Merge tag 'pstore-v4.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / nouveau / nvkm / engine / gr / gf100.c
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include "gf100.h"
25 #include "ctxgf100.h"
26 #include "fuc/os.h"
27
28 #include <core/client.h>
29 #include <core/option.h>
30 #include <core/firmware.h>
31 #include <subdev/secboot.h>
32 #include <subdev/fb.h>
33 #include <subdev/mc.h>
34 #include <subdev/pmu.h>
35 #include <subdev/timer.h>
36 #include <engine/fifo.h>
37
38 #include <nvif/class.h>
39 #include <nvif/cl9097.h>
40 #include <nvif/unpack.h>
41
42 /*******************************************************************************
43  * Zero Bandwidth Clear
44  ******************************************************************************/
45
46 static void
47 gf100_gr_zbc_clear_color(struct gf100_gr *gr, int zbc)
48 {
49         struct nvkm_device *device = gr->base.engine.subdev.device;
50         if (gr->zbc_color[zbc].format) {
51                 nvkm_wr32(device, 0x405804, gr->zbc_color[zbc].ds[0]);
52                 nvkm_wr32(device, 0x405808, gr->zbc_color[zbc].ds[1]);
53                 nvkm_wr32(device, 0x40580c, gr->zbc_color[zbc].ds[2]);
54                 nvkm_wr32(device, 0x405810, gr->zbc_color[zbc].ds[3]);
55         }
56         nvkm_wr32(device, 0x405814, gr->zbc_color[zbc].format);
57         nvkm_wr32(device, 0x405820, zbc);
58         nvkm_wr32(device, 0x405824, 0x00000004); /* TRIGGER | WRITE | COLOR */
59 }
60
61 static int
62 gf100_gr_zbc_color_get(struct gf100_gr *gr, int format,
63                        const u32 ds[4], const u32 l2[4])
64 {
65         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
66         int zbc = -ENOSPC, i;
67
68         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
69                 if (gr->zbc_color[i].format) {
70                         if (gr->zbc_color[i].format != format)
71                                 continue;
72                         if (memcmp(gr->zbc_color[i].ds, ds, sizeof(
73                                    gr->zbc_color[i].ds)))
74                                 continue;
75                         if (memcmp(gr->zbc_color[i].l2, l2, sizeof(
76                                    gr->zbc_color[i].l2))) {
77                                 WARN_ON(1);
78                                 return -EINVAL;
79                         }
80                         return i;
81                 } else {
82                         zbc = (zbc < 0) ? i : zbc;
83                 }
84         }
85
86         if (zbc < 0)
87                 return zbc;
88
89         memcpy(gr->zbc_color[zbc].ds, ds, sizeof(gr->zbc_color[zbc].ds));
90         memcpy(gr->zbc_color[zbc].l2, l2, sizeof(gr->zbc_color[zbc].l2));
91         gr->zbc_color[zbc].format = format;
92         nvkm_ltc_zbc_color_get(ltc, zbc, l2);
93         gf100_gr_zbc_clear_color(gr, zbc);
94         return zbc;
95 }
96
97 static void
98 gf100_gr_zbc_clear_depth(struct gf100_gr *gr, int zbc)
99 {
100         struct nvkm_device *device = gr->base.engine.subdev.device;
101         if (gr->zbc_depth[zbc].format)
102                 nvkm_wr32(device, 0x405818, gr->zbc_depth[zbc].ds);
103         nvkm_wr32(device, 0x40581c, gr->zbc_depth[zbc].format);
104         nvkm_wr32(device, 0x405820, zbc);
105         nvkm_wr32(device, 0x405824, 0x00000005); /* TRIGGER | WRITE | DEPTH */
106 }
107
108 static int
109 gf100_gr_zbc_depth_get(struct gf100_gr *gr, int format,
110                        const u32 ds, const u32 l2)
111 {
112         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
113         int zbc = -ENOSPC, i;
114
115         for (i = ltc->zbc_min; i <= ltc->zbc_max; i++) {
116                 if (gr->zbc_depth[i].format) {
117                         if (gr->zbc_depth[i].format != format)
118                                 continue;
119                         if (gr->zbc_depth[i].ds != ds)
120                                 continue;
121                         if (gr->zbc_depth[i].l2 != l2) {
122                                 WARN_ON(1);
123                                 return -EINVAL;
124                         }
125                         return i;
126                 } else {
127                         zbc = (zbc < 0) ? i : zbc;
128                 }
129         }
130
131         if (zbc < 0)
132                 return zbc;
133
134         gr->zbc_depth[zbc].format = format;
135         gr->zbc_depth[zbc].ds = ds;
136         gr->zbc_depth[zbc].l2 = l2;
137         nvkm_ltc_zbc_depth_get(ltc, zbc, l2);
138         gf100_gr_zbc_clear_depth(gr, zbc);
139         return zbc;
140 }
141
142 /*******************************************************************************
143  * Graphics object classes
144  ******************************************************************************/
145 #define gf100_gr_object(p) container_of((p), struct gf100_gr_object, object)
146
147 struct gf100_gr_object {
148         struct nvkm_object object;
149         struct gf100_gr_chan *chan;
150 };
151
152 static int
153 gf100_fermi_mthd_zbc_color(struct nvkm_object *object, void *data, u32 size)
154 {
155         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
156         union {
157                 struct fermi_a_zbc_color_v0 v0;
158         } *args = data;
159         int ret = -ENOSYS;
160
161         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
162                 switch (args->v0.format) {
163                 case FERMI_A_ZBC_COLOR_V0_FMT_ZERO:
164                 case FERMI_A_ZBC_COLOR_V0_FMT_UNORM_ONE:
165                 case FERMI_A_ZBC_COLOR_V0_FMT_RF32_GF32_BF32_AF32:
166                 case FERMI_A_ZBC_COLOR_V0_FMT_R16_G16_B16_A16:
167                 case FERMI_A_ZBC_COLOR_V0_FMT_RN16_GN16_BN16_AN16:
168                 case FERMI_A_ZBC_COLOR_V0_FMT_RS16_GS16_BS16_AS16:
169                 case FERMI_A_ZBC_COLOR_V0_FMT_RU16_GU16_BU16_AU16:
170                 case FERMI_A_ZBC_COLOR_V0_FMT_RF16_GF16_BF16_AF16:
171                 case FERMI_A_ZBC_COLOR_V0_FMT_A8R8G8B8:
172                 case FERMI_A_ZBC_COLOR_V0_FMT_A8RL8GL8BL8:
173                 case FERMI_A_ZBC_COLOR_V0_FMT_A2B10G10R10:
174                 case FERMI_A_ZBC_COLOR_V0_FMT_AU2BU10GU10RU10:
175                 case FERMI_A_ZBC_COLOR_V0_FMT_A8B8G8R8:
176                 case FERMI_A_ZBC_COLOR_V0_FMT_A8BL8GL8RL8:
177                 case FERMI_A_ZBC_COLOR_V0_FMT_AN8BN8GN8RN8:
178                 case FERMI_A_ZBC_COLOR_V0_FMT_AS8BS8GS8RS8:
179                 case FERMI_A_ZBC_COLOR_V0_FMT_AU8BU8GU8RU8:
180                 case FERMI_A_ZBC_COLOR_V0_FMT_A2R10G10B10:
181                 case FERMI_A_ZBC_COLOR_V0_FMT_BF10GF11RF11:
182                         ret = gf100_gr_zbc_color_get(gr, args->v0.format,
183                                                            args->v0.ds,
184                                                            args->v0.l2);
185                         if (ret >= 0) {
186                                 args->v0.index = ret;
187                                 return 0;
188                         }
189                         break;
190                 default:
191                         return -EINVAL;
192                 }
193         }
194
195         return ret;
196 }
197
198 static int
199 gf100_fermi_mthd_zbc_depth(struct nvkm_object *object, void *data, u32 size)
200 {
201         struct gf100_gr *gr = gf100_gr(nvkm_gr(object->engine));
202         union {
203                 struct fermi_a_zbc_depth_v0 v0;
204         } *args = data;
205         int ret = -ENOSYS;
206
207         if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
208                 switch (args->v0.format) {
209                 case FERMI_A_ZBC_DEPTH_V0_FMT_FP32:
210                         ret = gf100_gr_zbc_depth_get(gr, args->v0.format,
211                                                            args->v0.ds,
212                                                            args->v0.l2);
213                         return (ret >= 0) ? 0 : -ENOSPC;
214                 default:
215                         return -EINVAL;
216                 }
217         }
218
219         return ret;
220 }
221
222 static int
223 gf100_fermi_mthd(struct nvkm_object *object, u32 mthd, void *data, u32 size)
224 {
225         nvif_ioctl(object, "fermi mthd %08x\n", mthd);
226         switch (mthd) {
227         case FERMI_A_ZBC_COLOR:
228                 return gf100_fermi_mthd_zbc_color(object, data, size);
229         case FERMI_A_ZBC_DEPTH:
230                 return gf100_fermi_mthd_zbc_depth(object, data, size);
231         default:
232                 break;
233         }
234         return -EINVAL;
235 }
236
237 const struct nvkm_object_func
238 gf100_fermi = {
239         .mthd = gf100_fermi_mthd,
240 };
241
242 static void
243 gf100_gr_mthd_set_shader_exceptions(struct nvkm_device *device, u32 data)
244 {
245         nvkm_wr32(device, 0x419e44, data ? 0xffffffff : 0x00000000);
