Merge tag 'trace-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /*
41          * The timeline struct (as part of the ppgtt underneath a context)
42          * may be freed when the request is no longer in use by the GPU.
43          * We could extend the life of a context to beyond that of all
44          * fences, possibly keeping the hw resource around indefinitely,
45          * or we just give them a false name. Since
46          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
47          * lie seems justifiable.
48          */
49         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
50                 return "signaled";
51
52         return to_request(fence)->timeline->name;
53 }
54
55 static bool i915_fence_signaled(struct dma_fence *fence)
56 {
57         return i915_request_completed(to_request(fence));
58 }
59
60 static bool i915_fence_enable_signaling(struct dma_fence *fence)
61 {
62         return intel_engine_enable_signaling(to_request(fence), true);
63 }
64
65 static signed long i915_fence_wait(struct dma_fence *fence,
66                                    bool interruptible,
67                                    signed long timeout)
68 {
69         return i915_request_wait(to_request(fence), interruptible, timeout);
70 }
71
72 static void i915_fence_release(struct dma_fence *fence)
73 {
74         struct i915_request *rq = to_request(fence);
75
76         /*
77          * The request is put onto a RCU freelist (i.e. the address
78          * is immediately reused), mark the fences as being freed now.
79          * Otherwise the debugobjects for the fences are only marked as
80          * freed when the slab cache itself is freed, and so we would get
81          * caught trying to reuse dead objects.
82          */
83         i915_sw_fence_fini(&rq->submit);
84
85         kmem_cache_free(rq->i915->requests, rq);
86 }
87
88 const struct dma_fence_ops i915_fence_ops = {
89         .get_driver_name = i915_fence_get_driver_name,
90         .get_timeline_name = i915_fence_get_timeline_name,
91         .enable_signaling = i915_fence_enable_signaling,
92         .signaled = i915_fence_signaled,
93         .wait = i915_fence_wait,
94         .release = i915_fence_release,
95 };
96
97 static inline void
98 i915_request_remove_from_client(struct i915_request *request)
99 {
100         struct drm_i915_file_private *file_priv;
101
102         file_priv = request->file_priv;
103         if (!file_priv)
104                 return;
105
106         spin_lock(&file_priv->mm.lock);
107         if (request->file_priv) {
108                 list_del(&request->client_link);
109                 request->file_priv = NULL;
110         }
111         spin_unlock(&file_priv->mm.lock);
112 }
113
114 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
115 {
116         struct intel_engine_cs *engine;
117         struct i915_timeline *timeline;
118         enum intel_engine_id id;
119         int ret;
120
121         /* Carefully retire all requests without writing to the rings */
122         ret = i915_gem_wait_for_idle(i915,
123                                      I915_WAIT_INTERRUPTIBLE |
124                                      I915_WAIT_LOCKED,
125                                      MAX_SCHEDULE_TIMEOUT);
126         if (ret)
127                 return ret;
128
129         GEM_BUG_ON(i915->gt.active_requests);
130
131         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
132         for_each_engine(engine, i915, id) {
133                 GEM_TRACE("%s seqno %d (current %d) -> %d\n",
134                           engine->name,
135                           engine->timeline.seqno,
136                           intel_engine_get_seqno(engine),
137                           seqno);
138
139                 if (seqno == engine->timeline.seqno)
140                         continue;
141
142                 kthread_park(engine->breadcrumbs.signaler);
143
144                 if (!i915_seqno_passed(seqno, engine->timeline.seqno)) {
145                         /* Flush any waiters before we reuse the seqno */
146                         intel_engine_disarm_breadcrumbs(engine);
147                         intel_engine_init_hangcheck(engine);
148                         GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
149                 }
150
151                 /* Check we are idle before we fiddle with hw state! */
152                 GEM_BUG_ON(!intel_engine_is_idle(engine));
153                 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline.last_request));
154
155                 /* Finally reset hw state */
156                 intel_engine_init_global_seqno(engine, seqno);
157                 engine->timeline.seqno = seqno;
158
159                 kthread_unpark(engine->breadcrumbs.signaler);
160         }
161
162         list_for_each_entry(timeline, &i915->gt.timelines, link)
163                 memset(timeline->global_sync, 0, sizeof(timeline->global_sync));
164
165         i915->gt.request_serial = seqno;
166
167         return 0;
168 }
169
170 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
171 {
172         struct drm_i915_private *i915 = to_i915(dev);
173
174         lockdep_assert_held(&i915->drm.struct_mutex);
175
176         if (seqno == 0)
177                 return -EINVAL;
178
179         /* HWS page needs to be set less than what we will inject to ring */
180         return reset_all_global_seqno(i915, seqno - 1);
181 }
182
183 static int reserve_gt(struct drm_i915_private *i915)
184 {
185         int ret;
186
187         /*
188          * Reservation is fine until we may need to wrap around
189          *
190          * By incrementing the serial for every request, we know that no
191          * individual engine may exceed that serial (as each is reset to 0
192          * on any wrap). This protects even the most pessimistic of migrations
193          * of every request from all engines onto just one.
194          */
195         while (unlikely(++i915->gt.request_serial == 0)) {
196                 ret = reset_all_global_seqno(i915, 0);
197                 if (ret) {
198                         i915->gt.request_serial--;
199                         return ret;
200                 }
201         }
202
203         if (!i915->gt.active_requests++)
204                 i915_gem_unpark(i915);
205
206         return 0;
207 }
208
209 static void unreserve_gt(struct drm_i915_private *i915)
210 {
211         GEM_BUG_ON(!i915->gt.active_requests);
212         if (!--i915->gt.active_requests)
213                 i915_gem_park(i915);
214 }
215
216 void i915_gem_retire_noop(struct i915_gem_active *active,
217                           struct i915_request *request)
218 {
219         /* Space left intentionally blank */
220 }
221
222 static void advance_ring(struct i915_request *request)
223 {
224         struct intel_ring *ring = request->ring;
225         unsigned int tail;
226
227         /*
228          * We know the GPU must have read the request to have
229          * sent us the seqno + interrupt, so use the position
230          * of tail of the request to update the last known position
231          * of the GPU head.
