Merge tag 'fbdev-v4.11-rc6' of git://github.com/bzolnier/linux
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem_fence_reg.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interact with frontbuffer
38  * compression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
50  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57
58 #define pipelined 0
59
60 static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
61                                  struct i915_vma *vma)
62 {
63         i915_reg_t fence_reg_lo, fence_reg_hi;
64         int fence_pitch_shift;
65         u64 val;
66
67         if (INTEL_INFO(fence->i915)->gen >= 6) {
68                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
69                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
70                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
71
72         } else {
73                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
74                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
75                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
76         }
77
78         val = 0;
79         if (vma) {
80                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
81
82                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
83                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
84                 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
85                 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
86
87                 val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
88                 val |= vma->node.start;
89                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
90                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
91                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
92                 val |= I965_FENCE_REG_VALID;
93         }
94
95         if (!pipelined) {
96                 struct drm_i915_private *dev_priv = fence->i915;
97
98                 /* To w/a incoherency with non-atomic 64-bit register updates,
99                  * we split the 64-bit update into two 32-bit writes. In order
100                  * for a partial fence not to be evaluated between writes, we
101                  * precede the update with write to turn off the fence register,
102                  * and only enable the fence as the last step.
103                  *
104                  * For extra levels of paranoia, we make sure each step lands
105                  * before applying the next step.
106                  */
107                 I915_WRITE(fence_reg_lo, 0);
108                 POSTING_READ(fence_reg_lo);
109
110                 I915_WRITE(fence_reg_hi, upper_32_bits(val));
111                 I915_WRITE(fence_reg_lo, lower_32_bits(val));
112                 POSTING_READ(fence_reg_lo);
113         }
114 }
115
116 static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
117                                  struct i915_vma *vma)
118 {
119         u32 val;
120
121         val = 0;
122         if (vma) {
123                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
124                 bool is_y_tiled = tiling == I915_TILING_Y;
125                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
126
127                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
128                 GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
129                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
130                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
131
132                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
133                         stride /= 128;
134                 else
135                         stride /= 512;
136                 GEM_BUG_ON(!is_power_of_2(stride));
137
138                 val = vma->node.start;
139                 if (is_y_tiled)
140                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
141                 val |= I915_FENCE_SIZE_BITS(vma->fence_size);
142                 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
143
144                 val |= I830_FENCE_REG_VALID;
145         }
146
147         if (!pipelined) {
148                 struct drm_i915_private *dev_priv = fence->i915;
149                 i915_reg_t reg = FENCE_REG(fence->id);
150
151                 I915_WRITE(reg, val);
152                 POSTING_READ(reg);
153         }
154 }
155
156 static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
157                                  struct i915_vma *vma)
158 {
159         u32 val;
160
161         val = 0;
162         if (vma) {
163                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
164
165                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
166                 GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
167                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
168                 GEM_BUG_ON(!is_power_of_2(stride / 128));
169                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
170
171                 val = vma->node.start;
172                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
173                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
174                 val |= I830_FENCE_SIZE_BITS(vma->fence_size);
175                 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
176                 val |= I830_FENCE_REG_VALID;
177         }
178
179         if (!pipelined) {
180                 struct drm_i915_private *dev_priv = fence->i915;
181                 i915_reg_t reg = FENCE_REG(fence->id);
182
183                 I915_WRITE(reg, val);
184                 POSTING_READ(reg);
185         }
186 }
187
188 static void fence_write(struct drm_i915_fence_reg *fence,
189                         struct i915_vma *vma)
190 {
191         /* Previous access through the fence register is marshalled by
192          * the mb() inside the fault handlers (i915_gem_release_mmaps)
193          * and explicitly managed for internal users.
194          */
195
196         if (IS_GEN2(fence->i915))
197                 i830_write_fence_reg(fence, vma);
198         else if (IS_GEN3(fence->i915))
199                 i915_write_fence_reg(fence, vma);
200         else
201                 i965_write_fence_reg(fence, vma);
202
203         /* Access through the fenced region afterwards is
204          * ordered by the posting reads whilst writing the registers.