246         nvkm_wr32(device, 0x419e4c, data ? 0xffffffff : 0x00000000);
247 }
248
249 static bool
250 gf100_gr_mthd_sw(struct nvkm_device *device, u16 class, u32 mthd, u32 data)
251 {
252         switch (class & 0x00ff) {
253         case 0x97:
254         case 0xc0:
255                 switch (mthd) {
256                 case 0x1528:
257                         gf100_gr_mthd_set_shader_exceptions(device, data);
258                         return true;
259                 default:
260                         break;
261                 }
262                 break;
263         default:
264                 break;
265         }
266         return false;
267 }
268
269 static const struct nvkm_object_func
270 gf100_gr_object_func = {
271 };
272
273 static int
274 gf100_gr_object_new(const struct nvkm_oclass *oclass, void *data, u32 size,
275                     struct nvkm_object **pobject)
276 {
277         struct gf100_gr_chan *chan = gf100_gr_chan(oclass->parent);
278         struct gf100_gr_object *object;
279
280         if (!(object = kzalloc(sizeof(*object), GFP_KERNEL)))
281                 return -ENOMEM;
282         *pobject = &object->object;
283
284         nvkm_object_ctor(oclass->base.func ? oclass->base.func :
285                          &gf100_gr_object_func, oclass, &object->object);
286         object->chan = chan;
287         return 0;
288 }
289
290 static int
291 gf100_gr_object_get(struct nvkm_gr *base, int index, struct nvkm_sclass *sclass)
292 {
293         struct gf100_gr *gr = gf100_gr(base);
294         int c = 0;
295
296         while (gr->func->sclass[c].oclass) {
297                 if (c++ == index) {
298                         *sclass = gr->func->sclass[index];
299                         sclass->ctor = gf100_gr_object_new;
300                         return index;
301                 }
302         }
303
304         return c;
305 }
306
307 /*******************************************************************************
308  * PGRAPH context
309  ******************************************************************************/
310
311 static int
312 gf100_gr_chan_bind(struct nvkm_object *object, struct nvkm_gpuobj *parent,
313                    int align, struct nvkm_gpuobj **pgpuobj)
314 {
315         struct gf100_gr_chan *chan = gf100_gr_chan(object);
316         struct gf100_gr *gr = chan->gr;
317         int ret, i;
318
319         ret = nvkm_gpuobj_new(gr->base.engine.subdev.device, gr->size,
320                               align, false, parent, pgpuobj);
321         if (ret)
322                 return ret;
323
324         nvkm_kmap(*pgpuobj);
325         for (i = 0; i < gr->size; i += 4)
326                 nvkm_wo32(*pgpuobj, i, gr->data[i / 4]);
327
328         if (!gr->firmware) {
329                 nvkm_wo32(*pgpuobj, 0x00, chan->mmio_nr / 2);
330                 nvkm_wo32(*pgpuobj, 0x04, chan->mmio_vma.offset >> 8);
331         } else {
332                 nvkm_wo32(*pgpuobj, 0xf4, 0);
333                 nvkm_wo32(*pgpuobj, 0xf8, 0);
334                 nvkm_wo32(*pgpuobj, 0x10, chan->mmio_nr / 2);
335                 nvkm_wo32(*pgpuobj, 0x14, lower_32_bits(chan->mmio_vma.offset));
336                 nvkm_wo32(*pgpuobj, 0x18, upper_32_bits(chan->mmio_vma.offset));
337                 nvkm_wo32(*pgpuobj, 0x1c, 1);
338                 nvkm_wo32(*pgpuobj, 0x20, 0);
339                 nvkm_wo32(*pgpuobj, 0x28, 0);
340                 nvkm_wo32(*pgpuobj, 0x2c, 0);
341         }
342         nvkm_done(*pgpuobj);
343         return 0;
344 }
345
346 static void *
347 gf100_gr_chan_dtor(struct nvkm_object *object)
348 {
349         struct gf100_gr_chan *chan = gf100_gr_chan(object);
350         int i;
351
352         for (i = 0; i < ARRAY_SIZE(chan->data); i++) {
353                 if (chan->data[i].vma.node) {
354                         nvkm_vm_unmap(&chan->data[i].vma);
355                         nvkm_vm_put(&chan->data[i].vma);
356                 }
357                 nvkm_memory_del(&chan->data[i].mem);
358         }
359
360         if (chan->mmio_vma.node) {
361                 nvkm_vm_unmap(&chan->mmio_vma);
362                 nvkm_vm_put(&chan->mmio_vma);
363         }
364         nvkm_memory_del(&chan->mmio);
365         return chan;
366 }
367
368 static const struct nvkm_object_func
369 gf100_gr_chan = {
370         .dtor = gf100_gr_chan_dtor,
371         .bind = gf100_gr_chan_bind,
372 };
373
374 static int
375 gf100_gr_chan_new(struct nvkm_gr *base, struct nvkm_fifo_chan *fifoch,
376                   const struct nvkm_oclass *oclass,
377                   struct nvkm_object **pobject)
378 {
379         struct gf100_gr *gr = gf100_gr(base);
380         struct gf100_gr_data *data = gr->mmio_data;
381         struct gf100_gr_mmio *mmio = gr->mmio_list;
382         struct gf100_gr_chan *chan;
383         struct nvkm_device *device = gr->base.engine.subdev.device;
384         int ret, i;
385
386         if (!(chan = kzalloc(sizeof(*chan), GFP_KERNEL)))
387                 return -ENOMEM;
388         nvkm_object_ctor(&gf100_gr_chan, oclass, &chan->object);
389         chan->gr = gr;
390         *pobject = &chan->object;
391
392         /* allocate memory for a "mmio list" buffer that's used by the HUB
393          * fuc to modify some per-context register settings on first load
394          * of the context.
395          */
396         ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST, 0x1000, 0x100,
397                               false, &chan->mmio);
398         if (ret)
399                 return ret;
400
401         ret = nvkm_vm_get(fifoch->vm, 0x1000, 12, NV_MEM_ACCESS_RW |
402                           NV_MEM_ACCESS_SYS, &chan->mmio_vma);
403         if (ret)
404                 return ret;
405
406         nvkm_memory_map(chan->mmio, &chan->mmio_vma, 0);
407
408         /* allocate buffers referenced by mmio list */
409         for (i = 0; data->size && i < ARRAY_SIZE(gr->mmio_data); i++) {
410                 ret = nvkm_memory_new(device, NVKM_MEM_TARGET_INST,
411                                       data->size, data->align, false,
412                                       &chan->data[i].mem);
413                 if (ret)
414                         return ret;
415
416                 ret = nvkm_vm_get(fifoch->vm,
417                                   nvkm_memory_size(chan->data[i].mem), 12,
418                                   data->access, &chan->data[i].vma);
419                 if (ret)
420                         return ret;
421
422                 nvkm_memory_map(chan->data[i].mem, &chan->data[i].vma, 0);
423                 data++;
424         }
425
426         /* finally, fill in the mmio list and point the context at it */
427         nvkm_kmap(chan->mmio);
428         for (i = 0; mmio->addr && i < ARRAY_SIZE(gr->mmio_list); i++) {
429                 u32 addr = mmio->addr;
430                 u32 data = mmio->data;
431
432                 if (mmio->buffer >= 0) {
433                         u64 info = chan->data[mmio->buffer].vma.offset;
434                         data |= info >> mmio->shift;
435                 }
436
437                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, addr);
438                 nvkm_wo32(chan->mmio, chan->mmio_nr++ * 4, data);
439                 mmio++;
440         }
441         nvkm_done(chan->mmio);
442         return 0;
443 }
444
445 /*******************************************************************************
446  * PGRAPH register lists
447  ******************************************************************************/
448
449 const struct gf100_gr_init
450 gf100_gr_init_main_0[] = {
451         { 0x400080,   1, 0x04, 0x003083c2 },
452         { 0x400088,   1, 0x04, 0x00006fe7 },
453         { 0x40008c,   1, 0x04, 0x00000000 },
454         { 0x400090,   1, 0x04, 0x00000030 },
455         { 0x40013c,   1, 0x04, 0x013901f7 },
456         { 0x400140,   1, 0x04, 0x00000100 },
457         { 0x400144,   1, 0x04, 0x00000000 },
458         { 0x400148,   1, 0x04, 0x00000110 },
459         { 0x400138,   1, 0x04, 0x00000000 },
460         { 0x400130,   2, 0x04, 0x00000000 },
461         { 0x400124,   1, 0x04, 0x00000002 },
462         {}
463 };
464
465 const struct gf100_gr_init
466 gf100_gr_init_fe_0[] = {
467         { 0x40415c,   1, 0x04, 0x00000000 },
468         { 0x404170,   1, 0x04, 0x00000000 },
469         {}
470 };
471
472 const struct gf100_gr_init
473 gf100_gr_init_pri_0[] = {
474         { 0x404488,   2, 0x04, 0x00000000 },
475         {}
476 };
477
478 const struct gf100_gr_init
479 gf100_gr_init_rstr2d_0[] = {
480         { 0x407808,   1, 0x04, 0x00000000 },
481         {}
482 };
483
484 const struct gf100_gr_init
485 gf100_gr_init_pd_0[] = {
486         { 0x406024,   1, 0x04, 0x00000000 },
487         {}
488 };
489
490 const struct gf100_gr_init
491 gf100_gr_init_ds_0[] = {
492         { 0x405844,   1, 0x04, 0x00ffffff },
493         { 0x405850,   1, 0x04, 0x00000000 },
494         { 0x405908,   1, 0x04, 0x00000000 },