232          *
233          * Note this requires that we are always called in request
234          * completion order.
235          */
236         GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
237         if (list_is_last(&request->ring_link, &ring->request_list)) {
238                 /*
239                  * We may race here with execlists resubmitting this request
240                  * as we retire it. The resubmission will move the ring->tail
241                  * forwards (to request->wa_tail). We either read the
242                  * current value that was written to hw, or the value that
243                  * is just about to be. Either works, if we miss the last two
244                  * noops - they are safe to be replayed on a reset.
245                  */
246                 GEM_TRACE("marking %s as inactive\n", ring->timeline->name);
247                 tail = READ_ONCE(request->tail);
248                 list_del(&ring->active_link);
249         } else {
250                 tail = request->postfix;
251         }
252         list_del_init(&request->ring_link);
253
254         ring->head = tail;
255 }
256
257 static void free_capture_list(struct i915_request *request)
258 {
259         struct i915_capture_list *capture;
260
261         capture = request->capture_list;
262         while (capture) {
263                 struct i915_capture_list *next = capture->next;
264
265                 kfree(capture);
266                 capture = next;
267         }
268 }
269
270 static void __retire_engine_request(struct intel_engine_cs *engine,
271                                     struct i915_request *rq)
272 {
273         GEM_TRACE("%s(%s) fence %llx:%d, global=%d, current %d\n",
274                   __func__, engine->name,
275                   rq->fence.context, rq->fence.seqno,
276                   rq->global_seqno,
277                   intel_engine_get_seqno(engine));
278
279         GEM_BUG_ON(!i915_request_completed(rq));
280
281         local_irq_disable();
282
283         spin_lock(&engine->timeline.lock);
284         GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
285         list_del_init(&rq->link);
286         spin_unlock(&engine->timeline.lock);
287
288         spin_lock(&rq->lock);
289         if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
290                 dma_fence_signal_locked(&rq->fence);
291         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
292                 intel_engine_cancel_signaling(rq);
293         if (rq->waitboost) {
294                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
295                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
296         }
297         spin_unlock(&rq->lock);
298
299         local_irq_enable();
300
301         /*
302          * The backing object for the context is done after switching to the
303          * *next* context. Therefore we cannot retire the previous context until
304          * the next context has already started running. However, since we
305          * cannot take the required locks at i915_request_submit() we
306          * defer the unpinning of the active context to now, retirement of
307          * the subsequent request.
308          */
309         if (engine->last_retired_context)
310                 intel_context_unpin(engine->last_retired_context);
311         engine->last_retired_context = rq->hw_context;
312 }
313
314 static void __retire_engine_upto(struct intel_engine_cs *engine,
315                                  struct i915_request *rq)
316 {
317         struct i915_request *tmp;
318
319         if (list_empty(&rq->link))
320                 return;
321
322         do {
323                 tmp = list_first_entry(&engine->timeline.requests,
324                                        typeof(*tmp), link);
325
326                 GEM_BUG_ON(tmp->engine != engine);
327                 __retire_engine_request(engine, tmp);
328         } while (tmp != rq);
329 }
330
331 static void i915_request_retire(struct i915_request *request)
332 {
333         struct i915_gem_active *active, *next;
334
335         GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
336                   request->engine->name,
337                   request->fence.context, request->fence.seqno,
338                   request->global_seqno,
339                   intel_engine_get_seqno(request->engine));
340
341         lockdep_assert_held(&request->i915->drm.struct_mutex);
342         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
343         GEM_BUG_ON(!i915_request_completed(request));
344
345         trace_i915_request_retire(request);
346
347         advance_ring(request);
348         free_capture_list(request);
349
350         /*
351          * Walk through the active list, calling retire on each. This allows
352          * objects to track their GPU activity and mark themselves as idle
353          * when their *last* active request is completed (updating state
354          * tracking lists for eviction, active references for GEM, etc).
355          *
356          * As the ->retire() may free the node, we decouple it first and
357          * pass along the auxiliary information (to avoid dereferencing
358          * the node after the callback).
359          */
360         list_for_each_entry_safe(active, next, &request->active_list, link) {
361                 /*
362                  * In microbenchmarks or focusing upon time inside the kernel,
363                  * we may spend an inordinate amount of time simply handling
364                  * the retirement of requests and processing their callbacks.
365                  * Of which, this loop itself is particularly hot due to the
366                  * cache misses when jumping around the list of i915_gem_active.
367                  * So we try to keep this loop as streamlined as possible and
368                  * also prefetch the next i915_gem_active to try and hide
369                  * the likely cache miss.
