Merge remote-tracking branch 'asoc/fix/arizona' into asoc-linus
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
43
44 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45 static void intel_increase_pllclock(struct drm_crtc *crtc);
46 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
49                                 struct intel_crtc_config *pipe_config);
50 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
51                                     struct intel_crtc_config *pipe_config);
52
53 static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
54                           int x, int y, struct drm_framebuffer *old_fb);
55
56
57 typedef struct {
58         int     min, max;
59 } intel_range_t;
60
61 typedef struct {
62         int     dot_limit;
63         int     p2_slow, p2_fast;
64 } intel_p2_t;
65
66 typedef struct intel_limit intel_limit_t;
67 struct intel_limit {
68         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
69         intel_p2_t          p2;
70 };
71
72 /* FDI */
73 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
74
75 int
76 intel_pch_rawclk(struct drm_device *dev)
77 {
78         struct drm_i915_private *dev_priv = dev->dev_private;
79
80         WARN_ON(!HAS_PCH_SPLIT(dev));
81
82         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
83 }
84
85 static inline u32 /* units of 100MHz */
86 intel_fdi_link_freq(struct drm_device *dev)
87 {
88         if (IS_GEN5(dev)) {
89                 struct drm_i915_private *dev_priv = dev->dev_private;
90                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
91         } else
92                 return 27;
93 }
94
95 static const intel_limit_t intel_limits_i8xx_dac = {
96         .dot = { .min = 25000, .max = 350000 },
97         .vco = { .min = 930000, .max = 1400000 },
98         .n = { .min = 3, .max = 16 },
99         .m = { .min = 96, .max = 140 },
100         .m1 = { .min = 18, .max = 26 },
101         .m2 = { .min = 6, .max = 16 },
102         .p = { .min = 4, .max = 128 },
103         .p1 = { .min = 2, .max = 33 },
104         .p2 = { .dot_limit = 165000,
105                 .p2_slow = 4, .p2_fast = 2 },
106 };
107
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109         .dot = { .min = 25000, .max = 350000 },
110         .vco = { .min = 930000, .max = 1400000 },
111         .n = { .min = 3, .max = 16 },
112         .m = { .min = 96, .max = 140 },
113         .m1 = { .min = 18, .max = 26 },
114         .m2 = { .min = 6, .max = 16 },
115         .p = { .min = 4, .max = 128 },
116         .p1 = { .min = 2, .max = 33 },
117         .p2 = { .dot_limit = 165000,
118                 .p2_slow = 4, .p2_fast = 4 },
119 };
120
121 static const intel_limit_t intel_limits_i8xx_lvds = {
122         .dot = { .min = 25000, .max = 350000 },
123         .vco = { .min = 930000, .max = 1400000 },
124         .n = { .min = 3, .max = 16 },
125         .m = { .min = 96, .max = 140 },
126         .m1 = { .min = 18, .max = 26 },
127         .m2 = { .min = 6, .max = 16 },
128         .p = { .min = 4, .max = 128 },
129         .p1 = { .min = 1, .max = 6 },
130         .p2 = { .dot_limit = 165000,
131                 .p2_slow = 14, .p2_fast = 7 },
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135         .dot = { .min = 20000, .max = 400000 },
136         .vco = { .min = 1400000, .max = 2800000 },
137         .n = { .min = 1, .max = 6 },
138         .m = { .min = 70, .max = 120 },
139         .m1 = { .min = 8, .max = 18 },
140         .m2 = { .min = 3, .max = 7 },
141         .p = { .min = 5, .max = 80 },
142         .p1 = { .min = 1, .max = 8 },
143         .p2 = { .dot_limit = 200000,
144                 .p2_slow = 10, .p2_fast = 5 },
145 };
146
147 static const intel_limit_t intel_limits_i9xx_lvds = {
148         .dot = { .min = 20000, .max = 400000 },
149         .vco = { .min = 1400000, .max = 2800000 },
150         .n = { .min = 1, .max = 6 },
151         .m = { .min = 70, .max = 120 },
152         .m1 = { .min = 8, .max = 18 },
153         .m2 = { .min = 3, .max = 7 },
154         .p = { .min = 7, .max = 98 },
155         .p1 = { .min = 1, .max = 8 },
156         .p2 = { .dot_limit = 112000,
157                 .p2_slow = 14, .p2_fast = 7 },
158 };
159
160
161 static const intel_limit_t intel_limits_g4x_sdvo = {
162         .dot = { .min = 25000, .max = 270000 },
163         .vco = { .min = 1750000, .max = 3500000},
164         .n = { .min = 1, .max = 4 },
165         .m = { .min = 104, .max = 138 },
166         .m1 = { .min = 17, .max = 23 },
167         .m2 = { .min = 5, .max = 11 },
168         .p = { .min = 10, .max = 30 },
169         .p1 = { .min = 1, .max = 3},
170         .p2 = { .dot_limit = 270000,
171                 .p2_slow = 10,
172                 .p2_fast = 10
173         },
174 };
175
176 static const intel_limit_t intel_limits_g4x_hdmi = {
177         .dot = { .min = 22000, .max = 400000 },
178         .vco = { .min = 1750000, .max = 3500000},
179         .n = { .min = 1, .max = 4 },
180         .m = { .min = 104, .max = 138 },
181         .m1 = { .min = 16, .max = 23 },
182         .m2 = { .min = 5, .max = 11 },
183         .p = { .min = 5, .max = 80 },
184         .p1 = { .min = 1, .max = 8},
185         .p2 = { .dot_limit = 165000,
186                 .p2_slow = 10, .p2_fast = 5 },
187 };
188
189 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
190         .dot = { .min = 20000, .max = 115000 },
191         .vco = { .min = 1750000, .max = 3500000 },
192         .n = { .min = 1, .max = 3 },
193         .m = { .min = 104, .max = 138 },
194         .m1 = { .min = 17, .max = 23 },
195         .m2 = { .min = 5, .max = 11 },
196         .p = { .min = 28, .max = 112 },
197         .p1 = { .min = 2, .max = 8 },
198         .p2 = { .dot_limit = 0,
199                 .p2_slow = 14, .p2_fast = 14
200         },
201 };
202
203 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
204         .dot = { .min = 80000, .max = 224000 },
205         .vco = { .min = 1750000, .max = 3500000 },
206         .n = { .min = 1, .max = 3 },
207         .m = { .min = 104, .max = 138 },
208         .m1 = { .min = 17, .max = 23 },
209         .m2 = { .min = 5, .max = 11 },
210         .p = { .min = 14, .max = 42 },
211         .p1 = { .min = 2, .max = 6 },
212         .p2 = { .dot_limit = 0,
213                 .p2_slow = 7, .p2_fast = 7
214         },
215 };
216
217 static const intel_limit_t intel_limits_pineview_sdvo = {
218         .dot = { .min = 20000, .max = 400000},
219         .vco = { .min = 1700000, .max = 3500000 },
220         /* Pineview's Ncounter is a ring counter */
221         .n = { .min = 3, .max = 6 },
222         .m = { .min = 2, .max = 256 },
223         /* Pineview only has one combined m divider, which we treat as m2. */
224         .m1 = { .min = 0, .max = 0 },
225         .m2 = { .min = 0, .max = 254 },
226         .p = { .min = 5, .max = 80 },
227         .p1 = { .min = 1, .max = 8 },
228         .p2 = { .dot_limit = 200000,
229                 .p2_slow = 10, .p2_fast = 5 },
230 };
231
232 static const intel_limit_t intel_limits_pineview_lvds = {
233         .dot = { .min = 20000, .max = 400000 },
234         .vco = { .min = 1700000, .max = 3500000 },
235         .n = { .min = 3, .max = 6 },
236         .m = { .min = 2, .max = 256 },
237         .m1 = { .min = 0, .max = 0 },
238         .m2 = { .min = 0, .max = 254 },
239         .p = { .min = 7, .max = 112 },
240         .p1 = { .min = 1, .max = 8 },
241         .p2 = { .dot_limit = 112000,
242                 .p2_slow = 14, .p2_fast = 14 },
243 };
244
245 /* Ironlake / Sandybridge
246  *
247  * We calculate clock using (register_value + 2) for N/M1/M2, so here
248  * the range value for them is (actual_value - 2).
249  */
250 static const intel_limit_t intel_limits_ironlake_dac = {
251         .dot = { .min = 25000, .max = 350000 },
252         .vco = { .min = 1760000, .max = 3510000 },
253         .n = { .min = 1, .max = 5 },
254         .m = { .min = 79, .max = 127 },
255         .m1 = { .min = 12, .max = 22 },
256         .m2 = { .min = 5, .max = 9 },
257         .p = { .min = 5, .max = 80 },
258         .p1 = { .min = 1, .max = 8 },
259         .p2 = { .dot_limit = 225000,
260                 .p2_slow = 10, .p2_fast = 5 },
261 };
262
263 static const intel_limit_t intel_limits_ironlake_single_lvds = {
264         .dot = { .min = 25000, .max = 350000 },
265         .vco = { .min = 1760000, .max = 3510000 },
266         .n = { .min = 1, .max = 3 },
267         .m = { .min = 79, .max = 118 },
268         .m1 = { .min = 12, .max = 22 },
269         .m2 = { .min = 5, .max = 9 },
270         .p = { .min = 28, .max = 112 },
271         .p1 = { .min = 2, .max = 8 },
272         .p2 = { .dot_limit = 225000,
273                 .p2_slow = 14, .p2_fast = 14 },
274 };
275
276 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
277         .dot = { .min = 25000, .max = 350000 },
278         .vco = { .min = 1760000, .max = 3510000 },
279         .n = { .min = 1, .max = 3 },
280         .m = { .min = 79, .max = 127 },
281         .m1 = { .min = 12, .max = 22 },
282         .m2 = { .min = 5, .max = 9 },
283         .p = { .min = 14, .max = 56 },
284         .p1 = { .min = 2, .max = 8 },
285         .p2 = { .dot_limit = 225000,
286                 .p2_slow = 7, .p2_fast = 7 },
287 };
288
289 /* LVDS 100mhz refclk limits. */
290 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
291         .dot = { .min = 25000, .max = 350000 },
292         .vco = { .min = 1760000, .max = 3510000 },
293         .n = { .min = 1, .max = 2 },
294         .m = { .min = 79, .max = 126 },
295         .m1 = { .min = 12, .max = 22 },
296         .m2 = { .min = 5, .max = 9 },
297         .p = { .min = 28, .max = 112 },
298         .p1 = { .min = 2, .max = 8 },
299         .p2 = { .dot_limit = 225000,
300                 .p2_slow = 14, .p2_fast = 14 },
301 };
302
303 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 3 },
307         .m = { .min = 79, .max = 126 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 14, .max = 42 },
311         .p1 = { .min = 2, .max = 6 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 7, .p2_fast = 7 },
314 };
315
316 static const intel_limit_t intel_limits_vlv_dac = {
317         .dot = { .min = 25000, .max = 270000 },
318         .vco = { .min = 4000000, .max = 6000000 },
319         .n = { .min = 1, .max = 7 },
320         .m = { .min = 22, .max = 450 }, /* guess */
321         .m1 = { .min = 2, .max = 3 },
322         .m2 = { .min = 11, .max = 156 },
323         .p = { .min = 10, .max = 30 },
324         .p1 = { .min = 1, .max = 3 },
325         .p2 = { .dot_limit = 270000,
326                 .p2_slow = 2, .p2_fast = 20 },
327 };
328
329 static const intel_limit_t intel_limits_vlv_hdmi = {
330         .dot = { .min = 25000, .max = 270000 },
331         .vco = { .min = 4000000, .max = 6000000 },
332         .n = { .min = 1, .max = 7 },
333         .m = { .min = 60, .max = 300 }, /* guess */
334         .m1 = { .min = 2, .max = 3 },
335         .m2 = { .min = 11, .max = 156 },
336         .p = { .min = 10, .max = 30 },
337         .p1 = { .min = 2, .max = 3 },
338         .p2 = { .dot_limit = 270000,
339                 .p2_slow = 2, .p2_fast = 20 },
340 };
341
342 static const intel_limit_t intel_limits_vlv_dp = {
343         .dot = { .min = 25000, .max = 270000 },
344         .vco = { .min = 4000000, .max = 6000000 },
345         .n = { .min = 1, .max = 7 },
346         .m = { .min = 22, .max = 450 },
347         .m1 = { .min = 2, .max = 3 },
348         .m2 = { .min = 11, .max = 156 },
349         .p = { .min = 10, .max = 30 },
350         .p1 = { .min = 1, .max = 3 },
351         .p2 = { .dot_limit = 270000,
352                 .p2_slow = 2, .p2_fast = 20 },
353 };
354
355 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
356                                                 int refclk)
357 {
358         struct drm_device *dev = crtc->dev;
359         const intel_limit_t *limit;
360
361         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
362                 if (intel_is_dual_link_lvds(dev)) {
363                         if (refclk == 100000)
364                                 limit = &intel_limits_ironlake_dual_lvds_100m;
365                         else
366                                 limit = &intel_limits_ironlake_dual_lvds;
367                 } else {
368                         if (refclk == 100000)
369                                 limit = &intel_limits_ironlake_single_lvds_100m;
370                         else
371                                 limit = &intel_limits_ironlake_single_lvds;
372                 }
373         } else
374                 limit = &intel_limits_ironlake_dac;
375
376         return limit;
377 }
378
379 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
380 {
381         struct drm_device *dev = crtc->dev;
382         const intel_limit_t *limit;
383
384         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
385                 if (intel_is_dual_link_lvds(dev))
386                         limit = &intel_limits_g4x_dual_channel_lvds;
387                 else
388                         limit = &intel_limits_g4x_single_channel_lvds;
389         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
390                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
391                 limit = &intel_limits_g4x_hdmi;
392         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
393                 limit = &intel_limits_g4x_sdvo;
394         } else /* The option is for other outputs */
395                 limit = &intel_limits_i9xx_sdvo;
396
397         return limit;
398 }
399
400 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
401 {
402         struct drm_device *dev = crtc->dev;
403         const intel_limit_t *limit;
404
405         if (HAS_PCH_SPLIT(dev))
406                 limit = intel_ironlake_limit(crtc, refclk);
407         else if (IS_G4X(dev)) {
408                 limit = intel_g4x_limit(crtc);
409         } else if (IS_PINEVIEW(dev)) {
410                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
411                         limit = &intel_limits_pineview_lvds;
412                 else
413                         limit = &intel_limits_pineview_sdvo;
414         } else if (IS_VALLEYVIEW(dev)) {
415                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
416                         limit = &intel_limits_vlv_dac;
417                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
418                         limit = &intel_limits_vlv_hdmi;
419                 else
420                         limit = &intel_limits_vlv_dp;
421         } else if (!IS_GEN2(dev)) {
422                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
423                         limit = &intel_limits_i9xx_lvds;
424                 else
425                         limit = &intel_limits_i9xx_sdvo;
426         } else {
427                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428                         limit = &intel_limits_i8xx_lvds;
429                 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
430                         limit = &intel_limits_i8xx_dvo;
431                 else
432                         limit = &intel_limits_i8xx_dac;
433         }
434         return limit;
435 }
436
437 /* m1 is reserved as 0 in Pineview, n is a ring counter */
438 static void pineview_clock(int refclk, intel_clock_t *clock)
439 {
440         clock->m = clock->m2 + 2;
441         clock->p = clock->p1 * clock->p2;
442         clock->vco = refclk * clock->m / clock->n;
443         clock->dot = clock->vco / clock->p;
444 }
445
446 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
447 {
448         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
449 }
450
451 static void i9xx_clock(int refclk, intel_clock_t *clock)
452 {
453         clock->m = i9xx_dpll_compute_m(clock);
454         clock->p = clock->p1 * clock->p2;
455         clock->vco = refclk * clock->m / (clock->n + 2);
456         clock->dot = clock->vco / clock->p;
457 }
458
459 /**
460  * Returns whether any output on the specified pipe is of the specified type
461  */
462 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
463 {
464         struct drm_device *dev = crtc->dev;
465         struct intel_encoder *encoder;
466
467         for_each_encoder_on_crtc(dev, crtc, encoder)
468                 if (encoder->type == type)
469                         return true;
470
471         return false;
472 }
473
474 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
475 /**
476  * Returns whether the given set of divisors are valid for a given refclk with
477  * the given connectors.
478  */
479
480 static bool intel_PLL_is_valid(struct drm_device *dev,
481                                const intel_limit_t *limit,
482                                const intel_clock_t *clock)
483 {
484         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
485                 INTELPllInvalid("p1 out of range\n");
486         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
487                 INTELPllInvalid("p out of range\n");
488         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
489                 INTELPllInvalid("m2 out of range\n");
490         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
491                 INTELPllInvalid("m1 out of range\n");
492         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
493                 INTELPllInvalid("m1 <= m2\n");
494         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
495                 INTELPllInvalid("m out of range\n");
496         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
497                 INTELPllInvalid("n out of range\n");
498         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
499                 INTELPllInvalid("vco out of range\n");
500         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
501          * connector, etc., rather than just a single range.
502          */
503         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
504                 INTELPllInvalid("dot out of range\n");
505
506         return true;
507 }
508
509 static bool
510 i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
511                     int target, int refclk, intel_clock_t *match_clock,
512                     intel_clock_t *best_clock)
513 {
514         struct drm_device *dev = crtc->dev;
515         intel_clock_t clock;
516         int err = target;
517
518         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
519                 /*
520                  * For LVDS just rely on its current settings for dual-channel.
521                  * We haven't figured out how to reliably set up different
522                  * single/dual channel state, if we even can.
523                  */
524                 if (intel_is_dual_link_lvds(dev))
525                         clock.p2 = limit->p2.p2_fast;
526                 else
527                         clock.p2 = limit->p2.p2_slow;
528         } else {
529                 if (target < limit->p2.dot_limit)
530                         clock.p2 = limit->p2.p2_slow;
531                 else
532                         clock.p2 = limit->p2.p2_fast;
533         }
534
535         memset(best_clock, 0, sizeof(*best_clock));
536
537         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
538              clock.m1++) {
539                 for (clock.m2 = limit->m2.min;
540                      clock.m2 <= limit->m2.max; clock.m2++) {
541                         if (clock.m2 >= clock.m1)
542                                 break;
543                         for (clock.n = limit->n.min;
544                              clock.n <= limit->n.max; clock.n++) {
545                                 for (clock.p1 = limit->p1.min;
546                                         clock.p1 <= limit->p1.max; clock.p1++) {
547                                         int this_err;
548
549                                         i9xx_clock(refclk, &clock);
550                                         if (!intel_PLL_is_valid(dev, limit,
551                                                                 &clock))
552                                                 continue;
553                                         if (match_clock &&
554                                             clock.p != match_clock->p)
555                                                 continue;
556
557                                         this_err = abs(clock.dot - target);
558                                         if (this_err < err) {
559                                                 *best_clock = clock;
560                                                 err = this_err;
561                                         }
562                                 }
563                         }
564                 }
565         }
566
567         return (err != target);
568 }
569
570 static bool
571 pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
572                    int target, int refclk, intel_clock_t *match_clock,
573                    intel_clock_t *best_clock)
574 {
575         struct drm_device *dev = crtc->dev;
576         intel_clock_t clock;
577         int err = target;
578
579         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
580                 /*
581                  * For LVDS just rely on its current settings for dual-channel.
582                  * We haven't figured out how to reliably set up different
583                  * single/dual channel state, if we even can.
584                  */
585                 if (intel_is_dual_link_lvds(dev))
586                         clock.p2 = limit->p2.p2_fast;
587                 else
588                         clock.p2 = limit->p2.p2_slow;
589         } else {
590                 if (target < limit->p2.dot_limit)
591                         clock.p2 = limit->p2.p2_slow;
592                 else
593                         clock.p2 = limit->p2.p2_fast;
594         }
595
596         memset(best_clock, 0, sizeof(*best_clock));
597
598         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
599              clock.m1++) {
600                 for (clock.m2 = limit->m2.min;
601                      clock.m2 <= limit->m2.max; clock.m2++) {
602                         for (clock.n = limit->n.min;
603                              clock.n <= limit->n.max; clock.n++) {
604                                 for (clock.p1 = limit->p1.min;
605                                         clock.p1 <= limit->p1.max; clock.p1++) {
606                                         int this_err;
607
608                                         pineview_clock(refclk, &clock);
609                                         if (!intel_PLL_is_valid(dev, limit,
610                                                                 &clock))
611                                                 continue;
612                                         if (match_clock &&
613                                             clock.p != match_clock->p)
614                                                 continue;
615
616                                         this_err = abs(clock.dot - target);
617                                         if (this_err < err) {
618                                                 *best_clock = clock;
619                                                 err = this_err;
620                                         }
621                                 }
622                         }
623                 }
624         }
625
626         return (err != target);
627 }
628
629 static bool
630 g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
631                    int target, int refclk, intel_clock_t *match_clock,
632                    intel_clock_t *best_clock)
633 {
634         struct drm_device *dev = crtc->dev;
635         intel_clock_t clock;
636         int max_n;
637         bool found;
638         /* approximately equals target * 0.00585 */
639         int err_most = (target >> 8) + (target >> 9);
640         found = false;
641
642         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
643                 if (intel_is_dual_link_lvds(dev))
644                         clock.p2 = limit->p2.p2_fast;
645                 else
646                         clock.p2 = limit->p2.p2_slow;
647         } else {
648                 if (target < limit->p2.dot_limit)
649                         clock.p2 = limit->p2.p2_slow;
650                 else
651                         clock.p2 = limit->p2.p2_fast;
652         }
653
654         memset(best_clock, 0, sizeof(*best_clock));
655         max_n = limit->n.max;
656         /* based on hardware requirement, prefer smaller n to precision */
657         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
658                 /* based on hardware requirement, prefere larger m1,m2 */
659                 for (clock.m1 = limit->m1.max;
660                      clock.m1 >= limit->m1.min; clock.m1--) {
661                         for (clock.m2 = limit->m2.max;
662                              clock.m2 >= limit->m2.min; clock.m2--) {
663                                 for (clock.p1 = limit->p1.max;
664                                      clock.p1 >= limit->p1.min; clock.p1--) {
665                                         int this_err;
666
667                                         i9xx_clock(refclk, &clock);
668                                         if (!intel_PLL_is_valid(dev, limit,
669                                                                 &clock))
670                                                 continue;
671
672                                         this_err = abs(clock.dot - target);
673                                         if (this_err < err_most) {
674                                                 *best_clock = clock;
675                                                 err_most = this_err;
676                                                 max_n = clock.n;
677                                                 found = true;
678                                         }
679                                 }
680                         }
681                 }
682         }
683         return found;
684 }
685
686 static bool
687 vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
688                    int target, int refclk, intel_clock_t *match_clock,
689                    intel_clock_t *best_clock)
690 {
691         u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
692         u32 m, n, fastclk;
693         u32 updrate, minupdate, p;
694         unsigned long bestppm, ppm, absppm;
695         int dotclk, flag;
696
697         flag = 0;
698         dotclk = target * 1000;
699         bestppm = 1000000;
700         ppm = absppm = 0;
701         fastclk = dotclk / (2*100);
702         updrate = 0;
703         minupdate = 19200;
704         n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
705         bestm1 = bestm2 = bestp1 = bestp2 = 0;
706
707         /* based on hardware requirement, prefer smaller n to precision */
708         for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
709                 updrate = refclk / n;
710                 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
711                         for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
712                                 if (p2 > 10)
713                                         p2 = p2 - 1;
714                                 p = p1 * p2;
715                                 /* based on hardware requirement, prefer bigger m1,m2 values */
716                                 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
717                                         m2 = (((2*(fastclk * p * n / m1 )) +
718                                                refclk) / (2*refclk));
719                                         m = m1 * m2;
720                                         vco = updrate * m;
721                                         if (vco >= limit->vco.min && vco < limit->vco.max) {
722                                                 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
723                                                 absppm = (ppm > 0) ? ppm : (-ppm);
724                                                 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
725                                                         bestppm = 0;
726                                                         flag = 1;
727                                                 }
728                                                 if (absppm < bestppm - 10) {
729                                                         bestppm = absppm;
730                                                         flag = 1;
731                                                 }
732                                                 if (flag) {
733                                                         bestn = n;
734                                                         bestm1 = m1;
735                                                         bestm2 = m2;
736                                                         bestp1 = p1;
737                                                         bestp2 = p2;
738                                                         flag = 0;
739                                                 }
740                                         }
741                                 }
742                         }
743                 }
744         }
745         best_clock->n = bestn;
746         best_clock->m1 = bestm1;
747         best_clock->m2 = bestm2;
748         best_clock->p1 = bestp1;
749         best_clock->p2 = bestp2;
750
751         return true;
752 }
753
754 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
755                                              enum pipe pipe)
756 {
757         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
758         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
759
760         return intel_crtc->config.cpu_transcoder;
761 }
762
763 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
764 {
765         struct drm_i915_private *dev_priv = dev->dev_private;
766         u32 frame, frame_reg = PIPEFRAME(pipe);
767
768         frame = I915_READ(frame_reg);
769
770         if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
771                 DRM_DEBUG_KMS("vblank wait timed out\n");
772 }
773
774 /**
775  * intel_wait_for_vblank - wait for vblank on a given pipe
776  * @dev: drm device
777  * @pipe: pipe to wait for
778  *
779  * Wait for vblank to occur on a given pipe.  Needed for various bits of
780  * mode setting code.
781  */
782 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
783 {
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         int pipestat_reg = PIPESTAT(pipe);
786
787         if (INTEL_INFO(dev)->gen >= 5) {
788                 ironlake_wait_for_vblank(dev, pipe);
789                 return;
790         }
791
792         /* Clear existing vblank status. Note this will clear any other
793          * sticky status fields as well.
794          *
795          * This races with i915_driver_irq_handler() with the result
796          * that either function could miss a vblank event.  Here it is not
797          * fatal, as we will either wait upon the next vblank interrupt or
798          * timeout.  Generally speaking intel_wait_for_vblank() is only
799          * called during modeset at which time the GPU should be idle and
800          * should *not* be performing page flips and thus not waiting on
801          * vblanks...
802          * Currently, the result of us stealing a vblank from the irq
803          * handler is that a single frame will be skipped during swapbuffers.
804          */
805         I915_WRITE(pipestat_reg,
806                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
807
808         /* Wait for vblank interrupt bit to set */
809         if (wait_for(I915_READ(pipestat_reg) &
810                      PIPE_VBLANK_INTERRUPT_STATUS,
811                      50))
812                 DRM_DEBUG_KMS("vblank wait timed out\n");
813 }
814
815 /*
816  * intel_wait_for_pipe_off - wait for pipe to turn off
817  * @dev: drm device
818  * @pipe: pipe to wait for
819  *
820  * After disabling a pipe, we can't wait for vblank in the usual way,
821  * spinning on the vblank interrupt status bit, since we won't actually
822  * see an interrupt when the pipe is disabled.
823  *
824  * On Gen4 and above:
825  *   wait for the pipe register state bit to turn off
826  *
827  * Otherwise:
828  *   wait for the display line value to settle (it usually
829  *   ends up stopping at the start of the next frame).
830  *
831  */
832 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
833 {
834         struct drm_i915_private *dev_priv = dev->dev_private;
835         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
836                                                                       pipe);
837
838         if (INTEL_INFO(dev)->gen >= 4) {
839                 int reg = PIPECONF(cpu_transcoder);
840
841                 /* Wait for the Pipe State to go off */
842                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
843                              100))
844                         WARN(1, "pipe_off wait timed out\n");
845         } else {
846                 u32 last_line, line_mask;
847                 int reg = PIPEDSL(pipe);
848                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
849
850                 if (IS_GEN2(dev))
851                         line_mask = DSL_LINEMASK_GEN2;
852                 else
853                         line_mask = DSL_LINEMASK_GEN3;
854
855                 /* Wait for the display line to settle */
856                 do {
857                         last_line = I915_READ(reg) & line_mask;
858                         mdelay(5);
859                 } while (((I915_READ(reg) & line_mask) != last_line) &&
860                          time_after(timeout, jiffies));
861                 if (time_after(jiffies, timeout))
862                         WARN(1, "pipe_off wait timed out\n");
863         }
864 }
865
866 /*
867  * ibx_digital_port_connected - is the specified port connected?
868  * @dev_priv: i915 private structure
869  * @port: the port to test
870  *
871  * Returns true if @port is connected, false otherwise.
872  */
873 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
874                                 struct intel_digital_port *port)
875 {
876         u32 bit;
877
878         if (HAS_PCH_IBX(dev_priv->dev)) {
879                 switch(port->port) {
880                 case PORT_B:
881                         bit = SDE_PORTB_HOTPLUG;
882                         break;
883                 case PORT_C:
884                         bit = SDE_PORTC_HOTPLUG;
885                         break;
886                 case PORT_D:
887                         bit = SDE_PORTD_HOTPLUG;
888                         break;
889                 default:
890                         return true;
891                 }
892         } else {
893                 switch(port->port) {
894                 case PORT_B:
895                         bit = SDE_PORTB_HOTPLUG_CPT;
896                         break;
897                 case PORT_C:
898                         bit = SDE_PORTC_HOTPLUG_CPT;
899                         break;
900                 case PORT_D:
901                         bit = SDE_PORTD_HOTPLUG_CPT;
902                         break;
903                 default:
904                         return true;
905                 }
906         }
907
908         return I915_READ(SDEISR) & bit;
909 }
910
911 static const char *state_string(bool enabled)
912 {
913         return enabled ? "on" : "off";
914 }
915
916 /* Only for pre-ILK configs */
917 void assert_pll(struct drm_i915_private *dev_priv,
918                 enum pipe pipe, bool state)
919 {
920         int reg;
921         u32 val;
922         bool cur_state;
923
924         reg = DPLL(pipe);
925         val = I915_READ(reg);
926         cur_state = !!(val & DPLL_VCO_ENABLE);
927         WARN(cur_state != state,
928              "PLL state assertion failure (expected %s, current %s)\n",
929              state_string(state), state_string(cur_state));
930 }
931
932 struct intel_shared_dpll *
933 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
934 {
935         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
936
937         if (crtc->config.shared_dpll < 0)
938                 return NULL;
939
940         return &dev_priv->shared_dplls[crtc->config.shared_dpll];
941 }
942
943 /* For ILK+ */
944 void assert_shared_dpll(struct drm_i915_private *dev_priv,
945                         struct intel_shared_dpll *pll,
946                         bool state)
947 {
948         bool cur_state;
949         struct intel_dpll_hw_state hw_state;
950
951         if (HAS_PCH_LPT(dev_priv->dev)) {
952                 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
953                 return;
954         }
955
956         if (WARN (!pll,
957                   "asserting DPLL %s with no DPLL\n", state_string(state)))
958                 return;
959
960         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
961         WARN(cur_state != state,
962              "%s assertion failure (expected %s, current %s)\n",
963              pll->name, state_string(state), state_string(cur_state));
964 }
965
966 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
967                           enum pipe pipe, bool state)
968 {
969         int reg;
970         u32 val;
971         bool cur_state;
972         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
973                                                                       pipe);
974
975         if (HAS_DDI(dev_priv->dev)) {
976                 /* DDI does not have a specific FDI_TX register */
977                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
978                 val = I915_READ(reg);
979                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
980         } else {
981                 reg = FDI_TX_CTL(pipe);
982                 val = I915_READ(reg);
983                 cur_state = !!(val & FDI_TX_ENABLE);
984         }
985         WARN(cur_state != state,
986              "FDI TX state assertion failure (expected %s, current %s)\n",
987              state_string(state), state_string(cur_state));
988 }
989 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
990 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
991
992 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
993                           enum pipe pipe, bool state)
994 {
995         int reg;
996         u32 val;
997         bool cur_state;
998
999         reg = FDI_RX_CTL(pipe);
1000         val = I915_READ(reg);
1001         cur_state = !!(val & FDI_RX_ENABLE);
1002         WARN(cur_state != state,
1003              "FDI RX state assertion failure (expected %s, current %s)\n",
1004              state_string(state), state_string(cur_state));
1005 }
1006 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1007 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1008
1009 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1010                                       enum pipe pipe)
1011 {
1012         int reg;
1013         u32 val;
1014
1015         /* ILK FDI PLL is always enabled */
1016         if (dev_priv->info->gen == 5)
1017                 return;
1018
1019         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1020         if (HAS_DDI(dev_priv->dev))
1021                 return;
1022
1023         reg = FDI_TX_CTL(pipe);
1024         val = I915_READ(reg);
1025         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1026 }
1027
1028 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1029                        enum pipe pipe, bool state)
1030 {
1031         int reg;
1032         u32 val;
1033         bool cur_state;
1034
1035         reg = FDI_RX_CTL(pipe);
1036         val = I915_READ(reg);
1037         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1038         WARN(cur_state != state,
1039              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1040              state_string(state), state_string(cur_state));
1041 }
1042
1043 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1044                                   enum pipe pipe)
1045 {
1046         int pp_reg, lvds_reg;
1047         u32 val;
1048         enum pipe panel_pipe = PIPE_A;
1049         bool locked = true;
1050
1051         if (HAS_PCH_SPLIT(dev_priv->dev)) {
1052                 pp_reg = PCH_PP_CONTROL;
1053                 lvds_reg = PCH_LVDS;
1054         } else {
1055                 pp_reg = PP_CONTROL;
1056                 lvds_reg = LVDS;
1057         }
1058
1059         val = I915_READ(pp_reg);
1060         if (!(val & PANEL_POWER_ON) ||
1061             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1062                 locked = false;
1063
1064         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1065                 panel_pipe = PIPE_B;
1066
1067         WARN(panel_pipe == pipe && locked,
1068              "panel assertion failure, pipe %c regs locked\n",
1069              pipe_name(pipe));
1070 }
1071
1072 void assert_pipe(struct drm_i915_private *dev_priv,
1073                  enum pipe pipe, bool state)
1074 {
1075         int reg;
1076         u32 val;
1077         bool cur_state;
1078         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1079                                                                       pipe);
1080
1081         /* if we need the pipe A quirk it must be always on */
1082         if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1083                 state = true;
1084
1085         if (!intel_display_power_enabled(dev_priv->dev,
1086                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1087                 cur_state = false;
1088         } else {
1089                 reg = PIPECONF(cpu_transcoder);
1090                 val = I915_READ(reg);
1091                 cur_state = !!(val & PIPECONF_ENABLE);
1092         }
1093
1094         WARN(cur_state != state,
1095              "pipe %c assertion failure (expected %s, current %s)\n",
1096              pipe_name(pipe), state_string(state), state_string(cur_state));
1097 }
1098
1099 static void assert_plane(struct drm_i915_private *dev_priv,
1100                          enum plane plane, bool state)
1101 {
1102         int reg;
1103         u32 val;
1104         bool cur_state;
1105
1106         reg = DSPCNTR(plane);
1107         val = I915_READ(reg);
1108         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1109         WARN(cur_state != state,
1110              "plane %c assertion failure (expected %s, current %s)\n",
1111              plane_name(plane), state_string(state), state_string(cur_state));
1112 }
1113
1114 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1115 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1116
1117 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1118                                    enum pipe pipe)
1119 {
1120         struct drm_device *dev = dev_priv->dev;
1121         int reg, i;
1122         u32 val;
1123         int cur_pipe;
1124
1125         /* Primary planes are fixed to pipes on gen4+ */
1126         if (INTEL_INFO(dev)->gen >= 4) {
1127                 reg = DSPCNTR(pipe);
1128                 val = I915_READ(reg);
1129                 WARN((val & DISPLAY_PLANE_ENABLE),
1130                      "plane %c assertion failure, should be disabled but not\n",
1131                      plane_name(pipe));
1132                 return;
1133         }
1134
1135         /* Need to check both planes against the pipe */
1136         for_each_pipe(i) {
1137                 reg = DSPCNTR(i);
1138                 val = I915_READ(reg);
1139                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1140                         DISPPLANE_SEL_PIPE_SHIFT;
1141                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1142                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1143                      plane_name(i), pipe_name(pipe));
1144         }
1145 }
1146
1147 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1148                                     enum pipe pipe)
1149 {
1150         struct drm_device *dev = dev_priv->dev;
1151         int reg, i;
1152         u32 val;
1153
1154         if (IS_VALLEYVIEW(dev)) {
1155                 for (i = 0; i < dev_priv->num_plane; i++) {
1156                         reg = SPCNTR(pipe, i);
1157                         val = I915_READ(reg);
1158                         WARN((val & SP_ENABLE),
1159                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1160                              sprite_name(pipe, i), pipe_name(pipe));
1161                 }
1162         } else if (INTEL_INFO(dev)->gen >= 7) {
1163                 reg = SPRCTL(pipe);
1164                 val = I915_READ(reg);
1165                 WARN((val & SPRITE_ENABLE),
1166                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1167                      plane_name(pipe), pipe_name(pipe));
1168         } else if (INTEL_INFO(dev)->gen >= 5) {
1169                 reg = DVSCNTR(pipe);
1170                 val = I915_READ(reg);
1171                 WARN((val & DVS_ENABLE),
1172                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1173                      plane_name(pipe), pipe_name(pipe));
1174         }
1175 }
1176
1177 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1178 {
1179         u32 val;
1180         bool enabled;
1181
1182         if (HAS_PCH_LPT(dev_priv->dev)) {
1183                 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1184                 return;
1185         }
1186
1187         val = I915_READ(PCH_DREF_CONTROL);
1188         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1189                             DREF_SUPERSPREAD_SOURCE_MASK));
1190         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1191 }
1192
1193 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1194                                            enum pipe pipe)
1195 {
1196         int reg;
1197         u32 val;
1198         bool enabled;
1199
1200         reg = PCH_TRANSCONF(pipe);
1201         val = I915_READ(reg);
1202         enabled = !!(val & TRANS_ENABLE);
1203         WARN(enabled,
1204              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1205              pipe_name(pipe));
1206 }
1207
1208 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1209                             enum pipe pipe, u32 port_sel, u32 val)
1210 {
1211         if ((val & DP_PORT_EN) == 0)
1212                 return false;
1213
1214         if (HAS_PCH_CPT(dev_priv->dev)) {
1215                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1216                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1217                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1218                         return false;
1219         } else {
1220                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1221                         return false;
1222         }
1223         return true;
1224 }
1225
1226 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1227                               enum pipe pipe, u32 val)
1228 {
1229         if ((val & SDVO_ENABLE) == 0)
1230                 return false;
1231
1232         if (HAS_PCH_CPT(dev_priv->dev)) {
1233                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1234                         return false;
1235         } else {
1236                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1237                         return false;
1238         }
1239         return true;
1240 }
1241
1242 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1243                               enum pipe pipe, u32 val)
1244 {
1245         if ((val & LVDS_PORT_EN) == 0)
1246                 return false;
1247
1248         if (HAS_PCH_CPT(dev_priv->dev)) {
1249                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1250                         return false;
1251         } else {
1252                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1253                         return false;
1254         }
1255         return true;
1256 }
1257
1258 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1259                               enum pipe pipe, u32 val)
1260 {
1261         if ((val & ADPA_DAC_ENABLE) == 0)
1262                 return false;
1263         if (HAS_PCH_CPT(dev_priv->dev)) {
1264                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1265                         return false;
1266         } else {
1267                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1268                         return false;
1269         }
1270         return true;
1271 }
1272
1273 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1274                                    enum pipe pipe, int reg, u32 port_sel)
1275 {
1276         u32 val = I915_READ(reg);
1277         WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1278              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1279              reg, pipe_name(pipe));
1280
1281         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1282              && (val & DP_PIPEB_SELECT),
1283              "IBX PCH dp port still using transcoder B\n");
1284 }
1285
1286 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1287                                      enum pipe pipe, int reg)
1288 {
1289         u32 val = I915_READ(reg);
1290         WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1291              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1292              reg, pipe_name(pipe));
1293
1294         WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1295              && (val & SDVO_PIPE_B_SELECT),
1296              "IBX PCH hdmi port still using transcoder B\n");
1297 }
1298
1299 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1300                                       enum pipe pipe)
1301 {
1302         int reg;
1303         u32 val;
1304
1305         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1306         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1307         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1308
1309         reg = PCH_ADPA;
1310         val = I915_READ(reg);
1311         WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1312              "PCH VGA enabled on transcoder %c, should be disabled\n",
1313              pipe_name(pipe));
1314
1315         reg = PCH_LVDS;
1316         val = I915_READ(reg);
1317         WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1318              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1319              pipe_name(pipe));
1320
1321         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1322         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1323         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1324 }
1325
1326 static void vlv_enable_pll(struct intel_crtc *crtc)
1327 {
1328         struct drm_device *dev = crtc->base.dev;
1329         struct drm_i915_private *dev_priv = dev->dev_private;
1330         int reg = DPLL(crtc->pipe);
1331         u32 dpll = crtc->config.dpll_hw_state.dpll;
1332
1333         assert_pipe_disabled(dev_priv, crtc->pipe);
1334
1335         /* No really, not for ILK+ */
1336         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1337
1338         /* PLL is protected by panel, make sure we can write it */
1339         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1340                 assert_panel_unlocked(dev_priv, crtc->pipe);
1341
1342         I915_WRITE(reg, dpll);
1343         POSTING_READ(reg);
1344         udelay(150);
1345
1346         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1347                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1348
1349         I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1350         POSTING_READ(DPLL_MD(crtc->pipe));
1351
1352         /* We do this three times for luck */
1353         I915_WRITE(reg, dpll);
1354         POSTING_READ(reg);
1355         udelay(150); /* wait for warmup */
1356         I915_WRITE(reg, dpll);
1357         POSTING_READ(reg);
1358         udelay(150); /* wait for warmup */
1359         I915_WRITE(reg, dpll);
1360         POSTING_READ(reg);
1361         udelay(150); /* wait for warmup */
1362 }
1363
1364 static void i9xx_enable_pll(struct intel_crtc *crtc)
1365 {
1366         struct drm_device *dev = crtc->base.dev;
1367         struct drm_i915_private *dev_priv = dev->dev_private;
1368         int reg = DPLL(crtc->pipe);
1369         u32 dpll = crtc->config.dpll_hw_state.dpll;
1370
1371         assert_pipe_disabled(dev_priv, crtc->pipe);
1372
1373         /* No really, not for ILK+ */
1374         BUG_ON(dev_priv->info->gen >= 5);
1375
1376         /* PLL is protected by panel, make sure we can write it */
1377         if (IS_MOBILE(dev) && !IS_I830(dev))
1378                 assert_panel_unlocked(dev_priv, crtc->pipe);
1379
1380         I915_WRITE(reg, dpll);
1381
1382         /* Wait for the clocks to stabilize. */
1383         POSTING_READ(reg);
1384         udelay(150);
1385
1386         if (INTEL_INFO(dev)->gen >= 4) {
1387                 I915_WRITE(DPLL_MD(crtc->pipe),
1388                            crtc->config.dpll_hw_state.dpll_md);
1389         } else {
1390                 /* The pixel multiplier can only be updated once the
1391                  * DPLL is enabled and the clocks are stable.