495         {}
496 };
497
498 const struct gf100_gr_init
499 gf100_gr_init_scc_0[] = {
500         { 0x40803c,   1, 0x04, 0x00000000 },
501         {}
502 };
503
504 const struct gf100_gr_init
505 gf100_gr_init_prop_0[] = {
506         { 0x4184a0,   1, 0x04, 0x00000000 },
507         {}
508 };
509
510 const struct gf100_gr_init
511 gf100_gr_init_gpc_unk_0[] = {
512         { 0x418604,   1, 0x04, 0x00000000 },
513         { 0x418680,   1, 0x04, 0x00000000 },
514         { 0x418714,   1, 0x04, 0x80000000 },
515         { 0x418384,   1, 0x04, 0x00000000 },
516         {}
517 };
518
519 const struct gf100_gr_init
520 gf100_gr_init_setup_0[] = {
521         { 0x418814,   3, 0x04, 0x00000000 },
522         {}
523 };
524
525 const struct gf100_gr_init
526 gf100_gr_init_crstr_0[] = {
527         { 0x418b04,   1, 0x04, 0x00000000 },
528         {}
529 };
530
531 const struct gf100_gr_init
532 gf100_gr_init_setup_1[] = {
533         { 0x4188c8,   1, 0x04, 0x80000000 },
534         { 0x4188cc,   1, 0x04, 0x00000000 },
535         { 0x4188d0,   1, 0x04, 0x00010000 },
536         { 0x4188d4,   1, 0x04, 0x00000001 },
537         {}
538 };
539
540 const struct gf100_gr_init
541 gf100_gr_init_zcull_0[] = {
542         { 0x418910,   1, 0x04, 0x00010001 },
543         { 0x418914,   1, 0x04, 0x00000301 },
544         { 0x418918,   1, 0x04, 0x00800000 },
545         { 0x418980,   1, 0x04, 0x77777770 },
546         { 0x418984,   3, 0x04, 0x77777777 },
547         {}
548 };
549
550 const struct gf100_gr_init
551 gf100_gr_init_gpm_0[] = {
552         { 0x418c04,   1, 0x04, 0x00000000 },
553         { 0x418c88,   1, 0x04, 0x00000000 },
554         {}
555 };
556
557 const struct gf100_gr_init
558 gf100_gr_init_gpc_unk_1[] = {
559         { 0x418d00,   1, 0x04, 0x00000000 },
560         { 0x418f08,   1, 0x04, 0x00000000 },
561         { 0x418e00,   1, 0x04, 0x00000050 },
562         { 0x418e08,   1, 0x04, 0x00000000 },
563         {}
564 };
565
566 const struct gf100_gr_init
567 gf100_gr_init_gcc_0[] = {
568         { 0x41900c,   1, 0x04, 0x00000000 },
569         { 0x419018,   1, 0x04, 0x00000000 },
570         {}
571 };
572
573 const struct gf100_gr_init
574 gf100_gr_init_tpccs_0[] = {
575         { 0x419d08,   2, 0x04, 0x00000000 },
576         { 0x419d10,   1, 0x04, 0x00000014 },
577         {}
578 };
579
580 const struct gf100_gr_init
581 gf100_gr_init_tex_0[] = {
582         { 0x419ab0,   1, 0x04, 0x00000000 },
583         { 0x419ab8,   1, 0x04, 0x000000e7 },
584         { 0x419abc,   2, 0x04, 0x00000000 },
585         {}
586 };
587
588 const struct gf100_gr_init
589 gf100_gr_init_pe_0[] = {
590         { 0x41980c,   3, 0x04, 0x00000000 },
591         { 0x419844,   1, 0x04, 0x00000000 },
592         { 0x41984c,   1, 0x04, 0x00005bc5 },
593         { 0x419850,   4, 0x04, 0x00000000 },
594         {}
595 };
596
597 const struct gf100_gr_init
598 gf100_gr_init_l1c_0[] = {
599         { 0x419c98,   1, 0x04, 0x00000000 },
600         { 0x419ca8,   1, 0x04, 0x80000000 },
601         { 0x419cb4,   1, 0x04, 0x00000000 },
602         { 0x419cb8,   1, 0x04, 0x00008bf4 },
603         { 0x419cbc,   1, 0x04, 0x28137606 },
604         { 0x419cc0,   2, 0x04, 0x00000000 },
605         {}
606 };
607
608 const struct gf100_gr_init
609 gf100_gr_init_wwdx_0[] = {
610         { 0x419bd4,   1, 0x04, 0x00800000 },
611         { 0x419bdc,   1, 0x04, 0x00000000 },
612         {}
613 };
614
615 const struct gf100_gr_init
616 gf100_gr_init_tpccs_1[] = {
617         { 0x419d2c,   1, 0x04, 0x00000000 },
618         {}
619 };
620
621 const struct gf100_gr_init
622 gf100_gr_init_mpc_0[] = {
623         { 0x419c0c,   1, 0x04, 0x00000000 },
624         {}
625 };
626
627 static const struct gf100_gr_init
628 gf100_gr_init_sm_0[] = {
629         { 0x419e00,   1, 0x04, 0x00000000 },
630         { 0x419ea0,   1, 0x04, 0x00000000 },
631         { 0x419ea4,   1, 0x04, 0x00000100 },
632         { 0x419ea8,   1, 0x04, 0x00001100 },
633         { 0x419eac,   1, 0x04, 0x11100702 },
634         { 0x419eb0,   1, 0x04, 0x00000003 },
635         { 0x419eb4,   4, 0x04, 0x00000000 },
636         { 0x419ec8,   1, 0x04, 0x06060618 },
637         { 0x419ed0,   1, 0x04, 0x0eff0e38 },
638         { 0x419ed4,   1, 0x04, 0x011104f1 },
639         { 0x419edc,   1, 0x04, 0x00000000 },
640         { 0x419f00,   1, 0x04, 0x00000000 },
641         { 0x419f2c,   1, 0x04, 0x00000000 },
642         {}
643 };
644
645 const struct gf100_gr_init
646 gf100_gr_init_be_0[] = {
647         { 0x40880c,   1, 0x04, 0x00000000 },
648         { 0x408910,   9, 0x04, 0x00000000 },
649         { 0x408950,   1, 0x04, 0x00000000 },
650         { 0x408954,   1, 0x04, 0x0000ffff },
651         { 0x408984,   1, 0x04, 0x00000000 },
652         { 0x408988,   1, 0x04, 0x08040201 },
653         { 0x40898c,   1, 0x04, 0x80402010 },
654         {}
655 };
656
657 const struct gf100_gr_init
658 gf100_gr_init_fe_1[] = {
659         { 0x4040f0,   1, 0x04, 0x00000000 },
660         {}
661 };
662
663 const struct gf100_gr_init
664 gf100_gr_init_pe_1[] = {
665         { 0x419880,   1, 0x04, 0x00000002 },
666         {}
667 };
668
669 static const struct gf100_gr_pack
670 gf100_gr_pack_mmio[] = {
671         { gf100_gr_init_main_0 },
672         { gf100_gr_init_fe_0 },
673         { gf100_gr_init_pri_0 },
674         { gf100_gr_init_rstr2d_0 },
675         { gf100_gr_init_pd_0 },
676         { gf100_gr_init_ds_0 },
677         { gf100_gr_init_scc_0 },
678         { gf100_gr_init_prop_0 },
679         { gf100_gr_init_gpc_unk_0 },
680         { gf100_gr_init_setup_0 },
681         { gf100_gr_init_crstr_0 },
682         { gf100_gr_init_setup_1 },
683         { gf100_gr_init_zcull_0 },
684         { gf100_gr_init_gpm_0 },
685         { gf100_gr_init_gpc_unk_1 },
686         { gf100_gr_init_gcc_0 },
687         { gf100_gr_init_tpccs_0 },
688         { gf100_gr_init_tex_0 },
689         { gf100_gr_init_pe_0 },
690         { gf100_gr_init_l1c_0 },
691         { gf100_gr_init_wwdx_0 },
692         { gf100_gr_init_tpccs_1 },
693         { gf100_gr_init_mpc_0 },
694         { gf100_gr_init_sm_0 },
695         { gf100_gr_init_be_0 },
696         { gf100_gr_init_fe_1 },
697         { gf100_gr_init_pe_1 },
698         {}
699 };
700
701 /*******************************************************************************
702  * PGRAPH engine/subdev functions
703  ******************************************************************************/
704
705 static bool
706 gf100_gr_chsw_load(struct nvkm_gr *base)
707 {
708         struct gf100_gr *gr = gf100_gr(base);
709         if (!gr->firmware) {
710                 u32 trace = nvkm_rd32(gr->base.engine.subdev.device, 0x40981c);
711                 if (trace & 0x00000040)
712                         return true;
713         } else {
714                 u32 mthd = nvkm_rd32(gr->base.engine.subdev.device, 0x409808);
715                 if (mthd & 0x00080000)
716                         return true;
717         }
718         return false;
719 }
720
721 int
722 gf100_gr_rops(struct gf100_gr *gr)
723 {
724         struct nvkm_device *device = gr->base.engine.subdev.device;
725         return (nvkm_rd32(device, 0x409604) & 0x001f0000) >> 16;
726 }
727
728 void
729 gf100_gr_zbc_init(struct gf100_gr *gr)
730 {
731         const u32  zero[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
732                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
733         const u32   one[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
734                               0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff };
735         const u32 f32_0[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000,
736                               0x00000000, 0x00000000, 0x00000000, 0x00000000 };
737         const u32 f32_1[] = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000,
738                               0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
739         struct nvkm_ltc *ltc = gr->base.engine.subdev.device->ltc;
740         int index;
741
742         if (!gr->zbc_color[0].format) {
743                 gf100_gr_zbc_color_get(gr, 1,  & zero[0],   &zero[4]);
744                 gf100_gr_zbc_color_get(gr, 2,  &  one[0],    &one[4]);
745                 gf100_gr_zbc_color_get(gr, 4,  &f32_0[0],  &f32_0[4]);
746                 gf100_gr_zbc_color_get(gr, 4,  &f32_1[0],  &f32_1[4]);
747                 gf100_gr_zbc_depth_get(gr, 1, 0x00000000, 0x00000000);
748                 gf100_gr_zbc_depth_get(gr, 1, 0x3f800000, 0x3f800000);
749         }
750
751         for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
752                 gf100_gr_zbc_clear_color(gr, index);
753         for (index = ltc->zbc_min; index <= ltc->zbc_max; index++)
754                 gf100_gr_zbc_clear_depth(gr, index);
755 }
756
757 /**
758  * Wait until GR goes idle. GR is considered idle if it is disabled by the
759  * MC (0x200) register, or GR is not busy and a context switch is not in
760  * progress.
