Merge tag 'linux-kselftest-5.2-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / i2c / busses / i2c-mxs.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale MXS I2C bus driver
4  *
5  * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6  * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
7  *
8  * based on a (non-working) driver which was:
9  *
10  * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
11  */
12
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
22 #include <linux/io.h>
23 #include <linux/stmp_device.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28
29 #define DRIVER_NAME "mxs-i2c"
30
31 #define MXS_I2C_CTRL0           (0x00)
32 #define MXS_I2C_CTRL0_SET       (0x04)
33 #define MXS_I2C_CTRL0_CLR       (0x08)
34
35 #define MXS_I2C_CTRL0_SFTRST                    0x80000000
36 #define MXS_I2C_CTRL0_RUN                       0x20000000
37 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST          0x02000000
38 #define MXS_I2C_CTRL0_PIO_MODE                  0x01000000
39 #define MXS_I2C_CTRL0_RETAIN_CLOCK              0x00200000
40 #define MXS_I2C_CTRL0_POST_SEND_STOP            0x00100000
41 #define MXS_I2C_CTRL0_PRE_SEND_START            0x00080000
42 #define MXS_I2C_CTRL0_MASTER_MODE               0x00020000
43 #define MXS_I2C_CTRL0_DIRECTION                 0x00010000
44 #define MXS_I2C_CTRL0_XFER_COUNT(v)             ((v) & 0x0000FFFF)
45
46 #define MXS_I2C_TIMING0         (0x10)
47 #define MXS_I2C_TIMING1         (0x20)
48 #define MXS_I2C_TIMING2         (0x30)
49
50 #define MXS_I2C_CTRL1           (0x40)
51 #define MXS_I2C_CTRL1_SET       (0x44)
52 #define MXS_I2C_CTRL1_CLR       (0x48)
53
54 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK             0x10000000
55 #define MXS_I2C_CTRL1_BUS_FREE_IRQ              0x80
56 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ     0x40
57 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ          0x20
58 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ    0x10
59 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ            0x08
60 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ           0x04
61 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ            0x02
62 #define MXS_I2C_CTRL1_SLAVE_IRQ                 0x01
63
64 #define MXS_I2C_STAT            (0x50)
65 #define MXS_I2C_STAT_GOT_A_NAK                  0x10000000
66 #define MXS_I2C_STAT_BUS_BUSY                   0x00000800
67 #define MXS_I2C_STAT_CLK_GEN_BUSY               0x00000400
68
69 #define MXS_I2C_DATA(i2c)       ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
70
71 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
72
73 #define MXS_I2C_DEBUG0_DMAREQ   0x80000000
74
75 #define MXS_I2C_IRQ_MASK        (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
76                                  MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
77                                  MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
78                                  MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
79                                  MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
80                                  MXS_I2C_CTRL1_SLAVE_IRQ)
81
82
83 #define MXS_CMD_I2C_SELECT      (MXS_I2C_CTRL0_RETAIN_CLOCK |   \
84                                  MXS_I2C_CTRL0_PRE_SEND_START | \
85                                  MXS_I2C_CTRL0_MASTER_MODE |    \
86                                  MXS_I2C_CTRL0_DIRECTION |      \
87                                  MXS_I2C_CTRL0_XFER_COUNT(1))
88
89 #define MXS_CMD_I2C_WRITE       (MXS_I2C_CTRL0_PRE_SEND_START | \
90                                  MXS_I2C_CTRL0_MASTER_MODE |    \
91                                  MXS_I2C_CTRL0_DIRECTION)
92
93 #define MXS_CMD_I2C_READ        (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
94                                  MXS_I2C_CTRL0_MASTER_MODE)
95
96 enum mxs_i2c_devtype {
97         MXS_I2C_UNKNOWN = 0,
98         MXS_I2C_V1,
99         MXS_I2C_V2,
100 };
101
102 /**
103  * struct mxs_i2c_dev - per device, private MXS-I2C data
104  *
105  * @dev: driver model device node
106  * @dev_type: distinguish i.MX23/i.MX28 features
107  * @regs: IO registers pointer
108  * @cmd_complete: completion object for transaction wait
109  * @cmd_err: error code for last transaction
110  * @adapter: i2c subsystem adapter node
111  */
112 struct mxs_i2c_dev {
113         struct device *dev;
114         enum mxs_i2c_devtype dev_type;
115         void __iomem *regs;
116         struct completion cmd_complete;
117         int cmd_err;
118         struct i2c_adapter adapter;
119
120         uint32_t timing0;
121         uint32_t timing1;
122         uint32_t timing2;
123
124         /* DMA support components */
125         struct dma_chan                 *dmach;
126         uint32_t                        pio_data[2];
127         uint32_t                        addr_data;
128         struct scatterlist              sg_io[2];
129         bool                            dma_read;
130 };
131
132 static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
133 {
134         int ret = stmp_reset_block(i2c->regs);
135         if (ret)
136                 return ret;
137
138         /*
139          * Configure timing for the I2C block. The I2C TIMING2 register has to
140          * be programmed with this particular magic number. The rest is derived
141          * from the XTAL speed and requested I2C speed.