1392                  *
1393                  * So write it again.
1394                  */
1395                 I915_WRITE(reg, dpll);
1396         }
1397
1398         /* We do this three times for luck */
1399         I915_WRITE(reg, dpll);
1400         POSTING_READ(reg);
1401         udelay(150); /* wait for warmup */
1402         I915_WRITE(reg, dpll);
1403         POSTING_READ(reg);
1404         udelay(150); /* wait for warmup */
1405         I915_WRITE(reg, dpll);
1406         POSTING_READ(reg);
1407         udelay(150); /* wait for warmup */
1408 }
1409
1410 /**
1411  * i9xx_disable_pll - disable a PLL
1412  * @dev_priv: i915 private structure
1413  * @pipe: pipe PLL to disable
1414  *
1415  * Disable the PLL for @pipe, making sure the pipe is off first.
1416  *
1417  * Note!  This is for pre-ILK only.
1418  */
1419 static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1420 {
1421         /* Don't disable pipe A or pipe A PLLs if needed */
1422         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1423                 return;
1424
1425         /* Make sure the pipe isn't still relying on us */
1426         assert_pipe_disabled(dev_priv, pipe);
1427
1428         I915_WRITE(DPLL(pipe), 0);
1429         POSTING_READ(DPLL(pipe));
1430 }
1431
1432 void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1433 {
1434         u32 port_mask;
1435
1436         if (!port)
1437                 port_mask = DPLL_PORTB_READY_MASK;
1438         else
1439                 port_mask = DPLL_PORTC_READY_MASK;
1440
1441         if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1442                 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1443                      'B' + port, I915_READ(DPLL(0)));
1444 }
1445
1446 /**
1447  * ironlake_enable_shared_dpll - enable PCH PLL
1448  * @dev_priv: i915 private structure
1449  * @pipe: pipe PLL to enable
1450  *
1451  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1452  * drives the transcoder clock.
1453  */
1454 static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1455 {
1456         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1457         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1458
1459         /* PCH PLLs only available on ILK, SNB and IVB */
1460         BUG_ON(dev_priv->info->gen < 5);
1461         if (WARN_ON(pll == NULL))
1462                 return;
1463
1464         if (WARN_ON(pll->refcount == 0))
1465                 return;
1466
1467         DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1468                       pll->name, pll->active, pll->on,
1469                       crtc->base.base.id);
1470
1471         if (pll->active++) {
1472                 WARN_ON(!pll->on);
1473                 assert_shared_dpll_enabled(dev_priv, pll);
1474                 return;
1475         }
1476         WARN_ON(pll->on);
1477
1478         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1479         pll->enable(dev_priv, pll);
1480         pll->on = true;
1481 }
1482
1483 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1484 {
1485         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1486         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1487
1488         /* PCH only available on ILK+ */
1489         BUG_ON(dev_priv->info->gen < 5);
1490         if (WARN_ON(pll == NULL))
1491                return;
1492
1493         if (WARN_ON(pll->refcount == 0))
1494                 return;
1495
1496         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1497                       pll->name, pll->active, pll->on,
1498                       crtc->base.base.id);
1499
1500         if (WARN_ON(pll->active == 0)) {
1501                 assert_shared_dpll_disabled(dev_priv, pll);
1502                 return;
1503         }
1504
1505         assert_shared_dpll_enabled(dev_priv, pll);
1506         WARN_ON(!pll->on);
1507         if (--pll->active)
1508                 return;
1509
1510         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1511         pll->disable(dev_priv, pll);
1512         pll->on = false;
1513 }
1514
1515 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1516                                            enum pipe pipe)
1517 {
1518         struct drm_device *dev = dev_priv->dev;
1519         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1520         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1521         uint32_t reg, val, pipeconf_val;
1522
1523         /* PCH only available on ILK+ */
1524         BUG_ON(dev_priv->info->gen < 5);
1525
1526         /* Make sure PCH DPLL is enabled */
1527         assert_shared_dpll_enabled(dev_priv,
1528                                    intel_crtc_to_shared_dpll(intel_crtc));
1529
1530         /* FDI must be feeding us bits for PCH ports */
1531         assert_fdi_tx_enabled(dev_priv, pipe);
1532         assert_fdi_rx_enabled(dev_priv, pipe);
1533
1534         if (HAS_PCH_CPT(dev)) {
1535                 /* Workaround: Set the timing override bit before enabling the
1536                  * pch transcoder. */
1537                 reg = TRANS_CHICKEN2(pipe);
1538                 val = I915_READ(reg);
1539                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1540                 I915_WRITE(reg, val);
1541         }
1542
1543         reg = PCH_TRANSCONF(pipe);
1544         val = I915_READ(reg);
1545         pipeconf_val = I915_READ(PIPECONF(pipe));
1546
1547         if (HAS_PCH_IBX(dev_priv->dev)) {
1548                 /*
1549                  * make the BPC in transcoder be consistent with
1550                  * that in pipeconf reg.
1551                  */
1552                 val &= ~PIPECONF_BPC_MASK;
1553                 val |= pipeconf_val & PIPECONF_BPC_MASK;
1554         }
1555
1556         val &= ~TRANS_INTERLACE_MASK;
1557         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1558                 if (HAS_PCH_IBX(dev_priv->dev) &&
1559                     intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1560                         val |= TRANS_LEGACY_INTERLACED_ILK;
1561                 else
1562                         val |= TRANS_INTERLACED;
1563         else
1564                 val |= TRANS_PROGRESSIVE;
1565
1566         I915_WRITE(reg, val | TRANS_ENABLE);
1567         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1568                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1569 }
1570
1571 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1572                                       enum transcoder cpu_transcoder)
1573 {
1574         u32 val, pipeconf_val;
1575
1576         /* PCH only available on ILK+ */
1577         BUG_ON(dev_priv->info->gen < 5);
1578
1579         /* FDI must be feeding us bits for PCH ports */
1580         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1581         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1582
1583         /* Workaround: set timing override bit. */
1584         val = I915_READ(_TRANSA_CHICKEN2);
1585         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1586         I915_WRITE(_TRANSA_CHICKEN2, val);
1587
1588         val = TRANS_ENABLE;
1589         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1590
1591         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1592             PIPECONF_INTERLACED_ILK)
1593                 val |= TRANS_INTERLACED;
1594         else
1595                 val |= TRANS_PROGRESSIVE;
1596
1597         I915_WRITE(LPT_TRANSCONF, val);
1598         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1599                 DRM_ERROR("Failed to enable PCH transcoder\n");
1600 }
1601
1602 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1603                                             enum pipe pipe)
1604 {
1605         struct drm_device *dev = dev_priv->dev;
1606         uint32_t reg, val;
1607
1608         /* FDI relies on the transcoder */
1609         assert_fdi_tx_disabled(dev_priv, pipe);
1610         assert_fdi_rx_disabled(dev_priv, pipe);
1611
1612         /* Ports must be off as well */
1613         assert_pch_ports_disabled(dev_priv, pipe);
1614
1615         reg = PCH_TRANSCONF(pipe);
1616         val = I915_READ(reg);
1617         val &= ~TRANS_ENABLE;
1618         I915_WRITE(reg, val);
1619         /* wait for PCH transcoder off, transcoder state */
1620         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1621                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1622
1623         if (!HAS_PCH_IBX(dev)) {
1624                 /* Workaround: Clear the timing override chicken bit again. */
1625                 reg = TRANS_CHICKEN2(pipe);
1626                 val = I915_READ(reg);
1627                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1628                 I915_WRITE(reg, val);
1629         }
1630 }
1631
1632 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1633 {
1634         u32 val;
1635
1636         val = I915_READ(LPT_TRANSCONF);
1637         val &= ~TRANS_ENABLE;
1638         I915_WRITE(LPT_TRANSCONF, val);
1639         /* wait for PCH transcoder off, transcoder state */
1640         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1641                 DRM_ERROR("Failed to disable PCH transcoder\n");
1642
1643         /* Workaround: clear timing override bit. */
1644         val = I915_READ(_TRANSA_CHICKEN2);
1645         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1646         I915_WRITE(_TRANSA_CHICKEN2, val);
1647 }
1648
1649 /**
1650  * intel_enable_pipe - enable a pipe, asserting requirements
1651  * @dev_priv: i915 private structure
1652  * @pipe: pipe to enable
1653  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1654  *
1655  * Enable @pipe, making sure that various hardware specific requirements
1656  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1657  *
1658  * @pipe should be %PIPE_A or %PIPE_B.
1659  *
1660  * Will wait until the pipe is actually running (i.e. first vblank) before
1661  * returning.
1662  */
1663 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1664                               bool pch_port)
1665 {
1666         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1667                                                                       pipe);
1668         enum pipe pch_transcoder;
1669         int reg;
1670         u32 val;
1671
1672         assert_planes_disabled(dev_priv, pipe);
1673         assert_sprites_disabled(dev_priv, pipe);
1674
1675         if (HAS_PCH_LPT(dev_priv->dev))
1676                 pch_transcoder = TRANSCODER_A;
1677         else
1678                 pch_transcoder = pipe;
1679
1680         /*
1681          * A pipe without a PLL won't actually be able to drive bits from
1682          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1683          * need the check.
1684          */
1685         if (!HAS_PCH_SPLIT(dev_priv->dev))
1686                 assert_pll_enabled(dev_priv, pipe);
1687         else {
1688                 if (pch_port) {
1689                         /* if driving the PCH, we need FDI enabled */
1690                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1691                         assert_fdi_tx_pll_enabled(dev_priv,
1692                                                   (enum pipe) cpu_transcoder);
1693                 }
1694                 /* FIXME: assert CPU port conditions for SNB+ */
1695         }
1696
1697         reg = PIPECONF(cpu_transcoder);
1698         val = I915_READ(reg);
1699         if (val & PIPECONF_ENABLE)
1700                 return;
1701
1702         I915_WRITE(reg, val | PIPECONF_ENABLE);
1703         intel_wait_for_vblank(dev_priv->dev, pipe);
1704 }
1705
1706 /**
1707  * intel_disable_pipe - disable a pipe, asserting requirements
1708  * @dev_priv: i915 private structure
1709  * @pipe: pipe to disable
1710  *
1711  * Disable @pipe, making sure that various hardware specific requirements
1712  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1713  *
1714  * @pipe should be %PIPE_A or %PIPE_B.
1715  *
1716  * Will wait until the pipe has shut down before returning.
1717  */
1718 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1719                                enum pipe pipe)
1720 {
1721         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1722                                                                       pipe);
1723         int reg;
1724         u32 val;
1725
1726         /*
1727          * Make sure planes won't keep trying to pump pixels to us,
1728          * or we might hang the display.
1729          */
1730         assert_planes_disabled(dev_priv, pipe);
1731         assert_sprites_disabled(dev_priv, pipe);
1732
1733         /* Don't disable pipe A or pipe A PLLs if needed */
1734         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1735                 return;
1736
1737         reg = PIPECONF(cpu_transcoder);
1738         val = I915_READ(reg);
1739         if ((val & PIPECONF_ENABLE) == 0)
1740                 return;
1741
1742         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1743         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1744 }
1745
1746 /*
1747  * Plane regs are double buffered, going from enabled->disabled needs a
1748  * trigger in order to latch.  The display address reg provides this.
1749  */
1750 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1751                                       enum plane plane)
1752 {
1753         if (dev_priv->info->gen >= 4)
1754                 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1755         else
1756                 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1757 }
1758
1759 /**
1760  * intel_enable_plane - enable a display plane on a given pipe
1761  * @dev_priv: i915 private structure
1762  * @plane: plane to enable
1763  * @pipe: pipe being fed
1764  *
1765  * Enable @plane on @pipe, making sure that @pipe is running first.
1766  */
1767 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1768                                enum plane plane, enum pipe pipe)
1769 {
1770         int reg;
1771         u32 val;
1772
1773         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1774         assert_pipe_enabled(dev_priv, pipe);
1775
1776         reg = DSPCNTR(plane);
1777         val = I915_READ(reg);
1778         if (val & DISPLAY_PLANE_ENABLE)
1779                 return;
1780
1781         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1782         intel_flush_display_plane(dev_priv, plane);
1783         intel_wait_for_vblank(dev_priv->dev, pipe);
1784 }
1785
1786 /**
1787  * intel_disable_plane - disable a display plane
1788  * @dev_priv: i915 private structure
1789  * @plane: plane to disable
1790  * @pipe: pipe consuming the data
1791  *
1792  * Disable @plane; should be an independent operation.
1793  */
1794 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1795                                 enum plane plane, enum pipe pipe)
1796 {
1797         int reg;
1798         u32 val;
1799
1800         reg = DSPCNTR(plane);
1801         val = I915_READ(reg);
1802         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1803                 return;
1804
1805         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1806         intel_flush_display_plane(dev_priv, plane);
1807         intel_wait_for_vblank(dev_priv->dev, pipe);
1808 }
1809
1810 static bool need_vtd_wa(struct drm_device *dev)
1811 {
1812 #ifdef CONFIG_INTEL_IOMMU
1813         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1814                 return true;
1815 #endif
1816         return false;
1817 }
1818
1819 int
1820 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1821                            struct drm_i915_gem_object *obj,
1822                            struct intel_ring_buffer *pipelined)
1823 {
1824         struct drm_i915_private *dev_priv = dev->dev_private;
1825         u32 alignment;
1826         int ret;
1827
1828         switch (obj->tiling_mode) {
1829         case I915_TILING_NONE:
1830                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1831                         alignment = 128 * 1024;
1832                 else if (INTEL_INFO(dev)->gen >= 4)
1833                         alignment = 4 * 1024;
1834                 else
1835                         alignment = 64 * 1024;
1836                 break;
1837         case I915_TILING_X:
1838                 /* pin() will align the object as required by fence */
1839                 alignment = 0;
1840                 break;
1841         case I915_TILING_Y:
1842                 /* Despite that we check this in framebuffer_init userspace can
1843                  * screw us over and change the tiling after the fact. Only
1844                  * pinned buffers can't change their tiling. */
1845                 DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
1846                 return -EINVAL;
1847         default:
1848                 BUG();
1849         }
1850
1851         /* Note that the w/a also requires 64 PTE of padding following the
1852          * bo. We currently fill all unused PTE with the shadow page and so
1853          * we should always have valid PTE following the scanout preventing
1854          * the VT-d warning.
1855          */
1856         if (need_vtd_wa(dev) && alignment < 256 * 1024)
1857                 alignment = 256 * 1024;
1858
1859         dev_priv->mm.interruptible = false;
1860         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1861         if (ret)
1862                 goto err_interruptible;
1863
1864         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1865          * fence, whereas 965+ only requires a fence if using
1866          * framebuffer compression.  For simplicity, we always install
1867          * a fence as the cost is not that onerous.
1868          */
1869         ret = i915_gem_object_get_fence(obj);
1870         if (ret)
1871                 goto err_unpin;
1872
1873         i915_gem_object_pin_fence(obj);
1874
1875         dev_priv->mm.interruptible = true;
1876         return 0;
1877
1878 err_unpin:
1879         i915_gem_object_unpin_from_display_plane(obj);
1880 err_interruptible:
1881         dev_priv->mm.interruptible = true;
1882         return ret;
1883 }
1884
1885 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1886 {
1887         i915_gem_object_unpin_fence(obj);
1888         i915_gem_object_unpin_from_display_plane(obj);
1889 }
1890
1891 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1892  * is assumed to be a power-of-two. */
1893 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1894                                              unsigned int tiling_mode,
1895                                              unsigned int cpp,
1896                                              unsigned int pitch)
1897 {
1898         if (tiling_mode != I915_TILING_NONE) {
1899                 unsigned int tile_rows, tiles;
1900
1901                 tile_rows = *y / 8;
1902                 *y %= 8;
1903
1904                 tiles = *x / (512/cpp);
1905                 *x %= 512/cpp;
1906
1907                 return tile_rows * pitch * 8 + tiles * 4096;
1908         } else {
1909                 unsigned int offset;
1910
1911                 offset = *y * pitch + *x * cpp;
1912                 *y = 0;
1913                 *x = (offset & 4095) / cpp;
1914                 return offset & -4096;
1915         }
1916 }
1917
1918 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1919                              int x, int y)
1920 {
1921         struct drm_device *dev = crtc->dev;
1922         struct drm_i915_private *dev_priv = dev->dev_private;
1923         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1924         struct intel_framebuffer *intel_fb;
1925         struct drm_i915_gem_object *obj;
1926         int plane = intel_crtc->plane;
1927         unsigned long linear_offset;
1928         u32 dspcntr;
1929         u32 reg;
1930
1931         switch (plane) {
1932         case 0:
1933         case 1:
1934                 break;
1935         default:
1936                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
1937                 return -EINVAL;
1938         }
1939
1940         intel_fb = to_intel_framebuffer(fb);
1941         obj = intel_fb->obj;
1942
1943         reg = DSPCNTR(plane);
1944         dspcntr = I915_READ(reg);
1945         /* Mask out pixel format bits in case we change it */
1946         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1947         switch (fb->pixel_format) {
1948         case DRM_FORMAT_C8:
1949                 dspcntr |= DISPPLANE_8BPP;
1950                 break;
1951         case DRM_FORMAT_XRGB1555:
1952         case DRM_FORMAT_ARGB1555:
1953                 dspcntr |= DISPPLANE_BGRX555;
1954                 break;
1955         case DRM_FORMAT_RGB565:
1956                 dspcntr |= DISPPLANE_BGRX565;
1957                 break;
1958         case DRM_FORMAT_XRGB8888:
1959         case DRM_FORMAT_ARGB8888:
1960                 dspcntr |= DISPPLANE_BGRX888;
1961                 break;
1962         case DRM_FORMAT_XBGR8888:
1963         case DRM_FORMAT_ABGR8888:
1964                 dspcntr |= DISPPLANE_RGBX888;
1965                 break;
1966         case DRM_FORMAT_XRGB2101010:
1967         case DRM_FORMAT_ARGB2101010:
1968                 dspcntr |= DISPPLANE_BGRX101010;
1969                 break;
1970         case DRM_FORMAT_XBGR2101010:
1971         case DRM_FORMAT_ABGR2101010:
1972                 dspcntr |= DISPPLANE_RGBX101010;
1973                 break;
1974         default:
1975                 BUG();
1976         }
1977
1978         if (INTEL_INFO(dev)->gen >= 4) {
1979                 if (obj->tiling_mode != I915_TILING_NONE)
1980                         dspcntr |= DISPPLANE_TILED;
1981                 else
1982                         dspcntr &= ~DISPPLANE_TILED;
1983         }
1984
1985         if (IS_G4X(dev))
1986                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1987
1988         I915_WRITE(reg, dspcntr);
1989
1990         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
1991
1992         if (INTEL_INFO(dev)->gen >= 4) {
1993                 intel_crtc->dspaddr_offset =
1994                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
1995                                                        fb->bits_per_pixel / 8,
1996                                                        fb->pitches[0]);
1997                 linear_offset -= intel_crtc->dspaddr_offset;
1998         } else {
1999                 intel_crtc->dspaddr_offset = linear_offset;
2000         }
2001
2002         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2003                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2004                       fb->pitches[0]);
2005         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2006         if (INTEL_INFO(dev)->gen >= 4) {
2007                 I915_MODIFY_DISPBASE(DSPSURF(plane),
2008                                      i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2009                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2010                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2011         } else
2012                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2013         POSTING_READ(reg);
2014
2015         return 0;
2016 }
2017
2018 static int ironlake_update_plane(struct drm_crtc *crtc,
2019                                  struct drm_framebuffer *fb, int x, int y)
2020 {
2021         struct drm_device *dev = crtc->dev;
2022         struct drm_i915_private *dev_priv = dev->dev_private;
2023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2024         struct intel_framebuffer *intel_fb;
2025         struct drm_i915_gem_object *obj;
2026         int plane = intel_crtc->plane;
2027         unsigned long linear_offset;
2028         u32 dspcntr;
2029         u32 reg;
2030
2031         switch (plane) {
2032         case 0:
2033         case 1:
2034         case 2:
2035                 break;
2036         default:
2037                 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2038                 return -EINVAL;
2039         }
2040
2041         intel_fb = to_intel_framebuffer(fb);
2042         obj = intel_fb->obj;
2043
2044         reg = DSPCNTR(plane);
2045         dspcntr = I915_READ(reg);
2046         /* Mask out pixel format bits in case we change it */
2047         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2048         switch (fb->pixel_format) {
2049         case DRM_FORMAT_C8:
2050                 dspcntr |= DISPPLANE_8BPP;
2051                 break;
2052         case DRM_FORMAT_RGB565:
2053                 dspcntr |= DISPPLANE_BGRX565;
2054                 break;
2055         case DRM_FORMAT_XRGB8888:
2056         case DRM_FORMAT_ARGB8888:
2057                 dspcntr |= DISPPLANE_BGRX888;
2058                 break;
2059         case DRM_FORMAT_XBGR8888:
2060         case DRM_FORMAT_ABGR8888:
2061                 dspcntr |= DISPPLANE_RGBX888;
2062                 break;
2063         case DRM_FORMAT_XRGB2101010:
2064         case DRM_FORMAT_ARGB2101010:
2065                 dspcntr |= DISPPLANE_BGRX101010;
2066                 break;
2067         case DRM_FORMAT_XBGR2101010:
2068         case DRM_FORMAT_ABGR2101010:
2069                 dspcntr |= DISPPLANE_RGBX101010;
2070                 break;
2071         default:
2072                 BUG();
2073         }
2074
2075         if (obj->tiling_mode != I915_TILING_NONE)
2076                 dspcntr |= DISPPLANE_TILED;
2077         else
2078                 dspcntr &= ~DISPPLANE_TILED;
2079
2080         if (IS_HASWELL(dev))
2081                 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2082         else
2083                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2084
2085         I915_WRITE(reg, dspcntr);
2086
2087         linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2088         intel_crtc->dspaddr_offset =
2089                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2090                                                fb->bits_per_pixel / 8,
2091                                                fb->pitches[0]);
2092         linear_offset -= intel_crtc->dspaddr_offset;
2093
2094         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2095                       i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2096                       fb->pitches[0]);
2097         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2098         I915_MODIFY_DISPBASE(DSPSURF(plane),
2099                              i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2100         if (IS_HASWELL(dev)) {
2101                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2102         } else {
2103                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2104                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2105         }
2106         POSTING_READ(reg);
2107
2108         return 0;
2109 }
2110
2111 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2112 static int
2113 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2114                            int x, int y, enum mode_set_atomic state)
2115 {
2116         struct drm_device *dev = crtc->dev;
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118
2119         if (dev_priv->display.disable_fbc)
2120                 dev_priv->display.disable_fbc(dev);
2121         intel_increase_pllclock(crtc);
2122
2123         return dev_priv->display.update_plane(crtc, fb, x, y);
2124 }
2125
2126 void intel_display_handle_reset(struct drm_device *dev)
2127 {
2128         struct drm_i915_private *dev_priv = dev->dev_private;
2129         struct drm_crtc *crtc;
2130
2131         /*
2132          * Flips in the rings have been nuked by the reset,
2133          * so complete all pending flips so that user space
2134          * will get its events and not get stuck.
2135          *
2136          * Also update the base address of all primary
2137          * planes to the the last fb to make sure we're
2138          * showing the correct fb after a reset.
2139          *
2140          * Need to make two loops over the crtcs so that we
2141          * don't try to grab a crtc mutex before the
2142          * pending_flip_queue really got woken up.
2143          */
2144
2145         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2146                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2147                 enum plane plane = intel_crtc->plane;
2148
2149                 intel_prepare_page_flip(dev, plane);
2150                 intel_finish_page_flip_plane(dev, plane);
2151         }
2152
2153         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2154                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2155
2156                 mutex_lock(&crtc->mutex);
2157                 if (intel_crtc->active)
2158                         dev_priv->display.update_plane(crtc, crtc->fb,
2159                                                        crtc->x, crtc->y);
2160                 mutex_unlock(&crtc->mutex);
2161         }
2162 }
2163
2164 static int
2165 intel_finish_fb(struct drm_framebuffer *old_fb)
2166 {
2167         struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2168         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2169         bool was_interruptible = dev_priv->mm.interruptible;
2170         int ret;
2171
2172         /* Big Hammer, we also need to ensure that any pending
2173          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2174          * current scanout is retired before unpinning the old
2175          * framebuffer.
2176          *
2177          * This should only fail upon a hung GPU, in which case we
2178          * can safely continue.
2179          */
2180         dev_priv->mm.interruptible = false;
2181         ret = i915_gem_object_finish_gpu(obj);
2182         dev_priv->mm.interruptible = was_interruptible;
2183
2184         return ret;
2185 }
2186
2187 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2188 {
2189         struct drm_device *dev = crtc->dev;
2190         struct drm_i915_master_private *master_priv;
2191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2192
2193         if (!dev->primary->master)
2194                 return;
2195
2196         master_priv = dev->primary->master->driver_priv;
2197         if (!master_priv->sarea_priv)
2198                 return;
2199
2200         switch (intel_crtc->pipe) {
2201         case 0:
2202                 master_priv->sarea_priv->pipeA_x = x;
2203                 master_priv->sarea_priv->pipeA_y = y;
2204                 break;
2205         case 1:
2206                 master_priv->sarea_priv->pipeB_x = x;
2207                 master_priv->sarea_priv->pipeB_y = y;
2208                 break;
2209         default:
2210                 break;
2211         }
2212 }
2213
2214 static int
2215 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2216                     struct drm_framebuffer *fb)
2217 {
2218         struct drm_device *dev = crtc->dev;
2219         struct drm_i915_private *dev_priv = dev->dev_private;
2220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2221         struct drm_framebuffer *old_fb;
2222         int ret;
2223
2224         /* no fb bound */
2225         if (!fb) {
2226                 DRM_ERROR("No FB bound\n");
2227                 return 0;
2228         }
2229
2230         if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2231                 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2232                           plane_name(intel_crtc->plane),
2233                           INTEL_INFO(dev)->num_pipes);
2234                 return -EINVAL;
2235         }
2236
2237         mutex_lock(&dev->struct_mutex);
2238         ret = intel_pin_and_fence_fb_obj(dev,
2239                                          to_intel_framebuffer(fb)->obj,
2240                                          NULL);
2241         if (ret != 0) {
2242                 mutex_unlock(&dev->struct_mutex);
2243                 DRM_ERROR("pin & fence failed\n");
2244                 return ret;
2245         }
2246
2247         /* Update pipe size and adjust fitter if needed */
2248         if (i915_fastboot) {
2249                 I915_WRITE(PIPESRC(intel_crtc->pipe),
2250                            ((crtc->mode.hdisplay - 1) << 16) |
2251                            (crtc->mode.vdisplay - 1));
2252                 if (!intel_crtc->config.pch_pfit.enabled &&
2253                     (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2254                      intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2255                         I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2256                         I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2257                         I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2258                 }
2259         }
2260
2261         ret = dev_priv->display.update_plane(crtc, fb, x, y);
2262         if (ret) {
2263                 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2264                 mutex_unlock(&dev->struct_mutex);
2265                 DRM_ERROR("failed to update base address\n");
2266                 return ret;
2267         }
2268
2269         old_fb = crtc->fb;
2270         crtc->fb = fb;
2271         crtc->x = x;
2272         crtc->y = y;
2273
2274         if (old_fb) {
2275                 if (intel_crtc->active && old_fb != fb)
2276                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2277                 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2278         }
2279
2280         intel_update_fbc(dev);
2281         intel_edp_psr_update(dev);
2282         mutex_unlock(&dev->struct_mutex);
2283
2284         intel_crtc_update_sarea_pos(crtc, x, y);
2285
2286         return 0;
2287 }
2288
2289 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2290 {
2291         struct drm_device *dev = crtc->dev;
2292         struct drm_i915_private *dev_priv = dev->dev_private;
2293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2294         int pipe = intel_crtc->pipe;
2295         u32 reg, temp;
2296
2297         /* enable normal train */
2298         reg = FDI_TX_CTL(pipe);
2299         temp = I915_READ(reg);
2300         if (IS_IVYBRIDGE(dev)) {
2301                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2302                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2303         } else {
2304                 temp &= ~FDI_LINK_TRAIN_NONE;
2305                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2306         }
2307         I915_WRITE(reg, temp);
2308
2309         reg = FDI_RX_CTL(pipe);
2310         temp = I915_READ(reg);
2311         if (HAS_PCH_CPT(dev)) {
2312                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2313                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2314         } else {
2315                 temp &= ~FDI_LINK_TRAIN_NONE;
2316                 temp |= FDI_LINK_TRAIN_NONE;
2317         }
2318         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2319
2320         /* wait one idle pattern time */
2321         POSTING_READ(reg);
2322         udelay(1000);
2323
2324         /* IVB wants error correction enabled */
2325         if (IS_IVYBRIDGE(dev))
2326                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2327                            FDI_FE_ERRC_ENABLE);
2328 }
2329
2330 static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2331 {
2332         return crtc->base.enabled && crtc->active &&
2333                 crtc->config.has_pch_encoder;
2334 }
2335
2336 static void ivb_modeset_global_resources(struct drm_device *dev)
2337 {
2338         struct drm_i915_private *dev_priv = dev->dev_private;
2339         struct intel_crtc *pipe_B_crtc =
2340                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2341         struct intel_crtc *pipe_C_crtc =
2342                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2343         uint32_t temp;
2344
2345         /*
2346          * When everything is off disable fdi C so that we could enable fdi B
2347          * with all lanes. Note that we don't care about enabled pipes without
2348          * an enabled pch encoder.
2349          */
2350         if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2351             !pipe_has_enabled_pch(pipe_C_crtc)) {
2352                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2353                 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2354
2355                 temp = I915_READ(SOUTH_CHICKEN1);
2356                 temp &= ~FDI_BC_BIFURCATION_SELECT;
2357                 DRM_DEBUG_KMS("disabling fdi C rx\n");
2358                 I915_WRITE(SOUTH_CHICKEN1, temp);
2359         }
2360 }
2361
2362 /* The FDI link training functions for ILK/Ibexpeak. */
2363 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2364 {
2365         struct drm_device *dev = crtc->dev;
2366         struct drm_i915_private *dev_priv = dev->dev_private;
2367         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2368         int pipe = intel_crtc->pipe;
2369         int plane = intel_crtc->plane;
2370         u32 reg, temp, tries;
2371
2372         /* FDI needs bits from pipe & plane first */
2373         assert_pipe_enabled(dev_priv, pipe);
2374         assert_plane_enabled(dev_priv, plane);
2375
2376         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2377            for train result */
2378         reg = FDI_RX_IMR(pipe);
2379         temp = I915_READ(reg);
2380         temp &= ~FDI_RX_SYMBOL_LOCK;
2381         temp &= ~FDI_RX_BIT_LOCK;
2382         I915_WRITE(reg, temp);
2383         I915_READ(reg);
2384         udelay(150);
2385
2386         /* enable CPU FDI TX and PCH FDI RX */
2387         reg = FDI_TX_CTL(pipe);
2388         temp = I915_READ(reg);
2389         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2390         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2391         temp &= ~FDI_LINK_TRAIN_NONE;
2392         temp |= FDI_LINK_TRAIN_PATTERN_1;
2393         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2394
2395         reg = FDI_RX_CTL(pipe);
2396         temp = I915_READ(reg);
2397         temp &= ~FDI_LINK_TRAIN_NONE;
2398         temp |= FDI_LINK_TRAIN_PATTERN_1;
2399         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2400
2401         POSTING_READ(reg);
2402         udelay(150);
2403
2404         /* Ironlake workaround, enable clock pointer after FDI enable*/
2405         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2406         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2407                    FDI_RX_PHASE_SYNC_POINTER_EN);
2408
2409         reg = FDI_RX_IIR(pipe);
2410         for (tries = 0; tries < 5; tries++) {
2411                 temp = I915_READ(reg);
2412                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2413
2414                 if ((temp & FDI_RX_BIT_LOCK)) {
2415                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2416                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2417                         break;
2418                 }
2419         }
2420         if (tries == 5)
2421                 DRM_ERROR("FDI train 1 fail!\n");
2422
2423         /* Train 2 */
2424         reg = FDI_TX_CTL(pipe);
2425         temp = I915_READ(reg);
2426         temp &= ~FDI_LINK_TRAIN_NONE;
2427         temp |= FDI_LINK_TRAIN_PATTERN_2;
2428         I915_WRITE(reg, temp);
2429
2430         reg = FDI_RX_CTL(pipe);
2431         temp = I915_READ(reg);
2432         temp &= ~FDI_LINK_TRAIN_NONE;
2433         temp |= FDI_LINK_TRAIN_PATTERN_2;
2434         I915_WRITE(reg, temp);
2435
2436         POSTING_READ(reg);
2437         udelay(150);
2438
2439         reg = FDI_RX_IIR(pipe);
2440         for (tries = 0; tries < 5; tries++) {
2441                 temp = I915_READ(reg);
2442                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2443
2444                 if (temp & FDI_RX_SYMBOL_LOCK) {
2445                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2446                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2447                         break;
2448                 }
2449         }
2450         if (tries == 5)
2451                 DRM_ERROR("FDI train 2 fail!\n");
2452
2453         DRM_DEBUG_KMS("FDI train done\n");
2454
2455 }
2456
2457 static const int snb_b_fdi_train_param[] = {
2458         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2459         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2460         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2461         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2462 };
2463
2464 /* The FDI link training functions for SNB/Cougarpoint. */
2465 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2466 {
2467         struct drm_device *dev = crtc->dev;
2468         struct drm_i915_private *dev_priv = dev->dev_private;
2469         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2470         int pipe = intel_crtc->pipe;
2471         u32 reg, temp, i, retry;
2472
2473         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2474            for train result */
2475         reg = FDI_RX_IMR(pipe);
2476         temp = I915_READ(reg);
2477         temp &= ~FDI_RX_SYMBOL_LOCK;
2478         temp &= ~FDI_RX_BIT_LOCK;
2479         I915_WRITE(reg, temp);
2480
2481         POSTING_READ(reg);
2482         udelay(150);
2483
2484         /* enable CPU FDI TX and PCH FDI RX */
2485         reg = FDI_TX_CTL(pipe);
2486         temp = I915_READ(reg);
2487         temp &= ~FDI_DP_PORT_WIDTH_MASK;
2488         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2489         temp &= ~FDI_LINK_TRAIN_NONE;
2490         temp |= FDI_LINK_TRAIN_PATTERN_1;
2491         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2492         /* SNB-B */
2493         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2494         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2495
2496         I915_WRITE(FDI_RX_MISC(pipe),
2497                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2498
2499         reg = FDI_RX_CTL(pipe);
2500         temp = I915_READ(reg);
2501         if (HAS_PCH_CPT(dev)) {
2502                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2503                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2504         } else {
2505                 temp &= ~FDI_LINK_TRAIN_NONE;
2506                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2507         }
2508         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2509
2510         POSTING_READ(reg);
2511         udelay(150);
2512
2513         for (i = 0; i < 4; i++) {
2514                 reg = FDI_TX_CTL(pipe);
2515                 temp = I915_READ(reg);
2516                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2517                 temp |= snb_b_fdi_train_param[i];
2518                 I915_WRITE(reg, temp);
2519
2520                 POSTING_READ(reg);
2521                 udelay(500);
2522
2523                 for (retry = 0; retry < 5; retry++) {
2524                         reg = FDI_RX_IIR(pipe);
2525                         temp = I915_READ(reg);
2526                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2527                         if (temp & FDI_RX_BIT_LOCK) {
2528                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2529                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
2530                                 break;
2531                         }
2532                         udelay(50);
2533                 }
2534                 if (retry < 5)
2535                         break;
2536         }
2537         if (i == 4)
2538                 DRM_ERROR("FDI train 1 fail!\n");
2539
2540         /* Train 2 */
2541         reg = FDI_TX_CTL(pipe);
2542         temp = I915_READ(reg);
2543         temp &= ~FDI_LINK_TRAIN_NONE;
2544         temp |= FDI_LINK_TRAIN_PATTERN_2;
2545         if (IS_GEN6(dev)) {
2546                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2547                 /* SNB-B */
2548                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2549         }
2550         I915_WRITE(reg, temp);
2551
2552         reg = FDI_RX_CTL(pipe);
2553         temp = I915_READ(reg);
2554         if (HAS_PCH_CPT(dev)) {
2555                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2556                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2557         } else {
2558                 temp &= ~FDI_LINK_TRAIN_NONE;
2559                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2560         }
2561         I915_WRITE(reg, temp);
2562
2563         POSTING_READ(reg);
2564         udelay(150);
2565
2566         for (i = 0; i < 4; i++) {
2567                 reg = FDI_TX_CTL(pipe);
2568                 temp = I915_READ(reg);
2569                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2570                 temp |= snb_b_fdi_train_param[i];
2571                 I915_WRITE(reg, temp);
2572
2573                 POSTING_READ(reg);
2574                 udelay(500);
2575
2576                 for (retry = 0; retry < 5; retry++) {
2577                         reg = FDI_RX_IIR(pipe);
2578                         temp = I915_READ(reg);
2579                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2580                         if (temp & FDI_RX_SYMBOL_LOCK) {
2581                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2582                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
2583                                 break;
2584                         }
2585                         udelay(50);
2586                 }
2587                 if (retry < 5)
2588                         break;
2589         }
2590         if (i == 4)
2591                 DRM_ERROR("FDI train 2 fail!\n");
2592
2593         DRM_DEBUG_KMS("FDI train done.\n");
2594 }
2595
2596 /* Manual link training for Ivy Bridge A0 parts */
2597 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2598 {
2599         struct drm_device *dev = crtc->dev;
2600         struct drm_i915_private *dev_priv = dev->dev_private;
2601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2602         int pipe = intel_crtc->pipe;
2603         u32 reg, temp, i, j;
2604
2605         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2606            for train result */
2607         reg = FDI_RX_IMR(pipe);
2608         temp = I915_READ(reg);
2609         temp &= ~FDI_RX_SYMBOL_LOCK;
2610         temp &= ~FDI_RX_BIT_LOCK;
2611         I915_WRITE(reg, temp);
2612
2613         POSTING_READ(reg);
2614         udelay(150);
2615
2616         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2617                       I915_READ(FDI_RX_IIR(pipe)));
2618
2619         /* Try each vswing and preemphasis setting twice before moving on */
2620         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2621                 /* disable first in case we need to retry */
2622                 reg = FDI_TX_CTL(pipe);
2623                 temp = I915_READ(reg);
2624                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2625                 temp &= ~FDI_TX_ENABLE;
2626                 I915_WRITE(reg, temp);
2627
2628                 reg = FDI_RX_CTL(pipe);
2629                 temp = I915_READ(reg);
2630                 temp &= ~FDI_LINK_TRAIN_AUTO;
2631                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2632                 temp &= ~FDI_RX_ENABLE;
2633                 I915_WRITE(reg, temp);
2634
2635                 /* enable CPU FDI TX and PCH FDI RX */
2636                 reg = FDI_TX_CTL(pipe);
2637                 temp = I915_READ(reg);
2638                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2639                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2640                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2641                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2642                 temp |= snb_b_fdi_train_param[j/2];
2643                 temp |= FDI_COMPOSITE_SYNC;
2644                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2645
2646                 I915_WRITE(FDI_RX_MISC(pipe),
2647                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2648
2649                 reg = FDI_RX_CTL(pipe);
2650                 temp = I915_READ(reg);
2651                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2652                 temp |= FDI_COMPOSITE_SYNC;
2653                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2654
2655                 POSTING_READ(reg);
2656                 udelay(1); /* should be 0.5us */
2657
2658                 for (i = 0; i < 4; i++) {
2659                         reg = FDI_RX_IIR(pipe);
2660                         temp = I915_READ(reg);
2661                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2662
2663                         if (temp & FDI_RX_BIT_LOCK ||
2664                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2665                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2666                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2667                                               i);
2668                                 break;
2669                         }
2670                         udelay(1); /* should be 0.5us */
2671                 }
2672                 if (i == 4) {
2673                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2674                         continue;
2675                 }
2676
2677                 /* Train 2 */
2678                 reg = FDI_TX_CTL(pipe);
2679                 temp = I915_READ(reg);
2680                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2681                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2682                 I915_WRITE(reg, temp);
2683
2684                 reg = FDI_RX_CTL(pipe);
2685                 temp = I915_READ(reg);
2686                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2687                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2688                 I915_WRITE(reg, temp);
2689
2690                 POSTING_READ(reg);
2691                 udelay(2); /* should be 1.5us */
2692
2693                 for (i = 0; i < 4; i++) {
2694                         reg = FDI_RX_IIR(pipe);
2695                         temp = I915_READ(reg);
2696                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2697
2698                         if (temp & FDI_RX_SYMBOL_LOCK ||
2699                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2700                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2701                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2702                                               i);
2703                                 goto train_done;
2704                         }
2705                         udelay(2); /* should be 1.5us */
2706                 }
2707                 if (i == 4)
2708                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2709         }
2710
2711 train_done:
2712         DRM_DEBUG_KMS("FDI train done.\n");
2713 }
2714
2715 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2716 {
2717         struct drm_device *dev = intel_crtc->base.dev;
2718         struct drm_i915_private *dev_priv = dev->dev_private;
2719         int pipe = intel_crtc->pipe;
2720         u32 reg, temp;
2721
2722
2723         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2724         reg = FDI_RX_CTL(pipe);
2725         temp = I915_READ(reg);
2726         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2727         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2728         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2729         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2730
2731         POSTING_READ(reg);
2732         udelay(200);
2733
2734         /* Switch from Rawclk to PCDclk */
2735         temp = I915_READ(reg);
2736         I915_WRITE(reg, temp | FDI_PCDCLK);
2737
2738         POSTING_READ(reg);
2739         udelay(200);
2740
2741         /* Enable CPU FDI TX PLL, always on for Ironlake */
2742         reg = FDI_TX_CTL(pipe);
2743         temp = I915_READ(reg);
2744         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2745                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2746
2747                 POSTING_READ(reg);
2748                 udelay(100);
2749         }
2750 }
2751
2752 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2753 {
2754         struct drm_device *dev = intel_crtc->base.dev;
2755         struct drm_i915_private *dev_priv = dev->dev_private;
2756         int pipe = intel_crtc->pipe;
2757         u32 reg, temp;
2758
2759         /* Switch from PCDclk to Rawclk */
2760         reg = FDI_RX_CTL(pipe);
2761         temp = I915_READ(reg);
2762         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2763
2764         /* Disable CPU FDI TX PLL */
2765         reg = FDI_TX_CTL(pipe);
2766         temp = I915_READ(reg);
2767         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2768
2769         POSTING_READ(reg);
2770         udelay(100);
2771
2772         reg = FDI_RX_CTL(pipe);
2773         temp = I915_READ(reg);
2774         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2775
2776         /* Wait for the clocks to turn off. */
2777         POSTING_READ(reg);
2778         udelay(100);
2779 }
2780
2781 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2782 {
2783         struct drm_device *dev = crtc->dev;
2784         struct drm_i915_private *dev_priv = dev->dev_private;
2785         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2786         int pipe = intel_crtc->pipe;
2787         u32 reg, temp;
2788
2789         /* disable CPU FDI tx and PCH FDI rx */
2790         reg = FDI_TX_CTL(pipe);
2791         temp = I915_READ(reg);
2792         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2793         POSTING_READ(reg);
2794
2795         reg = FDI_RX_CTL(pipe);
2796         temp = I915_READ(reg);
2797         temp &= ~(0x7 << 16);
2798         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2799         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2800
2801         POSTING_READ(reg);
2802         udelay(100);
2803
2804         /* Ironlake workaround, disable clock pointer after downing FDI */
2805         if (HAS_PCH_IBX(dev)) {
2806                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2807         }
2808
2809         /* still set train pattern 1 */
2810         reg = FDI_TX_CTL(pipe);
2811         temp = I915_READ(reg);
2812         temp &= ~FDI_LINK_TRAIN_NONE;
2813         temp |= FDI_LINK_TRAIN_PATTERN_1;
2814         I915_WRITE(reg, temp);
2815
2816         reg = FDI_RX_CTL(pipe);
2817         temp = I915_READ(reg);
2818         if (HAS_PCH_CPT(dev)) {
2819                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2820                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2821         } else {
2822                 temp &= ~FDI_LINK_TRAIN_NONE;
2823                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2824         }
2825         /* BPC in FDI rx is consistent with that in PIPECONF */
2826         temp &= ~(0x07 << 16);
2827         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2828         I915_WRITE(reg, temp);
2829
2830         POSTING_READ(reg);
2831         udelay(100);
2832 }
2833
2834 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2835 {
2836         struct drm_device *dev = crtc->dev;
2837         struct drm_i915_private *dev_priv = dev->dev_private;
2838         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2839         unsigned long flags;
2840         bool pending;
2841
2842         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2843             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2844                 return false;
2845
2846         spin_lock_irqsave(&dev->event_lock, flags);
2847         pending = to_intel_crtc(crtc)->unpin_work != NULL;
2848         spin_unlock_irqrestore(&dev->event_lock, flags);
2849
2850         return pending;
2851 }
2852
2853 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2854 {
2855         struct drm_device *dev = crtc->dev;
2856         struct drm_i915_private *dev_priv = dev->dev_private;
2857
2858         if (crtc->fb == NULL)
2859                 return;
2860
2861         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2862
2863         wait_event(dev_priv->pending_flip_queue,
2864                    !intel_crtc_has_pending_flip(crtc));
2865
2866         mutex_lock(&dev->struct_mutex);
2867         intel_finish_fb(crtc->fb);
2868         mutex_unlock(&dev->struct_mutex);
2869 }
2870
2871 /* Program iCLKIP clock to the desired frequency */
2872 static void lpt_program_iclkip(struct drm_crtc *crtc)
2873 {
2874         struct drm_device *dev = crtc->dev;
2875         struct drm_i915_private *dev_priv = dev->dev_private;
2876         u32 divsel, phaseinc, auxdiv, phasedir = 0;
2877         u32 temp;
2878
2879         mutex_lock(&dev_priv->dpio_lock);
2880
2881         /* It is necessary to ungate the pixclk gate prior to programming
2882          * the divisors, and gate it back when it is done.