761  */
762 int
763 gf100_gr_wait_idle(struct gf100_gr *gr)
764 {
765         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
766         struct nvkm_device *device = subdev->device;
767         unsigned long end_jiffies = jiffies + msecs_to_jiffies(2000);
768         bool gr_enabled, ctxsw_active, gr_busy;
769
770         do {
771                 /*
772                  * required to make sure FIFO_ENGINE_STATUS (0x2640) is
773                  * up-to-date
774                  */
775                 nvkm_rd32(device, 0x400700);
776
777                 gr_enabled = nvkm_rd32(device, 0x200) & 0x1000;
778                 ctxsw_active = nvkm_rd32(device, 0x2640) & 0x8000;
779                 gr_busy = nvkm_rd32(device, 0x40060c) & 0x1;
780
781                 if (!gr_enabled || (!gr_busy && !ctxsw_active))
782                         return 0;
783         } while (time_before(jiffies, end_jiffies));
784
785         nvkm_error(subdev,
786                    "wait for idle timeout (en: %d, ctxsw: %d, busy: %d)\n",
787                    gr_enabled, ctxsw_active, gr_busy);
788         return -EAGAIN;
789 }
790
791 void
792 gf100_gr_mmio(struct gf100_gr *gr, const struct gf100_gr_pack *p)
793 {
794         struct nvkm_device *device = gr->base.engine.subdev.device;
795         const struct gf100_gr_pack *pack;
796         const struct gf100_gr_init *init;
797
798         pack_for_each_init(init, pack, p) {
799                 u32 next = init->addr + init->count * init->pitch;
800                 u32 addr = init->addr;
801                 while (addr < next) {
802                         nvkm_wr32(device, addr, init->data);
803                         addr += init->pitch;
804                 }
805         }
806 }
807
808 void
809 gf100_gr_icmd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
810 {
811         struct nvkm_device *device = gr->base.engine.subdev.device;
812         const struct gf100_gr_pack *pack;
813         const struct gf100_gr_init *init;
814         u32 data = 0;
815
816         nvkm_wr32(device, 0x400208, 0x80000000);
817
818         pack_for_each_init(init, pack, p) {
819                 u32 next = init->addr + init->count * init->pitch;
820                 u32 addr = init->addr;
821
822                 if ((pack == p && init == p->init) || data != init->data) {
823                         nvkm_wr32(device, 0x400204, init->data);
824                         data = init->data;
825                 }
826
827                 while (addr < next) {
828                         nvkm_wr32(device, 0x400200, addr);
829                         /**
830                          * Wait for GR to go idle after submitting a
831                          * GO_IDLE bundle
832                          */
833                         if ((addr & 0xffff) == 0xe100)
834                                 gf100_gr_wait_idle(gr);
835                         nvkm_msec(device, 2000,
836                                 if (!(nvkm_rd32(device, 0x400700) & 0x00000004))
837                                         break;
838                         );
839                         addr += init->pitch;
840                 }
841         }
842
843         nvkm_wr32(device, 0x400208, 0x00000000);
844 }
845
846 void
847 gf100_gr_mthd(struct gf100_gr *gr, const struct gf100_gr_pack *p)
848 {
849         struct nvkm_device *device = gr->base.engine.subdev.device;
850         const struct gf100_gr_pack *pack;
851         const struct gf100_gr_init *init;
852         u32 data = 0;
853
854         pack_for_each_init(init, pack, p) {
855                 u32 ctrl = 0x80000000 | pack->type;
856                 u32 next = init->addr + init->count * init->pitch;
857                 u32 addr = init->addr;
858
859                 if ((pack == p && init == p->init) || data != init->data) {
860                         nvkm_wr32(device, 0x40448c, init->data);
861                         data = init->data;
862                 }
863
864                 while (addr < next) {
865                         nvkm_wr32(device, 0x404488, ctrl | (addr << 14));
866                         addr += init->pitch;
867                 }
868         }
869 }
870
871 u64
872 gf100_gr_units(struct nvkm_gr *base)
873 {
874         struct gf100_gr *gr = gf100_gr(base);
875         u64 cfg;
876
877         cfg  = (u32)gr->gpc_nr;
878         cfg |= (u32)gr->tpc_total << 8;
879         cfg |= (u64)gr->rop_nr << 32;
880
881         return cfg;
882 }
883
884 static const struct nvkm_bitfield gf100_dispatch_error[] = {
885         { 0x00000001, "INJECTED_BUNDLE_ERROR" },
886         { 0x00000002, "CLASS_SUBCH_MISMATCH" },
887         { 0x00000004, "SUBCHSW_DURING_NOTIFY" },
888         {}
889 };
890
891 static const struct nvkm_bitfield gf100_m2mf_error[] = {
892         { 0x00000001, "PUSH_TOO_MUCH_DATA" },
893         { 0x00000002, "PUSH_NOT_ENOUGH_DATA" },
894         {}
895 };
896
897 static const struct nvkm_bitfield gf100_unk6_error[] = {
898         { 0x00000001, "TEMP_TOO_SMALL" },
899         {}
900 };
901
902 static const struct nvkm_bitfield gf100_ccache_error[] = {
903         { 0x00000001, "INTR" },
904         { 0x00000002, "LDCONST_OOB" },
905         {}
906 };
907
908 static const struct nvkm_bitfield gf100_macro_error[] = {
909         { 0x00000001, "TOO_FEW_PARAMS" },
910         { 0x00000002, "TOO_MANY_PARAMS" },
911         { 0x00000004, "ILLEGAL_OPCODE" },
912         { 0x00000008, "DOUBLE_BRANCH" },
913         { 0x00000010, "WATCHDOG" },
914         {}
915 };
916
917 static const struct nvkm_bitfield gk104_sked_error[] = {
918         { 0x00000040, "CTA_RESUME" },
919         { 0x00000080, "CONSTANT_BUFFER_SIZE" },
920         { 0x00000200, "LOCAL_MEMORY_SIZE_POS" },
921         { 0x00000400, "LOCAL_MEMORY_SIZE_NEG" },
922         { 0x00000800, "WARP_CSTACK_SIZE" },
923         { 0x00001000, "TOTAL_TEMP_SIZE" },
924         { 0x00002000, "REGISTER_COUNT" },
925         { 0x00040000, "TOTAL_THREADS" },
926         { 0x00100000, "PROGRAM_OFFSET" },
927         { 0x00200000, "SHARED_MEMORY_SIZE" },
928         { 0x00800000, "CTA_THREAD_DIMENSION_ZERO" },
929         { 0x01000000, "MEMORY_WINDOW_OVERLAP" },
930         { 0x02000000, "SHARED_CONFIG_TOO_SMALL" },
931         { 0x04000000, "TOTAL_REGISTER_COUNT" },
932         {}
933 };
934
935 static const struct nvkm_bitfield gf100_gpc_rop_error[] = {
936         { 0x00000002, "RT_PITCH_OVERRUN" },
937         { 0x00000010, "RT_WIDTH_OVERRUN" },
938         { 0x00000020, "RT_HEIGHT_OVERRUN" },
939         { 0x00000080, "ZETA_STORAGE_TYPE_MISMATCH" },
940         { 0x00000100, "RT_STORAGE_TYPE_MISMATCH" },
941         { 0x00000400, "RT_LINEAR_MISMATCH" },
942         {}
943 };
944
945 static void
946 gf100_gr_trap_gpc_rop(struct gf100_gr *gr, int gpc)
947 {
948         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
949         struct nvkm_device *device = subdev->device;
950         char error[128];
951         u32 trap[4];
952
953         trap[0] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0420)) & 0x3fffffff;
954         trap[1] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0434));
955         trap[2] = nvkm_rd32(device, GPC_UNIT(gpc, 0x0438));
956         trap[3] = nvkm_rd32(device, GPC_UNIT(gpc, 0x043c));
957
958         nvkm_snprintbf(error, sizeof(error), gf100_gpc_rop_error, trap[0]);
959
960         nvkm_error(subdev, "GPC%d/PROP trap: %08x [%s] x = %u, y = %u, "
961                            "format = %x, storage type = %x\n",
962                    gpc, trap[0], error, trap[1] & 0xffff, trap[1] >> 16,
963                    (trap[2] >> 8) & 0x3f, trap[3] & 0xff);
964         nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
965 }
966
967 static const struct nvkm_enum gf100_mp_warp_error[] = {
968         { 0x01, "STACK_ERROR" },
969         { 0x02, "API_STACK_ERROR" },
970         { 0x03, "RET_EMPTY_STACK_ERROR" },
971         { 0x04, "PC_WRAP" },
972         { 0x05, "MISALIGNED_PC" },
973         { 0x06, "PC_OVERFLOW" },
974         { 0x07, "MISALIGNED_IMMC_ADDR" },
975         { 0x08, "MISALIGNED_REG" },
976         { 0x09, "ILLEGAL_INSTR_ENCODING" },
977         { 0x0a, "ILLEGAL_SPH_INSTR_COMBO" },
978         { 0x0b, "ILLEGAL_INSTR_PARAM" },
979         { 0x0c, "INVALID_CONST_ADDR" },
980         { 0x0d, "OOR_REG" },
981         { 0x0e, "OOR_ADDR" },
982         { 0x0f, "MISALIGNED_ADDR" },
983         { 0x10, "INVALID_ADDR_SPACE" },
984         { 0x11, "ILLEGAL_INSTR_PARAM2" },
985         { 0x12, "INVALID_CONST_ADDR_LDC" },
986         { 0x13, "GEOMETRY_SM_ERROR" },
987         { 0x14, "DIVERGENT" },
988         { 0x15, "WARP_EXIT" },
989         {}
990 };
991
992 static const struct nvkm_bitfield gf100_mp_global_error[] = {
993         { 0x00000001, "SM_TO_SM_FAULT" },
994         { 0x00000002, "L1_ERROR" },
995         { 0x00000004, "MULTIPLE_WARP_ERRORS" },
996         { 0x00000008, "PHYSICAL_STACK_OVERFLOW" },
997         { 0x00000010, "BPT_INT" },
998         { 0x00000020, "BPT_PAUSE" },
999         { 0x00000040, "SINGLE_STEP_COMPLETE" },
1000         { 0x20000000, "ECC_SEC_ERROR" },
1001         { 0x40000000, "ECC_DED_ERROR" },
1002         { 0x80000000, "TIMEOUT" },
1003         {}
1004 };
1005
1006 static void
1007 gf100_gr_trap_mp(struct gf100_gr *gr, int gpc, int tpc)
1008 {
1009         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1010         struct nvkm_device *device = subdev->device;
1011         u32 werr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x648));
1012         u32 gerr = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x650));
1013         const struct nvkm_enum *warp;
1014         char glob[128];
1015
1016         nvkm_snprintbf(glob, sizeof(glob), gf100_mp_global_error, gerr);
1017         warp = nvkm_enum_find(gf100_mp_warp_error, werr & 0xffff);
1018
1019         nvkm_error(subdev, "GPC%i/TPC%i/MP trap: "
1020                            "global %08x [%s] warp %04x [%s]\n",
1021                    gpc, tpc, gerr, glob, werr, warp ? warp->name : "");
1022
1023         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x648), 0x00000000);
1024         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x650), gerr);
1025 }
1026
1027 static void
1028 gf100_gr_trap_tpc(struct gf100_gr *gr, int gpc, int tpc)
1029 {
1030         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1031         struct nvkm_device *device = subdev->device;
1032         u32 stat = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0508));
1033
1034         if (stat & 0x00000001) {
