Merge branch 'linux-4.16' of git://github.com/skeggsb/linux into drm-fixes
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
48
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52 {
53         if (obj->cache_dirty)
54                 return false;
55
56         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57                 return true;
58
59         return obj->pin_global; /* currently in use by HW, keep flushed */
60 }
61
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64                      struct drm_mm_node *node, u32 size)
65 {
66         memset(node, 0, sizeof(*node));
67         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68                                            size, 0, I915_COLOR_UNEVICTABLE,
69                                            0, ggtt->mappable_end,
70                                            DRM_MM_INSERT_LOW);
71 }
72
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
75 {
76         drm_mm_remove_node(node);
77 }
78
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81                                   u64 size)
82 {
83         spin_lock(&dev_priv->mm.object_stat_lock);
84         dev_priv->mm.object_count++;
85         dev_priv->mm.object_memory += size;
86         spin_unlock(&dev_priv->mm.object_stat_lock);
87 }
88
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90                                      u64 size)
91 {
92         spin_lock(&dev_priv->mm.object_stat_lock);
93         dev_priv->mm.object_count--;
94         dev_priv->mm.object_memory -= size;
95         spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
100 {
101         int ret;
102
103         might_sleep();
104
105         /*
106          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107          * userspace. If it takes that long something really bad is going on and
108          * we should simply try to bail out and fail as gracefully as possible.
109          */
110         ret = wait_event_interruptible_timeout(error->reset_queue,
111                                                !i915_reset_backoff(error),
112                                                I915_RESET_TIMEOUT);
113         if (ret == 0) {
114                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115                 return -EIO;
116         } else if (ret < 0) {
117                 return ret;
118         } else {
119                 return 0;
120         }
121 }
122
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
124 {
125         struct drm_i915_private *dev_priv = to_i915(dev);
126         int ret;
127
128         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129         if (ret)
130                 return ret;
131
132         ret = mutex_lock_interruptible(&dev->struct_mutex);
133         if (ret)
134                 return ret;
135
136         return 0;
137 }
138
139 int
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141                             struct drm_file *file)
142 {
143         struct drm_i915_private *dev_priv = to_i915(dev);
144         struct i915_ggtt *ggtt = &dev_priv->ggtt;
145         struct drm_i915_gem_get_aperture *args = data;
146         struct i915_vma *vma;
147         u64 pinned;
148
149         pinned = ggtt->base.reserved;
150         mutex_lock(&dev->struct_mutex);
151         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152                 if (i915_vma_is_pinned(vma))
153                         pinned += vma->node.size;
154         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155                 if (i915_vma_is_pinned(vma))
156                         pinned += vma->node.size;
157         mutex_unlock(&dev->struct_mutex);
158
159         args->aper_size = ggtt->base.total;
160         args->aper_available_size = args->aper_size - pinned;
161
162         return 0;
163 }
164
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173         int err;
174
175         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176                 return -EINVAL;
177
178         /* Always aligning to the object size, allows a single allocation
179          * to handle all possible callers, and given typical object sizes,
180          * the alignment of the buddy allocation will naturally match.
181          */
182         phys = drm_pci_alloc(obj->base.dev,
183                              roundup_pow_of_two(obj->base.size),
184                              roundup_pow_of_two(obj->base.size));
185         if (!phys)
186                 return -ENOMEM;
187
188         vaddr = phys->vaddr;
189         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190                 struct page *page;
191                 char *src;
192
193                 page = shmem_read_mapping_page(mapping, i);
194                 if (IS_ERR(page)) {
195                         err = PTR_ERR(page);
196                         goto err_phys;
197                 }
198
199                 src = kmap_atomic(page);
200                 memcpy(vaddr, src, PAGE_SIZE);
201                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202                 kunmap_atomic(src);
203
204                 put_page(page);
205                 vaddr += PAGE_SIZE;
206         }
207
208         i915_gem_chipset_flush(to_i915(obj->base.dev));
209
210         st = kmalloc(sizeof(*st), GFP_KERNEL);
211         if (!st) {
212                 err = -ENOMEM;
213                 goto err_phys;
214         }
215
216         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217                 kfree(st);
218                 err = -ENOMEM;
219                 goto err_phys;
220         }
221
222         sg = st->sgl;
223         sg->offset = 0;
224         sg->length = obj->base.size;
225
226         sg_dma_address(sg) = phys->busaddr;
227         sg_dma_len(sg) = obj->base.size;
228
229         obj->phys_handle = phys;
230
231         __i915_gem_object_set_pages(obj, st, sg->length);
232
233         return 0;
234
235 err_phys:
236         drm_pci_free(obj->base.dev, phys);
237
238         return err;
239 }
240
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
242 {
243         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245         if (cpu_write_needs_clflush(obj))
246                 obj->cache_dirty = true;
247 }
248
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251                                 struct sg_table *pages,
252                                 bool needs_clflush)
253 {
254         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255
256         if (obj->mm.madv == I915_MADV_DONTNEED)
257                 obj->mm.dirty = false;
258
259         if (needs_clflush &&
260             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262                 drm_clflush_sg(pages);
263
264         __start_cpu_write(obj);
265 }
266
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269                                struct sg_table *pages)
270 {
271         __i915_gem_object_release_shmem(obj, pages, false);
272
273         if (obj->mm.dirty) {
274                 struct address_space *mapping = obj->base.filp->f_mapping;
275                 char *vaddr = obj->phys_handle->vaddr;
276                 int i;
277
278                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279                         struct page *page;
280                         char *dst;
281
282                         page = shmem_read_mapping_page(mapping, i);
283                         if (IS_ERR(page))
284                                 continue;
285
286                         dst = kmap_atomic(page);
287                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
288                         memcpy(dst, vaddr, PAGE_SIZE);
289                         kunmap_atomic(dst);
290
291                         set_page_dirty(page);
292                         if (obj->mm.madv == I915_MADV_WILLNEED)
293                                 mark_page_accessed(page);
294                         put_page(page);
295                         vaddr += PAGE_SIZE;
296                 }
297                 obj->mm.dirty = false;
298         }
299
300         sg_free_table(pages);
301         kfree(pages);
302
303         drm_pci_free(obj->base.dev, obj->phys_handle);
304 }
305
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308 {
309         i915_gem_object_unpin_pages(obj);
310 }
311
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313         .get_pages = i915_gem_object_get_pages_phys,
314         .put_pages = i915_gem_object_put_pages_phys,
315         .release = i915_gem_object_release_phys,
316 };
317
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 {
322         struct i915_vma *vma;
323         LIST_HEAD(still_in_list);
324         int ret;
325
326         lockdep_assert_held(&obj->base.dev->struct_mutex);
327
328         /* Closed vma are removed from the obj->vma_list - but they may
329          * still have an active binding on the object. To remove those we
330          * must wait for all rendering to complete to the object (as unbinding
331          * must anyway), and retire the requests.
332          */
333         ret = i915_gem_object_set_to_cpu_domain(obj, false);
334         if (ret)
335                 return ret;
336
337         while ((vma = list_first_entry_or_null(&obj->vma_list,
338                                                struct i915_vma,
339                                                obj_link))) {
340                 list_move_tail(&vma->obj_link, &still_in_list);
341                 ret = i915_vma_unbind(vma);
342                 if (ret)
343                         break;
344         }
345         list_splice(&still_in_list, &obj->vma_list);
346
347         return ret;
348 }
349
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352                            unsigned int flags,
353                            long timeout,
354                            struct intel_rps_client *rps_client)
355 {
356         struct drm_i915_gem_request *rq;
357
358         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359
360         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361                 return timeout;
362
363         if (!dma_fence_is_i915(fence))
364                 return dma_fence_wait_timeout(fence,
365                                               flags & I915_WAIT_INTERRUPTIBLE,
366                                               timeout);
367
368         rq = to_request(fence);
369         if (i915_gem_request_completed(rq))
370                 goto out;
371
372         /* This client is about to stall waiting for the GPU. In many cases
373          * this is undesirable and limits the throughput of the system, as
374          * many clients cannot continue processing user input/output whilst
375          * blocked. RPS autotuning may take tens of milliseconds to respond
376          * to the GPU load and thus incurs additional latency for the client.
377          * We can circumvent that by promoting the GPU frequency to maximum
378          * before we wait. This makes the GPU throttle up much more quickly
379          * (good for benchmarks and user experience, e.g. window animations),
380          * but at a cost of spending more power processing the workload
381          * (bad for battery). Not all clients even want their results
382          * immediately and for them we should just let the GPU select its own
383          * frequency to maximise efficiency. To prevent a single client from
384          * forcing the clocks too high for the whole system, we only allow
385          * each client to waitboost once in a busy period.
386          */
387         if (rps_client) {
388                 if (INTEL_GEN(rq->i915) >= 6)
389                         gen6_rps_boost(rq, rps_client);
390                 else
391                         rps_client = NULL;
392         }
393
394         timeout = i915_wait_request(rq, flags, timeout);
395
396 out:
397         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398                 i915_gem_request_retire_upto(rq);
399
400         return timeout;
401 }
402
403 static long
404 i915_gem_object_wait_reservation(struct reservation_object *resv,
405                                  unsigned int flags,
406                                  long timeout,
407                                  struct intel_rps_client *rps_client)
408 {
409         unsigned int seq = __read_seqcount_begin(&resv->seq);
410         struct dma_fence *excl;
411         bool prune_fences = false;
412
413         if (flags & I915_WAIT_ALL) {
414                 struct dma_fence **shared;
415                 unsigned int count, i;
416                 int ret;
417
418                 ret = reservation_object_get_fences_rcu(resv,
419                                                         &excl, &count, &shared);
420                 if (ret)
421                         return ret;
422
423                 for (i = 0; i < count; i++) {
424                         timeout = i915_gem_object_wait_fence(shared[i],
425                                                              flags, timeout,
426                                                              rps_client);
427                         if (timeout < 0)
428                                 break;
429
430                         dma_fence_put(shared[i]);
431                 }
432
433                 for (; i < count; i++)
434                         dma_fence_put(shared[i]);
435                 kfree(shared);
436
437                 /*
438                  * If both shared fences and an exclusive fence exist,
439                  * then by construction the shared fences must be later
440                  * than the exclusive fence. If we successfully wait for
441                  * all the shared fences, we know that the exclusive fence
442                  * must all be signaled. If all the shared fences are
443                  * signaled, we can prune the array and recover the
444                  * floating references on the fences/requests.
445                  */
446                 prune_fences = count && timeout >= 0;
447         } else {
448                 excl = reservation_object_get_excl_rcu(resv);
449         }
450
451         if (excl && timeout >= 0)
452                 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
453                                                      rps_client);
454
455         dma_fence_put(excl);
456
457         /*
458          * Opportunistically prune the fences iff we know they have *all* been
459          * signaled and that the reservation object has not been changed (i.e.
460          * no new fences have been added).
461          */
462         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
463                 if (reservation_object_trylock(resv)) {
464                         if (!__read_seqcount_retry(&resv->seq, seq))
465                                 reservation_object_add_excl_fence(resv, NULL);
466                         reservation_object_unlock(resv);
467                 }
468         }
469
470         return timeout;
471 }
472
473 static void __fence_set_priority(struct dma_fence *fence, int prio)
474 {
475         struct drm_i915_gem_request *rq;
476         struct intel_engine_cs *engine;
477
478         if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
479                 return;
480
481         rq = to_request(fence);
482         engine = rq->engine;
483         if (!engine->schedule)
484                 return;
485
486         engine->schedule(rq, prio);
487 }
488
489 static void fence_set_priority(struct dma_fence *fence, int prio)
490 {
491         /* Recurse once into a fence-array */
492         if (dma_fence_is_array(fence)) {
493                 struct dma_fence_array *array = to_dma_fence_array(fence);
494                 int i;
495
496                 for (i = 0; i < array->num_fences; i++)
497                         __fence_set_priority(array->fences[i], prio);
498         } else {
499                 __fence_set_priority(fence, prio);
500         }
501 }
502
503 int
504 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
505                               unsigned int flags,
506                               int prio)
507 {
508         struct dma_fence *excl;
509
510         if (flags & I915_WAIT_ALL) {
511                 struct dma_fence **shared;
512                 unsigned int count, i;
513                 int ret;
514
515                 ret = reservation_object_get_fences_rcu(obj->resv,
516                                                         &excl, &count, &shared);
517                 if (ret)
518                         return ret;
519
520                 for (i = 0; i < count; i++) {
521                         fence_set_priority(shared[i], prio);
522                         dma_fence_put(shared[i]);
523                 }
524
525                 kfree(shared);
526         } else {
527                 excl = reservation_object_get_excl_rcu(obj->resv);
528         }
529
530         if (excl) {
531                 fence_set_priority(excl, prio);
532                 dma_fence_put(excl);
533         }
534         return 0;
535 }
536
537 /**
538  * Waits for rendering to the object to be completed
539  * @obj: i915 gem object
540  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
541  * @timeout: how long to wait
542  * @rps_client: client (user process) to charge for any waitboosting
543  */
544 int
545 i915_gem_object_wait(struct drm_i915_gem_object *obj,
546                      unsigned int flags,
547                      long timeout,
548                      struct intel_rps_client *rps_client)
549 {
550         might_sleep();
551 #if IS_ENABLED(CONFIG_LOCKDEP)
552         GEM_BUG_ON(debug_locks &&
553                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
554                    !!(flags & I915_WAIT_LOCKED));
555 #endif
556         GEM_BUG_ON(timeout < 0);
557
558         timeout = i915_gem_object_wait_reservation(obj->resv,
559                                                    flags, timeout,
560                                                    rps_client);
561         return timeout < 0 ? timeout : 0;
562 }
563
564 static struct intel_rps_client *to_rps_client(struct drm_file *file)
565 {
566         struct drm_i915_file_private *fpriv = file->driver_priv;
567
568         return &fpriv->rps_client;
569 }
570
571 static int
572 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
573                      struct drm_i915_gem_pwrite *args,
574                      struct drm_file *file)
575 {
576         void *vaddr = obj->phys_handle->vaddr + args->offset;
577         char __user *user_data = u64_to_user_ptr(args->data_ptr);
578
579         /* We manually control the domain here and pretend that it
580          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
581          */
582         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
583         if (copy_from_user(vaddr, user_data, args->size))
584                 return -EFAULT;
585
586         drm_clflush_virt_range(vaddr, args->size);
587         i915_gem_chipset_flush(to_i915(obj->base.dev));
588
589         intel_fb_obj_flush(obj, ORIGIN_CPU);
590         return 0;
591 }
592
593 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
594 {
595         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
596 }
597
598 void i915_gem_object_free(struct drm_i915_gem_object *obj)
599 {
600         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
601         kmem_cache_free(dev_priv->objects, obj);
602 }
603
604 static int
605 i915_gem_create(struct drm_file *file,
606                 struct drm_i915_private *dev_priv,
607                 uint64_t size,
608                 uint32_t *handle_p)
609 {
610         struct drm_i915_gem_object *obj;
611         int ret;
612         u32 handle;
613
614         size = roundup(size, PAGE_SIZE);
615         if (size == 0)
616                 return -EINVAL;
617
618         /* Allocate the new object */
619         obj = i915_gem_object_create(dev_priv, size);
620         if (IS_ERR(obj))
621                 return PTR_ERR(obj);
622
623         ret = drm_gem_handle_create(file, &obj->base, &handle);
624         /* drop reference from allocate - handle holds it now */
625         i915_gem_object_put(obj);
626         if (ret)
627                 return ret;
628
629         *handle_p = handle;
630         return 0;
631 }
632
633 int
634 i915_gem_dumb_create(struct drm_file *file,
635                      struct drm_device *dev,
636                      struct drm_mode_create_dumb *args)
637 {
638         /* have to work out size/pitch and return them */
639         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
640         args->size = args->pitch * args->height;
641         return i915_gem_create(file, to_i915(dev),
642                                args->size, &args->handle);
643 }
644
645 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
646 {
647         return !(obj->cache_level == I915_CACHE_NONE ||
648                  obj->cache_level == I915_CACHE_WT);
649 }
650
651 /**
652  * Creates a new mm object and returns a handle to it.
653  * @dev: drm device pointer
654  * @data: ioctl data blob
655  * @file: drm file pointer
656  */
657 int
658 i915_gem_create_ioctl(struct drm_device *dev, void *data,
659                       struct drm_file *file)
660 {
661         struct drm_i915_private *dev_priv = to_i915(dev);
662         struct drm_i915_gem_create *args = data;
663
664         i915_gem_flush_free_objects(dev_priv);
665
666         return i915_gem_create(file, dev_priv,
667                                args->size, &args->handle);
668 }
669
670 static inline enum fb_op_origin
671 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
672 {
673         return (domain == I915_GEM_DOMAIN_GTT ?
674                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
675 }
676
677 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
678 {
679         /*
680          * No actual flushing is required for the GTT write domain for reads
681          * from the GTT domain. Writes to it "immediately" go to main memory
682          * as far as we know, so there's no chipset flush. It also doesn't
683          * land in the GPU render cache.
684          *
685          * However, we do have to enforce the order so that all writes through
686          * the GTT land before any writes to the device, such as updates to
687          * the GATT itself.
688          *
689          * We also have to wait a bit for the writes to land from the GTT.
690          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
691          * timing. This issue has only been observed when switching quickly
692          * between GTT writes and CPU reads from inside the kernel on recent hw,
693          * and it appears to only affect discrete GTT blocks (i.e. on LLC
694          * system agents we cannot reproduce this behaviour, until Cannonlake
695          * that was!).
696          */
697
698         wmb();
699
700         intel_runtime_pm_get(dev_priv);
701         spin_lock_irq(&dev_priv->uncore.lock);
702
703         POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
704
705         spin_unlock_irq(&dev_priv->uncore.lock);
706         intel_runtime_pm_put(dev_priv);
707 }
708
709 static void
710 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
711 {
712         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
713         struct i915_vma *vma;
714
715         if (!(obj->base.write_domain & flush_domains))
716                 return;
717
718         switch (obj->base.write_domain) {
719         case I915_GEM_DOMAIN_GTT:
720                 i915_gem_flush_ggtt_writes(dev_priv);
721
722                 intel_fb_obj_flush(obj,
723                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
724
725                 for_each_ggtt_vma(vma, obj) {
726                         if (vma->iomap)
727                                 continue;
728
729                         i915_vma_unset_ggtt_write(vma);
730                 }
731                 break;
732
733         case I915_GEM_DOMAIN_CPU:
734                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
735                 break;
736
737         case I915_GEM_DOMAIN_RENDER:
738                 if (gpu_write_needs_clflush(obj))
739                         obj->cache_dirty = true;
740                 break;
741         }
742
743         obj->base.write_domain = 0;
744 }
745
746 static inline int
747 __copy_to_user_swizzled(char __user *cpu_vaddr,
748                         const char *gpu_vaddr, int gpu_offset,
749                         int length)
750 {
751         int ret, cpu_offset = 0;
752
753         while (length > 0) {
754                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
755                 int this_length = min(cacheline_end - gpu_offset, length);
756                 int swizzled_gpu_offset = gpu_offset ^ 64;
757
758                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
759                                      gpu_vaddr + swizzled_gpu_offset,
760                                      this_length);
761                 if (ret)
762                         return ret + length;
763
764                 cpu_offset += this_length;
765                 gpu_offset += this_length;
766                 length -= this_length;
767         }
768
769         return 0;
770 }
771
772 static inline int
773 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
774                           const char __user *cpu_vaddr,
775                           int length)
776 {
777         int ret, cpu_offset = 0;
778
779         while (length > 0) {
780                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
781                 int this_length = min(cacheline_end - gpu_offset, length);
782                 int swizzled_gpu_offset = gpu_offset ^ 64;
783
784                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
785                                        cpu_vaddr + cpu_offset,
786                                        this_length);
787                 if (ret)
788                         return ret + length;
789
790                 cpu_offset += this_length;
791                 gpu_offset += this_length;
792                 length -= this_length;
793         }
794
795         return 0;
796 }
797
798 /*
799  * Pins the specified object's pages and synchronizes the object with
800  * GPU accesses. Sets needs_clflush to non-zero if the caller should
801  * flush the object from the CPU cache.
802  */
803 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
804                                     unsigned int *needs_clflush)
805 {
806         int ret;
807
808         lockdep_assert_held(&obj->base.dev->struct_mutex);
809
810         *needs_clflush = 0;
811         if (!i915_gem_object_has_struct_page(obj))
812                 return -ENODEV;
813
814         ret = i915_gem_object_wait(obj,
815                                    I915_WAIT_INTERRUPTIBLE |
816                                    I915_WAIT_LOCKED,
817                                    MAX_SCHEDULE_TIMEOUT,
818                                    NULL);
819         if (ret)
820                 return ret;
821
822         ret = i915_gem_object_pin_pages(obj);
823         if (ret)
824                 return ret;
825
826         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
827             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
828                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
829                 if (ret)
830                         goto err_unpin;
831                 else
832                         goto out;
833         }
834
835         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
836
837         /* If we're not in the cpu read domain, set ourself into the gtt
838          * read domain and manually flush cachelines (if required). This
839          * optimizes for the case when the gpu will dirty the data
840          * anyway again before the next pread happens.
841          */
842         if (!obj->cache_dirty &&
843             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
844                 *needs_clflush = CLFLUSH_BEFORE;
845
846 out:
847         /* return with the pages pinned */
848         return 0;
849
850 err_unpin:
851         i915_gem_object_unpin_pages(obj);
852         return ret;
853 }
854
855 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
856                                      unsigned int *needs_clflush)
857 {
858         int ret;
859
860         lockdep_assert_held(&obj->base.dev->struct_mutex);
861
862         *needs_clflush = 0;
863         if (!i915_gem_object_has_struct_page(obj))
864                 return -ENODEV;
865
866         ret = i915_gem_object_wait(obj,
867                                    I915_WAIT_INTERRUPTIBLE |
868                                    I915_WAIT_LOCKED |
869                                    I915_WAIT_ALL,
870                                    MAX_SCHEDULE_TIMEOUT,
871                                    NULL);
872         if (ret)
873                 return ret;
874
875         ret = i915_gem_object_pin_pages(obj);
876         if (ret)
877                 return ret;
878
879         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
880             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
881                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
882                 if (ret)
883                         goto err_unpin;
884                 else
885                         goto out;
886         }
887
888         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
889
890         /* If we're not in the cpu write domain, set ourself into the
891          * gtt write domain and manually flush cachelines (as required).
