719a933c5756ab26c01d5d59f7ccb898f91a86f0
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43                                                     unsigned alignment,
44                                                     bool map_and_fenceable,
45                                                     bool nonblocking);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47                                 struct drm_i915_gem_object *obj,
48                                 struct drm_i915_gem_pwrite *args,
49                                 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52                                  struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54                                          struct drm_i915_fence_reg *fence,
55                                          bool enable);
56
57 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
58                                     struct shrink_control *sc);
59 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
60 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65         if (obj->tiling_mode)
66                 i915_gem_release_mmap(obj);
67
68         /* As we do not have an associated fence register, we will force
69          * a tiling change if we ever need to acquire one.
70          */
71         obj->fence_dirty = false;
72         obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77                                   size_t size)
78 {
79         dev_priv->mm.object_count++;
80         dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84                                      size_t size)
85 {
86         dev_priv->mm.object_count--;
87         dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93         struct drm_i915_private *dev_priv = dev->dev_private;
94         struct completion *x = &dev_priv->error_completion;
95         unsigned long flags;
96         int ret;
97
98         if (!atomic_read(&dev_priv->mm.wedged))
99                 return 0;
100
101         /*
102          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
103          * userspace. If it takes that long something really bad is going on and
104          * we should simply try to bail out and fail as gracefully as possible.
105          */
106         ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113
114         if (atomic_read(&dev_priv->mm.wedged)) {
115                 /* GPU is hung, bump the completion count to account for
116                  * the token we just consumed so that we never hit zero and
117                  * end up waiting upon a subsequent completion event that
118                  * will never happen.
119                  */
120                 spin_lock_irqsave(&x->wait.lock, flags);
121                 x->done++;
122                 spin_unlock_irqrestore(&x->wait.lock, flags);
123         }
124         return 0;
125 }
126
127 int i915_mutex_lock_interruptible(struct drm_device *dev)
128 {
129         int ret;
130
131         ret = i915_gem_wait_for_error(dev);
132         if (ret)
133                 return ret;
134
135         ret = mutex_lock_interruptible(&dev->struct_mutex);
136         if (ret)
137                 return ret;
138
139         WARN_ON(i915_verify_lists(dev));
140         return 0;
141 }
142
143 static inline bool
144 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
145 {
146         return obj->gtt_space && !obj->active;
147 }
148
149 int
150 i915_gem_init_ioctl(struct drm_device *dev, void *data,
151                     struct drm_file *file)
152 {
153         struct drm_i915_gem_init *args = data;
154
155         if (drm_core_check_feature(dev, DRIVER_MODESET))
156                 return -ENODEV;
157
158         if (args->gtt_start >= args->gtt_end ||
159             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
160                 return -EINVAL;
161
162         /* GEM with user mode setting was never supported on ilk and later. */
163         if (INTEL_INFO(dev)->gen >= 5)
164                 return -ENODEV;
165
166         mutex_lock(&dev->struct_mutex);
167         i915_gem_init_global_gtt(dev, args->gtt_start,
168                                  args->gtt_end, args->gtt_end);
169         mutex_unlock(&dev->struct_mutex);
170
171         return 0;
172 }
173
174 int
175 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
176                             struct drm_file *file)
177 {
178         struct drm_i915_private *dev_priv = dev->dev_private;
179         struct drm_i915_gem_get_aperture *args = data;
180         struct drm_i915_gem_object *obj;
181         size_t pinned;
182
183         pinned = 0;
184         mutex_lock(&dev->struct_mutex);
185         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
186                 if (obj->pin_count)
187                         pinned += obj->gtt_space->size;
188         mutex_unlock(&dev->struct_mutex);
189
190         args->aper_size = dev_priv->mm.gtt_total;
191         args->aper_available_size = args->aper_size - pinned;
192
193         return 0;
194 }
195
196 static int
197 i915_gem_create(struct drm_file *file,
198                 struct drm_device *dev,
199                 uint64_t size,
200                 uint32_t *handle_p)
201 {
202         struct drm_i915_gem_object *obj;
203         int ret;
204         u32 handle;
205
206         size = roundup(size, PAGE_SIZE);
207         if (size == 0)
208                 return -EINVAL;
209
210         /* Allocate the new object */
211         obj = i915_gem_alloc_object(dev, size);
212         if (obj == NULL)
213                 return -ENOMEM;
214
215         ret = drm_gem_handle_create(file, &obj->base, &handle);
216         if (ret) {
217                 drm_gem_object_release(&obj->base);
218                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219                 kfree(obj);
220                 return ret;
221         }
222
223         /* drop reference from allocate - handle holds it now */
224         drm_gem_object_unreference(&obj->base);
225         trace_i915_gem_object_create(obj);
226
227         *handle_p = handle;
228         return 0;
229 }
230
231 int
232 i915_gem_dumb_create(struct drm_file *file,
233                      struct drm_device *dev,
234                      struct drm_mode_create_dumb *args)
235 {
236         /* have to work out size/pitch and return them */
237         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
238         args->size = args->pitch * args->height;
239         return i915_gem_create(file, dev,
240                                args->size, &args->handle);
241 }
242
243 int i915_gem_dumb_destroy(struct drm_file *file,
244                           struct drm_device *dev,
245                           uint32_t handle)
246 {
247         return drm_gem_handle_delete(file, handle);
248 }
249
250 /**
251  * Creates a new mm object and returns a handle to it.
252  */
253 int
254 i915_gem_create_ioctl(struct drm_device *dev, void *data,
255                       struct drm_file *file)
256 {
257         struct drm_i915_gem_create *args = data;
258
259         return i915_gem_create(file, dev,
260                                args->size, &args->handle);
261 }
262
263 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
264 {
265         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
266
267         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
268                 obj->tiling_mode != I915_TILING_NONE;
269 }
270
271 static inline int
272 __copy_to_user_swizzled(char __user *cpu_vaddr,
273                         const char *gpu_vaddr, int gpu_offset,
274                         int length)
275 {
276         int ret, cpu_offset = 0;
277
278         while (length > 0) {
279                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
280                 int this_length = min(cacheline_end - gpu_offset, length);
281                 int swizzled_gpu_offset = gpu_offset ^ 64;
282
283                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
284                                      gpu_vaddr + swizzled_gpu_offset,
285                                      this_length);
286                 if (ret)
287                         return ret + length;
288
289                 cpu_offset += this_length;
290                 gpu_offset += this_length;
291                 length -= this_length;
292         }
293
294         return 0;
295 }
296
297 static inline int
298 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
299                           const char __user *cpu_vaddr,
300                           int length)
301 {
302         int ret, cpu_offset = 0;
303
304         while (length > 0) {
305                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
306                 int this_length = min(cacheline_end - gpu_offset, length);
307                 int swizzled_gpu_offset = gpu_offset ^ 64;
308
309                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
310                                        cpu_vaddr + cpu_offset,
311                                        this_length);
312                 if (ret)
313                         return ret + length;
314
315                 cpu_offset += this_length;
316                 gpu_offset += this_length;
317                 length -= this_length;
318         }
319
320         return 0;
321 }
322
323 /* Per-page copy function for the shmem pread fastpath.