142          *
143          * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
144          */
145         writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
146         writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
147         writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
148
149         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
150
151         return 0;
152 }
153
154 static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
155 {
156         if (i2c->dma_read) {
157                 dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
158                 dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
159         } else {
160                 dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
161         }
162 }
163
164 static void mxs_i2c_dma_irq_callback(void *param)
165 {
166         struct mxs_i2c_dev *i2c = param;
167
168         complete(&i2c->cmd_complete);
169         mxs_i2c_dma_finish(i2c);
170 }
171
172 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
173                         struct i2c_msg *msg, uint32_t flags)
174 {
175         struct dma_async_tx_descriptor *desc;
176         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
177
178         i2c->addr_data = i2c_8bit_addr_from_msg(msg);
179
180         if (msg->flags & I2C_M_RD) {
181                 i2c->dma_read = true;
182
183                 /*
184                  * SELECT command.
185                  */
186
187                 /* Queue the PIO register write transfer. */
188                 i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
189                 desc = dmaengine_prep_slave_sg(i2c->dmach,
190                                         (struct scatterlist *)&i2c->pio_data[0],
191                                         1, DMA_TRANS_NONE, 0);
192                 if (!desc) {
193                         dev_err(i2c->dev,
194                                 "Failed to get PIO reg. write descriptor.\n");
195                         goto select_init_pio_fail;
196                 }
197
198                 /* Queue the DMA data transfer. */
199                 sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
200                 dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
201                 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
202                                         DMA_MEM_TO_DEV,
203                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
204                 if (!desc) {
205                         dev_err(i2c->dev,
206                                 "Failed to get DMA data write descriptor.\n");
207                         goto select_init_dma_fail;
208                 }
209
210                 /*
211                  * READ command.
212                  */
213
214                 /* Queue the PIO register write transfer. */
215                 i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
216                                 MXS_I2C_CTRL0_XFER_COUNT(msg->len);
217                 desc = dmaengine_prep_slave_sg(i2c->dmach,
218                                         (struct scatterlist *)&i2c->pio_data[1],
219                                         1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
220                 if (!desc) {
221                         dev_err(i2c->dev,
222                                 "Failed to get PIO reg. write descriptor.\n");
223                         goto select_init_dma_fail;
224                 }
225
226                 /* Queue the DMA data transfer. */
227                 sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
228                 dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
229                 desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
230                                         DMA_DEV_TO_MEM,
231                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
232                 if (!desc) {
233                         dev_err(i2c->dev,
234                                 "Failed to get DMA data write descriptor.\n");
235                         goto read_init_dma_fail;
236                 }
237         } else {
238                 i2c->dma_read = false;
239
240                 /*
241                  * WRITE command.
242                  */
243
244                 /* Queue the PIO register write transfer. */
245                 i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
246                                 MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
247                 desc = dmaengine_prep_slave_sg(i2c->dmach,
248                                         (struct scatterlist *)&i2c->pio_data[0],
249                                         1, DMA_TRANS_NONE, 0);
250                 if (!desc) {
251                         dev_err(i2c->dev,
252                                 "Failed to get PIO reg. write descriptor.\n");
253                         goto write_init_pio_fail;
254                 }
255
256                 /* Queue the DMA data transfer. */
257                 sg_init_table(i2c->sg_io, 2);
258                 sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
259                 sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
260                 dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
261                 desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
262                                         DMA_MEM_TO_DEV,
263                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
264                 if (!desc) {
265                         dev_err(i2c->dev,
266                                 "Failed to get DMA data write descriptor.\n");
267                         goto write_init_dma_fail;
268                 }
269         }
270
271         /*
272          * The last descriptor must have this callback,
273          * to finish the DMA transaction.