2883          */
2884         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2885
2886         /* Disable SSCCTL */
2887         intel_sbi_write(dev_priv, SBI_SSCCTL6,
2888                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2889                                 SBI_SSCCTL_DISABLE,
2890                         SBI_ICLK);
2891
2892         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2893         if (crtc->mode.clock == 20000) {
2894                 auxdiv = 1;
2895                 divsel = 0x41;
2896                 phaseinc = 0x20;
2897         } else {
2898                 /* The iCLK virtual clock root frequency is in MHz,
2899                  * but the crtc->mode.clock in in KHz. To get the divisors,
2900                  * it is necessary to divide one by another, so we
2901                  * convert the virtual clock precision to KHz here for higher
2902                  * precision.
2903                  */
2904                 u32 iclk_virtual_root_freq = 172800 * 1000;
2905                 u32 iclk_pi_range = 64;
2906                 u32 desired_divisor, msb_divisor_value, pi_value;
2907
2908                 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2909                 msb_divisor_value = desired_divisor / iclk_pi_range;
2910                 pi_value = desired_divisor % iclk_pi_range;
2911
2912                 auxdiv = 0;
2913                 divsel = msb_divisor_value - 2;
2914                 phaseinc = pi_value;
2915         }
2916
2917         /* This should not happen with any sane values */
2918         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2919                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2920         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2921                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2922
2923         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2924                         crtc->mode.clock,
2925                         auxdiv,
2926                         divsel,
2927                         phasedir,
2928                         phaseinc);
2929
2930         /* Program SSCDIVINTPHASE6 */
2931         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
2932         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2933         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2934         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2935         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2936         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2937         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2938         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
2939
2940         /* Program SSCAUXDIV */
2941         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
2942         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2943         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2944         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
2945
2946         /* Enable modulator and associated divider */
2947         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
2948         temp &= ~SBI_SSCCTL_DISABLE;
2949         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
2950
2951         /* Wait for initialization time */
2952         udelay(24);
2953
2954         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2955
2956         mutex_unlock(&dev_priv->dpio_lock);
2957 }
2958
2959 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
2960                                                 enum pipe pch_transcoder)
2961 {
2962         struct drm_device *dev = crtc->base.dev;
2963         struct drm_i915_private *dev_priv = dev->dev_private;
2964         enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
2965
2966         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
2967                    I915_READ(HTOTAL(cpu_transcoder)));
2968         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
2969                    I915_READ(HBLANK(cpu_transcoder)));
2970         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
2971                    I915_READ(HSYNC(cpu_transcoder)));
2972
2973         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
2974                    I915_READ(VTOTAL(cpu_transcoder)));
2975         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
2976                    I915_READ(VBLANK(cpu_transcoder)));
2977         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
2978                    I915_READ(VSYNC(cpu_transcoder)));
2979         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
2980                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
2981 }
2982
2983 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
2984 {
2985         struct drm_i915_private *dev_priv = dev->dev_private;
2986         uint32_t temp;
2987
2988         temp = I915_READ(SOUTH_CHICKEN1);
2989         if (temp & FDI_BC_BIFURCATION_SELECT)
2990                 return;
2991
2992         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2993         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2994
2995         temp |= FDI_BC_BIFURCATION_SELECT;
2996         DRM_DEBUG_KMS("enabling fdi C rx\n");
2997         I915_WRITE(SOUTH_CHICKEN1, temp);
2998         POSTING_READ(SOUTH_CHICKEN1);
2999 }
3000
3001 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3002 {
3003         struct drm_device *dev = intel_crtc->base.dev;
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005
3006         switch (intel_crtc->pipe) {
3007         case PIPE_A:
3008                 break;
3009         case PIPE_B:
3010                 if (intel_crtc->config.fdi_lanes > 2)
3011                         WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3012                 else
3013                         cpt_enable_fdi_bc_bifurcation(dev);
3014
3015                 break;
3016         case PIPE_C:
3017                 cpt_enable_fdi_bc_bifurcation(dev);
3018
3019                 break;
3020         default:
3021                 BUG();
3022         }
3023 }
3024
3025 /*
3026  * Enable PCH resources required for PCH ports:
3027  *   - PCH PLLs
3028  *   - FDI training & RX/TX
3029  *   - update transcoder timings
3030  *   - DP transcoding bits
3031  *   - transcoder
3032  */
3033 static void ironlake_pch_enable(struct drm_crtc *crtc)
3034 {
3035         struct drm_device *dev = crtc->dev;
3036         struct drm_i915_private *dev_priv = dev->dev_private;
3037         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3038         int pipe = intel_crtc->pipe;
3039         u32 reg, temp;
3040
3041         assert_pch_transcoder_disabled(dev_priv, pipe);
3042
3043         if (IS_IVYBRIDGE(dev))
3044                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3045
3046         /* Write the TU size bits before fdi link training, so that error
3047          * detection works. */
3048         I915_WRITE(FDI_RX_TUSIZE1(pipe),
3049                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3050
3051         /* For PCH output, training FDI link */
3052         dev_priv->display.fdi_link_train(crtc);
3053
3054         /* We need to program the right clock selection before writing the pixel
3055          * mutliplier into the DPLL. */
3056         if (HAS_PCH_CPT(dev)) {
3057                 u32 sel;
3058
3059                 temp = I915_READ(PCH_DPLL_SEL);
3060                 temp |= TRANS_DPLL_ENABLE(pipe);
3061                 sel = TRANS_DPLLB_SEL(pipe);
3062                 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3063                         temp |= sel;
3064                 else
3065                         temp &= ~sel;
3066                 I915_WRITE(PCH_DPLL_SEL, temp);
3067         }
3068
3069         /* XXX: pch pll's can be enabled any time before we enable the PCH
3070          * transcoder, and we actually should do this to not upset any PCH
3071          * transcoder that already use the clock when we share it.
3072          *
3073          * Note that enable_shared_dpll tries to do the right thing, but
3074          * get_shared_dpll unconditionally resets the pll - we need that to have
3075          * the right LVDS enable sequence. */
3076         ironlake_enable_shared_dpll(intel_crtc);
3077
3078         /* set transcoder timing, panel must allow it */
3079         assert_panel_unlocked(dev_priv, pipe);
3080         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3081
3082         intel_fdi_normal_train(crtc);
3083
3084         /* For PCH DP, enable TRANS_DP_CTL */
3085         if (HAS_PCH_CPT(dev) &&
3086             (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3087              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3088                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3089                 reg = TRANS_DP_CTL(pipe);
3090                 temp = I915_READ(reg);
3091                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3092                           TRANS_DP_SYNC_MASK |
3093                           TRANS_DP_BPC_MASK);
3094                 temp |= (TRANS_DP_OUTPUT_ENABLE |
3095                          TRANS_DP_ENH_FRAMING);
3096                 temp |= bpc << 9; /* same format but at 11:9 */
3097
3098                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3099                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3100                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3101                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3102
3103                 switch (intel_trans_dp_port_sel(crtc)) {
3104                 case PCH_DP_B:
3105                         temp |= TRANS_DP_PORT_SEL_B;
3106                         break;
3107                 case PCH_DP_C:
3108                         temp |= TRANS_DP_PORT_SEL_C;
3109                         break;
3110                 case PCH_DP_D:
3111                         temp |= TRANS_DP_PORT_SEL_D;
3112                         break;
3113                 default:
3114                         BUG();
3115                 }
3116
3117                 I915_WRITE(reg, temp);
3118         }
3119
3120         ironlake_enable_pch_transcoder(dev_priv, pipe);
3121 }
3122
3123 static void lpt_pch_enable(struct drm_crtc *crtc)
3124 {
3125         struct drm_device *dev = crtc->dev;
3126         struct drm_i915_private *dev_priv = dev->dev_private;
3127         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3128         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3129
3130         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3131
3132         lpt_program_iclkip(crtc);
3133
3134         /* Set transcoder timing. */
3135         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3136
3137         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3138 }
3139
3140 static void intel_put_shared_dpll(struct intel_crtc *crtc)
3141 {
3142         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3143
3144         if (pll == NULL)
3145                 return;
3146
3147         if (pll->refcount == 0) {
3148                 WARN(1, "bad %s refcount\n", pll->name);
3149                 return;
3150         }
3151
3152         if (--pll->refcount == 0) {
3153                 WARN_ON(pll->on);
3154                 WARN_ON(pll->active);
3155         }
3156
3157         crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3158 }
3159
3160 static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3161 {
3162         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3163         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3164         enum intel_dpll_id i;
3165
3166         if (pll) {
3167                 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3168                               crtc->base.base.id, pll->name);
3169                 intel_put_shared_dpll(crtc);
3170         }
3171
3172         if (HAS_PCH_IBX(dev_priv->dev)) {
3173                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3174                 i = (enum intel_dpll_id) crtc->pipe;
3175                 pll = &dev_priv->shared_dplls[i];
3176
3177                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3178                               crtc->base.base.id, pll->name);
3179
3180                 goto found;
3181         }
3182
3183         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3184                 pll = &dev_priv->shared_dplls[i];
3185
3186                 /* Only want to check enabled timings first */
3187                 if (pll->refcount == 0)
3188                         continue;
3189
3190                 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3191                            sizeof(pll->hw_state)) == 0) {
3192                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3193                                       crtc->base.base.id,
3194                                       pll->name, pll->refcount, pll->active);
3195
3196                         goto found;
3197                 }
3198         }
3199
3200         /* Ok no matching timings, maybe there's a free one? */
3201         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3202                 pll = &dev_priv->shared_dplls[i];
3203                 if (pll->refcount == 0) {
3204                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3205                                       crtc->base.base.id, pll->name);
3206                         goto found;
3207                 }
3208         }
3209
3210         return NULL;
3211
3212 found:
3213         crtc->config.shared_dpll = i;
3214         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3215                          pipe_name(crtc->pipe));
3216
3217         if (pll->active == 0) {
3218                 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3219                        sizeof(pll->hw_state));
3220
3221                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3222                 WARN_ON(pll->on);
3223                 assert_shared_dpll_disabled(dev_priv, pll);
3224
3225                 pll->mode_set(dev_priv, pll);
3226         }
3227         pll->refcount++;
3228
3229         return pll;
3230 }
3231
3232 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3233 {
3234         struct drm_i915_private *dev_priv = dev->dev_private;
3235         int dslreg = PIPEDSL(pipe);
3236         u32 temp;
3237
3238         temp = I915_READ(dslreg);
3239         udelay(500);
3240         if (wait_for(I915_READ(dslreg) != temp, 5)) {
3241                 if (wait_for(I915_READ(dslreg) != temp, 5))
3242                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3243         }
3244 }
3245
3246 static void ironlake_pfit_enable(struct intel_crtc *crtc)
3247 {
3248         struct drm_device *dev = crtc->base.dev;
3249         struct drm_i915_private *dev_priv = dev->dev_private;
3250         int pipe = crtc->pipe;
3251
3252         if (crtc->config.pch_pfit.enabled) {
3253                 /* Force use of hard-coded filter coefficients
3254                  * as some pre-programmed values are broken,
3255                  * e.g. x201.
3256                  */
3257                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3258                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3259                                                  PF_PIPE_SEL_IVB(pipe));
3260                 else
3261                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3262                 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3263                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3264         }
3265 }
3266
3267 static void intel_enable_planes(struct drm_crtc *crtc)
3268 {
3269         struct drm_device *dev = crtc->dev;
3270         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3271         struct intel_plane *intel_plane;
3272
3273         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3274                 if (intel_plane->pipe == pipe)
3275                         intel_plane_restore(&intel_plane->base);
3276 }
3277
3278 static void intel_disable_planes(struct drm_crtc *crtc)
3279 {
3280         struct drm_device *dev = crtc->dev;
3281         enum pipe pipe = to_intel_crtc(crtc)->pipe;
3282         struct intel_plane *intel_plane;
3283
3284         list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3285                 if (intel_plane->pipe == pipe)
3286                         intel_plane_disable(&intel_plane->base);
3287 }
3288
3289 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3290 {
3291         struct drm_device *dev = crtc->dev;
3292         struct drm_i915_private *dev_priv = dev->dev_private;
3293         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3294         struct intel_encoder *encoder;
3295         int pipe = intel_crtc->pipe;
3296         int plane = intel_crtc->plane;
3297
3298         WARN_ON(!crtc->enabled);
3299
3300         if (intel_crtc->active)
3301                 return;
3302
3303         intel_crtc->active = true;
3304
3305         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3306         intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3307
3308         intel_update_watermarks(dev);
3309
3310         for_each_encoder_on_crtc(dev, crtc, encoder)
3311                 if (encoder->pre_enable)
3312                         encoder->pre_enable(encoder);
3313
3314         if (intel_crtc->config.has_pch_encoder) {
3315                 /* Note: FDI PLL enabling _must_ be done before we enable the
3316                  * cpu pipes, hence this is separate from all the other fdi/pch
3317                  * enabling. */
3318                 ironlake_fdi_pll_enable(intel_crtc);
3319         } else {
3320                 assert_fdi_tx_disabled(dev_priv, pipe);
3321                 assert_fdi_rx_disabled(dev_priv, pipe);
3322         }
3323
3324         ironlake_pfit_enable(intel_crtc);
3325
3326         /*
3327          * On ILK+ LUT must be loaded before the pipe is running but with
3328          * clocks enabled
3329          */
3330         intel_crtc_load_lut(crtc);
3331
3332         intel_enable_pipe(dev_priv, pipe,
3333                           intel_crtc->config.has_pch_encoder);
3334         intel_enable_plane(dev_priv, plane, pipe);
3335         intel_enable_planes(crtc);
3336         intel_crtc_update_cursor(crtc, true);
3337
3338         if (intel_crtc->config.has_pch_encoder)
3339                 ironlake_pch_enable(crtc);
3340
3341         mutex_lock(&dev->struct_mutex);
3342         intel_update_fbc(dev);
3343         mutex_unlock(&dev->struct_mutex);
3344
3345         for_each_encoder_on_crtc(dev, crtc, encoder)
3346                 encoder->enable(encoder);
3347
3348         if (HAS_PCH_CPT(dev))
3349                 cpt_verify_modeset(dev, intel_crtc->pipe);
3350
3351         /*
3352          * There seems to be a race in PCH platform hw (at least on some
3353          * outputs) where an enabled pipe still completes any pageflip right
3354          * away (as if the pipe is off) instead of waiting for vblank. As soon
3355          * as the first vblank happend, everything works as expected. Hence just
3356          * wait for one vblank before returning to avoid strange things
3357          * happening.
3358          */
3359         intel_wait_for_vblank(dev, intel_crtc->pipe);
3360 }
3361
3362 /* IPS only exists on ULT machines and is tied to pipe A. */
3363 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3364 {
3365         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3366 }
3367
3368 static void hsw_enable_ips(struct intel_crtc *crtc)
3369 {
3370         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3371
3372         if (!crtc->config.ips_enabled)
3373                 return;
3374
3375         /* We can only enable IPS after we enable a plane and wait for a vblank.
3376          * We guarantee that the plane is enabled by calling intel_enable_ips
3377          * only after intel_enable_plane. And intel_enable_plane already waits
3378          * for a vblank, so all we need to do here is to enable the IPS bit. */
3379         assert_plane_enabled(dev_priv, crtc->plane);
3380         I915_WRITE(IPS_CTL, IPS_ENABLE);
3381 }
3382
3383 static void hsw_disable_ips(struct intel_crtc *crtc)
3384 {
3385         struct drm_device *dev = crtc->base.dev;
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387
3388         if (!crtc->config.ips_enabled)
3389                 return;
3390
3391         assert_plane_enabled(dev_priv, crtc->plane);
3392         I915_WRITE(IPS_CTL, 0);
3393
3394         /* We need to wait for a vblank before we can disable the plane. */
3395         intel_wait_for_vblank(dev, crtc->pipe);
3396 }
3397
3398 static void haswell_crtc_enable(struct drm_crtc *crtc)
3399 {
3400         struct drm_device *dev = crtc->dev;
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3403         struct intel_encoder *encoder;
3404         int pipe = intel_crtc->pipe;
3405         int plane = intel_crtc->plane;
3406
3407         WARN_ON(!crtc->enabled);
3408
3409         if (intel_crtc->active)
3410                 return;
3411
3412         intel_crtc->active = true;
3413
3414         intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3415         if (intel_crtc->config.has_pch_encoder)
3416                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3417
3418         intel_update_watermarks(dev);
3419
3420         if (intel_crtc->config.has_pch_encoder)
3421                 dev_priv->display.fdi_link_train(crtc);
3422
3423         for_each_encoder_on_crtc(dev, crtc, encoder)
3424                 if (encoder->pre_enable)
3425                         encoder->pre_enable(encoder);
3426
3427         intel_ddi_enable_pipe_clock(intel_crtc);
3428
3429         ironlake_pfit_enable(intel_crtc);
3430
3431         /*
3432          * On ILK+ LUT must be loaded before the pipe is running but with
3433          * clocks enabled
3434          */
3435         intel_crtc_load_lut(crtc);
3436
3437         intel_ddi_set_pipe_settings(crtc);
3438         intel_ddi_enable_transcoder_func(crtc);
3439
3440         intel_enable_pipe(dev_priv, pipe,
3441                           intel_crtc->config.has_pch_encoder);
3442         intel_enable_plane(dev_priv, plane, pipe);
3443         intel_enable_planes(crtc);
3444         intel_crtc_update_cursor(crtc, true);
3445
3446         hsw_enable_ips(intel_crtc);
3447
3448         if (intel_crtc->config.has_pch_encoder)
3449                 lpt_pch_enable(crtc);
3450
3451         mutex_lock(&dev->struct_mutex);
3452         intel_update_fbc(dev);
3453         mutex_unlock(&dev->struct_mutex);
3454
3455         for_each_encoder_on_crtc(dev, crtc, encoder)
3456                 encoder->enable(encoder);
3457
3458         /*
3459          * There seems to be a race in PCH platform hw (at least on some
3460          * outputs) where an enabled pipe still completes any pageflip right
3461          * away (as if the pipe is off) instead of waiting for vblank. As soon
3462          * as the first vblank happend, everything works as expected. Hence just
3463          * wait for one vblank before returning to avoid strange things
3464          * happening.
3465          */
3466         intel_wait_for_vblank(dev, intel_crtc->pipe);
3467 }
3468
3469 static void ironlake_pfit_disable(struct intel_crtc *crtc)
3470 {
3471         struct drm_device *dev = crtc->base.dev;
3472         struct drm_i915_private *dev_priv = dev->dev_private;
3473         int pipe = crtc->pipe;
3474
3475         /* To avoid upsetting the power well on haswell only disable the pfit if
3476          * it's in use. The hw state code will make sure we get this right. */
3477         if (crtc->config.pch_pfit.enabled) {
3478                 I915_WRITE(PF_CTL(pipe), 0);
3479                 I915_WRITE(PF_WIN_POS(pipe), 0);
3480                 I915_WRITE(PF_WIN_SZ(pipe), 0);
3481         }
3482 }
3483
3484 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3485 {
3486         struct drm_device *dev = crtc->dev;
3487         struct drm_i915_private *dev_priv = dev->dev_private;
3488         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3489         struct intel_encoder *encoder;
3490         int pipe = intel_crtc->pipe;
3491         int plane = intel_crtc->plane;
3492         u32 reg, temp;
3493
3494
3495         if (!intel_crtc->active)
3496                 return;
3497
3498         for_each_encoder_on_crtc(dev, crtc, encoder)
3499                 encoder->disable(encoder);
3500
3501         intel_crtc_wait_for_pending_flips(crtc);
3502         drm_vblank_off(dev, pipe);
3503
3504         if (dev_priv->fbc.plane == plane)
3505                 intel_disable_fbc(dev);
3506
3507         intel_crtc_update_cursor(crtc, false);
3508         intel_disable_planes(crtc);
3509         intel_disable_plane(dev_priv, plane, pipe);
3510
3511         if (intel_crtc->config.has_pch_encoder)
3512                 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3513
3514         intel_disable_pipe(dev_priv, pipe);
3515
3516         ironlake_pfit_disable(intel_crtc);
3517
3518         for_each_encoder_on_crtc(dev, crtc, encoder)
3519                 if (encoder->post_disable)
3520                         encoder->post_disable(encoder);
3521
3522         if (intel_crtc->config.has_pch_encoder) {
3523                 ironlake_fdi_disable(crtc);
3524
3525                 ironlake_disable_pch_transcoder(dev_priv, pipe);
3526                 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3527
3528                 if (HAS_PCH_CPT(dev)) {
3529                         /* disable TRANS_DP_CTL */
3530                         reg = TRANS_DP_CTL(pipe);
3531                         temp = I915_READ(reg);
3532                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3533                                   TRANS_DP_PORT_SEL_MASK);
3534                         temp |= TRANS_DP_PORT_SEL_NONE;
3535                         I915_WRITE(reg, temp);
3536
3537                         /* disable DPLL_SEL */
3538                         temp = I915_READ(PCH_DPLL_SEL);
3539                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3540                         I915_WRITE(PCH_DPLL_SEL, temp);
3541                 }
3542
3543                 /* disable PCH DPLL */
3544                 intel_disable_shared_dpll(intel_crtc);
3545
3546                 ironlake_fdi_pll_disable(intel_crtc);
3547         }
3548
3549         intel_crtc->active = false;
3550         intel_update_watermarks(dev);
3551
3552         mutex_lock(&dev->struct_mutex);
3553         intel_update_fbc(dev);
3554         mutex_unlock(&dev->struct_mutex);
3555 }
3556
3557 static void haswell_crtc_disable(struct drm_crtc *crtc)
3558 {
3559         struct drm_device *dev = crtc->dev;
3560         struct drm_i915_private *dev_priv = dev->dev_private;
3561         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3562         struct intel_encoder *encoder;
3563         int pipe = intel_crtc->pipe;
3564         int plane = intel_crtc->plane;
3565         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3566
3567         if (!intel_crtc->active)
3568                 return;
3569
3570         for_each_encoder_on_crtc(dev, crtc, encoder)
3571                 encoder->disable(encoder);
3572
3573         intel_crtc_wait_for_pending_flips(crtc);
3574         drm_vblank_off(dev, pipe);
3575
3576         /* FBC must be disabled before disabling the plane on HSW. */
3577         if (dev_priv->fbc.plane == plane)
3578                 intel_disable_fbc(dev);
3579
3580         hsw_disable_ips(intel_crtc);
3581
3582         intel_crtc_update_cursor(crtc, false);
3583         intel_disable_planes(crtc);
3584         intel_disable_plane(dev_priv, plane, pipe);
3585
3586         if (intel_crtc->config.has_pch_encoder)
3587                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3588         intel_disable_pipe(dev_priv, pipe);
3589
3590         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3591
3592         ironlake_pfit_disable(intel_crtc);
3593
3594         intel_ddi_disable_pipe_clock(intel_crtc);
3595
3596         for_each_encoder_on_crtc(dev, crtc, encoder)
3597                 if (encoder->post_disable)
3598                         encoder->post_disable(encoder);
3599
3600         if (intel_crtc->config.has_pch_encoder) {
3601                 lpt_disable_pch_transcoder(dev_priv);
3602                 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3603                 intel_ddi_fdi_disable(crtc);
3604         }
3605
3606         intel_crtc->active = false;
3607         intel_update_watermarks(dev);
3608
3609         mutex_lock(&dev->struct_mutex);
3610         intel_update_fbc(dev);
3611         mutex_unlock(&dev->struct_mutex);
3612 }
3613
3614 static void ironlake_crtc_off(struct drm_crtc *crtc)
3615 {
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         intel_put_shared_dpll(intel_crtc);
3618 }
3619
3620 static void haswell_crtc_off(struct drm_crtc *crtc)
3621 {
3622         intel_ddi_put_crtc_pll(crtc);
3623 }
3624
3625 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3626 {
3627         if (!enable && intel_crtc->overlay) {
3628                 struct drm_device *dev = intel_crtc->base.dev;
3629                 struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631                 mutex_lock(&dev->struct_mutex);
3632                 dev_priv->mm.interruptible = false;
3633                 (void) intel_overlay_switch_off(intel_crtc->overlay);
3634                 dev_priv->mm.interruptible = true;
3635                 mutex_unlock(&dev->struct_mutex);
3636         }
3637
3638         /* Let userspace switch the overlay on again. In most cases userspace
3639          * has to recompute where to put it anyway.
3640          */
3641 }
3642
3643 /**
3644  * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3645  * cursor plane briefly if not already running after enabling the display
3646  * plane.
3647  * This workaround avoids occasional blank screens when self refresh is
3648  * enabled.
3649  */
3650 static void
3651 g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3652 {
3653         u32 cntl = I915_READ(CURCNTR(pipe));
3654
3655         if ((cntl & CURSOR_MODE) == 0) {
3656                 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3657
3658                 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3659                 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3660                 intel_wait_for_vblank(dev_priv->dev, pipe);
3661                 I915_WRITE(CURCNTR(pipe), cntl);
3662                 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3663                 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3664         }
3665 }
3666
3667 static void i9xx_pfit_enable(struct intel_crtc *crtc)
3668 {
3669         struct drm_device *dev = crtc->base.dev;
3670         struct drm_i915_private *dev_priv = dev->dev_private;
3671         struct intel_crtc_config *pipe_config = &crtc->config;
3672
3673         if (!crtc->config.gmch_pfit.control)
3674                 return;
3675
3676         /*
3677          * The panel fitter should only be adjusted whilst the pipe is disabled,
3678          * according to register description and PRM.
3679          */
3680         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3681         assert_pipe_disabled(dev_priv, crtc->pipe);
3682
3683         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3684         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3685
3686         /* Border color in case we don't scale up to the full screen. Black by
3687          * default, change to something else for debugging. */
3688         I915_WRITE(BCLRPAT(crtc->pipe), 0);
3689 }
3690
3691 static void valleyview_crtc_enable(struct drm_crtc *crtc)
3692 {
3693         struct drm_device *dev = crtc->dev;
3694         struct drm_i915_private *dev_priv = dev->dev_private;
3695         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3696         struct intel_encoder *encoder;
3697         int pipe = intel_crtc->pipe;
3698         int plane = intel_crtc->plane;
3699
3700         WARN_ON(!crtc->enabled);
3701
3702         if (intel_crtc->active)
3703                 return;
3704
3705         intel_crtc->active = true;
3706         intel_update_watermarks(dev);
3707
3708         for_each_encoder_on_crtc(dev, crtc, encoder)
3709                 if (encoder->pre_pll_enable)
3710                         encoder->pre_pll_enable(encoder);
3711
3712         vlv_enable_pll(intel_crtc);
3713
3714         for_each_encoder_on_crtc(dev, crtc, encoder)
3715                 if (encoder->pre_enable)
3716                         encoder->pre_enable(encoder);
3717
3718         i9xx_pfit_enable(intel_crtc);
3719
3720         intel_crtc_load_lut(crtc);
3721
3722         intel_enable_pipe(dev_priv, pipe, false);
3723         intel_enable_plane(dev_priv, plane, pipe);
3724         intel_enable_planes(crtc);
3725         intel_crtc_update_cursor(crtc, true);
3726
3727         intel_update_fbc(dev);
3728
3729         for_each_encoder_on_crtc(dev, crtc, encoder)
3730                 encoder->enable(encoder);
3731 }
3732
3733 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3734 {
3735         struct drm_device *dev = crtc->dev;
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3738         struct intel_encoder *encoder;
3739         int pipe = intel_crtc->pipe;
3740         int plane = intel_crtc->plane;
3741
3742         WARN_ON(!crtc->enabled);
3743
3744         if (intel_crtc->active)
3745                 return;
3746
3747         intel_crtc->active = true;
3748         intel_update_watermarks(dev);
3749
3750         for_each_encoder_on_crtc(dev, crtc, encoder)
3751                 if (encoder->pre_enable)
3752                         encoder->pre_enable(encoder);
3753
3754         i9xx_enable_pll(intel_crtc);
3755
3756         i9xx_pfit_enable(intel_crtc);
3757
3758         intel_crtc_load_lut(crtc);
3759
3760         intel_enable_pipe(dev_priv, pipe, false);
3761         intel_enable_plane(dev_priv, plane, pipe);
3762         intel_enable_planes(crtc);
3763         /* The fixup needs to happen before cursor is enabled */
3764         if (IS_G4X(dev))
3765                 g4x_fixup_plane(dev_priv, pipe);
3766         intel_crtc_update_cursor(crtc, true);
3767
3768         /* Give the overlay scaler a chance to enable if it's on this pipe */
3769         intel_crtc_dpms_overlay(intel_crtc, true);
3770
3771         intel_update_fbc(dev);
3772
3773         for_each_encoder_on_crtc(dev, crtc, encoder)
3774                 encoder->enable(encoder);
3775 }
3776
3777 static void i9xx_pfit_disable(struct intel_crtc *crtc)
3778 {
3779         struct drm_device *dev = crtc->base.dev;
3780         struct drm_i915_private *dev_priv = dev->dev_private;
3781
3782         if (!crtc->config.gmch_pfit.control)
3783                 return;
3784
3785         assert_pipe_disabled(dev_priv, crtc->pipe);
3786
3787         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3788                          I915_READ(PFIT_CONTROL));
3789         I915_WRITE(PFIT_CONTROL, 0);
3790 }
3791
3792 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3793 {
3794         struct drm_device *dev = crtc->dev;
3795         struct drm_i915_private *dev_priv = dev->dev_private;
3796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3797         struct intel_encoder *encoder;
3798         int pipe = intel_crtc->pipe;
3799         int plane = intel_crtc->plane;
3800
3801         if (!intel_crtc->active)
3802                 return;
3803
3804         for_each_encoder_on_crtc(dev, crtc, encoder)
3805                 encoder->disable(encoder);
3806
3807         /* Give the overlay scaler a chance to disable if it's on this pipe */
3808         intel_crtc_wait_for_pending_flips(crtc);
3809         drm_vblank_off(dev, pipe);
3810
3811         if (dev_priv->fbc.plane == plane)
3812                 intel_disable_fbc(dev);
3813
3814         intel_crtc_dpms_overlay(intel_crtc, false);
3815         intel_crtc_update_cursor(crtc, false);
3816         intel_disable_planes(crtc);
3817         intel_disable_plane(dev_priv, plane, pipe);
3818
3819         intel_disable_pipe(dev_priv, pipe);
3820
3821         i9xx_pfit_disable(intel_crtc);
3822
3823         for_each_encoder_on_crtc(dev, crtc, encoder)
3824                 if (encoder->post_disable)
3825                         encoder->post_disable(encoder);
3826
3827         i9xx_disable_pll(dev_priv, pipe);
3828
3829         intel_crtc->active = false;
3830         intel_update_fbc(dev);
3831         intel_update_watermarks(dev);
3832 }
3833
3834 static void i9xx_crtc_off(struct drm_crtc *crtc)
3835 {
3836 }
3837
3838 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3839                                     bool enabled)
3840 {
3841         struct drm_device *dev = crtc->dev;
3842         struct drm_i915_master_private *master_priv;
3843         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3844         int pipe = intel_crtc->pipe;
3845
3846         if (!dev->primary->master)
3847                 return;
3848
3849         master_priv = dev->primary->master->driver_priv;
3850         if (!master_priv->sarea_priv)
3851                 return;
3852
3853         switch (pipe) {
3854         case 0:
3855                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3856                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3857                 break;
3858         case 1:
3859                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3860                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3861                 break;
3862         default:
3863                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3864                 break;
3865         }
3866 }
3867
3868 /**
3869  * Sets the power management mode of the pipe and plane.
3870  */
3871 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3872 {
3873         struct drm_device *dev = crtc->dev;
3874         struct drm_i915_private *dev_priv = dev->dev_private;
3875         struct intel_encoder *intel_encoder;
3876         bool enable = false;
3877
3878         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3879                 enable |= intel_encoder->connectors_active;
3880
3881         if (enable)
3882                 dev_priv->display.crtc_enable(crtc);
3883         else
3884                 dev_priv->display.crtc_disable(crtc);
3885
3886         intel_crtc_update_sarea(crtc, enable);
3887 }
3888
3889 static void intel_crtc_disable(struct drm_crtc *crtc)
3890 {
3891         struct drm_device *dev = crtc->dev;
3892         struct drm_connector *connector;
3893         struct drm_i915_private *dev_priv = dev->dev_private;
3894         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3895
3896         /* crtc should still be enabled when we disable it. */
3897         WARN_ON(!crtc->enabled);
3898
3899         dev_priv->display.crtc_disable(crtc);
3900         intel_crtc->eld_vld = false;
3901         intel_crtc_update_sarea(crtc, false);
3902         dev_priv->display.off(crtc);
3903
3904         assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3905         assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3906
3907         if (crtc->fb) {
3908                 mutex_lock(&dev->struct_mutex);
3909                 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3910                 mutex_unlock(&dev->struct_mutex);
3911                 crtc->fb = NULL;
3912         }
3913
3914         /* Update computed state. */
3915         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3916                 if (!connector->encoder || !connector->encoder->crtc)
3917                         continue;
3918
3919                 if (connector->encoder->crtc != crtc)
3920                         continue;
3921
3922                 connector->dpms = DRM_MODE_DPMS_OFF;
3923                 to_intel_encoder(connector->encoder)->connectors_active = false;
3924         }
3925 }
3926
3927 void intel_encoder_destroy(struct drm_encoder *encoder)
3928 {
3929         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3930
3931         drm_encoder_cleanup(encoder);
3932         kfree(intel_encoder);
3933 }
3934
3935 /* Simple dpms helper for encoders with just one connector, no cloning and only
3936  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3937  * state of the entire output pipe. */
3938 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3939 {
3940         if (mode == DRM_MODE_DPMS_ON) {
3941                 encoder->connectors_active = true;
3942
3943                 intel_crtc_update_dpms(encoder->base.crtc);
3944         } else {
3945                 encoder->connectors_active = false;
3946
3947                 intel_crtc_update_dpms(encoder->base.crtc);
3948         }
3949 }
3950
3951 /* Cross check the actual hw state with our own modeset state tracking (and it's
3952  * internal consistency). */
3953 static void intel_connector_check_state(struct intel_connector *connector)
3954 {
3955         if (connector->get_hw_state(connector)) {
3956                 struct intel_encoder *encoder = connector->encoder;
3957                 struct drm_crtc *crtc;
3958                 bool encoder_enabled;
3959                 enum pipe pipe;
3960
3961                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3962                               connector->base.base.id,
3963                               drm_get_connector_name(&connector->base));
3964
3965                 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3966                      "wrong connector dpms state\n");
3967                 WARN(connector->base.encoder != &encoder->base,
3968                      "active connector not linked to encoder\n");
3969                 WARN(!encoder->connectors_active,
3970                      "encoder->connectors_active not set\n");
3971
3972                 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3973                 WARN(!encoder_enabled, "encoder not enabled\n");
3974                 if (WARN_ON(!encoder->base.crtc))
3975                         return;
3976
3977                 crtc = encoder->base.crtc;
3978
3979                 WARN(!crtc->enabled, "crtc not enabled\n");
3980                 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3981                 WARN(pipe != to_intel_crtc(crtc)->pipe,
3982                      "encoder active on the wrong pipe\n");
3983         }
3984 }
3985
3986 /* Even simpler default implementation, if there's really no special case to
3987  * consider. */
3988 void intel_connector_dpms(struct drm_connector *connector, int mode)
3989 {
3990         /* All the simple cases only support two dpms states. */
3991         if (mode != DRM_MODE_DPMS_ON)
3992                 mode = DRM_MODE_DPMS_OFF;
3993
3994         if (mode == connector->dpms)
3995                 return;
3996
3997         connector->dpms = mode;
3998
3999         /* Only need to change hw state when actually enabled */
4000         if (connector->encoder)
4001                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4002
4003         intel_modeset_check_state(connector->dev);
4004 }
4005
4006 /* Simple connector->get_hw_state implementation for encoders that support only
4007  * one connector and no cloning and hence the encoder state determines the state
4008  * of the connector. */
4009 bool intel_connector_get_hw_state(struct intel_connector *connector)
4010 {
4011         enum pipe pipe = 0;
4012         struct intel_encoder *encoder = connector->encoder;
4013
4014         return encoder->get_hw_state(encoder, &pipe);
4015 }
4016
4017 static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4018                                      struct intel_crtc_config *pipe_config)
4019 {
4020         struct drm_i915_private *dev_priv = dev->dev_private;
4021         struct intel_crtc *pipe_B_crtc =
4022                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4023
4024         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4025                       pipe_name(pipe), pipe_config->fdi_lanes);
4026         if (pipe_config->fdi_lanes > 4) {
4027                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4028                               pipe_name(pipe), pipe_config->fdi_lanes);
4029                 return false;
4030         }
4031
4032         if (IS_HASWELL(dev)) {
4033                 if (pipe_config->fdi_lanes > 2) {
4034                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4035                                       pipe_config->fdi_lanes);
4036                         return false;
4037                 } else {
4038                         return true;
4039                 }
4040         }
4041
4042         if (INTEL_INFO(dev)->num_pipes == 2)
4043                 return true;
4044
4045         /* Ivybridge 3 pipe is really complicated */
4046         switch (pipe) {
4047         case PIPE_A:
4048                 return true;
4049         case PIPE_B:
4050                 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4051                     pipe_config->fdi_lanes > 2) {
4052                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4053                                       pipe_name(pipe), pipe_config->fdi_lanes);
4054                         return false;
4055                 }
4056                 return true;
4057         case PIPE_C:
4058                 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4059                     pipe_B_crtc->config.fdi_lanes <= 2) {
4060                         if (pipe_config->fdi_lanes > 2) {
4061                                 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4062                                               pipe_name(pipe), pipe_config->fdi_lanes);
4063                                 return false;
4064                         }
4065                 } else {
4066                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4067                         return false;
4068                 }
4069                 return true;
4070         default:
4071                 BUG();
4072         }
4073 }
4074
4075 #define RETRY 1
4076 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4077                                        struct intel_crtc_config *pipe_config)
4078 {
4079         struct drm_device *dev = intel_crtc->base.dev;
4080         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4081         int lane, link_bw, fdi_dotclock;
4082         bool setup_ok, needs_recompute = false;
4083
4084 retry:
4085         /* FDI is a binary signal running at ~2.7GHz, encoding
4086          * each output octet as 10 bits. The actual frequency
4087          * is stored as a divider into a 100MHz clock, and the
4088          * mode pixel clock is stored in units of 1KHz.