324  * Flushes invalid cachelines before reading the target if
325  * needs_clflush is set. */
326 static int
327 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
328                  char __user *user_data,
329                  bool page_do_bit17_swizzling, bool needs_clflush)
330 {
331         char *vaddr;
332         int ret;
333
334         if (unlikely(page_do_bit17_swizzling))
335                 return -EINVAL;
336
337         vaddr = kmap_atomic(page);
338         if (needs_clflush)
339                 drm_clflush_virt_range(vaddr + shmem_page_offset,
340                                        page_length);
341         ret = __copy_to_user_inatomic(user_data,
342                                       vaddr + shmem_page_offset,
343                                       page_length);
344         kunmap_atomic(vaddr);
345
346         return ret;
347 }
348
349 static void
350 shmem_clflush_swizzled_range(char *addr, unsigned long length,
351                              bool swizzled)
352 {
353         if (unlikely(swizzled)) {
354                 unsigned long start = (unsigned long) addr;
355                 unsigned long end = (unsigned long) addr + length;
356
357                 /* For swizzling simply ensure that we always flush both
358                  * channels. Lame, but simple and it works. Swizzled
359                  * pwrite/pread is far from a hotpath - current userspace
360                  * doesn't use it at all. */
361                 start = round_down(start, 128);
362                 end = round_up(end, 128);
363
364                 drm_clflush_virt_range((void *)start, end - start);
365         } else {
366                 drm_clflush_virt_range(addr, length);
367         }
368
369 }
370
371 /* Only difference to the fast-path function is that this can handle bit17
372  * and uses non-atomic copy and kmap functions. */
373 static int
374 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
375                  char __user *user_data,
376                  bool page_do_bit17_swizzling, bool needs_clflush)
377 {
378         char *vaddr;
379         int ret;
380
381         vaddr = kmap(page);
382         if (needs_clflush)
383                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
384                                              page_length,
385                                              page_do_bit17_swizzling);
386
387         if (page_do_bit17_swizzling)
388                 ret = __copy_to_user_swizzled(user_data,
389                                               vaddr, shmem_page_offset,
390                                               page_length);
391         else
392                 ret = __copy_to_user(user_data,
393                                      vaddr + shmem_page_offset,
394                                      page_length);
395         kunmap(page);
396
397         return ret;
398 }
399
400 static int
401 i915_gem_shmem_pread(struct drm_device *dev,
402                      struct drm_i915_gem_object *obj,
403                      struct drm_i915_gem_pread *args,
404                      struct drm_file *file)
405 {
406         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
407         char __user *user_data;
408         ssize_t remain;
409         loff_t offset;
410         int shmem_page_offset, page_length, ret = 0;
411         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412         int hit_slowpath = 0;
413         int prefaulted = 0;
414         int needs_clflush = 0;
415         int release_page;
416
417         user_data = (char __user *) (uintptr_t) args->data_ptr;
418         remain = args->size;
419
420         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423                 /* If we're not in the cpu read domain, set ourself into the gtt
424                  * read domain and manually flush cachelines (if required). This
425                  * optimizes for the case when the gpu will dirty the data
426                  * anyway again before the next pread happens. */
427                 if (obj->cache_level == I915_CACHE_NONE)
428                         needs_clflush = 1;
429                 if (obj->gtt_space) {
430                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
431                         if (ret)
432                                 return ret;
433                 }
434         }
435
436         offset = args->offset;
437
438         while (remain > 0) {
439                 struct page *page;
440
441                 /* Operation in this page
442                  *
443                  * shmem_page_offset = offset within page in shmem file
444                  * page_length = bytes to copy for this page
445                  */
446                 shmem_page_offset = offset_in_page(offset);
447                 page_length = remain;
448                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
449                         page_length = PAGE_SIZE - shmem_page_offset;
450
451                 if (obj->pages) {
452                         page = obj->pages[offset >> PAGE_SHIFT];
453                         release_page = 0;
454                 } else {
455                         page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
456                         if (IS_ERR(page)) {
457                                 ret = PTR_ERR(page);
458                                 goto out;
459                         }
460                         release_page = 1;
461                 }
462
463                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
464                         (page_to_phys(page) & (1 << 17)) != 0;
465
466                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
467                                        user_data, page_do_bit17_swizzling,
468                                        needs_clflush);
469                 if (ret == 0)
470                         goto next_page;
471
472                 hit_slowpath = 1;
473                 page_cache_get(page);
474                 mutex_unlock(&dev->struct_mutex);
475
476                 if (!prefaulted) {
477                         ret = fault_in_multipages_writeable(user_data, remain);
478                         /* Userspace is tricking us, but we've already clobbered
479                          * its pages with the prefault and promised to write the
480                          * data up to the first fault. Hence ignore any errors
481                          * and just continue. */
482                         (void)ret;
483                         prefaulted = 1;
484                 }
485
486                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
487                                        user_data, page_do_bit17_swizzling,
488                                        needs_clflush);
489
490                 mutex_lock(&dev->struct_mutex);
491                 page_cache_release(page);
492 next_page:
493                 mark_page_accessed(page);
494                 if (release_page)
495                         page_cache_release(page);
496
497                 if (ret) {
498                         ret = -EFAULT;
499                         goto out;
500                 }
501
502                 remain -= page_length;
503                 user_data += page_length;
504                 offset += page_length;
505         }
506
507 out:
508         if (hit_slowpath) {
509                 /* Fixup: Kill any reinstated backing storage pages */
510                 if (obj->madv == __I915_MADV_PURGED)
511                         i915_gem_object_truncate(obj);
512         }
513
514         return ret;
515 }
516
517 /**
518  * Reads data from the object referenced by handle.
519  *
520  * On error, the contents of *data are undefined.
521  */
522 int
523 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
524                      struct drm_file *file)
525 {
526         struct drm_i915_gem_pread *args = data;
527         struct drm_i915_gem_object *obj;
528         int ret = 0;
529
530         if (args->size == 0)
531                 return 0;
532
533         if (!access_ok(VERIFY_WRITE,
534                        (char __user *)(uintptr_t)args->data_ptr,
535                        args->size))
536                 return -EFAULT;
537
538         ret = i915_mutex_lock_interruptible(dev);
539         if (ret)
540                 return ret;
541
542         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
543         if (&obj->base == NULL) {
544                 ret = -ENOENT;
545                 goto unlock;
546         }
547
548         /* Bounds check source.  */
549         if (args->offset > obj->base.size ||
550             args->size > obj->base.size - args->offset) {
551                 ret = -EINVAL;
552                 goto out;
553         }
554
555         /* prime objects have no backing filp to GEM pread/pwrite
556          * pages from.
557          */
558         if (!obj->base.filp) {
559                 ret = -EINVAL;
560                 goto out;
561         }
562
563         trace_i915_gem_object_pread(obj, args->offset, args->size);
564
565         ret = i915_gem_shmem_pread(dev, obj, args, file);
566
567 out:
568         drm_gem_object_unreference(&obj->base);
569 unlock:
570         mutex_unlock(&dev->struct_mutex);
571         return ret;
572 }
573
574 /* This is the fast write path which cannot handle
575  * page faults in the source data
576  */
577
578 static inline int
579 fast_user_write(struct io_mapping *mapping,
580                 loff_t page_base, int page_offset,
581                 char __user *user_data,
582                 int length)
583 {
584         void __iomem *vaddr_atomic;
585         void *vaddr;
586         unsigned long unwritten;
587
588         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
589         /* We can use the cpu mem copy function because this is X86. */
590         vaddr = (void __force*)vaddr_atomic + page_offset;
591         unwritten = __copy_from_user_inatomic_nocache(vaddr,
592                                                       user_data, length);
593         io_mapping_unmap_atomic(vaddr_atomic);
594         return unwritten;
595 }
596
597 /**
598  * This is the fast pwrite path, where we copy the data directly from the
599  * user into the GTT, uncached.
600  */
601 static int
602 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
603                          struct drm_i915_gem_object *obj,
604                          struct drm_i915_gem_pwrite *args,
605                          struct drm_file *file)
606 {
607         drm_i915_private_t *dev_priv = dev->dev_private;
608         ssize_t remain;
609         loff_t offset, page_base;
610         char __user *user_data;
611         int page_offset, page_length, ret;
612
613         ret = i915_gem_object_pin(obj, 0, true, true);
614         if (ret)
615                 goto out;
616
617         ret = i915_gem_object_set_to_gtt_domain(obj, true);
618         if (ret)
619                 goto out_unpin;
620
621         ret = i915_gem_object_put_fence(obj);
622         if (ret)
623                 goto out_unpin;
624
625         user_data = (char __user *) (uintptr_t) args->data_ptr;
626         remain = args->size;
627
628         offset = obj->gtt_offset + args->offset;
629
630         while (remain > 0) {
631                 /* Operation in this page
632                  *
633                  * page_base = page offset within aperture
634                  * page_offset = offset within page
635                  * page_length = bytes to copy for this page
636                  */
637                 page_base = offset & PAGE_MASK;
638                 page_offset = offset_in_page(offset);
639                 page_length = remain;
640                 if ((page_offset + remain) > PAGE_SIZE)
641                         page_length = PAGE_SIZE - page_offset;
642
643                 /* If we get a fault while copying data, then (presumably) our
644                  * source page isn't available.  Return the error and we'll
645                  * retry in the slow path.
646                  */
647                 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
648                                     page_offset, user_data, page_length)) {
649                         ret = -EFAULT;
650                         goto out_unpin;
651                 }
652
653                 remain -= page_length;
654                 user_data += page_length;
655                 offset += page_length;
656         }
657
658 out_unpin:
659         i915_gem_object_unpin(obj);
660 out:
661         return ret;
662 }
663
664 /* Per-page copy function for the shmem pwrite fastpath.