370                  */
371                 prefetchw(next);
372
373                 INIT_LIST_HEAD(&active->link);
374                 RCU_INIT_POINTER(active->request, NULL);
375
376                 active->retire(active, request);
377         }
378
379         i915_request_remove_from_client(request);
380
381         /* Retirement decays the ban score as it is a sign of ctx progress */
382         atomic_dec_if_positive(&request->gem_context->ban_score);
383         intel_context_unpin(request->hw_context);
384
385         __retire_engine_upto(request->engine, request);
386
387         unreserve_gt(request->i915);
388
389         i915_sched_node_fini(request->i915, &request->sched);
390         i915_request_put(request);
391 }
392
393 void i915_request_retire_upto(struct i915_request *rq)
394 {
395         struct intel_ring *ring = rq->ring;
396         struct i915_request *tmp;
397
398         GEM_TRACE("%s fence %llx:%d, global=%d, current %d\n",
399                   rq->engine->name,
400                   rq->fence.context, rq->fence.seqno,
401                   rq->global_seqno,
402                   intel_engine_get_seqno(rq->engine));
403
404         lockdep_assert_held(&rq->i915->drm.struct_mutex);
405         GEM_BUG_ON(!i915_request_completed(rq));
406
407         if (list_empty(&rq->ring_link))
408                 return;
409
410         do {
411                 tmp = list_first_entry(&ring->request_list,
412                                        typeof(*tmp), ring_link);
413
414                 i915_request_retire(tmp);
415         } while (tmp != rq);
416 }
417
418 static u32 timeline_get_seqno(struct i915_timeline *tl)
419 {
420         return ++tl->seqno;
421 }
422
423 static void move_to_timeline(struct i915_request *request,
424                              struct i915_timeline *timeline)
425 {
426         GEM_BUG_ON(request->timeline == &request->engine->timeline);
427         lockdep_assert_held(&request->engine->timeline.lock);
428
429         spin_lock(&request->timeline->lock);
430         list_move_tail(&request->link, &timeline->requests);
431         spin_unlock(&request->timeline->lock);
432 }
433
434 void __i915_request_submit(struct i915_request *request)
435 {
436         struct intel_engine_cs *engine = request->engine;
437         u32 seqno;
438
439         GEM_TRACE("%s fence %llx:%d -> global=%d, current %d\n",
440                   engine->name,
441                   request->fence.context, request->fence.seqno,
442                   engine->timeline.seqno + 1,
443                   intel_engine_get_seqno(engine));
444
445         GEM_BUG_ON(!irqs_disabled());
446         lockdep_assert_held(&engine->timeline.lock);
447
448         GEM_BUG_ON(request->global_seqno);
449
450         seqno = timeline_get_seqno(&engine->timeline);
451         GEM_BUG_ON(!seqno);
452         GEM_BUG_ON(intel_engine_signaled(engine, seqno));
453
454         /* We may be recursing from the signal callback of another i915 fence */
455         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
456         request->global_seqno = seqno;
457         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
458                 intel_engine_enable_signaling(request, false);
459         spin_unlock(&request->lock);
460
461         engine->emit_breadcrumb(request,
462                                 request->ring->vaddr + request->postfix);
463
464         /* Transfer from per-context onto the global per-engine timeline */
465         move_to_timeline(request, &engine->timeline);
466
467         trace_i915_request_execute(request);
468
469         wake_up_all(&request->execute);
470 }
471
472 void i915_request_submit(struct i915_request *request)
473 {
474         struct intel_engine_cs *engine = request->engine;
475         unsigned long flags;
476
477         /* Will be called from irq-context when using foreign fences. */
478         spin_lock_irqsave(&engine->timeline.lock, flags);
479
480         __i915_request_submit(request);
481
482         spin_unlock_irqrestore(&engine->timeline.lock, flags);
483 }
484
485 void __i915_request_unsubmit(struct i915_request *request)
486 {
487         struct intel_engine_cs *engine = request->engine;
488
489         GEM_TRACE("%s fence %llx:%d <- global=%d, current %d\n",
490                   engine->name,
491                   request->fence.context, request->fence.seqno,
492                   request->global_seqno,
493                   intel_engine_get_seqno(engine));
494
495         GEM_BUG_ON(!irqs_disabled());
496         lockdep_assert_held(&engine->timeline.lock);
497
498         /*
499          * Only unwind in reverse order, required so that the per-context list
500          * is kept in seqno/ring order.
501          */
502         GEM_BUG_ON(!request->global_seqno);
503         GEM_BUG_ON(request->global_seqno != engine->timeline.seqno);
504         GEM_BUG_ON(intel_engine_has_completed(engine, request->global_seqno));
505         engine->timeline.seqno--;
506
507         /* We may be recursing from the signal callback of another i915 fence */
508         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
509         request->global_seqno = 0;
510         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
511                 intel_engine_cancel_signaling(request);
512         spin_unlock(&request->lock);
513
514         /* Transfer back from the global per-engine timeline to per-context */
515         move_to_timeline(request, request->timeline);
516
517         /*
518          * We don't need to wake_up any waiters on request->execute, they
519          * will get woken by any other event or us re-adding this request
520          * to the engine timeline (__i915_request_submit()). The waiters
521          * should be quite adapt at finding that the request now has a new
522          * global_seqno to the one they went to sleep on.
523          */
524 }
525
526 void i915_request_unsubmit(struct i915_request *request)
527 {
528         struct intel_engine_cs *engine = request->engine;
529         unsigned long flags;
530
531         /* Will be called from irq-context when using foreign fences. */
532         spin_lock_irqsave(&engine->timeline.lock, flags);
533
534         __i915_request_unsubmit(request);
535
536         spin_unlock_irqrestore(&engine->timeline.lock, flags);
537 }
538
539 static int __i915_sw_fence_call
540 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
541 {
542         struct i915_request *request =
543                 container_of(fence, typeof(*request), submit);
544
545         switch (state) {
546         case FENCE_COMPLETE:
547                 trace_i915_request_submit(request);
548                 /*
549                  * We need to serialize use of the submit_request() callback
550                  * with its hotplugging performed during an emergency
551                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
552                  * critical section in order to force i915_gem_set_wedged() to
553                  * wait until the submit_request() is completed before
554                  * proceeding.