1035                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0224));
1036                 nvkm_error(subdev, "GPC%d/TPC%d/TEX: %08x\n", gpc, tpc, trap);
1037                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0224), 0xc0000000);
1038                 stat &= ~0x00000001;
1039         }
1040
1041         if (stat & 0x00000002) {
1042                 gf100_gr_trap_mp(gr, gpc, tpc);
1043                 stat &= ~0x00000002;
1044         }
1045
1046         if (stat & 0x00000004) {
1047                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0084));
1048                 nvkm_error(subdev, "GPC%d/TPC%d/POLY: %08x\n", gpc, tpc, trap);
1049                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0084), 0xc0000000);
1050                 stat &= ~0x00000004;
1051         }
1052
1053         if (stat & 0x00000008) {
1054                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x048c));
1055                 nvkm_error(subdev, "GPC%d/TPC%d/L1C: %08x\n", gpc, tpc, trap);
1056                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x048c), 0xc0000000);
1057                 stat &= ~0x00000008;
1058         }
1059
1060         if (stat & 0x00000010) {
1061                 u32 trap = nvkm_rd32(device, TPC_UNIT(gpc, tpc, 0x0430));
1062                 nvkm_error(subdev, "GPC%d/TPC%d/MPC: %08x\n", gpc, tpc, trap);
1063                 nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x0430), 0xc0000000);
1064                 stat &= ~0x00000010;
1065         }
1066
1067         if (stat) {
1068                 nvkm_error(subdev, "GPC%d/TPC%d/%08x: unknown\n", gpc, tpc, stat);
1069         }
1070 }
1071
1072 static void
1073 gf100_gr_trap_gpc(struct gf100_gr *gr, int gpc)
1074 {
1075         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1076         struct nvkm_device *device = subdev->device;
1077         u32 stat = nvkm_rd32(device, GPC_UNIT(gpc, 0x2c90));
1078         int tpc;
1079
1080         if (stat & 0x00000001) {
1081                 gf100_gr_trap_gpc_rop(gr, gpc);
1082                 stat &= ~0x00000001;
1083         }
1084
1085         if (stat & 0x00000002) {
1086                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0900));
1087                 nvkm_error(subdev, "GPC%d/ZCULL: %08x\n", gpc, trap);
1088                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1089                 stat &= ~0x00000002;
1090         }
1091
1092         if (stat & 0x00000004) {
1093                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x1028));
1094                 nvkm_error(subdev, "GPC%d/CCACHE: %08x\n", gpc, trap);
1095                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1096                 stat &= ~0x00000004;
1097         }
1098
1099         if (stat & 0x00000008) {
1100                 u32 trap = nvkm_rd32(device, GPC_UNIT(gpc, 0x0824));
1101                 nvkm_error(subdev, "GPC%d/ESETUP: %08x\n", gpc, trap);
1102                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1103                 stat &= ~0x00000009;
1104         }
1105
1106         for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1107                 u32 mask = 0x00010000 << tpc;
1108                 if (stat & mask) {
1109                         gf100_gr_trap_tpc(gr, gpc, tpc);
1110                         nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), mask);
1111                         stat &= ~mask;
1112                 }
1113         }
1114
1115         if (stat) {
1116                 nvkm_error(subdev, "GPC%d/%08x: unknown\n", gpc, stat);
1117         }
1118 }
1119
1120 static void
1121 gf100_gr_trap_intr(struct gf100_gr *gr)
1122 {
1123         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1124         struct nvkm_device *device = subdev->device;
1125         char error[128];
1126         u32 trap = nvkm_rd32(device, 0x400108);
1127         int rop, gpc;
1128
1129         if (trap & 0x00000001) {
1130                 u32 stat = nvkm_rd32(device, 0x404000);
1131
1132                 nvkm_snprintbf(error, sizeof(error), gf100_dispatch_error,
1133                                stat & 0x3fffffff);
1134                 nvkm_error(subdev, "DISPATCH %08x [%s]\n", stat, error);
1135                 nvkm_wr32(device, 0x404000, 0xc0000000);
1136                 nvkm_wr32(device, 0x400108, 0x00000001);
1137                 trap &= ~0x00000001;
1138         }
1139
1140         if (trap & 0x00000002) {
1141                 u32 stat = nvkm_rd32(device, 0x404600);
1142
1143                 nvkm_snprintbf(error, sizeof(error), gf100_m2mf_error,
1144                                stat & 0x3fffffff);
1145                 nvkm_error(subdev, "M2MF %08x [%s]\n", stat, error);
1146
1147                 nvkm_wr32(device, 0x404600, 0xc0000000);
1148                 nvkm_wr32(device, 0x400108, 0x00000002);
1149                 trap &= ~0x00000002;
1150         }
1151
1152         if (trap & 0x00000008) {
1153                 u32 stat = nvkm_rd32(device, 0x408030);
1154
1155                 nvkm_snprintbf(error, sizeof(error), gf100_ccache_error,
1156                                stat & 0x3fffffff);
1157                 nvkm_error(subdev, "CCACHE %08x [%s]\n", stat, error);
1158                 nvkm_wr32(device, 0x408030, 0xc0000000);
1159                 nvkm_wr32(device, 0x400108, 0x00000008);
1160                 trap &= ~0x00000008;
1161         }
1162
1163         if (trap & 0x00000010) {
1164                 u32 stat = nvkm_rd32(device, 0x405840);
1165                 nvkm_error(subdev, "SHADER %08x, sph: 0x%06x, stage: 0x%02x\n",
1166                            stat, stat & 0xffffff, (stat >> 24) & 0x3f);
1167                 nvkm_wr32(device, 0x405840, 0xc0000000);
1168                 nvkm_wr32(device, 0x400108, 0x00000010);
1169                 trap &= ~0x00000010;
1170         }
1171
1172         if (trap & 0x00000040) {
1173                 u32 stat = nvkm_rd32(device, 0x40601c);
1174
1175                 nvkm_snprintbf(error, sizeof(error), gf100_unk6_error,
1176                                stat & 0x3fffffff);
1177                 nvkm_error(subdev, "UNK6 %08x [%s]\n", stat, error);
1178
1179                 nvkm_wr32(device, 0x40601c, 0xc0000000);
1180                 nvkm_wr32(device, 0x400108, 0x00000040);
1181                 trap &= ~0x00000040;
1182         }
1183
1184         if (trap & 0x00000080) {
1185                 u32 stat = nvkm_rd32(device, 0x404490);
1186                 u32 pc = nvkm_rd32(device, 0x404494);
1187                 u32 op = nvkm_rd32(device, 0x40449c);
1188
1189                 nvkm_snprintbf(error, sizeof(error), gf100_macro_error,
1190                                stat & 0x1fffffff);
1191                 nvkm_error(subdev, "MACRO %08x [%s], pc: 0x%03x%s, op: 0x%08x\n",
1192                            stat, error, pc & 0x7ff,
1193                            (pc & 0x10000000) ? "" : " (invalid)",
1194                            op);
1195
1196                 nvkm_wr32(device, 0x404490, 0xc0000000);
1197                 nvkm_wr32(device, 0x400108, 0x00000080);
1198                 trap &= ~0x00000080;
1199         }
1200
1201         if (trap & 0x00000100) {
1202                 u32 stat = nvkm_rd32(device, 0x407020) & 0x3fffffff;
1203
1204                 nvkm_snprintbf(error, sizeof(error), gk104_sked_error, stat);
1205                 nvkm_error(subdev, "SKED: %08x [%s]\n", stat, error);
1206
1207                 if (stat)
1208                         nvkm_wr32(device, 0x407020, 0x40000000);
1209                 nvkm_wr32(device, 0x400108, 0x00000100);
1210                 trap &= ~0x00000100;
1211         }
1212
1213         if (trap & 0x01000000) {
1214                 u32 stat = nvkm_rd32(device, 0x400118);
1215                 for (gpc = 0; stat && gpc < gr->gpc_nr; gpc++) {
1216                         u32 mask = 0x00000001 << gpc;
1217                         if (stat & mask) {
1218                                 gf100_gr_trap_gpc(gr, gpc);
1219                                 nvkm_wr32(device, 0x400118, mask);
1220                                 stat &= ~mask;
1221                         }
1222                 }
1223                 nvkm_wr32(device, 0x400108, 0x01000000);
1224                 trap &= ~0x01000000;
1225         }
1226
1227         if (trap & 0x02000000) {
1228                 for (rop = 0; rop < gr->rop_nr; rop++) {
1229                         u32 statz = nvkm_rd32(device, ROP_UNIT(rop, 0x070));
1230                         u32 statc = nvkm_rd32(device, ROP_UNIT(rop, 0x144));
1231                         nvkm_error(subdev, "ROP%d %08x %08x\n",
1232                                  rop, statz, statc);
1233                         nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1234                         nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1235                 }
1236                 nvkm_wr32(device, 0x400108, 0x02000000);
1237                 trap &= ~0x02000000;
1238         }
1239
1240         if (trap) {
1241                 nvkm_error(subdev, "TRAP UNHANDLED %08x\n", trap);
1242                 nvkm_wr32(device, 0x400108, trap);
1243         }
1244 }
1245
1246 static void
1247 gf100_gr_ctxctl_debug_unit(struct gf100_gr *gr, u32 base)
1248 {
1249         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1250         struct nvkm_device *device = subdev->device;
1251         nvkm_error(subdev, "%06x - done %08x\n", base,
1252                    nvkm_rd32(device, base + 0x400));
1253         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1254                    nvkm_rd32(device, base + 0x800),
1255                    nvkm_rd32(device, base + 0x804),
1256                    nvkm_rd32(device, base + 0x808),
1257                    nvkm_rd32(device, base + 0x80c));
1258         nvkm_error(subdev, "%06x - stat %08x %08x %08x %08x\n", base,
1259                    nvkm_rd32(device, base + 0x810),
1260                    nvkm_rd32(device, base + 0x814),
1261                    nvkm_rd32(device, base + 0x818),
1262                    nvkm_rd32(device, base + 0x81c));
1263 }
1264
1265 void
1266 gf100_gr_ctxctl_debug(struct gf100_gr *gr)
1267 {
1268         struct nvkm_device *device = gr->base.engine.subdev.device;
1269         u32 gpcnr = nvkm_rd32(device, 0x409604) & 0xffff;
1270         u32 gpc;
1271
1272         gf100_gr_ctxctl_debug_unit(gr, 0x409000);
1273         for (gpc = 0; gpc < gpcnr; gpc++)