665  * Flushes invalid cachelines before writing to the target if
666  * needs_clflush_before is set and flushes out any written cachelines after
667  * writing if needs_clflush is set. */
668 static int
669 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
670                   char __user *user_data,
671                   bool page_do_bit17_swizzling,
672                   bool needs_clflush_before,
673                   bool needs_clflush_after)
674 {
675         char *vaddr;
676         int ret;
677
678         if (unlikely(page_do_bit17_swizzling))
679                 return -EINVAL;
680
681         vaddr = kmap_atomic(page);
682         if (needs_clflush_before)
683                 drm_clflush_virt_range(vaddr + shmem_page_offset,
684                                        page_length);
685         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
686                                                 user_data,
687                                                 page_length);
688         if (needs_clflush_after)
689                 drm_clflush_virt_range(vaddr + shmem_page_offset,
690                                        page_length);
691         kunmap_atomic(vaddr);
692
693         return ret;
694 }
695
696 /* Only difference to the fast-path function is that this can handle bit17
697  * and uses non-atomic copy and kmap functions. */
698 static int
699 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
700                   char __user *user_data,
701                   bool page_do_bit17_swizzling,
702                   bool needs_clflush_before,
703                   bool needs_clflush_after)
704 {
705         char *vaddr;
706         int ret;
707
708         vaddr = kmap(page);
709         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
710                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
711                                              page_length,
712                                              page_do_bit17_swizzling);
713         if (page_do_bit17_swizzling)
714                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
715                                                 user_data,
716                                                 page_length);
717         else
718                 ret = __copy_from_user(vaddr + shmem_page_offset,
719                                        user_data,
720                                        page_length);
721         if (needs_clflush_after)
722                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
723                                              page_length,
724                                              page_do_bit17_swizzling);
725         kunmap(page);
726
727         return ret;
728 }
729
730 static int
731 i915_gem_shmem_pwrite(struct drm_device *dev,
732                       struct drm_i915_gem_object *obj,
733                       struct drm_i915_gem_pwrite *args,
734                       struct drm_file *file)
735 {
736         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
737         ssize_t remain;
738         loff_t offset;
739         char __user *user_data;
740         int shmem_page_offset, page_length, ret = 0;
741         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
742         int hit_slowpath = 0;
743         int needs_clflush_after = 0;
744         int needs_clflush_before = 0;
745         int release_page;
746
747         user_data = (char __user *) (uintptr_t) args->data_ptr;
748         remain = args->size;
749
750         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
751
752         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
753                 /* If we're not in the cpu write domain, set ourself into the gtt
754                  * write domain and manually flush cachelines (if required). This
755                  * optimizes for the case when the gpu will use the data
756                  * right away and we therefore have to clflush anyway. */
757                 if (obj->cache_level == I915_CACHE_NONE)
758                         needs_clflush_after = 1;
759                 if (obj->gtt_space) {
760                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
761                         if (ret)
762                                 return ret;
763                 }
764         }
765         /* Same trick applies for invalidate partially written cachelines before
766          * writing.  */
767         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
768             && obj->cache_level == I915_CACHE_NONE)
769                 needs_clflush_before = 1;
770
771         offset = args->offset;
772         obj->dirty = 1;
773
774         while (remain > 0) {
775                 struct page *page;
776                 int partial_cacheline_write;
777
778                 /* Operation in this page
779                  *
780                  * shmem_page_offset = offset within page in shmem file
781                  * page_length = bytes to copy for this page
782                  */
783                 shmem_page_offset = offset_in_page(offset);
784
785                 page_length = remain;
786                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
787                         page_length = PAGE_SIZE - shmem_page_offset;
788
789                 /* If we don't overwrite a cacheline completely we need to be
790                  * careful to have up-to-date data by first clflushing. Don't
791                  * overcomplicate things and flush the entire patch. */
792                 partial_cacheline_write = needs_clflush_before &&
793                         ((shmem_page_offset | page_length)
794                                 & (boot_cpu_data.x86_clflush_size - 1));
795
796                 if (obj->pages) {
797                         page = obj->pages[offset >> PAGE_SHIFT];
798                         release_page = 0;
799                 } else {
800                         page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801                         if (IS_ERR(page)) {
802                                 ret = PTR_ERR(page);
803                                 goto out;
804                         }
805                         release_page = 1;
806                 }
807
808                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
809                         (page_to_phys(page) & (1 << 17)) != 0;
810
811                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
812                                         user_data, page_do_bit17_swizzling,
813                                         partial_cacheline_write,
814                                         needs_clflush_after);
815                 if (ret == 0)
816                         goto next_page;
817
818                 hit_slowpath = 1;
819                 page_cache_get(page);
820                 mutex_unlock(&dev->struct_mutex);
821
822                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
823                                         user_data, page_do_bit17_swizzling,
824                                         partial_cacheline_write,
825                                         needs_clflush_after);
826
827                 mutex_lock(&dev->struct_mutex);
828                 page_cache_release(page);
829 next_page:
830                 set_page_dirty(page);
831                 mark_page_accessed(page);
832                 if (release_page)
833                         page_cache_release(page);
834
835                 if (ret) {
836                         ret = -EFAULT;
837                         goto out;
838                 }
839
840                 remain -= page_length;
841                 user_data += page_length;
842                 offset += page_length;
843         }
844
845 out:
846         if (hit_slowpath) {
847                 /* Fixup: Kill any reinstated backing storage pages */
848                 if (obj->madv == __I915_MADV_PURGED)
849                         i915_gem_object_truncate(obj);
850                 /* and flush dirty cachelines in case the object isn't in the cpu write
851                  * domain anymore. */
852                 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
853                         i915_gem_clflush_object(obj);
854                         intel_gtt_chipset_flush();
855                 }
856         }
857
858         if (needs_clflush_after)
859                 intel_gtt_chipset_flush();
860
861         return ret;
862 }
863
864 /**
865  * Writes data to the object referenced by handle.
866  *
867  * On error, the contents of the buffer that were to be modified are undefined.
868  */
869 int
870 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
871                       struct drm_file *file)
872 {
873         struct drm_i915_gem_pwrite *args = data;
874         struct drm_i915_gem_object *obj;
875         int ret;
876
877         if (args->size == 0)
878                 return 0;
879
880         if (!access_ok(VERIFY_READ,
881                        (char __user *)(uintptr_t)args->data_ptr,
882                        args->size))
883                 return -EFAULT;
884
885         ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
886                                            args->size);
887         if (ret)
888                 return -EFAULT;
889
890         ret = i915_mutex_lock_interruptible(dev);
891         if (ret)
892                 return ret;
893
894         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895         if (&obj->base == NULL) {
896                 ret = -ENOENT;
897                 goto unlock;
898         }
899
900         /* Bounds check destination. */
901         if (args->offset > obj->base.size ||
902             args->size > obj->base.size - args->offset) {
903                 ret = -EINVAL;
904                 goto out;
905         }
906
907         /* prime objects have no backing filp to GEM pread/pwrite
908          * pages from.
909          */
910         if (!obj->base.filp) {
911                 ret = -EINVAL;
912                 goto out;
913         }
914
915         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
917         ret = -EFAULT;
918         /* We can only do the GTT pwrite on untiled buffers, as otherwise
919          * it would end up going through the fenced access, and we'll get
920          * different detiling behavior between reading and writing.
921          * pread/pwrite currently are reading and writing from the CPU
922          * perspective, requiring manual detiling by the client.