555                  */
556                 rcu_read_lock();
557                 request->engine->submit_request(request);
558                 rcu_read_unlock();
559                 break;
560
561         case FENCE_FREE:
562                 i915_request_put(request);
563                 break;
564         }
565
566         return NOTIFY_DONE;
567 }
568
569 /**
570  * i915_request_alloc - allocate a request structure
571  *
572  * @engine: engine that we wish to issue the request on.
573  * @ctx: context that the request will be associated with.
574  *
575  * Returns a pointer to the allocated request if successful,
576  * or an error code if not.
577  */
578 struct i915_request *
579 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
580 {
581         struct drm_i915_private *i915 = engine->i915;
582         struct i915_request *rq;
583         struct intel_context *ce;
584         int ret;
585
586         lockdep_assert_held(&i915->drm.struct_mutex);
587
588         /*
589          * Preempt contexts are reserved for exclusive use to inject a
590          * preemption context switch. They are never to be used for any trivial
591          * request!
592          */
593         GEM_BUG_ON(ctx == i915->preempt_context);
594
595         /*
596          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
597          * EIO if the GPU is already wedged.
598          */
599         if (i915_terminally_wedged(&i915->gpu_error))
600                 return ERR_PTR(-EIO);
601
602         /*
603          * Pinning the contexts may generate requests in order to acquire
604          * GGTT space, so do this first before we reserve a seqno for
605          * ourselves.
606          */
607         ce = intel_context_pin(ctx, engine);
608         if (IS_ERR(ce))
609                 return ERR_CAST(ce);
610
611         ret = reserve_gt(i915);
612         if (ret)
613                 goto err_unpin;
614
615         ret = intel_ring_wait_for_space(ce->ring, MIN_SPACE_FOR_ADD_REQUEST);
616         if (ret)
617                 goto err_unreserve;
618
619         /* Move our oldest request to the slab-cache (if not in use!) */
620         rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
621         if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
622             i915_request_completed(rq))
623                 i915_request_retire(rq);
624
625         /*
626          * Beware: Dragons be flying overhead.
627          *
628          * We use RCU to look up requests in flight. The lookups may
629          * race with the request being allocated from the slab freelist.
630          * That is the request we are writing to here, may be in the process
631          * of being read by __i915_gem_active_get_rcu(). As such,
632          * we have to be very careful when overwriting the contents. During
633          * the RCU lookup, we change chase the request->engine pointer,
634          * read the request->global_seqno and increment the reference count.
635          *
636          * The reference count is incremented atomically. If it is zero,
637          * the lookup knows the request is unallocated and complete. Otherwise,
638          * it is either still in use, or has been reallocated and reset
639          * with dma_fence_init(). This increment is safe for release as we
640          * check that the request we have a reference to and matches the active
641          * request.
642          *
643          * Before we increment the refcount, we chase the request->engine
644          * pointer. We must not call kmem_cache_zalloc() or else we set
645          * that pointer to NULL and cause a crash during the lookup. If
646          * we see the request is completed (based on the value of the
647          * old engine and seqno), the lookup is complete and reports NULL.
648          * If we decide the request is not completed (new engine or seqno),
649          * then we grab a reference and double check that it is still the
650          * active request - which it won't be and restart the lookup.
651          *
652          * Do not use kmem_cache_zalloc() here!
653          */
654         rq = kmem_cache_alloc(i915->requests,
655                               GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
656         if (unlikely(!rq)) {
657                 i915_retire_requests(i915);
658
659                 /* Ratelimit ourselves to prevent oom from malicious clients */
660                 rq = i915_gem_active_raw(&ce->ring->timeline->last_request,
661                                          &i915->drm.struct_mutex);
662                 if (rq)
663                         cond_synchronize_rcu(rq->rcustate);
664
665                 rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
666                 if (!rq) {
667                         ret = -ENOMEM;
668                         goto err_unreserve;
669                 }
670         }
671
672         rq->rcustate = get_state_synchronize_rcu();
673
674         INIT_LIST_HEAD(&rq->active_list);
675         rq->i915 = i915;
676         rq->engine = engine;
677         rq->gem_context = ctx;
678         rq->hw_context = ce;
679         rq->ring = ce->ring;
680         rq->timeline = ce->ring->timeline;
681         GEM_BUG_ON(rq->timeline == &engine->timeline);
682
683         spin_lock_init(&rq->lock);
684         dma_fence_init(&rq->fence,
685                        &i915_fence_ops,
686                        &rq->lock,
687                        rq->timeline->fence_context,
688                        timeline_get_seqno(rq->timeline));
689
690         /* We bump the ref for the fence chain */
691         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
692         init_waitqueue_head(&rq->execute);
693
694         i915_sched_node_init(&rq->sched);
695
696         /* No zalloc, must clear what we need by hand */
697         rq->global_seqno = 0;
698         rq->signaling.wait.seqno = 0;
699         rq->file_priv = NULL;
700         rq->batch = NULL;
701         rq->capture_list = NULL;
702         rq->waitboost = false;
703
704         /*
705          * Reserve space in the ring buffer for all the commands required to
706          * eventually emit this request. This is to guarantee that the
707          * i915_request_add() call can't fail. Note that the reserve may need
708          * to be redone if the request is not actually submitted straight
709          * away, e.g. because a GPU scheduler has deferred it.
710          */
711         rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
712         GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
713
714         /*
715          * Record the position of the start of the request so that
716          * should we detect the updated seqno part-way through the
717          * GPU processing the request, we never over-estimate the
718          * position of the head.