1274                 gf100_gr_ctxctl_debug_unit(gr, 0x502000 + (gpc * 0x8000));
1275 }
1276
1277 static void
1278 gf100_gr_ctxctl_isr(struct gf100_gr *gr)
1279 {
1280         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1281         struct nvkm_device *device = subdev->device;
1282         u32 stat = nvkm_rd32(device, 0x409c18);
1283
1284         if (!gr->firmware && (stat & 0x00000001)) {
1285                 u32 code = nvkm_rd32(device, 0x409814);
1286                 if (code == E_BAD_FWMTHD) {
1287                         u32 class = nvkm_rd32(device, 0x409808);
1288                         u32  addr = nvkm_rd32(device, 0x40980c);
1289                         u32  subc = (addr & 0x00070000) >> 16;
1290                         u32  mthd = (addr & 0x00003ffc);
1291                         u32  data = nvkm_rd32(device, 0x409810);
1292
1293                         nvkm_error(subdev, "FECS MTHD subc %d class %04x "
1294                                            "mthd %04x data %08x\n",
1295                                    subc, class, mthd, data);
1296                 } else {
1297                         nvkm_error(subdev, "FECS ucode error %d\n", code);
1298                 }
1299                 nvkm_wr32(device, 0x409c20, 0x00000001);
1300                 stat &= ~0x00000001;
1301         }
1302
1303         if (!gr->firmware && (stat & 0x00080000)) {
1304                 nvkm_error(subdev, "FECS watchdog timeout\n");
1305                 gf100_gr_ctxctl_debug(gr);
1306                 nvkm_wr32(device, 0x409c20, 0x00080000);
1307                 stat &= ~0x00080000;
1308         }
1309
1310         if (stat) {
1311                 nvkm_error(subdev, "FECS %08x\n", stat);
1312                 gf100_gr_ctxctl_debug(gr);
1313                 nvkm_wr32(device, 0x409c20, stat);
1314         }
1315 }
1316
1317 static void
1318 gf100_gr_intr(struct nvkm_gr *base)
1319 {
1320         struct gf100_gr *gr = gf100_gr(base);
1321         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1322         struct nvkm_device *device = subdev->device;
1323         struct nvkm_fifo_chan *chan;
1324         unsigned long flags;
1325         u64 inst = nvkm_rd32(device, 0x409b00) & 0x0fffffff;
1326         u32 stat = nvkm_rd32(device, 0x400100);
1327         u32 addr = nvkm_rd32(device, 0x400704);
1328         u32 mthd = (addr & 0x00003ffc);
1329         u32 subc = (addr & 0x00070000) >> 16;
1330         u32 data = nvkm_rd32(device, 0x400708);
1331         u32 code = nvkm_rd32(device, 0x400110);
1332         u32 class;
1333         const char *name = "unknown";
1334         int chid = -1;
1335
1336         chan = nvkm_fifo_chan_inst(device->fifo, (u64)inst << 12, &flags);
1337         if (chan) {
1338                 name = chan->object.client->name;
1339                 chid = chan->chid;
1340         }
1341
1342         if (device->card_type < NV_E0 || subc < 4)
1343                 class = nvkm_rd32(device, 0x404200 + (subc * 4));
1344         else
1345                 class = 0x0000;
1346
1347         if (stat & 0x00000001) {
1348                 /*
1349                  * notifier interrupt, only needed for cyclestats
1350                  * can be safely ignored
1351                  */
1352                 nvkm_wr32(device, 0x400100, 0x00000001);
1353                 stat &= ~0x00000001;
1354         }
1355
1356         if (stat & 0x00000010) {
1357                 if (!gf100_gr_mthd_sw(device, class, mthd, data)) {
1358                         nvkm_error(subdev, "ILLEGAL_MTHD ch %d [%010llx %s] "
1359                                    "subc %d class %04x mthd %04x data %08x\n",
1360                                    chid, inst << 12, name, subc,
1361                                    class, mthd, data);
1362                 }
1363                 nvkm_wr32(device, 0x400100, 0x00000010);
1364                 stat &= ~0x00000010;
1365         }
1366
1367         if (stat & 0x00000020) {
1368                 nvkm_error(subdev, "ILLEGAL_CLASS ch %d [%010llx %s] "
1369                            "subc %d class %04x mthd %04x data %08x\n",
1370                            chid, inst << 12, name, subc, class, mthd, data);
1371                 nvkm_wr32(device, 0x400100, 0x00000020);
1372                 stat &= ~0x00000020;
1373         }
1374
1375         if (stat & 0x00100000) {
1376                 const struct nvkm_enum *en =
1377                         nvkm_enum_find(nv50_data_error_names, code);
1378                 nvkm_error(subdev, "DATA_ERROR %08x [%s] ch %d [%010llx %s] "
1379                                    "subc %d class %04x mthd %04x data %08x\n",
1380                            code, en ? en->name : "", chid, inst << 12,
1381                            name, subc, class, mthd, data);
1382                 nvkm_wr32(device, 0x400100, 0x00100000);
1383                 stat &= ~0x00100000;
1384         }
1385
1386         if (stat & 0x00200000) {
1387                 nvkm_error(subdev, "TRAP ch %d [%010llx %s]\n",
1388                            chid, inst << 12, name);
1389                 gf100_gr_trap_intr(gr);
1390                 nvkm_wr32(device, 0x400100, 0x00200000);
1391                 stat &= ~0x00200000;
1392         }
1393
1394         if (stat & 0x00080000) {
1395                 gf100_gr_ctxctl_isr(gr);
1396                 nvkm_wr32(device, 0x400100, 0x00080000);
1397                 stat &= ~0x00080000;
1398         }
1399
1400         if (stat) {
1401                 nvkm_error(subdev, "intr %08x\n", stat);
1402                 nvkm_wr32(device, 0x400100, stat);
1403         }
1404
1405         nvkm_wr32(device, 0x400500, 0x00010001);
1406         nvkm_fifo_chan_put(device->fifo, flags, &chan);
1407 }
1408
1409 static void
1410 gf100_gr_init_fw(struct nvkm_falcon *falcon,
1411                  struct gf100_gr_fuc *code, struct gf100_gr_fuc *data)
1412 {
1413         nvkm_falcon_load_dmem(falcon, data->data, 0x0, data->size, 0);
1414         nvkm_falcon_load_imem(falcon, code->data, 0x0, code->size, 0, 0, false);
1415 }
1416
1417 static void
1418 gf100_gr_init_csdata(struct gf100_gr *gr,
1419                      const struct gf100_gr_pack *pack,
1420                      u32 falcon, u32 starstar, u32 base)
1421 {
1422         struct nvkm_device *device = gr->base.engine.subdev.device;
1423         const struct gf100_gr_pack *iter;
1424         const struct gf100_gr_init *init;
1425         u32 addr = ~0, prev = ~0, xfer = 0;
1426         u32 star, temp;
1427
1428         nvkm_wr32(device, falcon + 0x01c0, 0x02000000 + starstar);
1429         star = nvkm_rd32(device, falcon + 0x01c4);
1430         temp = nvkm_rd32(device, falcon + 0x01c4);
1431         if (temp > star)
1432                 star = temp;
1433         nvkm_wr32(device, falcon + 0x01c0, 0x01000000 + star);
1434
1435         pack_for_each_init(init, iter, pack) {
1436                 u32 head = init->addr - base;
1437                 u32 tail = head + init->count * init->pitch;
1438                 while (head < tail) {
1439                         if (head != prev + 4 || xfer >= 32) {
1440                                 if (xfer) {
1441                                         u32 data = ((--xfer << 26) | addr);
1442                                         nvkm_wr32(device, falcon + 0x01c4, data);
1443                                         star += 4;
1444                                 }
1445                                 addr = head;
1446                                 xfer = 0;
1447                         }
1448                         prev = head;
1449                         xfer = xfer + 1;
1450                         head = head + init->pitch;
1451                 }
1452         }
1453
1454         nvkm_wr32(device, falcon + 0x01c4, (--xfer << 26) | addr);
1455         nvkm_wr32(device, falcon + 0x01c0, 0x01000004 + starstar);
1456         nvkm_wr32(device, falcon + 0x01c4, star + 4);
1457 }
1458
1459 /* Initialize context from an external (secure or not) firmware */
1460 static int
1461 gf100_gr_init_ctxctl_ext(struct gf100_gr *gr)
1462 {
1463         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1464         struct nvkm_device *device = subdev->device;
1465         struct nvkm_secboot *sb = device->secboot;
1466         u32 secboot_mask = 0;
1467
1468         /* load fuc microcode */
1469         nvkm_mc_unk260(device, 0);
1470
1471         /* securely-managed falcons must be reset using secure boot */
1472         if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_FECS))
1473                 secboot_mask |= BIT(NVKM_SECBOOT_FALCON_FECS);
1474         else
1475                 gf100_gr_init_fw(gr->fecs, &gr->fuc409c, &gr->fuc409d);
1476
1477         if (nvkm_secboot_is_managed(sb, NVKM_SECBOOT_FALCON_GPCCS))
1478                 secboot_mask |= BIT(NVKM_SECBOOT_FALCON_GPCCS);
1479         else
1480                 gf100_gr_init_fw(gr->gpccs, &gr->fuc41ac, &gr->fuc41ad);
1481
1482         if (secboot_mask != 0) {
1483                 int ret = nvkm_secboot_reset(sb, secboot_mask);
1484                 if (ret)
1485                         return ret;
1486         }
1487
1488         nvkm_mc_unk260(device, 1);
1489
1490         /* start both of them running */
1491         nvkm_wr32(device, 0x409840, 0xffffffff);
1492         nvkm_wr32(device, 0x41a10c, 0x00000000);
1493         nvkm_wr32(device, 0x40910c, 0x00000000);
1494
1495         nvkm_falcon_start(gr->gpccs);
1496         nvkm_falcon_start(gr->fecs);
1497
1498         if (nvkm_msec(device, 2000,
1499                 if (nvkm_rd32(device, 0x409800) & 0x00000001)
1500                         break;
1501         ) < 0)
1502                 return -EBUSY;
1503
1504         nvkm_wr32(device, 0x409840, 0xffffffff);
1505         nvkm_wr32(device, 0x409500, 0x7fffffff);
1506         nvkm_wr32(device, 0x409504, 0x00000021);
1507
1508         nvkm_wr32(device, 0x409840, 0xffffffff);
1509         nvkm_wr32(device, 0x409500, 0x00000000);
1510         nvkm_wr32(device, 0x409504, 0x00000010);
1511         if (nvkm_msec(device, 2000,
1512                 if ((gr->size = nvkm_rd32(device, 0x409800)))
1513                         break;
1514         ) < 0)
1515                 return -EBUSY;
1516
1517         nvkm_wr32(device, 0x409840, 0xffffffff);
1518         nvkm_wr32(device, 0x409500, 0x00000000);
1519         nvkm_wr32(device, 0x409504, 0x00000016);
1520         if (nvkm_msec(device, 2000,
1521                 if (nvkm_rd32(device, 0x409800))
1522                         break;
1523         ) < 0)
1524                 return -EBUSY;
