /* Handle last descriptor */
3059         if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
3060                 /* if tlen is 0, it is for padding, release last descriptor */
3061                 if (!tx->tlen) {
3062                         tx->desc_limit = MAX_DESC;
3063                 } else if (!tx->coalesce_buf) {
3064                         /* allocate coalesce buffer with space for padding */
3065                         tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
3066                                                    GFP_ATOMIC);
3067                         if (!tx->coalesce_buf)
3068                                 goto enomem;
3069                         tx->coalesce_idx = 0;
3070                 }
3071                 return 0;
3072         }
3073
3074         if (unlikely(tx->num_desc == MAX_DESC))
3075                 goto enomem;
3076
3077         tx->descp = kmalloc_array(
3078                         MAX_DESC,
3079                         sizeof(struct sdma_desc),
3080                         GFP_ATOMIC);
3081         if (!tx->descp)
3082                 goto enomem;
3083
3084         /* reserve last descriptor for coalescing */
3085         tx->desc_limit = MAX_DESC - 1;
3086         /* copy ones already built */
3087         for (i = 0; i < tx->num_desc; i++)
3088                 tx->descp[i] = tx->descs[i];
3089         return 0;
3090 enomem:
3091         __sdma_txclean(dd, tx);
3092         return -ENOMEM;
3093 }
3094
3095 /*
3096  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
3097  *
3098  * This is called once the initial nominal allocation of descriptors
3099  * in the sdma_txreq is exhausted.
3100  *
3101  * This function calls _extend_sdma_tx_descs to extend or allocate
3102  * coalesce buffer. If there is a allocated coalesce buffer, it will
3103  * copy the input packet data into the coalesce buffer. It also adds
3104  * coalesce buffer descriptor once when whole packet is received.
3105  *
3106  * Return:
3107  * <0 - error
3108  * 0 - coalescing, don't populate descriptor
3109  * 1 - continue with populating descriptor
3110  */
3111 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
3112                            int type, void *kvaddr, struct page *page,
3113                            unsigned long offset, u16 len)
3114 {
3115         int pad_len, rval;
3116         dma_addr_t addr;
3117
3118         rval = _extend_sdma_tx_descs(dd, tx);
3119         if (rval) {
3120                 __sdma_txclean(dd, tx);
3121                 return rval;
3122         }
3123
3124         /* If coalesce buffer is allocated, copy data into it */
3125         if (tx->coalesce_buf) {
3126                 if (type == SDMA_MAP_NONE) {
3127                         __sdma_txclean(dd, tx);
3128                         return -EINVAL;
3129                 }
3130
3131                 if (type == SDMA_MAP_PAGE) {
3132                         kvaddr = kmap(page);
3133                         kvaddr += offset;
3134                 } else if (WARN_ON(!kvaddr)) {
3135                         __sdma_txclean(dd, tx);
3136                         return -EINVAL;
3137                 }
3138
3139                 memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
3140                 tx->coalesce_idx += len;
3141                 if (type == SDMA_MAP_PAGE)
3142                         kunmap(page);
3143
3144                 /* If there is more data, return */
3145                 if (tx->tlen - tx->coalesce_idx)
3146                         return 0;
3147
3148                 /* Whole packet is received; add any padding */
3149                 pad_len = tx->packet_len & (sizeof(u32) - 1);
3150                 if (pad_len) {
3151                         pad_len = sizeof(u32) - pad_len;
3152                         memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
3153                         /* padding is taken care of for coalescing case */
3154                         tx->packet_len += pad_len;
3155                         tx->tlen += pad_len;
3156                 }
3157
3158                 /* dma map the coalesce buffer */
3159                 addr = dma_map_single(&dd->pcidev->dev,
3160                                       tx->coalesce_buf,
3161                                       tx->tlen,
3162                                       DMA_TO_DEVICE);
3163
3164                 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
3165                         __sdma_txclean(dd, tx);
3166                         return -ENOSPC;
3167                 }
3168
3169                 /* Add descriptor for coalesce buffer */
3170                 tx->desc_limit = MAX_DESC;
3171                 return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
3172                                          addr, tx->tlen);
3173         }
3174
3175         return 1;
3176 }
3177
3178 /* Update sdes when the lmc changes */