719          */
720         rq->head = rq->ring->emit;
721
722         /* Unconditionally invalidate GPU caches and TLBs. */
723         ret = engine->emit_flush(rq, EMIT_INVALIDATE);
724         if (ret)
725                 goto err_unwind;
726
727         ret = engine->request_alloc(rq);
728         if (ret)
729                 goto err_unwind;
730
731         /* Keep a second pin for the dual retirement along engine and ring */
732         __intel_context_pin(ce);
733
734         rq->infix = rq->ring->emit; /* end of header; start of user payload */
735
736         /* Check that we didn't interrupt ourselves with a new request */
737         GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
738         return rq;
739
740 err_unwind:
741         ce->ring->emit = rq->head;
742
743         /* Make sure we didn't add ourselves to external state before freeing */
744         GEM_BUG_ON(!list_empty(&rq->active_list));
745         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
746         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
747
748         kmem_cache_free(i915->requests, rq);
749 err_unreserve:
750         unreserve_gt(i915);
751 err_unpin:
752         intel_context_unpin(ce);
753         return ERR_PTR(ret);
754 }
755
756 static int
757 i915_request_await_request(struct i915_request *to, struct i915_request *from)
758 {
759         int ret;
760
761         GEM_BUG_ON(to == from);
762         GEM_BUG_ON(to->timeline == from->timeline);
763
764         if (i915_request_completed(from))
765                 return 0;
766
767         if (to->engine->schedule) {
768                 ret = i915_sched_node_add_dependency(to->i915,
769                                                      &to->sched,
770                                                      &from->sched);
771                 if (ret < 0)
772                         return ret;
773         }
774
775         if (to->engine == from->engine) {
776                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
777                                                        &from->submit,
778                                                        I915_FENCE_GFP);
779                 return ret < 0 ? ret : 0;
780         }
781
782         if (to->engine->semaphore.sync_to) {
783                 u32 seqno;
784
785                 GEM_BUG_ON(!from->engine->semaphore.signal);
786
787                 seqno = i915_request_global_seqno(from);
788                 if (!seqno)
789                         goto await_dma_fence;
790
791                 if (seqno <= to->timeline->global_sync[from->engine->id])
792                         return 0;
793
794                 trace_i915_gem_ring_sync_to(to, from);
795                 ret = to->engine->semaphore.sync_to(to, from);
796                 if (ret)
797                         return ret;
798
799                 to->timeline->global_sync[from->engine->id] = seqno;
800                 return 0;
801         }
802
803 await_dma_fence:
804         ret = i915_sw_fence_await_dma_fence(&to->submit,
805                                             &from->fence, 0,
806                                             I915_FENCE_GFP);
807         return ret < 0 ? ret : 0;
808 }
809
810 int
811 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
812 {
813         struct dma_fence **child = &fence;
814         unsigned int nchild = 1;
815         int ret;
816
817         /*
818          * Note that if the fence-array was created in signal-on-any mode,
819          * we should *not* decompose it into its individual fences. However,
820          * we don't currently store which mode the fence-array is operating
821          * in. Fortunately, the only user of signal-on-any is private to
822          * amdgpu and we should not see any incoming fence-array from
823          * sync-file being in signal-on-any mode.
824          */
825         if (dma_fence_is_array(fence)) {
826                 struct dma_fence_array *array = to_dma_fence_array(fence);
827
828                 child = array->fences;
829                 nchild = array->num_fences;
830                 GEM_BUG_ON(!nchild);
831         }
832
833         do {
834                 fence = *child++;
835                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
836                         continue;
837
838                 /*
839                  * Requests on the same timeline are explicitly ordered, along
840                  * with their dependencies, by i915_request_add() which ensures
841                  * that requests are submitted in-order through each ring.
842                  */
843                 if (fence->context == rq->fence.context)
844                         continue;
845
846                 /* Squash repeated waits to the same timelines */
847                 if (fence->context != rq->i915->mm.unordered_timeline &&
848                     i915_timeline_sync_is_later(rq->timeline, fence))
849                         continue;
850
851                 if (dma_fence_is_i915(fence))
852                         ret = i915_request_await_request(rq, to_request(fence));
853                 else
854                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
855                                                             I915_FENCE_TIMEOUT,
856                                                             I915_FENCE_GFP);
857                 if (ret < 0)
858                         return ret;
859
860                 /* Record the latest fence used against each timeline */
861                 if (fence->context != rq->i915->mm.unordered_timeline)
862                         i915_timeline_sync_set(rq->timeline, fence);
863         } while (--nchild);
864
865         return 0;
866 }
867
868 /**
869  * i915_request_await_object - set this request to (async) wait upon a bo
870  * @to: request we are wishing to use
871  * @obj: object which may be in use on another ring.
872  * @write: whether the wait is on behalf of a writer
873  *
874  * This code is meant to abstract object synchronization with the GPU.
875  * Conceptually we serialise writes between engines inside the GPU.
876  * We only allow one engine to write into a buffer at any time, but
877  * multiple readers. To ensure each has a coherent view of memory, we must:
878  *
879  * - If there is an outstanding write request to the object, the new
880  *   request must wait for it to complete (either CPU or in hw, requests
881  *   on the same ring will be naturally ordered).
882  *
883  * - If we are a write request (pending_write_domain is set), the new
884  *   request must wait for outstanding read requests to complete.
885  *
886  * Returns 0 if successful, else propagates up the lower layer error.