1525
1526         nvkm_wr32(device, 0x409840, 0xffffffff);
1527         nvkm_wr32(device, 0x409500, 0x00000000);
1528         nvkm_wr32(device, 0x409504, 0x00000025);
1529         if (nvkm_msec(device, 2000,
1530                 if (nvkm_rd32(device, 0x409800))
1531                         break;
1532         ) < 0)
1533                 return -EBUSY;
1534
1535         if (device->chipset >= 0xe0) {
1536                 nvkm_wr32(device, 0x409800, 0x00000000);
1537                 nvkm_wr32(device, 0x409500, 0x00000001);
1538                 nvkm_wr32(device, 0x409504, 0x00000030);
1539                 if (nvkm_msec(device, 2000,
1540                         if (nvkm_rd32(device, 0x409800))
1541                                 break;
1542                 ) < 0)
1543                         return -EBUSY;
1544
1545                 nvkm_wr32(device, 0x409810, 0xb00095c8);
1546                 nvkm_wr32(device, 0x409800, 0x00000000);
1547                 nvkm_wr32(device, 0x409500, 0x00000001);
1548                 nvkm_wr32(device, 0x409504, 0x00000031);
1549                 if (nvkm_msec(device, 2000,
1550                         if (nvkm_rd32(device, 0x409800))
1551                                 break;
1552                 ) < 0)
1553                         return -EBUSY;
1554
1555                 nvkm_wr32(device, 0x409810, 0x00080420);
1556                 nvkm_wr32(device, 0x409800, 0x00000000);
1557                 nvkm_wr32(device, 0x409500, 0x00000001);
1558                 nvkm_wr32(device, 0x409504, 0x00000032);
1559                 if (nvkm_msec(device, 2000,
1560                         if (nvkm_rd32(device, 0x409800))
1561                                 break;
1562                 ) < 0)
1563                         return -EBUSY;
1564
1565                 nvkm_wr32(device, 0x409614, 0x00000070);
1566                 nvkm_wr32(device, 0x409614, 0x00000770);
1567                 nvkm_wr32(device, 0x40802c, 0x00000001);
1568         }
1569
1570         if (gr->data == NULL) {
1571                 int ret = gf100_grctx_generate(gr);
1572                 if (ret) {
1573                         nvkm_error(subdev, "failed to construct context\n");
1574                         return ret;
1575                 }
1576         }
1577
1578         return 0;
1579 }
1580
1581 static int
1582 gf100_gr_init_ctxctl_int(struct gf100_gr *gr)
1583 {
1584         const struct gf100_grctx_func *grctx = gr->func->grctx;
1585         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1586         struct nvkm_device *device = subdev->device;
1587
1588         if (!gr->func->fecs.ucode) {
1589                 return -ENOSYS;
1590         }
1591
1592         /* load HUB microcode */
1593         nvkm_mc_unk260(device, 0);
1594         nvkm_falcon_load_dmem(gr->fecs, gr->func->fecs.ucode->data.data, 0x0,
1595                               gr->func->fecs.ucode->data.size, 0);
1596         nvkm_falcon_load_imem(gr->fecs, gr->func->fecs.ucode->code.data, 0x0,
1597                               gr->func->fecs.ucode->code.size, 0, 0, false);
1598
1599         /* load GPC microcode */
1600         nvkm_falcon_load_dmem(gr->gpccs, gr->func->gpccs.ucode->data.data, 0x0,
1601                               gr->func->gpccs.ucode->data.size, 0);
1602         nvkm_falcon_load_imem(gr->gpccs, gr->func->gpccs.ucode->code.data, 0x0,
1603                               gr->func->gpccs.ucode->code.size, 0, 0, false);
1604         nvkm_mc_unk260(device, 1);
1605
1606         /* load register lists */
1607         gf100_gr_init_csdata(gr, grctx->hub, 0x409000, 0x000, 0x000000);
1608         gf100_gr_init_csdata(gr, grctx->gpc, 0x41a000, 0x000, 0x418000);
1609         gf100_gr_init_csdata(gr, grctx->tpc, 0x41a000, 0x004, 0x419800);
1610         gf100_gr_init_csdata(gr, grctx->ppc, 0x41a000, 0x008, 0x41be00);
1611
1612         /* start HUB ucode running, it'll init the GPCs */
1613         nvkm_wr32(device, 0x40910c, 0x00000000);
1614         nvkm_wr32(device, 0x409100, 0x00000002);
1615         if (nvkm_msec(device, 2000,
1616                 if (nvkm_rd32(device, 0x409800) & 0x80000000)
1617                         break;
1618         ) < 0) {
1619                 gf100_gr_ctxctl_debug(gr);
1620                 return -EBUSY;
1621         }
1622
1623         gr->size = nvkm_rd32(device, 0x409804);
1624         if (gr->data == NULL) {
1625                 int ret = gf100_grctx_generate(gr);
1626                 if (ret) {
1627                         nvkm_error(subdev, "failed to construct context\n");
1628                         return ret;
1629                 }
1630         }
1631
1632         return 0;
1633 }
1634
1635 int
1636 gf100_gr_init_ctxctl(struct gf100_gr *gr)
1637 {
1638         int ret;
1639
1640         if (gr->firmware)
1641                 ret = gf100_gr_init_ctxctl_ext(gr);
1642         else
1643                 ret = gf100_gr_init_ctxctl_int(gr);
1644
1645         return ret;
1646 }
1647
1648 static int
1649 gf100_gr_oneinit(struct nvkm_gr *base)
1650 {
1651         struct gf100_gr *gr = gf100_gr(base);
1652         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1653         struct nvkm_device *device = subdev->device;
1654         int i, j;
1655         int ret;
1656
1657         ret = nvkm_falcon_v1_new(subdev, "FECS", 0x409000, &gr->fecs);
1658         if (ret)
1659                 return ret;
1660
1661         ret = nvkm_falcon_v1_new(subdev, "GPCCS", 0x41a000, &gr->gpccs);
1662         if (ret)
1663                 return ret;
1664
1665         nvkm_pmu_pgob(device->pmu, false);
1666
1667         gr->rop_nr = gr->func->rops(gr);
1668         gr->gpc_nr = nvkm_rd32(device, 0x409604) & 0x0000001f;
1669         for (i = 0; i < gr->gpc_nr; i++) {
1670                 gr->tpc_nr[i]  = nvkm_rd32(device, GPC_UNIT(i, 0x2608));
1671                 gr->tpc_total += gr->tpc_nr[i];
1672                 gr->ppc_nr[i]  = gr->func->ppc_nr;
1673                 for (j = 0; j < gr->ppc_nr[i]; j++) {
1674                         u8 mask = nvkm_rd32(device, GPC_UNIT(i, 0x0c30 + (j * 4)));
1675                         if (mask)
1676                                 gr->ppc_mask[i] |= (1 << j);
1677                         gr->ppc_tpc_nr[i][j] = hweight8(mask);
1678                 }
1679         }
1680
1681         /*XXX: these need figuring out... though it might not even matter */
1682         switch (device->chipset) {
1683         case 0xc0:
1684                 if (gr->tpc_total == 11) { /* 465, 3/4/4/0, 4 */
1685                         gr->screen_tile_row_offset = 0x07;
1686                 } else
1687                 if (gr->tpc_total == 14) { /* 470, 3/3/4/4, 5 */
1688                         gr->screen_tile_row_offset = 0x05;
1689                 } else
1690                 if (gr->tpc_total == 15) { /* 480, 3/4/4/4, 6 */
1691                         gr->screen_tile_row_offset = 0x06;
1692                 }
1693                 break;
1694         case 0xc3: /* 450, 4/0/0/0, 2 */
1695                 gr->screen_tile_row_offset = 0x03;
1696                 break;
1697         case 0xc4: /* 460, 3/4/0/0, 4 */
1698                 gr->screen_tile_row_offset = 0x01;
1699                 break;
1700         case 0xc1: /* 2/0/0/0, 1 */
1701                 gr->screen_tile_row_offset = 0x01;
1702                 break;
1703         case 0xc8: /* 4/4/3/4, 5 */
1704                 gr->screen_tile_row_offset = 0x06;
1705                 break;
1706         case 0xce: /* 4/4/0/0, 4 */
1707                 gr->screen_tile_row_offset = 0x03;
1708                 break;
1709         case 0xcf: /* 4/0/0/0, 3 */
1710                 gr->screen_tile_row_offset = 0x03;
1711                 break;
1712         case 0xd7:
1713         case 0xd9: /* 1/0/0/0, 1 */
1714         case 0xea: /* gk20a */
1715         case 0x12b: /* gm20b */
1716                 gr->screen_tile_row_offset = 0x01;
1717                 break;
1718         }
1719
1720         return 0;
1721 }
1722
1723 static int
1724 gf100_gr_init_(struct nvkm_gr *base)
1725 {
1726         struct gf100_gr *gr = gf100_gr(base);
1727         struct nvkm_subdev *subdev = &base->engine.subdev;
1728         u32 ret;
1729
1730         nvkm_pmu_pgob(gr->base.engine.subdev.device->pmu, false);
1731
1732         ret = nvkm_falcon_get(gr->fecs, subdev);
1733         if (ret)
1734                 return ret;
1735
1736         ret = nvkm_falcon_get(gr->gpccs, subdev);
1737         if (ret)
1738                 return ret;
1739
1740         return gr->func->init(gr);
1741 }
1742
1743 static int
1744 gf100_gr_fini_(struct nvkm_gr *base, bool suspend)
1745 {
1746         struct gf100_gr *gr = gf100_gr(base);
1747         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1748         nvkm_falcon_put(gr->gpccs, subdev);
1749         nvkm_falcon_put(gr->fecs, subdev);
1750         return 0;
1751 }
1752
1753 void
1754 gf100_gr_dtor_fw(struct gf100_gr_fuc *fuc)
1755 {
1756         kfree(fuc->data);
1757         fuc->data = NULL;
1758 }
1759
1760 static void
1761 gf100_gr_dtor_init(struct gf100_gr_pack *pack)
1762 {
1763         vfree(pack);
1764 }
1765
1766 void *
1767 gf100_gr_dtor(struct nvkm_gr *base)
1768 {
1769         struct gf100_gr *gr = gf100_gr(base);
1770
1771         if (gr->func->dtor)
1772                 gr->func->dtor(gr);
1773         kfree(gr->data);
1774
1775         nvkm_falcon_del(&gr->gpccs);
1776         nvkm_falcon_del(&gr->fecs);
1777
1778         gf100_gr_dtor_fw(&gr->fuc409c);
1779         gf100_gr_dtor_fw(&gr->fuc409d);
1780         gf100_gr_dtor_fw(&gr->fuc41ac);
1781         gf100_gr_dtor_fw(&gr->fuc41ad);
1782
1783         gf100_gr_dtor_init(gr->fuc_bundle);
1784         gf100_gr_dtor_init(gr->fuc_method);
1785         gf100_gr_dtor_init(gr->fuc_sw_ctx);
1786         gf100_gr_dtor_init(gr->fuc_sw_nonctx);
1787
1788         return gr;
1789 }
1790
1791 static const struct nvkm_gr_func
1792 gf100_gr_ = {
1793         .dtor = gf100_gr_dtor,
1794         .oneinit = gf100_gr_oneinit,
1795         .init = gf100_gr_init_,
1796         .fini = gf100_gr_fini_,
1797         .intr = gf100_gr_intr,
1798         .units = gf100_gr_units,
1799         .chan_new = gf100_gr_chan_new,
1800         .object_get = gf100_gr_object_get,
1801         .chsw_load = gf100_gr_chsw_load,
1802 };
1803
1804 int
1805 gf100_gr_ctor_fw_legacy(struct gf100_gr *gr, const char *fwname,
1806                         struct gf100_gr_fuc *fuc, int ret)
1807 {
1808         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1809         struct nvkm_device *device = subdev->device;