4089          * Hence the bw of each lane in terms of the mode signal
4090          * is:
4091          */
4092         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4093
4094         fdi_dotclock = adjusted_mode->clock;
4095         fdi_dotclock /= pipe_config->pixel_multiplier;
4096
4097         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4098                                            pipe_config->pipe_bpp);
4099
4100         pipe_config->fdi_lanes = lane;
4101
4102         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4103                                link_bw, &pipe_config->fdi_m_n);
4104
4105         setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4106                                             intel_crtc->pipe, pipe_config);
4107         if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4108                 pipe_config->pipe_bpp -= 2*3;
4109                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4110                               pipe_config->pipe_bpp);
4111                 needs_recompute = true;
4112                 pipe_config->bw_constrained = true;
4113
4114                 goto retry;
4115         }
4116
4117         if (needs_recompute)
4118                 return RETRY;
4119
4120         return setup_ok ? 0 : -EINVAL;
4121 }
4122
4123 static void hsw_compute_ips_config(struct intel_crtc *crtc,
4124                                    struct intel_crtc_config *pipe_config)
4125 {
4126         pipe_config->ips_enabled = i915_enable_ips &&
4127                                    hsw_crtc_supports_ips(crtc) &&
4128                                    pipe_config->pipe_bpp <= 24;
4129 }
4130
4131 static int intel_crtc_compute_config(struct intel_crtc *crtc,
4132                                      struct intel_crtc_config *pipe_config)
4133 {
4134         struct drm_device *dev = crtc->base.dev;
4135         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4136
4137         if (HAS_PCH_SPLIT(dev)) {
4138                 /* FDI link clock is fixed at 2.7G */
4139                 if (pipe_config->requested_mode.clock * 3
4140                     > IRONLAKE_FDI_FREQ * 4)
4141                         return -EINVAL;
4142         }
4143
4144         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4145          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4146          */
4147         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4148                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4149                 return -EINVAL;
4150
4151         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4152                 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4153         } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4154                 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4155                  * for lvds. */
4156                 pipe_config->pipe_bpp = 8*3;
4157         }
4158
4159         if (HAS_IPS(dev))
4160                 hsw_compute_ips_config(crtc, pipe_config);
4161
4162         /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4163          * clock survives for now. */
4164         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4165                 pipe_config->shared_dpll = crtc->config.shared_dpll;
4166
4167         if (pipe_config->has_pch_encoder)
4168                 return ironlake_fdi_compute_config(crtc, pipe_config);
4169
4170         return 0;
4171 }
4172
4173 static int valleyview_get_display_clock_speed(struct drm_device *dev)
4174 {
4175         return 400000; /* FIXME */
4176 }
4177
4178 static int i945_get_display_clock_speed(struct drm_device *dev)
4179 {
4180         return 400000;
4181 }
4182
4183 static int i915_get_display_clock_speed(struct drm_device *dev)
4184 {
4185         return 333000;
4186 }
4187
4188 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4189 {
4190         return 200000;
4191 }
4192
4193 static int pnv_get_display_clock_speed(struct drm_device *dev)
4194 {
4195         u16 gcfgc = 0;
4196
4197         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4198
4199         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4200         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4201                 return 267000;
4202         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4203                 return 333000;
4204         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4205                 return 444000;
4206         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4207                 return 200000;
4208         default:
4209                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4210         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4211                 return 133000;
4212         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4213                 return 167000;
4214         }
4215 }
4216
4217 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4218 {
4219         u16 gcfgc = 0;
4220
4221         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4222
4223         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4224                 return 133000;
4225         else {
4226                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4227                 case GC_DISPLAY_CLOCK_333_MHZ:
4228                         return 333000;
4229                 default:
4230                 case GC_DISPLAY_CLOCK_190_200_MHZ:
4231                         return 190000;
4232                 }
4233         }
4234 }
4235
4236 static int i865_get_display_clock_speed(struct drm_device *dev)
4237 {
4238         return 266000;
4239 }
4240
4241 static int i855_get_display_clock_speed(struct drm_device *dev)
4242 {
4243         u16 hpllcc = 0;
4244         /* Assume that the hardware is in the high speed state.  This
4245          * should be the default.
4246          */
4247         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4248         case GC_CLOCK_133_200:
4249         case GC_CLOCK_100_200:
4250                 return 200000;
4251         case GC_CLOCK_166_250:
4252                 return 250000;
4253         case GC_CLOCK_100_133:
4254                 return 133000;
4255         }
4256
4257         /* Shouldn't happen */
4258         return 0;
4259 }
4260
4261 static int i830_get_display_clock_speed(struct drm_device *dev)
4262 {
4263         return 133000;
4264 }
4265
4266 static void
4267 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4268 {
4269         while (*num > DATA_LINK_M_N_MASK ||
4270                *den > DATA_LINK_M_N_MASK) {
4271                 *num >>= 1;
4272                 *den >>= 1;
4273         }
4274 }
4275
4276 static void compute_m_n(unsigned int m, unsigned int n,
4277                         uint32_t *ret_m, uint32_t *ret_n)
4278 {
4279         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4280         *ret_m = div_u64((uint64_t) m * *ret_n, n);
4281         intel_reduce_m_n_ratio(ret_m, ret_n);
4282 }
4283
4284 void
4285 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4286                        int pixel_clock, int link_clock,
4287                        struct intel_link_m_n *m_n)
4288 {
4289         m_n->tu = 64;
4290
4291         compute_m_n(bits_per_pixel * pixel_clock,
4292                     link_clock * nlanes * 8,
4293                     &m_n->gmch_m, &m_n->gmch_n);
4294
4295         compute_m_n(pixel_clock, link_clock,
4296                     &m_n->link_m, &m_n->link_n);
4297 }
4298
4299 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4300 {
4301         if (i915_panel_use_ssc >= 0)
4302                 return i915_panel_use_ssc != 0;
4303         return dev_priv->vbt.lvds_use_ssc
4304                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4305 }
4306
4307 static int vlv_get_refclk(struct drm_crtc *crtc)
4308 {
4309         struct drm_device *dev = crtc->dev;
4310         struct drm_i915_private *dev_priv = dev->dev_private;
4311         int refclk = 27000; /* for DP & HDMI */
4312
4313         return 100000; /* only one validated so far */
4314
4315         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4316                 refclk = 96000;
4317         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4318                 if (intel_panel_use_ssc(dev_priv))
4319                         refclk = 100000;
4320                 else
4321                         refclk = 96000;
4322         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4323                 refclk = 100000;
4324         }
4325
4326         return refclk;
4327 }
4328
4329 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4330 {
4331         struct drm_device *dev = crtc->dev;
4332         struct drm_i915_private *dev_priv = dev->dev_private;
4333         int refclk;
4334
4335         if (IS_VALLEYVIEW(dev)) {
4336                 refclk = vlv_get_refclk(crtc);
4337         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4338             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4339                 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4340                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4341                               refclk / 1000);
4342         } else if (!IS_GEN2(dev)) {
4343                 refclk = 96000;
4344         } else {
4345                 refclk = 48000;
4346         }
4347
4348         return refclk;
4349 }
4350
4351 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4352 {
4353         return (1 << dpll->n) << 16 | dpll->m2;
4354 }
4355
4356 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4357 {
4358         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4359 }
4360
4361 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4362                                      intel_clock_t *reduced_clock)
4363 {
4364         struct drm_device *dev = crtc->base.dev;
4365         struct drm_i915_private *dev_priv = dev->dev_private;
4366         int pipe = crtc->pipe;
4367         u32 fp, fp2 = 0;
4368
4369         if (IS_PINEVIEW(dev)) {
4370                 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4371                 if (reduced_clock)
4372                         fp2 = pnv_dpll_compute_fp(reduced_clock);
4373         } else {
4374                 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4375                 if (reduced_clock)
4376                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
4377         }
4378
4379         I915_WRITE(FP0(pipe), fp);
4380         crtc->config.dpll_hw_state.fp0 = fp;
4381
4382         crtc->lowfreq_avail = false;
4383         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4384             reduced_clock && i915_powersave) {
4385                 I915_WRITE(FP1(pipe), fp2);
4386                 crtc->config.dpll_hw_state.fp1 = fp2;
4387                 crtc->lowfreq_avail = true;
4388         } else {
4389                 I915_WRITE(FP1(pipe), fp);
4390                 crtc->config.dpll_hw_state.fp1 = fp;
4391         }
4392 }
4393
4394 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
4395 {
4396         u32 reg_val;
4397
4398         /*
4399          * PLLB opamp always calibrates to max value of 0x3f, force enable it
4400          * and set it to a reasonable value instead.
4401          */
4402         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4403         reg_val &= 0xffffff00;
4404         reg_val |= 0x00000030;
4405         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4406
4407         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4408         reg_val &= 0x8cffffff;
4409         reg_val = 0x8c000000;
4410         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4411
4412         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
4413         reg_val &= 0xffffff00;
4414         vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
4415
4416         reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
4417         reg_val &= 0x00ffffff;
4418         reg_val |= 0xb0000000;
4419         vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
4420 }
4421
4422 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4423                                          struct intel_link_m_n *m_n)
4424 {
4425         struct drm_device *dev = crtc->base.dev;
4426         struct drm_i915_private *dev_priv = dev->dev_private;
4427         int pipe = crtc->pipe;
4428
4429         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4430         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4431         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4432         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4433 }
4434
4435 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4436                                          struct intel_link_m_n *m_n)
4437 {
4438         struct drm_device *dev = crtc->base.dev;
4439         struct drm_i915_private *dev_priv = dev->dev_private;
4440         int pipe = crtc->pipe;
4441         enum transcoder transcoder = crtc->config.cpu_transcoder;
4442
4443         if (INTEL_INFO(dev)->gen >= 5) {
4444                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4445                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4446                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4447                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4448         } else {
4449                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4450                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4451                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4452                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4453         }
4454 }
4455
4456 static void intel_dp_set_m_n(struct intel_crtc *crtc)
4457 {
4458         if (crtc->config.has_pch_encoder)
4459                 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4460         else
4461                 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4462 }
4463
4464 static void vlv_update_pll(struct intel_crtc *crtc)
4465 {
4466         struct drm_device *dev = crtc->base.dev;
4467         struct drm_i915_private *dev_priv = dev->dev_private;
4468         int pipe = crtc->pipe;
4469         u32 dpll, mdiv;
4470         u32 bestn, bestm1, bestm2, bestp1, bestp2;
4471         u32 coreclk, reg_val, dpll_md;
4472
4473         mutex_lock(&dev_priv->dpio_lock);
4474
4475         bestn = crtc->config.dpll.n;
4476         bestm1 = crtc->config.dpll.m1;
4477         bestm2 = crtc->config.dpll.m2;
4478         bestp1 = crtc->config.dpll.p1;
4479         bestp2 = crtc->config.dpll.p2;
4480
4481         /* See eDP HDMI DPIO driver vbios notes doc */
4482
4483         /* PLL B needs special handling */
4484         if (pipe)
4485                 vlv_pllb_recal_opamp(dev_priv);
4486
4487         /* Set up Tx target for periodic Rcomp update */
4488         vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
4489
4490         /* Disable target IRef on PLL */
4491         reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
4492         reg_val &= 0x00ffffff;
4493         vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
4494
4495         /* Disable fast lock */
4496         vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
4497
4498         /* Set idtafcrecal before PLL is enabled */
4499         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4500         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4501         mdiv |= ((bestn << DPIO_N_SHIFT));
4502         mdiv |= (1 << DPIO_K_SHIFT);
4503
4504         /*
4505          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4506          * but we don't support that).
4507          * Note: don't use the DAC post divider as it seems unstable.
4508          */
4509         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4510         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4511
4512         mdiv |= DPIO_ENABLE_CALIBRATION;
4513         vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4514
4515         /* Set HBR and RBR LPF coefficients */
4516         if (crtc->config.port_clock == 162000 ||
4517             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4518             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4519                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4520                                  0x009f0003);
4521         else
4522                 vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
4523                                  0x00d0000f);
4524
4525         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4526             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4527                 /* Use SSC source */
4528                 if (!pipe)
4529                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4530                                          0x0df40000);
4531                 else
4532                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4533                                          0x0df70000);
4534         } else { /* HDMI or VGA */
4535                 /* Use bend source */
4536                 if (!pipe)
4537                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4538                                          0x0df70000);
4539                 else
4540                         vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
4541                                          0x0df40000);
4542         }
4543
4544         coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
4545         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4546         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4547             intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4548                 coreclk |= 0x01000000;
4549         vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
4550
4551         vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
4552
4553         /* Enable DPIO clock input */
4554         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4555                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4556         if (pipe)
4557                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4558
4559         dpll |= DPLL_VCO_ENABLE;
4560         crtc->config.dpll_hw_state.dpll = dpll;
4561
4562         dpll_md = (crtc->config.pixel_multiplier - 1)
4563                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4564         crtc->config.dpll_hw_state.dpll_md = dpll_md;
4565
4566         if (crtc->config.has_dp_encoder)
4567                 intel_dp_set_m_n(crtc);
4568
4569         mutex_unlock(&dev_priv->dpio_lock);
4570 }
4571
4572 static void i9xx_update_pll(struct intel_crtc *crtc,
4573                             intel_clock_t *reduced_clock,
4574                             int num_connectors)
4575 {
4576         struct drm_device *dev = crtc->base.dev;
4577         struct drm_i915_private *dev_priv = dev->dev_private;
4578         u32 dpll;
4579         bool is_sdvo;
4580         struct dpll *clock = &crtc->config.dpll;
4581
4582         i9xx_update_pll_dividers(crtc, reduced_clock);
4583
4584         is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4585                 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4586
4587         dpll = DPLL_VGA_MODE_DIS;
4588
4589         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4590                 dpll |= DPLLB_MODE_LVDS;
4591         else
4592                 dpll |= DPLLB_MODE_DAC_SERIAL;
4593
4594         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4595                 dpll |= (crtc->config.pixel_multiplier - 1)
4596                         << SDVO_MULTIPLIER_SHIFT_HIRES;
4597         }
4598
4599         if (is_sdvo)
4600                 dpll |= DPLL_SDVO_HIGH_SPEED;
4601
4602         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4603                 dpll |= DPLL_SDVO_HIGH_SPEED;
4604
4605         /* compute bitmask from p1 value */
4606         if (IS_PINEVIEW(dev))
4607                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4608         else {
4609                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4610                 if (IS_G4X(dev) && reduced_clock)
4611                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4612         }
4613         switch (clock->p2) {
4614         case 5:
4615                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4616                 break;
4617         case 7:
4618                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4619                 break;
4620         case 10:
4621                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4622                 break;
4623         case 14:
4624                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4625                 break;
4626         }
4627         if (INTEL_INFO(dev)->gen >= 4)
4628                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4629
4630         if (crtc->config.sdvo_tv_clock)
4631                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4632         else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4633                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4634                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4635         else
4636                 dpll |= PLL_REF_INPUT_DREFCLK;
4637
4638         dpll |= DPLL_VCO_ENABLE;
4639         crtc->config.dpll_hw_state.dpll = dpll;
4640
4641         if (INTEL_INFO(dev)->gen >= 4) {
4642                 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4643                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4644                 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4645         }
4646
4647         if (crtc->config.has_dp_encoder)
4648                 intel_dp_set_m_n(crtc);
4649 }
4650
4651 static void i8xx_update_pll(struct intel_crtc *crtc,
4652                             intel_clock_t *reduced_clock,
4653                             int num_connectors)
4654 {
4655         struct drm_device *dev = crtc->base.dev;
4656         struct drm_i915_private *dev_priv = dev->dev_private;
4657         u32 dpll;
4658         struct dpll *clock = &crtc->config.dpll;
4659
4660         i9xx_update_pll_dividers(crtc, reduced_clock);
4661
4662         dpll = DPLL_VGA_MODE_DIS;
4663
4664         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4665                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4666         } else {
4667                 if (clock->p1 == 2)
4668                         dpll |= PLL_P1_DIVIDE_BY_TWO;
4669                 else
4670                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4671                 if (clock->p2 == 4)
4672                         dpll |= PLL_P2_DIVIDE_BY_4;
4673         }
4674
4675         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4676                 dpll |= DPLL_DVO_2X_MODE;
4677
4678         if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4679                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4680                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4681         else
4682                 dpll |= PLL_REF_INPUT_DREFCLK;
4683
4684         dpll |= DPLL_VCO_ENABLE;
4685         crtc->config.dpll_hw_state.dpll = dpll;
4686 }
4687
4688 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4689 {
4690         struct drm_device *dev = intel_crtc->base.dev;
4691         struct drm_i915_private *dev_priv = dev->dev_private;
4692         enum pipe pipe = intel_crtc->pipe;
4693         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4694         struct drm_display_mode *adjusted_mode =
4695                 &intel_crtc->config.adjusted_mode;
4696         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4697         uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4698
4699         /* We need to be careful not to changed the adjusted mode, for otherwise
4700          * the hw state checker will get angry at the mismatch. */
4701         crtc_vtotal = adjusted_mode->crtc_vtotal;
4702         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4703
4704         if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4705                 /* the chip adds 2 halflines automatically */
4706                 crtc_vtotal -= 1;
4707                 crtc_vblank_end -= 1;
4708                 vsyncshift = adjusted_mode->crtc_hsync_start
4709                              - adjusted_mode->crtc_htotal / 2;
4710         } else {
4711                 vsyncshift = 0;
4712         }
4713
4714         if (INTEL_INFO(dev)->gen > 3)
4715                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4716
4717         I915_WRITE(HTOTAL(cpu_transcoder),
4718                    (adjusted_mode->crtc_hdisplay - 1) |
4719                    ((adjusted_mode->crtc_htotal - 1) << 16));
4720         I915_WRITE(HBLANK(cpu_transcoder),
4721                    (adjusted_mode->crtc_hblank_start - 1) |
4722                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4723         I915_WRITE(HSYNC(cpu_transcoder),
4724                    (adjusted_mode->crtc_hsync_start - 1) |
4725                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4726
4727         I915_WRITE(VTOTAL(cpu_transcoder),
4728                    (adjusted_mode->crtc_vdisplay - 1) |
4729                    ((crtc_vtotal - 1) << 16));
4730         I915_WRITE(VBLANK(cpu_transcoder),
4731                    (adjusted_mode->crtc_vblank_start - 1) |
4732                    ((crtc_vblank_end - 1) << 16));
4733         I915_WRITE(VSYNC(cpu_transcoder),
4734                    (adjusted_mode->crtc_vsync_start - 1) |
4735                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4736
4737         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4738          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4739          * documented on the DDI_FUNC_CTL register description, EDP Input Select
4740          * bits. */
4741         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4742             (pipe == PIPE_B || pipe == PIPE_C))
4743                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4744
4745         /* pipesrc controls the size that is scaled from, which should
4746          * always be the user's requested size.
4747          */
4748         I915_WRITE(PIPESRC(pipe),
4749                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4750 }
4751
4752 static void intel_get_pipe_timings(struct intel_crtc *crtc,
4753                                    struct intel_crtc_config *pipe_config)
4754 {
4755         struct drm_device *dev = crtc->base.dev;
4756         struct drm_i915_private *dev_priv = dev->dev_private;
4757         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4758         uint32_t tmp;
4759
4760         tmp = I915_READ(HTOTAL(cpu_transcoder));
4761         pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4762         pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4763         tmp = I915_READ(HBLANK(cpu_transcoder));
4764         pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4765         pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4766         tmp = I915_READ(HSYNC(cpu_transcoder));
4767         pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4768         pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4769
4770         tmp = I915_READ(VTOTAL(cpu_transcoder));
4771         pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4772         pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4773         tmp = I915_READ(VBLANK(cpu_transcoder));
4774         pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4775         pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4776         tmp = I915_READ(VSYNC(cpu_transcoder));
4777         pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4778         pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4779
4780         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
4781                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
4782                 pipe_config->adjusted_mode.crtc_vtotal += 1;
4783                 pipe_config->adjusted_mode.crtc_vblank_end += 1;
4784         }
4785
4786         tmp = I915_READ(PIPESRC(crtc->pipe));
4787         pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
4788         pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
4789 }
4790
4791 static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
4792                                              struct intel_crtc_config *pipe_config)
4793 {
4794         struct drm_crtc *crtc = &intel_crtc->base;
4795
4796         crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
4797         crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
4798         crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
4799         crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
4800
4801         crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
4802         crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
4803         crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
4804         crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
4805
4806         crtc->mode.flags = pipe_config->adjusted_mode.flags;
4807
4808         crtc->mode.clock = pipe_config->adjusted_mode.clock;
4809         crtc->mode.flags |= pipe_config->adjusted_mode.flags;
4810 }
4811
4812 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
4813 {
4814         struct drm_device *dev = intel_crtc->base.dev;
4815         struct drm_i915_private *dev_priv = dev->dev_private;
4816         uint32_t pipeconf;
4817
4818         pipeconf = 0;
4819
4820         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
4821             I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
4822                 pipeconf |= PIPECONF_ENABLE;
4823
4824         if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4825                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4826                  * core speed.
4827                  *
4828                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4829                  * pipe == 0 check?
4830                  */
4831                 if (intel_crtc->config.requested_mode.clock >
4832                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4833                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4834         }
4835
4836         /* only g4x and later have fancy bpc/dither controls */
4837         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
4838                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
4839                 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
4840                         pipeconf |= PIPECONF_DITHER_EN |
4841                                     PIPECONF_DITHER_TYPE_SP;
4842
4843                 switch (intel_crtc->config.pipe_bpp) {
4844                 case 18:
4845                         pipeconf |= PIPECONF_6BPC;
4846                         break;
4847                 case 24:
4848                         pipeconf |= PIPECONF_8BPC;
4849                         break;
4850                 case 30:
4851                         pipeconf |= PIPECONF_10BPC;
4852                         break;
4853                 default:
4854                         /* Case prevented by intel_choose_pipe_bpp_dither. */
4855                         BUG();
4856                 }
4857         }
4858
4859         if (HAS_PIPE_CXSR(dev)) {
4860                 if (intel_crtc->lowfreq_avail) {
4861                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4862                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4863                 } else {
4864                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4865                 }
4866         }
4867
4868         if (!IS_GEN2(dev) &&
4869             intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
4870                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4871         else
4872                 pipeconf |= PIPECONF_PROGRESSIVE;
4873
4874         if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
4875                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
4876
4877         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
4878         POSTING_READ(PIPECONF(intel_crtc->pipe));
4879 }
4880
4881 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4882                               int x, int y,
4883                               struct drm_framebuffer *fb)
4884 {
4885         struct drm_device *dev = crtc->dev;
4886         struct drm_i915_private *dev_priv = dev->dev_private;
4887         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4888         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
4889         int pipe = intel_crtc->pipe;
4890         int plane = intel_crtc->plane;
4891         int refclk, num_connectors = 0;
4892         intel_clock_t clock, reduced_clock;
4893         u32 dspcntr;
4894         bool ok, has_reduced_clock = false;
4895         bool is_lvds = false;
4896         struct intel_encoder *encoder;
4897         const intel_limit_t *limit;
4898         int ret;
4899
4900         for_each_encoder_on_crtc(dev, crtc, encoder) {
4901                 switch (encoder->type) {
4902                 case INTEL_OUTPUT_LVDS:
4903                         is_lvds = true;
4904                         break;
4905                 }
4906
4907                 num_connectors++;
4908         }
4909
4910         refclk = i9xx_get_refclk(crtc, num_connectors);
4911
4912         /*
4913          * Returns a set of divisors for the desired target clock with the given
4914          * refclk, or FALSE.  The returned values represent the clock equation:
4915          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4916          */
4917         limit = intel_limit(crtc, refclk);
4918         ok = dev_priv->display.find_dpll(limit, crtc,
4919                                          intel_crtc->config.port_clock,
4920                                          refclk, NULL, &clock);
4921         if (!ok && !intel_crtc->config.clock_set) {
4922                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4923                 return -EINVAL;
4924         }
4925
4926         if (is_lvds && dev_priv->lvds_downclock_avail) {
4927                 /*
4928                  * Ensure we match the reduced clock's P to the target clock.
4929                  * If the clocks don't match, we can't switch the display clock
4930                  * by using the FP0/FP1. In such case we will disable the LVDS
4931                  * downclock feature.
4932                 */
4933                 has_reduced_clock =
4934                         dev_priv->display.find_dpll(limit, crtc,
4935                                                     dev_priv->lvds_downclock,
4936                                                     refclk, &clock,
4937                                                     &reduced_clock);
4938         }
4939         /* Compat-code for transition, will disappear. */
4940         if (!intel_crtc->config.clock_set) {
4941                 intel_crtc->config.dpll.n = clock.n;
4942                 intel_crtc->config.dpll.m1 = clock.m1;
4943                 intel_crtc->config.dpll.m2 = clock.m2;
4944                 intel_crtc->config.dpll.p1 = clock.p1;
4945                 intel_crtc->config.dpll.p2 = clock.p2;
4946         }
4947
4948         if (IS_GEN2(dev))
4949                 i8xx_update_pll(intel_crtc,
4950                                 has_reduced_clock ? &reduced_clock : NULL,
4951                                 num_connectors);
4952         else if (IS_VALLEYVIEW(dev))
4953                 vlv_update_pll(intel_crtc);
4954         else
4955                 i9xx_update_pll(intel_crtc,
4956                                 has_reduced_clock ? &reduced_clock : NULL,
4957                                 num_connectors);
4958
4959         /* Set up the display plane register */
4960         dspcntr = DISPPLANE_GAMMA_ENABLE;
4961
4962         if (!IS_VALLEYVIEW(dev)) {
4963                 if (pipe == 0)
4964                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4965                 else
4966                         dspcntr |= DISPPLANE_SEL_PIPE_B;
4967         }
4968
4969         intel_set_pipe_timings(intel_crtc);
4970
4971         /* pipesrc and dspsize control the size that is scaled from,
4972          * which should always be the user's requested size.
4973          */
4974         I915_WRITE(DSPSIZE(plane),
4975                    ((mode->vdisplay - 1) << 16) |
4976                    (mode->hdisplay - 1));
4977         I915_WRITE(DSPPOS(plane), 0);
4978
4979         i9xx_set_pipeconf(intel_crtc);
4980
4981         I915_WRITE(DSPCNTR(plane), dspcntr);
4982         POSTING_READ(DSPCNTR(plane));
4983
4984         ret = intel_pipe_set_base(crtc, x, y, fb);
4985
4986         intel_update_watermarks(dev);
4987
4988         return ret;
4989 }
4990
4991 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
4992                                  struct intel_crtc_config *pipe_config)
4993 {
4994         struct drm_device *dev = crtc->base.dev;
4995         struct drm_i915_private *dev_priv = dev->dev_private;
4996         uint32_t tmp;
4997
4998         tmp = I915_READ(PFIT_CONTROL);
4999         if (!(tmp & PFIT_ENABLE))
5000                 return;
5001
5002         /* Check whether the pfit is attached to our pipe. */
5003         if (INTEL_INFO(dev)->gen < 4) {
5004                 if (crtc->pipe != PIPE_B)
5005                         return;
5006         } else {
5007                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5008                         return;
5009         }
5010
5011         pipe_config->gmch_pfit.control = tmp;
5012         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5013         if (INTEL_INFO(dev)->gen < 5)
5014                 pipe_config->gmch_pfit.lvds_border_bits =
5015                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5016 }
5017
5018 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5019                                  struct intel_crtc_config *pipe_config)
5020 {
5021         struct drm_device *dev = crtc->base.dev;
5022         struct drm_i915_private *dev_priv = dev->dev_private;
5023         uint32_t tmp;
5024
5025         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5026         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5027
5028         tmp = I915_READ(PIPECONF(crtc->pipe));
5029         if (!(tmp & PIPECONF_ENABLE))
5030                 return false;
5031
5032         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5033                 switch (tmp & PIPECONF_BPC_MASK) {
5034                 case PIPECONF_6BPC:
5035                         pipe_config->pipe_bpp = 18;
5036                         break;
5037                 case PIPECONF_8BPC:
5038                         pipe_config->pipe_bpp = 24;
5039                         break;
5040                 case PIPECONF_10BPC:
5041                         pipe_config->pipe_bpp = 30;
5042                         break;
5043                 default:
5044                         break;
5045                 }
5046         }
5047
5048         intel_get_pipe_timings(crtc, pipe_config);
5049
5050         i9xx_get_pfit_config(crtc, pipe_config);
5051
5052         if (INTEL_INFO(dev)->gen >= 4) {
5053                 tmp = I915_READ(DPLL_MD(crtc->pipe));
5054                 pipe_config->pixel_multiplier =
5055                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5056                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5057                 pipe_config->dpll_hw_state.dpll_md = tmp;
5058         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5059                 tmp = I915_READ(DPLL(crtc->pipe));
5060                 pipe_config->pixel_multiplier =
5061                         ((tmp & SDVO_MULTIPLIER_MASK)
5062                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5063         } else {
5064                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5065                  * port and will be fixed up in the encoder->get_config
5066                  * function. */
5067                 pipe_config->pixel_multiplier = 1;
5068         }
5069         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5070         if (!IS_VALLEYVIEW(dev)) {
5071                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5072                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5073         } else {
5074                 /* Mask out read-only status bits. */
5075                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5076                                                      DPLL_PORTC_READY_MASK |
5077                                                      DPLL_PORTB_READY_MASK);
5078         }
5079
5080         return true;
5081 }
5082
5083 static void ironlake_init_pch_refclk(struct drm_device *dev)
5084 {
5085         struct drm_i915_private *dev_priv = dev->dev_private;
5086         struct drm_mode_config *mode_config = &dev->mode_config;
5087         struct intel_encoder *encoder;
5088         u32 val, final;
5089         bool has_lvds = false;
5090         bool has_cpu_edp = false;
5091         bool has_panel = false;
5092         bool has_ck505 = false;
5093         bool can_ssc = false;
5094
5095         /* We need to take the global config into account */
5096         list_for_each_entry(encoder, &mode_config->encoder_list,
5097                             base.head) {
5098                 switch (encoder->type) {
5099                 case INTEL_OUTPUT_LVDS:
5100                         has_panel = true;
5101                         has_lvds = true;
5102                         break;
5103                 case INTEL_OUTPUT_EDP:
5104                         has_panel = true;
5105                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5106                                 has_cpu_edp = true;
5107                         break;
5108                 }
5109         }
5110
5111         if (HAS_PCH_IBX(dev)) {
5112                 has_ck505 = dev_priv->vbt.display_clock_mode;
5113                 can_ssc = has_ck505;
5114         } else {
5115                 has_ck505 = false;
5116                 can_ssc = true;
5117         }
5118
5119         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5120                       has_panel, has_lvds, has_ck505);
5121
5122         /* Ironlake: try to setup display ref clock before DPLL
5123          * enabling. This is only under driver's control after
5124          * PCH B stepping, previous chipset stepping should be
5125          * ignoring this setting.
5126          */
5127         val = I915_READ(PCH_DREF_CONTROL);
5128
5129         /* As we must carefully and slowly disable/enable each source in turn,
5130          * compute the final state we want first and check if we need to
5131          * make any changes at all.
5132          */
5133         final = val;
5134         final &= ~DREF_NONSPREAD_SOURCE_MASK;
5135         if (has_ck505)
5136                 final |= DREF_NONSPREAD_CK505_ENABLE;
5137         else
5138                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5139
5140         final &= ~DREF_SSC_SOURCE_MASK;
5141         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5142         final &= ~DREF_SSC1_ENABLE;
5143
5144         if (has_panel) {
5145                 final |= DREF_SSC_SOURCE_ENABLE;
5146
5147                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5148                         final |= DREF_SSC1_ENABLE;
5149
5150                 if (has_cpu_edp) {
5151                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
5152                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5153                         else
5154                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5155                 } else
5156                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5157         } else {
5158                 final |= DREF_SSC_SOURCE_DISABLE;
5159                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5160         }
5161
5162         if (final == val)
5163                 return;
5164
5165         /* Always enable nonspread source */
5166         val &= ~DREF_NONSPREAD_SOURCE_MASK;
5167
5168         if (has_ck505)
5169                 val |= DREF_NONSPREAD_CK505_ENABLE;
5170         else
5171                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5172
5173         if (has_panel) {
5174                 val &= ~DREF_SSC_SOURCE_MASK;
5175                 val |= DREF_SSC_SOURCE_ENABLE;
5176
5177                 /* SSC must be turned on before enabling the CPU output  */
5178                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5179                         DRM_DEBUG_KMS("Using SSC on panel\n");
5180                         val |= DREF_SSC1_ENABLE;
5181                 } else
5182                         val &= ~DREF_SSC1_ENABLE;
5183
5184                 /* Get SSC going before enabling the outputs */
5185                 I915_WRITE(PCH_DREF_CONTROL, val);
5186                 POSTING_READ(PCH_DREF_CONTROL);
5187                 udelay(200);
5188
5189                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5190
5191                 /* Enable CPU source on CPU attached eDP */
5192                 if (has_cpu_edp) {
5193                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5194                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
5195                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5196                         }
5197                         else
5198                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5199                 } else
5200                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5201
5202                 I915_WRITE(PCH_DREF_CONTROL, val);
5203                 POSTING_READ(PCH_DREF_CONTROL);
5204                 udelay(200);
5205         } else {
5206                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5207
5208                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5209
5210                 /* Turn off CPU output */
5211                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5212
5213                 I915_WRITE(PCH_DREF_CONTROL, val);
5214                 POSTING_READ(PCH_DREF_CONTROL);
5215                 udelay(200);
5216
5217                 /* Turn off the SSC source */
5218                 val &= ~DREF_SSC_SOURCE_MASK;
5219                 val |= DREF_SSC_SOURCE_DISABLE;
5220
5221                 /* Turn off SSC1 */
5222                 val &= ~DREF_SSC1_ENABLE;
5223
5224                 I915_WRITE(PCH_DREF_CONTROL, val);
5225                 POSTING_READ(PCH_DREF_CONTROL);
5226                 udelay(200);
5227         }
5228
5229         BUG_ON(val != final);
5230 }
5231
5232 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5233 {
5234         uint32_t tmp;
5235
5236         tmp = I915_READ(SOUTH_CHICKEN2);
5237         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5238         I915_WRITE(SOUTH_CHICKEN2, tmp);
5239
5240         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5241                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5242                 DRM_ERROR("FDI mPHY reset assert timeout\n");
5243
5244         tmp = I915_READ(SOUTH_CHICKEN2);
5245         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5246         I915_WRITE(SOUTH_CHICKEN2, tmp);
5247
5248         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5249                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5250                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5251 }
5252
5253 /* WaMPhyProgramming:hsw */
5254 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5255 {
5256         uint32_t tmp;
5257
5258         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5259         tmp &= ~(0xFF << 24);
5260         tmp |= (0x12 << 24);
5261         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5262
5263         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5264         tmp |= (1 << 11);
5265         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5266
5267         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5268         tmp |= (1 << 11);
5269         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5270
5271         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5272         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5273         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5274
5275         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5276         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5277         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5278
5279         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5280         tmp &= ~(7 << 13);
5281         tmp |= (5 << 13);
5282         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5283
5284         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5285         tmp &= ~(7 << 13);
5286         tmp |= (5 << 13);
5287         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5288
5289         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5290         tmp &= ~0xFF;
5291         tmp |= 0x1C;
5292         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5293
5294         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5295         tmp &= ~0xFF;
5296         tmp |= 0x1C;
5297         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5298
5299         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5300         tmp &= ~(0xFF << 16);
5301         tmp |= (0x1C << 16);
5302         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5303
5304         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5305         tmp &= ~(0xFF << 16);
5306         tmp |= (0x1C << 16);
5307         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5308
5309         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5310         tmp |= (1 << 27);
5311         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5312
5313         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5314         tmp |= (1 << 27);
5315         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5316
5317         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5318         tmp &= ~(0xF << 28);
5319         tmp |= (4 << 28);
5320         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5321
5322         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5323         tmp &= ~(0xF << 28);
5324         tmp |= (4 << 28);
5325         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5326 }
5327
5328 /* Implements 3 different sequences from BSpec chapter "Display iCLK
5329  * Programming" based on the parameters passed:
5330  * - Sequence to enable CLKOUT_DP
5331  * - Sequence to enable CLKOUT_DP without spread
5332  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5333  */
5334 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5335                                  bool with_fdi)
5336 {
5337         struct drm_i915_private *dev_priv = dev->dev_private;
5338         uint32_t reg, tmp;
5339
5340         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5341                 with_spread = true;
5342         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5343                  with_fdi, "LP PCH doesn't have FDI\n"))
5344                 with_fdi = false;
5345
5346         mutex_lock(&dev_priv->dpio_lock);
5347
5348         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5349         tmp &= ~SBI_SSCCTL_DISABLE;
5350         tmp |= SBI_SSCCTL_PATHALT;
5351         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5352
5353         udelay(24);
5354
5355         if (with_spread) {
5356                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5357                 tmp &= ~SBI_SSCCTL_PATHALT;
5358                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5359
5360                 if (with_fdi) {
5361                         lpt_reset_fdi_mphy(dev_priv);
5362                         lpt_program_fdi_mphy(dev_priv);
5363                 }
5364         }
5365
5366         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5367                SBI_GEN0 : SBI_DBUFF0;
5368         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5369         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5370         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5371
5372         mutex_unlock(&dev_priv->dpio_lock);
5373 }
5374
5375 /* Sequence to disable CLKOUT_DP */
5376 static void lpt_disable_clkout_dp(struct drm_device *dev)
5377 {
5378         struct drm_i915_private *dev_priv = dev->dev_private;
5379         uint32_t reg, tmp;
5380
5381         mutex_lock(&dev_priv->dpio_lock);
5382
5383         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5384                SBI_GEN0 : SBI_DBUFF0;
5385         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5386         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5387         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5388
5389         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5390         if (!(tmp & SBI_SSCCTL_DISABLE)) {
5391                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5392                         tmp |= SBI_SSCCTL_PATHALT;
5393                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5394                         udelay(32);
5395                 }
5396                 tmp |= SBI_SSCCTL_DISABLE;
5397                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5398         }
5399
5400         mutex_unlock(&dev_priv->dpio_lock);
5401 }
5402
5403 static void lpt_init_pch_refclk(struct drm_device *dev)
5404 {
5405         struct drm_mode_config *mode_config = &dev->mode_config;
5406         struct intel_encoder *encoder;
5407         bool has_vga = false;
5408
5409         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5410                 switch (encoder->type) {
5411                 case INTEL_OUTPUT_ANALOG:
5412                         has_vga = true;
5413                         break;
5414                 }
5415         }
5416
5417         if (has_vga)
5418                 lpt_enable_clkout_dp(dev, true, true);
5419         else
5420                 lpt_disable_clkout_dp(dev);
5421 }
5422
5423 /*
5424  * Initialize reference clocks when the driver loads
5425  */
5426 void intel_init_pch_refclk(struct drm_device *dev)
5427 {
5428         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5429                 ironlake_init_pch_refclk(dev);
5430         else if (HAS_PCH_LPT(dev))
5431                 lpt_init_pch_refclk(dev);
5432 }
5433
5434 static int ironlake_get_refclk(struct drm_crtc *crtc)
5435 {
5436         struct drm_device *dev = crtc->dev;
5437         struct drm_i915_private *dev_priv = dev->dev_private;
5438         struct intel_encoder *encoder;
5439         int num_connectors = 0;
5440         bool is_lvds = false;
5441
5442         for_each_encoder_on_crtc(dev, crtc, encoder) {
5443                 switch (encoder->type) {
5444                 case INTEL_OUTPUT_LVDS:
5445                         is_lvds = true;
5446                         break;
5447                 }
5448                 num_connectors++;
5449         }
5450
5451         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5452                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5453                               dev_priv->vbt.lvds_ssc_freq);
5454                 return dev_priv->vbt.lvds_ssc_freq * 1000;
5455         }
5456
5457         return 120000;
5458 }
5459
5460 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5461 {
5462         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5463         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5464         int pipe = intel_crtc->pipe;
5465         uint32_t val;
5466
5467         val = 0;
5468
5469         switch (intel_crtc->config.pipe_bpp) {
5470         case 18:
5471                 val |= PIPECONF_6BPC;
5472                 break;
5473         case 24:
5474                 val |= PIPECONF_8BPC;
5475                 break;
5476         case 30:
5477                 val |= PIPECONF_10BPC;
5478                 break;
5479         case 36:
5480                 val |= PIPECONF_12BPC;
5481                 break;
5482         default:
5483                 /* Case prevented by intel_choose_pipe_bpp_dither. */
5484                 BUG();
5485         }
5486
5487         if (intel_crtc->config.dither)
5488                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5489
5490         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5491                 val |= PIPECONF_INTERLACED_ILK;
5492         else
5493                 val |= PIPECONF_PROGRESSIVE;
5494
5495         if (intel_crtc->config.limited_color_range)
5496                 val |= PIPECONF_COLOR_RANGE_SELECT;
5497
5498         I915_WRITE(PIPECONF(pipe), val);
5499         POSTING_READ(PIPECONF(pipe));
5500 }
5501
5502 /*
5503  * Set up the pipe CSC unit.