923          */
924         if (obj->phys_obj) {
925                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
926                 goto out;
927         }
928
929         if (obj->cache_level == I915_CACHE_NONE &&
930             obj->tiling_mode == I915_TILING_NONE &&
931             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
933                 /* Note that the gtt paths might fail with non-page-backed user
934                  * pointers (e.g. gtt mappings when moving data between
935                  * textures). Fallback to the shmem path in that case. */
936         }
937
938         if (ret == -EFAULT || ret == -ENOSPC)
939                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940
941 out:
942         drm_gem_object_unreference(&obj->base);
943 unlock:
944         mutex_unlock(&dev->struct_mutex);
945         return ret;
946 }
947
948 int
949 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
950                      bool interruptible)
951 {
952         if (atomic_read(&dev_priv->mm.wedged)) {
953                 struct completion *x = &dev_priv->error_completion;
954                 bool recovery_complete;
955                 unsigned long flags;
956
957                 /* Give the error handler a chance to run. */
958                 spin_lock_irqsave(&x->wait.lock, flags);
959                 recovery_complete = x->done > 0;
960                 spin_unlock_irqrestore(&x->wait.lock, flags);
961
962                 /* Non-interruptible callers can't handle -EAGAIN, hence return
963                  * -EIO unconditionally for these. */
964                 if (!interruptible)
965                         return -EIO;
966
967                 /* Recovery complete, but still wedged means reset failure. */
968                 if (recovery_complete)
969                         return -EIO;
970
971                 return -EAGAIN;
972         }
973
974         return 0;
975 }
976
977 /*
978  * Compare seqno against outstanding lazy request. Emit a request if they are
979  * equal.
980  */
981 static int
982 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
983 {
984         int ret;
985
986         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
987
988         ret = 0;
989         if (seqno == ring->outstanding_lazy_request)
990                 ret = i915_add_request(ring, NULL, NULL);
991
992         return ret;
993 }
994
995 /**
996  * __wait_seqno - wait until execution of seqno has finished
997  * @ring: the ring expected to report seqno
998  * @seqno: duh!
999  * @interruptible: do an interruptible wait (normally yes)
1000  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1001  *
1002  * Returns 0 if the seqno was found within the alloted time. Else returns the
1003  * errno with remaining time filled in timeout argument.
1004  */
1005 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1006                         bool interruptible, struct timespec *timeout)
1007 {
1008         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1009         struct timespec before, now, wait_time={1,0};
1010         unsigned long timeout_jiffies;
1011         long end;
1012         bool wait_forever = true;
1013         int ret;
1014
1015         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1016                 return 0;
1017
1018         trace_i915_gem_request_wait_begin(ring, seqno);
1019
1020         if (timeout != NULL) {
1021                 wait_time = *timeout;
1022                 wait_forever = false;
1023         }
1024
1025         timeout_jiffies = timespec_to_jiffies(&wait_time);
1026
1027         if (WARN_ON(!ring->irq_get(ring)))
1028                 return -ENODEV;
1029
1030         /* Record current time in case interrupted by signal, or wedged * */
1031         getrawmonotonic(&before);
1032
1033 #define EXIT_COND \
1034         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1035         atomic_read(&dev_priv->mm.wedged))
1036         do {
1037                 if (interruptible)
1038                         end = wait_event_interruptible_timeout(ring->irq_queue,
1039                                                                EXIT_COND,
1040                                                                timeout_jiffies);
1041                 else
1042                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1043                                                  timeout_jiffies);
1044
1045                 ret = i915_gem_check_wedge(dev_priv, interruptible);
1046                 if (ret)
1047                         end = ret;
1048         } while (end == 0 && wait_forever);
1049
1050         getrawmonotonic(&now);
1051
1052         ring->irq_put(ring);
1053         trace_i915_gem_request_wait_end(ring, seqno);
1054 #undef EXIT_COND
1055
1056         if (timeout) {
1057                 struct timespec sleep_time = timespec_sub(now, before);
1058                 *timeout = timespec_sub(*timeout, sleep_time);
1059         }
1060
1061         switch (end) {
1062         case -EIO:
1063         case -EAGAIN: /* Wedged */
1064         case -ERESTARTSYS: /* Signal */
1065                 return (int)end;
1066         case 0: /* Timeout */
1067                 if (timeout)
1068                         set_normalized_timespec(timeout, 0, 0);
1069                 return -ETIME;
1070         default: /* Completed */
1071                 WARN_ON(end < 0); /* We're not aware of other errors */
1072                 return 0;
1073         }
1074 }
1075
1076 /**
1077  * Waits for a sequence number to be signaled, and cleans up the
1078  * request and object lists appropriately for that event.
1079  */
1080 int
1081 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1082 {
1083         struct drm_device *dev = ring->dev;
1084         struct drm_i915_private *dev_priv = dev->dev_private;
1085         bool interruptible = dev_priv->mm.interruptible;
1086         int ret;
1087
1088         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1089         BUG_ON(seqno == 0);
1090
1091         ret = i915_gem_check_wedge(dev_priv, interruptible);
1092         if (ret)
1093                 return ret;
1094
1095         ret = i915_gem_check_olr(ring, seqno);
1096         if (ret)
1097                 return ret;
1098
1099         return __wait_seqno(ring, seqno, interruptible, NULL);
1100 }
1101
1102 /**
1103  * Ensures that all rendering to the object has completed and the object is
1104  * safe to unbind from the GTT or access from the CPU.
1105  */
1106 static __must_check int
1107 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1108                                bool readonly)
1109 {
1110         struct intel_ring_buffer *ring = obj->ring;
1111         u32 seqno;
1112         int ret;
1113
1114         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1115         if (seqno == 0)
1116                 return 0;
1117
1118         ret = i915_wait_seqno(ring, seqno);
1119         if (ret)
1120                 return ret;
1121
1122         i915_gem_retire_requests_ring(ring);
1123
1124         /* Manually manage the write flush as we may have not yet
1125          * retired the buffer.
1126          */
1127         if (obj->last_write_seqno &&
1128             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1129                 obj->last_write_seqno = 0;
1130                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1131         }
1132
1133         return 0;
1134 }
1135
1136 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1137  * as the object state may change during this call.
1138  */
1139 static __must_check int
1140 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1141                                             bool readonly)
1142 {
1143         struct drm_device *dev = obj->base.dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         struct intel_ring_buffer *ring = obj->ring;
1146         u32 seqno;
1147         int ret;
1148
1149         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1150         BUG_ON(!dev_priv->mm.interruptible);
1151
1152         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1153         if (seqno == 0)
1154                 return 0;
1155
1156         ret = i915_gem_check_wedge(dev_priv, true);
1157         if (ret)
1158                 return ret;
1159
1160         ret = i915_gem_check_olr(ring, seqno);
1161         if (ret)
1162                 return ret;
1163
1164         mutex_unlock(&dev->struct_mutex);
1165         ret = __wait_seqno(ring, seqno, true, NULL);
1166         mutex_lock(&dev->struct_mutex);
1167
1168         i915_gem_retire_requests_ring(ring);
1169
1170         /* Manually manage the write flush as we may have not yet
1171          * retired the buffer.
1172          */
1173         if (obj->last_write_seqno &&
1174             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1175                 obj->last_write_seqno = 0;
1176                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1177         }
1178
1179         return ret;
1180 }
1181
1182 /**
1183  * Called when user space prepares to use an object with the CPU, either
1184  * through the mmap ioctl's mapping or a GTT mapping.
1185  */
1186 int
1187 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1188                           struct drm_file *file)
1189 {
1190         struct drm_i915_gem_set_domain *args = data;
1191         struct drm_i915_gem_object *obj;
1192         uint32_t read_domains = args->read_domains;
1193         uint32_t write_domain = args->write_domain;
1194         int ret;
1195
1196         /* Only handle setting domains to types used by the CPU. */
1197         if (write_domain & I915_GEM_GPU_DOMAINS)
1198                 return -EINVAL;
1199
1200         if (read_domains & I915_GEM_GPU_DOMAINS)
1201                 return -EINVAL;
1202
1203         /* Having something in the write domain implies it's in the read
1204          * domain, and only that read domain.  Enforce that in the request.
1205          */
1206         if (write_domain != 0 && read_domains != write_domain)
1207                 return -EINVAL;
1208
1209         ret = i915_mutex_lock_interruptible(dev);
1210         if (ret)
1211                 return ret;
1212
1213         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1214         if (&obj->base == NULL) {
1215                 ret = -ENOENT;
1216                 goto unlock;
1217         }
1218
1219         /* Try to flush the object off the GPU without holding the lock.
1220          * We will repeat the flush holding the lock in the normal manner
1221          * to catch cases where we are gazumped.
1222          */
1223         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1224         if (ret)
1225                 goto unref;
1226
1227         if (read_domains & I915_GEM_DOMAIN_GTT) {
1228                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1229
1230                 /* Silently promote "you're not bound, there was nothing to do"
1231                  * to success, since the client was just asking us to
1232                  * make sure everything was done.