3179 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
3180 {
3181         struct sdma_engine *sde;
3182         int i;
3183         u64 sreg;
3184
3185         sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
3186                 SD(CHECK_SLID_MASK_SHIFT)) |
3187                 (((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
3188                 SD(CHECK_SLID_VALUE_SHIFT));
3189
3190         for (i = 0; i < dd->num_sdma; i++) {
3191                 hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
3192                           i, (u32)sreg);
3193                 sde = &dd->per_sdma[i];
3194                 write_sde_csr(sde, SD(CHECK_SLID), sreg);
3195         }
3196 }
3197
3198 /* tx not dword sized - pad */
3199 int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
3200 {
3201         int rval = 0;
3202
3203         tx->num_desc++;
3204         if ((unlikely(tx->num_desc == tx->desc_limit))) {
3205                 rval = _extend_sdma_tx_descs(dd, tx);
3206                 if (rval) {
3207                         __sdma_txclean(dd, tx);
3208                         return rval;
3209                 }
3210         }
3211         /* finish the one just added */
3212         make_tx_sdma_desc(
3213                 tx,
3214                 SDMA_MAP_NONE,
3215                 dd->sdma_pad_phys,
3216                 sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
3217         _sdma_close_tx(dd, tx);
3218         return rval;
3219 }
3220
3221 /*
3222  * Add ahg to the sdma_txreq
3223  *
3224  * The logic will consume up to 3
3225  * descriptors at the beginning of
3226  * sdma_txreq.
3227  */
3228 void _sdma_txreq_ahgadd(
3229         struct sdma_txreq *tx,
3230         u8 num_ahg,
3231         u8 ahg_entry,
3232         u32 *ahg,
3233         u8 ahg_hlen)
3234 {
3235         u32 i, shift = 0, desc = 0;
3236         u8 mode;
3237
3238         WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
3239         /* compute mode */
3240         if (num_ahg == 1)
3241                 mode = SDMA_AHG_APPLY_UPDATE1;
3242         else if (num_ahg <= 5)
3243                 mode = SDMA_AHG_APPLY_UPDATE2;
3244         else
3245                 mode = SDMA_AHG_APPLY_UPDATE3;
3246         tx->num_desc++;
3247         /* initialize to consumed descriptors to zero */
3248         switch (mode) {
3249         case SDMA_AHG_APPLY_UPDATE3:
3250                 tx->num_desc++;
3251                 tx->descs[2].qw[0] = 0;
3252                 tx->descs[2].qw[1] = 0;
3253                 /* FALLTHROUGH */
3254         case SDMA_AHG_APPLY_UPDATE2:
3255                 tx->num_desc++;
3256                 tx->descs[1].qw[0] = 0;
3257                 tx->descs[1].qw[1] = 0;
3258                 break;
3259         }
3260         ahg_hlen >>= 2;
3261         tx->descs[0].qw[1] |=
3262                 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
3263                         << SDMA_DESC1_HEADER_INDEX_SHIFT) |
3264                 (((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
3265                         << SDMA_DESC1_HEADER_DWS_SHIFT) |
3266                 (((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
3267                         << SDMA_DESC1_HEADER_MODE_SHIFT) |
3268                 (((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
3269                         << SDMA_DESC1_HEADER_UPDATE1_SHIFT);
3270         for (i = 0; i < (num_ahg - 1); i++) {
3271                 if (!shift && !(i & 2))
3272                         desc++;
3273                 tx->descs[desc].qw[!!(i & 2)] |=
3274                         (((u64)ahg[i + 1])
3275                                 << shift);
3276                 shift = (shift + 32) & 63;
3277         }
3278 }
3279
3280 /**
3281  * sdma_ahg_alloc - allocate an AHG entry
3282  * @sde: engine to allocate from
3283  *
3284  * Return:
3285  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
3286  * -ENOSPC if an entry is not available
3287  */
3288 int sdma_ahg_alloc(struct sdma_engine *sde)
3289 {
3290         int nr;
3291         int oldbit;
3292
3293         if (!sde) {
3294                 trace_hfi1_ahg_allocate(sde, -EINVAL);
3295                 return -EINVAL;
3296         }
3297         while (1) {
3298                 nr = ffz(READ_ONCE(sde->ahg_bits));
3299                 if (nr > 31) {
3300                         trace_hfi1_ahg_allocate(sde, -ENOSPC);
3301                         return -ENOSPC;
3302                 }
3303                 oldbit = test_and_set_bit(nr, &sde->ahg_bits);
3304                 if (!oldbit)
3305                         break;
3306                 cpu_relax();
3307         }
3308         trace_hfi1_ahg_allocate(sde, nr);
3309         return nr;
3310 }
3311
3312 /**
3313  * sdma_ahg_free - free an AHG entry
3314  * @sde: engine to return AHG entry
3315  * @ahg_index: index to free
3316  *
3317  * This routine frees the indicate AHG entry.