5504  *
5505  * Currently only full range RGB to limited range RGB conversion
5506  * is supported, but eventually this should handle various
5507  * RGB<->YCbCr scenarios as well.
5508  */
5509 static void intel_set_pipe_csc(struct drm_crtc *crtc)
5510 {
5511         struct drm_device *dev = crtc->dev;
5512         struct drm_i915_private *dev_priv = dev->dev_private;
5513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5514         int pipe = intel_crtc->pipe;
5515         uint16_t coeff = 0x7800; /* 1.0 */
5516
5517         /*
5518          * TODO: Check what kind of values actually come out of the pipe
5519          * with these coeff/postoff values and adjust to get the best
5520          * accuracy. Perhaps we even need to take the bpc value into
5521          * consideration.
5522          */
5523
5524         if (intel_crtc->config.limited_color_range)
5525                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5526
5527         /*
5528          * GY/GU and RY/RU should be the other way around according
5529          * to BSpec, but reality doesn't agree. Just set them up in
5530          * a way that results in the correct picture.
5531          */
5532         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5533         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5534
5535         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5536         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5537
5538         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5539         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5540
5541         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5542         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5543         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5544
5545         if (INTEL_INFO(dev)->gen > 6) {
5546                 uint16_t postoff = 0;
5547
5548                 if (intel_crtc->config.limited_color_range)
5549                         postoff = (16 * (1 << 13) / 255) & 0x1fff;
5550
5551                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5552                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5553                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5554
5555                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5556         } else {
5557                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5558
5559                 if (intel_crtc->config.limited_color_range)
5560                         mode |= CSC_BLACK_SCREEN_OFFSET;
5561
5562                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5563         }
5564 }
5565
5566 static void haswell_set_pipeconf(struct drm_crtc *crtc)
5567 {
5568         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5569         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5570         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5571         uint32_t val;
5572
5573         val = 0;
5574
5575         if (intel_crtc->config.dither)
5576                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5577
5578         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5579                 val |= PIPECONF_INTERLACED_ILK;
5580         else
5581                 val |= PIPECONF_PROGRESSIVE;
5582
5583         I915_WRITE(PIPECONF(cpu_transcoder), val);
5584         POSTING_READ(PIPECONF(cpu_transcoder));
5585
5586         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5587         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5588 }
5589
5590 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5591                                     intel_clock_t *clock,
5592                                     bool *has_reduced_clock,
5593                                     intel_clock_t *reduced_clock)
5594 {
5595         struct drm_device *dev = crtc->dev;
5596         struct drm_i915_private *dev_priv = dev->dev_private;
5597         struct intel_encoder *intel_encoder;
5598         int refclk;
5599         const intel_limit_t *limit;
5600         bool ret, is_lvds = false;
5601
5602         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5603                 switch (intel_encoder->type) {
5604                 case INTEL_OUTPUT_LVDS:
5605                         is_lvds = true;
5606                         break;
5607                 }
5608         }
5609
5610         refclk = ironlake_get_refclk(crtc);
5611
5612         /*
5613          * Returns a set of divisors for the desired target clock with the given
5614          * refclk, or FALSE.  The returned values represent the clock equation:
5615          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5616          */
5617         limit = intel_limit(crtc, refclk);
5618         ret = dev_priv->display.find_dpll(limit, crtc,
5619                                           to_intel_crtc(crtc)->config.port_clock,
5620                                           refclk, NULL, clock);
5621         if (!ret)
5622                 return false;
5623
5624         if (is_lvds && dev_priv->lvds_downclock_avail) {
5625                 /*
5626                  * Ensure we match the reduced clock's P to the target clock.
5627                  * If the clocks don't match, we can't switch the display clock
5628                  * by using the FP0/FP1. In such case we will disable the LVDS
5629                  * downclock feature.
5630                 */
5631                 *has_reduced_clock =
5632                         dev_priv->display.find_dpll(limit, crtc,
5633                                                     dev_priv->lvds_downclock,
5634                                                     refclk, clock,
5635                                                     reduced_clock);
5636         }
5637
5638         return true;
5639 }
5640
5641 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5642 {
5643         /*
5644          * Account for spread spectrum to avoid
5645          * oversubscribing the link. Max center spread
5646          * is 2.5%; use 5% for safety's sake.
5647          */
5648         u32 bps = target_clock * bpp * 21 / 20;
5649         return bps / (link_bw * 8) + 1;
5650 }
5651
5652 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5653 {
5654         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5655 }
5656
5657 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5658                                       u32 *fp,
5659                                       intel_clock_t *reduced_clock, u32 *fp2)
5660 {
5661         struct drm_crtc *crtc = &intel_crtc->base;
5662         struct drm_device *dev = crtc->dev;
5663         struct drm_i915_private *dev_priv = dev->dev_private;
5664         struct intel_encoder *intel_encoder;
5665         uint32_t dpll;
5666         int factor, num_connectors = 0;
5667         bool is_lvds = false, is_sdvo = false;
5668
5669         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5670                 switch (intel_encoder->type) {
5671                 case INTEL_OUTPUT_LVDS:
5672                         is_lvds = true;
5673                         break;
5674                 case INTEL_OUTPUT_SDVO:
5675                 case INTEL_OUTPUT_HDMI:
5676                         is_sdvo = true;
5677                         break;
5678                 }
5679
5680                 num_connectors++;
5681         }
5682
5683         /* Enable autotuning of the PLL clock (if permissible) */
5684         factor = 21;
5685         if (is_lvds) {
5686                 if ((intel_panel_use_ssc(dev_priv) &&
5687                      dev_priv->vbt.lvds_ssc_freq == 100) ||
5688                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5689                         factor = 25;
5690         } else if (intel_crtc->config.sdvo_tv_clock)
5691                 factor = 20;
5692
5693         if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5694                 *fp |= FP_CB_TUNE;
5695
5696         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5697                 *fp2 |= FP_CB_TUNE;
5698
5699         dpll = 0;
5700
5701         if (is_lvds)
5702                 dpll |= DPLLB_MODE_LVDS;
5703         else
5704                 dpll |= DPLLB_MODE_DAC_SERIAL;
5705
5706         dpll |= (intel_crtc->config.pixel_multiplier - 1)
5707                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5708
5709         if (is_sdvo)
5710                 dpll |= DPLL_SDVO_HIGH_SPEED;
5711         if (intel_crtc->config.has_dp_encoder)
5712                 dpll |= DPLL_SDVO_HIGH_SPEED;
5713
5714         /* compute bitmask from p1 value */
5715         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5716         /* also FPA1 */
5717         dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5718
5719         switch (intel_crtc->config.dpll.p2) {
5720         case 5:
5721                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5722                 break;
5723         case 7:
5724                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5725                 break;
5726         case 10:
5727                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5728                 break;
5729         case 14:
5730                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5731                 break;
5732         }
5733
5734         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5735                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5736         else
5737                 dpll |= PLL_REF_INPUT_DREFCLK;
5738
5739         return dpll | DPLL_VCO_ENABLE;
5740 }
5741
5742 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5743                                   int x, int y,
5744                                   struct drm_framebuffer *fb)
5745 {
5746         struct drm_device *dev = crtc->dev;
5747         struct drm_i915_private *dev_priv = dev->dev_private;
5748         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5749         int pipe = intel_crtc->pipe;
5750         int plane = intel_crtc->plane;
5751         int num_connectors = 0;
5752         intel_clock_t clock, reduced_clock;
5753         u32 dpll = 0, fp = 0, fp2 = 0;
5754         bool ok, has_reduced_clock = false;
5755         bool is_lvds = false;
5756         struct intel_encoder *encoder;
5757         struct intel_shared_dpll *pll;
5758         int ret;
5759
5760         for_each_encoder_on_crtc(dev, crtc, encoder) {
5761                 switch (encoder->type) {
5762                 case INTEL_OUTPUT_LVDS:
5763                         is_lvds = true;
5764                         break;
5765                 }
5766
5767                 num_connectors++;
5768         }
5769
5770         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5771              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5772
5773         ok = ironlake_compute_clocks(crtc, &clock,
5774                                      &has_reduced_clock, &reduced_clock);
5775         if (!ok && !intel_crtc->config.clock_set) {
5776                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5777                 return -EINVAL;
5778         }
5779         /* Compat-code for transition, will disappear. */
5780         if (!intel_crtc->config.clock_set) {
5781                 intel_crtc->config.dpll.n = clock.n;
5782                 intel_crtc->config.dpll.m1 = clock.m1;
5783                 intel_crtc->config.dpll.m2 = clock.m2;
5784                 intel_crtc->config.dpll.p1 = clock.p1;
5785                 intel_crtc->config.dpll.p2 = clock.p2;
5786         }
5787
5788         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5789         if (intel_crtc->config.has_pch_encoder) {
5790                 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
5791                 if (has_reduced_clock)
5792                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
5793
5794                 dpll = ironlake_compute_dpll(intel_crtc,
5795                                              &fp, &reduced_clock,
5796                                              has_reduced_clock ? &fp2 : NULL);
5797
5798                 intel_crtc->config.dpll_hw_state.dpll = dpll;
5799                 intel_crtc->config.dpll_hw_state.fp0 = fp;
5800                 if (has_reduced_clock)
5801                         intel_crtc->config.dpll_hw_state.fp1 = fp2;
5802                 else
5803                         intel_crtc->config.dpll_hw_state.fp1 = fp;
5804
5805                 pll = intel_get_shared_dpll(intel_crtc);
5806                 if (pll == NULL) {
5807                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
5808                                          pipe_name(pipe));
5809                         return -EINVAL;
5810                 }
5811         } else
5812                 intel_put_shared_dpll(intel_crtc);
5813
5814         if (intel_crtc->config.has_dp_encoder)
5815                 intel_dp_set_m_n(intel_crtc);
5816
5817         if (is_lvds && has_reduced_clock && i915_powersave)
5818                 intel_crtc->lowfreq_avail = true;
5819         else
5820                 intel_crtc->lowfreq_avail = false;
5821
5822         if (intel_crtc->config.has_pch_encoder) {
5823                 pll = intel_crtc_to_shared_dpll(intel_crtc);
5824
5825         }
5826
5827         intel_set_pipe_timings(intel_crtc);
5828
5829         if (intel_crtc->config.has_pch_encoder) {
5830                 intel_cpu_transcoder_set_m_n(intel_crtc,
5831                                              &intel_crtc->config.fdi_m_n);
5832         }
5833
5834         ironlake_set_pipeconf(crtc);
5835
5836         /* Set up the display plane register */
5837         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5838         POSTING_READ(DSPCNTR(plane));
5839
5840         ret = intel_pipe_set_base(crtc, x, y, fb);
5841
5842         intel_update_watermarks(dev);
5843
5844         return ret;
5845 }
5846
5847 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5848                                         struct intel_crtc_config *pipe_config)
5849 {
5850         struct drm_device *dev = crtc->base.dev;
5851         struct drm_i915_private *dev_priv = dev->dev_private;
5852         enum transcoder transcoder = pipe_config->cpu_transcoder;
5853
5854         pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
5855         pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
5856         pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
5857                                         & ~TU_SIZE_MASK;
5858         pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
5859         pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
5860                                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
5861 }
5862
5863 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5864                                      struct intel_crtc_config *pipe_config)
5865 {
5866         struct drm_device *dev = crtc->base.dev;
5867         struct drm_i915_private *dev_priv = dev->dev_private;
5868         uint32_t tmp;
5869
5870         tmp = I915_READ(PF_CTL(crtc->pipe));
5871
5872         if (tmp & PF_ENABLE) {
5873                 pipe_config->pch_pfit.enabled = true;
5874                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
5875                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
5876
5877                 /* We currently do not free assignements of panel fitters on
5878                  * ivb/hsw (since we don't use the higher upscaling modes which
5879                  * differentiates them) so just WARN about this case for now. */
5880                 if (IS_GEN7(dev)) {
5881                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
5882                                 PF_PIPE_SEL_IVB(crtc->pipe));
5883                 }
5884         }
5885 }
5886
5887 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5888                                      struct intel_crtc_config *pipe_config)
5889 {
5890         struct drm_device *dev = crtc->base.dev;
5891         struct drm_i915_private *dev_priv = dev->dev_private;
5892         uint32_t tmp;
5893
5894         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5895         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5896
5897         tmp = I915_READ(PIPECONF(crtc->pipe));
5898         if (!(tmp & PIPECONF_ENABLE))
5899                 return false;
5900
5901         switch (tmp & PIPECONF_BPC_MASK) {
5902         case PIPECONF_6BPC:
5903                 pipe_config->pipe_bpp = 18;
5904                 break;
5905         case PIPECONF_8BPC:
5906                 pipe_config->pipe_bpp = 24;
5907                 break;
5908         case PIPECONF_10BPC:
5909                 pipe_config->pipe_bpp = 30;
5910                 break;
5911         case PIPECONF_12BPC:
5912                 pipe_config->pipe_bpp = 36;
5913                 break;
5914         default:
5915                 break;
5916         }
5917
5918         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
5919                 struct intel_shared_dpll *pll;
5920
5921                 pipe_config->has_pch_encoder = true;
5922
5923                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
5924                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
5925                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
5926
5927                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
5928
5929                 if (HAS_PCH_IBX(dev_priv->dev)) {
5930                         pipe_config->shared_dpll =
5931                                 (enum intel_dpll_id) crtc->pipe;
5932                 } else {
5933                         tmp = I915_READ(PCH_DPLL_SEL);
5934                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
5935                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
5936                         else
5937                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
5938                 }
5939
5940                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
5941
5942                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
5943                                            &pipe_config->dpll_hw_state));
5944
5945                 tmp = pipe_config->dpll_hw_state.dpll;
5946                 pipe_config->pixel_multiplier =
5947                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
5948                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
5949         } else {
5950                 pipe_config->pixel_multiplier = 1;
5951         }
5952
5953         intel_get_pipe_timings(crtc, pipe_config);
5954
5955         ironlake_get_pfit_config(crtc, pipe_config);
5956
5957         return true;
5958 }
5959
5960 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
5961 {
5962         struct drm_device *dev = dev_priv->dev;
5963         struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
5964         struct intel_crtc *crtc;
5965         unsigned long irqflags;
5966         uint32_t val;
5967
5968         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
5969                 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
5970                      pipe_name(crtc->pipe));
5971
5972         WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
5973         WARN(plls->spll_refcount, "SPLL enabled\n");
5974         WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
5975         WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
5976         WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
5977         WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
5978              "CPU PWM1 enabled\n");
5979         WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
5980              "CPU PWM2 enabled\n");
5981         WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
5982              "PCH PWM1 enabled\n");
5983         WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
5984              "Utility pin enabled\n");
5985         WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
5986
5987         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
5988         val = I915_READ(DEIMR);
5989         WARN((val & ~DE_PCH_EVENT_IVB) != val,
5990              "Unexpected DEIMR bits enabled: 0x%x\n", val);
5991         val = I915_READ(SDEIMR);
5992         WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
5993              "Unexpected SDEIMR bits enabled: 0x%x\n", val);
5994         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
5995 }
5996
5997 /*
5998  * This function implements pieces of two sequences from BSpec:
5999  * - Sequence for display software to disable LCPLL
6000  * - Sequence for display software to allow package C8+
6001  * The steps implemented here are just the steps that actually touch the LCPLL
6002  * register. Callers should take care of disabling all the display engine
6003  * functions, doing the mode unset, fixing interrupts, etc.
6004  */
6005 void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6006                        bool switch_to_fclk, bool allow_power_down)
6007 {
6008         uint32_t val;
6009
6010         assert_can_disable_lcpll(dev_priv);
6011
6012         val = I915_READ(LCPLL_CTL);
6013
6014         if (switch_to_fclk) {
6015                 val |= LCPLL_CD_SOURCE_FCLK;
6016                 I915_WRITE(LCPLL_CTL, val);
6017
6018                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6019                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
6020                         DRM_ERROR("Switching to FCLK failed\n");
6021
6022                 val = I915_READ(LCPLL_CTL);
6023         }
6024
6025         val |= LCPLL_PLL_DISABLE;
6026         I915_WRITE(LCPLL_CTL, val);
6027         POSTING_READ(LCPLL_CTL);
6028
6029         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6030                 DRM_ERROR("LCPLL still locked\n");
6031
6032         val = I915_READ(D_COMP);
6033         val |= D_COMP_COMP_DISABLE;
6034         I915_WRITE(D_COMP, val);
6035         POSTING_READ(D_COMP);
6036         ndelay(100);
6037
6038         if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6039                 DRM_ERROR("D_COMP RCOMP still in progress\n");
6040
6041         if (allow_power_down) {
6042                 val = I915_READ(LCPLL_CTL);
6043                 val |= LCPLL_POWER_DOWN_ALLOW;
6044                 I915_WRITE(LCPLL_CTL, val);
6045                 POSTING_READ(LCPLL_CTL);
6046         }
6047 }
6048
6049 /*
6050  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6051  * source.
6052  */
6053 void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6054 {
6055         uint32_t val;
6056
6057         val = I915_READ(LCPLL_CTL);
6058
6059         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6060                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6061                 return;
6062
6063         /* Make sure we're not on PC8 state before disabling PC8, otherwise
6064          * we'll hang the machine! */
6065         dev_priv->uncore.funcs.force_wake_get(dev_priv);
6066
6067         if (val & LCPLL_POWER_DOWN_ALLOW) {
6068                 val &= ~LCPLL_POWER_DOWN_ALLOW;
6069                 I915_WRITE(LCPLL_CTL, val);
6070                 POSTING_READ(LCPLL_CTL);
6071         }
6072
6073         val = I915_READ(D_COMP);
6074         val |= D_COMP_COMP_FORCE;
6075         val &= ~D_COMP_COMP_DISABLE;
6076         I915_WRITE(D_COMP, val);
6077         POSTING_READ(D_COMP);
6078
6079         val = I915_READ(LCPLL_CTL);
6080         val &= ~LCPLL_PLL_DISABLE;
6081         I915_WRITE(LCPLL_CTL, val);
6082
6083         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6084                 DRM_ERROR("LCPLL not locked yet\n");
6085
6086         if (val & LCPLL_CD_SOURCE_FCLK) {
6087                 val = I915_READ(LCPLL_CTL);
6088                 val &= ~LCPLL_CD_SOURCE_FCLK;
6089                 I915_WRITE(LCPLL_CTL, val);
6090
6091                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6092                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6093                         DRM_ERROR("Switching back to LCPLL failed\n");
6094         }
6095
6096         dev_priv->uncore.funcs.force_wake_put(dev_priv);
6097 }
6098
6099 void hsw_enable_pc8_work(struct work_struct *__work)
6100 {
6101         struct drm_i915_private *dev_priv =
6102                 container_of(to_delayed_work(__work), struct drm_i915_private,
6103                              pc8.enable_work);
6104         struct drm_device *dev = dev_priv->dev;
6105         uint32_t val;
6106
6107         if (dev_priv->pc8.enabled)
6108                 return;
6109
6110         DRM_DEBUG_KMS("Enabling package C8+\n");
6111
6112         dev_priv->pc8.enabled = true;
6113
6114         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6115                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6116                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6117                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6118         }
6119
6120         lpt_disable_clkout_dp(dev);
6121         hsw_pc8_disable_interrupts(dev);
6122         hsw_disable_lcpll(dev_priv, true, true);
6123 }
6124
6125 static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6126 {
6127         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6128         WARN(dev_priv->pc8.disable_count < 1,
6129              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6130
6131         dev_priv->pc8.disable_count--;
6132         if (dev_priv->pc8.disable_count != 0)
6133                 return;
6134
6135         schedule_delayed_work(&dev_priv->pc8.enable_work,
6136                               msecs_to_jiffies(i915_pc8_timeout));
6137 }
6138
6139 static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6140 {
6141         struct drm_device *dev = dev_priv->dev;
6142         uint32_t val;
6143
6144         WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6145         WARN(dev_priv->pc8.disable_count < 0,
6146              "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6147
6148         dev_priv->pc8.disable_count++;
6149         if (dev_priv->pc8.disable_count != 1)
6150                 return;
6151
6152         cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6153         if (!dev_priv->pc8.enabled)
6154                 return;
6155
6156         DRM_DEBUG_KMS("Disabling package C8+\n");
6157
6158         hsw_restore_lcpll(dev_priv);
6159         hsw_pc8_restore_interrupts(dev);
6160         lpt_init_pch_refclk(dev);
6161
6162         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6163                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6164                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6165                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6166         }
6167
6168         intel_prepare_ddi(dev);
6169         i915_gem_init_swizzling(dev);
6170         mutex_lock(&dev_priv->rps.hw_lock);
6171         gen6_update_ring_freq(dev);
6172         mutex_unlock(&dev_priv->rps.hw_lock);
6173         dev_priv->pc8.enabled = false;
6174 }
6175
6176 void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6177 {
6178         mutex_lock(&dev_priv->pc8.lock);
6179         __hsw_enable_package_c8(dev_priv);
6180         mutex_unlock(&dev_priv->pc8.lock);
6181 }
6182
6183 void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6184 {
6185         mutex_lock(&dev_priv->pc8.lock);
6186         __hsw_disable_package_c8(dev_priv);
6187         mutex_unlock(&dev_priv->pc8.lock);
6188 }
6189
6190 static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6191 {
6192         struct drm_device *dev = dev_priv->dev;
6193         struct intel_crtc *crtc;
6194         uint32_t val;
6195
6196         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6197                 if (crtc->base.enabled)
6198                         return false;
6199
6200         /* This case is still possible since we have the i915.disable_power_well
6201          * parameter and also the KVMr or something else might be requesting the
6202          * power well. */
6203         val = I915_READ(HSW_PWR_WELL_DRIVER);
6204         if (val != 0) {
6205                 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6206                 return false;
6207         }
6208
6209         return true;
6210 }
6211
6212 /* Since we're called from modeset_global_resources there's no way to
6213  * symmetrically increase and decrease the refcount, so we use
6214  * dev_priv->pc8.requirements_met to track whether we already have the refcount
6215  * or not.
6216  */
6217 static void hsw_update_package_c8(struct drm_device *dev)
6218 {
6219         struct drm_i915_private *dev_priv = dev->dev_private;
6220         bool allow;
6221
6222         if (!i915_enable_pc8)
6223                 return;
6224
6225         mutex_lock(&dev_priv->pc8.lock);
6226
6227         allow = hsw_can_enable_package_c8(dev_priv);
6228
6229         if (allow == dev_priv->pc8.requirements_met)
6230                 goto done;
6231
6232         dev_priv->pc8.requirements_met = allow;
6233
6234         if (allow)
6235                 __hsw_enable_package_c8(dev_priv);
6236         else
6237                 __hsw_disable_package_c8(dev_priv);
6238
6239 done:
6240         mutex_unlock(&dev_priv->pc8.lock);
6241 }
6242
6243 static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6244 {
6245         if (!dev_priv->pc8.gpu_idle) {
6246                 dev_priv->pc8.gpu_idle = true;
6247                 hsw_enable_package_c8(dev_priv);
6248         }
6249 }
6250
6251 static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6252 {
6253         if (dev_priv->pc8.gpu_idle) {
6254                 dev_priv->pc8.gpu_idle = false;
6255                 hsw_disable_package_c8(dev_priv);
6256         }
6257 }
6258
6259 static void haswell_modeset_global_resources(struct drm_device *dev)
6260 {
6261         bool enable = false;
6262         struct intel_crtc *crtc;
6263
6264         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6265                 if (!crtc->base.enabled)
6266                         continue;
6267
6268                 if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
6269                     crtc->config.cpu_transcoder != TRANSCODER_EDP)
6270                         enable = true;
6271         }
6272
6273         intel_set_power_well(dev, enable);
6274
6275         hsw_update_package_c8(dev);
6276 }
6277
6278 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6279                                  int x, int y,
6280                                  struct drm_framebuffer *fb)
6281 {
6282         struct drm_device *dev = crtc->dev;
6283         struct drm_i915_private *dev_priv = dev->dev_private;
6284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6285         int plane = intel_crtc->plane;
6286         int ret;
6287
6288         if (!intel_ddi_pll_mode_set(crtc))
6289                 return -EINVAL;
6290
6291         if (intel_crtc->config.has_dp_encoder)
6292                 intel_dp_set_m_n(intel_crtc);
6293
6294         intel_crtc->lowfreq_avail = false;
6295
6296         intel_set_pipe_timings(intel_crtc);
6297
6298         if (intel_crtc->config.has_pch_encoder) {
6299                 intel_cpu_transcoder_set_m_n(intel_crtc,
6300                                              &intel_crtc->config.fdi_m_n);
6301         }
6302
6303         haswell_set_pipeconf(crtc);
6304
6305         intel_set_pipe_csc(crtc);
6306
6307         /* Set up the display plane register */
6308         I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6309         POSTING_READ(DSPCNTR(plane));
6310
6311         ret = intel_pipe_set_base(crtc, x, y, fb);
6312
6313         intel_update_watermarks(dev);
6314
6315         return ret;
6316 }
6317
6318 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6319                                     struct intel_crtc_config *pipe_config)
6320 {
6321         struct drm_device *dev = crtc->base.dev;
6322         struct drm_i915_private *dev_priv = dev->dev_private;
6323         enum intel_display_power_domain pfit_domain;
6324         uint32_t tmp;
6325
6326         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6327         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6328
6329         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6330         if (tmp & TRANS_DDI_FUNC_ENABLE) {
6331                 enum pipe trans_edp_pipe;
6332                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6333                 default:
6334                         WARN(1, "unknown pipe linked to edp transcoder\n");
6335                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6336                 case TRANS_DDI_EDP_INPUT_A_ON:
6337                         trans_edp_pipe = PIPE_A;
6338                         break;
6339                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6340                         trans_edp_pipe = PIPE_B;
6341                         break;
6342                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6343                         trans_edp_pipe = PIPE_C;
6344                         break;
6345                 }
6346
6347                 if (trans_edp_pipe == crtc->pipe)
6348                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
6349         }
6350
6351         if (!intel_display_power_enabled(dev,
6352                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6353                 return false;
6354
6355         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6356         if (!(tmp & PIPECONF_ENABLE))
6357                 return false;
6358
6359         /*
6360          * Haswell has only FDI/PCH transcoder A. It is which is connected to
6361          * DDI E. So just check whether this pipe is wired to DDI E and whether
6362          * the PCH transcoder is on.
6363          */
6364         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6365         if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6366             I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6367                 pipe_config->has_pch_encoder = true;
6368
6369                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6370                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6371                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
6372
6373                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6374         }
6375
6376         intel_get_pipe_timings(crtc, pipe_config);
6377
6378         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6379         if (intel_display_power_enabled(dev, pfit_domain))
6380                 ironlake_get_pfit_config(crtc, pipe_config);
6381
6382         pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6383                                    (I915_READ(IPS_CTL) & IPS_ENABLE);
6384
6385         pipe_config->pixel_multiplier = 1;
6386
6387         return true;
6388 }
6389
6390 static int intel_crtc_mode_set(struct drm_crtc *crtc,
6391                                int x, int y,
6392                                struct drm_framebuffer *fb)
6393 {
6394         struct drm_device *dev = crtc->dev;
6395         struct drm_i915_private *dev_priv = dev->dev_private;
6396         struct intel_encoder *encoder;
6397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6398         struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6399         int pipe = intel_crtc->pipe;
6400         int ret;
6401
6402         drm_vblank_pre_modeset(dev, pipe);
6403
6404         ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6405
6406         drm_vblank_post_modeset(dev, pipe);
6407
6408         if (ret != 0)
6409                 return ret;
6410
6411         for_each_encoder_on_crtc(dev, crtc, encoder) {
6412                 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6413                         encoder->base.base.id,
6414                         drm_get_encoder_name(&encoder->base),
6415                         mode->base.id, mode->name);
6416                 encoder->mode_set(encoder);
6417         }
6418
6419         return 0;
6420 }
6421
6422 static bool intel_eld_uptodate(struct drm_connector *connector,
6423                                int reg_eldv, uint32_t bits_eldv,
6424                                int reg_elda, uint32_t bits_elda,
6425                                int reg_edid)
6426 {
6427         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6428         uint8_t *eld = connector->eld;
6429         uint32_t i;
6430
6431         i = I915_READ(reg_eldv);
6432         i &= bits_eldv;
6433
6434         if (!eld[0])
6435                 return !i;
6436
6437         if (!i)
6438                 return false;
6439
6440         i = I915_READ(reg_elda);
6441         i &= ~bits_elda;
6442         I915_WRITE(reg_elda, i);
6443
6444         for (i = 0; i < eld[2]; i++)
6445                 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6446                         return false;
6447
6448         return true;
6449 }
6450
6451 static void g4x_write_eld(struct drm_connector *connector,
6452                           struct drm_crtc *crtc)
6453 {
6454         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6455         uint8_t *eld = connector->eld;
6456         uint32_t eldv;
6457         uint32_t len;
6458         uint32_t i;
6459
6460         i = I915_READ(G4X_AUD_VID_DID);
6461
6462         if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6463                 eldv = G4X_ELDV_DEVCL_DEVBLC;
6464         else
6465                 eldv = G4X_ELDV_DEVCTG;
6466
6467         if (intel_eld_uptodate(connector,
6468                                G4X_AUD_CNTL_ST, eldv,
6469                                G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6470                                G4X_HDMIW_HDMIEDID))
6471                 return;
6472
6473         i = I915_READ(G4X_AUD_CNTL_ST);
6474         i &= ~(eldv | G4X_ELD_ADDR);
6475         len = (i >> 9) & 0x1f;          /* ELD buffer size */
6476         I915_WRITE(G4X_AUD_CNTL_ST, i);
6477
6478         if (!eld[0])
6479                 return;
6480
6481         len = min_t(uint8_t, eld[2], len);
6482         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6483         for (i = 0; i < len; i++)
6484                 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6485
6486         i = I915_READ(G4X_AUD_CNTL_ST);
6487         i |= eldv;
6488         I915_WRITE(G4X_AUD_CNTL_ST, i);
6489 }
6490
6491 static void haswell_write_eld(struct drm_connector *connector,
6492                                      struct drm_crtc *crtc)
6493 {
6494         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6495         uint8_t *eld = connector->eld;
6496         struct drm_device *dev = crtc->dev;
6497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6498         uint32_t eldv;
6499         uint32_t i;
6500         int len;
6501         int pipe = to_intel_crtc(crtc)->pipe;
6502         int tmp;
6503
6504         int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6505         int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6506         int aud_config = HSW_AUD_CFG(pipe);
6507         int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6508
6509
6510         DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6511
6512         /* Audio output enable */
6513         DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6514         tmp = I915_READ(aud_cntrl_st2);
6515         tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6516         I915_WRITE(aud_cntrl_st2, tmp);
6517
6518         /* Wait for 1 vertical blank */
6519         intel_wait_for_vblank(dev, pipe);
6520
6521         /* Set ELD valid state */
6522         tmp = I915_READ(aud_cntrl_st2);
6523         DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6524         tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6525         I915_WRITE(aud_cntrl_st2, tmp);
6526         tmp = I915_READ(aud_cntrl_st2);
6527         DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6528
6529         /* Enable HDMI mode */
6530         tmp = I915_READ(aud_config);
6531         DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6532         /* clear N_programing_enable and N_value_index */
6533         tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6534         I915_WRITE(aud_config, tmp);
6535
6536         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6537
6538         eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6539         intel_crtc->eld_vld = true;
6540
6541         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6542                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6543                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6544                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6545         } else
6546                 I915_WRITE(aud_config, 0);
6547
6548         if (intel_eld_uptodate(connector,
6549                                aud_cntrl_st2, eldv,
6550                                aud_cntl_st, IBX_ELD_ADDRESS,
6551                                hdmiw_hdmiedid))
6552                 return;
6553
6554         i = I915_READ(aud_cntrl_st2);
6555         i &= ~eldv;
6556         I915_WRITE(aud_cntrl_st2, i);
6557
6558         if (!eld[0])
6559                 return;
6560
6561         i = I915_READ(aud_cntl_st);
6562         i &= ~IBX_ELD_ADDRESS;
6563         I915_WRITE(aud_cntl_st, i);
6564         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6565         DRM_DEBUG_DRIVER("port num:%d\n", i);
6566
6567         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6568         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6569         for (i = 0; i < len; i++)
6570                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6571
6572         i = I915_READ(aud_cntrl_st2);
6573         i |= eldv;
6574         I915_WRITE(aud_cntrl_st2, i);
6575
6576 }
6577
6578 static void ironlake_write_eld(struct drm_connector *connector,
6579                                      struct drm_crtc *crtc)
6580 {
6581         struct drm_i915_private *dev_priv = connector->dev->dev_private;
6582         uint8_t *eld = connector->eld;
6583         uint32_t eldv;
6584         uint32_t i;
6585         int len;
6586         int hdmiw_hdmiedid;
6587         int aud_config;
6588         int aud_cntl_st;
6589         int aud_cntrl_st2;
6590         int pipe = to_intel_crtc(crtc)->pipe;
6591
6592         if (HAS_PCH_IBX(connector->dev)) {
6593                 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6594                 aud_config = IBX_AUD_CFG(pipe);
6595                 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6596                 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6597         } else {
6598                 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6599                 aud_config = CPT_AUD_CFG(pipe);
6600                 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6601                 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6602         }
6603
6604         DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6605
6606         i = I915_READ(aud_cntl_st);
6607         i = (i >> 29) & DIP_PORT_SEL_MASK;              /* DIP_Port_Select, 0x1 = PortB */
6608         if (!i) {
6609                 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6610                 /* operate blindly on all ports */
6611                 eldv = IBX_ELD_VALIDB;
6612                 eldv |= IBX_ELD_VALIDB << 4;
6613                 eldv |= IBX_ELD_VALIDB << 8;
6614         } else {
6615                 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
6616                 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6617         }
6618
6619         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6620                 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6621                 eld[5] |= (1 << 2);     /* Conn_Type, 0x1 = DisplayPort */
6622                 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6623         } else
6624                 I915_WRITE(aud_config, 0);
6625
6626         if (intel_eld_uptodate(connector,
6627                                aud_cntrl_st2, eldv,
6628                                aud_cntl_st, IBX_ELD_ADDRESS,
6629                                hdmiw_hdmiedid))
6630                 return;
6631
6632         i = I915_READ(aud_cntrl_st2);
6633         i &= ~eldv;
6634         I915_WRITE(aud_cntrl_st2, i);
6635
6636         if (!eld[0])
6637                 return;
6638
6639         i = I915_READ(aud_cntl_st);
6640         i &= ~IBX_ELD_ADDRESS;
6641         I915_WRITE(aud_cntl_st, i);
6642
6643         len = min_t(uint8_t, eld[2], 21);       /* 84 bytes of hw ELD buffer */
6644         DRM_DEBUG_DRIVER("ELD size %d\n", len);
6645         for (i = 0; i < len; i++)
6646                 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6647
6648         i = I915_READ(aud_cntrl_st2);
6649         i |= eldv;
6650         I915_WRITE(aud_cntrl_st2, i);
6651 }
6652
6653 void intel_write_eld(struct drm_encoder *encoder,
6654                      struct drm_display_mode *mode)
6655 {
6656         struct drm_crtc *crtc = encoder->crtc;
6657         struct drm_connector *connector;
6658         struct drm_device *dev = encoder->dev;
6659         struct drm_i915_private *dev_priv = dev->dev_private;
6660
6661         connector = drm_select_eld(encoder, mode);
6662         if (!connector)
6663                 return;
6664
6665         DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6666                          connector->base.id,
6667                          drm_get_connector_name(connector),
6668                          connector->encoder->base.id,
6669                          drm_get_encoder_name(connector->encoder));
6670
6671         connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6672
6673         if (dev_priv->display.write_eld)
6674                 dev_priv->display.write_eld(connector, crtc);
6675 }
6676
6677 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6678 void intel_crtc_load_lut(struct drm_crtc *crtc)
6679 {
6680         struct drm_device *dev = crtc->dev;
6681         struct drm_i915_private *dev_priv = dev->dev_private;
6682         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6683         enum pipe pipe = intel_crtc->pipe;
6684         int palreg = PALETTE(pipe);
6685         int i;
6686         bool reenable_ips = false;
6687
6688         /* The clocks have to be on to load the palette. */
6689         if (!crtc->enabled || !intel_crtc->active)
6690                 return;
6691
6692         if (!HAS_PCH_SPLIT(dev_priv->dev))
6693                 assert_pll_enabled(dev_priv, pipe);
6694
6695         /* use legacy palette for Ironlake */
6696         if (HAS_PCH_SPLIT(dev))
6697                 palreg = LGC_PALETTE(pipe);
6698
6699         /* Workaround : Do not read or write the pipe palette/gamma data while
6700          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
6701          */
6702         if (intel_crtc->config.ips_enabled &&
6703             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
6704              GAMMA_MODE_MODE_SPLIT)) {
6705                 hsw_disable_ips(intel_crtc);
6706                 reenable_ips = true;
6707         }
6708
6709         for (i = 0; i < 256; i++) {
6710                 I915_WRITE(palreg + 4 * i,
6711                            (intel_crtc->lut_r[i] << 16) |
6712                            (intel_crtc->lut_g[i] << 8) |
6713                            intel_crtc->lut_b[i]);
6714         }
6715
6716         if (reenable_ips)
6717                 hsw_enable_ips(intel_crtc);
6718 }
6719
6720 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6721 {
6722         struct drm_device *dev = crtc->dev;
6723         struct drm_i915_private *dev_priv = dev->dev_private;
6724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6725         bool visible = base != 0;
6726         u32 cntl;
6727
6728         if (intel_crtc->cursor_visible == visible)
6729                 return;
6730
6731         cntl = I915_READ(_CURACNTR);
6732         if (visible) {
6733                 /* On these chipsets we can only modify the base whilst
6734                  * the cursor is disabled.