892          * This optimizes for the case when the gpu will use the data
893          * right away and we therefore have to clflush anyway.
894          */
895         if (!obj->cache_dirty) {
896                 *needs_clflush |= CLFLUSH_AFTER;
897
898                 /*
899                  * Same trick applies to invalidate partially written
900                  * cachelines read before writing.
901                  */
902                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
903                         *needs_clflush |= CLFLUSH_BEFORE;
904         }
905
906 out:
907         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
908         obj->mm.dirty = true;
909         /* return with the pages pinned */
910         return 0;
911
912 err_unpin:
913         i915_gem_object_unpin_pages(obj);
914         return ret;
915 }
916
917 static void
918 shmem_clflush_swizzled_range(char *addr, unsigned long length,
919                              bool swizzled)
920 {
921         if (unlikely(swizzled)) {
922                 unsigned long start = (unsigned long) addr;
923                 unsigned long end = (unsigned long) addr + length;
924
925                 /* For swizzling simply ensure that we always flush both
926                  * channels. Lame, but simple and it works. Swizzled
927                  * pwrite/pread is far from a hotpath - current userspace
928                  * doesn't use it at all. */
929                 start = round_down(start, 128);
930                 end = round_up(end, 128);
931
932                 drm_clflush_virt_range((void *)start, end - start);
933         } else {
934                 drm_clflush_virt_range(addr, length);
935         }
936
937 }
938
939 /* Only difference to the fast-path function is that this can handle bit17
940  * and uses non-atomic copy and kmap functions. */
941 static int
942 shmem_pread_slow(struct page *page, int offset, int length,
943                  char __user *user_data,
944                  bool page_do_bit17_swizzling, bool needs_clflush)
945 {
946         char *vaddr;
947         int ret;
948
949         vaddr = kmap(page);
950         if (needs_clflush)
951                 shmem_clflush_swizzled_range(vaddr + offset, length,
952                                              page_do_bit17_swizzling);
953
954         if (page_do_bit17_swizzling)
955                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
956         else
957                 ret = __copy_to_user(user_data, vaddr + offset, length);
958         kunmap(page);
959
960         return ret ? - EFAULT : 0;
961 }
962
963 static int
964 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
965             bool page_do_bit17_swizzling, bool needs_clflush)
966 {
967         int ret;
968
969         ret = -ENODEV;
970         if (!page_do_bit17_swizzling) {
971                 char *vaddr = kmap_atomic(page);
972
973                 if (needs_clflush)
974                         drm_clflush_virt_range(vaddr + offset, length);
975                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
976                 kunmap_atomic(vaddr);
977         }
978         if (ret == 0)
979                 return 0;
980
981         return shmem_pread_slow(page, offset, length, user_data,
982                                 page_do_bit17_swizzling, needs_clflush);
983 }
984
985 static int
986 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
987                      struct drm_i915_gem_pread *args)
988 {
989         char __user *user_data;
990         u64 remain;
991         unsigned int obj_do_bit17_swizzling;
992         unsigned int needs_clflush;
993         unsigned int idx, offset;
994         int ret;
995
996         obj_do_bit17_swizzling = 0;
997         if (i915_gem_object_needs_bit17_swizzle(obj))
998                 obj_do_bit17_swizzling = BIT(17);
999
1000         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1001         if (ret)
1002                 return ret;
1003
1004         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1005         mutex_unlock(&obj->base.dev->struct_mutex);
1006         if (ret)
1007                 return ret;
1008
1009         remain = args->size;
1010         user_data = u64_to_user_ptr(args->data_ptr);
1011         offset = offset_in_page(args->offset);
1012         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1013                 struct page *page = i915_gem_object_get_page(obj, idx);
1014                 int length;
1015
1016                 length = remain;
1017                 if (offset + length > PAGE_SIZE)
1018                         length = PAGE_SIZE - offset;
1019
1020                 ret = shmem_pread(page, offset, length, user_data,
1021                                   page_to_phys(page) & obj_do_bit17_swizzling,
1022                                   needs_clflush);
1023                 if (ret)
1024                         break;
1025
1026                 remain -= length;
1027                 user_data += length;
1028                 offset = 0;
1029         }
1030
1031         i915_gem_obj_finish_shmem_access(obj);
1032         return ret;
1033 }
1034
1035 static inline bool
1036 gtt_user_read(struct io_mapping *mapping,
1037               loff_t base, int offset,
1038               char __user *user_data, int length)
1039 {
1040         void __iomem *vaddr;
1041         unsigned long unwritten;
1042
1043         /* We can use the cpu mem copy function because this is X86. */
1044         vaddr = io_mapping_map_atomic_wc(mapping, base);
1045         unwritten = __copy_to_user_inatomic(user_data,
1046                                             (void __force *)vaddr + offset,
1047                                             length);
1048         io_mapping_unmap_atomic(vaddr);
1049         if (unwritten) {
1050                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1051                 unwritten = copy_to_user(user_data,
1052                                          (void __force *)vaddr + offset,
1053                                          length);
1054                 io_mapping_unmap(vaddr);
1055         }
1056         return unwritten;
1057 }
1058
1059 static int
1060 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1061                    const struct drm_i915_gem_pread *args)
1062 {
1063         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1064         struct i915_ggtt *ggtt = &i915->ggtt;
1065         struct drm_mm_node node;
1066         struct i915_vma *vma;
1067         void __user *user_data;
1068         u64 remain, offset;
1069         int ret;
1070
1071         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1072         if (ret)
1073                 return ret;
1074
1075         intel_runtime_pm_get(i915);
1076         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1077                                        PIN_MAPPABLE |
1078                                        PIN_NONFAULT |
1079                                        PIN_NONBLOCK);
1080         if (!IS_ERR(vma)) {
1081                 node.start = i915_ggtt_offset(vma);
1082                 node.allocated = false;
1083                 ret = i915_vma_put_fence(vma);
1084                 if (ret) {
1085                         i915_vma_unpin(vma);
1086                         vma = ERR_PTR(ret);
1087                 }
1088         }
1089         if (IS_ERR(vma)) {
1090                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1091                 if (ret)
1092                         goto out_unlock;
1093                 GEM_BUG_ON(!node.allocated);
1094         }
1095
1096         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1097         if (ret)
1098                 goto out_unpin;
1099
1100         mutex_unlock(&i915->drm.struct_mutex);
1101
1102         user_data = u64_to_user_ptr(args->data_ptr);
1103         remain = args->size;
1104         offset = args->offset;
1105
1106         while (remain > 0) {
1107                 /* Operation in this page
1108                  *
1109                  * page_base = page offset within aperture
1110                  * page_offset = offset within page
1111                  * page_length = bytes to copy for this page
1112                  */
1113                 u32 page_base = node.start;
1114                 unsigned page_offset = offset_in_page(offset);
1115                 unsigned page_length = PAGE_SIZE - page_offset;
1116                 page_length = remain < page_length ? remain : page_length;
1117                 if (node.allocated) {
1118                         wmb();
1119                         ggtt->base.insert_page(&ggtt->base,
1120                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121                                                node.start, I915_CACHE_NONE, 0);
1122                         wmb();
1123                 } else {
1124                         page_base += offset & PAGE_MASK;
1125                 }
1126
1127                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128                                   user_data, page_length)) {
1129                         ret = -EFAULT;
1130                         break;
1131                 }
1132
1133                 remain -= page_length;
1134                 user_data += page_length;
1135                 offset += page_length;
1136         }
1137
1138         mutex_lock(&i915->drm.struct_mutex);
1139 out_unpin:
1140         if (node.allocated) {
1141                 wmb();
1142                 ggtt->base.clear_range(&ggtt->base,
1143                                        node.start, node.size);
1144                 remove_mappable_node(&node);
1145         } else {
1146                 i915_vma_unpin(vma);
1147         }
1148 out_unlock:
1149         intel_runtime_pm_put(i915);
1150         mutex_unlock(&i915->drm.struct_mutex);
1151
1152         return ret;
1153 }
1154
1155 /**
1156  * Reads data from the object referenced by handle.
1157  * @dev: drm device pointer
1158  * @data: ioctl data blob
1159  * @file: drm file pointer
1160  *
1161  * On error, the contents of *data are undefined.
1162  */
1163 int
1164 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165                      struct drm_file *file)
1166 {
1167         struct drm_i915_gem_pread *args = data;
1168         struct drm_i915_gem_object *obj;
1169         int ret;
1170
1171         if (args->size == 0)
1172                 return 0;
1173
1174         if (!access_ok(VERIFY_WRITE,
1175                        u64_to_user_ptr(args->data_ptr),
1176                        args->size))
1177                 return -EFAULT;
1178
1179         obj = i915_gem_object_lookup(file, args->handle);
1180         if (!obj)
1181                 return -ENOENT;
1182
1183         /* Bounds check source.  */
1184         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1185                 ret = -EINVAL;
1186                 goto out;
1187         }
1188
1189         trace_i915_gem_object_pread(obj, args->offset, args->size);
1190
1191         ret = i915_gem_object_wait(obj,
1192                                    I915_WAIT_INTERRUPTIBLE,
1193                                    MAX_SCHEDULE_TIMEOUT,
1194                                    to_rps_client(file));
1195         if (ret)
1196                 goto out;
1197
1198         ret = i915_gem_object_pin_pages(obj);
1199         if (ret)
1200                 goto out;
1201
1202         ret = i915_gem_shmem_pread(obj, args);
1203         if (ret == -EFAULT || ret == -ENODEV)
1204                 ret = i915_gem_gtt_pread(obj, args);
1205
1206         i915_gem_object_unpin_pages(obj);
1207 out:
1208         i915_gem_object_put(obj);
1209         return ret;
1210 }
1211
1212 /* This is the fast write path which cannot handle
1213  * page faults in the source data
1214  */
1215
1216 static inline bool
1217 ggtt_write(struct io_mapping *mapping,
1218            loff_t base, int offset,
1219            char __user *user_data, int length)
1220 {
1221         void __iomem *vaddr;
1222         unsigned long unwritten;
1223
1224         /* We can use the cpu mem copy function because this is X86. */
1225         vaddr = io_mapping_map_atomic_wc(mapping, base);
1226         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1227                                                       user_data, length);
1228         io_mapping_unmap_atomic(vaddr);
1229         if (unwritten) {
1230                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1231                 unwritten = copy_from_user((void __force *)vaddr + offset,
1232                                            user_data, length);
1233                 io_mapping_unmap(vaddr);
1234         }
1235
1236         return unwritten;
1237 }
1238
1239 /**
1240  * This is the fast pwrite path, where we copy the data directly from the
1241  * user into the GTT, uncached.
1242  * @obj: i915 GEM object
1243  * @args: pwrite arguments structure
1244  */
1245 static int
1246 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1247                          const struct drm_i915_gem_pwrite *args)
1248 {
1249         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250         struct i915_ggtt *ggtt = &i915->ggtt;
1251         struct drm_mm_node node;
1252         struct i915_vma *vma;
1253         u64 remain, offset;
1254         void __user *user_data;
1255         int ret;
1256
1257         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1258         if (ret)
1259                 return ret;
1260
1261         if (i915_gem_object_has_struct_page(obj)) {
1262                 /*
1263                  * Avoid waking the device up if we can fallback, as
1264                  * waking/resuming is very slow (worst-case 10-100 ms
1265                  * depending on PCI sleeps and our own resume time).
1266                  * This easily dwarfs any performance advantage from
1267                  * using the cache bypass of indirect GGTT access.
1268                  */
1269                 if (!intel_runtime_pm_get_if_in_use(i915)) {
1270                         ret = -EFAULT;
1271                         goto out_unlock;
1272                 }
1273         } else {
1274                 /* No backing pages, no fallback, we must force GGTT access */
1275                 intel_runtime_pm_get(i915);
1276         }
1277
1278         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1279                                        PIN_MAPPABLE |
1280                                        PIN_NONFAULT |
1281                                        PIN_NONBLOCK);
1282         if (!IS_ERR(vma)) {
1283                 node.start = i915_ggtt_offset(vma);
1284                 node.allocated = false;
1285                 ret = i915_vma_put_fence(vma);
1286                 if (ret) {
1287                         i915_vma_unpin(vma);
1288                         vma = ERR_PTR(ret);
1289                 }
1290         }
1291         if (IS_ERR(vma)) {
1292                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1293                 if (ret)
1294                         goto out_rpm;
1295                 GEM_BUG_ON(!node.allocated);
1296         }
1297
1298         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1299         if (ret)
1300                 goto out_unpin;
1301
1302         mutex_unlock(&i915->drm.struct_mutex);
1303
1304         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1305
1306         user_data = u64_to_user_ptr(args->data_ptr);
1307         offset = args->offset;
1308         remain = args->size;
1309         while (remain) {
1310                 /* Operation in this page
1311                  *
1312                  * page_base = page offset within aperture
1313                  * page_offset = offset within page
1314                  * page_length = bytes to copy for this page
1315                  */
1316                 u32 page_base = node.start;
1317                 unsigned int page_offset = offset_in_page(offset);
1318                 unsigned int page_length = PAGE_SIZE - page_offset;
1319                 page_length = remain < page_length ? remain : page_length;
1320                 if (node.allocated) {
1321                         wmb(); /* flush the write before we modify the GGTT */
1322                         ggtt->base.insert_page(&ggtt->base,
1323                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1324                                                node.start, I915_CACHE_NONE, 0);
1325                         wmb(); /* flush modifications to the GGTT (insert_page) */
1326                 } else {
1327                         page_base += offset & PAGE_MASK;
1328                 }
1329                 /* If we get a fault while copying data, then (presumably) our
1330                  * source page isn't available.  Return the error and we'll
1331                  * retry in the slow path.
1332                  * If the object is non-shmem backed, we retry again with the
1333                  * path that handles page fault.
1334                  */
1335                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336                                user_data, page_length)) {
1337                         ret = -EFAULT;
1338                         break;
1339                 }
1340
1341                 remain -= page_length;
1342                 user_data += page_length;
1343                 offset += page_length;
1344         }
1345         intel_fb_obj_flush(obj, ORIGIN_CPU);
1346
1347         mutex_lock(&i915->drm.struct_mutex);
1348 out_unpin:
1349         if (node.allocated) {
1350                 wmb();
1351                 ggtt->base.clear_range(&ggtt->base,
1352                                        node.start, node.size);
1353                 remove_mappable_node(&node);
1354         } else {
1355                 i915_vma_unpin(vma);
1356         }
1357 out_rpm:
1358         intel_runtime_pm_put(i915);
1359 out_unlock:
1360         mutex_unlock(&i915->drm.struct_mutex);
1361         return ret;
1362 }
1363
1364 static int
1365 shmem_pwrite_slow(struct page *page, int offset, int length,
1366                   char __user *user_data,
1367                   bool page_do_bit17_swizzling,
1368                   bool needs_clflush_before,
1369                   bool needs_clflush_after)
1370 {
1371         char *vaddr;
1372         int ret;
1373
1374         vaddr = kmap(page);
1375         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376                 shmem_clflush_swizzled_range(vaddr + offset, length,
1377                                              page_do_bit17_swizzling);
1378         if (page_do_bit17_swizzling)
1379                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1380                                                 length);
1381         else
1382                 ret = __copy_from_user(vaddr + offset, user_data, length);
1383         if (needs_clflush_after)
1384                 shmem_clflush_swizzled_range(vaddr + offset, length,
1385                                              page_do_bit17_swizzling);
1386         kunmap(page);
1387
1388         return ret ? -EFAULT : 0;
1389 }
1390
1391 /* Per-page copy function for the shmem pwrite fastpath.
1392  * Flushes invalid cachelines before writing to the target if
1393  * needs_clflush_before is set and flushes out any written cachelines after
1394  * writing if needs_clflush is set.
1395  */
1396 static int
1397 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1398              bool page_do_bit17_swizzling,
1399              bool needs_clflush_before,
1400              bool needs_clflush_after)
1401 {
1402         int ret;
1403
1404         ret = -ENODEV;
1405         if (!page_do_bit17_swizzling) {
1406                 char *vaddr = kmap_atomic(page);
1407
1408                 if (needs_clflush_before)
1409                         drm_clflush_virt_range(vaddr + offset, len);
1410                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1411                 if (needs_clflush_after)
1412                         drm_clflush_virt_range(vaddr + offset, len);
1413
1414                 kunmap_atomic(vaddr);
1415         }
1416         if (ret == 0)
1417                 return ret;
1418
1419         return shmem_pwrite_slow(page, offset, len, user_data,
1420                                  page_do_bit17_swizzling,
1421                                  needs_clflush_before,
1422                                  needs_clflush_after);
1423 }
1424
1425 static int
1426 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1427                       const struct drm_i915_gem_pwrite *args)
1428 {
1429         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1430         void __user *user_data;
1431         u64 remain;
1432         unsigned int obj_do_bit17_swizzling;
1433         unsigned int partial_cacheline_write;
1434         unsigned int needs_clflush;
1435         unsigned int offset, idx;
1436         int ret;
1437
1438         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1439         if (ret)
1440                 return ret;
1441
1442         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1443         mutex_unlock(&i915->drm.struct_mutex);
1444         if (ret)
1445                 return ret;
1446
1447         obj_do_bit17_swizzling = 0;
1448         if (i915_gem_object_needs_bit17_swizzle(obj))
1449                 obj_do_bit17_swizzling = BIT(17);
1450
1451         /* If we don't overwrite a cacheline completely we need to be
1452          * careful to have up-to-date data by first clflushing. Don't
1453          * overcomplicate things and flush the entire patch.
1454          */
1455         partial_cacheline_write = 0;
1456         if (needs_clflush & CLFLUSH_BEFORE)
1457                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1458
1459         user_data = u64_to_user_ptr(args->data_ptr);
1460         remain = args->size;
1461         offset = offset_in_page(args->offset);
1462         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1463                 struct page *page = i915_gem_object_get_page(obj, idx);
1464                 int length;
1465
1466                 length = remain;
1467                 if (offset + length > PAGE_SIZE)
1468                         length = PAGE_SIZE - offset;
1469
1470                 ret = shmem_pwrite(page, offset, length, user_data,
1471                                    page_to_phys(page) & obj_do_bit17_swizzling,
1472                                    (offset | length) & partial_cacheline_write,
1473                                    needs_clflush & CLFLUSH_AFTER);
1474                 if (ret)
1475                         break;
1476
1477                 remain -= length;
1478                 user_data += length;
1479                 offset = 0;
1480         }
1481
1482         intel_fb_obj_flush(obj, ORIGIN_CPU);
1483         i915_gem_obj_finish_shmem_access(obj);
1484         return ret;
1485 }
1486
1487 /**
1488  * Writes data to the object referenced by handle.
1489  * @dev: drm device
1490  * @data: ioctl data blob
1491  * @file: drm file
1492  *
1493  * On error, the contents of the buffer that were to be modified are undefined.
1494  */
1495 int
1496 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497                       struct drm_file *file)
1498 {
1499         struct drm_i915_gem_pwrite *args = data;
1500         struct drm_i915_gem_object *obj;
1501         int ret;
1502
1503         if (args->size == 0)
1504                 return 0;
1505
1506         if (!access_ok(VERIFY_READ,
1507                        u64_to_user_ptr(args->data_ptr),
1508                        args->size))
1509                 return -EFAULT;
1510
1511         obj = i915_gem_object_lookup(file, args->handle);
1512         if (!obj)
1513                 return -ENOENT;
1514
1515         /* Bounds check destination. */
1516         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1517                 ret = -EINVAL;
1518                 goto err;
1519         }
1520
1521         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1522
1523         ret = -ENODEV;
1524         if (obj->ops->pwrite)
1525                 ret = obj->ops->pwrite(obj, args);
1526         if (ret != -ENODEV)
1527                 goto err;
1528
1529         ret = i915_gem_object_wait(obj,
1530                                    I915_WAIT_INTERRUPTIBLE |
1531                                    I915_WAIT_ALL,
1532                                    MAX_SCHEDULE_TIMEOUT,
1533                                    to_rps_client(file));
1534         if (ret)
1535                 goto err;
1536
1537         ret = i915_gem_object_pin_pages(obj);
1538         if (ret)
1539                 goto err;
1540
1541         ret = -EFAULT;
1542         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1543          * it would end up going through the fenced access, and we'll get
1544          * different detiling behavior between reading and writing.
1545          * pread/pwrite currently are reading and writing from the CPU
1546          * perspective, requiring manual detiling by the client.
1547          */
1548         if (!i915_gem_object_has_struct_page(obj) ||
1549             cpu_write_needs_clflush(obj))
1550                 /* Note that the gtt paths might fail with non-page-backed user
1551                  * pointers (e.g. gtt mappings when moving data between
1552                  * textures). Fallback to the shmem path in that case.
1553                  */
1554                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1555
1556         if (ret == -EFAULT || ret == -ENOSPC) {
1557                 if (obj->phys_handle)
1558                         ret = i915_gem_phys_pwrite(obj, args, file);
1559                 else
1560                         ret = i915_gem_shmem_pwrite(obj, args);
1561         }
1562
1563         i915_gem_object_unpin_pages(obj);
1564 err:
1565         i915_gem_object_put(obj);
1566         return ret;
1567 }
1568
1569 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1570 {
1571         struct drm_i915_private *i915;
1572         struct list_head *list;
1573         struct i915_vma *vma;
1574
1575         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1576
1577         for_each_ggtt_vma(vma, obj) {
1578                 if (i915_vma_is_active(vma))
1579                         continue;
1580
1581                 if (!drm_mm_node_allocated(&vma->node))
1582                         continue;
1583
1584                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1585         }
1586
1587         i915 = to_i915(obj->base.dev);
1588         spin_lock(&i915->mm.obj_lock);
1589         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590         list_move_tail(&obj->mm.link, list);
1591         spin_unlock(&i915->mm.obj_lock);
1592 }
1593
1594 /**
1595  * Called when user space prepares to use an object with the CPU, either
1596  * through the mmap ioctl's mapping or a GTT mapping.
1597  * @dev: drm device
1598  * @data: ioctl data blob
1599  * @file: drm file
1600  */
1601 int
1602 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603                           struct drm_file *file)
1604 {
1605         struct drm_i915_gem_set_domain *args = data;
1606         struct drm_i915_gem_object *obj;
1607         uint32_t read_domains = args->read_domains;
1608         uint32_t write_domain = args->write_domain;
1609         int err;
1610
1611         /* Only handle setting domains to types used by the CPU. */
1612         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1613                 return -EINVAL;
1614
1615         /* Having something in the write domain implies it's in the read
1616          * domain, and only that read domain.  Enforce that in the request.