1233                  */
1234                 if (ret == -EINVAL)
1235                         ret = 0;
1236         } else {
1237                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1238         }
1239
1240 unref:
1241         drm_gem_object_unreference(&obj->base);
1242 unlock:
1243         mutex_unlock(&dev->struct_mutex);
1244         return ret;
1245 }
1246
1247 /**
1248  * Called when user space has done writes to this buffer
1249  */
1250 int
1251 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1252                          struct drm_file *file)
1253 {
1254         struct drm_i915_gem_sw_finish *args = data;
1255         struct drm_i915_gem_object *obj;
1256         int ret = 0;
1257
1258         ret = i915_mutex_lock_interruptible(dev);
1259         if (ret)
1260                 return ret;
1261
1262         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1263         if (&obj->base == NULL) {
1264                 ret = -ENOENT;
1265                 goto unlock;
1266         }
1267
1268         /* Pinned buffers may be scanout, so flush the cache */
1269         if (obj->pin_count)
1270                 i915_gem_object_flush_cpu_write_domain(obj);
1271
1272         drm_gem_object_unreference(&obj->base);
1273 unlock:
1274         mutex_unlock(&dev->struct_mutex);
1275         return ret;
1276 }
1277
1278 /**
1279  * Maps the contents of an object, returning the address it is mapped
1280  * into.
1281  *
1282  * While the mapping holds a reference on the contents of the object, it doesn't
1283  * imply a ref on the object itself.
1284  */
1285 int
1286 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1287                     struct drm_file *file)
1288 {
1289         struct drm_i915_gem_mmap *args = data;
1290         struct drm_gem_object *obj;
1291         unsigned long addr;
1292
1293         obj = drm_gem_object_lookup(dev, file, args->handle);
1294         if (obj == NULL)
1295                 return -ENOENT;
1296
1297         /* prime objects have no backing filp to GEM mmap
1298          * pages from.
1299          */
1300         if (!obj->filp) {
1301                 drm_gem_object_unreference_unlocked(obj);
1302                 return -EINVAL;
1303         }
1304
1305         addr = vm_mmap(obj->filp, 0, args->size,
1306                        PROT_READ | PROT_WRITE, MAP_SHARED,
1307                        args->offset);
1308         drm_gem_object_unreference_unlocked(obj);
1309         if (IS_ERR((void *)addr))
1310                 return addr;
1311
1312         args->addr_ptr = (uint64_t) addr;
1313
1314         return 0;
1315 }
1316
1317 /**
1318  * i915_gem_fault - fault a page into the GTT
1319  * vma: VMA in question
1320  * vmf: fault info
1321  *
1322  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1323  * from userspace.  The fault handler takes care of binding the object to
1324  * the GTT (if needed), allocating and programming a fence register (again,
1325  * only if needed based on whether the old reg is still valid or the object
1326  * is tiled) and inserting a new PTE into the faulting process.
1327  *
1328  * Note that the faulting process may involve evicting existing objects
1329  * from the GTT and/or fence registers to make room.  So performance may
1330  * suffer if the GTT working set is large or there are few fence registers
1331  * left.
1332  */
1333 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1334 {
1335         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1336         struct drm_device *dev = obj->base.dev;
1337         drm_i915_private_t *dev_priv = dev->dev_private;
1338         pgoff_t page_offset;
1339         unsigned long pfn;
1340         int ret = 0;
1341         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1342
1343         /* We don't use vmf->pgoff since that has the fake offset */
1344         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1345                 PAGE_SHIFT;
1346
1347         ret = i915_mutex_lock_interruptible(dev);
1348         if (ret)
1349                 goto out;
1350
1351         trace_i915_gem_object_fault(obj, page_offset, true, write);
1352
1353         /* Now bind it into the GTT if needed */
1354         if (!obj->map_and_fenceable) {
1355                 ret = i915_gem_object_unbind(obj);
1356                 if (ret)
1357                         goto unlock;
1358         }
1359         if (!obj->gtt_space) {
1360                 ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
1361                 if (ret)
1362                         goto unlock;
1363
1364                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1365                 if (ret)
1366                         goto unlock;
1367         }
1368
1369         if (!obj->has_global_gtt_mapping)
1370                 i915_gem_gtt_bind_object(obj, obj->cache_level);
1371
1372         ret = i915_gem_object_get_fence(obj);
1373         if (ret)
1374                 goto unlock;
1375
1376         if (i915_gem_object_is_inactive(obj))
1377                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1378
1379         obj->fault_mappable = true;
1380
1381         pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1382                 page_offset;
1383
1384         /* Finally, remap it using the new GTT offset */
1385         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1386 unlock:
1387         mutex_unlock(&dev->struct_mutex);
1388 out:
1389         switch (ret) {
1390         case -EIO:
1391                 /* If this -EIO is due to a gpu hang, give the reset code a
1392                  * chance to clean up the mess. Otherwise return the proper
1393                  * SIGBUS. */
1394                 if (!atomic_read(&dev_priv->mm.wedged))
1395                         return VM_FAULT_SIGBUS;
1396         case -EAGAIN:
1397                 /* Give the error handler a chance to run and move the
1398                  * objects off the GPU active list. Next time we service the
1399                  * fault, we should be able to transition the page into the
1400                  * GTT without touching the GPU (and so avoid further
1401                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1402                  * with coherency, just lost writes.
1403                  */
1404                 set_need_resched();
1405         case 0:
1406         case -ERESTARTSYS:
1407         case -EINTR:
1408                 return VM_FAULT_NOPAGE;
1409         case -ENOMEM:
1410                 return VM_FAULT_OOM;
1411         default:
1412                 return VM_FAULT_SIGBUS;
1413         }
1414 }
1415
1416 /**
1417  * i915_gem_release_mmap - remove physical page mappings
1418  * @obj: obj in question
1419  *
1420  * Preserve the reservation of the mmapping with the DRM core code, but
1421  * relinquish ownership of the pages back to the system.
1422  *
1423  * It is vital that we remove the page mapping if we have mapped a tiled
1424  * object through the GTT and then lose the fence register due to
1425  * resource pressure. Similarly if the object has been moved out of the
1426  * aperture, than pages mapped into userspace must be revoked. Removing the
1427  * mapping will then trigger a page fault on the next user access, allowing
1428  * fixup by i915_gem_fault().
1429  */
1430 void
1431 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1432 {
1433         if (!obj->fault_mappable)
1434                 return;
1435
1436         if (obj->base.dev->dev_mapping)
1437                 unmap_mapping_range(obj->base.dev->dev_mapping,
1438                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1439                                     obj->base.size, 1);
1440
1441         obj->fault_mappable = false;
1442 }
1443
1444 static uint32_t
1445 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1446 {
1447         uint32_t gtt_size;
1448
1449         if (INTEL_INFO(dev)->gen >= 4 ||
1450             tiling_mode == I915_TILING_NONE)
1451                 return size;
1452
1453         /* Previous chips need a power-of-two fence region when tiling */
1454         if (INTEL_INFO(dev)->gen == 3)
1455                 gtt_size = 1024*1024;
1456         else
1457                 gtt_size = 512*1024;
1458
1459         while (gtt_size < size)
1460                 gtt_size <<= 1;
1461
1462         return gtt_size;
1463 }
1464
1465 /**
1466  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1467  * @obj: object to check
1468  *
1469  * Return the required GTT alignment for an object, taking into account
1470  * potential fence register mapping.
1471  */
1472 static uint32_t
1473 i915_gem_get_gtt_alignment(struct drm_device *dev,
1474                            uint32_t size,
1475                            int tiling_mode)
1476 {
1477         /*
1478          * Minimum alignment is 4k (GTT page size), but might be greater
1479          * if a fence register is needed for the object.
1480          */
1481         if (INTEL_INFO(dev)->gen >= 4 ||
1482             tiling_mode == I915_TILING_NONE)
1483                 return 4096;
1484
1485         /*
1486          * Previous chips need to be aligned to the size of the smallest
1487          * fence register that can contain the object.
1488          */
1489         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1490 }
1491
1492 /**
1493  * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1494  *                                       unfenced object
1495  * @dev: the device
1496  * @size: size of the object
1497  * @tiling_mode: tiling mode of the object
1498  *
1499  * Return the required GTT alignment for an object, only taking into account
1500  * unfenced tiled surface requirements.