6735                  */
6736                 I915_WRITE(_CURABASE, base);
6737
6738                 cntl &= ~(CURSOR_FORMAT_MASK);
6739                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6740                 cntl |= CURSOR_ENABLE |
6741                         CURSOR_GAMMA_ENABLE |
6742                         CURSOR_FORMAT_ARGB;
6743         } else
6744                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6745         I915_WRITE(_CURACNTR, cntl);
6746
6747         intel_crtc->cursor_visible = visible;
6748 }
6749
6750 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6751 {
6752         struct drm_device *dev = crtc->dev;
6753         struct drm_i915_private *dev_priv = dev->dev_private;
6754         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6755         int pipe = intel_crtc->pipe;
6756         bool visible = base != 0;
6757
6758         if (intel_crtc->cursor_visible != visible) {
6759                 uint32_t cntl = I915_READ(CURCNTR(pipe));
6760                 if (base) {
6761                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6762                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6763                         cntl |= pipe << 28; /* Connect to correct pipe */
6764                 } else {
6765                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6766                         cntl |= CURSOR_MODE_DISABLE;
6767                 }
6768                 I915_WRITE(CURCNTR(pipe), cntl);
6769
6770                 intel_crtc->cursor_visible = visible;
6771         }
6772         /* and commit changes on next vblank */
6773         I915_WRITE(CURBASE(pipe), base);
6774 }
6775
6776 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6777 {
6778         struct drm_device *dev = crtc->dev;
6779         struct drm_i915_private *dev_priv = dev->dev_private;
6780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6781         int pipe = intel_crtc->pipe;
6782         bool visible = base != 0;
6783
6784         if (intel_crtc->cursor_visible != visible) {
6785                 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6786                 if (base) {
6787                         cntl &= ~CURSOR_MODE;
6788                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6789                 } else {
6790                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6791                         cntl |= CURSOR_MODE_DISABLE;
6792                 }
6793                 if (IS_HASWELL(dev)) {
6794                         cntl |= CURSOR_PIPE_CSC_ENABLE;
6795                         cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
6796                 }
6797                 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6798
6799                 intel_crtc->cursor_visible = visible;
6800         }
6801         /* and commit changes on next vblank */
6802         I915_WRITE(CURBASE_IVB(pipe), base);
6803 }
6804
6805 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6806 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6807                                      bool on)
6808 {
6809         struct drm_device *dev = crtc->dev;
6810         struct drm_i915_private *dev_priv = dev->dev_private;
6811         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6812         int pipe = intel_crtc->pipe;
6813         int x = intel_crtc->cursor_x;
6814         int y = intel_crtc->cursor_y;
6815         u32 base, pos;
6816         bool visible;
6817
6818         pos = 0;
6819
6820         if (on && crtc->enabled && crtc->fb) {
6821                 base = intel_crtc->cursor_addr;
6822                 if (x > (int) crtc->fb->width)
6823                         base = 0;
6824
6825                 if (y > (int) crtc->fb->height)
6826                         base = 0;
6827         } else
6828                 base = 0;
6829
6830         if (x < 0) {
6831                 if (x + intel_crtc->cursor_width < 0)
6832                         base = 0;
6833
6834                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6835                 x = -x;
6836         }
6837         pos |= x << CURSOR_X_SHIFT;
6838
6839         if (y < 0) {
6840                 if (y + intel_crtc->cursor_height < 0)
6841                         base = 0;
6842
6843                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6844                 y = -y;
6845         }
6846         pos |= y << CURSOR_Y_SHIFT;
6847
6848         visible = base != 0;
6849         if (!visible && !intel_crtc->cursor_visible)
6850                 return;
6851
6852         if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6853                 I915_WRITE(CURPOS_IVB(pipe), pos);
6854                 ivb_update_cursor(crtc, base);
6855         } else {
6856                 I915_WRITE(CURPOS(pipe), pos);
6857                 if (IS_845G(dev) || IS_I865G(dev))
6858                         i845_update_cursor(crtc, base);
6859                 else
6860                         i9xx_update_cursor(crtc, base);
6861         }
6862 }
6863
6864 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6865                                  struct drm_file *file,
6866                                  uint32_t handle,
6867                                  uint32_t width, uint32_t height)
6868 {
6869         struct drm_device *dev = crtc->dev;
6870         struct drm_i915_private *dev_priv = dev->dev_private;
6871         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6872         struct drm_i915_gem_object *obj;
6873         uint32_t addr;
6874         int ret;
6875
6876         /* if we want to turn off the cursor ignore width and height */
6877         if (!handle) {
6878                 DRM_DEBUG_KMS("cursor off\n");
6879                 addr = 0;
6880                 obj = NULL;
6881                 mutex_lock(&dev->struct_mutex);
6882                 goto finish;
6883         }
6884
6885         /* Currently we only support 64x64 cursors */
6886         if (width != 64 || height != 64) {
6887                 DRM_ERROR("we currently only support 64x64 cursors\n");
6888                 return -EINVAL;
6889         }
6890
6891         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6892         if (&obj->base == NULL)
6893                 return -ENOENT;
6894
6895         if (obj->base.size < width * height * 4) {
6896                 DRM_ERROR("buffer is to small\n");
6897                 ret = -ENOMEM;
6898                 goto fail;
6899         }
6900
6901         /* we only need to pin inside GTT if cursor is non-phy */
6902         mutex_lock(&dev->struct_mutex);
6903         if (!dev_priv->info->cursor_needs_physical) {
6904                 unsigned alignment;
6905
6906                 if (obj->tiling_mode) {
6907                         DRM_ERROR("cursor cannot be tiled\n");
6908                         ret = -EINVAL;
6909                         goto fail_locked;
6910                 }
6911
6912                 /* Note that the w/a also requires 2 PTE of padding following
6913                  * the bo. We currently fill all unused PTE with the shadow
6914                  * page and so we should always have valid PTE following the
6915                  * cursor preventing the VT-d warning.
6916                  */
6917                 alignment = 0;
6918                 if (need_vtd_wa(dev))
6919                         alignment = 64*1024;
6920
6921                 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
6922                 if (ret) {
6923                         DRM_ERROR("failed to move cursor bo into the GTT\n");
6924                         goto fail_locked;
6925                 }
6926
6927                 ret = i915_gem_object_put_fence(obj);
6928                 if (ret) {
6929                         DRM_ERROR("failed to release fence for cursor");
6930                         goto fail_unpin;
6931                 }
6932
6933                 addr = i915_gem_obj_ggtt_offset(obj);
6934         } else {
6935                 int align = IS_I830(dev) ? 16 * 1024 : 256;
6936                 ret = i915_gem_attach_phys_object(dev, obj,
6937                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6938                                                   align);
6939                 if (ret) {
6940                         DRM_ERROR("failed to attach phys object\n");
6941                         goto fail_locked;
6942                 }
6943                 addr = obj->phys_obj->handle->busaddr;
6944         }
6945
6946         if (IS_GEN2(dev))
6947                 I915_WRITE(CURSIZE, (height << 12) | width);
6948
6949  finish:
6950         if (intel_crtc->cursor_bo) {
6951                 if (dev_priv->info->cursor_needs_physical) {
6952                         if (intel_crtc->cursor_bo != obj)
6953                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6954                 } else
6955                         i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
6956                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6957         }
6958
6959         mutex_unlock(&dev->struct_mutex);
6960
6961         intel_crtc->cursor_addr = addr;
6962         intel_crtc->cursor_bo = obj;
6963         intel_crtc->cursor_width = width;
6964         intel_crtc->cursor_height = height;
6965
6966         if (intel_crtc->active)
6967                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6968
6969         return 0;
6970 fail_unpin:
6971         i915_gem_object_unpin_from_display_plane(obj);
6972 fail_locked:
6973         mutex_unlock(&dev->struct_mutex);
6974 fail:
6975         drm_gem_object_unreference_unlocked(&obj->base);
6976         return ret;
6977 }
6978
6979 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6980 {
6981         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6982
6983         intel_crtc->cursor_x = x;
6984         intel_crtc->cursor_y = y;
6985
6986         if (intel_crtc->active)
6987                 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
6988
6989         return 0;
6990 }
6991
6992 /** Sets the color ramps on behalf of RandR */
6993 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6994                                  u16 blue, int regno)
6995 {
6996         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6997
6998         intel_crtc->lut_r[regno] = red >> 8;
6999         intel_crtc->lut_g[regno] = green >> 8;
7000         intel_crtc->lut_b[regno] = blue >> 8;
7001 }
7002
7003 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
7004                              u16 *blue, int regno)
7005 {
7006         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7007
7008         *red = intel_crtc->lut_r[regno] << 8;
7009         *green = intel_crtc->lut_g[regno] << 8;
7010         *blue = intel_crtc->lut_b[regno] << 8;
7011 }
7012
7013 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7014                                  u16 *blue, uint32_t start, uint32_t size)
7015 {
7016         int end = (start + size > 256) ? 256 : start + size, i;
7017         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7018
7019         for (i = start; i < end; i++) {
7020                 intel_crtc->lut_r[i] = red[i] >> 8;
7021                 intel_crtc->lut_g[i] = green[i] >> 8;
7022                 intel_crtc->lut_b[i] = blue[i] >> 8;
7023         }
7024
7025         intel_crtc_load_lut(crtc);
7026 }
7027
7028 /* VESA 640x480x72Hz mode to set on the pipe */
7029 static struct drm_display_mode load_detect_mode = {
7030         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7031                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7032 };
7033
7034 static struct drm_framebuffer *
7035 intel_framebuffer_create(struct drm_device *dev,
7036                          struct drm_mode_fb_cmd2 *mode_cmd,
7037                          struct drm_i915_gem_object *obj)
7038 {
7039         struct intel_framebuffer *intel_fb;
7040         int ret;
7041
7042         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7043         if (!intel_fb) {
7044                 drm_gem_object_unreference_unlocked(&obj->base);
7045                 return ERR_PTR(-ENOMEM);
7046         }
7047
7048         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7049         if (ret) {
7050                 drm_gem_object_unreference_unlocked(&obj->base);
7051                 kfree(intel_fb);
7052                 return ERR_PTR(ret);
7053         }
7054
7055         return &intel_fb->base;
7056 }
7057
7058 static u32
7059 intel_framebuffer_pitch_for_width(int width, int bpp)
7060 {
7061         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7062         return ALIGN(pitch, 64);
7063 }
7064
7065 static u32
7066 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7067 {
7068         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7069         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7070 }
7071
7072 static struct drm_framebuffer *
7073 intel_framebuffer_create_for_mode(struct drm_device *dev,
7074                                   struct drm_display_mode *mode,
7075                                   int depth, int bpp)
7076 {
7077         struct drm_i915_gem_object *obj;
7078         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7079
7080         obj = i915_gem_alloc_object(dev,
7081                                     intel_framebuffer_size_for_mode(mode, bpp));
7082         if (obj == NULL)
7083                 return ERR_PTR(-ENOMEM);
7084
7085         mode_cmd.width = mode->hdisplay;
7086         mode_cmd.height = mode->vdisplay;
7087         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7088                                                                 bpp);
7089         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7090
7091         return intel_framebuffer_create(dev, &mode_cmd, obj);
7092 }
7093
7094 static struct drm_framebuffer *
7095 mode_fits_in_fbdev(struct drm_device *dev,
7096                    struct drm_display_mode *mode)
7097 {
7098         struct drm_i915_private *dev_priv = dev->dev_private;
7099         struct drm_i915_gem_object *obj;
7100         struct drm_framebuffer *fb;
7101
7102         if (dev_priv->fbdev == NULL)
7103                 return NULL;
7104
7105         obj = dev_priv->fbdev->ifb.obj;
7106         if (obj == NULL)
7107                 return NULL;
7108
7109         fb = &dev_priv->fbdev->ifb.base;
7110         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7111                                                                fb->bits_per_pixel))
7112                 return NULL;
7113
7114         if (obj->base.size < mode->vdisplay * fb->pitches[0])
7115                 return NULL;
7116
7117         return fb;
7118 }
7119
7120 bool intel_get_load_detect_pipe(struct drm_connector *connector,
7121                                 struct drm_display_mode *mode,
7122                                 struct intel_load_detect_pipe *old)
7123 {
7124         struct intel_crtc *intel_crtc;
7125         struct intel_encoder *intel_encoder =
7126                 intel_attached_encoder(connector);
7127         struct drm_crtc *possible_crtc;
7128         struct drm_encoder *encoder = &intel_encoder->base;
7129         struct drm_crtc *crtc = NULL;
7130         struct drm_device *dev = encoder->dev;
7131         struct drm_framebuffer *fb;
7132         int i = -1;
7133
7134         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7135                       connector->base.id, drm_get_connector_name(connector),
7136                       encoder->base.id, drm_get_encoder_name(encoder));
7137
7138         /*
7139          * Algorithm gets a little messy:
7140          *
7141          *   - if the connector already has an assigned crtc, use it (but make
7142          *     sure it's on first)
7143          *
7144          *   - try to find the first unused crtc that can drive this connector,
7145          *     and use that if we find one
7146          */
7147
7148         /* See if we already have a CRTC for this connector */
7149         if (encoder->crtc) {
7150                 crtc = encoder->crtc;
7151
7152                 mutex_lock(&crtc->mutex);
7153
7154                 old->dpms_mode = connector->dpms;
7155                 old->load_detect_temp = false;
7156
7157                 /* Make sure the crtc and connector are running */
7158                 if (connector->dpms != DRM_MODE_DPMS_ON)
7159                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7160
7161                 return true;
7162         }
7163
7164         /* Find an unused one (if possible) */
7165         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7166                 i++;
7167                 if (!(encoder->possible_crtcs & (1 << i)))
7168                         continue;
7169                 if (!possible_crtc->enabled) {
7170                         crtc = possible_crtc;
7171                         break;
7172                 }
7173         }
7174
7175         /*
7176          * If we didn't find an unused CRTC, don't use any.
7177          */
7178         if (!crtc) {
7179                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7180                 return false;
7181         }
7182
7183         mutex_lock(&crtc->mutex);
7184         intel_encoder->new_crtc = to_intel_crtc(crtc);
7185         to_intel_connector(connector)->new_encoder = intel_encoder;
7186
7187         intel_crtc = to_intel_crtc(crtc);
7188         old->dpms_mode = connector->dpms;
7189         old->load_detect_temp = true;
7190         old->release_fb = NULL;
7191
7192         if (!mode)
7193                 mode = &load_detect_mode;
7194
7195         /* We need a framebuffer large enough to accommodate all accesses
7196          * that the plane may generate whilst we perform load detection.
7197          * We can not rely on the fbcon either being present (we get called
7198          * during its initialisation to detect all boot displays, or it may
7199          * not even exist) or that it is large enough to satisfy the
7200          * requested mode.
7201          */
7202         fb = mode_fits_in_fbdev(dev, mode);
7203         if (fb == NULL) {
7204                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7205                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7206                 old->release_fb = fb;
7207         } else
7208                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7209         if (IS_ERR(fb)) {
7210                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7211                 mutex_unlock(&crtc->mutex);
7212                 return false;
7213         }
7214
7215         if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7216                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7217                 if (old->release_fb)
7218                         old->release_fb->funcs->destroy(old->release_fb);
7219                 mutex_unlock(&crtc->mutex);
7220                 return false;
7221         }
7222
7223         /* let the connector get through one full cycle before testing */
7224         intel_wait_for_vblank(dev, intel_crtc->pipe);
7225         return true;
7226 }
7227
7228 void intel_release_load_detect_pipe(struct drm_connector *connector,
7229                                     struct intel_load_detect_pipe *old)
7230 {
7231         struct intel_encoder *intel_encoder =
7232                 intel_attached_encoder(connector);
7233         struct drm_encoder *encoder = &intel_encoder->base;
7234         struct drm_crtc *crtc = encoder->crtc;
7235
7236         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7237                       connector->base.id, drm_get_connector_name(connector),
7238                       encoder->base.id, drm_get_encoder_name(encoder));
7239
7240         if (old->load_detect_temp) {
7241                 to_intel_connector(connector)->new_encoder = NULL;
7242                 intel_encoder->new_crtc = NULL;
7243                 intel_set_mode(crtc, NULL, 0, 0, NULL);
7244
7245                 if (old->release_fb) {
7246                         drm_framebuffer_unregister_private(old->release_fb);
7247                         drm_framebuffer_unreference(old->release_fb);
7248                 }
7249
7250                 mutex_unlock(&crtc->mutex);
7251                 return;
7252         }
7253
7254         /* Switch crtc and encoder back off if necessary */
7255         if (old->dpms_mode != DRM_MODE_DPMS_ON)
7256                 connector->funcs->dpms(connector, old->dpms_mode);
7257
7258         mutex_unlock(&crtc->mutex);
7259 }
7260
7261 /* Returns the clock of the currently programmed mode of the given pipe. */
7262 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7263                                 struct intel_crtc_config *pipe_config)
7264 {
7265         struct drm_device *dev = crtc->base.dev;
7266         struct drm_i915_private *dev_priv = dev->dev_private;
7267         int pipe = pipe_config->cpu_transcoder;
7268         u32 dpll = I915_READ(DPLL(pipe));
7269         u32 fp;
7270         intel_clock_t clock;
7271
7272         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7273                 fp = I915_READ(FP0(pipe));
7274         else
7275                 fp = I915_READ(FP1(pipe));
7276
7277         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7278         if (IS_PINEVIEW(dev)) {
7279                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7280                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7281         } else {
7282                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7283                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7284         }
7285
7286         if (!IS_GEN2(dev)) {
7287                 if (IS_PINEVIEW(dev))
7288                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7289                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7290                 else
7291                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7292                                DPLL_FPA01_P1_POST_DIV_SHIFT);
7293
7294                 switch (dpll & DPLL_MODE_MASK) {
7295                 case DPLLB_MODE_DAC_SERIAL:
7296                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7297                                 5 : 10;
7298                         break;
7299                 case DPLLB_MODE_LVDS:
7300                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7301                                 7 : 14;
7302                         break;
7303                 default:
7304                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7305                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
7306                         pipe_config->adjusted_mode.clock = 0;
7307                         return;
7308                 }
7309
7310                 if (IS_PINEVIEW(dev))
7311                         pineview_clock(96000, &clock);
7312                 else
7313                         i9xx_clock(96000, &clock);
7314         } else {
7315                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7316
7317                 if (is_lvds) {
7318                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7319                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
7320                         clock.p2 = 14;
7321
7322                         if ((dpll & PLL_REF_INPUT_MASK) ==
7323                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7324                                 /* XXX: might not be 66MHz */
7325                                 i9xx_clock(66000, &clock);
7326                         } else
7327                                 i9xx_clock(48000, &clock);
7328                 } else {
7329                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
7330                                 clock.p1 = 2;
7331                         else {
7332                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7333                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7334                         }
7335                         if (dpll & PLL_P2_DIVIDE_BY_4)
7336                                 clock.p2 = 4;
7337                         else
7338                                 clock.p2 = 2;
7339
7340                         i9xx_clock(48000, &clock);
7341                 }
7342         }
7343
7344         pipe_config->adjusted_mode.clock = clock.dot;
7345 }
7346
7347 static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
7348                                     struct intel_crtc_config *pipe_config)
7349 {
7350         struct drm_device *dev = crtc->base.dev;
7351         struct drm_i915_private *dev_priv = dev->dev_private;
7352         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7353         int link_freq, repeat;
7354         u64 clock;
7355         u32 link_m, link_n;
7356
7357         repeat = pipe_config->pixel_multiplier;
7358
7359         /*
7360          * The calculation for the data clock is:
7361          * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
7362          * But we want to avoid losing precison if possible, so:
7363          * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
7364          *
7365          * and the link clock is simpler:
7366          * link_clock = (m * link_clock * repeat) / n
7367          */
7368
7369         /*
7370          * We need to get the FDI or DP link clock here to derive
7371          * the M/N dividers.
7372          *
7373          * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
7374          * For DP, it's either 1.62GHz or 2.7GHz.
7375          * We do our calculations in 10*MHz since we don't need much precison.
7376          */
7377         if (pipe_config->has_pch_encoder)
7378                 link_freq = intel_fdi_link_freq(dev) * 10000;
7379         else
7380                 link_freq = pipe_config->port_clock;
7381
7382         link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
7383         link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
7384
7385         if (!link_m || !link_n)
7386                 return;
7387
7388         clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
7389         do_div(clock, link_n);
7390
7391         pipe_config->adjusted_mode.clock = clock;
7392 }
7393
7394 /** Returns the currently programmed mode of the given pipe. */
7395 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7396                                              struct drm_crtc *crtc)
7397 {
7398         struct drm_i915_private *dev_priv = dev->dev_private;
7399         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7400         enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7401         struct drm_display_mode *mode;
7402         struct intel_crtc_config pipe_config;
7403         int htot = I915_READ(HTOTAL(cpu_transcoder));
7404         int hsync = I915_READ(HSYNC(cpu_transcoder));
7405         int vtot = I915_READ(VTOTAL(cpu_transcoder));
7406         int vsync = I915_READ(VSYNC(cpu_transcoder));
7407
7408         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7409         if (!mode)
7410                 return NULL;
7411
7412         /*
7413          * Construct a pipe_config sufficient for getting the clock info
7414          * back out of crtc_clock_get.
7415          *
7416          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7417          * to use a real value here instead.
7418          */
7419         pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
7420         pipe_config.pixel_multiplier = 1;
7421         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7422
7423         mode->clock = pipe_config.adjusted_mode.clock;
7424         mode->hdisplay = (htot & 0xffff) + 1;
7425         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7426         mode->hsync_start = (hsync & 0xffff) + 1;
7427         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7428         mode->vdisplay = (vtot & 0xffff) + 1;
7429         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7430         mode->vsync_start = (vsync & 0xffff) + 1;
7431         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7432
7433         drm_mode_set_name(mode);
7434
7435         return mode;
7436 }
7437
7438 static void intel_increase_pllclock(struct drm_crtc *crtc)
7439 {
7440         struct drm_device *dev = crtc->dev;
7441         drm_i915_private_t *dev_priv = dev->dev_private;
7442         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7443         int pipe = intel_crtc->pipe;
7444         int dpll_reg = DPLL(pipe);
7445         int dpll;
7446
7447         if (HAS_PCH_SPLIT(dev))
7448                 return;
7449
7450         if (!dev_priv->lvds_downclock_avail)
7451                 return;
7452
7453         dpll = I915_READ(dpll_reg);
7454         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7455                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7456
7457                 assert_panel_unlocked(dev_priv, pipe);
7458
7459                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7460                 I915_WRITE(dpll_reg, dpll);
7461                 intel_wait_for_vblank(dev, pipe);
7462
7463                 dpll = I915_READ(dpll_reg);
7464                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7465                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7466         }
7467 }
7468
7469 static void intel_decrease_pllclock(struct drm_crtc *crtc)
7470 {
7471         struct drm_device *dev = crtc->dev;
7472         drm_i915_private_t *dev_priv = dev->dev_private;
7473         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7474
7475         if (HAS_PCH_SPLIT(dev))
7476                 return;
7477
7478         if (!dev_priv->lvds_downclock_avail)
7479                 return;
7480
7481         /*
7482          * Since this is called by a timer, we should never get here in
7483          * the manual case.
7484          */
7485         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7486                 int pipe = intel_crtc->pipe;
7487                 int dpll_reg = DPLL(pipe);
7488                 int dpll;
7489
7490                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7491
7492                 assert_panel_unlocked(dev_priv, pipe);
7493
7494                 dpll = I915_READ(dpll_reg);
7495                 dpll |= DISPLAY_RATE_SELECT_FPA1;
7496                 I915_WRITE(dpll_reg, dpll);
7497                 intel_wait_for_vblank(dev, pipe);
7498                 dpll = I915_READ(dpll_reg);
7499                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7500                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7501         }
7502
7503 }
7504
7505 void intel_mark_busy(struct drm_device *dev)
7506 {
7507         struct drm_i915_private *dev_priv = dev->dev_private;
7508
7509         hsw_package_c8_gpu_busy(dev_priv);
7510         i915_update_gfx_val(dev_priv);
7511 }
7512
7513 void intel_mark_idle(struct drm_device *dev)
7514 {
7515         struct drm_i915_private *dev_priv = dev->dev_private;
7516         struct drm_crtc *crtc;
7517
7518         hsw_package_c8_gpu_idle(dev_priv);
7519
7520         if (!i915_powersave)
7521                 return;
7522
7523         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7524                 if (!crtc->fb)
7525                         continue;
7526
7527                 intel_decrease_pllclock(crtc);
7528         }
7529 }
7530
7531 void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7532                         struct intel_ring_buffer *ring)
7533 {
7534         struct drm_device *dev = obj->base.dev;
7535         struct drm_crtc *crtc;
7536
7537         if (!i915_powersave)
7538                 return;
7539
7540         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7541                 if (!crtc->fb)
7542                         continue;
7543
7544                 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7545                         continue;
7546
7547                 intel_increase_pllclock(crtc);
7548                 if (ring && intel_fbc_enabled(dev))
7549                         ring->fbc_dirty = true;
7550         }
7551 }
7552
7553 static void intel_crtc_destroy(struct drm_crtc *crtc)
7554 {
7555         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7556         struct drm_device *dev = crtc->dev;
7557         struct intel_unpin_work *work;
7558         unsigned long flags;
7559
7560         spin_lock_irqsave(&dev->event_lock, flags);
7561         work = intel_crtc->unpin_work;
7562         intel_crtc->unpin_work = NULL;
7563         spin_unlock_irqrestore(&dev->event_lock, flags);
7564
7565         if (work) {
7566                 cancel_work_sync(&work->work);
7567                 kfree(work);
7568         }
7569
7570         intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7571
7572         drm_crtc_cleanup(crtc);
7573
7574         kfree(intel_crtc);
7575 }
7576
7577 static void intel_unpin_work_fn(struct work_struct *__work)
7578 {
7579         struct intel_unpin_work *work =
7580                 container_of(__work, struct intel_unpin_work, work);
7581         struct drm_device *dev = work->crtc->dev;
7582
7583         mutex_lock(&dev->struct_mutex);
7584         intel_unpin_fb_obj(work->old_fb_obj);
7585         drm_gem_object_unreference(&work->pending_flip_obj->base);
7586         drm_gem_object_unreference(&work->old_fb_obj->base);
7587
7588         intel_update_fbc(dev);
7589         mutex_unlock(&dev->struct_mutex);
7590
7591         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7592         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7593
7594         kfree(work);
7595 }
7596
7597 static void do_intel_finish_page_flip(struct drm_device *dev,
7598                                       struct drm_crtc *crtc)
7599 {
7600         drm_i915_private_t *dev_priv = dev->dev_private;
7601         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7602         struct intel_unpin_work *work;
7603         unsigned long flags;
7604
7605         /* Ignore early vblank irqs */
7606         if (intel_crtc == NULL)
7607                 return;
7608
7609         spin_lock_irqsave(&dev->event_lock, flags);
7610         work = intel_crtc->unpin_work;
7611
7612         /* Ensure we don't miss a work->pending update ... */
7613         smp_rmb();
7614
7615         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7616                 spin_unlock_irqrestore(&dev->event_lock, flags);
7617                 return;
7618         }
7619
7620         /* and that the unpin work is consistent wrt ->pending. */
7621         smp_rmb();
7622
7623         intel_crtc->unpin_work = NULL;
7624
7625         if (work->event)
7626                 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
7627
7628         drm_vblank_put(dev, intel_crtc->pipe);
7629
7630         spin_unlock_irqrestore(&dev->event_lock, flags);
7631
7632         wake_up_all(&dev_priv->pending_flip_queue);
7633
7634         queue_work(dev_priv->wq, &work->work);
7635
7636         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7637 }
7638
7639 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7640 {
7641         drm_i915_private_t *dev_priv = dev->dev_private;
7642         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7643
7644         do_intel_finish_page_flip(dev, crtc);
7645 }
7646
7647 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7648 {
7649         drm_i915_private_t *dev_priv = dev->dev_private;
7650         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7651
7652         do_intel_finish_page_flip(dev, crtc);
7653 }
7654
7655 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7656 {
7657         drm_i915_private_t *dev_priv = dev->dev_private;
7658         struct intel_crtc *intel_crtc =
7659                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7660         unsigned long flags;
7661
7662         /* NB: An MMIO update of the plane base pointer will also
7663          * generate a page-flip completion irq, i.e. every modeset
7664          * is also accompanied by a spurious intel_prepare_page_flip().
7665          */
7666         spin_lock_irqsave(&dev->event_lock, flags);
7667         if (intel_crtc->unpin_work)
7668                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
7669         spin_unlock_irqrestore(&dev->event_lock, flags);
7670 }
7671
7672 inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
7673 {
7674         /* Ensure that the work item is consistent when activating it ... */
7675         smp_wmb();
7676         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
7677         /* and that it is marked active as soon as the irq could fire. */
7678         smp_wmb();
7679 }
7680
7681 static int intel_gen2_queue_flip(struct drm_device *dev,
7682                                  struct drm_crtc *crtc,
7683                                  struct drm_framebuffer *fb,
7684                                  struct drm_i915_gem_object *obj,
7685                                  uint32_t flags)
7686 {
7687         struct drm_i915_private *dev_priv = dev->dev_private;
7688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7689         u32 flip_mask;
7690         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7691         int ret;
7692
7693         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7694         if (ret)
7695                 goto err;
7696
7697         ret = intel_ring_begin(ring, 6);
7698         if (ret)
7699                 goto err_unpin;
7700
7701         /* Can't queue multiple flips, so wait for the previous
7702          * one to finish before executing the next.
7703          */
7704         if (intel_crtc->plane)
7705                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7706         else
7707                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7708         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7709         intel_ring_emit(ring, MI_NOOP);
7710         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7711                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7712         intel_ring_emit(ring, fb->pitches[0]);
7713         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7714         intel_ring_emit(ring, 0); /* aux display base address, unused */
7715
7716         intel_mark_page_flip_active(intel_crtc);
7717         intel_ring_advance(ring);
7718         return 0;
7719
7720 err_unpin:
7721         intel_unpin_fb_obj(obj);
7722 err:
7723         return ret;
7724 }
7725
7726 static int intel_gen3_queue_flip(struct drm_device *dev,
7727                                  struct drm_crtc *crtc,
7728                                  struct drm_framebuffer *fb,
7729                                  struct drm_i915_gem_object *obj,
7730                                  uint32_t flags)
7731 {
7732         struct drm_i915_private *dev_priv = dev->dev_private;
7733         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7734         u32 flip_mask;
7735         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7736         int ret;
7737
7738         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7739         if (ret)
7740                 goto err;
7741
7742         ret = intel_ring_begin(ring, 6);
7743         if (ret)
7744                 goto err_unpin;
7745
7746         if (intel_crtc->plane)
7747                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7748         else
7749                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7750         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7751         intel_ring_emit(ring, MI_NOOP);
7752         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7753                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7754         intel_ring_emit(ring, fb->pitches[0]);
7755         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7756         intel_ring_emit(ring, MI_NOOP);
7757
7758         intel_mark_page_flip_active(intel_crtc);
7759         intel_ring_advance(ring);
7760         return 0;
7761
7762 err_unpin:
7763         intel_unpin_fb_obj(obj);
7764 err:
7765         return ret;
7766 }
7767
7768 static int intel_gen4_queue_flip(struct drm_device *dev,
7769                                  struct drm_crtc *crtc,
7770                                  struct drm_framebuffer *fb,
7771                                  struct drm_i915_gem_object *obj,
7772                                  uint32_t flags)
7773 {
7774         struct drm_i915_private *dev_priv = dev->dev_private;
7775         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7776         uint32_t pf, pipesrc;
7777         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7778         int ret;
7779
7780         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7781         if (ret)
7782                 goto err;
7783
7784         ret = intel_ring_begin(ring, 4);
7785         if (ret)
7786                 goto err_unpin;
7787
7788         /* i965+ uses the linear or tiled offsets from the
7789          * Display Registers (which do not change across a page-flip)
7790          * so we need only reprogram the base address.
7791          */
7792         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7793                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7794         intel_ring_emit(ring, fb->pitches[0]);
7795         intel_ring_emit(ring,
7796                         (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
7797                         obj->tiling_mode);
7798
7799         /* XXX Enabling the panel-fitter across page-flip is so far
7800          * untested on non-native modes, so ignore it for now.
7801          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7802          */
7803         pf = 0;
7804         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7805         intel_ring_emit(ring, pf | pipesrc);
7806
7807         intel_mark_page_flip_active(intel_crtc);
7808         intel_ring_advance(ring);
7809         return 0;
7810
7811 err_unpin:
7812         intel_unpin_fb_obj(obj);
7813 err:
7814         return ret;
7815 }
7816
7817 static int intel_gen6_queue_flip(struct drm_device *dev,
7818                                  struct drm_crtc *crtc,
7819                                  struct drm_framebuffer *fb,
7820                                  struct drm_i915_gem_object *obj,
7821                                  uint32_t flags)
7822 {
7823         struct drm_i915_private *dev_priv = dev->dev_private;
7824         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7825         struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7826         uint32_t pf, pipesrc;
7827         int ret;
7828
7829         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7830         if (ret)
7831                 goto err;
7832
7833         ret = intel_ring_begin(ring, 4);
7834         if (ret)
7835                 goto err_unpin;
7836
7837         intel_ring_emit(ring, MI_DISPLAY_FLIP |
7838                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7839         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7840         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7841
7842         /* Contrary to the suggestions in the documentation,
7843          * "Enable Panel Fitter" does not seem to be required when page
7844          * flipping with a non-native mode, and worse causes a normal
7845          * modeset to fail.
7846          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7847          */
7848         pf = 0;
7849         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7850         intel_ring_emit(ring, pf | pipesrc);
7851
7852         intel_mark_page_flip_active(intel_crtc);
7853         intel_ring_advance(ring);
7854         return 0;
7855
7856 err_unpin:
7857         intel_unpin_fb_obj(obj);
7858 err:
7859         return ret;
7860 }
7861
7862 static int intel_gen7_queue_flip(struct drm_device *dev,
7863                                  struct drm_crtc *crtc,
7864                                  struct drm_framebuffer *fb,
7865                                  struct drm_i915_gem_object *obj,
7866                                  uint32_t flags)
7867 {
7868         struct drm_i915_private *dev_priv = dev->dev_private;
7869         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7870         struct intel_ring_buffer *ring;
7871         uint32_t plane_bit = 0;
7872         int len, ret;
7873
7874         ring = obj->ring;
7875         if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
7876                 ring = &dev_priv->ring[BCS];
7877
7878         ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7879         if (ret)
7880                 goto err;
7881
7882         switch(intel_crtc->plane) {
7883         case PLANE_A:
7884                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7885                 break;
7886         case PLANE_B:
7887                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7888                 break;
7889         case PLANE_C:
7890                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7891                 break;
7892         default:
7893                 WARN_ONCE(1, "unknown plane in flip command\n");
7894                 ret = -ENODEV;
7895                 goto err_unpin;
7896         }
7897
7898         len = 4;
7899         if (ring->id == RCS)
7900                 len += 6;
7901
7902         ret = intel_ring_begin(ring, len);
7903         if (ret)
7904                 goto err_unpin;
7905
7906         /* Unmask the flip-done completion message. Note that the bspec says that
7907          * we should do this for both the BCS and RCS, and that we must not unmask
7908          * more than one flip event at any time (or ensure that one flip message
7909          * can be sent by waiting for flip-done prior to queueing new flips).
7910          * Experimentation says that BCS works despite DERRMR masking all
7911          * flip-done completion events and that unmasking all planes at once
7912          * for the RCS also doesn't appear to drop events. Setting the DERRMR
7913          * to zero does lead to lockups within MI_DISPLAY_FLIP.
7914          */
7915         if (ring->id == RCS) {
7916                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
7917                 intel_ring_emit(ring, DERRMR);
7918                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
7919                                         DERRMR_PIPEB_PRI_FLIP_DONE |
7920                                         DERRMR_PIPEC_PRI_FLIP_DONE));
7921                 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
7922                 intel_ring_emit(ring, DERRMR);
7923                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
7924         }
7925
7926         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7927         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7928         intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
7929         intel_ring_emit(ring, (MI_NOOP));
7930
7931         intel_mark_page_flip_active(intel_crtc);
7932         intel_ring_advance(ring);
7933         return 0;
7934
7935 err_unpin:
7936         intel_unpin_fb_obj(obj);
7937 err:
7938         return ret;
7939 }
7940
7941 static int intel_default_queue_flip(struct drm_device *dev,
7942                                     struct drm_crtc *crtc,
7943                                     struct drm_framebuffer *fb,
7944                                     struct drm_i915_gem_object *obj,
7945                                     uint32_t flags)
7946 {
7947         return -ENODEV;
7948 }
7949
7950 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7951                                 struct drm_framebuffer *fb,
7952                                 struct drm_pending_vblank_event *event,
7953                                 uint32_t page_flip_flags)
7954 {
7955         struct drm_device *dev = crtc->dev;
7956         struct drm_i915_private *dev_priv = dev->dev_private;
7957         struct drm_framebuffer *old_fb = crtc->fb;
7958         struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
7959         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7960         struct intel_unpin_work *work;
7961         unsigned long flags;
7962         int ret;
7963
7964         /* Can't change pixel format via MI display flips. */
7965         if (fb->pixel_format != crtc->fb->pixel_format)
7966                 return -EINVAL;
7967
7968         /*
7969          * TILEOFF/LINOFF registers can't be changed via MI display flips.
7970          * Note that pitch changes could also affect these register.
7971          */
7972         if (INTEL_INFO(dev)->gen > 3 &&
7973             (fb->offsets[0] != crtc->fb->offsets[0] ||
7974              fb->pitches[0] != crtc->fb->pitches[0]))
7975                 return -EINVAL;
7976
7977         work = kzalloc(sizeof *work, GFP_KERNEL);
7978         if (work == NULL)
7979                 return -ENOMEM;
7980
7981         work->event = event;
7982         work->crtc = crtc;
7983         work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
7984         INIT_WORK(&work->work, intel_unpin_work_fn);
7985
7986         ret = drm_vblank_get(dev, intel_crtc->pipe);
7987         if (ret)
7988                 goto free_work;
7989
7990         /* We borrow the event spin lock for protecting unpin_work */
7991         spin_lock_irqsave(&dev->event_lock, flags);
7992         if (intel_crtc->unpin_work) {
7993                 spin_unlock_irqrestore(&dev->event_lock, flags);
7994                 kfree(work);
7995                 drm_vblank_put(dev, intel_crtc->pipe);
7996
7997                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7998                 return -EBUSY;
7999         }
8000         intel_crtc->unpin_work = work;
8001         spin_unlock_irqrestore(&dev->event_lock, flags);
8002
8003         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8004                 flush_workqueue(dev_priv->wq);
8005
8006         ret = i915_mutex_lock_interruptible(dev);
8007         if (ret)
8008                 goto cleanup;
8009
8010         /* Reference the objects for the scheduled work. */
8011         drm_gem_object_reference(&work->old_fb_obj->base);
8012         drm_gem_object_reference(&obj->base);
8013
8014         crtc->fb = fb;
8015
8016         work->pending_flip_obj = obj;
8017
8018         work->enable_stall_check = true;
8019
8020         atomic_inc(&intel_crtc->unpin_work_count);
8021         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8022
8023         ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8024         if (ret)
8025                 goto cleanup_pending;
8026
8027         intel_disable_fbc(dev);
8028         intel_mark_fb_busy(obj, NULL);
8029         mutex_unlock(&dev->struct_mutex);
8030
8031         trace_i915_flip_request(intel_crtc->plane, obj);
8032
8033         return 0;
8034
8035 cleanup_pending:
8036         atomic_dec(&intel_crtc->unpin_work_count);
8037         crtc->fb = old_fb;
8038         drm_gem_object_unreference(&work->old_fb_obj->base);
8039         drm_gem_object_unreference(&obj->base);
8040         mutex_unlock(&dev->struct_mutex);
8041
8042 cleanup:
8043         spin_lock_irqsave(&dev->event_lock, flags);
8044         intel_crtc->unpin_work = NULL;
8045         spin_unlock_irqrestore(&dev->event_lock, flags);
8046
8047         drm_vblank_put(dev, intel_crtc->pipe);
8048 free_work:
8049         kfree(work);
8050
8051         return ret;
8052 }
8053
8054 static struct drm_crtc_helper_funcs intel_helper_funcs = {
8055         .mode_set_base_atomic = intel_pipe_set_base_atomic,
8056         .load_lut = intel_crtc_load_lut,
8057 };
8058
8059 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8060                                   struct drm_crtc *crtc)
8061 {
8062         struct drm_device *dev;
8063         struct drm_crtc *tmp;
8064         int crtc_mask = 1;
8065
8066         WARN(!crtc, "checking null crtc?\n");
8067
8068         dev = crtc->dev;
8069
8070         list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8071                 if (tmp == crtc)
8072                         break;
8073                 crtc_mask <<= 1;
8074         }
8075
8076         if (encoder->possible_crtcs & crtc_mask)
8077                 return true;
8078         return false;
8079 }
8080
8081 /**
8082  * intel_modeset_update_staged_output_state
8083  *
8084  * Updates the staged output configuration state, e.g. after we've read out the
8085  * current hw state.
8086  */
8087 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8088 {
8089         struct intel_encoder *encoder;
8090         struct intel_connector *connector;
8091
8092         list_for_each_entry(connector, &dev->mode_config.connector_list,
8093                             base.head) {
8094                 connector->new_encoder =
8095                         to_intel_encoder(connector->base.encoder);
8096         }
8097
8098         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8099                             base.head) {
8100                 encoder->new_crtc =
8101                         to_intel_crtc(encoder->base.crtc);
8102         }
8103 }
8104
8105 /**
8106  * intel_modeset_commit_output_state
8107  *
8108  * This function copies the stage display pipe configuration to the real one.