1617          */
1618         if (write_domain != 0 && read_domains != write_domain)
1619                 return -EINVAL;
1620
1621         obj = i915_gem_object_lookup(file, args->handle);
1622         if (!obj)
1623                 return -ENOENT;
1624
1625         /* Try to flush the object off the GPU without holding the lock.
1626          * We will repeat the flush holding the lock in the normal manner
1627          * to catch cases where we are gazumped.
1628          */
1629         err = i915_gem_object_wait(obj,
1630                                    I915_WAIT_INTERRUPTIBLE |
1631                                    (write_domain ? I915_WAIT_ALL : 0),
1632                                    MAX_SCHEDULE_TIMEOUT,
1633                                    to_rps_client(file));
1634         if (err)
1635                 goto out;
1636
1637         /*
1638          * Proxy objects do not control access to the backing storage, ergo
1639          * they cannot be used as a means to manipulate the cache domain
1640          * tracking for that backing storage. The proxy object is always
1641          * considered to be outside of any cache domain.
1642          */
1643         if (i915_gem_object_is_proxy(obj)) {
1644                 err = -ENXIO;
1645                 goto out;
1646         }
1647
1648         /*
1649          * Flush and acquire obj->pages so that we are coherent through
1650          * direct access in memory with previous cached writes through
1651          * shmemfs and that our cache domain tracking remains valid.
1652          * For example, if the obj->filp was moved to swap without us
1653          * being notified and releasing the pages, we would mistakenly
1654          * continue to assume that the obj remained out of the CPU cached
1655          * domain.
1656          */
1657         err = i915_gem_object_pin_pages(obj);
1658         if (err)
1659                 goto out;
1660
1661         err = i915_mutex_lock_interruptible(dev);
1662         if (err)
1663                 goto out_unpin;
1664
1665         if (read_domains & I915_GEM_DOMAIN_WC)
1666                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1667         else if (read_domains & I915_GEM_DOMAIN_GTT)
1668                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1669         else
1670                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1671
1672         /* And bump the LRU for this access */
1673         i915_gem_object_bump_inactive_ggtt(obj);
1674
1675         mutex_unlock(&dev->struct_mutex);
1676
1677         if (write_domain != 0)
1678                 intel_fb_obj_invalidate(obj,
1679                                         fb_write_origin(obj, write_domain));
1680
1681 out_unpin:
1682         i915_gem_object_unpin_pages(obj);
1683 out:
1684         i915_gem_object_put(obj);
1685         return err;
1686 }
1687
1688 /**
1689  * Called when user space has done writes to this buffer
1690  * @dev: drm device
1691  * @data: ioctl data blob
1692  * @file: drm file
1693  */
1694 int
1695 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696                          struct drm_file *file)
1697 {
1698         struct drm_i915_gem_sw_finish *args = data;
1699         struct drm_i915_gem_object *obj;
1700
1701         obj = i915_gem_object_lookup(file, args->handle);
1702         if (!obj)
1703                 return -ENOENT;
1704
1705         /*
1706          * Proxy objects are barred from CPU access, so there is no
1707          * need to ban sw_finish as it is a nop.
1708          */
1709
1710         /* Pinned buffers may be scanout, so flush the cache */
1711         i915_gem_object_flush_if_display(obj);
1712         i915_gem_object_put(obj);
1713
1714         return 0;
1715 }
1716
1717 /**
1718  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1719  *                       it is mapped to.
1720  * @dev: drm device
1721  * @data: ioctl data blob
1722  * @file: drm file
1723  *
1724  * While the mapping holds a reference on the contents of the object, it doesn't
1725  * imply a ref on the object itself.
1726  *
1727  * IMPORTANT:
1728  *
1729  * DRM driver writers who look a this function as an example for how to do GEM
1730  * mmap support, please don't implement mmap support like here. The modern way
1731  * to implement DRM mmap support is with an mmap offset ioctl (like
1732  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733  * That way debug tooling like valgrind will understand what's going on, hiding
1734  * the mmap call in a driver private ioctl will break that. The i915 driver only
1735  * does cpu mmaps this way because we didn't know better.
1736  */
1737 int
1738 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739                     struct drm_file *file)
1740 {
1741         struct drm_i915_gem_mmap *args = data;
1742         struct drm_i915_gem_object *obj;
1743         unsigned long addr;
1744
1745         if (args->flags & ~(I915_MMAP_WC))
1746                 return -EINVAL;
1747
1748         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1749                 return -ENODEV;
1750
1751         obj = i915_gem_object_lookup(file, args->handle);
1752         if (!obj)
1753                 return -ENOENT;
1754
1755         /* prime objects have no backing filp to GEM mmap
1756          * pages from.
1757          */
1758         if (!obj->base.filp) {
1759                 i915_gem_object_put(obj);
1760                 return -ENXIO;
1761         }
1762
1763         addr = vm_mmap(obj->base.filp, 0, args->size,
1764                        PROT_READ | PROT_WRITE, MAP_SHARED,
1765                        args->offset);
1766         if (args->flags & I915_MMAP_WC) {
1767                 struct mm_struct *mm = current->mm;
1768                 struct vm_area_struct *vma;
1769
1770                 if (down_write_killable(&mm->mmap_sem)) {
1771                         i915_gem_object_put(obj);
1772                         return -EINTR;
1773                 }
1774                 vma = find_vma(mm, addr);
1775                 if (vma)
1776                         vma->vm_page_prot =
1777                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1778                 else
1779                         addr = -ENOMEM;
1780                 up_write(&mm->mmap_sem);
1781
1782                 /* This may race, but that's ok, it only gets set */
1783                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1784         }
1785         i915_gem_object_put(obj);
1786         if (IS_ERR((void *)addr))
1787                 return addr;
1788
1789         args->addr_ptr = (uint64_t) addr;
1790
1791         return 0;
1792 }
1793
1794 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1795 {
1796         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1797 }
1798
1799 /**
1800  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1801  *
1802  * A history of the GTT mmap interface:
1803  *
1804  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805  *     aligned and suitable for fencing, and still fit into the available
1806  *     mappable space left by the pinned display objects. A classic problem
1807  *     we called the page-fault-of-doom where we would ping-pong between
1808  *     two objects that could not fit inside the GTT and so the memcpy
1809  *     would page one object in at the expense of the other between every
1810  *     single byte.
1811  *
1812  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814  *     object is too large for the available space (or simply too large
1815  *     for the mappable aperture!), a view is created instead and faulted
1816  *     into userspace. (This view is aligned and sized appropriately for
1817  *     fenced access.)
1818  *
1819  * 2 - Recognise WC as a separate cache domain so that we can flush the
1820  *     delayed writes via GTT before performing direct access via WC.
1821  *
1822  * Restrictions:
1823  *
1824  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1825  *    hangs on some architectures, corruption on others. An attempt to service
1826  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1827  *
1828  *  * the object must be able to fit into RAM (physical memory, though no
1829  *    limited to the mappable aperture).
1830  *
1831  *
1832  * Caveats:
1833  *
1834  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1835  *    all data to system memory. Subsequent access will not be synchronized.
1836  *
1837  *  * all mappings are revoked on runtime device suspend.
1838  *
1839  *  * there are only 8, 16 or 32 fence registers to share between all users
1840  *    (older machines require fence register for display and blitter access
1841  *    as well). Contention of the fence registers will cause the previous users
1842  *    to be unmapped and any new access will generate new page faults.
1843  *
1844  *  * running out of memory while servicing a fault may generate a SIGBUS,
1845  *    rather than the expected SIGSEGV.
1846  */
1847 int i915_gem_mmap_gtt_version(void)
1848 {
1849         return 2;
1850 }
1851
1852 static inline struct i915_ggtt_view
1853 compute_partial_view(struct drm_i915_gem_object *obj,
1854                      pgoff_t page_offset,
1855                      unsigned int chunk)
1856 {
1857         struct i915_ggtt_view view;
1858
1859         if (i915_gem_object_is_tiled(obj))
1860                 chunk = roundup(chunk, tile_row_pages(obj));
1861
1862         view.type = I915_GGTT_VIEW_PARTIAL;
1863         view.partial.offset = rounddown(page_offset, chunk);
1864         view.partial.size =
1865                 min_t(unsigned int, chunk,
1866                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1867
1868         /* If the partial covers the entire object, just create a normal VMA. */
1869         if (chunk >= obj->base.size >> PAGE_SHIFT)
1870                 view.type = I915_GGTT_VIEW_NORMAL;
1871
1872         return view;
1873 }
1874
1875 /**
1876  * i915_gem_fault - fault a page into the GTT
1877  * @vmf: fault info
1878  *
1879  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880  * from userspace.  The fault handler takes care of binding the object to
1881  * the GTT (if needed), allocating and programming a fence register (again,
1882  * only if needed based on whether the old reg is still valid or the object
1883  * is tiled) and inserting a new PTE into the faulting process.
1884  *
1885  * Note that the faulting process may involve evicting existing objects
1886  * from the GTT and/or fence registers to make room.  So performance may
1887  * suffer if the GTT working set is large or there are few fence registers
1888  * left.
1889  *
1890  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1892  */
1893 int i915_gem_fault(struct vm_fault *vmf)
1894 {
1895 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896         struct vm_area_struct *area = vmf->vma;
1897         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898         struct drm_device *dev = obj->base.dev;
1899         struct drm_i915_private *dev_priv = to_i915(dev);
1900         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1901         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1902         struct i915_vma *vma;
1903         pgoff_t page_offset;
1904         unsigned int flags;
1905         int ret;
1906
1907         /* We don't use vmf->pgoff since that has the fake offset */
1908         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1909
1910         trace_i915_gem_object_fault(obj, page_offset, true, write);
1911
1912         /* Try to flush the object off the GPU first without holding the lock.
1913          * Upon acquiring the lock, we will perform our sanity checks and then
1914          * repeat the flush holding the lock in the normal manner to catch cases
1915          * where we are gazumped.
1916          */
1917         ret = i915_gem_object_wait(obj,
1918                                    I915_WAIT_INTERRUPTIBLE,
1919                                    MAX_SCHEDULE_TIMEOUT,
1920                                    NULL);
1921         if (ret)
1922                 goto err;
1923
1924         ret = i915_gem_object_pin_pages(obj);
1925         if (ret)
1926                 goto err;
1927
1928         intel_runtime_pm_get(dev_priv);
1929
1930         ret = i915_mutex_lock_interruptible(dev);
1931         if (ret)
1932                 goto err_rpm;
1933
1934         /* Access to snoopable pages through the GTT is incoherent. */
1935         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1936                 ret = -EFAULT;
1937                 goto err_unlock;
1938         }
1939
1940         /* If the object is smaller than a couple of partial vma, it is
1941          * not worth only creating a single partial vma - we may as well
1942          * clear enough space for the full object.
1943          */
1944         flags = PIN_MAPPABLE;
1945         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1946                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1947
1948         /* Now pin it into the GTT as needed */
1949         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1950         if (IS_ERR(vma)) {
1951                 /* Use a partial view if it is bigger than available space */
1952                 struct i915_ggtt_view view =
1953                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1954
1955                 /* Userspace is now writing through an untracked VMA, abandon
1956                  * all hope that the hardware is able to track future writes.
1957                  */
1958                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1959
1960                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1961         }
1962         if (IS_ERR(vma)) {
1963                 ret = PTR_ERR(vma);
1964                 goto err_unlock;
1965         }
1966
1967         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1968         if (ret)
1969                 goto err_unpin;
1970
1971         ret = i915_vma_pin_fence(vma);
1972         if (ret)
1973                 goto err_unpin;
1974
1975         /* Finally, remap it using the new GTT offset */
1976         ret = remap_io_mapping(area,
1977                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978                                (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1980                                &ggtt->iomap);
1981         if (ret)
1982                 goto err_fence;
1983
1984         /* Mark as being mmapped into userspace for later revocation */
1985         assert_rpm_wakelock_held(dev_priv);
1986         if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988         GEM_BUG_ON(!obj->userfault_count);
1989
1990         i915_vma_set_ggtt_write(vma);
1991
1992 err_fence:
1993         i915_vma_unpin_fence(vma);
1994 err_unpin:
1995         __i915_vma_unpin(vma);
1996 err_unlock:
1997         mutex_unlock(&dev->struct_mutex);
1998 err_rpm:
1999         intel_runtime_pm_put(dev_priv);
2000         i915_gem_object_unpin_pages(obj);
2001 err:
2002         switch (ret) {
2003         case -EIO:
2004                 /*
2005                  * We eat errors when the gpu is terminally wedged to avoid
2006                  * userspace unduly crashing (gl has no provisions for mmaps to
2007                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008                  * and so needs to be reported.
2009                  */
2010                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011                         ret = VM_FAULT_SIGBUS;
2012                         break;
2013                 }
2014         case -EAGAIN:
2015                 /*
2016                  * EAGAIN means the gpu is hung and we'll wait for the error
2017                  * handler to reset everything when re-faulting in
2018                  * i915_mutex_lock_interruptible.
2019                  */
2020         case 0:
2021         case -ERESTARTSYS:
2022         case -EINTR:
2023         case -EBUSY:
2024                 /*
2025                  * EBUSY is ok: this just means that another thread
2026                  * already did the job.
2027                  */
2028                 ret = VM_FAULT_NOPAGE;
2029                 break;
2030         case -ENOMEM:
2031                 ret = VM_FAULT_OOM;
2032                 break;
2033         case -ENOSPC:
2034         case -EFAULT:
2035                 ret = VM_FAULT_SIGBUS;
2036                 break;
2037         default:
2038                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039                 ret = VM_FAULT_SIGBUS;
2040                 break;
2041         }
2042         return ret;
2043 }
2044
2045 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2046 {
2047         struct i915_vma *vma;
2048
2049         GEM_BUG_ON(!obj->userfault_count);
2050
2051         obj->userfault_count = 0;
2052         list_del(&obj->userfault_link);
2053         drm_vma_node_unmap(&obj->base.vma_node,
2054                            obj->base.dev->anon_inode->i_mapping);
2055
2056         for_each_ggtt_vma(vma, obj)
2057                 i915_vma_unset_userfault(vma);
2058 }
2059
2060 /**
2061  * i915_gem_release_mmap - remove physical page mappings
2062  * @obj: obj in question
2063  *
2064  * Preserve the reservation of the mmapping with the DRM core code, but
2065  * relinquish ownership of the pages back to the system.
2066  *
2067  * It is vital that we remove the page mapping if we have mapped a tiled
2068  * object through the GTT and then lose the fence register due to
2069  * resource pressure. Similarly if the object has been moved out of the
2070  * aperture, than pages mapped into userspace must be revoked. Removing the
2071  * mapping will then trigger a page fault on the next user access, allowing
2072  * fixup by i915_gem_fault().
2073  */
2074 void
2075 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2076 {
2077         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2078
2079         /* Serialisation between user GTT access and our code depends upon
2080          * revoking the CPU's PTE whilst the mutex is held. The next user
2081          * pagefault then has to wait until we release the mutex.
2082          *
2083          * Note that RPM complicates somewhat by adding an additional
2084          * requirement that operations to the GGTT be made holding the RPM
2085          * wakeref.
2086          */
2087         lockdep_assert_held(&i915->drm.struct_mutex);
2088         intel_runtime_pm_get(i915);
2089
2090         if (!obj->userfault_count)
2091                 goto out;
2092
2093         __i915_gem_object_release_mmap(obj);
2094
2095         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2096          * memory transactions from userspace before we return. The TLB
2097          * flushing implied above by changing the PTE above *should* be
2098          * sufficient, an extra barrier here just provides us with a bit
2099          * of paranoid documentation about our requirement to serialise
2100          * memory writes before touching registers / GSM.
2101          */
2102         wmb();
2103
2104 out:
2105         intel_runtime_pm_put(i915);
2106 }
2107
2108 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2109 {
2110         struct drm_i915_gem_object *obj, *on;
2111         int i;
2112
2113         /*
2114          * Only called during RPM suspend. All users of the userfault_list
2115          * must be holding an RPM wakeref to ensure that this can not
2116          * run concurrently with themselves (and use the struct_mutex for
2117          * protection between themselves).
2118          */
2119
2120         list_for_each_entry_safe(obj, on,
2121                                  &dev_priv->mm.userfault_list, userfault_link)
2122                 __i915_gem_object_release_mmap(obj);
2123
2124         /* The fence will be lost when the device powers down. If any were
2125          * in use by hardware (i.e. they are pinned), we should not be powering
2126          * down! All other fences will be reacquired by the user upon waking.
2127          */
2128         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2130
2131                 /* Ideally we want to assert that the fence register is not
2132                  * live at this point (i.e. that no piece of code will be
2133                  * trying to write through fence + GTT, as that both violates
2134                  * our tracking of activity and associated locking/barriers,
2135                  * but also is illegal given that the hw is powered down).
2136                  *
2137                  * Previously we used reg->pin_count as a "liveness" indicator.
2138                  * That is not sufficient, and we need a more fine-grained
2139                  * tool if we want to have a sanity check here.
2140                  */
2141
2142                 if (!reg->vma)
2143                         continue;
2144
2145                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2146                 reg->dirty = true;
2147         }
2148 }
2149
2150 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2151 {
2152         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2153         int err;
2154
2155         err = drm_gem_create_mmap_offset(&obj->base);
2156         if (likely(!err))
2157                 return 0;
2158
2159         /* Attempt to reap some mmap space from dead objects */
2160         do {
2161                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2162                 if (err)
2163                         break;
2164
2165                 i915_gem_drain_freed_objects(dev_priv);
2166                 err = drm_gem_create_mmap_offset(&obj->base);
2167                 if (!err)
2168                         break;
2169
2170         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2171
2172         return err;
2173 }
2174
2175 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2176 {
2177         drm_gem_free_mmap_offset(&obj->base);
2178 }
2179
2180 int
2181 i915_gem_mmap_gtt(struct drm_file *file,
2182                   struct drm_device *dev,
2183                   uint32_t handle,
2184                   uint64_t *offset)
2185 {
2186         struct drm_i915_gem_object *obj;
2187         int ret;
2188
2189         obj = i915_gem_object_lookup(file, handle);
2190         if (!obj)
2191                 return -ENOENT;
2192
2193         ret = i915_gem_object_create_mmap_offset(obj);
2194         if (ret == 0)
2195                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2196
2197         i915_gem_object_put(obj);
2198         return ret;
2199 }
2200
2201 /**
2202  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2203  * @dev: DRM device
2204  * @data: GTT mapping ioctl data
2205  * @file: GEM object info
2206  *
2207  * Simply returns the fake offset to userspace so it can mmap it.
2208  * The mmap call will end up in drm_gem_mmap(), which will set things
2209  * up so we can get faults in the handler above.
2210  *
2211  * The fault handler will take care of binding the object into the GTT
2212  * (since it may have been evicted to make room for something), allocating
2213  * a fence register, and mapping the appropriate aperture address into
2214  * userspace.
2215  */
2216 int
2217 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2218                         struct drm_file *file)
2219 {
2220         struct drm_i915_gem_mmap_gtt *args = data;
2221
2222         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2223 }
2224
2225 /* Immediately discard the backing storage */
2226 static void
2227 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2228 {
2229         i915_gem_object_free_mmap_offset(obj);
2230
2231         if (obj->base.filp == NULL)
2232                 return;
2233
2234         /* Our goal here is to return as much of the memory as
2235          * is possible back to the system as we are called from OOM.
2236          * To do this we must instruct the shmfs to drop all of its
2237          * backing pages, *now*.
2238          */
2239         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2240         obj->mm.madv = __I915_MADV_PURGED;
2241         obj->mm.pages = ERR_PTR(-EFAULT);
2242 }
2243
2244 /* Try to discard unwanted pages */
2245 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2246 {
2247         struct address_space *mapping;
2248
2249         lockdep_assert_held(&obj->mm.lock);
2250         GEM_BUG_ON(i915_gem_object_has_pages(obj));
2251
2252         switch (obj->mm.madv) {
2253         case I915_MADV_DONTNEED:
2254                 i915_gem_object_truncate(obj);
2255         case __I915_MADV_PURGED:
2256                 return;
2257         }
2258
2259         if (obj->base.filp == NULL)
2260                 return;
2261
2262         mapping = obj->base.filp->f_mapping,
2263         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2264 }
2265
2266 static void
2267 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2268                               struct sg_table *pages)
2269 {
2270         struct sgt_iter sgt_iter;
2271         struct page *page;
2272
2273         __i915_gem_object_release_shmem(obj, pages, true);
2274
2275         i915_gem_gtt_finish_pages(obj, pages);
2276
2277         if (i915_gem_object_needs_bit17_swizzle(obj))
2278                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2279
2280         for_each_sgt_page(page, sgt_iter, pages) {
2281                 if (obj->mm.dirty)
2282                         set_page_dirty(page);
2283
2284                 if (obj->mm.madv == I915_MADV_WILLNEED)
2285                         mark_page_accessed(page);
2286
2287                 put_page(page);
2288         }
2289         obj->mm.dirty = false;
2290
2291         sg_free_table(pages);
2292         kfree(pages);
2293 }
2294
2295 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2296 {
2297         struct radix_tree_iter iter;
2298         void __rcu **slot;
2299
2300         rcu_read_lock();
2301         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2302                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2303         rcu_read_unlock();
2304 }
2305
2306 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2307                                  enum i915_mm_subclass subclass)
2308 {
2309         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310         struct sg_table *pages;
2311
2312         if (i915_gem_object_has_pinned_pages(obj))
2313                 return;
2314
2315         GEM_BUG_ON(obj->bind_count);
2316         if (!i915_gem_object_has_pages(obj))
2317                 return;
2318
2319         /* May be called by shrinker from within get_pages() (on another bo) */
2320         mutex_lock_nested(&obj->mm.lock, subclass);
2321         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2322                 goto unlock;
2323
2324         /* ->put_pages might need to allocate memory for the bit17 swizzle
2325          * array, hence protect them from being reaped by removing them from gtt
2326          * lists early. */
2327         pages = fetch_and_zero(&obj->mm.pages);
2328         GEM_BUG_ON(!pages);
2329
2330         spin_lock(&i915->mm.obj_lock);
2331         list_del(&obj->mm.link);
2332         spin_unlock(&i915->mm.obj_lock);
2333
2334         if (obj->mm.mapping) {
2335                 void *ptr;
2336
2337                 ptr = page_mask_bits(obj->mm.mapping);
2338                 if (is_vmalloc_addr(ptr))
2339                         vunmap(ptr);
2340                 else
2341                         kunmap(kmap_to_page(ptr));
2342
2343                 obj->mm.mapping = NULL;
2344         }
2345
2346         __i915_gem_object_reset_page_iter(obj);
2347
2348         if (!IS_ERR(pages))
2349                 obj->ops->put_pages(obj, pages);
2350
2351         obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2352
2353 unlock:
2354         mutex_unlock(&obj->mm.lock);
2355 }
2356
2357 static bool i915_sg_trim(struct sg_table *orig_st)
2358 {
2359         struct sg_table new_st;
2360         struct scatterlist *sg, *new_sg;
2361         unsigned int i;
2362
2363         if (orig_st->nents == orig_st->orig_nents)
2364                 return false;
2365
2366         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2367                 return false;
2368
2369         new_sg = new_st.sgl;
2370         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2371                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2372                 /* called before being DMA mapped, no need to copy sg->dma_* */
2373                 new_sg = sg_next(new_sg);
2374         }
2375         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2376
2377         sg_free_table(orig_st);
2378
2379         *orig_st = new_st;
2380         return true;
2381 }
2382
2383 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2384 {
2385         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2387         unsigned long i;
2388         struct address_space *mapping;
2389         struct sg_table *st;
2390         struct scatterlist *sg;
2391         struct sgt_iter sgt_iter;
2392         struct page *page;
2393         unsigned long last_pfn = 0;     /* suppress gcc warning */
2394         unsigned int max_segment = i915_sg_segment_size();
2395         unsigned int sg_page_sizes;
2396         gfp_t noreclaim;
2397         int ret;
2398
2399         /* Assert that the object is not currently in any GPU domain. As it
2400          * wasn't in the GTT, there shouldn't be any way it could have been in
2401          * a GPU cache
2402          */
2403         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2404         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2405
2406         st = kmalloc(sizeof(*st), GFP_KERNEL);
2407         if (st == NULL)
2408                 return -ENOMEM;
2409
2410 rebuild_st:
2411         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2412                 kfree(st);
2413                 return -ENOMEM;
2414         }
2415
2416         /* Get the list of pages out of our struct file.  They'll be pinned
2417          * at this point until we release them.