1501  */
1502 uint32_t
1503 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1504                                     uint32_t size,
1505                                     int tiling_mode)
1506 {
1507         /*
1508          * Minimum alignment is 4k (GTT page size) for sane hw.
1509          */
1510         if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1511             tiling_mode == I915_TILING_NONE)
1512                 return 4096;
1513
1514         /* Previous hardware however needs to be aligned to a power-of-two
1515          * tile height. The simplest method for determining this is to reuse
1516          * the power-of-tile object size.
1517          */
1518         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1519 }
1520
1521 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1524         int ret;
1525
1526         if (obj->base.map_list.map)
1527                 return 0;
1528
1529         ret = drm_gem_create_mmap_offset(&obj->base);
1530         if (ret != -ENOSPC)
1531                 return ret;
1532
1533         /* Badly fragmented mmap space? The only way we can recover
1534          * space is by destroying unwanted objects. We can't randomly release
1535          * mmap_offsets as userspace expects them to be persistent for the
1536          * lifetime of the objects. The closest we can is to release the
1537          * offsets on purgeable objects by truncating it and marking it purged,
1538          * which prevents userspace from ever using that object again.
1539          */
1540         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1541         ret = drm_gem_create_mmap_offset(&obj->base);
1542         if (ret != -ENOSPC)
1543                 return ret;
1544
1545         i915_gem_shrink_all(dev_priv);
1546         return drm_gem_create_mmap_offset(&obj->base);
1547 }
1548
1549 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1550 {
1551         if (!obj->base.map_list.map)
1552                 return;
1553
1554         drm_gem_free_mmap_offset(&obj->base);
1555 }
1556
1557 int
1558 i915_gem_mmap_gtt(struct drm_file *file,
1559                   struct drm_device *dev,
1560                   uint32_t handle,
1561                   uint64_t *offset)
1562 {
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         struct drm_i915_gem_object *obj;
1565         int ret;
1566
1567         ret = i915_mutex_lock_interruptible(dev);
1568         if (ret)
1569                 return ret;
1570
1571         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1572         if (&obj->base == NULL) {
1573                 ret = -ENOENT;
1574                 goto unlock;
1575         }
1576
1577         if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1578                 ret = -E2BIG;
1579                 goto out;
1580         }
1581
1582         if (obj->madv != I915_MADV_WILLNEED) {
1583                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1584                 ret = -EINVAL;
1585                 goto out;
1586         }
1587
1588         ret = i915_gem_object_create_mmap_offset(obj);
1589         if (ret)
1590                 goto out;
1591
1592         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1593
1594 out:
1595         drm_gem_object_unreference(&obj->base);
1596 unlock:
1597         mutex_unlock(&dev->struct_mutex);
1598         return ret;
1599 }
1600
1601 /**
1602  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1603  * @dev: DRM device
1604  * @data: GTT mapping ioctl data
1605  * @file: GEM object info
1606  *
1607  * Simply returns the fake offset to userspace so it can mmap it.
1608  * The mmap call will end up in drm_gem_mmap(), which will set things
1609  * up so we can get faults in the handler above.
1610  *
1611  * The fault handler will take care of binding the object into the GTT
1612  * (since it may have been evicted to make room for something), allocating
1613  * a fence register, and mapping the appropriate aperture address into
1614  * userspace.
1615  */
1616 int
1617 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1618                         struct drm_file *file)
1619 {
1620         struct drm_i915_gem_mmap_gtt *args = data;
1621
1622         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1623 }
1624
1625 /* Immediately discard the backing storage */
1626 static void
1627 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1628 {
1629         struct inode *inode;
1630
1631         i915_gem_object_free_mmap_offset(obj);
1632
1633         if (obj->base.filp == NULL)
1634                 return;
1635
1636         /* Our goal here is to return as much of the memory as
1637          * is possible back to the system as we are called from OOM.
1638          * To do this we must instruct the shmfs to drop all of its
1639          * backing pages, *now*.
1640          */
1641         inode = obj->base.filp->f_path.dentry->d_inode;
1642         shmem_truncate_range(inode, 0, (loff_t)-1);
1643
1644         obj->madv = __I915_MADV_PURGED;
1645 }
1646
1647 static inline int
1648 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1649 {
1650         return obj->madv == I915_MADV_DONTNEED;
1651 }
1652
1653 static int
1654 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1655 {
1656         int page_count = obj->base.size / PAGE_SIZE;
1657         int ret, i;
1658
1659         BUG_ON(obj->gtt_space);
1660
1661         if (obj->pages == NULL)
1662                 return 0;
1663
1664         BUG_ON(obj->gtt_space);
1665         BUG_ON(obj->madv == __I915_MADV_PURGED);
1666
1667         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1668         if (ret) {
1669                 /* In the event of a disaster, abandon all caches and
1670                  * hope for the best.
1671                  */
1672                 WARN_ON(ret != -EIO);
1673                 i915_gem_clflush_object(obj);
1674                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1675         }
1676
1677         if (i915_gem_object_needs_bit17_swizzle(obj))
1678                 i915_gem_object_save_bit_17_swizzle(obj);
1679
1680         if (obj->madv == I915_MADV_DONTNEED)
1681                 obj->dirty = 0;
1682
1683         for (i = 0; i < page_count; i++) {
1684                 if (obj->dirty)
1685                         set_page_dirty(obj->pages[i]);
1686
1687                 if (obj->madv == I915_MADV_WILLNEED)
1688                         mark_page_accessed(obj->pages[i]);
1689
1690                 page_cache_release(obj->pages[i]);
1691         }
1692         obj->dirty = 0;
1693
1694         drm_free_large(obj->pages);
1695         obj->pages = NULL;
1696
1697         list_del(&obj->gtt_list);
1698
1699         if (i915_gem_object_is_purgeable(obj))
1700                 i915_gem_object_truncate(obj);
1701
1702         return 0;
1703 }
1704
1705 static long
1706 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1707 {
1708         struct drm_i915_gem_object *obj, *next;
1709         long count = 0;
1710
1711         list_for_each_entry_safe(obj, next,
1712                                  &dev_priv->mm.unbound_list,
1713                                  gtt_list) {
1714                 if (i915_gem_object_is_purgeable(obj) &&
1715                     i915_gem_object_put_pages_gtt(obj) == 0) {
1716                         count += obj->base.size >> PAGE_SHIFT;
1717                         if (count >= target)
1718                                 return count;
1719                 }
1720         }
1721
1722         list_for_each_entry_safe(obj, next,
1723                                  &dev_priv->mm.inactive_list,
1724                                  mm_list) {
1725                 if (i915_gem_object_is_purgeable(obj) &&
1726                     i915_gem_object_unbind(obj) == 0 &&
1727                     i915_gem_object_put_pages_gtt(obj) == 0) {
1728                         count += obj->base.size >> PAGE_SHIFT;
1729                         if (count >= target)
1730                                 return count;
1731                 }
1732         }
1733
1734         return count;
1735 }
1736
1737 static void
1738 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1739 {
1740         struct drm_i915_gem_object *obj, *next;
1741
1742         i915_gem_evict_everything(dev_priv->dev);
1743
1744         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1745                 i915_gem_object_put_pages_gtt(obj);
1746 }
1747
1748 int
1749 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1750 {
1751         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1752         int page_count, i;
1753         struct address_space *mapping;
1754         struct page *page;
1755         gfp_t gfp;
1756
1757         if (obj->pages || obj->sg_table)
1758                 return 0;
1759
1760         /* Assert that the object is not currently in any GPU domain. As it
1761          * wasn't in the GTT, there shouldn't be any way it could have been in
1762          * a GPU cache
1763          */
1764         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1765         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1766
1767         /* Get the list of pages out of our struct file.  They'll be pinned
1768          * at this point until we release them.
1769          */
1770         page_count = obj->base.size / PAGE_SIZE;
1771         obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1772         if (obj->pages == NULL)
1773                 return -ENOMEM;
1774
1775         /* Fail silently without starting the shrinker */
1776         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1777         gfp = mapping_gfp_mask(mapping);
1778         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779         gfp &= ~(__GFP_IO | __GFP_WAIT);
1780         for (i = 0; i < page_count; i++) {
1781                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1782                 if (IS_ERR(page)) {
1783                         i915_gem_purge(dev_priv, page_count);
1784                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785                 }
1786                 if (IS_ERR(page)) {
1787                         /* We've tried hard to allocate the memory by reaping
1788                          * our own buffer, now let the real VM do its job and
1789                          * go down in flames if truly OOM.