205          */
206
207         fence->dirty = false;
208 }
209
210 static int fence_update(struct drm_i915_fence_reg *fence,
211                         struct i915_vma *vma)
212 {
213         int ret;
214
215         if (vma) {
216                 if (!i915_vma_is_map_and_fenceable(vma))
217                         return -EINVAL;
218
219                 if (WARN(!i915_gem_object_get_stride(vma->obj) ||
220                          !i915_gem_object_get_tiling(vma->obj),
221                          "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
222                          i915_gem_object_get_stride(vma->obj),
223                          i915_gem_object_get_tiling(vma->obj)))
224                         return -EINVAL;
225
226                 ret = i915_gem_active_retire(&vma->last_fence,
227                                              &vma->obj->base.dev->struct_mutex);
228                 if (ret)
229                         return ret;
230         }
231
232         if (fence->vma) {
233                 ret = i915_gem_active_retire(&fence->vma->last_fence,
234                                       &fence->vma->obj->base.dev->struct_mutex);
235                 if (ret)
236                         return ret;
237         }
238
239         if (fence->vma && fence->vma != vma) {
240                 /* Ensure that all userspace CPU access is completed before
241                  * stealing the fence.
242                  */
243                 i915_gem_release_mmap(fence->vma->obj);
244
245                 fence->vma->fence = NULL;
246                 fence->vma = NULL;
247
248                 list_move(&fence->link, &fence->i915->mm.fence_list);
249         }
250
251         fence_write(fence, vma);
252
253         if (vma) {
254                 if (fence->vma != vma) {
255                         vma->fence = fence;
256                         fence->vma = vma;
257                 }
258
259                 list_move_tail(&fence->link, &fence->i915->mm.fence_list);
260         }
261
262         return 0;
263 }
264
265 /**
266  * i915_vma_put_fence - force-remove fence for a VMA
267  * @vma: vma to map linearly (not through a fence reg)
268  *
269  * This function force-removes any fence from the given object, which is useful
270  * if the kernel wants to do untiled GTT access.
271  *
272  * Returns:
273  *
274  * 0 on success, negative error code on failure.
275  */
276 int
277 i915_vma_put_fence(struct i915_vma *vma)
278 {
279         struct drm_i915_fence_reg *fence = vma->fence;
280
281         assert_rpm_wakelock_held(vma->vm->i915);
282
283         if (!fence)
284                 return 0;
285
286         if (fence->pin_count)
287                 return -EBUSY;
288
289         return fence_update(fence, NULL);
290 }
291
292 static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
293 {
294         struct drm_i915_fence_reg *fence;
295
296         list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
297                 if (fence->pin_count)
298                         continue;
299
300                 return fence;
301         }
302
303         /* Wait for completion of pending flips which consume fences */
304         if (intel_has_pending_fb_unpin(dev_priv))
305                 return ERR_PTR(-EAGAIN);
306
307         return ERR_PTR(-EDEADLK);
308 }
309
310 /**
311  * i915_vma_get_fence - set up fencing for a vma
312  * @vma: vma to map through a fence reg
313  *
314  * When mapping objects through the GTT, userspace wants to be able to write
315  * to them without having to worry about swizzling if the object is tiled.
316  * This function walks the fence regs looking for a free one for @obj,
317  * stealing one if it can't find any.
318  *
319  * It then sets up the reg based on the object's properties: address, pitch
320  * and tiling format.
321  *
322  * For an untiled surface, this removes any existing fence.
323  *
324  * Returns:
325  *
326  * 0 on success, negative error code on failure.
327  */
328 int
329 i915_vma_get_fence(struct i915_vma *vma)
330 {
331         struct drm_i915_fence_reg *fence;
332         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
333
334         /* Note that we revoke fences on runtime suspend. Therefore the user
335          * must keep the device awake whilst using the fence.