3318  */
3319 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
3320 {
3321         if (!sde)
3322                 return;
3323         trace_hfi1_ahg_deallocate(sde, ahg_index);
3324         if (ahg_index < 0 || ahg_index > 31)
3325                 return;
3326         clear_bit(ahg_index, &sde->ahg_bits);
3327 }
3328
3329 /*
3330  * SPC freeze handling for SDMA engines.  Called when the driver knows
3331  * the SPC is going into a freeze but before the freeze is fully
3332  * settled.  Generally an error interrupt.
3333  *
3334  * This event will pull the engine out of running so no more entries can be
3335  * added to the engine's queue.
3336  */
3337 void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
3338 {
3339         int i;
3340         enum sdma_events event = link_down ? sdma_event_e85_link_down :
3341                                              sdma_event_e80_hw_freeze;
3342
3343         /* set up the wait but do not wait here */
3344         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3345
3346         /* tell all engines to stop running and wait */
3347         for (i = 0; i < dd->num_sdma; i++)
3348                 sdma_process_event(&dd->per_sdma[i], event);
3349
3350         /* sdma_freeze() will wait for all engines to have stopped */
3351 }
3352
3353 /*
3354  * SPC freeze handling for SDMA engines.  Called when the driver knows
3355  * the SPC is fully frozen.
3356  */
3357 void sdma_freeze(struct hfi1_devdata *dd)
3358 {
3359         int i;
3360         int ret;
3361
3362         /*
3363          * Make sure all engines have moved out of the running state before
3364          * continuing.
3365          */
3366         ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
3367                                        atomic_read(&dd->sdma_unfreeze_count) <=
3368                                        0);
3369         /* interrupted or count is negative, then unloading - just exit */
3370         if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
3371                 return;
3372
3373         /* set up the count for the next wait */
3374         atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
3375
3376         /* tell all engines that the SPC is frozen, they can start cleaning */
3377         for (i = 0; i < dd->num_sdma; i++)
3378                 sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
3379
3380         /*
3381          * Wait for everyone to finish software clean before exiting.  The
3382          * software clean will read engine CSRs, so must be completed before
3383          * the next step, which will clear the engine CSRs.
3384          */
3385         (void)wait_event_interruptible(dd->sdma_unfreeze_wq,
3386                                 atomic_read(&dd->sdma_unfreeze_count) <= 0);
3387         /* no need to check results - done no matter what */
3388 }
3389
3390 /*
3391  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
3392  *
3393  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
3394  * that is left is a software clean.  We could do it after the SPC is fully
3395  * frozen, but then we'd have to add another state to wait for the unfreeze.
3396  * Instead, just defer the software clean until the unfreeze step.
3397  */
3398 void sdma_unfreeze(struct hfi1_devdata *dd)
3399 {
3400         int i;
3401
3402         /* tell all engines start freeze clean up */
3403         for (i = 0; i < dd->num_sdma; i++)
3404                 sdma_process_event(&dd->per_sdma[i],
3405                                    sdma_event_e82_hw_unfreeze);
3406 }
3407
3408 /**
3409  * _sdma_engine_progress_schedule() - schedule progress on engine
3410  * @sde: sdma_engine to schedule progress
3411  *
3412  */
3413 void _sdma_engine_progress_schedule(
3414         struct sdma_engine *sde)
3415 {
3416         trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
3417         /* assume we have selected a good cpu */
3418         write_csr(sde->dd,
3419                   CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
3420                   sde->progress_mask);
3421 }