1790                          */
1791                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1792                         gfp |= __GFP_IO | __GFP_WAIT;
1793
1794                         i915_gem_shrink_all(dev_priv);
1795                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1796                         if (IS_ERR(page))
1797                                 goto err_pages;
1798
1799                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1800                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1801                 }
1802
1803                 obj->pages[i] = page;
1804         }
1805
1806         if (i915_gem_object_needs_bit17_swizzle(obj))
1807                 i915_gem_object_do_bit_17_swizzle(obj);
1808
1809         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1810         return 0;
1811
1812 err_pages:
1813         while (i--)
1814                 page_cache_release(obj->pages[i]);
1815
1816         drm_free_large(obj->pages);
1817         obj->pages = NULL;
1818         return PTR_ERR(page);
1819 }
1820
1821 void
1822 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1823                                struct intel_ring_buffer *ring,
1824                                u32 seqno)
1825 {
1826         struct drm_device *dev = obj->base.dev;
1827         struct drm_i915_private *dev_priv = dev->dev_private;
1828
1829         BUG_ON(ring == NULL);
1830         obj->ring = ring;
1831
1832         /* Add a reference if we're newly entering the active list. */
1833         if (!obj->active) {
1834                 drm_gem_object_reference(&obj->base);
1835                 obj->active = 1;
1836         }
1837
1838         /* Move from whatever list we were on to the tail of execution. */
1839         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1840         list_move_tail(&obj->ring_list, &ring->active_list);
1841
1842         obj->last_read_seqno = seqno;
1843
1844         if (obj->fenced_gpu_access) {
1845                 obj->last_fenced_seqno = seqno;
1846
1847                 /* Bump MRU to take account of the delayed flush */
1848                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1849                         struct drm_i915_fence_reg *reg;
1850
1851                         reg = &dev_priv->fence_regs[obj->fence_reg];
1852                         list_move_tail(&reg->lru_list,
1853                                        &dev_priv->mm.fence_list);
1854                 }
1855         }
1856 }
1857
1858 static void
1859 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1860 {
1861         struct drm_device *dev = obj->base.dev;
1862         struct drm_i915_private *dev_priv = dev->dev_private;
1863
1864         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1865         BUG_ON(!obj->active);
1866
1867         if (obj->pin_count) /* are we a framebuffer? */
1868                 intel_mark_fb_idle(obj);
1869
1870         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1871
1872         list_del_init(&obj->ring_list);
1873         obj->ring = NULL;
1874
1875         obj->last_read_seqno = 0;
1876         obj->last_write_seqno = 0;
1877         obj->base.write_domain = 0;
1878
1879         obj->last_fenced_seqno = 0;
1880         obj->fenced_gpu_access = false;
1881
1882         obj->active = 0;
1883         drm_gem_object_unreference(&obj->base);
1884
1885         WARN_ON(i915_verify_lists(dev));
1886 }
1887
1888 static u32
1889 i915_gem_get_seqno(struct drm_device *dev)
1890 {
1891         drm_i915_private_t *dev_priv = dev->dev_private;
1892         u32 seqno = dev_priv->next_seqno;
1893
1894         /* reserve 0 for non-seqno */
1895         if (++dev_priv->next_seqno == 0)
1896                 dev_priv->next_seqno = 1;
1897
1898         return seqno;
1899 }
1900
1901 u32
1902 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1903 {
1904         if (ring->outstanding_lazy_request == 0)
1905                 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1906
1907         return ring->outstanding_lazy_request;
1908 }
1909
1910 int
1911 i915_add_request(struct intel_ring_buffer *ring,
1912                  struct drm_file *file,
1913                  struct drm_i915_gem_request *request)
1914 {
1915         drm_i915_private_t *dev_priv = ring->dev->dev_private;
1916         uint32_t seqno;
1917         u32 request_ring_position;
1918         int was_empty;
1919         int ret;
1920
1921         /*
1922          * Emit any outstanding flushes - execbuf can fail to emit the flush
1923          * after having emitted the batchbuffer command. Hence we need to fix
1924          * things up similar to emitting the lazy request. The difference here
1925          * is that the flush _must_ happen before the next request, no matter
1926          * what.
1927          */
1928         ret = intel_ring_flush_all_caches(ring);
1929         if (ret)
1930                 return ret;
1931
1932         if (request == NULL) {
1933                 request = kmalloc(sizeof(*request), GFP_KERNEL);
1934                 if (request == NULL)
1935                         return -ENOMEM;
1936         }
1937
1938         seqno = i915_gem_next_request_seqno(ring);
1939
1940         /* Record the position of the start of the request so that
1941          * should we detect the updated seqno part-way through the
1942          * GPU processing the request, we never over-estimate the
1943          * position of the head.
1944          */
1945         request_ring_position = intel_ring_get_tail(ring);
1946
1947         ret = ring->add_request(ring, &seqno);
1948         if (ret) {
1949                 kfree(request);
1950                 return ret;
1951         }
1952
1953         trace_i915_gem_request_add(ring, seqno);
1954
1955         request->seqno = seqno;
1956         request->ring = ring;
1957         request->tail = request_ring_position;
1958         request->emitted_jiffies = jiffies;
1959         was_empty = list_empty(&ring->request_list);
1960         list_add_tail(&request->list, &ring->request_list);
1961         request->file_priv = NULL;
1962
1963         if (file) {
1964                 struct drm_i915_file_private *file_priv = file->driver_priv;
1965
1966                 spin_lock(&file_priv->mm.lock);
1967                 request->file_priv = file_priv;
1968                 list_add_tail(&request->client_list,
1969                               &file_priv->mm.request_list);
1970                 spin_unlock(&file_priv->mm.lock);
1971         }
1972
1973         ring->outstanding_lazy_request = 0;
1974
1975         if (!dev_priv->mm.suspended) {
1976                 if (i915_enable_hangcheck) {
1977                         mod_timer(&dev_priv->hangcheck_timer,
1978                                   jiffies +
1979                                   msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1980                 }
1981                 if (was_empty) {
1982                         queue_delayed_work(dev_priv->wq,
1983                                            &dev_priv->mm.retire_work, HZ);
1984                         intel_mark_busy(dev_priv->dev);
1985                 }
1986         }
1987
1988         return 0;
1989 }
1990
1991 static inline void
1992 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1993 {
1994         struct drm_i915_file_private *file_priv = request->file_priv;
1995
1996         if (!file_priv)
1997                 return;
1998
1999         spin_lock(&file_priv->mm.lock);
2000         if (request->file_priv) {
2001                 list_del(&request->client_list);
2002                 request->file_priv = NULL;
2003         }
2004         spin_unlock(&file_priv->mm.lock);
2005 }
2006
2007 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2008                                       struct intel_ring_buffer *ring)
2009 {
2010         while (!list_empty(&ring->request_list)) {
2011                 struct drm_i915_gem_request *request;
2012
2013                 request = list_first_entry(&ring->request_list,
2014                                            struct drm_i915_gem_request,
2015                                            list);
2016
2017                 list_del(&request->list);
2018                 i915_gem_request_remove_from_client(request);
2019                 kfree(request);
2020         }
2021
2022         while (!list_empty(&ring->active_list)) {
2023                 struct drm_i915_gem_object *obj;
2024
2025                 obj = list_first_entry(&ring->active_list,
2026                                        struct drm_i915_gem_object,
2027                                        ring_list);
2028
2029                 i915_gem_object_move_to_inactive(obj);
2030         }
2031 }
2032
2033 static void i915_gem_reset_fences(struct drm_device *dev)
2034 {
2035         struct drm_i915_private *dev_priv = dev->dev_private;
2036         int i;
2037
2038         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2039                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2040
2041                 i915_gem_write_fence(dev, i, NULL);
2042
2043                 if (reg->obj)
2044                         i915_gem_object_fence_lost(reg->obj);
2045
2046                 reg->pin_count = 0;
2047                 reg->obj = NULL;
2048                 INIT_LIST_HEAD(&reg->lru_list);
2049         }
2050
2051         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2052 }
2053
2054 void i915_gem_reset(struct drm_device *dev)
2055 {
2056         struct drm_i915_private *dev_priv = dev->dev_private;
2057         struct drm_i915_gem_object *obj;
2058         struct intel_ring_buffer *ring;
2059         int i;
2060
2061         for_each_ring(ring, dev_priv, i)
2062                 i915_gem_reset_ring_lists(dev_priv, ring);
2063
2064         /* Move everything out of the GPU domains to ensure we do any
2065          * necessary invalidation upon reuse.