336          */
337         assert_rpm_wakelock_held(vma->vm->i915);
338
339         /* Just update our place in the LRU if our fence is getting reused. */
340         if (vma->fence) {
341                 fence = vma->fence;
342                 if (!fence->dirty) {
343                         list_move_tail(&fence->link,
344                                        &fence->i915->mm.fence_list);
345                         return 0;
346                 }
347         } else if (set) {
348                 fence = fence_find(vma->vm->i915);
349                 if (IS_ERR(fence))
350                         return PTR_ERR(fence);
351         } else
352                 return 0;
353
354         return fence_update(fence, set);
355 }
356
357 /**
358  * i915_gem_revoke_fences - revoke fence state
359  * @dev_priv: i915 device private
360  *
361  * Removes all GTT mmappings via the fence registers. This forces any user
362  * of the fence to reacquire that fence before continuing with their access.
363  * One use is during GPU reset where the fence register is lost and we need to
364  * revoke concurrent userspace access via GTT mmaps until the hardware has been
365  * reset and the fence registers have been restored.
366  */
367 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv)
368 {
369         int i;
370
371         lockdep_assert_held(&dev_priv->drm.struct_mutex);
372
373         for (i = 0; i < dev_priv->num_fence_regs; i++) {
374                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
375
376                 if (fence->vma)
377                         i915_gem_release_mmap(fence->vma->obj);
378         }
379 }
380
381 /**
382  * i915_gem_restore_fences - restore fence state
383  * @dev_priv: i915 device private
384  *
385  * Restore the hw fence state to match the software tracking again, to be called
386  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
387  * the fences, to be reacquired by the user later.
388  */
389 void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
390 {
391         int i;
392
393         for (i = 0; i < dev_priv->num_fence_regs; i++) {
394                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
395                 struct i915_vma *vma = reg->vma;
396
397                 /*
398                  * Commit delayed tiling changes if we have an object still
399                  * attached to the fence, otherwise just clear the fence.
400                  */
401                 if (vma && !i915_gem_object_is_tiled(vma->obj)) {
402                         GEM_BUG_ON(!reg->dirty);
403                         GEM_BUG_ON(!list_empty(&vma->obj->userfault_link));
404
405                         list_move(&reg->link, &dev_priv->mm.fence_list);
406                         vma->fence = NULL;
407                         vma = NULL;
408                 }
409
410                 fence_write(reg, vma);
411                 reg->vma = vma;
412         }
413 }
414
415 /**
416  * DOC: tiling swizzling details
417  *
418  * The idea behind tiling is to increase cache hit rates by rearranging
419  * pixel data so that a group of pixel accesses are in the same cacheline.
420  * Performance improvement from doing this on the back/depth buffer are on
421  * the order of 30%.
422  *
423  * Intel architectures make this somewhat more complicated, though, by
424  * adjustments made to addressing of data when the memory is in interleaved
425  * mode (matched pairs of DIMMS) to improve memory bandwidth.
426  * For interleaved memory, the CPU sends every sequential 64 bytes
427  * to an alternate memory channel so it can get the bandwidth from both.
428  *
429  * The GPU also rearranges its accesses for increased bandwidth to interleaved
430  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
431  * it does it a little differently, since one walks addresses not just in the
432  * X direction but also Y.  So, along with alternating channels when bit
433  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
434  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
435  * are common to both the 915 and 965-class hardware.
436  *
437  * The CPU also sometimes XORs in higher bits as well, to improve
438  * bandwidth doing strided access like we do so frequently in graphics.  This
439  * is called "Channel XOR Randomization" in the MCH documentation.  The result
440  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
441  * decode.
442  *
443  * All of this bit 6 XORing has an effect on our memory management,
444  * as we need to make sure that the 3d driver can correctly address object
445  * contents.
446  *
447  * If we don't have interleaved memory, all tiling is safe and no swizzling is
448  * required.
449  *
450  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
451  * 17 is not just a page offset, so as we page an object out and back in,
452  * individual pages in it will have different bit 17 addresses, resulting in
453  * each 64 bytes being swapped with its neighbor!