887  */
888 int
889 i915_request_await_object(struct i915_request *to,
890                           struct drm_i915_gem_object *obj,
891                           bool write)
892 {
893         struct dma_fence *excl;
894         int ret = 0;
895
896         if (write) {
897                 struct dma_fence **shared;
898                 unsigned int count, i;
899
900                 ret = reservation_object_get_fences_rcu(obj->resv,
901                                                         &excl, &count, &shared);
902                 if (ret)
903                         return ret;
904
905                 for (i = 0; i < count; i++) {
906                         ret = i915_request_await_dma_fence(to, shared[i]);
907                         if (ret)
908                                 break;
909
910                         dma_fence_put(shared[i]);
911                 }
912
913                 for (; i < count; i++)
914                         dma_fence_put(shared[i]);
915                 kfree(shared);
916         } else {
917                 excl = reservation_object_get_excl_rcu(obj->resv);
918         }
919
920         if (excl) {
921                 if (ret == 0)
922                         ret = i915_request_await_dma_fence(to, excl);
923
924                 dma_fence_put(excl);
925         }
926
927         return ret;
928 }
929
930 void i915_request_skip(struct i915_request *rq, int error)
931 {
932         void *vaddr = rq->ring->vaddr;
933         u32 head;
934
935         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
936         dma_fence_set_error(&rq->fence, error);
937
938         /*
939          * As this request likely depends on state from the lost
940          * context, clear out all the user operations leaving the
941          * breadcrumb at the end (so we get the fence notifications).
942          */
943         head = rq->infix;
944         if (rq->postfix < head) {
945                 memset(vaddr + head, 0, rq->ring->size - head);
946                 head = 0;
947         }
948         memset(vaddr + head, 0, rq->postfix - head);
949 }
950
951 /*
952  * NB: This function is not allowed to fail. Doing so would mean the the
953  * request is not being tracked for completion but the work itself is
954  * going to happen on the hardware. This would be a Bad Thing(tm).
955  */
956 void i915_request_add(struct i915_request *request)
957 {
958         struct intel_engine_cs *engine = request->engine;
959         struct i915_timeline *timeline = request->timeline;
960         struct intel_ring *ring = request->ring;
961         struct i915_request *prev;
962         u32 *cs;
963
964         GEM_TRACE("%s fence %llx:%d\n",
965                   engine->name, request->fence.context, request->fence.seqno);
966
967         lockdep_assert_held(&request->i915->drm.struct_mutex);
968         trace_i915_request_add(request);
969
970         /*
971          * Make sure that no request gazumped us - if it was allocated after
972          * our i915_request_alloc() and called __i915_request_add() before
973          * us, the timeline will hold its seqno which is later than ours.
974          */
975         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
976
977         /*
978          * To ensure that this call will not fail, space for its emissions
979          * should already have been reserved in the ring buffer. Let the ring
980          * know that it is time to use that space up.
981          */
982         request->reserved_space = 0;
983         engine->emit_flush(request, EMIT_FLUSH);
984
985         /*
986          * Record the position of the start of the breadcrumb so that
987          * should we detect the updated seqno part-way through the
988          * GPU processing the request, we never over-estimate the
989          * position of the ring's HEAD.
990          */
991         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
992         GEM_BUG_ON(IS_ERR(cs));
993         request->postfix = intel_ring_offset(request, cs);
994
995         /*
996          * Seal the request and mark it as pending execution. Note that
997          * we may inspect this state, without holding any locks, during
998          * hangcheck. Hence we apply the barrier to ensure that we do not
999          * see a more recent value in the hws than we are tracking.
1000          */
1001
1002         prev = i915_gem_active_raw(&timeline->last_request,
1003                                    &request->i915->drm.struct_mutex);
1004         if (prev && !i915_request_completed(prev)) {
1005                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1006                                              &request->submitq);
1007                 if (engine->schedule)
1008                         __i915_sched_node_add_dependency(&request->sched,
1009                                                          &prev->sched,
1010                                                          &request->dep,
1011                                                          0);
1012         }
1013
1014         spin_lock_irq(&timeline->lock);
1015         list_add_tail(&request->link, &timeline->requests);
1016         spin_unlock_irq(&timeline->lock);
1017
1018         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1019         i915_gem_active_set(&timeline->last_request, request);
1020
1021         list_add_tail(&request->ring_link, &ring->request_list);
1022         if (list_is_first(&request->ring_link, &ring->request_list)) {
1023                 GEM_TRACE("marking %s as active\n", ring->timeline->name);
1024                 list_add(&ring->active_link, &request->i915->gt.active_rings);
1025         }
1026         request->emitted_jiffies = jiffies;
1027
1028         /*
1029          * Let the backend know a new request has arrived that may need
1030          * to adjust the existing execution schedule due to a high priority
1031          * request - i.e. we may want to preempt the current request in order
1032          * to run a high priority dependency chain *before* we can execute this
1033          * request.
1034          *
1035          * This is called before the request is ready to run so that we can
1036          * decide whether to preempt the entire chain so that it is ready to
1037          * run at the earliest possible convenience.
1038          */
1039         local_bh_disable();
1040         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1041         if (engine->schedule) {
1042                 struct i915_sched_attr attr = request->gem_context->sched;
1043
1044                 /*
1045                  * Boost priorities to new clients (new request flows).