274          */
275         desc->callback = mxs_i2c_dma_irq_callback;
276         desc->callback_param = i2c;
277
278         /* Start the transfer. */
279         dmaengine_submit(desc);
280         dma_async_issue_pending(i2c->dmach);
281         return 0;
282
283 /* Read failpath. */
284 read_init_dma_fail:
285         dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
286 select_init_dma_fail:
287         dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
288 select_init_pio_fail:
289         dmaengine_terminate_all(i2c->dmach);
290         return -EINVAL;
291
292 /* Write failpath. */
293 write_init_dma_fail:
294         dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
295 write_init_pio_fail:
296         dmaengine_terminate_all(i2c->dmach);
297         return -EINVAL;
298 }
299
300 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev *i2c)
301 {
302         unsigned long timeout = jiffies + msecs_to_jiffies(1000);
303
304         while (readl(i2c->regs + MXS_I2C_CTRL0) & MXS_I2C_CTRL0_RUN) {
305                 if (readl(i2c->regs + MXS_I2C_CTRL1) &
306                                 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
307                         return -ENXIO;
308                 if (time_after(jiffies, timeout))
309                         return -ETIMEDOUT;
310                 cond_resched();
311         }
312
313         return 0;
314 }
315
316 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
317 {
318         u32 state;
319
320         state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
321
322         if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
323                 i2c->cmd_err = -ENXIO;
324         else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
325                           MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
326                           MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
327                           MXS_I2C_CTRL1_SLAVE_IRQ))
328                 i2c->cmd_err = -EIO;
329
330         return i2c->cmd_err;
331 }
332
333 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
334 {
335         u32 reg;
336
337         writel(cmd, i2c->regs + MXS_I2C_CTRL0);
338
339         /* readback makes sure the write is latched into hardware */
340         reg = readl(i2c->regs + MXS_I2C_CTRL0);
341         reg |= MXS_I2C_CTRL0_RUN;
342         writel(reg, i2c->regs + MXS_I2C_CTRL0);
343 }
344
345 /*
346  * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
347  * CTRL0::PIO_MODE bit description clarifies the order in which the registers
348  * must be written during PIO mode operation. First, the CTRL0 register has
349  * to be programmed with all the necessary bits but the RUN bit. Then the
350  * payload has to be written into the DATA register. Finally, the transmission
351  * is executed by setting the RUN bit in CTRL0.
352  */
353 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev *i2c, u32 cmd,
354                                           u32 data)
355 {
356         writel(cmd, i2c->regs + MXS_I2C_CTRL0);
357
358         if (i2c->dev_type == MXS_I2C_V1)
359                 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_SET);
360
361         writel(data, i2c->regs + MXS_I2C_DATA(i2c));
362         writel(MXS_I2C_CTRL0_RUN, i2c->regs + MXS_I2C_CTRL0_SET);
363 }
364
365 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
366                         struct i2c_msg *msg, uint32_t flags)
367 {
368         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
369         uint32_t addr_data = i2c_8bit_addr_from_msg(msg);
370         uint32_t data = 0;
371         int i, ret, xlen = 0, xmit = 0;
372         uint32_t start;
373
374         /* Mute IRQs coming from this block. */
375         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
376
377         /*
378          * MX23 idea:
379          * - Enable CTRL0::PIO_MODE (1 << 24)
380          * - Enable CTRL1::ACK_MODE (1 << 27)
381          *
382          * WARNING! The MX23 is broken in some way, even if it claims
383          * to support PIO, when we try to transfer any amount of data
384          * that is not aligned to 4 bytes, the DMA engine will have
385          * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
386          * transfer. This in turn will mess up the next transfer as
387          * the block it emit one byte write onto the bus terminated
388          * with a NAK+STOP. A possible workaround is to reset the IP
389          * block after every PIO transmission, which might just work.
390          *
391          * NOTE: The CTRL0::PIO_MODE description is important, since
392          * it outlines how the PIO mode is really supposed to work.