454  *
455  * Otherwise, if interleaved, we have to tell the 3d driver what the address
456  * swizzling it needs to do is, since it's writing with the CPU to the pages
457  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
458  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
459  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
460  * to match what the GPU expects.
461  */
462
463 /**
464  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
465  * @dev_priv: i915 device private
466  *
467  * Detects bit 6 swizzling of address lookup between IGD access and CPU
468  * access through main memory.
469  */
470 void
471 i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
472 {
473         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
474         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
475
476         if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
477                 /*
478                  * On BDW+, swizzling is not used. We leave the CPU memory
479                  * controller in charge of optimizing memory accesses without
480                  * the extra address manipulation GPU side.
481                  *
482                  * VLV and CHV don't have GPU swizzling.
483                  */
484                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
485                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
486         } else if (INTEL_GEN(dev_priv) >= 6) {
487                 if (dev_priv->preserve_bios_swizzle) {
488                         if (I915_READ(DISP_ARB_CTL) &
489                             DISP_TILE_SURFACE_SWIZZLING) {
490                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
491                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
492                         } else {
493                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
494                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
495                         }
496                 } else {
497                         uint32_t dimm_c0, dimm_c1;
498                         dimm_c0 = I915_READ(MAD_DIMM_C0);
499                         dimm_c1 = I915_READ(MAD_DIMM_C1);
500                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
501                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
502                         /* Enable swizzling when the channels are populated
503                          * with identically sized dimms. We don't need to check
504                          * the 3rd channel because no cpu with gpu attached
505                          * ships in that configuration. Also, swizzling only
506                          * makes sense for 2 channels anyway. */
507                         if (dimm_c0 == dimm_c1) {
508                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
509                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
510                         } else {
511                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
512                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
513                         }
514                 }
515         } else if (IS_GEN5(dev_priv)) {
516                 /* On Ironlake whatever DRAM config, GPU always do
517                  * same swizzling setup.
518                  */
519                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
520                 swizzle_y = I915_BIT_6_SWIZZLE_9;
521         } else if (IS_GEN2(dev_priv)) {
522                 /* As far as we know, the 865 doesn't have these bit 6
523                  * swizzling issues.
524                  */
525                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
526                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
527         } else if (IS_MOBILE(dev_priv) ||
528                    IS_I915G(dev_priv) || IS_I945G(dev_priv)) {
529                 uint32_t dcc;
530
531                 /* On 9xx chipsets, channel interleave by the CPU is
532                  * determined by DCC.  For single-channel, neither the CPU
533                  * nor the GPU do swizzling.  For dual channel interleaved,
534                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
535                  * 9 for Y tiled.  The CPU's interleave is independent, and
536                  * can be based on either bit 11 (haven't seen this yet) or
537                  * bit 17 (common).
538                  */
539                 dcc = I915_READ(DCC);
540                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
541                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
542                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
543                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
544                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
545                         break;
546                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
547                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
548                                 /* This is the base swizzling by the GPU for
549                                  * tiled buffers.
550                                  */
551                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
552                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
553                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
554                                 /* Bit 11 swizzling by the CPU in addition. */
555                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
556                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
557                         } else {
558                                 /* Bit 17 swizzling by the CPU in addition. */
559                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
560                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
561                         }
562                         break;
563                 }
564
565                 /* check for L-shaped memory aka modified enhanced addressing */
566                 if (IS_GEN4(dev_priv) &&
567                     !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
568                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
569                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
570                 }
571
572                 if (dcc == 0xffffffff) {
573                         DRM_ERROR("Couldn't read from MCHBAR.  "
574                                   "Disabling tiling.\n");
575                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
576                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
577                 }
578         } else {
579                 /* The 965, G33, and newer, have a very flexible memory
580                  * configuration.  It will enable dual-channel mode
581                  * (interleaving) on as much memory as it can, and the GPU
582                  * will additionally sometimes enable different bit 6
583                  * swizzling for tiled objects from the CPU.