8109  */
8110 static void intel_modeset_commit_output_state(struct drm_device *dev)
8111 {
8112         struct intel_encoder *encoder;
8113         struct intel_connector *connector;
8114
8115         list_for_each_entry(connector, &dev->mode_config.connector_list,
8116                             base.head) {
8117                 connector->base.encoder = &connector->new_encoder->base;
8118         }
8119
8120         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8121                             base.head) {
8122                 encoder->base.crtc = &encoder->new_crtc->base;
8123         }
8124 }
8125
8126 static void
8127 connected_sink_compute_bpp(struct intel_connector * connector,
8128                            struct intel_crtc_config *pipe_config)
8129 {
8130         int bpp = pipe_config->pipe_bpp;
8131
8132         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8133                 connector->base.base.id,
8134                 drm_get_connector_name(&connector->base));
8135
8136         /* Don't use an invalid EDID bpc value */
8137         if (connector->base.display_info.bpc &&
8138             connector->base.display_info.bpc * 3 < bpp) {
8139                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8140                               bpp, connector->base.display_info.bpc*3);
8141                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8142         }
8143
8144         /* Clamp bpp to 8 on screens without EDID 1.4 */
8145         if (connector->base.display_info.bpc == 0 && bpp > 24) {
8146                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8147                               bpp);
8148                 pipe_config->pipe_bpp = 24;
8149         }
8150 }
8151
8152 static int
8153 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8154                           struct drm_framebuffer *fb,
8155                           struct intel_crtc_config *pipe_config)
8156 {
8157         struct drm_device *dev = crtc->base.dev;
8158         struct intel_connector *connector;
8159         int bpp;
8160
8161         switch (fb->pixel_format) {
8162         case DRM_FORMAT_C8:
8163                 bpp = 8*3; /* since we go through a colormap */
8164                 break;
8165         case DRM_FORMAT_XRGB1555:
8166         case DRM_FORMAT_ARGB1555:
8167                 /* checked in intel_framebuffer_init already */
8168                 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8169                         return -EINVAL;
8170         case DRM_FORMAT_RGB565:
8171                 bpp = 6*3; /* min is 18bpp */
8172                 break;
8173         case DRM_FORMAT_XBGR8888:
8174         case DRM_FORMAT_ABGR8888:
8175                 /* checked in intel_framebuffer_init already */
8176                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8177                         return -EINVAL;
8178         case DRM_FORMAT_XRGB8888:
8179         case DRM_FORMAT_ARGB8888:
8180                 bpp = 8*3;
8181                 break;
8182         case DRM_FORMAT_XRGB2101010:
8183         case DRM_FORMAT_ARGB2101010:
8184         case DRM_FORMAT_XBGR2101010:
8185         case DRM_FORMAT_ABGR2101010:
8186                 /* checked in intel_framebuffer_init already */
8187                 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8188                         return -EINVAL;
8189                 bpp = 10*3;
8190                 break;
8191         /* TODO: gen4+ supports 16 bpc floating point, too. */
8192         default:
8193                 DRM_DEBUG_KMS("unsupported depth\n");
8194                 return -EINVAL;
8195         }
8196
8197         pipe_config->pipe_bpp = bpp;
8198
8199         /* Clamp display bpp to EDID value */
8200         list_for_each_entry(connector, &dev->mode_config.connector_list,
8201                             base.head) {
8202                 if (!connector->new_encoder ||
8203                     connector->new_encoder->new_crtc != crtc)
8204                         continue;
8205
8206                 connected_sink_compute_bpp(connector, pipe_config);
8207         }
8208
8209         return bpp;
8210 }
8211
8212 static void intel_dump_pipe_config(struct intel_crtc *crtc,
8213                                    struct intel_crtc_config *pipe_config,
8214                                    const char *context)
8215 {
8216         DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8217                       context, pipe_name(crtc->pipe));
8218
8219         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8220         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8221                       pipe_config->pipe_bpp, pipe_config->dither);
8222         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8223                       pipe_config->has_pch_encoder,
8224                       pipe_config->fdi_lanes,
8225                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8226                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8227                       pipe_config->fdi_m_n.tu);
8228         DRM_DEBUG_KMS("requested mode:\n");
8229         drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8230         DRM_DEBUG_KMS("adjusted mode:\n");
8231         drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8232         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8233                       pipe_config->gmch_pfit.control,
8234                       pipe_config->gmch_pfit.pgm_ratios,
8235                       pipe_config->gmch_pfit.lvds_border_bits);
8236         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8237                       pipe_config->pch_pfit.pos,
8238                       pipe_config->pch_pfit.size,
8239                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8240         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8241 }
8242
8243 static bool check_encoder_cloning(struct drm_crtc *crtc)
8244 {
8245         int num_encoders = 0;
8246         bool uncloneable_encoders = false;
8247         struct intel_encoder *encoder;
8248
8249         list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8250                             base.head) {
8251                 if (&encoder->new_crtc->base != crtc)
8252                         continue;
8253
8254                 num_encoders++;
8255                 if (!encoder->cloneable)
8256                         uncloneable_encoders = true;
8257         }
8258
8259         return !(num_encoders > 1 && uncloneable_encoders);
8260 }
8261
8262 static struct intel_crtc_config *
8263 intel_modeset_pipe_config(struct drm_crtc *crtc,
8264                           struct drm_framebuffer *fb,
8265                           struct drm_display_mode *mode)
8266 {
8267         struct drm_device *dev = crtc->dev;
8268         struct intel_encoder *encoder;
8269         struct intel_crtc_config *pipe_config;
8270         int plane_bpp, ret = -EINVAL;
8271         bool retry = true;
8272
8273         if (!check_encoder_cloning(crtc)) {
8274                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8275                 return ERR_PTR(-EINVAL);
8276         }
8277
8278         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8279         if (!pipe_config)
8280                 return ERR_PTR(-ENOMEM);
8281
8282         drm_mode_copy(&pipe_config->adjusted_mode, mode);
8283         drm_mode_copy(&pipe_config->requested_mode, mode);
8284         pipe_config->cpu_transcoder =
8285                 (enum transcoder) to_intel_crtc(crtc)->pipe;
8286         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8287
8288         /*
8289          * Sanitize sync polarity flags based on requested ones. If neither
8290          * positive or negative polarity is requested, treat this as meaning
8291          * negative polarity.
8292          */
8293         if (!(pipe_config->adjusted_mode.flags &
8294               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8295                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8296
8297         if (!(pipe_config->adjusted_mode.flags &
8298               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8299                 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8300
8301         /* Compute a starting value for pipe_config->pipe_bpp taking the source
8302          * plane pixel format and any sink constraints into account. Returns the
8303          * source plane bpp so that dithering can be selected on mismatches
8304          * after encoders and crtc also have had their say. */
8305         plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8306                                               fb, pipe_config);
8307         if (plane_bpp < 0)
8308                 goto fail;
8309
8310 encoder_retry:
8311         /* Ensure the port clock defaults are reset when retrying. */
8312         pipe_config->port_clock = 0;
8313         pipe_config->pixel_multiplier = 1;
8314
8315         /* Fill in default crtc timings, allow encoders to overwrite them. */
8316         drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
8317
8318         /* Pass our mode to the connectors and the CRTC to give them a chance to
8319          * adjust it according to limitations or connector properties, and also
8320          * a chance to reject the mode entirely.
8321          */
8322         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8323                             base.head) {
8324
8325                 if (&encoder->new_crtc->base != crtc)
8326                         continue;
8327
8328                 if (!(encoder->compute_config(encoder, pipe_config))) {
8329                         DRM_DEBUG_KMS("Encoder config failure\n");
8330                         goto fail;
8331                 }
8332         }
8333
8334         /* Set default port clock if not overwritten by the encoder. Needs to be
8335          * done afterwards in case the encoder adjusts the mode. */
8336         if (!pipe_config->port_clock)
8337                 pipe_config->port_clock = pipe_config->adjusted_mode.clock;
8338
8339         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8340         if (ret < 0) {
8341                 DRM_DEBUG_KMS("CRTC fixup failed\n");
8342                 goto fail;
8343         }
8344
8345         if (ret == RETRY) {
8346                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8347                         ret = -EINVAL;
8348                         goto fail;
8349                 }
8350
8351                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8352                 retry = false;
8353                 goto encoder_retry;
8354         }
8355
8356         pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8357         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8358                       plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8359
8360         return pipe_config;
8361 fail:
8362         kfree(pipe_config);
8363         return ERR_PTR(ret);
8364 }
8365
8366 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
8367  * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8368 static void
8369 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8370                              unsigned *prepare_pipes, unsigned *disable_pipes)
8371 {
8372         struct intel_crtc *intel_crtc;
8373         struct drm_device *dev = crtc->dev;
8374         struct intel_encoder *encoder;
8375         struct intel_connector *connector;
8376         struct drm_crtc *tmp_crtc;
8377
8378         *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8379
8380         /* Check which crtcs have changed outputs connected to them, these need
8381          * to be part of the prepare_pipes mask. We don't (yet) support global
8382          * modeset across multiple crtcs, so modeset_pipes will only have one
8383          * bit set at most. */
8384         list_for_each_entry(connector, &dev->mode_config.connector_list,
8385                             base.head) {
8386                 if (connector->base.encoder == &connector->new_encoder->base)
8387                         continue;
8388
8389                 if (connector->base.encoder) {
8390                         tmp_crtc = connector->base.encoder->crtc;
8391
8392                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8393                 }
8394
8395                 if (connector->new_encoder)
8396                         *prepare_pipes |=
8397                                 1 << connector->new_encoder->new_crtc->pipe;
8398         }
8399
8400         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8401                             base.head) {
8402                 if (encoder->base.crtc == &encoder->new_crtc->base)
8403                         continue;
8404
8405                 if (encoder->base.crtc) {
8406                         tmp_crtc = encoder->base.crtc;
8407
8408                         *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8409                 }
8410
8411                 if (encoder->new_crtc)
8412                         *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8413         }
8414
8415         /* Check for any pipes that will be fully disabled ... */
8416         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8417                             base.head) {
8418                 bool used = false;
8419
8420                 /* Don't try to disable disabled crtcs. */
8421                 if (!intel_crtc->base.enabled)
8422                         continue;
8423
8424                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8425                                     base.head) {
8426                         if (encoder->new_crtc == intel_crtc)
8427                                 used = true;
8428                 }
8429
8430                 if (!used)
8431                         *disable_pipes |= 1 << intel_crtc->pipe;
8432         }
8433
8434
8435         /* set_mode is also used to update properties on life display pipes. */
8436         intel_crtc = to_intel_crtc(crtc);
8437         if (crtc->enabled)
8438                 *prepare_pipes |= 1 << intel_crtc->pipe;
8439
8440         /*
8441          * For simplicity do a full modeset on any pipe where the output routing
8442          * changed. We could be more clever, but that would require us to be
8443          * more careful with calling the relevant encoder->mode_set functions.
8444          */
8445         if (*prepare_pipes)
8446                 *modeset_pipes = *prepare_pipes;
8447
8448         /* ... and mask these out. */
8449         *modeset_pipes &= ~(*disable_pipes);
8450         *prepare_pipes &= ~(*disable_pipes);
8451
8452         /*
8453          * HACK: We don't (yet) fully support global modesets. intel_set_config
8454          * obies this rule, but the modeset restore mode of
8455          * intel_modeset_setup_hw_state does not.
8456          */
8457         *modeset_pipes &= 1 << intel_crtc->pipe;
8458         *prepare_pipes &= 1 << intel_crtc->pipe;
8459
8460         DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8461                       *modeset_pipes, *prepare_pipes, *disable_pipes);
8462 }
8463
8464 static bool intel_crtc_in_use(struct drm_crtc *crtc)
8465 {
8466         struct drm_encoder *encoder;
8467         struct drm_device *dev = crtc->dev;
8468
8469         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8470                 if (encoder->crtc == crtc)
8471                         return true;
8472
8473         return false;
8474 }
8475
8476 static void
8477 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8478 {
8479         struct intel_encoder *intel_encoder;
8480         struct intel_crtc *intel_crtc;
8481         struct drm_connector *connector;
8482
8483         list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8484                             base.head) {
8485                 if (!intel_encoder->base.crtc)
8486                         continue;
8487
8488                 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8489
8490                 if (prepare_pipes & (1 << intel_crtc->pipe))
8491                         intel_encoder->connectors_active = false;
8492         }
8493
8494         intel_modeset_commit_output_state(dev);
8495
8496         /* Update computed state. */
8497         list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8498                             base.head) {
8499                 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8500         }
8501
8502         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8503                 if (!connector->encoder || !connector->encoder->crtc)
8504                         continue;
8505
8506                 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8507
8508                 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8509                         struct drm_property *dpms_property =
8510                                 dev->mode_config.dpms_property;
8511
8512                         connector->dpms = DRM_MODE_DPMS_ON;
8513                         drm_object_property_set_value(&connector->base,
8514                                                          dpms_property,
8515                                                          DRM_MODE_DPMS_ON);
8516
8517                         intel_encoder = to_intel_encoder(connector->encoder);
8518                         intel_encoder->connectors_active = true;
8519                 }
8520         }
8521
8522 }
8523
8524 static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
8525                                     struct intel_crtc_config *new)
8526 {
8527         int clock1, clock2, diff;
8528
8529         clock1 = cur->adjusted_mode.clock;
8530         clock2 = new->adjusted_mode.clock;
8531
8532         if (clock1 == clock2)
8533                 return true;
8534
8535         if (!clock1 || !clock2)
8536                 return false;
8537
8538         diff = abs(clock1 - clock2);
8539
8540         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8541                 return true;
8542
8543         return false;
8544 }
8545
8546 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8547         list_for_each_entry((intel_crtc), \
8548                             &(dev)->mode_config.crtc_list, \
8549                             base.head) \
8550                 if (mask & (1 <<(intel_crtc)->pipe))
8551
8552 static bool
8553 intel_pipe_config_compare(struct drm_device *dev,
8554                           struct intel_crtc_config *current_config,
8555                           struct intel_crtc_config *pipe_config)
8556 {
8557 #define PIPE_CONF_CHECK_X(name) \
8558         if (current_config->name != pipe_config->name) { \
8559                 DRM_ERROR("mismatch in " #name " " \
8560                           "(expected 0x%08x, found 0x%08x)\n", \
8561                           current_config->name, \
8562                           pipe_config->name); \
8563                 return false; \
8564         }
8565
8566 #define PIPE_CONF_CHECK_I(name) \
8567         if (current_config->name != pipe_config->name) { \
8568                 DRM_ERROR("mismatch in " #name " " \
8569                           "(expected %i, found %i)\n", \
8570                           current_config->name, \
8571                           pipe_config->name); \
8572                 return false; \
8573         }
8574
8575 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
8576         if ((current_config->name ^ pipe_config->name) & (mask)) { \
8577                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
8578                           "(expected %i, found %i)\n", \
8579                           current_config->name & (mask), \
8580                           pipe_config->name & (mask)); \
8581                 return false; \
8582         }
8583
8584 #define PIPE_CONF_QUIRK(quirk)  \
8585         ((current_config->quirks | pipe_config->quirks) & (quirk))
8586
8587         PIPE_CONF_CHECK_I(cpu_transcoder);
8588
8589         PIPE_CONF_CHECK_I(has_pch_encoder);
8590         PIPE_CONF_CHECK_I(fdi_lanes);
8591         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
8592         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
8593         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
8594         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
8595         PIPE_CONF_CHECK_I(fdi_m_n.tu);
8596
8597         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
8598         PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
8599         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
8600         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
8601         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
8602         PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
8603
8604         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
8605         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
8606         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
8607         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
8608         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
8609         PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
8610
8611         PIPE_CONF_CHECK_I(pixel_multiplier);
8612
8613         PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8614                               DRM_MODE_FLAG_INTERLACE);
8615
8616         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
8617                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8618                                       DRM_MODE_FLAG_PHSYNC);
8619                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8620                                       DRM_MODE_FLAG_NHSYNC);
8621                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8622                                       DRM_MODE_FLAG_PVSYNC);
8623                 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
8624                                       DRM_MODE_FLAG_NVSYNC);
8625         }
8626
8627         PIPE_CONF_CHECK_I(requested_mode.hdisplay);
8628         PIPE_CONF_CHECK_I(requested_mode.vdisplay);
8629
8630         PIPE_CONF_CHECK_I(gmch_pfit.control);
8631         /* pfit ratios are autocomputed by the hw on gen4+ */
8632         if (INTEL_INFO(dev)->gen < 4)
8633                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
8634         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
8635         PIPE_CONF_CHECK_I(pch_pfit.enabled);
8636         if (current_config->pch_pfit.enabled) {
8637                 PIPE_CONF_CHECK_I(pch_pfit.pos);
8638                 PIPE_CONF_CHECK_I(pch_pfit.size);
8639         }
8640
8641         PIPE_CONF_CHECK_I(ips_enabled);
8642
8643         PIPE_CONF_CHECK_I(shared_dpll);
8644         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8645         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
8646         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
8647         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
8648
8649         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
8650                 PIPE_CONF_CHECK_I(pipe_bpp);
8651
8652 #undef PIPE_CONF_CHECK_X
8653 #undef PIPE_CONF_CHECK_I
8654 #undef PIPE_CONF_CHECK_FLAGS
8655 #undef PIPE_CONF_QUIRK
8656
8657         if (!IS_HASWELL(dev)) {
8658                 if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
8659                         DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
8660                                   current_config->adjusted_mode.clock,
8661                                   pipe_config->adjusted_mode.clock);
8662                         return false;
8663                 }
8664         }
8665
8666         return true;
8667 }
8668
8669 static void
8670 check_connector_state(struct drm_device *dev)
8671 {
8672         struct intel_connector *connector;
8673
8674         list_for_each_entry(connector, &dev->mode_config.connector_list,
8675                             base.head) {
8676                 /* This also checks the encoder/connector hw state with the
8677                  * ->get_hw_state callbacks. */
8678                 intel_connector_check_state(connector);
8679
8680                 WARN(&connector->new_encoder->base != connector->base.encoder,
8681                      "connector's staged encoder doesn't match current encoder\n");
8682         }
8683 }
8684
8685 static void
8686 check_encoder_state(struct drm_device *dev)
8687 {
8688         struct intel_encoder *encoder;
8689         struct intel_connector *connector;
8690
8691         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8692                             base.head) {
8693                 bool enabled = false;
8694                 bool active = false;
8695                 enum pipe pipe, tracked_pipe;
8696
8697                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
8698                               encoder->base.base.id,
8699                               drm_get_encoder_name(&encoder->base));
8700
8701                 WARN(&encoder->new_crtc->base != encoder->base.crtc,
8702                      "encoder's stage crtc doesn't match current crtc\n");
8703                 WARN(encoder->connectors_active && !encoder->base.crtc,
8704                      "encoder's active_connectors set, but no crtc\n");
8705
8706                 list_for_each_entry(connector, &dev->mode_config.connector_list,
8707                                     base.head) {
8708                         if (connector->base.encoder != &encoder->base)
8709                                 continue;
8710                         enabled = true;
8711                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
8712                                 active = true;
8713                 }
8714                 WARN(!!encoder->base.crtc != enabled,
8715                      "encoder's enabled state mismatch "
8716                      "(expected %i, found %i)\n",
8717                      !!encoder->base.crtc, enabled);
8718                 WARN(active && !encoder->base.crtc,
8719                      "active encoder with no crtc\n");
8720
8721                 WARN(encoder->connectors_active != active,
8722                      "encoder's computed active state doesn't match tracked active state "
8723                      "(expected %i, found %i)\n", active, encoder->connectors_active);
8724
8725                 active = encoder->get_hw_state(encoder, &pipe);
8726                 WARN(active != encoder->connectors_active,
8727                      "encoder's hw state doesn't match sw tracking "
8728                      "(expected %i, found %i)\n",
8729                      encoder->connectors_active, active);
8730
8731                 if (!encoder->base.crtc)
8732                         continue;
8733
8734                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
8735                 WARN(active && pipe != tracked_pipe,
8736                      "active encoder's pipe doesn't match"
8737                      "(expected %i, found %i)\n",
8738                      tracked_pipe, pipe);
8739
8740         }
8741 }
8742
8743 static void
8744 check_crtc_state(struct drm_device *dev)
8745 {
8746         drm_i915_private_t *dev_priv = dev->dev_private;
8747         struct intel_crtc *crtc;
8748         struct intel_encoder *encoder;
8749         struct intel_crtc_config pipe_config;
8750
8751         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8752                             base.head) {
8753                 bool enabled = false;
8754                 bool active = false;
8755
8756                 memset(&pipe_config, 0, sizeof(pipe_config));
8757
8758                 DRM_DEBUG_KMS("[CRTC:%d]\n",
8759                               crtc->base.base.id);
8760
8761                 WARN(crtc->active && !crtc->base.enabled,
8762                      "active crtc, but not enabled in sw tracking\n");
8763
8764                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8765                                     base.head) {
8766                         if (encoder->base.crtc != &crtc->base)
8767                                 continue;
8768                         enabled = true;
8769                         if (encoder->connectors_active)
8770                                 active = true;
8771                 }
8772
8773                 WARN(active != crtc->active,
8774                      "crtc's computed active state doesn't match tracked active state "
8775                      "(expected %i, found %i)\n", active, crtc->active);
8776                 WARN(enabled != crtc->base.enabled,
8777                      "crtc's computed enabled state doesn't match tracked enabled state "
8778                      "(expected %i, found %i)\n", enabled, crtc->base.enabled);
8779
8780                 active = dev_priv->display.get_pipe_config(crtc,
8781                                                            &pipe_config);
8782
8783                 /* hw state is inconsistent with the pipe A quirk */
8784                 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
8785                         active = crtc->active;
8786
8787                 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8788                                     base.head) {
8789                         enum pipe pipe;
8790                         if (encoder->base.crtc != &crtc->base)
8791                                 continue;
8792                         if (encoder->get_config &&
8793                             encoder->get_hw_state(encoder, &pipe))
8794                                 encoder->get_config(encoder, &pipe_config);
8795                 }
8796
8797                 if (dev_priv->display.get_clock)
8798                         dev_priv->display.get_clock(crtc, &pipe_config);
8799
8800                 WARN(crtc->active != active,
8801                      "crtc active state doesn't match with hw state "
8802                      "(expected %i, found %i)\n", crtc->active, active);
8803
8804                 if (active &&
8805                     !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
8806                         WARN(1, "pipe state doesn't match!\n");
8807                         intel_dump_pipe_config(crtc, &pipe_config,
8808                                                "[hw state]");
8809                         intel_dump_pipe_config(crtc, &crtc->config,
8810                                                "[sw state]");
8811                 }
8812         }
8813 }
8814
8815 static void
8816 check_shared_dpll_state(struct drm_device *dev)
8817 {
8818         drm_i915_private_t *dev_priv = dev->dev_private;
8819         struct intel_crtc *crtc;
8820         struct intel_dpll_hw_state dpll_hw_state;
8821         int i;
8822
8823         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8824                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
8825                 int enabled_crtcs = 0, active_crtcs = 0;
8826                 bool active;
8827
8828                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
8829
8830                 DRM_DEBUG_KMS("%s\n", pll->name);
8831
8832                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
8833
8834                 WARN(pll->active > pll->refcount,
8835                      "more active pll users than references: %i vs %i\n",
8836                      pll->active, pll->refcount);
8837                 WARN(pll->active && !pll->on,
8838                      "pll in active use but not on in sw tracking\n");
8839                 WARN(pll->on && !pll->active,
8840                      "pll in on but not on in use in sw tracking\n");
8841                 WARN(pll->on != active,
8842                      "pll on state mismatch (expected %i, found %i)\n",
8843                      pll->on, active);
8844
8845                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
8846                                     base.head) {
8847                         if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
8848                                 enabled_crtcs++;
8849                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
8850                                 active_crtcs++;
8851                 }
8852                 WARN(pll->active != active_crtcs,
8853                      "pll active crtcs mismatch (expected %i, found %i)\n",
8854                      pll->active, active_crtcs);
8855                 WARN(pll->refcount != enabled_crtcs,
8856                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
8857                      pll->refcount, enabled_crtcs);
8858
8859                 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
8860                                        sizeof(dpll_hw_state)),
8861                      "pll hw state mismatch\n");
8862         }
8863 }
8864
8865 void
8866 intel_modeset_check_state(struct drm_device *dev)
8867 {
8868         check_connector_state(dev);
8869         check_encoder_state(dev);
8870         check_crtc_state(dev);
8871         check_shared_dpll_state(dev);
8872 }
8873
8874 static int __intel_set_mode(struct drm_crtc *crtc,
8875                             struct drm_display_mode *mode,
8876                             int x, int y, struct drm_framebuffer *fb)
8877 {
8878         struct drm_device *dev = crtc->dev;
8879         drm_i915_private_t *dev_priv = dev->dev_private;
8880         struct drm_display_mode *saved_mode, *saved_hwmode;
8881         struct intel_crtc_config *pipe_config = NULL;
8882         struct intel_crtc *intel_crtc;
8883         unsigned disable_pipes, prepare_pipes, modeset_pipes;
8884         int ret = 0;
8885
8886         saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
8887         if (!saved_mode)
8888                 return -ENOMEM;
8889         saved_hwmode = saved_mode + 1;
8890
8891         intel_modeset_affected_pipes(crtc, &modeset_pipes,
8892                                      &prepare_pipes, &disable_pipes);
8893
8894         *saved_hwmode = crtc->hwmode;
8895         *saved_mode = crtc->mode;
8896
8897         /* Hack: Because we don't (yet) support global modeset on multiple
8898          * crtcs, we don't keep track of the new mode for more than one crtc.
8899          * Hence simply check whether any bit is set in modeset_pipes in all the
8900          * pieces of code that are not yet converted to deal with mutliple crtcs
8901          * changing their mode at the same time. */
8902         if (modeset_pipes) {
8903                 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
8904                 if (IS_ERR(pipe_config)) {
8905                         ret = PTR_ERR(pipe_config);
8906                         pipe_config = NULL;
8907
8908                         goto out;
8909                 }
8910                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
8911                                        "[modeset]");
8912         }
8913
8914         for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
8915                 intel_crtc_disable(&intel_crtc->base);
8916
8917         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
8918                 if (intel_crtc->base.enabled)
8919                         dev_priv->display.crtc_disable(&intel_crtc->base);
8920         }
8921
8922         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
8923          * to set it here already despite that we pass it down the callchain.
8924          */
8925         if (modeset_pipes) {
8926                 crtc->mode = *mode;
8927                 /* mode_set/enable/disable functions rely on a correct pipe
8928                  * config. */
8929                 to_intel_crtc(crtc)->config = *pipe_config;
8930         }
8931
8932         /* Only after disabling all output pipelines that will be changed can we
8933          * update the the output configuration. */
8934         intel_modeset_update_state(dev, prepare_pipes);
8935
8936         if (dev_priv->display.modeset_global_resources)
8937                 dev_priv->display.modeset_global_resources(dev);
8938
8939         /* Set up the DPLL and any encoders state that needs to adjust or depend
8940          * on the DPLL.
8941          */
8942         for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
8943                 ret = intel_crtc_mode_set(&intel_crtc->base,
8944                                           x, y, fb);
8945                 if (ret)
8946                         goto done;
8947         }
8948
8949         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
8950         for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
8951                 dev_priv->display.crtc_enable(&intel_crtc->base);
8952
8953         if (modeset_pipes) {
8954                 /* Store real post-adjustment hardware mode. */
8955                 crtc->hwmode = pipe_config->adjusted_mode;
8956
8957                 /* Calculate and store various constants which
8958                  * are later needed by vblank and swap-completion
8959                  * timestamping. They are derived from true hwmode.
8960                  */
8961                 drm_calc_timestamping_constants(crtc);
8962         }
8963
8964         /* FIXME: add subpixel order */
8965 done:
8966         if (ret && crtc->enabled) {
8967                 crtc->hwmode = *saved_hwmode;
8968                 crtc->mode = *saved_mode;
8969         }
8970
8971 out:
8972         kfree(pipe_config);
8973         kfree(saved_mode);
8974         return ret;
8975 }
8976
8977 static int intel_set_mode(struct drm_crtc *crtc,
8978                           struct drm_display_mode *mode,
8979                           int x, int y, struct drm_framebuffer *fb)
8980 {
8981         int ret;
8982
8983         ret = __intel_set_mode(crtc, mode, x, y, fb);
8984
8985         if (ret == 0)
8986                 intel_modeset_check_state(crtc->dev);
8987
8988         return ret;
8989 }
8990
8991 void intel_crtc_restore_mode(struct drm_crtc *crtc)
8992 {
8993         intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
8994 }
8995
8996 #undef for_each_intel_crtc_masked
8997
8998 static void intel_set_config_free(struct intel_set_config *config)
8999 {
9000         if (!config)
9001                 return;
9002
9003         kfree(config->save_connector_encoders);
9004         kfree(config->save_encoder_crtcs);
9005         kfree(config);
9006 }
9007
9008 static int intel_set_config_save_state(struct drm_device *dev,
9009                                        struct intel_set_config *config)
9010 {
9011         struct drm_encoder *encoder;
9012         struct drm_connector *connector;
9013         int count;
9014
9015         config->save_encoder_crtcs =
9016                 kcalloc(dev->mode_config.num_encoder,
9017                         sizeof(struct drm_crtc *), GFP_KERNEL);
9018         if (!config->save_encoder_crtcs)
9019                 return -ENOMEM;
9020
9021         config->save_connector_encoders =
9022                 kcalloc(dev->mode_config.num_connector,
9023                         sizeof(struct drm_encoder *), GFP_KERNEL);
9024         if (!config->save_connector_encoders)
9025                 return -ENOMEM;
9026
9027         /* Copy data. Note that driver private data is not affected.
9028          * Should anything bad happen only the expected state is
9029          * restored, not the drivers personal bookkeeping.
9030          */
9031         count = 0;
9032         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9033                 config->save_encoder_crtcs[count++] = encoder->crtc;
9034         }
9035
9036         count = 0;
9037         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9038                 config->save_connector_encoders[count++] = connector->encoder;
9039         }
9040
9041         return 0;
9042 }
9043
9044 static void intel_set_config_restore_state(struct drm_device *dev,
9045                                            struct intel_set_config *config)
9046 {
9047         struct intel_encoder *encoder;
9048         struct intel_connector *connector;
9049         int count;
9050
9051         count = 0;
9052         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9053                 encoder->new_crtc =
9054                         to_intel_crtc(config->save_encoder_crtcs[count++]);
9055         }
9056
9057         count = 0;
9058         list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9059                 connector->new_encoder =
9060                         to_intel_encoder(config->save_connector_encoders[count++]);
9061         }
9062 }
9063
9064 static bool
9065 is_crtc_connector_off(struct drm_mode_set *set)
9066 {
9067         int i;
9068
9069         if (set->num_connectors == 0)
9070                 return false;
9071
9072         if (WARN_ON(set->connectors == NULL))
9073                 return false;
9074
9075         for (i = 0; i < set->num_connectors; i++)
9076                 if (set->connectors[i]->encoder &&
9077                     set->connectors[i]->encoder->crtc == set->crtc &&
9078                     set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9079                         return true;
9080
9081         return false;
9082 }
9083
9084 static void
9085 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9086                                       struct intel_set_config *config)
9087 {
9088
9089         /* We should be able to check here if the fb has the same properties
9090          * and then just flip_or_move it */
9091         if (is_crtc_connector_off(set)) {
9092                 config->mode_changed = true;
9093         } else if (set->crtc->fb != set->fb) {
9094                 /* If we have no fb then treat it as a full mode set */
9095                 if (set->crtc->fb == NULL) {
9096                         struct intel_crtc *intel_crtc =
9097                                 to_intel_crtc(set->crtc);
9098
9099                         if (intel_crtc->active && i915_fastboot) {
9100                                 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9101                                 config->fb_changed = true;
9102                         } else {
9103                                 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9104                                 config->mode_changed = true;
9105                         }
9106                 } else if (set->fb == NULL) {
9107                         config->mode_changed = true;
9108                 } else if (set->fb->pixel_format !=
9109                            set->crtc->fb->pixel_format) {
9110                         config->mode_changed = true;
9111                 } else {
9112                         config->fb_changed = true;
9113                 }
9114         }
9115
9116         if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9117                 config->fb_changed = true;
9118
9119         if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9120                 DRM_DEBUG_KMS("modes are different, full mode set\n");
9121                 drm_mode_debug_printmodeline(&set->crtc->mode);
9122                 drm_mode_debug_printmodeline(set->mode);
9123                 config->mode_changed = true;
9124         }
9125
9126         DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9127                         set->crtc->base.id, config->mode_changed, config->fb_changed);
9128 }
9129
9130 static int
9131 intel_modeset_stage_output_state(struct drm_device *dev,
9132                                  struct drm_mode_set *set,
9133                                  struct intel_set_config *config)
9134 {
9135         struct drm_crtc *new_crtc;
9136         struct intel_connector *connector;
9137         struct intel_encoder *encoder;
9138         int ro;
9139
9140         /* The upper layers ensure that we either disable a crtc or have a list
9141          * of connectors. For paranoia, double-check this. */
9142         WARN_ON(!set->fb && (set->num_connectors != 0));
9143         WARN_ON(set->fb && (set->num_connectors == 0));
9144
9145         list_for_each_entry(connector, &dev->mode_config.connector_list,
9146                             base.head) {
9147                 /* Otherwise traverse passed in connector list and get encoders
9148                  * for them. */
9149                 for (ro = 0; ro < set->num_connectors; ro++) {
9150                         if (set->connectors[ro] == &connector->base) {
9151                                 connector->new_encoder = connector->encoder;
9152                                 break;
9153                         }
9154                 }
9155
9156                 /* If we disable the crtc, disable all its connectors. Also, if
9157                  * the connector is on the changing crtc but not on the new
9158                  * connector list, disable it. */
9159                 if ((!set->fb || ro == set->num_connectors) &&
9160                     connector->base.encoder &&
9161                     connector->base.encoder->crtc == set->crtc) {
9162                         connector->new_encoder = NULL;
9163
9164                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9165                                 connector->base.base.id,
9166                                 drm_get_connector_name(&connector->base));
9167                 }
9168
9169
9170                 if (&connector->new_encoder->base != connector->base.encoder) {
9171                         DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9172                         config->mode_changed = true;
9173                 }
9174         }
9175         /* connector->new_encoder is now updated for all connectors. */
9176
9177         /* Update crtc of enabled connectors. */
9178         list_for_each_entry(connector, &dev->mode_config.connector_list,
9179                             base.head) {
9180                 if (!connector->new_encoder)
9181                         continue;
9182
9183                 new_crtc = connector->new_encoder->base.crtc;
9184
9185                 for (ro = 0; ro < set->num_connectors; ro++) {
9186                         if (set->connectors[ro] == &connector->base)
9187                                 new_crtc = set->crtc;
9188                 }
9189
9190                 /* Make sure the new CRTC will work with the encoder */
9191                 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9192                                            new_crtc)) {
9193                         return -EINVAL;
9194                 }
9195                 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9196
9197                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9198                         connector->base.base.id,
9199                         drm_get_connector_name(&connector->base),
9200                         new_crtc->base.id);
9201         }
9202
9203         /* Check for any encoders that needs to be disabled. */
9204         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9205                             base.head) {
9206                 list_for_each_entry(connector,
9207                                     &dev->mode_config.connector_list,
9208                                     base.head) {
9209                         if (connector->new_encoder == encoder) {
9210                                 WARN_ON(!connector->new_encoder->new_crtc);
9211
9212                                 goto next_encoder;
9213                         }
9214                 }
9215                 encoder->new_crtc = NULL;
9216 next_encoder:
9217                 /* Only now check for crtc changes so we don't miss encoders
9218                  * that will be disabled. */
9219                 if (&encoder->new_crtc->base != encoder->base.crtc) {
9220                         DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9221                         config->mode_changed = true;
9222                 }
9223         }
9224         /* Now we've also updated encoder->new_crtc for all encoders. */
9225
9226         return 0;
9227 }
9228
9229 static int intel_crtc_set_config(struct drm_mode_set *set)
9230 {
9231         struct drm_device *dev;
9232         struct drm_mode_set save_set;
9233         struct intel_set_config *config;
9234         int ret;
9235
9236         BUG_ON(!set);
9237         BUG_ON(!set->crtc);
9238         BUG_ON(!set->crtc->helper_private);
9239
9240         /* Enforce sane interface api - has been abused by the fb helper. */
9241         BUG_ON(!set->mode && set->fb);
9242         BUG_ON(set->fb && set->num_connectors == 0);
9243
9244         if (set->fb) {
9245                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9246                                 set->crtc->base.id, set->fb->base.id,
9247                                 (int)set->num_connectors, set->x, set->y);
9248         } else {
9249                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9250         }
9251
9252         dev = set->crtc->dev;
9253
9254         ret = -ENOMEM;
9255         config = kzalloc(sizeof(*config), GFP_KERNEL);
9256         if (!config)
9257                 goto out_config;
9258
9259         ret = intel_set_config_save_state(dev, config);
9260         if (ret)
9261                 goto out_config;
9262
9263         save_set.crtc = set->crtc;
9264         save_set.mode = &set->crtc->mode;
9265         save_set.x = set->crtc->x;
9266         save_set.y = set->crtc->y;
9267         save_set.fb = set->crtc->fb;
9268
9269         /* Compute whether we need a full modeset, only an fb base update or no
9270          * change at all. In the future we might also check whether only the
9271          * mode changed, e.g. for LVDS where we only change the panel fitter in
9272          * such cases. */
9273         intel_set_config_compute_mode_changes(set, config);
9274
9275         ret = intel_modeset_stage_output_state(dev, set, config);
9276         if (ret)
9277                 goto fail;
9278
9279         if (config->mode_changed) {
9280                 ret = intel_set_mode(set->crtc, set->mode,
9281                                      set->x, set->y, set->fb);
9282         } else if (config->fb_changed) {
9283                 intel_crtc_wait_for_pending_flips(set->crtc);
9284
9285                 ret = intel_pipe_set_base(set->crtc,
9286                                           set->x, set->y, set->fb);
9287         }
9288
9289         if (ret) {
9290                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9291                               set->crtc->base.id, ret);
9292 fail:
9293                 intel_set_config_restore_state(dev, config);
9294
9295                 /* Try to restore the config */
9296                 if (config->mode_changed &&
9297                     intel_set_mode(save_set.crtc, save_set.mode,
9298                                    save_set.x, save_set.y, save_set.fb))
9299                         DRM_ERROR("failed to restore config after modeset failure\n");
9300         }
9301
9302 out_config:
9303         intel_set_config_free(config);
9304         return ret;
9305 }
9306
9307 static const struct drm_crtc_funcs intel_crtc_funcs = {
9308         .cursor_set = intel_crtc_cursor_set,
9309         .cursor_move = intel_crtc_cursor_move,
9310         .gamma_set = intel_crtc_gamma_set,
9311         .set_config = intel_crtc_set_config,
9312         .destroy = intel_crtc_destroy,
9313         .page_flip = intel_crtc_page_flip,
9314 };
9315
9316 static void intel_cpu_pll_init(struct drm_device *dev)
9317 {
9318         if (HAS_DDI(dev))
9319                 intel_ddi_pll_init(dev);
9320 }
9321
9322 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9323                                       struct intel_shared_dpll *pll,
9324                                       struct intel_dpll_hw_state *hw_state)
9325 {
9326         uint32_t val;
9327
9328         val = I915_READ(PCH_DPLL(pll->id));
9329         hw_state->dpll = val;
9330         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9331         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9332
9333         return val & DPLL_VCO_ENABLE;
9334 }
9335
9336 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9337                                   struct intel_shared_dpll *pll)
9338 {
9339         I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9340         I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9341 }
9342
9343 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9344                                 struct intel_shared_dpll *pll)
9345 {
9346         /* PCH refclock must be enabled first */
9347         assert_pch_refclk_enabled(dev_priv);
9348
9349         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9350
9351         /* Wait for the clocks to stabilize. */
9352         POSTING_READ(PCH_DPLL(pll->id));
9353         udelay(150);
9354
9355         /* The pixel multiplier can only be updated once the
9356          * DPLL is enabled and the clocks are stable.
9357          *
9358          * So write it again.