393          */
394         if (msg->flags & I2C_M_RD) {
395                 /*
396                  * PIO READ transfer:
397                  *
398                  * This transfer MUST be limited to 4 bytes maximum. It is not
399                  * possible to transfer more than four bytes via PIO, since we
400                  * can not in any way make sure we can read the data from the
401                  * DATA register fast enough. Besides, the RX FIFO is only four
402                  * bytes deep, thus we can only really read up to four bytes at
403                  * time. Finally, there is no bit indicating us that new data
404                  * arrived at the FIFO and can thus be fetched from the DATA
405                  * register.
406                  */
407                 BUG_ON(msg->len > 4);
408
409                 /* SELECT command. */
410                 mxs_i2c_pio_trigger_write_cmd(i2c, MXS_CMD_I2C_SELECT,
411                                               addr_data);
412
413                 ret = mxs_i2c_pio_wait_xfer_end(i2c);
414                 if (ret) {
415                         dev_dbg(i2c->dev,
416                                 "PIO: Failed to send SELECT command!\n");
417                         goto cleanup;
418                 }
419
420                 /* READ command. */
421                 mxs_i2c_pio_trigger_cmd(i2c,
422                                         MXS_CMD_I2C_READ | flags |
423                                         MXS_I2C_CTRL0_XFER_COUNT(msg->len));
424
425                 ret = mxs_i2c_pio_wait_xfer_end(i2c);
426                 if (ret) {
427                         dev_dbg(i2c->dev,
428                                 "PIO: Failed to send READ command!\n");
429                         goto cleanup;
430                 }
431
432                 data = readl(i2c->regs + MXS_I2C_DATA(i2c));
433                 for (i = 0; i < msg->len; i++) {
434                         msg->buf[i] = data & 0xff;
435                         data >>= 8;
436                 }
437         } else {
438                 /*
439                  * PIO WRITE transfer:
440                  *
441                  * The code below implements clock stretching to circumvent
442                  * the possibility of kernel not being able to supply data
443                  * fast enough. It is possible to transfer arbitrary amount
444                  * of data using PIO write.
445                  */
446
447                 /*
448                  * The LSB of data buffer is the first byte blasted across
449                  * the bus. Higher order bytes follow. Thus the following
450                  * filling schematic.
451                  */
452
453                 data = addr_data << 24;
454
455                 /* Start the transfer with START condition. */
456                 start = MXS_I2C_CTRL0_PRE_SEND_START;
457
458                 /* If the transfer is long, use clock stretching. */
459                 if (msg->len > 3)
460                         start |= MXS_I2C_CTRL0_RETAIN_CLOCK;
461
462                 for (i = 0; i < msg->len; i++) {
463                         data >>= 8;
464                         data |= (msg->buf[i] << 24);
465
466                         xmit = 0;
467
468                         /* This is the last transfer of the message. */
469                         if (i + 1 == msg->len) {
470                                 /* Add optional STOP flag. */
471                                 start |= flags;
472                                 /* Remove RETAIN_CLOCK bit. */
473                                 start &= ~MXS_I2C_CTRL0_RETAIN_CLOCK;
474                                 xmit = 1;
475                         }
476
477                         /* Four bytes are ready in the "data" variable. */
478                         if ((i & 3) == 2)
479                                 xmit = 1;
480
481                         /* Nothing interesting happened, continue stuffing. */
482                         if (!xmit)
483                                 continue;
484
485                         /*
486                          * Compute the size of the transfer and shift the
487                          * data accordingly.