584                  *
585                  * Here's what I found on the G965:
586                  *    slot fill         memory size  swizzling
587                  * 0A   0B   1A   1B    1-ch   2-ch
588                  * 512  0    0    0     512    0     O
589                  * 512  0    512  0     16     1008  X
590                  * 512  0    0    512   16     1008  X
591                  * 0    512  0    512   16     1008  X
592                  * 1024 1024 1024 0     2048   1024  O
593                  *
594                  * We could probably detect this based on either the DRB
595                  * matching, which was the case for the swizzling required in
596                  * the table above, or from the 1-ch value being less than
597                  * the minimum size of a rank.
598                  *
599                  * Reports indicate that the swizzling actually
600                  * varies depending upon page placement inside the
601                  * channels, i.e. we see swizzled pages where the
602                  * banks of memory are paired and unswizzled on the
603                  * uneven portion, so leave that as unknown.
604                  */
605                 if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
606                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
607                         swizzle_y = I915_BIT_6_SWIZZLE_9;
608                 }
609         }
610
611         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
612             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
613                 /* Userspace likes to explode if it sees unknown swizzling,
614                  * so lie. We will finish the lie when reporting through
615                  * the get-tiling-ioctl by reporting the physical swizzle
616                  * mode as unknown instead.
617                  *
618                  * As we don't strictly know what the swizzling is, it may be
619                  * bit17 dependent, and so we need to also prevent the pages
620                  * from being moved.
621                  */
622                 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
623                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
624                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
625         }
626
627         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
628         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
629 }
630
631 /*
632  * Swap every 64 bytes of this page around, to account for it having a new
633  * bit 17 of its physical address and therefore being interpreted differently
634  * by the GPU.
635  */
636 static void
637 i915_gem_swizzle_page(struct page *page)
638 {
639         char temp[64];
640         char *vaddr;
641         int i;
642
643         vaddr = kmap(page);
644
645         for (i = 0; i < PAGE_SIZE; i += 128) {
646                 memcpy(temp, &vaddr[i], 64);
647                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
648                 memcpy(&vaddr[i + 64], temp, 64);
649         }
650
651         kunmap(page);
652 }
653
654 /**
655  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
656  * @obj: i915 GEM buffer object
657  * @pages: the scattergather list of physical pages
658  *
659  * This function fixes up the swizzling in case any page frame number for this
660  * object has changed in bit 17 since that state has been saved with
661  * i915_gem_object_save_bit_17_swizzle().
662  *
663  * This is called when pinning backing storage again, since the kernel is free
664  * to move unpinned backing storage around (either by directly moving pages or
665  * by swapping them out and back in again).
666  */
667 void
668 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
669                                   struct sg_table *pages)
670 {
671         struct sgt_iter sgt_iter;
672         struct page *page;
673         int i;
674
675         if (obj->bit_17 == NULL)
676                 return;
677
678         i = 0;
679         for_each_sgt_page(page, sgt_iter, pages) {
680                 char new_bit_17 = page_to_phys(page) >> 17;
681                 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
682                         i915_gem_swizzle_page(page);
683                         set_page_dirty(page);
684                 }
685                 i++;
686         }
687 }
688
689 /**
690  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
691  * @obj: i915 GEM buffer object
692  * @pages: the scattergather list of physical pages
693  *
694  * This function saves the bit 17 of each page frame number so that swizzling
695  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
696  * be called before the backing storage can be unpinned.
697  */
698 void
699 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
700                                     struct sg_table *pages)
701 {
702         const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
703         struct sgt_iter sgt_iter;
704         struct page *page;
705         int i;
706
707         if (obj->bit_17 == NULL) {
708                 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
709                                       sizeof(long), GFP_KERNEL);
710                 if (obj->bit_17 == NULL) {
711                         DRM_ERROR("Failed to allocate memory for bit 17 "
712                                   "record\n");
713                         return;
714                 }
715         }
716
717         i = 0;
718
719         for_each_sgt_page(page, sgt_iter, pages) {
720                 if (page_to_phys(page) & (1 << 17))
721                         __set_bit(i, obj->bit_17);
722                 else
723                         __clear_bit(i, obj->bit_17);
724                 i++;
725         }
726 }