1046                  *
1047                  * Allow interactive/synchronous clients to jump ahead of
1048                  * the bulk clients. (FQ_CODEL)
1049                  */
1050                 if (!prev || i915_request_completed(prev))
1051                         attr.priority |= I915_PRIORITY_NEWCLIENT;
1052
1053                 engine->schedule(request, &attr);
1054         }
1055         rcu_read_unlock();
1056         i915_sw_fence_commit(&request->submit);
1057         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1058
1059         /*
1060          * In typical scenarios, we do not expect the previous request on
1061          * the timeline to be still tracked by timeline->last_request if it
1062          * has been completed. If the completed request is still here, that
1063          * implies that request retirement is a long way behind submission,
1064          * suggesting that we haven't been retiring frequently enough from
1065          * the combination of retire-before-alloc, waiters and the background
1066          * retirement worker. So if the last request on this timeline was
1067          * already completed, do a catch up pass, flushing the retirement queue
1068          * up to this client. Since we have now moved the heaviest operations
1069          * during retirement onto secondary workers, such as freeing objects
1070          * or contexts, retiring a bunch of requests is mostly list management
1071          * (and cache misses), and so we should not be overly penalizing this
1072          * client by performing excess work, though we may still performing
1073          * work on behalf of others -- but instead we should benefit from
1074          * improved resource management. (Well, that's the theory at least.)
1075          */
1076         if (prev && i915_request_completed(prev))
1077                 i915_request_retire_upto(prev);
1078 }
1079
1080 static unsigned long local_clock_us(unsigned int *cpu)
1081 {
1082         unsigned long t;
1083
1084         /*
1085          * Cheaply and approximately convert from nanoseconds to microseconds.
1086          * The result and subsequent calculations are also defined in the same
1087          * approximate microseconds units. The principal source of timing
1088          * error here is from the simple truncation.
1089          *
1090          * Note that local_clock() is only defined wrt to the current CPU;
1091          * the comparisons are no longer valid if we switch CPUs. Instead of
1092          * blocking preemption for the entire busywait, we can detect the CPU
1093          * switch and use that as indicator of system load and a reason to
1094          * stop busywaiting, see busywait_stop().
1095          */
1096         *cpu = get_cpu();
1097         t = local_clock() >> 10;
1098         put_cpu();
1099
1100         return t;
1101 }
1102
1103 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1104 {
1105         unsigned int this_cpu;
1106
1107         if (time_after(local_clock_us(&this_cpu), timeout))
1108                 return true;
1109
1110         return this_cpu != cpu;
1111 }
1112
1113 static bool __i915_spin_request(const struct i915_request *rq,
1114                                 u32 seqno, int state, unsigned long timeout_us)
1115 {
1116         struct intel_engine_cs *engine = rq->engine;
1117         unsigned int irq, cpu;
1118
1119         GEM_BUG_ON(!seqno);
1120
1121         /*
1122          * Only wait for the request if we know it is likely to complete.
1123          *
1124          * We don't track the timestamps around requests, nor the average
1125          * request length, so we do not have a good indicator that this
1126          * request will complete within the timeout. What we do know is the
1127          * order in which requests are executed by the engine and so we can
1128          * tell if the request has started. If the request hasn't started yet,
1129          * it is a fair assumption that it will not complete within our
1130          * relatively short timeout.
1131          */
1132         if (!intel_engine_has_started(engine, seqno))
1133                 return false;
1134
1135         /*
1136          * When waiting for high frequency requests, e.g. during synchronous
1137          * rendering split between the CPU and GPU, the finite amount of time
1138          * required to set up the irq and wait upon it limits the response
1139          * rate. By busywaiting on the request completion for a short while we
1140          * can service the high frequency waits as quick as possible. However,
1141          * if it is a slow request, we want to sleep as quickly as possible.
1142          * The tradeoff between waiting and sleeping is roughly the time it
1143          * takes to sleep on a request, on the order of a microsecond.
1144          */
1145
1146         irq = READ_ONCE(engine->breadcrumbs.irq_count);
1147         timeout_us += local_clock_us(&cpu);
1148         do {
1149                 if (intel_engine_has_completed(engine, seqno))
1150                         return seqno == i915_request_global_seqno(rq);
1151
1152                 /*
1153                  * Seqno are meant to be ordered *before* the interrupt. If
1154                  * we see an interrupt without a corresponding seqno advance,
1155                  * assume we won't see one in the near future but require
1156                  * the engine->seqno_barrier() to fixup coherency.
1157                  */
1158                 if (READ_ONCE(engine->breadcrumbs.irq_count) != irq)
1159                         break;
1160
1161                 if (signal_pending_state(state, current))
1162                         break;
1163
1164                 if (busywait_stop(timeout_us, cpu))
1165                         break;
1166
1167                 cpu_relax();
1168         } while (!need_resched());
1169
1170         return false;
1171 }
1172
1173 static bool __i915_wait_request_check_and_reset(struct i915_request *request)
1174 {
1175         struct i915_gpu_error *error = &request->i915->gpu_error;
1176
1177         if (likely(!i915_reset_handoff(error)))
1178                 return false;
1179
1180         __set_current_state(TASK_RUNNING);
1181         i915_reset(request->i915, error->stalled_mask, error->reason);
1182         return true;
1183 }
1184
1185 /**
1186  * i915_request_wait - wait until execution of request has finished
1187  * @rq: the request to wait upon
1188  * @flags: how to wait
1189  * @timeout: how long to wait in jiffies
1190  *
1191  * i915_request_wait() waits for the request to be completed, for a
1192  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1193  * unbounded wait).
1194  *
1195  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1196  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1197  * must not specify that the wait is locked.
1198  *
1199  * Returns the remaining time (in jiffies) if the request completed, which may
1200  * be zero or -ETIME if the request is unfinished after the timeout expires.
1201  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1202  * pending before the request completes.