2418          *
2419          * Fail silently without starting the shrinker
2420          */
2421         mapping = obj->base.filp->f_mapping;
2422         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2424
2425         sg = st->sgl;
2426         st->nents = 0;
2427         sg_page_sizes = 0;
2428         for (i = 0; i < page_count; i++) {
2429                 const unsigned int shrink[] = {
2430                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2431                         0,
2432                 }, *s = shrink;
2433                 gfp_t gfp = noreclaim;
2434
2435                 do {
2436                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437                         if (likely(!IS_ERR(page)))
2438                                 break;
2439
2440                         if (!*s) {
2441                                 ret = PTR_ERR(page);
2442                                 goto err_sg;
2443                         }
2444
2445                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2446                         cond_resched();
2447
2448                         /* We've tried hard to allocate the memory by reaping
2449                          * our own buffer, now let the real VM do its job and
2450                          * go down in flames if truly OOM.
2451                          *
2452                          * However, since graphics tend to be disposable,
2453                          * defer the oom here by reporting the ENOMEM back
2454                          * to userspace.
2455                          */
2456                         if (!*s) {
2457                                 /* reclaim and warn, but no oom */
2458                                 gfp = mapping_gfp_mask(mapping);
2459
2460                                 /* Our bo are always dirty and so we require
2461                                  * kswapd to reclaim our pages (direct reclaim
2462                                  * does not effectively begin pageout of our
2463                                  * buffers on its own). However, direct reclaim
2464                                  * only waits for kswapd when under allocation
2465                                  * congestion. So as a result __GFP_RECLAIM is
2466                                  * unreliable and fails to actually reclaim our
2467                                  * dirty pages -- unless you try over and over
2468                                  * again with !__GFP_NORETRY. However, we still
2469                                  * want to fail this allocation rather than
2470                                  * trigger the out-of-memory killer and for
2471                                  * this we want __GFP_RETRY_MAYFAIL.
2472                                  */
2473                                 gfp |= __GFP_RETRY_MAYFAIL;
2474                         }
2475                 } while (1);
2476
2477                 if (!i ||
2478                     sg->length >= max_segment ||
2479                     page_to_pfn(page) != last_pfn + 1) {
2480                         if (i) {
2481                                 sg_page_sizes |= sg->length;
2482                                 sg = sg_next(sg);
2483                         }
2484                         st->nents++;
2485                         sg_set_page(sg, page, PAGE_SIZE, 0);
2486                 } else {
2487                         sg->length += PAGE_SIZE;
2488                 }
2489                 last_pfn = page_to_pfn(page);
2490
2491                 /* Check that the i965g/gm workaround works. */
2492                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2493         }
2494         if (sg) { /* loop terminated early; short sg table */
2495                 sg_page_sizes |= sg->length;
2496                 sg_mark_end(sg);
2497         }
2498
2499         /* Trim unused sg entries to avoid wasting memory. */
2500         i915_sg_trim(st);
2501
2502         ret = i915_gem_gtt_prepare_pages(obj, st);
2503         if (ret) {
2504                 /* DMA remapping failed? One possible cause is that
2505                  * it could not reserve enough large entries, asking
2506                  * for PAGE_SIZE chunks instead may be helpful.
2507                  */
2508                 if (max_segment > PAGE_SIZE) {
2509                         for_each_sgt_page(page, sgt_iter, st)
2510                                 put_page(page);
2511                         sg_free_table(st);
2512
2513                         max_segment = PAGE_SIZE;
2514                         goto rebuild_st;
2515                 } else {
2516                         dev_warn(&dev_priv->drm.pdev->dev,
2517                                  "Failed to DMA remap %lu pages\n",
2518                                  page_count);
2519                         goto err_pages;
2520                 }
2521         }
2522
2523         if (i915_gem_object_needs_bit17_swizzle(obj))
2524                 i915_gem_object_do_bit_17_swizzle(obj, st);
2525
2526         __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2527
2528         return 0;
2529
2530 err_sg:
2531         sg_mark_end(sg);
2532 err_pages:
2533         for_each_sgt_page(page, sgt_iter, st)
2534                 put_page(page);
2535         sg_free_table(st);
2536         kfree(st);
2537
2538         /* shmemfs first checks if there is enough memory to allocate the page
2539          * and reports ENOSPC should there be insufficient, along with the usual
2540          * ENOMEM for a genuine allocation failure.
2541          *
2542          * We use ENOSPC in our driver to mean that we have run out of aperture
2543          * space and so want to translate the error from shmemfs back to our
2544          * usual understanding of ENOMEM.
2545          */
2546         if (ret == -ENOSPC)
2547                 ret = -ENOMEM;
2548
2549         return ret;
2550 }
2551
2552 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553                                  struct sg_table *pages,
2554                                  unsigned int sg_page_sizes)
2555 {
2556         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2557         unsigned long supported = INTEL_INFO(i915)->page_sizes;
2558         int i;
2559
2560         lockdep_assert_held(&obj->mm.lock);
2561
2562         obj->mm.get_page.sg_pos = pages->sgl;
2563         obj->mm.get_page.sg_idx = 0;
2564
2565         obj->mm.pages = pages;
2566
2567         if (i915_gem_object_is_tiled(obj) &&
2568             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569                 GEM_BUG_ON(obj->mm.quirked);
2570                 __i915_gem_object_pin_pages(obj);
2571                 obj->mm.quirked = true;
2572         }
2573
2574         GEM_BUG_ON(!sg_page_sizes);
2575         obj->mm.page_sizes.phys = sg_page_sizes;
2576
2577         /*
2578          * Calculate the supported page-sizes which fit into the given
2579          * sg_page_sizes. This will give us the page-sizes which we may be able
2580          * to use opportunistically when later inserting into the GTT. For
2581          * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582          * 64K or 4K pages, although in practice this will depend on a number of
2583          * other factors.
2584          */
2585         obj->mm.page_sizes.sg = 0;
2586         for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2587                 if (obj->mm.page_sizes.phys & ~0u << i)
2588                         obj->mm.page_sizes.sg |= BIT(i);
2589         }
2590         GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2591
2592         spin_lock(&i915->mm.obj_lock);
2593         list_add(&obj->mm.link, &i915->mm.unbound_list);
2594         spin_unlock(&i915->mm.obj_lock);
2595 }
2596
2597 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2598 {
2599         int err;
2600
2601         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2602                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2603                 return -EFAULT;
2604         }
2605
2606         err = obj->ops->get_pages(obj);
2607         GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2608
2609         return err;
2610 }
2611
2612 /* Ensure that the associated pages are gathered from the backing storage
2613  * and pinned into our object. i915_gem_object_pin_pages() may be called
2614  * multiple times before they are released by a single call to
2615  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616  * either as a result of memory pressure (reaping pages under the shrinker)
2617  * or as the object is itself released.
2618  */
2619 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2620 {
2621         int err;
2622
2623         err = mutex_lock_interruptible(&obj->mm.lock);
2624         if (err)
2625                 return err;
2626
2627         if (unlikely(!i915_gem_object_has_pages(obj))) {
2628                 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2629
2630                 err = ____i915_gem_object_get_pages(obj);
2631                 if (err)
2632                         goto unlock;
2633
2634                 smp_mb__before_atomic();
2635         }
2636         atomic_inc(&obj->mm.pages_pin_count);
2637
2638 unlock:
2639         mutex_unlock(&obj->mm.lock);
2640         return err;
2641 }
2642
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2645                                  enum i915_map_type type)
2646 {
2647         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2648         struct sg_table *sgt = obj->mm.pages;
2649         struct sgt_iter sgt_iter;
2650         struct page *page;
2651         struct page *stack_pages[32];
2652         struct page **pages = stack_pages;
2653         unsigned long i = 0;
2654         pgprot_t pgprot;
2655         void *addr;
2656
2657         /* A single page can always be kmapped */
2658         if (n_pages == 1 && type == I915_MAP_WB)
2659                 return kmap(sg_page(sgt->sgl));
2660
2661         if (n_pages > ARRAY_SIZE(stack_pages)) {
2662                 /* Too big for stack -- allocate temporary array instead */
2663                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2664                 if (!pages)
2665                         return NULL;
2666         }
2667
2668         for_each_sgt_page(page, sgt_iter, sgt)
2669                 pages[i++] = page;
2670
2671         /* Check that we have the expected number of pages */
2672         GEM_BUG_ON(i != n_pages);
2673
2674         switch (type) {
2675         default:
2676                 MISSING_CASE(type);
2677                 /* fallthrough to use PAGE_KERNEL anyway */
2678         case I915_MAP_WB:
2679                 pgprot = PAGE_KERNEL;
2680                 break;
2681         case I915_MAP_WC:
2682                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2683                 break;
2684         }
2685         addr = vmap(pages, n_pages, 0, pgprot);
2686
2687         if (pages != stack_pages)
2688                 kvfree(pages);
2689
2690         return addr;
2691 }
2692
2693 /* get, pin, and map the pages of the object into kernel space */
2694 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2695                               enum i915_map_type type)
2696 {
2697         enum i915_map_type has_type;
2698         bool pinned;
2699         void *ptr;
2700         int ret;
2701
2702         if (unlikely(!i915_gem_object_has_struct_page(obj)))
2703                 return ERR_PTR(-ENXIO);
2704
2705         ret = mutex_lock_interruptible(&obj->mm.lock);
2706         if (ret)
2707                 return ERR_PTR(ret);
2708
2709         pinned = !(type & I915_MAP_OVERRIDE);
2710         type &= ~I915_MAP_OVERRIDE;
2711
2712         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713                 if (unlikely(!i915_gem_object_has_pages(obj))) {
2714                         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2715
2716                         ret = ____i915_gem_object_get_pages(obj);
2717                         if (ret)
2718                                 goto err_unlock;
2719
2720                         smp_mb__before_atomic();
2721                 }
2722                 atomic_inc(&obj->mm.pages_pin_count);
2723                 pinned = false;
2724         }
2725         GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2726
2727         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728         if (ptr && has_type != type) {
2729                 if (pinned) {
2730                         ret = -EBUSY;
2731                         goto err_unpin;
2732                 }
2733
2734                 if (is_vmalloc_addr(ptr))
2735                         vunmap(ptr);
2736                 else
2737                         kunmap(kmap_to_page(ptr));
2738
2739                 ptr = obj->mm.mapping = NULL;
2740         }
2741
2742         if (!ptr) {
2743                 ptr = i915_gem_object_map(obj, type);
2744                 if (!ptr) {
2745                         ret = -ENOMEM;
2746                         goto err_unpin;
2747                 }
2748
2749                 obj->mm.mapping = page_pack_bits(ptr, type);
2750         }
2751
2752 out_unlock:
2753         mutex_unlock(&obj->mm.lock);
2754         return ptr;
2755
2756 err_unpin:
2757         atomic_dec(&obj->mm.pages_pin_count);
2758 err_unlock:
2759         ptr = ERR_PTR(ret);
2760         goto out_unlock;
2761 }
2762
2763 static int
2764 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2765                            const struct drm_i915_gem_pwrite *arg)
2766 {
2767         struct address_space *mapping = obj->base.filp->f_mapping;
2768         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2769         u64 remain, offset;
2770         unsigned int pg;
2771
2772         /* Before we instantiate/pin the backing store for our use, we
2773          * can prepopulate the shmemfs filp efficiently using a write into
2774          * the pagecache. We avoid the penalty of instantiating all the
2775          * pages, important if the user is just writing to a few and never
2776          * uses the object on the GPU, and using a direct write into shmemfs
2777          * allows it to avoid the cost of retrieving a page (either swapin
2778          * or clearing-before-use) before it is overwritten.
2779          */
2780         if (i915_gem_object_has_pages(obj))
2781                 return -ENODEV;
2782
2783         if (obj->mm.madv != I915_MADV_WILLNEED)
2784                 return -EFAULT;
2785
2786         /* Before the pages are instantiated the object is treated as being
2787          * in the CPU domain. The pages will be clflushed as required before
2788          * use, and we can freely write into the pages directly. If userspace
2789          * races pwrite with any other operation; corruption will ensue -
2790          * that is userspace's prerogative!
2791          */
2792
2793         remain = arg->size;
2794         offset = arg->offset;
2795         pg = offset_in_page(offset);
2796
2797         do {
2798                 unsigned int len, unwritten;
2799                 struct page *page;
2800                 void *data, *vaddr;
2801                 int err;
2802
2803                 len = PAGE_SIZE - pg;
2804                 if (len > remain)
2805                         len = remain;
2806
2807                 err = pagecache_write_begin(obj->base.filp, mapping,
2808                                             offset, len, 0,
2809                                             &page, &data);
2810                 if (err < 0)
2811                         return err;
2812
2813                 vaddr = kmap(page);
2814                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2815                 kunmap(page);
2816
2817                 err = pagecache_write_end(obj->base.filp, mapping,
2818                                           offset, len, len - unwritten,
2819                                           page, data);
2820                 if (err < 0)
2821                         return err;
2822
2823                 if (unwritten)
2824                         return -EFAULT;
2825
2826                 remain -= len;
2827                 user_data += len;
2828                 offset += len;
2829                 pg = 0;
2830         } while (remain);
2831
2832         return 0;
2833 }
2834
2835 static bool ban_context(const struct i915_gem_context *ctx,
2836                         unsigned int score)
2837 {
2838         return (i915_gem_context_is_bannable(ctx) &&
2839                 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2840 }
2841
2842 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2843 {
2844         unsigned int score;
2845         bool banned;
2846
2847         atomic_inc(&ctx->guilty_count);
2848
2849         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2850         banned = ban_context(ctx, score);
2851         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2852                          ctx->name, score, yesno(banned));
2853         if (!banned)
2854                 return;
2855
2856         i915_gem_context_set_banned(ctx);
2857         if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2858                 atomic_inc(&ctx->file_priv->context_bans);
2859                 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2860                                  ctx->name, atomic_read(&ctx->file_priv->context_bans));
2861         }
2862 }
2863
2864 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2865 {
2866         atomic_inc(&ctx->active_count);
2867 }
2868
2869 struct drm_i915_gem_request *
2870 i915_gem_find_active_request(struct intel_engine_cs *engine)
2871 {
2872         struct drm_i915_gem_request *request, *active = NULL;
2873         unsigned long flags;
2874
2875         /* We are called by the error capture and reset at a random
2876          * point in time. In particular, note that neither is crucially
2877          * ordered with an interrupt. After a hang, the GPU is dead and we
2878          * assume that no more writes can happen (we waited long enough for
2879          * all writes that were in transaction to be flushed) - adding an
2880          * extra delay for a recent interrupt is pointless. Hence, we do
2881          * not need an engine->irq_seqno_barrier() before the seqno reads.
2882          */
2883         spin_lock_irqsave(&engine->timeline->lock, flags);
2884         list_for_each_entry(request, &engine->timeline->requests, link) {
2885                 if (__i915_gem_request_completed(request,
2886                                                  request->global_seqno))
2887                         continue;
2888
2889                 GEM_BUG_ON(request->engine != engine);
2890                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2891                                     &request->fence.flags));
2892
2893                 active = request;
2894                 break;
2895         }
2896         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2897
2898         return active;
2899 }
2900
2901 static bool engine_stalled(struct intel_engine_cs *engine)
2902 {
2903         if (!engine->hangcheck.stalled)
2904                 return false;
2905
2906         /* Check for possible seqno movement after hang declaration */
2907         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2908                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2909                 return false;
2910         }
2911
2912         return true;
2913 }
2914
2915 /*
2916  * Ensure irq handler finishes, and not run again.
2917  * Also return the active request so that we only search for it once.
2918  */
2919 struct drm_i915_gem_request *
2920 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2921 {
2922         struct drm_i915_gem_request *request = NULL;
2923
2924         /*
2925          * During the reset sequence, we must prevent the engine from
2926          * entering RC6. As the context state is undefined until we restart
2927          * the engine, if it does enter RC6 during the reset, the state
2928          * written to the powercontext is undefined and so we may lose
2929          * GPU state upon resume, i.e. fail to restart after a reset.
2930          */
2931         intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2932
2933         /*
2934          * Prevent the signaler thread from updating the request
2935          * state (by calling dma_fence_signal) as we are processing
2936          * the reset. The write from the GPU of the seqno is
2937          * asynchronous and the signaler thread may see a different
2938          * value to us and declare the request complete, even though
2939          * the reset routine have picked that request as the active
2940          * (incomplete) request. This conflict is not handled
2941          * gracefully!
2942          */
2943         kthread_park(engine->breadcrumbs.signaler);
2944
2945         /*
2946          * Prevent request submission to the hardware until we have
2947          * completed the reset in i915_gem_reset_finish(). If a request
2948          * is completed by one engine, it may then queue a request
2949          * to a second via its execlists->tasklet *just* as we are
2950          * calling engine->init_hw() and also writing the ELSP.
2951          * Turning off the execlists->tasklet until the reset is over
2952          * prevents the race.
2953          */
2954         tasklet_kill(&engine->execlists.tasklet);
2955         tasklet_disable(&engine->execlists.tasklet);
2956
2957         /*
2958          * We're using worker to queue preemption requests from the tasklet in
2959          * GuC submission mode.
2960          * Even though tasklet was disabled, we may still have a worker queued.
2961          * Let's make sure that all workers scheduled before disabling the
2962          * tasklet are completed before continuing with the reset.
2963          */
2964         if (engine->i915->guc.preempt_wq)
2965                 flush_workqueue(engine->i915->guc.preempt_wq);
2966
2967         if (engine->irq_seqno_barrier)
2968                 engine->irq_seqno_barrier(engine);
2969
2970         request = i915_gem_find_active_request(engine);
2971         if (request && request->fence.error == -EIO)
2972                 request = ERR_PTR(-EIO); /* Previous reset failed! */
2973
2974         return request;
2975 }
2976
2977 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2978 {
2979         struct intel_engine_cs *engine;
2980         struct drm_i915_gem_request *request;
2981         enum intel_engine_id id;
2982         int err = 0;
2983
2984         for_each_engine(engine, dev_priv, id) {
2985                 request = i915_gem_reset_prepare_engine(engine);
2986                 if (IS_ERR(request)) {
2987                         err = PTR_ERR(request);
2988                         continue;
2989                 }
2990
2991                 engine->hangcheck.active_request = request;
2992         }
2993
2994         i915_gem_revoke_fences(dev_priv);
2995
2996         return err;
2997 }
2998
2999 static void skip_request(struct drm_i915_gem_request *request)
3000 {
3001         void *vaddr = request->ring->vaddr;
3002         u32 head;
3003
3004         /* As this request likely depends on state from the lost
3005          * context, clear out all the user operations leaving the
3006          * breadcrumb at the end (so we get the fence notifications).
3007          */
3008         head = request->head;
3009         if (request->postfix < head) {
3010                 memset(vaddr + head, 0, request->ring->size - head);
3011                 head = 0;
3012         }
3013         memset(vaddr + head, 0, request->postfix - head);
3014
3015         dma_fence_set_error(&request->fence, -EIO);
3016 }
3017
3018 static void engine_skip_context(struct drm_i915_gem_request *request)
3019 {
3020         struct intel_engine_cs *engine = request->engine;
3021         struct i915_gem_context *hung_ctx = request->ctx;
3022         struct intel_timeline *timeline;
3023         unsigned long flags;
3024
3025         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3026
3027         spin_lock_irqsave(&engine->timeline->lock, flags);
3028         spin_lock(&timeline->lock);
3029
3030         list_for_each_entry_continue(request, &engine->timeline->requests, link)
3031                 if (request->ctx == hung_ctx)
3032                         skip_request(request);
3033
3034         list_for_each_entry(request, &timeline->requests, link)
3035                 skip_request(request);
3036
3037         spin_unlock(&timeline->lock);
3038         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3039 }
3040
3041 /* Returns the request if it was guilty of the hang */
3042 static struct drm_i915_gem_request *
3043 i915_gem_reset_request(struct intel_engine_cs *engine,
3044                        struct drm_i915_gem_request *request)
3045 {
3046         /* The guilty request will get skipped on a hung engine.
3047          *
3048          * Users of client default contexts do not rely on logical
3049          * state preserved between batches so it is safe to execute
3050          * queued requests following the hang. Non default contexts
3051          * rely on preserved state, so skipping a batch loses the
3052          * evolution of the state and it needs to be considered corrupted.