488                          *
489                          * i = (4k + 0) .... xlen = 2
490                          * i = (4k + 1) .... xlen = 3
491                          * i = (4k + 2) .... xlen = 4
492                          * i = (4k + 3) .... xlen = 1
493                          */
494
495                         if ((i % 4) == 3)
496                                 xlen = 1;
497                         else
498                                 xlen = (i % 4) + 2;
499
500                         data >>= (4 - xlen) * 8;
501
502                         dev_dbg(i2c->dev,
503                                 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
504                                 xlen, i, msg->len,
505                                 start & MXS_I2C_CTRL0_PRE_SEND_START ? "S" : "",
506                                 start & MXS_I2C_CTRL0_POST_SEND_STOP ? "E" : "",
507                                 start & MXS_I2C_CTRL0_RETAIN_CLOCK ? "C" : "");
508
509                         writel(MXS_I2C_DEBUG0_DMAREQ,
510                                i2c->regs + MXS_I2C_DEBUG0_CLR(i2c));
511
512                         mxs_i2c_pio_trigger_write_cmd(i2c,
513                                 start | MXS_I2C_CTRL0_MASTER_MODE |
514                                 MXS_I2C_CTRL0_DIRECTION |
515                                 MXS_I2C_CTRL0_XFER_COUNT(xlen), data);
516
517                         /* The START condition is sent only once. */
518                         start &= ~MXS_I2C_CTRL0_PRE_SEND_START;
519
520                         /* Wait for the end of the transfer. */
521                         ret = mxs_i2c_pio_wait_xfer_end(i2c);
522                         if (ret) {
523                                 dev_dbg(i2c->dev,
524                                         "PIO: Failed to finish WRITE cmd!\n");
525                                 break;
526                         }
527
528                         /* Check NAK here. */
529                         ret = readl(i2c->regs + MXS_I2C_STAT) &
530                                     MXS_I2C_STAT_GOT_A_NAK;
531                         if (ret) {
532                                 ret = -ENXIO;
533                                 goto cleanup;
534                         }
535                 }
536         }
537
538         /* make sure we capture any occurred error into cmd_err */
539         ret = mxs_i2c_pio_check_error_state(i2c);
540
541 cleanup:
542         /* Clear any dangling IRQs and re-enable interrupts. */
543         writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
544         writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
545
546         /* Clear the PIO_MODE on i.MX23 */
547         if (i2c->dev_type == MXS_I2C_V1)
548                 writel(MXS_I2C_CTRL0_PIO_MODE, i2c->regs + MXS_I2C_CTRL0_CLR);
549
550         return ret;
551 }
552
553 /*
554  * Low level master read/write transaction.
555  */
556 static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
557                                 int stop)
558 {
559         struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
560         int ret;
561         int flags;
562         int use_pio = 0;
563         unsigned long time_left;
564
565         flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
566
567         dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
568                 msg->addr, msg->len, msg->flags, stop);
569
570         /*
571          * The MX28 I2C IP block can only do PIO READ for transfer of to up
572          * 4 bytes of length. The write transfer is not limited as it can use
573          * clock stretching to avoid FIFO underruns.
574          */
575         if ((msg->flags & I2C_M_RD) && (msg->len <= 4))
576                 use_pio = 1;
577         if (!(msg->flags & I2C_M_RD) && (msg->len < 7))
578                 use_pio = 1;
579
580         i2c->cmd_err = 0;
581         if (use_pio) {
582                 ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
583                 /* No need to reset the block if NAK was received. */
584                 if (ret && (ret != -ENXIO))
585                         mxs_i2c_reset(i2c);
586         } else {
587                 reinit_completion(&i2c->cmd_complete);
588                 ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
589                 if (ret)
590                         return ret;
591
592                 time_left = wait_for_completion_timeout(&i2c->cmd_complete,
593                                                 msecs_to_jiffies(1000));
594                 if (!time_left)
595                         goto timeout;
596
597                 ret = i2c->cmd_err;
598         }
599
600         if (ret == -ENXIO) {
601                 /*
602                  * If the transfer fails with a NAK from the slave the
603                  * controller halts until it gets told to return to idle state.
604                  */
605                 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
606                        i2c->regs + MXS_I2C_CTRL1_SET);
607         }
608
609         /*
610          * WARNING!
611          * The i.MX23 is strange. After each and every operation, it's I2C IP
612          * block must be reset, otherwise the IP block will misbehave. This can
613          * be observed on the bus by the block sending out one single byte onto
614          * the bus. In case such an error happens, bit 27 will be set in the
615          * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
616          * and is marked as "TBD" instead. To reset this bit to a correct state,
617          * reset the whole block. Since the block reset does not take long, do
618          * reset the block after every transfer to play safe.