1810         const struct firmware *fw;
1811         char f[32];
1812
1813         /* see if this firmware has a legacy path */
1814         if (!strcmp(fwname, "fecs_inst"))
1815                 fwname = "fuc409c";
1816         else if (!strcmp(fwname, "fecs_data"))
1817                 fwname = "fuc409d";
1818         else if (!strcmp(fwname, "gpccs_inst"))
1819                 fwname = "fuc41ac";
1820         else if (!strcmp(fwname, "gpccs_data"))
1821                 fwname = "fuc41ad";
1822         else {
1823                 /* nope, let's just return the error we got */
1824                 nvkm_error(subdev, "failed to load %s\n", fwname);
1825                 return ret;
1826         }
1827
1828         /* yes, try to load from the legacy path */
1829         nvkm_debug(subdev, "%s: falling back to legacy path\n", fwname);
1830
1831         snprintf(f, sizeof(f), "nouveau/nv%02x_%s", device->chipset, fwname);
1832         ret = request_firmware(&fw, f, device->dev);
1833         if (ret) {
1834                 snprintf(f, sizeof(f), "nouveau/%s", fwname);
1835                 ret = request_firmware(&fw, f, device->dev);
1836                 if (ret) {
1837                         nvkm_error(subdev, "failed to load %s\n", fwname);
1838                         return ret;
1839                 }
1840         }
1841
1842         fuc->size = fw->size;
1843         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1844         release_firmware(fw);
1845         return (fuc->data != NULL) ? 0 : -ENOMEM;
1846 }
1847
1848 int
1849 gf100_gr_ctor_fw(struct gf100_gr *gr, const char *fwname,
1850                  struct gf100_gr_fuc *fuc)
1851 {
1852         struct nvkm_subdev *subdev = &gr->base.engine.subdev;
1853         struct nvkm_device *device = subdev->device;
1854         const struct firmware *fw;
1855         int ret;
1856
1857         ret = nvkm_firmware_get(device, fwname, &fw);
1858         if (ret)
1859                 return gf100_gr_ctor_fw_legacy(gr, fwname, fuc, ret);
1860
1861         fuc->size = fw->size;
1862         fuc->data = kmemdup(fw->data, fuc->size, GFP_KERNEL);
1863         nvkm_firmware_put(fw);
1864         return (fuc->data != NULL) ? 0 : -ENOMEM;
1865 }
1866
1867 int
1868 gf100_gr_ctor(const struct gf100_gr_func *func, struct nvkm_device *device,
1869               int index, struct gf100_gr *gr)
1870 {
1871         gr->func = func;
1872         gr->firmware = nvkm_boolopt(device->cfgopt, "NvGrUseFW",
1873                                     func->fecs.ucode == NULL);
1874
1875         return nvkm_gr_ctor(&gf100_gr_, device, index,
1876                             gr->firmware || func->fecs.ucode != NULL,
1877                             &gr->base);
1878 }
1879
1880 int
1881 gf100_gr_new_(const struct gf100_gr_func *func, struct nvkm_device *device,
1882               int index, struct nvkm_gr **pgr)
1883 {
1884         struct gf100_gr *gr;
1885         int ret;
1886
1887         if (!(gr = kzalloc(sizeof(*gr), GFP_KERNEL)))
1888                 return -ENOMEM;
1889         *pgr = &gr->base;
1890
1891         ret = gf100_gr_ctor(func, device, index, gr);
1892         if (ret)
1893                 return ret;
1894
1895         if (gr->firmware) {
1896                 if (gf100_gr_ctor_fw(gr, "fecs_inst", &gr->fuc409c) ||
1897                     gf100_gr_ctor_fw(gr, "fecs_data", &gr->fuc409d) ||
1898                     gf100_gr_ctor_fw(gr, "gpccs_inst", &gr->fuc41ac) ||
1899                     gf100_gr_ctor_fw(gr, "gpccs_data", &gr->fuc41ad))
1900                         return -ENODEV;
1901         }
1902
1903         return 0;
1904 }
1905
1906 int
1907 gf100_gr_init(struct gf100_gr *gr)
1908 {
1909         struct nvkm_device *device = gr->base.engine.subdev.device;
1910         struct nvkm_fb *fb = device->fb;
1911         const u32 magicgpc918 = DIV_ROUND_UP(0x00800000, gr->tpc_total);
1912         u32 data[TPC_MAX / 8] = {};
1913         u8  tpcnr[GPC_MAX];
1914         int gpc, tpc, rop;
1915         int i;
1916
1917         nvkm_wr32(device, GPC_BCAST(0x0880), 0x00000000);
1918         nvkm_wr32(device, GPC_BCAST(0x08a4), 0x00000000);
1919         nvkm_wr32(device, GPC_BCAST(0x0888), 0x00000000);
1920         nvkm_wr32(device, GPC_BCAST(0x088c), 0x00000000);
1921         nvkm_wr32(device, GPC_BCAST(0x0890), 0x00000000);
1922         nvkm_wr32(device, GPC_BCAST(0x0894), 0x00000000);
1923         nvkm_wr32(device, GPC_BCAST(0x08b4), nvkm_memory_addr(fb->mmu_wr) >> 8);
1924         nvkm_wr32(device, GPC_BCAST(0x08b8), nvkm_memory_addr(fb->mmu_rd) >> 8);
1925
1926         gf100_gr_mmio(gr, gr->func->mmio);
1927
1928         nvkm_mask(device, TPC_UNIT(0, 0, 0x05c), 0x00000001, 0x00000001);
1929
1930         memcpy(tpcnr, gr->tpc_nr, sizeof(gr->tpc_nr));
1931         for (i = 0, gpc = -1; i < gr->tpc_total; i++) {
1932                 do {
1933                         gpc = (gpc + 1) % gr->gpc_nr;
1934                 } while (!tpcnr[gpc]);
1935                 tpc = gr->tpc_nr[gpc] - tpcnr[gpc]--;
1936
1937                 data[i / 8] |= tpc << ((i % 8) * 4);
1938         }
1939
1940         nvkm_wr32(device, GPC_BCAST(0x0980), data[0]);
1941         nvkm_wr32(device, GPC_BCAST(0x0984), data[1]);
1942         nvkm_wr32(device, GPC_BCAST(0x0988), data[2]);
1943         nvkm_wr32(device, GPC_BCAST(0x098c), data[3]);
1944
1945         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1946                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0914),
1947                           gr->screen_tile_row_offset << 8 | gr->tpc_nr[gpc]);
1948                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0910), 0x00040000 |
1949                                                          gr->tpc_total);
1950                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0918), magicgpc918);
1951         }
1952
1953         if (device->chipset != 0xd7)
1954                 nvkm_wr32(device, GPC_BCAST(0x1bd4), magicgpc918);
1955         else
1956                 nvkm_wr32(device, GPC_BCAST(0x3fd4), magicgpc918);
1957
1958         nvkm_wr32(device, GPC_BCAST(0x08ac), nvkm_rd32(device, 0x100800));
1959
1960         nvkm_wr32(device, 0x400500, 0x00010001);
1961
1962         nvkm_wr32(device, 0x400100, 0xffffffff);
1963         nvkm_wr32(device, 0x40013c, 0xffffffff);
1964
1965         nvkm_wr32(device, 0x409c24, 0x000f0000);
1966         nvkm_wr32(device, 0x404000, 0xc0000000);
1967         nvkm_wr32(device, 0x404600, 0xc0000000);
1968         nvkm_wr32(device, 0x408030, 0xc0000000);
1969         nvkm_wr32(device, 0x40601c, 0xc0000000);
1970         nvkm_wr32(device, 0x404490, 0xc0000000);
1971         nvkm_wr32(device, 0x406018, 0xc0000000);
1972         nvkm_wr32(device, 0x405840, 0xc0000000);
1973         nvkm_wr32(device, 0x405844, 0x00ffffff);
1974         nvkm_mask(device, 0x419cc0, 0x00000008, 0x00000008);
1975         nvkm_mask(device, 0x419eb4, 0x00001000, 0x00001000);
1976
1977         for (gpc = 0; gpc < gr->gpc_nr; gpc++) {
1978                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0420), 0xc0000000);
1979                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0900), 0xc0000000);
1980                 nvkm_wr32(device, GPC_UNIT(gpc, 0x1028), 0xc0000000);
1981                 nvkm_wr32(device, GPC_UNIT(gpc, 0x0824), 0xc0000000);
1982                 for (tpc = 0; tpc < gr->tpc_nr[gpc]; tpc++) {
1983                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x508), 0xffffffff);
1984                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x50c), 0xffffffff);
1985                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x224), 0xc0000000);
1986                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x48c), 0xc0000000);
1987                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x084), 0xc0000000);
1988                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x644), 0x001ffffe);
1989                         nvkm_wr32(device, TPC_UNIT(gpc, tpc, 0x64c), 0x0000000f);
1990                 }
1991                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c90), 0xffffffff);
1992                 nvkm_wr32(device, GPC_UNIT(gpc, 0x2c94), 0xffffffff);
1993         }
1994
1995         for (rop = 0; rop < gr->rop_nr; rop++) {
1996                 nvkm_wr32(device, ROP_UNIT(rop, 0x144), 0xc0000000);
1997                 nvkm_wr32(device, ROP_UNIT(rop, 0x070), 0xc0000000);
1998                 nvkm_wr32(device, ROP_UNIT(rop, 0x204), 0xffffffff);
1999                 nvkm_wr32(device, ROP_UNIT(rop, 0x208), 0xffffffff);
2000         }
2001
2002         nvkm_wr32(device, 0x400108, 0xffffffff);
2003         nvkm_wr32(device, 0x400138, 0xffffffff);
2004         nvkm_wr32(device, 0x400118, 0xffffffff);
2005         nvkm_wr32(device, 0x400130, 0xffffffff);
2006         nvkm_wr32(device, 0x40011c, 0xffffffff);
2007         nvkm_wr32(device, 0x400134, 0xffffffff);
2008
2009         nvkm_wr32(device, 0x400054, 0x34ce3464);
2010
2011         gf100_gr_zbc_init(gr);
2012
2013         return gf100_gr_init_ctxctl(gr);
2014 }
2015
2016 #include "fuc/hubgf100.fuc3.h"
2017
2018 struct gf100_gr_ucode
2019 gf100_gr_fecs_ucode = {
2020         .code.data = gf100_grhub_code,
2021         .code.size = sizeof(gf100_grhub_code),
2022         .data.data = gf100_grhub_data,
2023         .data.size = sizeof(gf100_grhub_data),
2024 };
2025
2026 #include "fuc/gpcgf100.fuc3.h"
2027
2028 struct gf100_gr_ucode
2029 gf100_gr_gpccs_ucode = {
2030         .code.data = gf100_grgpc_code,
2031         .code.size = sizeof(gf100_grgpc_code),
2032         .data.data = gf100_grgpc_data,
2033         .data.size = sizeof(gf100_grgpc_data),
2034 };
2035
2036 static const struct gf100_gr_func
2037 gf100_gr = {
2038         .init = gf100_gr_init,
2039         .mmio = gf100_gr_pack_mmio,
2040         .fecs.ucode = &gf100_gr_fecs_ucode,
2041         .gpccs.ucode = &gf100_gr_gpccs_ucode,
2042         .rops = gf100_gr_rops,
2043         .grctx = &gf100_grctx,
2044         .sclass = {
2045                 { -1, -1, FERMI_TWOD_A },
2046                 { -1, -1, FERMI_MEMORY_TO_MEMORY_FORMAT_A },
2047                 { -1, -1, FERMI_A, &gf100_fermi },
2048                 { -1, -1, FERMI_COMPUTE_A },
2049                 {}
2050         }
2051 };
2052
2053 int
2054 gf100_gr_new(struct nvkm_device *device, int index, struct nvkm_gr **pgr)
2055 {
2056         return gf100_gr_new_(&gf100_gr, device, index, pgr);
2057 }