3053          * Executing more queued batches on top of corrupted state is
3054          * risky. But we take the risk by trying to advance through
3055          * the queued requests in order to make the client behaviour
3056          * more predictable around resets, by not throwing away random
3057          * amount of batches it has prepared for execution. Sophisticated
3058          * clients can use gem_reset_stats_ioctl and dma fence status
3059          * (exported via sync_file info ioctl on explicit fences) to observe
3060          * when it loses the context state and should rebuild accordingly.
3061          *
3062          * The context ban, and ultimately the client ban, mechanism are safety
3063          * valves if client submission ends up resulting in nothing more than
3064          * subsequent hangs.
3065          */
3066
3067         if (engine_stalled(engine)) {
3068                 i915_gem_context_mark_guilty(request->ctx);
3069                 skip_request(request);
3070
3071                 /* If this context is now banned, skip all pending requests. */
3072                 if (i915_gem_context_is_banned(request->ctx))
3073                         engine_skip_context(request);
3074         } else {
3075                 /*
3076                  * Since this is not the hung engine, it may have advanced
3077                  * since the hang declaration. Double check by refinding
3078                  * the active request at the time of the reset.
3079                  */
3080                 request = i915_gem_find_active_request(engine);
3081                 if (request) {
3082                         i915_gem_context_mark_innocent(request->ctx);
3083                         dma_fence_set_error(&request->fence, -EAGAIN);
3084
3085                         /* Rewind the engine to replay the incomplete rq */
3086                         spin_lock_irq(&engine->timeline->lock);
3087                         request = list_prev_entry(request, link);
3088                         if (&request->link == &engine->timeline->requests)
3089                                 request = NULL;
3090                         spin_unlock_irq(&engine->timeline->lock);
3091                 }
3092         }
3093
3094         return request;
3095 }
3096
3097 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3098                            struct drm_i915_gem_request *request)
3099 {
3100         /*
3101          * Make sure this write is visible before we re-enable the interrupt
3102          * handlers on another CPU, as tasklet_enable() resolves to just
3103          * a compiler barrier which is insufficient for our purpose here.
3104          */
3105         smp_store_mb(engine->irq_posted, 0);
3106
3107         if (request)
3108                 request = i915_gem_reset_request(engine, request);
3109
3110         if (request) {
3111                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3112                                  engine->name, request->global_seqno);
3113         }
3114
3115         /* Setup the CS to resume from the breadcrumb of the hung request */
3116         engine->reset_hw(engine, request);
3117 }
3118
3119 void i915_gem_reset(struct drm_i915_private *dev_priv)
3120 {
3121         struct intel_engine_cs *engine;
3122         enum intel_engine_id id;
3123
3124         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3125
3126         i915_gem_retire_requests(dev_priv);
3127
3128         for_each_engine(engine, dev_priv, id) {
3129                 struct i915_gem_context *ctx;
3130
3131                 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3132                 ctx = fetch_and_zero(&engine->last_retired_context);
3133                 if (ctx)
3134                         engine->context_unpin(engine, ctx);
3135
3136                 /*
3137                  * Ostensibily, we always want a context loaded for powersaving,
3138                  * so if the engine is idle after the reset, send a request
3139                  * to load our scratch kernel_context.
3140                  *
3141                  * More mysteriously, if we leave the engine idle after a reset,
3142                  * the next userspace batch may hang, with what appears to be
3143                  * an incoherent read by the CS (presumably stale TLB). An
3144                  * empty request appears sufficient to paper over the glitch.
3145                  */
3146                 if (list_empty(&engine->timeline->requests)) {
3147                         struct drm_i915_gem_request *rq;
3148
3149                         rq = i915_gem_request_alloc(engine,
3150                                                     dev_priv->kernel_context);
3151                         if (!IS_ERR(rq))
3152                                 __i915_add_request(rq, false);
3153                 }
3154         }
3155
3156         i915_gem_restore_fences(dev_priv);
3157
3158         if (dev_priv->gt.awake) {
3159                 intel_sanitize_gt_powersave(dev_priv);
3160                 intel_enable_gt_powersave(dev_priv);
3161                 if (INTEL_GEN(dev_priv) >= 6)
3162                         gen6_rps_busy(dev_priv);
3163         }
3164 }
3165
3166 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3167 {
3168         tasklet_enable(&engine->execlists.tasklet);
3169         kthread_unpark(engine->breadcrumbs.signaler);
3170
3171         intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3172 }
3173
3174 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3175 {
3176         struct intel_engine_cs *engine;
3177         enum intel_engine_id id;
3178
3179         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3180
3181         for_each_engine(engine, dev_priv, id) {
3182                 engine->hangcheck.active_request = NULL;
3183                 i915_gem_reset_finish_engine(engine);
3184         }
3185 }
3186
3187 static void nop_submit_request(struct drm_i915_gem_request *request)
3188 {
3189         dma_fence_set_error(&request->fence, -EIO);
3190
3191         i915_gem_request_submit(request);
3192 }
3193
3194 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3195 {
3196         unsigned long flags;
3197
3198         dma_fence_set_error(&request->fence, -EIO);
3199
3200         spin_lock_irqsave(&request->engine->timeline->lock, flags);
3201         __i915_gem_request_submit(request);
3202         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3203         spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3204 }
3205
3206 void i915_gem_set_wedged(struct drm_i915_private *i915)
3207 {
3208         struct intel_engine_cs *engine;
3209         enum intel_engine_id id;
3210
3211         /*
3212          * First, stop submission to hw, but do not yet complete requests by
3213          * rolling the global seqno forward (since this would complete requests
3214          * for which we haven't set the fence error to EIO yet).
3215          */
3216         for_each_engine(engine, i915, id) {
3217                 i915_gem_reset_prepare_engine(engine);
3218                 engine->submit_request = nop_submit_request;
3219         }
3220
3221         /*
3222          * Make sure no one is running the old callback before we proceed with
3223          * cancelling requests and resetting the completion tracking. Otherwise
3224          * we might submit a request to the hardware which never completes.
3225          */
3226         synchronize_rcu();
3227
3228         for_each_engine(engine, i915, id) {
3229                 /* Mark all executing requests as skipped */
3230                 engine->cancel_requests(engine);
3231
3232                 /*
3233                  * Only once we've force-cancelled all in-flight requests can we
3234                  * start to complete all requests.
3235                  */
3236                 engine->submit_request = nop_complete_submit_request;
3237         }
3238
3239         /*
3240          * Make sure no request can slip through without getting completed by
3241          * either this call here to intel_engine_init_global_seqno, or the one
3242          * in nop_complete_submit_request.
3243          */
3244         synchronize_rcu();
3245
3246         for_each_engine(engine, i915, id) {
3247                 unsigned long flags;
3248
3249                 /* Mark all pending requests as complete so that any concurrent
3250                  * (lockless) lookup doesn't try and wait upon the request as we
3251                  * reset it.
3252                  */
3253                 spin_lock_irqsave(&engine->timeline->lock, flags);
3254                 intel_engine_init_global_seqno(engine,
3255                                                intel_engine_last_submit(engine));
3256                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3257
3258                 i915_gem_reset_finish_engine(engine);
3259         }
3260
3261         set_bit(I915_WEDGED, &i915->gpu_error.flags);
3262         wake_up_all(&i915->gpu_error.reset_queue);
3263 }
3264
3265 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3266 {
3267         struct i915_gem_timeline *tl;
3268         int i;
3269
3270         lockdep_assert_held(&i915->drm.struct_mutex);
3271         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3272                 return true;
3273
3274         /* Before unwedging, make sure that all pending operations
3275          * are flushed and errored out - we may have requests waiting upon
3276          * third party fences. We marked all inflight requests as EIO, and
3277          * every execbuf since returned EIO, for consistency we want all
3278          * the currently pending requests to also be marked as EIO, which
3279          * is done inside our nop_submit_request - and so we must wait.
3280          *
3281          * No more can be submitted until we reset the wedged bit.
3282          */
3283         list_for_each_entry(tl, &i915->gt.timelines, link) {
3284                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3285                         struct drm_i915_gem_request *rq;
3286
3287                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3288                                                   &i915->drm.struct_mutex);
3289                         if (!rq)
3290                                 continue;
3291
3292                         /* We can't use our normal waiter as we want to
3293                          * avoid recursively trying to handle the current
3294                          * reset. The basic dma_fence_default_wait() installs
3295                          * a callback for dma_fence_signal(), which is
3296                          * triggered by our nop handler (indirectly, the
3297                          * callback enables the signaler thread which is
3298                          * woken by the nop_submit_request() advancing the seqno
3299                          * and when the seqno passes the fence, the signaler
3300                          * then signals the fence waking us up).
3301                          */
3302                         if (dma_fence_default_wait(&rq->fence, true,
3303                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3304                                 return false;
3305                 }
3306         }
3307
3308         /* Undo nop_submit_request. We prevent all new i915 requests from
3309          * being queued (by disallowing execbuf whilst wedged) so having
3310          * waited for all active requests above, we know the system is idle
3311          * and do not have to worry about a thread being inside
3312          * engine->submit_request() as we swap over. So unlike installing
3313          * the nop_submit_request on reset, we can do this from normal
3314          * context and do not require stop_machine().
3315          */
3316         intel_engines_reset_default_submission(i915);
3317         i915_gem_contexts_lost(i915);
3318
3319         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3320         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3321
3322         return true;
3323 }
3324
3325 static void
3326 i915_gem_retire_work_handler(struct work_struct *work)
3327 {
3328         struct drm_i915_private *dev_priv =
3329                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3330         struct drm_device *dev = &dev_priv->drm;
3331
3332         /* Come back later if the device is busy... */
3333         if (mutex_trylock(&dev->struct_mutex)) {
3334                 i915_gem_retire_requests(dev_priv);
3335                 mutex_unlock(&dev->struct_mutex);
3336         }
3337
3338         /*
3339          * Keep the retire handler running until we are finally idle.
3340          * We do not need to do this test under locking as in the worst-case
3341          * we queue the retire worker once too often.
3342          */
3343         if (READ_ONCE(dev_priv->gt.awake))
3344                 queue_delayed_work(dev_priv->wq,
3345                                    &dev_priv->gt.retire_work,
3346                                    round_jiffies_up_relative(HZ));
3347 }
3348
3349 static inline bool
3350 new_requests_since_last_retire(const struct drm_i915_private *i915)
3351 {
3352         return (READ_ONCE(i915->gt.active_requests) ||
3353                 work_pending(&i915->gt.idle_work.work));
3354 }
3355
3356 static void
3357 i915_gem_idle_work_handler(struct work_struct *work)
3358 {
3359         struct drm_i915_private *dev_priv =
3360                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3361         bool rearm_hangcheck;
3362         ktime_t end;
3363
3364         if (!READ_ONCE(dev_priv->gt.awake))
3365                 return;
3366
3367         /*
3368          * Wait for last execlists context complete, but bail out in case a
3369          * new request is submitted.
3370          */
3371         end = ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT);
3372         do {
3373                 if (new_requests_since_last_retire(dev_priv))
3374                         return;
3375
3376                 if (intel_engines_are_idle(dev_priv))
3377                         break;
3378
3379                 usleep_range(100, 500);
3380         } while (ktime_before(ktime_get(), end));
3381
3382         rearm_hangcheck =
3383                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3384
3385         if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3386                 /* Currently busy, come back later */
3387                 mod_delayed_work(dev_priv->wq,
3388                                  &dev_priv->gt.idle_work,
3389                                  msecs_to_jiffies(50));
3390                 goto out_rearm;
3391         }
3392
3393         /*
3394          * New request retired after this work handler started, extend active
3395          * period until next instance of the work.
3396          */
3397         if (new_requests_since_last_retire(dev_priv))
3398                 goto out_unlock;
3399
3400         /*
3401          * Be paranoid and flush a concurrent interrupt to make sure
3402          * we don't reactivate any irq tasklets after parking.
3403          *
3404          * FIXME: Note that even though we have waited for execlists to be idle,
3405          * there may still be an in-flight interrupt even though the CSB
3406          * is now empty. synchronize_irq() makes sure that a residual interrupt
3407          * is completed before we continue, but it doesn't prevent the HW from
3408          * raising a spurious interrupt later. To complete the shield we should
3409          * coordinate disabling the CS irq with flushing the interrupts.
3410          */
3411         synchronize_irq(dev_priv->drm.irq);
3412
3413         intel_engines_park(dev_priv);
3414         i915_gem_timelines_park(dev_priv);
3415
3416         i915_pmu_gt_parked(dev_priv);
3417
3418         GEM_BUG_ON(!dev_priv->gt.awake);
3419         dev_priv->gt.awake = false;
3420         rearm_hangcheck = false;
3421
3422         if (INTEL_GEN(dev_priv) >= 6)
3423                 gen6_rps_idle(dev_priv);
3424
3425         intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3426
3427         intel_runtime_pm_put(dev_priv);
3428 out_unlock:
3429         mutex_unlock(&dev_priv->drm.struct_mutex);
3430
3431 out_rearm:
3432         if (rearm_hangcheck) {
3433                 GEM_BUG_ON(!dev_priv->gt.awake);
3434                 i915_queue_hangcheck(dev_priv);
3435         }
3436 }
3437
3438 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3439 {
3440         struct drm_i915_private *i915 = to_i915(gem->dev);
3441         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3442         struct drm_i915_file_private *fpriv = file->driver_priv;
3443         struct i915_lut_handle *lut, *ln;
3444
3445         mutex_lock(&i915->drm.struct_mutex);
3446
3447         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3448                 struct i915_gem_context *ctx = lut->ctx;
3449                 struct i915_vma *vma;
3450
3451                 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3452                 if (ctx->file_priv != fpriv)
3453                         continue;
3454
3455                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3456                 GEM_BUG_ON(vma->obj != obj);
3457
3458                 /* We allow the process to have multiple handles to the same
3459                  * vma, in the same fd namespace, by virtue of flink/open.
3460                  */
3461                 GEM_BUG_ON(!vma->open_count);
3462                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3463                         i915_vma_close(vma);
3464
3465                 list_del(&lut->obj_link);
3466                 list_del(&lut->ctx_link);
3467
3468                 kmem_cache_free(i915->luts, lut);
3469                 __i915_gem_object_release_unless_active(obj);
3470         }
3471
3472         mutex_unlock(&i915->drm.struct_mutex);
3473 }
3474
3475 static unsigned long to_wait_timeout(s64 timeout_ns)
3476 {
3477         if (timeout_ns < 0)
3478                 return MAX_SCHEDULE_TIMEOUT;
3479
3480         if (timeout_ns == 0)
3481                 return 0;
3482
3483         return nsecs_to_jiffies_timeout(timeout_ns);
3484 }
3485
3486 /**
3487  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3488  * @dev: drm device pointer
3489  * @data: ioctl data blob
3490  * @file: drm file pointer
3491  *
3492  * Returns 0 if successful, else an error is returned with the remaining time in
3493  * the timeout parameter.
3494  *  -ETIME: object is still busy after timeout
3495  *  -ERESTARTSYS: signal interrupted the wait
3496  *  -ENONENT: object doesn't exist
3497  * Also possible, but rare:
3498  *  -EAGAIN: incomplete, restart syscall
3499  *  -ENOMEM: damn
3500  *  -ENODEV: Internal IRQ fail
3501  *  -E?: The add request failed
3502  *
3503  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3504  * non-zero timeout parameter the wait ioctl will wait for the given number of
3505  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3506  * without holding struct_mutex the object may become re-busied before this
3507  * function completes. A similar but shorter * race condition exists in the busy
3508  * ioctl
3509  */
3510 int
3511 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3512 {
3513         struct drm_i915_gem_wait *args = data;
3514         struct drm_i915_gem_object *obj;
3515         ktime_t start;
3516         long ret;
3517
3518         if (args->flags != 0)
3519                 return -EINVAL;
3520
3521         obj = i915_gem_object_lookup(file, args->bo_handle);
3522         if (!obj)
3523                 return -ENOENT;
3524
3525         start = ktime_get();
3526
3527         ret = i915_gem_object_wait(obj,
3528                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3529                                    to_wait_timeout(args->timeout_ns),
3530                                    to_rps_client(file));
3531
3532         if (args->timeout_ns > 0) {
3533                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3534                 if (args->timeout_ns < 0)
3535                         args->timeout_ns = 0;
3536
3537                 /*
3538                  * Apparently ktime isn't accurate enough and occasionally has a
3539                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3540                  * things up to make the test happy. We allow up to 1 jiffy.
3541                  *
3542                  * This is a regression from the timespec->ktime conversion.
3543                  */
3544                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3545                         args->timeout_ns = 0;
3546
3547                 /* Asked to wait beyond the jiffie/scheduler precision? */
3548                 if (ret == -ETIME && args->timeout_ns)
3549                         ret = -EAGAIN;
3550         }
3551
3552         i915_gem_object_put(obj);
3553         return ret;
3554 }
3555
3556 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3557 {
3558         int ret, i;
3559
3560         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3561                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3562                 if (ret)
3563                         return ret;
3564         }
3565
3566         return 0;
3567 }
3568
3569 static int wait_for_engines(struct drm_i915_private *i915)
3570 {
3571         if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3572                 dev_err(i915->drm.dev,
3573                         "Failed to idle engines, declaring wedged!\n");
3574                 if (drm_debug & DRM_UT_DRIVER) {
3575                         struct drm_printer p = drm_debug_printer(__func__);
3576                         struct intel_engine_cs *engine;
3577                         enum intel_engine_id id;
3578
3579                         for_each_engine(engine, i915, id)
3580                                 intel_engine_dump(engine, &p,
3581                                                   "%s", engine->name);
3582                 }
3583
3584                 i915_gem_set_wedged(i915);
3585                 return -EIO;
3586         }
3587
3588         return 0;
3589 }
3590
3591 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3592 {
3593         int ret;
3594
3595         /* If the device is asleep, we have no requests outstanding */
3596         if (!READ_ONCE(i915->gt.awake))
3597                 return 0;
3598
3599         if (flags & I915_WAIT_LOCKED) {
3600                 struct i915_gem_timeline *tl;
3601
3602                 lockdep_assert_held(&i915->drm.struct_mutex);
3603
3604                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3605                         ret = wait_for_timeline(tl, flags);
3606                         if (ret)
3607                                 return ret;
3608                 }
3609                 i915_gem_retire_requests(i915);
3610
3611                 ret = wait_for_engines(i915);
3612         } else {
3613                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3614         }
3615
3616         return ret;
3617 }
3618
3619 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3620 {
3621         /*
3622          * We manually flush the CPU domain so that we can override and
3623          * force the flush for the display, and perform it asyncrhonously.
3624          */
3625         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3626         if (obj->cache_dirty)
3627                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3628         obj->base.write_domain = 0;
3629 }
3630
3631 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3632 {
3633         if (!READ_ONCE(obj->pin_global))
3634                 return;
3635
3636         mutex_lock(&obj->base.dev->struct_mutex);
3637         __i915_gem_object_flush_for_display(obj);
3638         mutex_unlock(&obj->base.dev->struct_mutex);
3639 }
3640
3641 /**
3642  * Moves a single object to the WC read, and possibly write domain.
3643  * @obj: object to act on
3644  * @write: ask for write access or read only
3645  *
3646  * This function returns when the move is complete, including waiting on
3647  * flushes to occur.
3648  */
3649 int
3650 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3651 {
3652         int ret;
3653
3654         lockdep_assert_held(&obj->base.dev->struct_mutex);
3655
3656         ret = i915_gem_object_wait(obj,
3657                                    I915_WAIT_INTERRUPTIBLE |
3658                                    I915_WAIT_LOCKED |
3659                                    (write ? I915_WAIT_ALL : 0),
3660                                    MAX_SCHEDULE_TIMEOUT,
3661                                    NULL);
3662         if (ret)
3663                 return ret;
3664
3665         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3666                 return 0;
3667
3668         /* Flush and acquire obj->pages so that we are coherent through
3669          * direct access in memory with previous cached writes through
3670          * shmemfs and that our cache domain tracking remains valid.
3671          * For example, if the obj->filp was moved to swap without us
3672          * being notified and releasing the pages, we would mistakenly
3673          * continue to assume that the obj remained out of the CPU cached
3674          * domain.
3675          */
3676         ret = i915_gem_object_pin_pages(obj);
3677         if (ret)
3678                 return ret;
3679
3680         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3681
3682         /* Serialise direct access to this object with the barriers for
3683          * coherent writes from the GPU, by effectively invalidating the
3684          * WC domain upon first access.
3685          */
3686         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3687                 mb();
3688
3689         /* It should now be out of any other write domains, and we can update
3690          * the domain values for our changes.
3691          */
3692         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3693         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3694         if (write) {
3695                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3696                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3697                 obj->mm.dirty = true;
3698         }
3699
3700         i915_gem_object_unpin_pages(obj);
3701         return 0;
3702 }
3703
3704 /**
3705  * Moves a single object to the GTT read, and possibly write domain.
3706  * @obj: object to act on
3707  * @write: ask for write access or read only
3708  *
3709  * This function returns when the move is complete, including waiting on
3710  * flushes to occur.
3711  */
3712 int
3713 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3714 {
3715         int ret;
3716
3717         lockdep_assert_held(&obj->base.dev->struct_mutex);
3718
3719         ret = i915_gem_object_wait(obj,
3720                                    I915_WAIT_INTERRUPTIBLE |
3721                                    I915_WAIT_LOCKED |
3722                                    (write ? I915_WAIT_ALL : 0),
3723                                    MAX_SCHEDULE_TIMEOUT,
3724                                    NULL);
3725         if (ret)
3726                 return ret;
3727
3728         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3729                 return 0;
3730
3731         /* Flush and acquire obj->pages so that we are coherent through
3732          * direct access in memory with previous cached writes through
3733          * shmemfs and that our cache domain tracking remains valid.
3734          * For example, if the obj->filp was moved to swap without us
3735          * being notified and releasing the pages, we would mistakenly
3736          * continue to assume that the obj remained out of the CPU cached
3737          * domain.
3738          */
3739         ret = i915_gem_object_pin_pages(obj);
3740         if (ret)
3741                 return ret;
3742
3743         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3744
3745         /* Serialise direct access to this object with the barriers for
3746          * coherent writes from the GPU, by effectively invalidating the
3747          * GTT domain upon first access.