1203  */
1204 long i915_request_wait(struct i915_request *rq,
1205                        unsigned int flags,
1206                        long timeout)
1207 {
1208         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1209                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1210         wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1211         DEFINE_WAIT_FUNC(reset, default_wake_function);
1212         DEFINE_WAIT_FUNC(exec, default_wake_function);
1213         struct intel_wait wait;
1214
1215         might_sleep();
1216 #if IS_ENABLED(CONFIG_LOCKDEP)
1217         GEM_BUG_ON(debug_locks &&
1218                    !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1219                    !!(flags & I915_WAIT_LOCKED));
1220 #endif
1221         GEM_BUG_ON(timeout < 0);
1222
1223         if (i915_request_completed(rq))
1224                 return timeout;
1225
1226         if (!timeout)
1227                 return -ETIME;
1228
1229         trace_i915_request_wait_begin(rq, flags);
1230
1231         add_wait_queue(&rq->execute, &exec);
1232         if (flags & I915_WAIT_LOCKED)
1233                 add_wait_queue(errq, &reset);
1234
1235         intel_wait_init(&wait);
1236         if (flags & I915_WAIT_PRIORITY)
1237                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1238
1239 restart:
1240         do {
1241                 set_current_state(state);
1242                 if (intel_wait_update_request(&wait, rq))
1243                         break;
1244
1245                 if (flags & I915_WAIT_LOCKED &&
1246                     __i915_wait_request_check_and_reset(rq))
1247                         continue;
1248
1249                 if (signal_pending_state(state, current)) {
1250                         timeout = -ERESTARTSYS;
1251                         goto complete;
1252                 }
1253
1254                 if (!timeout) {
1255                         timeout = -ETIME;
1256                         goto complete;
1257                 }
1258
1259                 timeout = io_schedule_timeout(timeout);
1260         } while (1);
1261
1262         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1263         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1264
1265         /* Optimistic short spin before touching IRQs */
1266         if (__i915_spin_request(rq, wait.seqno, state, 5))
1267                 goto complete;
1268
1269         set_current_state(state);
1270         if (intel_engine_add_wait(rq->engine, &wait))
1271                 /*
1272                  * In order to check that we haven't missed the interrupt
1273                  * as we enabled it, we need to kick ourselves to do a
1274                  * coherent check on the seqno before we sleep.
1275                  */
1276                 goto wakeup;
1277
1278         if (flags & I915_WAIT_LOCKED)
1279                 __i915_wait_request_check_and_reset(rq);
1280
1281         for (;;) {
1282                 if (signal_pending_state(state, current)) {
1283                         timeout = -ERESTARTSYS;
1284                         break;
1285                 }
1286
1287                 if (!timeout) {
1288                         timeout = -ETIME;
1289                         break;
1290                 }
1291
1292                 timeout = io_schedule_timeout(timeout);
1293
1294                 if (intel_wait_complete(&wait) &&
1295                     intel_wait_check_request(&wait, rq))
1296                         break;
1297
1298                 set_current_state(state);
1299
1300 wakeup:
1301                 /*
1302                  * Carefully check if the request is complete, giving time
1303                  * for the seqno to be visible following the interrupt.
1304                  * We also have to check in case we are kicked by the GPU
1305                  * reset in order to drop the struct_mutex.
1306                  */
1307                 if (__i915_request_irq_complete(rq))
1308                         break;
1309
1310                 /*
1311                  * If the GPU is hung, and we hold the lock, reset the GPU
1312                  * and then check for completion. On a full reset, the engine's
1313                  * HW seqno will be advanced passed us and we are complete.
1314                  * If we do a partial reset, we have to wait for the GPU to
1315                  * resume and update the breadcrumb.
1316                  *
1317                  * If we don't hold the mutex, we can just wait for the worker
1318                  * to come along and update the breadcrumb (either directly
1319                  * itself, or indirectly by recovering the GPU).
1320                  */
1321                 if (flags & I915_WAIT_LOCKED &&
1322                     __i915_wait_request_check_and_reset(rq))
1323                         continue;
1324
1325                 /* Only spin if we know the GPU is processing this request */
1326                 if (__i915_spin_request(rq, wait.seqno, state, 2))
1327                         break;
1328
1329                 if (!intel_wait_check_request(&wait, rq)) {
1330                         intel_engine_remove_wait(rq->engine, &wait);
1331                         goto restart;
1332                 }
1333         }
1334
1335         intel_engine_remove_wait(rq->engine, &wait);
1336 complete:
1337         __set_current_state(TASK_RUNNING);
1338         if (flags & I915_WAIT_LOCKED)
1339                 remove_wait_queue(errq, &reset);
1340         remove_wait_queue(&rq->execute, &exec);
1341         trace_i915_request_wait_end(rq);
1342
1343         return timeout;
1344 }
1345
1346 static void ring_retire_requests(struct intel_ring *ring)
1347 {
1348         struct i915_request *request, *next;
1349
1350         list_for_each_entry_safe(request, next,
1351                                  &ring->request_list, ring_link) {
1352                 if (!i915_request_completed(request))
1353                         break;
1354
1355                 i915_request_retire(request);
1356         }
1357 }
1358
1359 void i915_retire_requests(struct drm_i915_private *i915)
1360 {
1361         struct intel_ring *ring, *tmp;
1362
1363         lockdep_assert_held(&i915->drm.struct_mutex);
1364
1365         if (!i915->gt.active_requests)
1366                 return;
1367
1368         list_for_each_entry_safe(ring, tmp, &i915->gt.active_rings, active_link)
1369                 ring_retire_requests(ring);
1370 }
1371
1372 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1373 #include "selftests/mock_request.c"
1374 #include "selftests/i915_request.c"
1375 #endif