619          */
620         if (i2c->dev_type == MXS_I2C_V1)
621                 mxs_i2c_reset(i2c);
622
623         dev_dbg(i2c->dev, "Done with err=%d\n", ret);
624
625         return ret;
626
627 timeout:
628         dev_dbg(i2c->dev, "Timeout!\n");
629         mxs_i2c_dma_finish(i2c);
630         ret = mxs_i2c_reset(i2c);
631         if (ret)
632                 return ret;
633
634         return -ETIMEDOUT;
635 }
636
637 static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
638                         int num)
639 {
640         int i;
641         int err;
642
643         for (i = 0; i < num; i++) {
644                 err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
645                 if (err)
646                         return err;
647         }
648
649         return num;
650 }
651
652 static u32 mxs_i2c_func(struct i2c_adapter *adap)
653 {
654         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
655 }
656
657 static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
658 {
659         struct mxs_i2c_dev *i2c = dev_id;
660         u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
661
662         if (!stat)
663                 return IRQ_NONE;
664
665         if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
666                 i2c->cmd_err = -ENXIO;
667         else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
668                     MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
669                     MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
670                 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
671                 i2c->cmd_err = -EIO;
672
673         writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
674
675         return IRQ_HANDLED;
676 }
677
678 static const struct i2c_algorithm mxs_i2c_algo = {
679         .master_xfer = mxs_i2c_xfer,
680         .functionality = mxs_i2c_func,
681 };
682
683 static const struct i2c_adapter_quirks mxs_i2c_quirks = {
684         .flags = I2C_AQ_NO_ZERO_LEN,
685 };
686
687 static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
688 {
689         /* The I2C block clock runs at 24MHz */
690         const uint32_t clk = 24000000;
691         uint32_t divider;
692         uint16_t high_count, low_count, rcv_count, xmit_count;
693         uint32_t bus_free, leadin;
694         struct device *dev = i2c->dev;
695
696         divider = DIV_ROUND_UP(clk, speed);
697
698         if (divider < 25) {
699                 /*
700                  * limit the divider, so that min(low_count, high_count)
701                  * is >= 1
702                  */
703                 divider = 25;
704                 dev_warn(dev,
705                         "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
706                         speed / 1000, speed % 1000,
707                         clk / divider / 1000, clk / divider % 1000);
708         } else if (divider > 1897) {
709                 /*
710                  * limit the divider, so that max(low_count, high_count)
711                  * cannot exceed 1023
712                  */
713                 divider = 1897;
714                 dev_warn(dev,
715                         "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
716                         speed / 1000, speed % 1000,
717                         clk / divider / 1000, clk / divider % 1000);
718         }
719
720         /*
721          * The I2C spec specifies the following timing data:
722          *                          standard mode  fast mode Bitfield name
723          * tLOW (SCL LOW period)     4700 ns        1300 ns
724          * tHIGH (SCL HIGH period)   4000 ns         600 ns
725          * tSU;DAT (data setup time)  250 ns         100 ns
726          * tHD;STA (START hold time) 4000 ns         600 ns
727          * tBUF (bus free time)      4700 ns        1300 ns
728          *
729          * The hardware (of the i.MX28 at least) seems to add 2 additional
730          * clock cycles to the low_count and 7 cycles to the high_count.
731          * This is compensated for by subtracting the respective constants
732          * from the values written to the timing registers.
733          */
734         if (speed > 100000) {
735                 /* fast mode */
736                 low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
737                 high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
738                 leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
739                 bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
740         } else {
741                 /* normal mode */
742                 low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
743                 high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
744                 leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
745                 bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
746         }
747         rcv_count = high_count * 3 / 8;
748         xmit_count = low_count * 3 / 8;
749
750         dev_dbg(dev,
751                 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
752                 speed, clk / divider, divider, low_count, high_count,