3748          */
3749         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3750                 mb();
3751
3752         /* It should now be out of any other write domains, and we can update
3753          * the domain values for our changes.
3754          */
3755         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3756         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3757         if (write) {
3758                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3759                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3760                 obj->mm.dirty = true;
3761         }
3762
3763         i915_gem_object_unpin_pages(obj);
3764         return 0;
3765 }
3766
3767 /**
3768  * Changes the cache-level of an object across all VMA.
3769  * @obj: object to act on
3770  * @cache_level: new cache level to set for the object
3771  *
3772  * After this function returns, the object will be in the new cache-level
3773  * across all GTT and the contents of the backing storage will be coherent,
3774  * with respect to the new cache-level. In order to keep the backing storage
3775  * coherent for all users, we only allow a single cache level to be set
3776  * globally on the object and prevent it from being changed whilst the
3777  * hardware is reading from the object. That is if the object is currently
3778  * on the scanout it will be set to uncached (or equivalent display
3779  * cache coherency) and all non-MOCS GPU access will also be uncached so
3780  * that all direct access to the scanout remains coherent.
3781  */
3782 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3783                                     enum i915_cache_level cache_level)
3784 {
3785         struct i915_vma *vma;
3786         int ret;
3787
3788         lockdep_assert_held(&obj->base.dev->struct_mutex);
3789
3790         if (obj->cache_level == cache_level)
3791                 return 0;
3792
3793         /* Inspect the list of currently bound VMA and unbind any that would
3794          * be invalid given the new cache-level. This is principally to
3795          * catch the issue of the CS prefetch crossing page boundaries and
3796          * reading an invalid PTE on older architectures.
3797          */
3798 restart:
3799         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3800                 if (!drm_mm_node_allocated(&vma->node))
3801                         continue;
3802
3803                 if (i915_vma_is_pinned(vma)) {
3804                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3805                         return -EBUSY;
3806                 }
3807
3808                 if (!i915_vma_is_closed(vma) &&
3809                     i915_gem_valid_gtt_space(vma, cache_level))
3810                         continue;
3811
3812                 ret = i915_vma_unbind(vma);
3813                 if (ret)
3814                         return ret;
3815
3816                 /* As unbinding may affect other elements in the
3817                  * obj->vma_list (due to side-effects from retiring
3818                  * an active vma), play safe and restart the iterator.
3819                  */
3820                 goto restart;
3821         }
3822
3823         /* We can reuse the existing drm_mm nodes but need to change the
3824          * cache-level on the PTE. We could simply unbind them all and
3825          * rebind with the correct cache-level on next use. However since
3826          * we already have a valid slot, dma mapping, pages etc, we may as
3827          * rewrite the PTE in the belief that doing so tramples upon less
3828          * state and so involves less work.
3829          */
3830         if (obj->bind_count) {
3831                 /* Before we change the PTE, the GPU must not be accessing it.
3832                  * If we wait upon the object, we know that all the bound
3833                  * VMA are no longer active.
3834                  */
3835                 ret = i915_gem_object_wait(obj,
3836                                            I915_WAIT_INTERRUPTIBLE |
3837                                            I915_WAIT_LOCKED |
3838                                            I915_WAIT_ALL,
3839                                            MAX_SCHEDULE_TIMEOUT,
3840                                            NULL);
3841                 if (ret)
3842                         return ret;
3843
3844                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3845                     cache_level != I915_CACHE_NONE) {
3846                         /* Access to snoopable pages through the GTT is
3847                          * incoherent and on some machines causes a hard
3848                          * lockup. Relinquish the CPU mmaping to force
3849                          * userspace to refault in the pages and we can
3850                          * then double check if the GTT mapping is still
3851                          * valid for that pointer access.
3852                          */
3853                         i915_gem_release_mmap(obj);
3854
3855                         /* As we no longer need a fence for GTT access,
3856                          * we can relinquish it now (and so prevent having
3857                          * to steal a fence from someone else on the next
3858                          * fence request). Note GPU activity would have
3859                          * dropped the fence as all snoopable access is
3860                          * supposed to be linear.
3861                          */
3862                         for_each_ggtt_vma(vma, obj) {
3863                                 ret = i915_vma_put_fence(vma);
3864                                 if (ret)
3865                                         return ret;
3866                         }
3867                 } else {
3868                         /* We either have incoherent backing store and
3869                          * so no GTT access or the architecture is fully
3870                          * coherent. In such cases, existing GTT mmaps
3871                          * ignore the cache bit in the PTE and we can
3872                          * rewrite it without confusing the GPU or having
3873                          * to force userspace to fault back in its mmaps.
3874                          */
3875                 }
3876
3877                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3878                         if (!drm_mm_node_allocated(&vma->node))
3879                                 continue;
3880
3881                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3882                         if (ret)
3883                                 return ret;
3884                 }
3885         }
3886
3887         list_for_each_entry(vma, &obj->vma_list, obj_link)
3888                 vma->node.color = cache_level;
3889         i915_gem_object_set_cache_coherency(obj, cache_level);
3890         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3891
3892         return 0;
3893 }
3894
3895 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3896                                struct drm_file *file)
3897 {
3898         struct drm_i915_gem_caching *args = data;
3899         struct drm_i915_gem_object *obj;
3900         int err = 0;
3901
3902         rcu_read_lock();
3903         obj = i915_gem_object_lookup_rcu(file, args->handle);
3904         if (!obj) {
3905                 err = -ENOENT;
3906                 goto out;
3907         }
3908
3909         switch (obj->cache_level) {
3910         case I915_CACHE_LLC:
3911         case I915_CACHE_L3_LLC:
3912                 args->caching = I915_CACHING_CACHED;
3913                 break;
3914
3915         case I915_CACHE_WT:
3916                 args->caching = I915_CACHING_DISPLAY;
3917                 break;
3918
3919         default:
3920                 args->caching = I915_CACHING_NONE;
3921                 break;
3922         }
3923 out:
3924         rcu_read_unlock();
3925         return err;
3926 }
3927
3928 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3929                                struct drm_file *file)
3930 {
3931         struct drm_i915_private *i915 = to_i915(dev);
3932         struct drm_i915_gem_caching *args = data;
3933         struct drm_i915_gem_object *obj;
3934         enum i915_cache_level level;
3935         int ret = 0;
3936
3937         switch (args->caching) {
3938         case I915_CACHING_NONE:
3939                 level = I915_CACHE_NONE;
3940                 break;
3941         case I915_CACHING_CACHED:
3942                 /*
3943                  * Due to a HW issue on BXT A stepping, GPU stores via a
3944                  * snooped mapping may leave stale data in a corresponding CPU
3945                  * cacheline, whereas normally such cachelines would get
3946                  * invalidated.
3947                  */
3948                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3949                         return -ENODEV;
3950
3951                 level = I915_CACHE_LLC;
3952                 break;
3953         case I915_CACHING_DISPLAY:
3954                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3955                 break;
3956         default:
3957                 return -EINVAL;
3958         }
3959
3960         obj = i915_gem_object_lookup(file, args->handle);
3961         if (!obj)
3962                 return -ENOENT;
3963
3964         /*
3965          * The caching mode of proxy object is handled by its generator, and
3966          * not allowed to be changed by userspace.
3967          */
3968         if (i915_gem_object_is_proxy(obj)) {
3969                 ret = -ENXIO;
3970                 goto out;
3971         }
3972
3973         if (obj->cache_level == level)
3974                 goto out;
3975
3976         ret = i915_gem_object_wait(obj,
3977                                    I915_WAIT_INTERRUPTIBLE,
3978                                    MAX_SCHEDULE_TIMEOUT,
3979                                    to_rps_client(file));
3980         if (ret)
3981                 goto out;
3982
3983         ret = i915_mutex_lock_interruptible(dev);
3984         if (ret)
3985                 goto out;
3986
3987         ret = i915_gem_object_set_cache_level(obj, level);
3988         mutex_unlock(&dev->struct_mutex);
3989
3990 out:
3991         i915_gem_object_put(obj);
3992         return ret;
3993 }
3994
3995 /*
3996  * Prepare buffer for display plane (scanout, cursors, etc).
3997  * Can be called from an uninterruptible phase (modesetting) and allows
3998  * any flushes to be pipelined (for pageflips).
3999  */
4000 struct i915_vma *
4001 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4002                                      u32 alignment,
4003                                      const struct i915_ggtt_view *view)
4004 {
4005         struct i915_vma *vma;
4006         int ret;
4007
4008         lockdep_assert_held(&obj->base.dev->struct_mutex);
4009
4010         /* Mark the global pin early so that we account for the
4011          * display coherency whilst setting up the cache domains.
4012          */
4013         obj->pin_global++;
4014
4015         /* The display engine is not coherent with the LLC cache on gen6.  As
4016          * a result, we make sure that the pinning that is about to occur is
4017          * done with uncached PTEs. This is lowest common denominator for all
4018          * chipsets.
4019          *
4020          * However for gen6+, we could do better by using the GFDT bit instead
4021          * of uncaching, which would allow us to flush all the LLC-cached data
4022          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4023          */
4024         ret = i915_gem_object_set_cache_level(obj,
4025                                               HAS_WT(to_i915(obj->base.dev)) ?
4026                                               I915_CACHE_WT : I915_CACHE_NONE);
4027         if (ret) {
4028                 vma = ERR_PTR(ret);
4029                 goto err_unpin_global;
4030         }
4031
4032         /* As the user may map the buffer once pinned in the display plane
4033          * (e.g. libkms for the bootup splash), we have to ensure that we
4034          * always use map_and_fenceable for all scanout buffers. However,
4035          * it may simply be too big to fit into mappable, in which case
4036          * put it anyway and hope that userspace can cope (but always first
4037          * try to preserve the existing ABI).
4038          */
4039         vma = ERR_PTR(-ENOSPC);
4040         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
4041                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4042                                                PIN_MAPPABLE | PIN_NONBLOCK);
4043         if (IS_ERR(vma)) {
4044                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4045                 unsigned int flags;
4046
4047                 /* Valleyview is definitely limited to scanning out the first
4048                  * 512MiB. Lets presume this behaviour was inherited from the
4049                  * g4x display engine and that all earlier gen are similarly
4050                  * limited. Testing suggests that it is a little more
4051                  * complicated than this. For example, Cherryview appears quite
4052                  * happy to scanout from anywhere within its global aperture.
4053                  */
4054                 flags = 0;
4055                 if (HAS_GMCH_DISPLAY(i915))
4056                         flags = PIN_MAPPABLE;
4057                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4058         }
4059         if (IS_ERR(vma))
4060                 goto err_unpin_global;
4061
4062         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4063
4064         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4065         __i915_gem_object_flush_for_display(obj);
4066         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4067
4068         /* It should now be out of any other write domains, and we can update
4069          * the domain values for our changes.
4070          */
4071         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4072
4073         return vma;
4074
4075 err_unpin_global:
4076         obj->pin_global--;
4077         return vma;
4078 }
4079
4080 void
4081 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4082 {
4083         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4084
4085         if (WARN_ON(vma->obj->pin_global == 0))
4086                 return;
4087
4088         if (--vma->obj->pin_global == 0)
4089                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4090
4091         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
4092         i915_gem_object_bump_inactive_ggtt(vma->obj);
4093
4094         i915_vma_unpin(vma);
4095 }
4096
4097 /**
4098  * Moves a single object to the CPU read, and possibly write domain.
4099  * @obj: object to act on
4100  * @write: requesting write or read-only access
4101  *
4102  * This function returns when the move is complete, including waiting on
4103  * flushes to occur.
4104  */
4105 int
4106 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4107 {
4108         int ret;
4109
4110         lockdep_assert_held(&obj->base.dev->struct_mutex);
4111
4112         ret = i915_gem_object_wait(obj,
4113                                    I915_WAIT_INTERRUPTIBLE |
4114                                    I915_WAIT_LOCKED |
4115                                    (write ? I915_WAIT_ALL : 0),
4116                                    MAX_SCHEDULE_TIMEOUT,
4117                                    NULL);
4118         if (ret)
4119                 return ret;
4120
4121         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4122
4123         /* Flush the CPU cache if it's still invalid. */
4124         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4125                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4126                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4127         }
4128
4129         /* It should now be out of any other write domains, and we can update
4130          * the domain values for our changes.
4131          */
4132         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4133
4134         /* If we're writing through the CPU, then the GPU read domains will
4135          * need to be invalidated at next use.
4136          */
4137         if (write)
4138                 __start_cpu_write(obj);
4139
4140         return 0;
4141 }
4142
4143 /* Throttle our rendering by waiting until the ring has completed our requests
4144  * emitted over 20 msec ago.
4145  *
4146  * Note that if we were to use the current jiffies each time around the loop,
4147  * we wouldn't escape the function with any frames outstanding if the time to
4148  * render a frame was over 20ms.
4149  *
4150  * This should get us reasonable parallelism between CPU and GPU but also
4151  * relatively low latency when blocking on a particular request to finish.
4152  */
4153 static int
4154 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4155 {
4156         struct drm_i915_private *dev_priv = to_i915(dev);
4157         struct drm_i915_file_private *file_priv = file->driver_priv;
4158         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4159         struct drm_i915_gem_request *request, *target = NULL;
4160         long ret;
4161
4162         /* ABI: return -EIO if already wedged */
4163         if (i915_terminally_wedged(&dev_priv->gpu_error))
4164                 return -EIO;
4165
4166         spin_lock(&file_priv->mm.lock);
4167         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4168                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4169                         break;
4170
4171                 if (target) {
4172                         list_del(&target->client_link);
4173                         target->file_priv = NULL;
4174                 }
4175
4176                 target = request;
4177         }
4178         if (target)
4179                 i915_gem_request_get(target);
4180         spin_unlock(&file_priv->mm.lock);
4181
4182         if (target == NULL)
4183                 return 0;
4184
4185         ret = i915_wait_request(target,
4186                                 I915_WAIT_INTERRUPTIBLE,
4187                                 MAX_SCHEDULE_TIMEOUT);
4188         i915_gem_request_put(target);
4189
4190         return ret < 0 ? ret : 0;
4191 }
4192
4193 struct i915_vma *
4194 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4195                          const struct i915_ggtt_view *view,
4196                          u64 size,
4197                          u64 alignment,
4198                          u64 flags)
4199 {
4200         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4201         struct i915_address_space *vm = &dev_priv->ggtt.base;
4202         struct i915_vma *vma;
4203         int ret;
4204
4205         lockdep_assert_held(&obj->base.dev->struct_mutex);
4206
4207         if (!view && flags & PIN_MAPPABLE) {
4208                 /* If the required space is larger than the available
4209                  * aperture, we will not able to find a slot for the
4210                  * object and unbinding the object now will be in
4211                  * vain. Worse, doing so may cause us to ping-pong
4212                  * the object in and out of the Global GTT and
4213                  * waste a lot of cycles under the mutex.
4214                  */
4215                 if (obj->base.size > dev_priv->ggtt.mappable_end)
4216                         return ERR_PTR(-E2BIG);
4217
4218                 /* If NONBLOCK is set the caller is optimistically
4219                  * trying to cache the full object within the mappable
4220                  * aperture, and *must* have a fallback in place for
4221                  * situations where we cannot bind the object. We
4222                  * can be a little more lax here and use the fallback
4223                  * more often to avoid costly migrations of ourselves
4224                  * and other objects within the aperture.
4225                  *
4226                  * Half-the-aperture is used as a simple heuristic.
4227                  * More interesting would to do search for a free
4228                  * block prior to making the commitment to unbind.
4229                  * That caters for the self-harm case, and with a
4230                  * little more heuristics (e.g. NOFAULT, NOEVICT)
4231                  * we could try to minimise harm to others.
4232                  */
4233                 if (flags & PIN_NONBLOCK &&
4234                     obj->base.size > dev_priv->ggtt.mappable_end / 2)
4235                         return ERR_PTR(-ENOSPC);
4236         }
4237
4238         vma = i915_vma_instance(obj, vm, view);
4239         if (unlikely(IS_ERR(vma)))
4240                 return vma;
4241
4242         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4243                 if (flags & PIN_NONBLOCK) {
4244                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4245                                 return ERR_PTR(-ENOSPC);
4246
4247                         if (flags & PIN_MAPPABLE &&
4248                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4249                                 return ERR_PTR(-ENOSPC);
4250                 }
4251
4252                 WARN(i915_vma_is_pinned(vma),
4253                      "bo is already pinned in ggtt with incorrect alignment:"
4254                      " offset=%08x, req.alignment=%llx,"
4255                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4256                      i915_ggtt_offset(vma), alignment,
4257                      !!(flags & PIN_MAPPABLE),
4258                      i915_vma_is_map_and_fenceable(vma));
4259                 ret = i915_vma_unbind(vma);
4260                 if (ret)
4261                         return ERR_PTR(ret);
4262         }
4263
4264         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4265         if (ret)
4266                 return ERR_PTR(ret);
4267
4268         return vma;
4269 }
4270
4271 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4272 {
4273         /* Note that we could alias engines in the execbuf API, but
4274          * that would be very unwise as it prevents userspace from
4275          * fine control over engine selection. Ahem.
4276          *
4277          * This should be something like EXEC_MAX_ENGINE instead of
4278          * I915_NUM_ENGINES.
4279          */
4280         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4281         return 0x10000 << id;
4282 }
4283
4284 static __always_inline unsigned int __busy_write_id(unsigned int id)
4285 {
4286         /* The uABI guarantees an active writer is also amongst the read
4287          * engines. This would be true if we accessed the activity tracking
4288          * under the lock, but as we perform the lookup of the object and
4289          * its activity locklessly we can not guarantee that the last_write
4290          * being active implies that we have set the same engine flag from
4291          * last_read - hence we always set both read and write busy for
4292          * last_write.
4293          */
4294         return id | __busy_read_flag(id);
4295 }
4296
4297 static __always_inline unsigned int
4298 __busy_set_if_active(const struct dma_fence *fence,
4299                      unsigned int (*flag)(unsigned int id))
4300 {
4301         struct drm_i915_gem_request *rq;
4302
4303         /* We have to check the current hw status of the fence as the uABI
4304          * guarantees forward progress. We could rely on the idle worker
4305          * to eventually flush us, but to minimise latency just ask the
4306          * hardware.
4307          *
4308          * Note we only report on the status of native fences.
4309          */
4310         if (!dma_fence_is_i915(fence))
4311                 return 0;
4312
4313         /* opencode to_request() in order to avoid const warnings */
4314         rq = container_of(fence, struct drm_i915_gem_request, fence);
4315         if (i915_gem_request_completed(rq))
4316                 return 0;
4317
4318         return flag(rq->engine->uabi_id);
4319 }
4320
4321 static __always_inline unsigned int
4322 busy_check_reader(const struct dma_fence *fence)
4323 {
4324         return __busy_set_if_active(fence, __busy_read_flag);
4325 }
4326
4327 static __always_inline unsigned int
4328 busy_check_writer(const struct dma_fence *fence)
4329 {
4330         if (!fence)
4331                 return 0;
4332
4333         return __busy_set_if_active(fence, __busy_write_id);
4334 }
4335
4336 int
4337 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4338                     struct drm_file *file)
4339 {
4340         struct drm_i915_gem_busy *args = data;
4341         struct drm_i915_gem_object *obj;
4342         struct reservation_object_list *list;
4343         unsigned int seq;
4344         int err;
4345
4346         err = -ENOENT;
4347         rcu_read_lock();
4348         obj = i915_gem_object_lookup_rcu(file, args->handle);
4349         if (!obj)
4350                 goto out;
4351
4352         /* A discrepancy here is that we do not report the status of
4353          * non-i915 fences, i.e. even though we may report the object as idle,
4354          * a call to set-domain may still stall waiting for foreign rendering.
4355          * This also means that wait-ioctl may report an object as busy,
4356          * where busy-ioctl considers it idle.
4357          *
4358          * We trade the ability to warn of foreign fences to report on which
4359          * i915 engines are active for the object.
4360          *
4361          * Alternatively, we can trade that extra information on read/write
4362          * activity with
4363          *      args->busy =
4364          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4365          * to report the overall busyness. This is what the wait-ioctl does.