9359          */
9360         I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9361         POSTING_READ(PCH_DPLL(pll->id));
9362         udelay(200);
9363 }
9364
9365 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9366                                  struct intel_shared_dpll *pll)
9367 {
9368         struct drm_device *dev = dev_priv->dev;
9369         struct intel_crtc *crtc;
9370
9371         /* Make sure no transcoder isn't still depending on us. */
9372         list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9373                 if (intel_crtc_to_shared_dpll(crtc) == pll)
9374                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9375         }
9376
9377         I915_WRITE(PCH_DPLL(pll->id), 0);
9378         POSTING_READ(PCH_DPLL(pll->id));
9379         udelay(200);
9380 }
9381
9382 static char *ibx_pch_dpll_names[] = {
9383         "PCH DPLL A",
9384         "PCH DPLL B",
9385 };
9386
9387 static void ibx_pch_dpll_init(struct drm_device *dev)
9388 {
9389         struct drm_i915_private *dev_priv = dev->dev_private;
9390         int i;
9391
9392         dev_priv->num_shared_dpll = 2;
9393
9394         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9395                 dev_priv->shared_dplls[i].id = i;
9396                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9397                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9398                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9399                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9400                 dev_priv->shared_dplls[i].get_hw_state =
9401                         ibx_pch_dpll_get_hw_state;
9402         }
9403 }
9404
9405 static void intel_shared_dpll_init(struct drm_device *dev)
9406 {
9407         struct drm_i915_private *dev_priv = dev->dev_private;
9408
9409         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9410                 ibx_pch_dpll_init(dev);
9411         else
9412                 dev_priv->num_shared_dpll = 0;
9413
9414         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9415         DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9416                       dev_priv->num_shared_dpll);
9417 }
9418
9419 static void intel_crtc_init(struct drm_device *dev, int pipe)
9420 {
9421         drm_i915_private_t *dev_priv = dev->dev_private;
9422         struct intel_crtc *intel_crtc;
9423         int i;
9424
9425         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
9426         if (intel_crtc == NULL)
9427                 return;
9428
9429         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9430
9431         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9432         for (i = 0; i < 256; i++) {
9433                 intel_crtc->lut_r[i] = i;
9434                 intel_crtc->lut_g[i] = i;
9435                 intel_crtc->lut_b[i] = i;
9436         }
9437
9438         /* Swap pipes & planes for FBC on pre-965 */
9439         intel_crtc->pipe = pipe;
9440         intel_crtc->plane = pipe;
9441         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9442                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9443                 intel_crtc->plane = !pipe;
9444         }
9445
9446         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9447                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9448         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9449         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9450
9451         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9452 }
9453
9454 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9455                                 struct drm_file *file)
9456 {
9457         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9458         struct drm_mode_object *drmmode_obj;
9459         struct intel_crtc *crtc;
9460
9461         if (!drm_core_check_feature(dev, DRIVER_MODESET))
9462                 return -ENODEV;
9463
9464         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9465                         DRM_MODE_OBJECT_CRTC);
9466
9467         if (!drmmode_obj) {
9468                 DRM_ERROR("no such CRTC id\n");
9469                 return -EINVAL;
9470         }
9471
9472         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9473         pipe_from_crtc_id->pipe = crtc->pipe;
9474
9475         return 0;
9476 }
9477
9478 static int intel_encoder_clones(struct intel_encoder *encoder)
9479 {
9480         struct drm_device *dev = encoder->base.dev;
9481         struct intel_encoder *source_encoder;
9482         int index_mask = 0;
9483         int entry = 0;
9484
9485         list_for_each_entry(source_encoder,
9486                             &dev->mode_config.encoder_list, base.head) {
9487
9488                 if (encoder == source_encoder)
9489                         index_mask |= (1 << entry);
9490
9491                 /* Intel hw has only one MUX where enocoders could be cloned. */
9492                 if (encoder->cloneable && source_encoder->cloneable)
9493                         index_mask |= (1 << entry);
9494
9495                 entry++;
9496         }
9497
9498         return index_mask;
9499 }
9500
9501 static bool has_edp_a(struct drm_device *dev)
9502 {
9503         struct drm_i915_private *dev_priv = dev->dev_private;
9504
9505         if (!IS_MOBILE(dev))
9506                 return false;
9507
9508         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9509                 return false;
9510
9511         if (IS_GEN5(dev) &&
9512             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9513                 return false;
9514
9515         return true;
9516 }
9517
9518 static void intel_setup_outputs(struct drm_device *dev)
9519 {
9520         struct drm_i915_private *dev_priv = dev->dev_private;
9521         struct intel_encoder *encoder;
9522         bool dpd_is_edp = false;
9523
9524         intel_lvds_init(dev);
9525
9526         if (!IS_ULT(dev))
9527                 intel_crt_init(dev);
9528
9529         if (HAS_DDI(dev)) {
9530                 int found;
9531
9532                 /* Haswell uses DDI functions to detect digital outputs */
9533                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9534                 /* DDI A only supports eDP */
9535                 if (found)
9536                         intel_ddi_init(dev, PORT_A);
9537
9538                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9539                  * register */
9540                 found = I915_READ(SFUSE_STRAP);
9541
9542                 if (found & SFUSE_STRAP_DDIB_DETECTED)
9543                         intel_ddi_init(dev, PORT_B);
9544                 if (found & SFUSE_STRAP_DDIC_DETECTED)
9545                         intel_ddi_init(dev, PORT_C);
9546                 if (found & SFUSE_STRAP_DDID_DETECTED)
9547                         intel_ddi_init(dev, PORT_D);
9548         } else if (HAS_PCH_SPLIT(dev)) {
9549                 int found;
9550                 dpd_is_edp = intel_dpd_is_edp(dev);
9551
9552                 if (has_edp_a(dev))
9553                         intel_dp_init(dev, DP_A, PORT_A);
9554
9555                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9556                         /* PCH SDVOB multiplex with HDMIB */
9557                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
9558                         if (!found)
9559                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9560                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9561                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
9562                 }
9563
9564                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
9565                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
9566
9567                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
9568                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
9569
9570                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
9571                         intel_dp_init(dev, PCH_DP_C, PORT_C);
9572
9573                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
9574                         intel_dp_init(dev, PCH_DP_D, PORT_D);
9575         } else if (IS_VALLEYVIEW(dev)) {
9576                 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
9577                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
9578                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
9579                                         PORT_C);
9580                         if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
9581                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
9582                                               PORT_C);
9583                 }
9584
9585                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
9586                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
9587                                         PORT_B);
9588                         if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
9589                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
9590                 }
9591         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
9592                 bool found = false;
9593
9594                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9595                         DRM_DEBUG_KMS("probing SDVOB\n");
9596                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
9597                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
9598                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
9599                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
9600                         }
9601
9602                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
9603                                 intel_dp_init(dev, DP_B, PORT_B);
9604                 }
9605
9606                 /* Before G4X SDVOC doesn't have its own detect register */
9607
9608                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
9609                         DRM_DEBUG_KMS("probing SDVOC\n");
9610                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
9611                 }
9612
9613                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
9614
9615                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
9616                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
9617                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
9618                         }
9619                         if (SUPPORTS_INTEGRATED_DP(dev))
9620                                 intel_dp_init(dev, DP_C, PORT_C);
9621                 }
9622
9623                 if (SUPPORTS_INTEGRATED_DP(dev) &&
9624                     (I915_READ(DP_D) & DP_DETECTED))
9625                         intel_dp_init(dev, DP_D, PORT_D);
9626         } else if (IS_GEN2(dev))
9627                 intel_dvo_init(dev);
9628
9629         if (SUPPORTS_TV(dev))
9630                 intel_tv_init(dev);
9631
9632         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9633                 encoder->base.possible_crtcs = encoder->crtc_mask;
9634                 encoder->base.possible_clones =
9635                         intel_encoder_clones(encoder);
9636         }
9637
9638         intel_init_pch_refclk(dev);
9639
9640         drm_helper_move_panel_connectors_to_head(dev);
9641 }
9642
9643 void intel_framebuffer_fini(struct intel_framebuffer *fb)
9644 {
9645         drm_framebuffer_cleanup(&fb->base);
9646         drm_gem_object_unreference_unlocked(&fb->obj->base);
9647 }
9648
9649 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
9650 {
9651         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9652
9653         intel_framebuffer_fini(intel_fb);
9654         kfree(intel_fb);
9655 }
9656
9657 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
9658                                                 struct drm_file *file,
9659                                                 unsigned int *handle)
9660 {
9661         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9662         struct drm_i915_gem_object *obj = intel_fb->obj;
9663
9664         return drm_gem_handle_create(file, &obj->base, handle);
9665 }
9666
9667 static const struct drm_framebuffer_funcs intel_fb_funcs = {
9668         .destroy = intel_user_framebuffer_destroy,
9669         .create_handle = intel_user_framebuffer_create_handle,
9670 };
9671
9672 int intel_framebuffer_init(struct drm_device *dev,
9673                            struct intel_framebuffer *intel_fb,
9674                            struct drm_mode_fb_cmd2 *mode_cmd,
9675                            struct drm_i915_gem_object *obj)
9676 {
9677         int pitch_limit;
9678         int ret;
9679
9680         if (obj->tiling_mode == I915_TILING_Y) {
9681                 DRM_DEBUG("hardware does not support tiling Y\n");
9682                 return -EINVAL;
9683         }
9684
9685         if (mode_cmd->pitches[0] & 63) {
9686                 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
9687                           mode_cmd->pitches[0]);
9688                 return -EINVAL;
9689         }
9690
9691         if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
9692                 pitch_limit = 32*1024;
9693         } else if (INTEL_INFO(dev)->gen >= 4) {
9694                 if (obj->tiling_mode)
9695                         pitch_limit = 16*1024;
9696                 else
9697                         pitch_limit = 32*1024;
9698         } else if (INTEL_INFO(dev)->gen >= 3) {
9699                 if (obj->tiling_mode)
9700                         pitch_limit = 8*1024;
9701                 else
9702                         pitch_limit = 16*1024;
9703         } else
9704                 /* XXX DSPC is limited to 4k tiled */
9705                 pitch_limit = 8*1024;
9706
9707         if (mode_cmd->pitches[0] > pitch_limit) {
9708                 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
9709                           obj->tiling_mode ? "tiled" : "linear",
9710                           mode_cmd->pitches[0], pitch_limit);
9711                 return -EINVAL;
9712         }
9713
9714         if (obj->tiling_mode != I915_TILING_NONE &&
9715             mode_cmd->pitches[0] != obj->stride) {
9716                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
9717                           mode_cmd->pitches[0], obj->stride);
9718                 return -EINVAL;
9719         }
9720
9721         /* Reject formats not supported by any plane early. */
9722         switch (mode_cmd->pixel_format) {
9723         case DRM_FORMAT_C8:
9724         case DRM_FORMAT_RGB565:
9725         case DRM_FORMAT_XRGB8888:
9726         case DRM_FORMAT_ARGB8888:
9727                 break;
9728         case DRM_FORMAT_XRGB1555:
9729         case DRM_FORMAT_ARGB1555:
9730                 if (INTEL_INFO(dev)->gen > 3) {
9731                         DRM_DEBUG("unsupported pixel format: %s\n",
9732                                   drm_get_format_name(mode_cmd->pixel_format));
9733                         return -EINVAL;
9734                 }
9735                 break;
9736         case DRM_FORMAT_XBGR8888:
9737         case DRM_FORMAT_ABGR8888:
9738         case DRM_FORMAT_XRGB2101010:
9739         case DRM_FORMAT_ARGB2101010:
9740         case DRM_FORMAT_XBGR2101010:
9741         case DRM_FORMAT_ABGR2101010:
9742                 if (INTEL_INFO(dev)->gen < 4) {
9743                         DRM_DEBUG("unsupported pixel format: %s\n",
9744                                   drm_get_format_name(mode_cmd->pixel_format));
9745                         return -EINVAL;
9746                 }
9747                 break;
9748         case DRM_FORMAT_YUYV:
9749         case DRM_FORMAT_UYVY:
9750         case DRM_FORMAT_YVYU:
9751         case DRM_FORMAT_VYUY:
9752                 if (INTEL_INFO(dev)->gen < 5) {
9753                         DRM_DEBUG("unsupported pixel format: %s\n",
9754                                   drm_get_format_name(mode_cmd->pixel_format));
9755                         return -EINVAL;
9756                 }
9757                 break;
9758         default:
9759                 DRM_DEBUG("unsupported pixel format: %s\n",
9760                           drm_get_format_name(mode_cmd->pixel_format));
9761                 return -EINVAL;
9762         }
9763
9764         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
9765         if (mode_cmd->offsets[0] != 0)
9766                 return -EINVAL;
9767
9768         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
9769         intel_fb->obj = obj;
9770
9771         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
9772         if (ret) {
9773                 DRM_ERROR("framebuffer init failed %d\n", ret);
9774                 return ret;
9775         }
9776
9777         return 0;
9778 }
9779
9780 static struct drm_framebuffer *
9781 intel_user_framebuffer_create(struct drm_device *dev,
9782                               struct drm_file *filp,
9783                               struct drm_mode_fb_cmd2 *mode_cmd)
9784 {
9785         struct drm_i915_gem_object *obj;
9786
9787         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
9788                                                 mode_cmd->handles[0]));
9789         if (&obj->base == NULL)
9790                 return ERR_PTR(-ENOENT);
9791
9792         return intel_framebuffer_create(dev, mode_cmd, obj);
9793 }
9794
9795 static const struct drm_mode_config_funcs intel_mode_funcs = {
9796         .fb_create = intel_user_framebuffer_create,
9797         .output_poll_changed = intel_fb_output_poll_changed,
9798 };
9799
9800 /* Set up chip specific display functions */
9801 static void intel_init_display(struct drm_device *dev)
9802 {
9803         struct drm_i915_private *dev_priv = dev->dev_private;
9804
9805         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
9806                 dev_priv->display.find_dpll = g4x_find_best_dpll;
9807         else if (IS_VALLEYVIEW(dev))
9808                 dev_priv->display.find_dpll = vlv_find_best_dpll;
9809         else if (IS_PINEVIEW(dev))
9810                 dev_priv->display.find_dpll = pnv_find_best_dpll;
9811         else
9812                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
9813
9814         if (HAS_DDI(dev)) {
9815                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
9816                 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
9817                 dev_priv->display.crtc_enable = haswell_crtc_enable;
9818                 dev_priv->display.crtc_disable = haswell_crtc_disable;
9819                 dev_priv->display.off = haswell_crtc_off;
9820                 dev_priv->display.update_plane = ironlake_update_plane;
9821         } else if (HAS_PCH_SPLIT(dev)) {
9822                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
9823                 dev_priv->display.get_clock = ironlake_crtc_clock_get;
9824                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
9825                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
9826                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
9827                 dev_priv->display.off = ironlake_crtc_off;
9828                 dev_priv->display.update_plane = ironlake_update_plane;
9829         } else if (IS_VALLEYVIEW(dev)) {
9830                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9831                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9832                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9833                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
9834                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9835                 dev_priv->display.off = i9xx_crtc_off;
9836                 dev_priv->display.update_plane = i9xx_update_plane;
9837         } else {
9838                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
9839                 dev_priv->display.get_clock = i9xx_crtc_clock_get;
9840                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
9841                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
9842                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
9843                 dev_priv->display.off = i9xx_crtc_off;
9844                 dev_priv->display.update_plane = i9xx_update_plane;
9845         }
9846
9847         /* Returns the core display clock speed */
9848         if (IS_VALLEYVIEW(dev))
9849                 dev_priv->display.get_display_clock_speed =
9850                         valleyview_get_display_clock_speed;
9851         else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
9852                 dev_priv->display.get_display_clock_speed =
9853                         i945_get_display_clock_speed;
9854         else if (IS_I915G(dev))
9855                 dev_priv->display.get_display_clock_speed =
9856                         i915_get_display_clock_speed;
9857         else if (IS_I945GM(dev) || IS_845G(dev))
9858                 dev_priv->display.get_display_clock_speed =
9859                         i9xx_misc_get_display_clock_speed;
9860         else if (IS_PINEVIEW(dev))
9861                 dev_priv->display.get_display_clock_speed =
9862                         pnv_get_display_clock_speed;
9863         else if (IS_I915GM(dev))
9864                 dev_priv->display.get_display_clock_speed =
9865                         i915gm_get_display_clock_speed;
9866         else if (IS_I865G(dev))
9867                 dev_priv->display.get_display_clock_speed =
9868                         i865_get_display_clock_speed;
9869         else if (IS_I85X(dev))
9870                 dev_priv->display.get_display_clock_speed =
9871                         i855_get_display_clock_speed;
9872         else /* 852, 830 */
9873                 dev_priv->display.get_display_clock_speed =
9874                         i830_get_display_clock_speed;
9875
9876         if (HAS_PCH_SPLIT(dev)) {
9877                 if (IS_GEN5(dev)) {
9878                         dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9879                         dev_priv->display.write_eld = ironlake_write_eld;
9880                 } else if (IS_GEN6(dev)) {
9881                         dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9882                         dev_priv->display.write_eld = ironlake_write_eld;
9883                 } else if (IS_IVYBRIDGE(dev)) {
9884                         /* FIXME: detect B0+ stepping and use auto training */
9885                         dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9886                         dev_priv->display.write_eld = ironlake_write_eld;
9887                         dev_priv->display.modeset_global_resources =
9888                                 ivb_modeset_global_resources;
9889                 } else if (IS_HASWELL(dev)) {
9890                         dev_priv->display.fdi_link_train = hsw_fdi_link_train;
9891                         dev_priv->display.write_eld = haswell_write_eld;
9892                         dev_priv->display.modeset_global_resources =
9893                                 haswell_modeset_global_resources;
9894                 }
9895         } else if (IS_G4X(dev)) {
9896                 dev_priv->display.write_eld = g4x_write_eld;
9897         }
9898
9899         /* Default just returns -ENODEV to indicate unsupported */
9900         dev_priv->display.queue_flip = intel_default_queue_flip;
9901
9902         switch (INTEL_INFO(dev)->gen) {
9903         case 2:
9904                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
9905                 break;
9906
9907         case 3:
9908                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
9909                 break;
9910
9911         case 4:
9912         case 5:
9913                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
9914                 break;
9915
9916         case 6:
9917                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
9918                 break;
9919         case 7:
9920                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
9921                 break;
9922         }
9923 }
9924
9925 /*
9926  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9927  * resume, or other times.  This quirk makes sure that's the case for
9928  * affected systems.
9929  */
9930 static void quirk_pipea_force(struct drm_device *dev)
9931 {
9932         struct drm_i915_private *dev_priv = dev->dev_private;
9933
9934         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9935         DRM_INFO("applying pipe a force quirk\n");
9936 }
9937
9938 /*
9939  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9940  */
9941 static void quirk_ssc_force_disable(struct drm_device *dev)
9942 {
9943         struct drm_i915_private *dev_priv = dev->dev_private;
9944         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9945         DRM_INFO("applying lvds SSC disable quirk\n");
9946 }
9947
9948 /*
9949  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
9950  * brightness value
9951  */
9952 static void quirk_invert_brightness(struct drm_device *dev)
9953 {
9954         struct drm_i915_private *dev_priv = dev->dev_private;
9955         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
9956         DRM_INFO("applying inverted panel brightness quirk\n");
9957 }
9958
9959 /*
9960  * Some machines (Dell XPS13) suffer broken backlight controls if
9961  * BLM_PCH_PWM_ENABLE is set.
9962  */
9963 static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
9964 {
9965         struct drm_i915_private *dev_priv = dev->dev_private;
9966         dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
9967         DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
9968 }
9969
9970 struct intel_quirk {
9971         int device;
9972         int subsystem_vendor;
9973         int subsystem_device;
9974         void (*hook)(struct drm_device *dev);
9975 };
9976
9977 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
9978 struct intel_dmi_quirk {
9979         void (*hook)(struct drm_device *dev);
9980         const struct dmi_system_id (*dmi_id_list)[];
9981 };
9982
9983 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
9984 {
9985         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
9986         return 1;
9987 }
9988
9989 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
9990         {
9991                 .dmi_id_list = &(const struct dmi_system_id[]) {
9992                         {
9993                                 .callback = intel_dmi_reverse_brightness,
9994                                 .ident = "NCR Corporation",
9995                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
9996                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
9997                                 },
9998                         },
9999                         { }  /* terminating entry */
10000                 },
10001                 .hook = quirk_invert_brightness,
10002         },
10003 };
10004
10005 static struct intel_quirk intel_quirks[] = {
10006         /* HP Mini needs pipe A force quirk (LP: #322104) */
10007         { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10008
10009         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10010         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10011
10012         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10013         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10014
10015         /* 830/845 need to leave pipe A & dpll A up */
10016         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10017         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10018
10019         /* Lenovo U160 cannot use SSC on LVDS */
10020         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10021
10022         /* Sony Vaio Y cannot use SSC on LVDS */
10023         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10024
10025         /* Acer Aspire 5734Z must invert backlight brightness */
10026         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
10027
10028         /* Acer/eMachines G725 */
10029         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
10030
10031         /* Acer/eMachines e725 */
10032         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
10033
10034         /* Acer/Packard Bell NCL20 */
10035         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
10036
10037         /* Acer Aspire 4736Z */
10038         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
10039
10040         /* Dell XPS13 HD Sandy Bridge */
10041         { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10042         /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10043         { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10044 };
10045
10046 static void intel_init_quirks(struct drm_device *dev)
10047 {
10048         struct pci_dev *d = dev->pdev;
10049         int i;
10050
10051         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10052                 struct intel_quirk *q = &intel_quirks[i];
10053
10054                 if (d->device == q->device &&
10055                     (d->subsystem_vendor == q->subsystem_vendor ||
10056                      q->subsystem_vendor == PCI_ANY_ID) &&
10057                     (d->subsystem_device == q->subsystem_device ||
10058                      q->subsystem_device == PCI_ANY_ID))
10059                         q->hook(dev);
10060         }
10061         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10062                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10063                         intel_dmi_quirks[i].hook(dev);
10064         }
10065 }
10066
10067 /* Disable the VGA plane that we never use */
10068 static void i915_disable_vga(struct drm_device *dev)
10069 {
10070         struct drm_i915_private *dev_priv = dev->dev_private;
10071         u8 sr1;
10072         u32 vga_reg = i915_vgacntrl_reg(dev);
10073
10074         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10075         outb(SR01, VGA_SR_INDEX);
10076         sr1 = inb(VGA_SR_DATA);
10077         outb(sr1 | 1<<5, VGA_SR_DATA);
10078         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10079         udelay(300);
10080
10081         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10082         POSTING_READ(vga_reg);
10083 }
10084
10085 void intel_modeset_init_hw(struct drm_device *dev)
10086 {
10087         intel_init_power_well(dev);
10088
10089         intel_prepare_ddi(dev);
10090
10091         intel_init_clock_gating(dev);
10092
10093         mutex_lock(&dev->struct_mutex);
10094         intel_enable_gt_powersave(dev);
10095         mutex_unlock(&dev->struct_mutex);
10096 }
10097
10098 void intel_modeset_suspend_hw(struct drm_device *dev)
10099 {
10100         intel_suspend_hw(dev);
10101 }
10102
10103 void intel_modeset_init(struct drm_device *dev)
10104 {
10105         struct drm_i915_private *dev_priv = dev->dev_private;
10106         int i, j, ret;
10107
10108         drm_mode_config_init(dev);
10109
10110         dev->mode_config.min_width = 0;
10111         dev->mode_config.min_height = 0;
10112
10113         dev->mode_config.preferred_depth = 24;
10114         dev->mode_config.prefer_shadow = 1;
10115
10116         dev->mode_config.funcs = &intel_mode_funcs;
10117
10118         intel_init_quirks(dev);
10119
10120         intel_init_pm(dev);
10121
10122         if (INTEL_INFO(dev)->num_pipes == 0)
10123                 return;
10124
10125         intel_init_display(dev);
10126
10127         if (IS_GEN2(dev)) {
10128                 dev->mode_config.max_width = 2048;
10129                 dev->mode_config.max_height = 2048;
10130         } else if (IS_GEN3(dev)) {
10131                 dev->mode_config.max_width = 4096;
10132                 dev->mode_config.max_height = 4096;
10133         } else {
10134                 dev->mode_config.max_width = 8192;
10135                 dev->mode_config.max_height = 8192;
10136         }
10137         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10138
10139         DRM_DEBUG_KMS("%d display pipe%s available.\n",
10140                       INTEL_INFO(dev)->num_pipes,
10141                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10142
10143         for_each_pipe(i) {
10144                 intel_crtc_init(dev, i);
10145                 for (j = 0; j < dev_priv->num_plane; j++) {
10146                         ret = intel_plane_init(dev, i, j);
10147                         if (ret)
10148                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10149                                               pipe_name(i), sprite_name(i, j), ret);
10150                 }
10151         }
10152
10153         intel_cpu_pll_init(dev);
10154         intel_shared_dpll_init(dev);
10155
10156         /* Just disable it once at startup */
10157         i915_disable_vga(dev);
10158         intel_setup_outputs(dev);
10159
10160         /* Just in case the BIOS is doing something questionable. */
10161         intel_disable_fbc(dev);
10162 }
10163
10164 static void
10165 intel_connector_break_all_links(struct intel_connector *connector)
10166 {
10167         connector->base.dpms = DRM_MODE_DPMS_OFF;
10168         connector->base.encoder = NULL;
10169         connector->encoder->connectors_active = false;
10170         connector->encoder->base.crtc = NULL;
10171 }
10172
10173 static void intel_enable_pipe_a(struct drm_device *dev)
10174 {
10175         struct intel_connector *connector;
10176         struct drm_connector *crt = NULL;
10177         struct intel_load_detect_pipe load_detect_temp;
10178
10179         /* We can't just switch on the pipe A, we need to set things up with a
10180          * proper mode and output configuration. As a gross hack, enable pipe A
10181          * by enabling the load detect pipe once. */
10182         list_for_each_entry(connector,
10183                             &dev->mode_config.connector_list,
10184                             base.head) {
10185                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10186                         crt = &connector->base;
10187                         break;
10188                 }
10189         }
10190
10191         if (!crt)
10192                 return;
10193
10194         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10195                 intel_release_load_detect_pipe(crt, &load_detect_temp);
10196
10197
10198 }
10199
10200 static bool
10201 intel_check_plane_mapping(struct intel_crtc *crtc)
10202 {
10203         struct drm_device *dev = crtc->base.dev;
10204         struct drm_i915_private *dev_priv = dev->dev_private;
10205         u32 reg, val;
10206
10207         if (INTEL_INFO(dev)->num_pipes == 1)
10208                 return true;
10209
10210         reg = DSPCNTR(!crtc->plane);
10211         val = I915_READ(reg);
10212
10213         if ((val & DISPLAY_PLANE_ENABLE) &&
10214             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10215                 return false;
10216
10217         return true;
10218 }
10219
10220 static void intel_sanitize_crtc(struct intel_crtc *crtc)
10221 {
10222         struct drm_device *dev = crtc->base.dev;
10223         struct drm_i915_private *dev_priv = dev->dev_private;
10224         u32 reg;
10225
10226         /* Clear any frame start delays used for debugging left by the BIOS */
10227         reg = PIPECONF(crtc->config.cpu_transcoder);
10228         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10229
10230         /* We need to sanitize the plane -> pipe mapping first because this will
10231          * disable the crtc (and hence change the state) if it is wrong. Note
10232          * that gen4+ has a fixed plane -> pipe mapping.  */
10233         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10234                 struct intel_connector *connector;
10235                 bool plane;
10236
10237                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10238                               crtc->base.base.id);
10239
10240                 /* Pipe has the wrong plane attached and the plane is active.
10241                  * Temporarily change the plane mapping and disable everything
10242                  * ...  */
10243                 plane = crtc->plane;
10244                 crtc->plane = !plane;
10245                 dev_priv->display.crtc_disable(&crtc->base);
10246                 crtc->plane = plane;
10247
10248                 /* ... and break all links. */
10249                 list_for_each_entry(connector, &dev->mode_config.connector_list,
10250                                     base.head) {
10251                         if (connector->encoder->base.crtc != &crtc->base)
10252                                 continue;
10253
10254                         intel_connector_break_all_links(connector);
10255                 }
10256
10257                 WARN_ON(crtc->active);
10258                 crtc->base.enabled = false;
10259         }
10260
10261         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10262             crtc->pipe == PIPE_A && !crtc->active) {
10263                 /* BIOS forgot to enable pipe A, this mostly happens after
10264                  * resume. Force-enable the pipe to fix this, the update_dpms
10265                  * call below we restore the pipe to the right state, but leave
10266                  * the required bits on. */
10267                 intel_enable_pipe_a(dev);
10268         }
10269
10270         /* Adjust the state of the output pipe according to whether we
10271          * have active connectors/encoders. */
10272         intel_crtc_update_dpms(&crtc->base);
10273
10274         if (crtc->active != crtc->base.enabled) {
10275                 struct intel_encoder *encoder;
10276
10277                 /* This can happen either due to bugs in the get_hw_state
10278                  * functions or because the pipe is force-enabled due to the
10279                  * pipe A quirk. */
10280                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10281                               crtc->base.base.id,
10282                               crtc->base.enabled ? "enabled" : "disabled",
10283                               crtc->active ? "enabled" : "disabled");
10284
10285                 crtc->base.enabled = crtc->active;
10286
10287                 /* Because we only establish the connector -> encoder ->
10288                  * crtc links if something is active, this means the
10289                  * crtc is now deactivated. Break the links. connector
10290                  * -> encoder links are only establish when things are
10291                  *  actually up, hence no need to break them. */
10292                 WARN_ON(crtc->active);
10293
10294                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10295                         WARN_ON(encoder->connectors_active);
10296                         encoder->base.crtc = NULL;
10297                 }
10298         }
10299 }
10300
10301 static void intel_sanitize_encoder(struct intel_encoder *encoder)
10302 {
10303         struct intel_connector *connector;
10304         struct drm_device *dev = encoder->base.dev;
10305
10306         /* We need to check both for a crtc link (meaning that the
10307          * encoder is active and trying to read from a pipe) and the
10308          * pipe itself being active. */
10309         bool has_active_crtc = encoder->base.crtc &&
10310                 to_intel_crtc(encoder->base.crtc)->active;
10311
10312         if (encoder->connectors_active && !has_active_crtc) {
10313                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10314                               encoder->base.base.id,
10315                               drm_get_encoder_name(&encoder->base));
10316
10317                 /* Connector is active, but has no active pipe. This is
10318                  * fallout from our resume register restoring. Disable
10319                  * the encoder manually again. */
10320                 if (encoder->base.crtc) {
10321                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10322                                       encoder->base.base.id,
10323                                       drm_get_encoder_name(&encoder->base));
10324                         encoder->disable(encoder);
10325                 }
10326
10327                 /* Inconsistent output/port/pipe state happens presumably due to
10328                  * a bug in one of the get_hw_state functions. Or someplace else
10329                  * in our code, like the register restore mess on resume. Clamp
10330                  * things to off as a safer default. */
10331                 list_for_each_entry(connector,
10332                                     &dev->mode_config.connector_list,
10333                                     base.head) {
10334                         if (connector->encoder != encoder)
10335                                 continue;
10336
10337                         intel_connector_break_all_links(connector);
10338                 }
10339         }
10340         /* Enabled encoders without active connectors will be fixed in
10341          * the crtc fixup. */
10342 }
10343
10344 void i915_redisable_vga(struct drm_device *dev)
10345 {
10346         struct drm_i915_private *dev_priv = dev->dev_private;
10347         u32 vga_reg = i915_vgacntrl_reg(dev);
10348
10349         /* This function can be called both from intel_modeset_setup_hw_state or
10350          * at a very early point in our resume sequence, where the power well
10351          * structures are not yet restored. Since this function is at a very
10352          * paranoid "someone might have enabled VGA while we were not looking"
10353          * level, just check if the power well is enabled instead of trying to
10354          * follow the "don't touch the power well if we don't need it" policy
10355          * the rest of the driver uses. */
10356         if (HAS_POWER_WELL(dev) &&
10357             (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10358                 return;
10359
10360         if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
10361                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10362                 i915_disable_vga(dev);
10363         }
10364 }
10365
10366 static void intel_modeset_readout_hw_state(struct drm_device *dev)
10367 {
10368         struct drm_i915_private *dev_priv = dev->dev_private;
10369         enum pipe pipe;
10370         struct intel_crtc *crtc;
10371         struct intel_encoder *encoder;
10372         struct intel_connector *connector;
10373         int i;
10374
10375         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10376                             base.head) {
10377                 memset(&crtc->config, 0, sizeof(crtc->config));
10378
10379                 crtc->active = dev_priv->display.get_pipe_config(crtc,
10380                                                                  &crtc->config);
10381
10382                 crtc->base.enabled = crtc->active;
10383
10384                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10385                               crtc->base.base.id,
10386                               crtc->active ? "enabled" : "disabled");
10387         }
10388
10389         /* FIXME: Smash this into the new shared dpll infrastructure. */
10390         if (HAS_DDI(dev))
10391                 intel_ddi_setup_hw_pll_state(dev);
10392
10393         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10394                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10395
10396                 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10397                 pll->active = 0;
10398                 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10399                                     base.head) {
10400                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10401                                 pll->active++;
10402                 }
10403                 pll->refcount = pll->active;
10404
10405                 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10406                               pll->name, pll->refcount, pll->on);
10407         }
10408
10409         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10410                             base.head) {
10411                 pipe = 0;
10412
10413                 if (encoder->get_hw_state(encoder, &pipe)) {
10414                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10415                         encoder->base.crtc = &crtc->base;
10416                         if (encoder->get_config)
10417                                 encoder->get_config(encoder, &crtc->config);
10418                 } else {
10419                         encoder->base.crtc = NULL;
10420                 }
10421
10422                 encoder->connectors_active = false;
10423                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
10424                               encoder->base.base.id,
10425                               drm_get_encoder_name(&encoder->base),
10426                               encoder->base.crtc ? "enabled" : "disabled",
10427                               pipe);
10428         }
10429
10430         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10431                             base.head) {
10432                 if (!crtc->active)
10433                         continue;
10434                 if (dev_priv->display.get_clock)
10435                         dev_priv->display.get_clock(crtc,
10436                                                     &crtc->config);
10437         }
10438
10439         list_for_each_entry(connector, &dev->mode_config.connector_list,
10440                             base.head) {
10441                 if (connector->get_hw_state(connector)) {
10442                         connector->base.dpms = DRM_MODE_DPMS_ON;
10443                         connector->encoder->connectors_active = true;
10444                         connector->base.encoder = &connector->encoder->base;
10445                 } else {
10446                         connector->base.dpms = DRM_MODE_DPMS_OFF;
10447                         connector->base.encoder = NULL;
10448                 }
10449                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10450                               connector->base.base.id,
10451                               drm_get_connector_name(&connector->base),
10452                               connector->base.encoder ? "enabled" : "disabled");
10453         }
10454 }
10455
10456 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10457  * and i915 state tracking structures. */
10458 void intel_modeset_setup_hw_state(struct drm_device *dev,
10459                                   bool force_restore)
10460 {
10461         struct drm_i915_private *dev_priv = dev->dev_private;
10462         enum pipe pipe;
10463         struct drm_plane *plane;
10464         struct intel_crtc *crtc;
10465         struct intel_encoder *encoder;
10466         int i;
10467
10468         intel_modeset_readout_hw_state(dev);
10469
10470         /*
10471          * Now that we have the config, copy it to each CRTC struct
10472          * Note that this could go away if we move to using crtc_config
10473          * checking everywhere.
10474          */
10475         list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10476                             base.head) {
10477                 if (crtc->active && i915_fastboot) {
10478                         intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10479
10480                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10481                                       crtc->base.base.id);
10482                         drm_mode_debug_printmodeline(&crtc->base.mode);
10483                 }
10484         }
10485
10486         /* HW state is read out, now we need to sanitize this mess. */
10487         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10488                             base.head) {
10489                 intel_sanitize_encoder(encoder);
10490         }
10491
10492         for_each_pipe(pipe) {
10493                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10494                 intel_sanitize_crtc(crtc);
10495                 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10496         }
10497
10498         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10499                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10500
10501                 if (!pll->on || pll->active)
10502                         continue;
10503
10504                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10505
10506                 pll->disable(dev_priv, pll);
10507                 pll->on = false;
10508         }
10509
10510         if (force_restore) {
10511                 /*
10512                  * We need to use raw interfaces for restoring state to avoid
10513                  * checking (bogus) intermediate states.
10514                  */
10515                 for_each_pipe(pipe) {
10516                         struct drm_crtc *crtc =
10517                                 dev_priv->pipe_to_crtc_mapping[pipe];
10518
10519                         __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10520                                          crtc->fb);
10521                 }
10522                 list_for_each_entry(plane, &dev->mode_config.plane_list, head)
10523                         intel_plane_restore(plane);
10524
10525                 i915_redisable_vga(dev);
10526         } else {
10527                 intel_modeset_update_staged_output_state(dev);
10528         }
10529
10530         intel_modeset_check_state(dev);
10531
10532         drm_mode_config_reset(dev);
10533 }
10534
10535 void intel_modeset_gem_init(struct drm_device *dev)
10536 {
10537         intel_modeset_init_hw(dev);
10538
10539         intel_setup_overlay(dev);
10540
10541         intel_modeset_setup_hw_state(dev, false);
10542 }
10543
10544 void intel_modeset_cleanup(struct drm_device *dev)
10545 {
10546         struct drm_i915_private *dev_priv = dev->dev_private;
10547         struct drm_crtc *crtc;
10548
10549         /*
10550          * Interrupts and polling as the first thing to avoid creating havoc.
10551          * Too much stuff here (turning of rps, connectors, ...) would
10552          * experience fancy races otherwise.
10553          */
10554         drm_irq_uninstall(dev);
10555         cancel_work_sync(&dev_priv->hotplug_work);
10556         /*
10557          * Due to the hpd irq storm handling the hotplug work can re-arm the
10558          * poll handlers. Hence disable polling after hpd handling is shut down.
10559          */
10560         drm_kms_helper_poll_fini(dev);
10561
10562         mutex_lock(&dev->struct_mutex);
10563
10564         intel_unregister_dsm_handler();
10565
10566         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
10567                 /* Skip inactive CRTCs */
10568                 if (!crtc->fb)
10569                         continue;
10570
10571                 intel_increase_pllclock(crtc);
10572         }
10573
10574         intel_disable_fbc(dev);
10575
10576         intel_disable_gt_powersave(dev);
10577
10578         ironlake_teardown_rc6(dev);
10579
10580         mutex_unlock(&dev->struct_mutex);
10581
10582         /* flush any delayed tasks or pending work */
10583         flush_scheduled_work();
10584
10585         /* destroy backlight, if any, before the connectors */
10586         intel_panel_destroy_backlight(dev);
10587
10588         drm_mode_config_cleanup(dev);
10589
10590         intel_cleanup_overlay(dev);
10591 }
10592
10593 /*
10594  * Return which encoder is currently attached for connector.
10595  */
10596 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
10597 {
10598         return &intel_attached_encoder(connector)->base;
10599 }
10600
10601 void intel_connector_attach_encoder(struct intel_connector *connector,
10602                                     struct intel_encoder *encoder)
10603 {
10604         connector->encoder = encoder;
10605         drm_mode_connector_attach_encoder(&connector->base,
10606                                           &encoder->base);
10607 }
10608
10609 /*
10610  * set vga decode state - true == enable VGA decode
10611  */
10612 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
10613 {
10614         struct drm_i915_private *dev_priv = dev->dev_private;
10615         u16 gmch_ctrl;
10616
10617         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
10618         if (state)
10619                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
10620         else
10621                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
10622         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
10623         return 0;
10624 }
10625
10626 struct intel_display_error_state {
10627
10628         u32 power_well_driver;
10629
10630         int num_transcoders;
10631
10632         struct intel_cursor_error_state {
10633                 u32 control;
10634                 u32 position;
10635                 u32 base;
10636                 u32 size;
10637         } cursor[I915_MAX_PIPES];
10638
10639         struct intel_pipe_error_state {
10640                 u32 source;
10641         } pipe[I915_MAX_PIPES];
10642
10643         struct intel_plane_error_state {
10644                 u32 control;
10645                 u32 stride;
10646                 u32 size;
10647                 u32 pos;
10648                 u32 addr;
10649                 u32 surface;
10650                 u32 tile_offset;
10651         } plane[I915_MAX_PIPES];
10652
10653         struct intel_transcoder_error_state {
10654                 enum transcoder cpu_transcoder;
10655
10656                 u32 conf;
10657
10658                 u32 htotal;
10659                 u32 hblank;
10660                 u32 hsync;
10661                 u32 vtotal;
10662                 u32 vblank;
10663                 u32 vsync;
10664         } transcoder[4];
10665 };
10666
10667 struct intel_display_error_state *
10668 intel_display_capture_error_state(struct drm_device *dev)
10669 {
10670         drm_i915_private_t *dev_priv = dev->dev_private;
10671         struct intel_display_error_state *error;
10672         int transcoders[] = {
10673                 TRANSCODER_A,
10674                 TRANSCODER_B,
10675                 TRANSCODER_C,
10676                 TRANSCODER_EDP,
10677         };
10678         int i;
10679
10680         if (INTEL_INFO(dev)->num_pipes == 0)
10681                 return NULL;
10682
10683         error = kmalloc(sizeof(*error), GFP_ATOMIC);
10684         if (error == NULL)
10685                 return NULL;
10686
10687         if (HAS_POWER_WELL(dev))
10688                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
10689
10690         for_each_pipe(i) {
10691                 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
10692                         error->cursor[i].control = I915_READ(CURCNTR(i));
10693                         error->cursor[i].position = I915_READ(CURPOS(i));
10694                         error->cursor[i].base = I915_READ(CURBASE(i));
10695                 } else {
10696                         error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
10697                         error->cursor[i].position = I915_READ(CURPOS_IVB(i));
10698                         error->cursor[i].base = I915_READ(CURBASE_IVB(i));
10699                 }
10700
10701                 error->plane[i].control = I915_READ(DSPCNTR(i));
10702                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
10703                 if (INTEL_INFO(dev)->gen <= 3) {
10704                         error->plane[i].size = I915_READ(DSPSIZE(i));
10705                         error->plane[i].pos = I915_READ(DSPPOS(i));
10706                 }
10707                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10708                         error->plane[i].addr = I915_READ(DSPADDR(i));
10709                 if (INTEL_INFO(dev)->gen >= 4) {
10710                         error->plane[i].surface = I915_READ(DSPSURF(i));
10711                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
10712                 }
10713
10714                 error->pipe[i].source = I915_READ(PIPESRC(i));
10715         }
10716
10717         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
10718         if (HAS_DDI(dev_priv->dev))
10719                 error->num_transcoders++; /* Account for eDP. */
10720
10721         for (i = 0; i < error->num_transcoders; i++) {
10722                 enum transcoder cpu_transcoder = transcoders[i];
10723
10724                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
10725
10726                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
10727                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
10728                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
10729                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
10730                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
10731                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
10732                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
10733         }
10734
10735         /* In the code above we read the registers without checking if the power
10736          * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
10737          * prevent the next I915_WRITE from detecting it and printing an error
10738          * message. */
10739         intel_uncore_clear_errors(dev);
10740
10741         return error;
10742 }
10743
10744 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
10745
10746 void
10747 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
10748                                 struct drm_device *dev,
10749                                 struct intel_display_error_state *error)
10750 {
10751         int i;
10752
10753         if (!error)
10754                 return;
10755
10756         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
10757         if (HAS_POWER_WELL(dev))
10758                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
10759                            error->power_well_driver);
10760         for_each_pipe(i) {
10761                 err_printf(m, "Pipe [%d]:\n", i);
10762                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
10763
10764                 err_printf(m, "Plane [%d]:\n", i);
10765                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
10766                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
10767                 if (INTEL_INFO(dev)->gen <= 3) {
10768                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
10769                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
10770                 }
10771                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
10772                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
10773                 if (INTEL_INFO(dev)->gen >= 4) {
10774                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
10775                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
10776                 }
10777
10778                 err_printf(m, "Cursor [%d]:\n", i);
10779                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
10780                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
10781                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
10782         }
10783
10784         for (i = 0; i < error->num_transcoders; i++) {
10785                 err_printf(m, "  CPU transcoder: %c\n",
10786                            transcoder_name(error->transcoder[i].cpu_transcoder));
10787                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
10788                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
10789                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
10790                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
10791                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
10792                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
10793                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
10794         }
10795 }