753                 xmit_count, rcv_count, leadin, bus_free);
754
755         low_count -= 2;
756         high_count -= 7;
757         i2c->timing0 = (high_count << 16) | rcv_count;
758         i2c->timing1 = (low_count << 16) | xmit_count;
759         i2c->timing2 = (bus_free << 16 | leadin);
760 }
761
762 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
763 {
764         uint32_t speed;
765         struct device *dev = i2c->dev;
766         struct device_node *node = dev->of_node;
767         int ret;
768
769         ret = of_property_read_u32(node, "clock-frequency", &speed);
770         if (ret) {
771                 dev_warn(dev, "No I2C speed selected, using 100kHz\n");
772                 speed = 100000;
773         }
774
775         mxs_i2c_derive_timing(i2c, speed);
776
777         return 0;
778 }
779
780 static const struct platform_device_id mxs_i2c_devtype[] = {
781         {
782                 .name = "imx23-i2c",
783                 .driver_data = MXS_I2C_V1,
784         }, {
785                 .name = "imx28-i2c",
786                 .driver_data = MXS_I2C_V2,
787         }, { /* sentinel */ }
788 };
789 MODULE_DEVICE_TABLE(platform, mxs_i2c_devtype);
790
791 static const struct of_device_id mxs_i2c_dt_ids[] = {
792         { .compatible = "fsl,imx23-i2c", .data = &mxs_i2c_devtype[0], },
793         { .compatible = "fsl,imx28-i2c", .data = &mxs_i2c_devtype[1], },
794         { /* sentinel */ }
795 };
796 MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
797
798 static int mxs_i2c_probe(struct platform_device *pdev)
799 {
800         const struct of_device_id *of_id =
801                                 of_match_device(mxs_i2c_dt_ids, &pdev->dev);
802         struct device *dev = &pdev->dev;
803         struct mxs_i2c_dev *i2c;
804         struct i2c_adapter *adap;
805         struct resource *res;
806         int err, irq;
807
808         i2c = devm_kzalloc(dev, sizeof(*i2c), GFP_KERNEL);
809         if (!i2c)
810                 return -ENOMEM;
811
812         if (of_id) {
813                 const struct platform_device_id *device_id = of_id->data;
814                 i2c->dev_type = device_id->driver_data;
815         }
816
817         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
818         i2c->regs = devm_ioremap_resource(&pdev->dev, res);
819         if (IS_ERR(i2c->regs))
820                 return PTR_ERR(i2c->regs);
821
822         irq = platform_get_irq(pdev, 0);
823         if (irq < 0)
824                 return irq;
825
826         err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
827         if (err)
828                 return err;
829
830         i2c->dev = dev;
831
832         init_completion(&i2c->cmd_complete);
833
834         if (dev->of_node) {
835                 err = mxs_i2c_get_ofdata(i2c);
836                 if (err)
837                         return err;
838         }
839
840         /* Setup the DMA */
841         i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
842         if (!i2c->dmach) {
843                 dev_err(dev, "Failed to request dma\n");
844                 return -ENODEV;
845         }
846
847         platform_set_drvdata(pdev, i2c);
848
849         /* Do reset to enforce correct startup after pinmuxing */
850         err = mxs_i2c_reset(i2c);
851         if (err)
852                 return err;
853
854         adap = &i2c->adapter;
855         strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
856         adap->owner = THIS_MODULE;
857         adap->algo = &mxs_i2c_algo;
858         adap->quirks = &mxs_i2c_quirks;
859         adap->dev.parent = dev;
860         adap->nr = pdev->id;
861         adap->dev.of_node = pdev->dev.of_node;
862         i2c_set_adapdata(adap, i2c);
863         err = i2c_add_numbered_adapter(adap);
864         if (err) {
865                 writel(MXS_I2C_CTRL0_SFTRST,
866                                 i2c->regs + MXS_I2C_CTRL0_SET);
867                 return err;
868         }
869
870         return 0;
871 }
872
873 static int mxs_i2c_remove(struct platform_device *pdev)
874 {
875         struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
876
877         i2c_del_adapter(&i2c->adapter);
878
879         if (i2c->dmach)
880                 dma_release_channel(i2c->dmach);
881
882         writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
883
884         return 0;
885 }
886
887 static struct platform_driver mxs_i2c_driver = {
888         .driver = {
889                    .name = DRIVER_NAME,
890                    .of_match_table = mxs_i2c_dt_ids,
891                    },
892         .probe = mxs_i2c_probe,
893         .remove = mxs_i2c_remove,
894 };
895
896 static int __init mxs_i2c_init(void)
897 {
898         return platform_driver_register(&mxs_i2c_driver);
899 }
900 subsys_initcall(mxs_i2c_init);
901
902 static void __exit mxs_i2c_exit(void)
903 {
904         platform_driver_unregister(&mxs_i2c_driver);
905 }
906 module_exit(mxs_i2c_exit);
907
908 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
909 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
910 MODULE_DESCRIPTION("MXS I2C Bus Driver");
911 MODULE_LICENSE("GPL");
912 MODULE_ALIAS("platform:" DRIVER_NAME);