4366          *
4367          */
4368 retry:
4369         seq = raw_read_seqcount(&obj->resv->seq);
4370
4371         /* Translate the exclusive fence to the READ *and* WRITE engine */
4372         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4373
4374         /* Translate shared fences to READ set of engines */
4375         list = rcu_dereference(obj->resv->fence);
4376         if (list) {
4377                 unsigned int shared_count = list->shared_count, i;
4378
4379                 for (i = 0; i < shared_count; ++i) {
4380                         struct dma_fence *fence =
4381                                 rcu_dereference(list->shared[i]);
4382
4383                         args->busy |= busy_check_reader(fence);
4384                 }
4385         }
4386
4387         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4388                 goto retry;
4389
4390         err = 0;
4391 out:
4392         rcu_read_unlock();
4393         return err;
4394 }
4395
4396 int
4397 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4398                         struct drm_file *file_priv)
4399 {
4400         return i915_gem_ring_throttle(dev, file_priv);
4401 }
4402
4403 int
4404 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4405                        struct drm_file *file_priv)
4406 {
4407         struct drm_i915_private *dev_priv = to_i915(dev);
4408         struct drm_i915_gem_madvise *args = data;
4409         struct drm_i915_gem_object *obj;
4410         int err;
4411
4412         switch (args->madv) {
4413         case I915_MADV_DONTNEED:
4414         case I915_MADV_WILLNEED:
4415             break;
4416         default:
4417             return -EINVAL;
4418         }
4419
4420         obj = i915_gem_object_lookup(file_priv, args->handle);
4421         if (!obj)
4422                 return -ENOENT;
4423
4424         err = mutex_lock_interruptible(&obj->mm.lock);
4425         if (err)
4426                 goto out;
4427
4428         if (i915_gem_object_has_pages(obj) &&
4429             i915_gem_object_is_tiled(obj) &&
4430             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4431                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4432                         GEM_BUG_ON(!obj->mm.quirked);
4433                         __i915_gem_object_unpin_pages(obj);
4434                         obj->mm.quirked = false;
4435                 }
4436                 if (args->madv == I915_MADV_WILLNEED) {
4437                         GEM_BUG_ON(obj->mm.quirked);
4438                         __i915_gem_object_pin_pages(obj);
4439                         obj->mm.quirked = true;
4440                 }
4441         }
4442
4443         if (obj->mm.madv != __I915_MADV_PURGED)
4444                 obj->mm.madv = args->madv;
4445
4446         /* if the object is no longer attached, discard its backing storage */
4447         if (obj->mm.madv == I915_MADV_DONTNEED &&
4448             !i915_gem_object_has_pages(obj))
4449                 i915_gem_object_truncate(obj);
4450
4451         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4452         mutex_unlock(&obj->mm.lock);
4453
4454 out:
4455         i915_gem_object_put(obj);
4456         return err;
4457 }
4458
4459 static void
4460 frontbuffer_retire(struct i915_gem_active *active,
4461                    struct drm_i915_gem_request *request)
4462 {
4463         struct drm_i915_gem_object *obj =
4464                 container_of(active, typeof(*obj), frontbuffer_write);
4465
4466         intel_fb_obj_flush(obj, ORIGIN_CS);
4467 }
4468
4469 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4470                           const struct drm_i915_gem_object_ops *ops)
4471 {
4472         mutex_init(&obj->mm.lock);
4473
4474         INIT_LIST_HEAD(&obj->vma_list);
4475         INIT_LIST_HEAD(&obj->lut_list);
4476         INIT_LIST_HEAD(&obj->batch_pool_link);
4477
4478         obj->ops = ops;
4479
4480         reservation_object_init(&obj->__builtin_resv);
4481         obj->resv = &obj->__builtin_resv;
4482
4483         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4484         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4485
4486         obj->mm.madv = I915_MADV_WILLNEED;
4487         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4488         mutex_init(&obj->mm.get_page.lock);
4489
4490         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4491 }
4492
4493 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4494         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4495                  I915_GEM_OBJECT_IS_SHRINKABLE,
4496
4497         .get_pages = i915_gem_object_get_pages_gtt,
4498         .put_pages = i915_gem_object_put_pages_gtt,
4499
4500         .pwrite = i915_gem_object_pwrite_gtt,
4501 };
4502
4503 static int i915_gem_object_create_shmem(struct drm_device *dev,
4504                                         struct drm_gem_object *obj,
4505                                         size_t size)
4506 {
4507         struct drm_i915_private *i915 = to_i915(dev);
4508         unsigned long flags = VM_NORESERVE;
4509         struct file *filp;
4510
4511         drm_gem_private_object_init(dev, obj, size);
4512
4513         if (i915->mm.gemfs)
4514                 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4515                                                  flags);
4516         else
4517                 filp = shmem_file_setup("i915", size, flags);
4518
4519         if (IS_ERR(filp))
4520                 return PTR_ERR(filp);
4521
4522         obj->filp = filp;
4523
4524         return 0;
4525 }
4526
4527 struct drm_i915_gem_object *
4528 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4529 {
4530         struct drm_i915_gem_object *obj;
4531         struct address_space *mapping;
4532         unsigned int cache_level;
4533         gfp_t mask;
4534         int ret;
4535
4536         /* There is a prevalence of the assumption that we fit the object's
4537          * page count inside a 32bit _signed_ variable. Let's document this and
4538          * catch if we ever need to fix it. In the meantime, if you do spot
4539          * such a local variable, please consider fixing!
4540          */
4541         if (size >> PAGE_SHIFT > INT_MAX)
4542                 return ERR_PTR(-E2BIG);
4543
4544         if (overflows_type(size, obj->base.size))
4545                 return ERR_PTR(-E2BIG);
4546
4547         obj = i915_gem_object_alloc(dev_priv);
4548         if (obj == NULL)
4549                 return ERR_PTR(-ENOMEM);
4550
4551         ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4552         if (ret)
4553                 goto fail;
4554
4555         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4556         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4557                 /* 965gm cannot relocate objects above 4GiB. */
4558                 mask &= ~__GFP_HIGHMEM;
4559                 mask |= __GFP_DMA32;
4560         }
4561
4562         mapping = obj->base.filp->f_mapping;
4563         mapping_set_gfp_mask(mapping, mask);
4564         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4565
4566         i915_gem_object_init(obj, &i915_gem_object_ops);
4567
4568         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4569         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4570
4571         if (HAS_LLC(dev_priv))
4572                 /* On some devices, we can have the GPU use the LLC (the CPU
4573                  * cache) for about a 10% performance improvement
4574                  * compared to uncached.  Graphics requests other than
4575                  * display scanout are coherent with the CPU in
4576                  * accessing this cache.  This means in this mode we
4577                  * don't need to clflush on the CPU side, and on the
4578                  * GPU side we only need to flush internal caches to
4579                  * get data visible to the CPU.
4580                  *
4581                  * However, we maintain the display planes as UC, and so
4582                  * need to rebind when first used as such.
4583                  */
4584                 cache_level = I915_CACHE_LLC;
4585         else
4586                 cache_level = I915_CACHE_NONE;
4587
4588         i915_gem_object_set_cache_coherency(obj, cache_level);
4589
4590         trace_i915_gem_object_create(obj);
4591
4592         return obj;
4593
4594 fail:
4595         i915_gem_object_free(obj);
4596         return ERR_PTR(ret);
4597 }
4598
4599 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4600 {
4601         /* If we are the last user of the backing storage (be it shmemfs
4602          * pages or stolen etc), we know that the pages are going to be
4603          * immediately released. In this case, we can then skip copying
4604          * back the contents from the GPU.
4605          */
4606
4607         if (obj->mm.madv != I915_MADV_WILLNEED)
4608                 return false;
4609
4610         if (obj->base.filp == NULL)
4611                 return true;
4612
4613         /* At first glance, this looks racy, but then again so would be
4614          * userspace racing mmap against close. However, the first external
4615          * reference to the filp can only be obtained through the
4616          * i915_gem_mmap_ioctl() which safeguards us against the user
4617          * acquiring such a reference whilst we are in the middle of
4618          * freeing the object.
4619          */
4620         return atomic_long_read(&obj->base.filp->f_count) == 1;
4621 }
4622
4623 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4624                                     struct llist_node *freed)
4625 {
4626         struct drm_i915_gem_object *obj, *on;
4627
4628         intel_runtime_pm_get(i915);
4629         llist_for_each_entry_safe(obj, on, freed, freed) {
4630                 struct i915_vma *vma, *vn;
4631
4632                 trace_i915_gem_object_destroy(obj);
4633
4634                 mutex_lock(&i915->drm.struct_mutex);
4635
4636                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4637                 list_for_each_entry_safe(vma, vn,
4638                                          &obj->vma_list, obj_link) {
4639                         GEM_BUG_ON(i915_vma_is_active(vma));
4640                         vma->flags &= ~I915_VMA_PIN_MASK;
4641                         i915_vma_close(vma);
4642                 }
4643                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4644                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4645
4646                 /* This serializes freeing with the shrinker. Since the free
4647                  * is delayed, first by RCU then by the workqueue, we want the
4648                  * shrinker to be able to free pages of unreferenced objects,
4649                  * or else we may oom whilst there are plenty of deferred
4650                  * freed objects.
4651                  */
4652                 if (i915_gem_object_has_pages(obj)) {
4653                         spin_lock(&i915->mm.obj_lock);
4654                         list_del_init(&obj->mm.link);
4655                         spin_unlock(&i915->mm.obj_lock);
4656                 }
4657
4658                 mutex_unlock(&i915->drm.struct_mutex);
4659
4660                 GEM_BUG_ON(obj->bind_count);
4661                 GEM_BUG_ON(obj->userfault_count);
4662                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4663                 GEM_BUG_ON(!list_empty(&obj->lut_list));
4664
4665                 if (obj->ops->release)
4666                         obj->ops->release(obj);
4667
4668                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4669                         atomic_set(&obj->mm.pages_pin_count, 0);
4670                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4671                 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4672
4673                 if (obj->base.import_attach)
4674                         drm_prime_gem_destroy(&obj->base, NULL);
4675
4676                 reservation_object_fini(&obj->__builtin_resv);
4677                 drm_gem_object_release(&obj->base);
4678                 i915_gem_info_remove_obj(i915, obj->base.size);
4679
4680                 kfree(obj->bit_17);
4681                 i915_gem_object_free(obj);
4682
4683                 if (on)
4684                         cond_resched();
4685         }
4686         intel_runtime_pm_put(i915);
4687 }
4688
4689 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4690 {
4691         struct llist_node *freed;
4692
4693         /* Free the oldest, most stale object to keep the free_list short */
4694         freed = NULL;
4695         if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4696                 /* Only one consumer of llist_del_first() allowed */
4697                 spin_lock(&i915->mm.free_lock);
4698                 freed = llist_del_first(&i915->mm.free_list);
4699                 spin_unlock(&i915->mm.free_lock);
4700         }
4701         if (unlikely(freed)) {
4702                 freed->next = NULL;
4703                 __i915_gem_free_objects(i915, freed);
4704         }
4705 }
4706
4707 static void __i915_gem_free_work(struct work_struct *work)
4708 {
4709         struct drm_i915_private *i915 =
4710                 container_of(work, struct drm_i915_private, mm.free_work);
4711         struct llist_node *freed;
4712
4713         /* All file-owned VMA should have been released by this point through
4714          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4715          * However, the object may also be bound into the global GTT (e.g.
4716          * older GPUs without per-process support, or for direct access through
4717          * the GTT either for the user or for scanout). Those VMA still need to
4718          * unbound now.
4719          */
4720
4721         spin_lock(&i915->mm.free_lock);
4722         while ((freed = llist_del_all(&i915->mm.free_list))) {
4723                 spin_unlock(&i915->mm.free_lock);
4724
4725                 __i915_gem_free_objects(i915, freed);
4726                 if (need_resched())
4727                         return;
4728
4729                 spin_lock(&i915->mm.free_lock);
4730         }
4731         spin_unlock(&i915->mm.free_lock);
4732 }
4733
4734 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4735 {
4736         struct drm_i915_gem_object *obj =
4737                 container_of(head, typeof(*obj), rcu);
4738         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4739
4740         /* We can't simply use call_rcu() from i915_gem_free_object()
4741          * as we need to block whilst unbinding, and the call_rcu
4742          * task may be called from softirq context. So we take a
4743          * detour through a worker.
4744          */
4745         if (llist_add(&obj->freed, &i915->mm.free_list))
4746                 schedule_work(&i915->mm.free_work);
4747 }
4748
4749 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4750 {
4751         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4752
4753         if (obj->mm.quirked)
4754                 __i915_gem_object_unpin_pages(obj);
4755
4756         if (discard_backing_storage(obj))
4757                 obj->mm.madv = I915_MADV_DONTNEED;
4758
4759         /* Before we free the object, make sure any pure RCU-only
4760          * read-side critical sections are complete, e.g.
4761          * i915_gem_busy_ioctl(). For the corresponding synchronized
4762          * lookup see i915_gem_object_lookup_rcu().
4763          */
4764         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4765 }
4766
4767 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4768 {
4769         lockdep_assert_held(&obj->base.dev->struct_mutex);
4770
4771         if (!i915_gem_object_has_active_reference(obj) &&
4772             i915_gem_object_is_active(obj))
4773                 i915_gem_object_set_active_reference(obj);
4774         else
4775                 i915_gem_object_put(obj);
4776 }
4777
4778 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4779 {
4780         struct i915_gem_context *kernel_context = i915->kernel_context;
4781         struct intel_engine_cs *engine;
4782         enum intel_engine_id id;
4783
4784         for_each_engine(engine, i915, id) {
4785                 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4786                 GEM_BUG_ON(engine->last_retired_context != kernel_context);
4787         }
4788 }
4789
4790 void i915_gem_sanitize(struct drm_i915_private *i915)
4791 {
4792         if (i915_terminally_wedged(&i915->gpu_error)) {
4793                 mutex_lock(&i915->drm.struct_mutex);
4794                 i915_gem_unset_wedged(i915);
4795                 mutex_unlock(&i915->drm.struct_mutex);
4796         }
4797
4798         /*
4799          * If we inherit context state from the BIOS or earlier occupants
4800          * of the GPU, the GPU may be in an inconsistent state when we
4801          * try to take over. The only way to remove the earlier state
4802          * is by resetting. However, resetting on earlier gen is tricky as
4803          * it may impact the display and we are uncertain about the stability
4804          * of the reset, so this could be applied to even earlier gen.
4805          */
4806         if (INTEL_GEN(i915) >= 5) {
4807                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4808                 WARN_ON(reset && reset != -ENODEV);
4809         }
4810 }
4811
4812 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4813 {
4814         struct drm_device *dev = &dev_priv->drm;
4815         int ret;
4816
4817         intel_runtime_pm_get(dev_priv);
4818         intel_suspend_gt_powersave(dev_priv);
4819
4820         mutex_lock(&dev->struct_mutex);
4821
4822         /* We have to flush all the executing contexts to main memory so
4823          * that they can saved in the hibernation image. To ensure the last
4824          * context image is coherent, we have to switch away from it. That
4825          * leaves the dev_priv->kernel_context still active when
4826          * we actually suspend, and its image in memory may not match the GPU
4827          * state. Fortunately, the kernel_context is disposable and we do
4828          * not rely on its state.
4829          */
4830         if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4831                 ret = i915_gem_switch_to_kernel_context(dev_priv);
4832                 if (ret)
4833                         goto err_unlock;
4834
4835                 ret = i915_gem_wait_for_idle(dev_priv,
4836                                              I915_WAIT_INTERRUPTIBLE |
4837                                              I915_WAIT_LOCKED);
4838                 if (ret && ret != -EIO)
4839                         goto err_unlock;
4840
4841                 assert_kernel_context_is_current(dev_priv);
4842         }
4843         i915_gem_contexts_lost(dev_priv);
4844         mutex_unlock(&dev->struct_mutex);
4845
4846         intel_guc_suspend(dev_priv);
4847
4848         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4849         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4850
4851         /* As the idle_work is rearming if it detects a race, play safe and
4852          * repeat the flush until it is definitely idle.
4853          */
4854         drain_delayed_work(&dev_priv->gt.idle_work);
4855
4856         /* Assert that we sucessfully flushed all the work and
4857          * reset the GPU back to its idle, low power state.
4858          */
4859         WARN_ON(dev_priv->gt.awake);
4860         if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4861                 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4862
4863         /*
4864          * Neither the BIOS, ourselves or any other kernel
4865          * expects the system to be in execlists mode on startup,
4866          * so we need to reset the GPU back to legacy mode. And the only
4867          * known way to disable logical contexts is through a GPU reset.
4868          *
4869          * So in order to leave the system in a known default configuration,
4870          * always reset the GPU upon unload and suspend. Afterwards we then
4871          * clean up the GEM state tracking, flushing off the requests and
4872          * leaving the system in a known idle state.
4873          *
4874          * Note that is of the upmost importance that the GPU is idle and
4875          * all stray writes are flushed *before* we dismantle the backing
4876          * storage for the pinned objects.
4877          *
4878          * However, since we are uncertain that resetting the GPU on older
4879          * machines is a good idea, we don't - just in case it leaves the
4880          * machine in an unusable condition.
4881          */
4882         i915_gem_sanitize(dev_priv);
4883
4884         intel_runtime_pm_put(dev_priv);
4885         return 0;
4886
4887 err_unlock:
4888         mutex_unlock(&dev->struct_mutex);
4889         intel_runtime_pm_put(dev_priv);
4890         return ret;
4891 }
4892
4893 void i915_gem_resume(struct drm_i915_private *i915)
4894 {
4895         WARN_ON(i915->gt.awake);
4896
4897         mutex_lock(&i915->drm.struct_mutex);
4898         intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4899
4900         i915_gem_restore_gtt_mappings(i915);
4901         i915_gem_restore_fences(i915);
4902
4903         /*
4904          * As we didn't flush the kernel context before suspend, we cannot
4905          * guarantee that the context image is complete. So let's just reset
4906          * it and start again.
4907          */
4908         i915->gt.resume(i915);
4909
4910         if (i915_gem_init_hw(i915))
4911                 goto err_wedged;
4912
4913         intel_guc_resume(i915);
4914
4915         /* Always reload a context for powersaving. */
4916         if (i915_gem_switch_to_kernel_context(i915))
4917                 goto err_wedged;
4918
4919 out_unlock:
4920         intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4921         mutex_unlock(&i915->drm.struct_mutex);
4922         return;
4923
4924 err_wedged:
4925         if (!i915_terminally_wedged(&i915->gpu_error)) {
4926                 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
4927                 i915_gem_set_wedged(i915);
4928         }
4929         goto out_unlock;
4930 }
4931
4932 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4933 {
4934         if (INTEL_GEN(dev_priv) < 5 ||
4935             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4936                 return;
4937
4938         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4939                                  DISP_TILE_SURFACE_SWIZZLING);
4940
4941         if (IS_GEN5(dev_priv))
4942                 return;
4943
4944         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4945         if (IS_GEN6(dev_priv))
4946                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4947         else if (IS_GEN7(dev_priv))
4948                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4949         else if (IS_GEN8(dev_priv))
4950                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4951         else
4952                 BUG();
4953 }
4954
4955 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4956 {
4957         I915_WRITE(RING_CTL(base), 0);
4958         I915_WRITE(RING_HEAD(base), 0);
4959         I915_WRITE(RING_TAIL(base), 0);
4960         I915_WRITE(RING_START(base), 0);
4961 }
4962
4963 static void init_unused_rings(struct drm_i915_private *dev_priv)
4964 {
4965         if (IS_I830(dev_priv)) {
4966                 init_unused_ring(dev_priv, PRB1_BASE);
4967                 init_unused_ring(dev_priv, SRB0_BASE);
4968                 init_unused_ring(dev_priv, SRB1_BASE);
4969                 init_unused_ring(dev_priv, SRB2_BASE);
4970                 init_unused_ring(dev_priv, SRB3_BASE);
4971         } else if (IS_GEN2(dev_priv)) {
4972                 init_unused_ring(dev_priv, SRB0_BASE);
4973                 init_unused_ring(dev_priv, SRB1_BASE);
4974         } else if (IS_GEN3(dev_priv)) {
4975                 init_unused_ring(dev_priv, PRB1_BASE);
4976                 init_unused_ring(dev_priv, PRB2_BASE);
4977         }
4978 }
4979
4980 static int __i915_gem_restart_engines(void *data)
4981 {
4982         struct drm_i915_private *i915 = data;
4983         struct intel_engine_cs *engine;
4984         enum intel_engine_id id;
4985         int err;
4986
4987         for_each_engine(engine, i915, id) {
4988                 err = engine->init_hw(engine);
4989                 if (err)
4990                         return err;
4991         }
4992
4993         return 0;
4994 }
4995
4996 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4997 {
4998         int ret;
4999
5000         dev_priv->gt.last_init_time = ktime_get();
5001
5002         /* Double layer security blanket, see i915_gem_init() */
5003         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5004
5005         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5006                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5007
5008         if (IS_HASWELL(dev_priv))
5009                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5010                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5011
5012         if (HAS_PCH_NOP(dev_priv)) {
5013                 if (IS_IVYBRIDGE(dev_priv)) {
5014                         u32 temp = I915_READ(GEN7_MSG_CTL);
5015                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5016                         I915_WRITE(GEN7_MSG_CTL, temp);
5017                 } else if (INTEL_GEN(dev_priv) >= 7) {
5018                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5019                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5020                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5021                 }
5022         }
5023
5024         i915_gem_init_swizzling(dev_priv);
5025
5026         /*
5027          * At least 830 can leave some of the unused rings
5028          * "active" (ie. head != tail) after resume which
5029          * will prevent c3 entry. Makes sure all unused rings
5030          * are totally idle.
5031          */
5032         init_unused_rings(dev_priv);
5033
5034         BUG_ON(!dev_priv->kernel_context);
5035         if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5036                 ret = -EIO;
5037                 goto out;
5038         }
5039
5040         ret = i915_ppgtt_init_hw(dev_priv);
5041         if (ret) {
5042                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5043                 goto out;
5044         }
5045
5046         /* We can't enable contexts until all firmware is loaded */
5047         ret = intel_uc_init_hw(dev_priv);
5048         if (ret)
5049                 goto out;
5050
5051         intel_mocs_init_l3cc_table(dev_priv);
5052
5053         /* Only when the HW is re-initialised, can we replay the requests */
5054         ret = __i915_gem_restart_engines(dev_priv);
5055 out:
5056         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5057         return ret;
5058 }
5059
5060 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5061 {
5062         struct i915_gem_context *ctx;
5063         struct intel_engine_cs *engine;
5064         enum intel_engine_id id;
5065         int err;
5066
5067         /*
5068          * As we reset the gpu during very early sanitisation, the current
5069          * register state on the GPU should reflect its defaults values.
5070          * We load a context onto the hw (with restore-inhibit), then switch
5071          * over to a second context to save that default register state. We
5072          * can then prime every new context with that state so they all start
5073          * from the same default HW values.
5074          */
5075
5076         ctx = i915_gem_context_create_kernel(i915, 0);
5077         if (IS_ERR(ctx))
5078                 return PTR_ERR(ctx);
5079
5080         for_each_engine(engine, i915, id) {
5081                 struct drm_i915_gem_request *rq;
5082
5083                 rq = i915_gem_request_alloc(engine, ctx);
5084                 if (IS_ERR(rq)) {
5085                         err = PTR_ERR(rq);
5086                         goto out_ctx;
5087                 }
5088
5089                 err = 0;
5090                 if (engine->init_context)
5091                         err = engine->init_context(rq);
5092
5093                 __i915_add_request(rq, true);
5094                 if (err)
5095                         goto err_active;
5096         }
5097
5098         err = i915_gem_switch_to_kernel_context(i915);
5099         if (err)
5100                 goto err_active;
5101
5102         err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5103         if (err)
5104                 goto err_active;
5105
5106         assert_kernel_context_is_current(i915);
5107
5108         for_each_engine(engine, i915, id) {
5109                 struct i915_vma *state;
5110
5111                 state = ctx->engine[id].state;
5112                 if (!state)
5113                         continue;
5114
5115                 /*
5116                  * As we will hold a reference to the logical state, it will
5117                  * not be torn down with the context, and importantly the
5118                  * object will hold onto its vma (making it possible for a
5119                  * stray GTT write to corrupt our defaults). Unmap the vma
5120                  * from the GTT to prevent such accidents and reclaim the
5121                  * space.
5122                  */
5123                 err = i915_vma_unbind(state);
5124                 if (err)
5125                         goto err_active;
5126
5127                 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5128                 if (err)
5129                         goto err_active;
5130
5131                 engine->default_state = i915_gem_object_get(state->obj);
5132         }
5133
5134         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5135                 unsigned int found = intel_engines_has_context_isolation(i915);
5136
5137                 /*
5138                  * Make sure that classes with multiple engine instances all
5139                  * share the same basic configuration.
5140                  */
5141                 for_each_engine(engine, i915, id) {
5142                         unsigned int bit = BIT(engine->uabi_class);
5143                         unsigned int expected = engine->default_state ? bit : 0;
5144
5145                         if ((found & bit) != expected) {
5146                                 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5147                                           engine->uabi_class, engine->name);
5148                         }
5149                 }
5150         }
5151
5152 out_ctx:
5153         i915_gem_context_set_closed(ctx);
5154         i915_gem_context_put(ctx);
5155         return err;
5156
5157 err_active:
5158         /*
5159          * If we have to abandon now, we expect the engines to be idle
5160          * and ready to be torn-down. First try to flush any remaining
5161          * request, ensure we are pointing at the kernel context and
5162          * then remove it.
5163          */
5164         if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5165                 goto out_ctx;
5166
5167         if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5168                 goto out_ctx;
5169
5170         i915_gem_contexts_lost(i915);
5171         goto out_ctx;
5172 }
5173
5174 int i915_gem_init(struct drm_i915_private *dev_priv)
5175 {
5176         int ret;
5177
5178         /*
5179          * We need to fallback to 4K pages since gvt gtt handling doesn't
5180          * support huge page entries - we will need to check either hypervisor
5181          * mm can support huge guest page or just do emulation in gvt.
5182          */
5183         if (intel_vgpu_active(dev_priv))
5184                 mkwrite_device_info(dev_priv)->page_sizes =
5185                         I915_GTT_PAGE_SIZE_4K;
5186
5187         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5188
5189         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5190                 dev_priv->gt.resume = intel_lr_context_resume;
5191                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5192         } else {
5193                 dev_priv->gt.resume = intel_legacy_submission_resume;
5194                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5195         }
5196
5197         ret = i915_gem_init_userptr(dev_priv);
5198         if (ret)
5199                 return ret;
5200
5201         ret = intel_uc_init_wq(dev_priv);
5202         if (ret)
5203                 return ret;
5204
5205         /* This is just a security blanket to placate dragons.
5206          * On some systems, we very sporadically observe that the first TLBs
5207          * used by the CS may be stale, despite us poking the TLB reset. If
5208          * we hold the forcewake during initialisation these problems
5209          * just magically go away.
5210          */
5211         mutex_lock(&dev_priv->drm.struct_mutex);
5212         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5213
5214         ret = i915_gem_init_ggtt(dev_priv);
5215         if (ret) {
5216                 GEM_BUG_ON(ret == -EIO);
5217                 goto err_unlock;
5218         }
5219
5220         ret = i915_gem_contexts_init(dev_priv);
5221         if (ret) {
5222                 GEM_BUG_ON(ret == -EIO);
5223                 goto err_ggtt;
5224         }
5225
5226         ret = intel_engines_init(dev_priv);
5227         if (ret) {
5228                 GEM_BUG_ON(ret == -EIO);
5229                 goto err_context;
5230         }
5231
5232         intel_init_gt_powersave(dev_priv);
5233
5234         ret = intel_uc_init(dev_priv);
5235         if (ret)
5236                 goto err_pm;
5237
5238         ret = i915_gem_init_hw(dev_priv);
5239         if (ret)
5240                 goto err_uc_init;
5241
5242         /*
5243          * Despite its name intel_init_clock_gating applies both display
5244          * clock gating workarounds; GT mmio workarounds and the occasional
5245          * GT power context workaround. Worse, sometimes it includes a context
5246          * register workaround which we need to apply before we record the
5247          * default HW state for all contexts.
5248          *
5249          * FIXME: break up the workarounds and apply them at the right time!
5250          */
5251         intel_init_clock_gating(dev_priv);
5252
5253         ret = __intel_engines_record_defaults(dev_priv);
5254         if (ret)
5255                 goto err_init_hw;
5256
5257         if (i915_inject_load_failure()) {
5258                 ret = -ENODEV;
5259                 goto err_init_hw;
5260         }
5261
5262         if (i915_inject_load_failure()) {
5263                 ret = -EIO;
5264                 goto err_init_hw;
5265         }
5266
5267         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5268         mutex_unlock(&dev_priv->drm.struct_mutex);
5269
5270         return 0;
5271
5272         /*
5273          * Unwinding is complicated by that we want to handle -EIO to mean
5274          * disable GPU submission but keep KMS alive. We want to mark the
5275          * HW as irrevisibly wedged, but keep enough state around that the
5276          * driver doesn't explode during runtime.
5277          */
5278 err_init_hw:
5279         i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5280         i915_gem_contexts_lost(dev_priv);
5281         intel_uc_fini_hw(dev_priv);
5282 err_uc_init:
5283         intel_uc_fini(dev_priv);
5284 err_pm:
5285         if (ret != -EIO) {
5286                 intel_cleanup_gt_powersave(dev_priv);
5287                 i915_gem_cleanup_engines(dev_priv);
5288         }
5289 err_context:
5290         if (ret != -EIO)
5291                 i915_gem_contexts_fini(dev_priv);
5292 err_ggtt:
5293 err_unlock:
5294         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5295         mutex_unlock(&dev_priv->drm.struct_mutex);
5296
5297         intel_uc_fini_wq(dev_priv);
5298
5299         if (ret != -EIO)
5300                 i915_gem_cleanup_userptr(dev_priv);
5301
5302         if (ret == -EIO) {
5303                 /*
5304                  * Allow engine initialisation to fail by marking the GPU as
5305                  * wedged. But we only want to do this where the GPU is angry,
5306                  * for all other failure, such as an allocation failure, bail.
5307                  */
5308                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5309                         DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5310                         i915_gem_set_wedged(dev_priv);
5311                 }
5312                 ret = 0;
5313         }
5314
5315         i915_gem_drain_freed_objects(dev_priv);
5316         return ret;
5317 }
5318
5319 void i915_gem_init_mmio(struct drm_i915_private *i915)
5320 {
5321         i915_gem_sanitize(i915);
5322 }
5323
5324 void
5325 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5326 {
5327         struct intel_engine_cs *engine;
5328         enum intel_engine_id id;
5329
5330         for_each_engine(engine, dev_priv, id)
5331                 dev_priv->gt.cleanup_engine(engine);
5332 }
5333
5334 void
5335 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5336 {
5337         int i;
5338
5339         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5340             !IS_CHERRYVIEW(dev_priv))
5341                 dev_priv->num_fence_regs = 32;
5342         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5343                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5344                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5345                 dev_priv->num_fence_regs = 16;
5346         else
5347                 dev_priv->num_fence_regs = 8;
5348
5349         if (intel_vgpu_active(dev_priv))
5350                 dev_priv->num_fence_regs =
5351                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5352
5353         /* Initialize fence registers to zero */
5354         for (i = 0; i < dev_priv->num_fence_regs; i++) {
5355                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5356
5357                 fence->i915 = dev_priv;
5358                 fence->id = i;
5359                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5360         }
5361         i915_gem_restore_fences(dev_priv);
5362
5363         i915_gem_detect_bit_6_swizzle(dev_priv);
5364 }
5365
5366 static void i915_gem_init__mm(struct drm_i915_private *i915)
5367 {
5368         spin_lock_init(&i915->mm.object_stat_lock);
5369         spin_lock_init(&i915->mm.obj_lock);
5370         spin_lock_init(&i915->mm.free_lock);
5371
5372         init_llist_head(&i915->mm.free_list);
5373
5374         INIT_LIST_HEAD(&i915->mm.unbound_list);
5375         INIT_LIST_HEAD(&i915->mm.bound_list);
5376         INIT_LIST_HEAD(&i915->mm.fence_list);
5377         INIT_LIST_HEAD(&i915->mm.userfault_list);
5378
5379         INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5380 }
5381
5382 int
5383 i915_gem_load_init(struct drm_i915_private *dev_priv)
5384 {
5385         int err = -ENOMEM;
5386
5387         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5388         if (!dev_priv->objects)
5389                 goto err_out;
5390
5391         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5392         if (!dev_priv->vmas)
5393                 goto err_objects;
5394
5395         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5396         if (!dev_priv->luts)
5397                 goto err_vmas;
5398
5399         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5400                                         SLAB_HWCACHE_ALIGN |
5401                                         SLAB_RECLAIM_ACCOUNT |
5402                                         SLAB_TYPESAFE_BY_RCU);
5403         if (!dev_priv->requests)
5404                 goto err_luts;
5405
5406         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5407                                             SLAB_HWCACHE_ALIGN |
5408                                             SLAB_RECLAIM_ACCOUNT);
5409         if (!dev_priv->dependencies)
5410                 goto err_requests;
5411
5412         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5413         if (!dev_priv->priorities)
5414                 goto err_dependencies;
5415
5416         mutex_lock(&dev_priv->drm.struct_mutex);
5417         INIT_LIST_HEAD(&dev_priv->gt.timelines);
5418         err = i915_gem_timeline_init__global(dev_priv);
5419         mutex_unlock(&dev_priv->drm.struct_mutex);
5420         if (err)
5421                 goto err_priorities;
5422
5423         i915_gem_init__mm(dev_priv);
5424
5425         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5426                           i915_gem_retire_work_handler);
5427         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5428                           i915_gem_idle_work_handler);
5429         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5430         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5431
5432         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5433
5434         spin_lock_init(&dev_priv->fb_tracking.lock);
5435
5436         err = i915_gemfs_init(dev_priv);
5437         if (err)
5438                 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5439
5440         return 0;
5441
5442 err_priorities:
5443         kmem_cache_destroy(dev_priv->priorities);
5444 err_dependencies:
5445         kmem_cache_destroy(dev_priv->dependencies);
5446 err_requests:
5447         kmem_cache_destroy(dev_priv->requests);
5448 err_luts:
5449         kmem_cache_destroy(dev_priv->luts);
5450 err_vmas:
5451         kmem_cache_destroy(dev_priv->vmas);
5452 err_objects:
5453         kmem_cache_destroy(dev_priv->objects);
5454 err_out:
5455         return err;
5456 }
5457
5458 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5459 {
5460         i915_gem_drain_freed_objects(dev_priv);
5461         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5462         WARN_ON(dev_priv->mm.object_count);
5463
5464         mutex_lock(&dev_priv->drm.struct_mutex);
5465         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5466         WARN_ON(!list_empty(&dev_priv->gt.timelines));
5467         mutex_unlock(&dev_priv->drm.struct_mutex);
5468
5469         kmem_cache_destroy(dev_priv->priorities);
5470         kmem_cache_destroy(dev_priv->dependencies);
5471         kmem_cache_destroy(dev_priv->requests);
5472         kmem_cache_destroy(dev_priv->luts);
5473         kmem_cache_destroy(dev_priv->vmas);
5474         kmem_cache_destroy(dev_priv->objects);
5475
5476         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5477         rcu_barrier();
5478
5479         i915_gemfs_fini(dev_priv);
5480 }
5481
5482 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5483 {
5484         /* Discard all purgeable objects, let userspace recover those as
5485          * required after resuming.
5486          */
5487         i915_gem_shrink_all(dev_priv);
5488
5489         return 0;
5490 }
5491
5492 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5493 {
5494         struct drm_i915_gem_object *obj;
5495         struct list_head *phases[] = {
5496                 &dev_priv->mm.unbound_list,
5497                 &dev_priv->mm.bound_list,
5498                 NULL
5499         }, **p;
5500
5501         /* Called just before we write the hibernation image.
5502          *
5503          * We need to update the domain tracking to reflect that the CPU
5504          * will be accessing all the pages to create and restore from the
5505          * hibernation, and so upon restoration those pages will be in the
5506          * CPU domain.
5507          *
5508          * To make sure the hibernation image contains the latest state,
5509          * we update that state just before writing out the image.
5510          *
5511          * To try and reduce the hibernation image, we manually shrink
5512          * the objects as well, see i915_gem_freeze()
5513          */
5514
5515         i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5516         i915_gem_drain_freed_objects(dev_priv);
5517
5518         spin_lock(&dev_priv->mm.obj_lock);
5519         for (p = phases; *p; p++) {
5520                 list_for_each_entry(obj, *p, mm.link)
5521                         __start_cpu_write(obj);
5522         }
5523         spin_unlock(&dev_priv->mm.obj_lock);
5524
5525         return 0;
5526 }
5527
5528 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5529 {
5530         struct drm_i915_file_private *file_priv = file->driver_priv;
5531         struct drm_i915_gem_request *request;
5532
5533         /* Clean up our request list when the client is going away, so that
5534          * later retire_requests won't dereference our soon-to-be-gone
5535          * file_priv.
5536          */
5537         spin_lock(&file_priv->mm.lock);
5538         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5539                 request->file_priv = NULL;
5540         spin_unlock(&file_priv->mm.lock);
5541 }
5542
5543 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5544 {
5545         struct drm_i915_file_private *file_priv;
5546         int ret;
5547
5548         DRM_DEBUG("\n");
5549
5550         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5551         if (!file_priv)
5552                 return -ENOMEM;
5553
5554         file->driver_priv = file_priv;
5555         file_priv->dev_priv = i915;
5556         file_priv->file = file;
5557
5558         spin_lock_init(&file_priv->mm.lock);
5559         INIT_LIST_HEAD(&file_priv->mm.request_list);
5560
5561         file_priv->bsd_engine = -1;
5562
5563         ret = i915_gem_context_open(i915, file);
5564         if (ret)
5565                 kfree(file_priv);
5566
5567         return ret;
5568 }
5569
5570 /**
5571  * i915_gem_track_fb - update frontbuffer tracking
5572  * @old: current GEM buffer for the frontbuffer slots
5573  * @new: new GEM buffer for the frontbuffer slots
5574  * @frontbuffer_bits: bitmask of frontbuffer slots
5575  *
5576  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5577  * from @old and setting them in @new. Both @old and @new can be NULL.
5578  */
5579 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5580                        struct drm_i915_gem_object *new,
5581                        unsigned frontbuffer_bits)
5582 {
5583         /* Control of individual bits within the mask are guarded by
5584          * the owning plane->mutex, i.e. we can never see concurrent
5585          * manipulation of individual bits. But since the bitfield as a whole
5586          * is updated using RMW, we need to use atomics in order to update
5587          * the bits.
5588          */
5589         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5590                      sizeof(atomic_t) * BITS_PER_BYTE);
5591
5592         if (old) {
5593                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5594                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5595         }
5596
5597         if (new) {
5598                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5599                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5600         }
5601 }
5602
5603 /* Allocate a new GEM object and fill it with the supplied data */
5604 struct drm_i915_gem_object *
5605 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5606                                  const void *data, size_t size)
5607 {
5608         struct drm_i915_gem_object *obj;
5609         struct file *file;
5610         size_t offset;
5611         int err;
5612
5613         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5614         if (IS_ERR(obj))
5615                 return obj;
5616
5617         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5618
5619         file = obj->base.filp;
5620         offset = 0;
5621         do {
5622                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5623                 struct page *page;
5624                 void *pgdata, *vaddr;
5625
5626                 err = pagecache_write_begin(file, file->f_mapping,
5627                                             offset, len, 0,
5628                                             &page, &pgdata);
5629                 if (err < 0)
5630                         goto fail;
5631
5632                 vaddr = kmap(page);
5633                 memcpy(vaddr, data, len);
5634                 kunmap(page);
5635
5636                 err = pagecache_write_end(file, file->f_mapping,
5637                                           offset, len, len,
5638                                           page, pgdata);
5639                 if (err < 0)
5640                         goto fail;
5641
5642                 size -= len;
5643                 data += len;
5644                 offset += len;
5645         } while (size);
5646
5647         return obj;
5648
5649 fail:
5650         i915_gem_object_put(obj);
5651         return ERR_PTR(err);
5652 }
5653
5654 struct scatterlist *
5655 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5656                        unsigned int n,
5657                        unsigned int *offset)
5658 {
5659         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5660         struct scatterlist *sg;
5661         unsigned int idx, count;
5662
5663         might_sleep();
5664         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5665         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5666
5667         /* As we iterate forward through the sg, we record each entry in a
5668          * radixtree for quick repeated (backwards) lookups. If we have seen
5669          * this index previously, we will have an entry for it.
5670          *
5671          * Initial lookup is O(N), but this is amortized to O(1) for
5672          * sequential page access (where each new request is consecutive
5673          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5674          * i.e. O(1) with a large constant!
5675          */
5676         if (n < READ_ONCE(iter->sg_idx))
5677                 goto lookup;
5678
5679         mutex_lock(&iter->lock);
5680
5681         /* We prefer to reuse the last sg so that repeated lookup of this
5682          * (or the subsequent) sg are fast - comparing against the last
5683          * sg is faster than going through the radixtree.
5684          */
5685
5686         sg = iter->sg_pos;
5687         idx = iter->sg_idx;
5688         count = __sg_page_count(sg);
5689
5690         while (idx + count <= n) {
5691                 unsigned long exception, i;
5692                 int ret;
5693
5694                 /* If we cannot allocate and insert this entry, or the
5695                  * individual pages from this range, cancel updating the
5696                  * sg_idx so that on this lookup we are forced to linearly
5697                  * scan onwards, but on future lookups we will try the
5698                  * insertion again (in which case we need to be careful of
5699                  * the error return reporting that we have already inserted
5700                  * this index).
5701                  */
5702                 ret = radix_tree_insert(&iter->radix, idx, sg);
5703                 if (ret && ret != -EEXIST)
5704                         goto scan;
5705
5706                 exception =
5707                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5708                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5709                 for (i = 1; i < count; i++) {
5710                         ret = radix_tree_insert(&iter->radix, idx + i,
5711                                                 (void *)exception);
5712                         if (ret && ret != -EEXIST)
5713                                 goto scan;
5714                 }
5715
5716                 idx += count;
5717                 sg = ____sg_next(sg);
5718                 count = __sg_page_count(sg);
5719         }
5720
5721 scan:
5722         iter->sg_pos = sg;
5723         iter->sg_idx = idx;
5724
5725         mutex_unlock(&iter->lock);
5726
5727         if (unlikely(n < idx)) /* insertion completed by another thread */
5728                 goto lookup;
5729
5730         /* In case we failed to insert the entry into the radixtree, we need
5731          * to look beyond the current sg.
5732          */
5733         while (idx + count <= n) {
5734                 idx += count;
5735                 sg = ____sg_next(sg);
5736                 count = __sg_page_count(sg);
5737         }
5738
5739         *offset = n - idx;
5740         return sg;
5741
5742 lookup:
5743         rcu_read_lock();
5744
5745         sg = radix_tree_lookup(&iter->radix, n);
5746         GEM_BUG_ON(!sg);
5747
5748         /* If this index is in the middle of multi-page sg entry,
5749          * the radixtree will contain an exceptional entry that points
5750          * to the start of that range. We will return the pointer to
5751          * the base page and the offset of this page within the
5752          * sg entry's range.
5753          */
5754         *offset = 0;
5755         if (unlikely(radix_tree_exception(sg))) {
5756                 unsigned long base =
5757                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5758
5759                 sg = radix_tree_lookup(&iter->radix, base);
5760                 GEM_BUG_ON(!sg);
5761
5762                 *offset = n - base;
5763         }
5764
5765         rcu_read_unlock();
5766
5767         return sg;
5768 }
5769
5770 struct page *
5771 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5772 {
5773         struct scatterlist *sg;
5774         unsigned int offset;
5775
5776         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5777
5778         sg = i915_gem_object_get_sg(obj, n, &offset);
5779         return nth_page(sg_page(sg), offset);
5780 }
5781
5782 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5783 struct page *
5784 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5785                                unsigned int n)
5786 {
5787         struct page *page;
5788
5789         page = i915_gem_object_get_page(obj, n);
5790         if (!obj->mm.dirty)
5791                 set_page_dirty(page);
5792
5793         return page;
5794 }
5795
5796 dma_addr_t
5797 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5798                                 unsigned long n)
5799 {
5800         struct scatterlist *sg;
5801         unsigned int offset;
5802
5803         sg = i915_gem_object_get_sg(obj, n, &offset);
5804         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5805 }
5806
5807 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5808 {
5809         struct sg_table *pages;
5810         int err;
5811
5812         if (align > obj->base.size)
5813                 return -EINVAL;
5814
5815         if (obj->ops == &i915_gem_phys_ops)
5816                 return 0;
5817
5818         if (obj->ops != &i915_gem_object_ops)
5819                 return -EINVAL;
5820
5821         err = i915_gem_object_unbind(obj);
5822         if (err)
5823                 return err;
5824
5825         mutex_lock(&obj->mm.lock);
5826
5827         if (obj->mm.madv != I915_MADV_WILLNEED) {
5828                 err = -EFAULT;
5829                 goto err_unlock;
5830         }
5831
5832         if (obj->mm.quirked) {
5833                 err = -EFAULT;
5834                 goto err_unlock;
5835         }
5836
5837         if (obj->mm.mapping) {
5838                 err = -EBUSY;
5839                 goto err_unlock;
5840         }
5841
5842         pages = fetch_and_zero(&obj->mm.pages);
5843         if (pages) {
5844                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5845
5846                 __i915_gem_object_reset_page_iter(obj);
5847
5848                 spin_lock(&i915->mm.obj_lock);
5849                 list_del(&obj->mm.link);
5850                 spin_unlock(&i915->mm.obj_lock);
5851         }
5852
5853         obj->ops = &i915_gem_phys_ops;
5854
5855         err = ____i915_gem_object_get_pages(obj);
5856         if (err)
5857                 goto err_xfer;
5858
5859         /* Perma-pin (until release) the physical set of pages */
5860         __i915_gem_object_pin_pages(obj);
5861
5862         if (!IS_ERR_OR_NULL(pages))
5863                 i915_gem_object_ops.put_pages(obj, pages);
5864         mutex_unlock(&obj->mm.lock);
5865         return 0;
5866
5867 err_xfer:
5868         obj->ops = &i915_gem_object_ops;
5869         obj->mm.pages = pages;
5870 err_unlock:
5871         mutex_unlock(&obj->mm.lock);
5872         return err;
5873 }
5874
5875 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5876 #include "selftests/scatterlist.c"
5877 #include "selftests/mock_gem_device.c"
5878 #include "selftests/huge_gem_object.c"
5879 #include "selftests/huge_pages.c"
5880 #include "selftests/i915_gem_object.c"
5881 #include "selftests/i915_gem_coherency.c"
5882 #endif