2066          */
2067         list_for_each_entry(obj,
2068                             &dev_priv->mm.inactive_list,
2069                             mm_list)
2070         {
2071                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2072         }
2073
2074
2075         /* The fence registers are invalidated so clear them out */
2076         i915_gem_reset_fences(dev);
2077 }
2078
2079 /**
2080  * This function clears the request list as sequence numbers are passed.
2081  */
2082 void
2083 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2084 {
2085         uint32_t seqno;
2086         int i;
2087
2088         if (list_empty(&ring->request_list))
2089                 return;
2090
2091         WARN_ON(i915_verify_lists(ring->dev));
2092
2093         seqno = ring->get_seqno(ring, true);
2094
2095         for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
2096                 if (seqno >= ring->sync_seqno[i])
2097                         ring->sync_seqno[i] = 0;
2098
2099         while (!list_empty(&ring->request_list)) {
2100                 struct drm_i915_gem_request *request;
2101
2102                 request = list_first_entry(&ring->request_list,
2103                                            struct drm_i915_gem_request,
2104                                            list);
2105
2106                 if (!i915_seqno_passed(seqno, request->seqno))
2107                         break;
2108
2109                 trace_i915_gem_request_retire(ring, request->seqno);
2110                 /* We know the GPU must have read the request to have
2111                  * sent us the seqno + interrupt, so use the position
2112                  * of tail of the request to update the last known position
2113                  * of the GPU head.
2114                  */
2115                 ring->last_retired_head = request->tail;
2116
2117                 list_del(&request->list);
2118                 i915_gem_request_remove_from_client(request);
2119                 kfree(request);
2120         }
2121
2122         /* Move any buffers on the active list that are no longer referenced
2123          * by the ringbuffer to the flushing/inactive lists as appropriate.
2124          */
2125         while (!list_empty(&ring->active_list)) {
2126                 struct drm_i915_gem_object *obj;
2127
2128                 obj = list_first_entry(&ring->active_list,
2129                                       struct drm_i915_gem_object,
2130                                       ring_list);
2131
2132                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2133                         break;
2134
2135                 i915_gem_object_move_to_inactive(obj);
2136         }
2137
2138         if (unlikely(ring->trace_irq_seqno &&
2139                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2140                 ring->irq_put(ring);
2141                 ring->trace_irq_seqno = 0;
2142         }
2143
2144         WARN_ON(i915_verify_lists(ring->dev));
2145 }
2146
2147 void
2148 i915_gem_retire_requests(struct drm_device *dev)
2149 {
2150         drm_i915_private_t *dev_priv = dev->dev_private;
2151         struct intel_ring_buffer *ring;
2152         int i;
2153
2154         for_each_ring(ring, dev_priv, i)
2155                 i915_gem_retire_requests_ring(ring);
2156 }
2157
2158 static void
2159 i915_gem_retire_work_handler(struct work_struct *work)
2160 {
2161         drm_i915_private_t *dev_priv;
2162         struct drm_device *dev;
2163         struct intel_ring_buffer *ring;
2164         bool idle;
2165         int i;
2166
2167         dev_priv = container_of(work, drm_i915_private_t,
2168                                 mm.retire_work.work);
2169         dev = dev_priv->dev;
2170
2171         /* Come back later if the device is busy... */
2172         if (!mutex_trylock(&dev->struct_mutex)) {
2173                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2174                 return;
2175         }
2176
2177         i915_gem_retire_requests(dev);
2178
2179         /* Send a periodic flush down the ring so we don't hold onto GEM
2180          * objects indefinitely.
2181          */
2182         idle = true;
2183         for_each_ring(ring, dev_priv, i) {
2184                 if (ring->gpu_caches_dirty)
2185                         i915_add_request(ring, NULL, NULL);
2186
2187                 idle &= list_empty(&ring->request_list);
2188         }
2189
2190         if (!dev_priv->mm.suspended && !idle)
2191                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2192         if (idle)
2193                 intel_mark_idle(dev);
2194
2195         mutex_unlock(&dev->struct_mutex);
2196 }
2197
2198 /**
2199  * Ensures that an object will eventually get non-busy by flushing any required
2200  * write domains, emitting any outstanding lazy request and retiring and
2201  * completed requests.
2202  */
2203 static int
2204 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2205 {
2206         int ret;
2207
2208         if (obj->active) {
2209                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2210                 if (ret)
2211                         return ret;
2212
2213                 i915_gem_retire_requests_ring(obj->ring);
2214         }
2215
2216         return 0;
2217 }
2218
2219 /**
2220  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2221  * @DRM_IOCTL_ARGS: standard ioctl arguments
2222  *
2223  * Returns 0 if successful, else an error is returned with the remaining time in
2224  * the timeout parameter.
2225  *  -ETIME: object is still busy after timeout
2226  *  -ERESTARTSYS: signal interrupted the wait
2227  *  -ENONENT: object doesn't exist
2228  * Also possible, but rare:
2229  *  -EAGAIN: GPU wedged
2230  *  -ENOMEM: damn
2231  *  -ENODEV: Internal IRQ fail
2232  *  -E?: The add request failed
2233  *
2234  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2235  * non-zero timeout parameter the wait ioctl will wait for the given number of
2236  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2237  * without holding struct_mutex the object may become re-busied before this
2238  * function completes. A similar but shorter * race condition exists in the busy
2239  * ioctl
2240  */
2241 int
2242 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2243 {
2244         struct drm_i915_gem_wait *args = data;
2245         struct drm_i915_gem_object *obj;
2246         struct intel_ring_buffer *ring = NULL;
2247         struct timespec timeout_stack, *timeout = NULL;
2248         u32 seqno = 0;
2249         int ret = 0;
2250
2251         if (args->timeout_ns >= 0) {
2252                 timeout_stack = ns_to_timespec(args->timeout_ns);
2253                 timeout = &timeout_stack;
2254         }
2255
2256         ret = i915_mutex_lock_interruptible(dev);
2257         if (ret)
2258                 return ret;
2259
2260         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2261         if (&obj->base == NULL) {
2262                 mutex_unlock(&dev->struct_mutex);
2263                 return -ENOENT;
2264         }
2265
2266         /* Need to make sure the object gets inactive eventually. */
2267         ret = i915_gem_object_flush_active(obj);
2268         if (ret)
2269                 goto out;
2270
2271         if (obj->active) {
2272                 seqno = obj->last_read_seqno;
2273                 ring = obj->ring;
2274         }
2275
2276         if (seqno == 0)
2277                  goto out;
2278
2279         /* Do this after OLR check to make sure we make forward progress polling
2280          * on this IOCTL with a 0 timeout (like busy ioctl)
2281          */
2282         if (!args->timeout_ns) {
2283                 ret = -ETIME;
2284                 goto out;
2285         }
2286
2287         drm_gem_object_unreference(&obj->base);
2288         mutex_unlock(&dev->struct_mutex);
2289
2290         ret = __wait_seqno(ring, seqno, true, timeout);
2291         if (timeout) {
2292                 WARN_ON(!timespec_valid(timeout));
2293                 args->timeout_ns = timespec_to_ns(timeout);
2294         }
2295         return ret;
2296
2297 out:
2298         drm_gem_object_unreference(&obj->base);
2299         mutex_unlock(&dev->struct_mutex);
2300         return ret;
2301 }
2302
2303 /**
2304  * i915_gem_object_sync - sync an object to a ring.
2305  *
2306  * @obj: object which may be in use on another ring.
2307  * @to: ring we wish to use the object on. May be NULL.
2308  *
2309  * This code is meant to abstract object synchronization with the GPU.
2310  * Calling with NULL implies synchronizing the object with the CPU
2311  * rather than a particular GPU ring.
2312  *
2313  * Returns 0 if successful, else propagates up the lower layer error.
2314  */
2315 int
2316 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2317                      struct intel_ring_buffer *to)
2318 {
2319         struct intel_ring_buffer *from = obj->ring;
2320         u32 seqno;
2321         int ret, idx;
2322
2323         if (from == NULL || to == from)
2324                 return 0;
2325
2326         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2327                 return i915_gem_object_wait_rendering(obj, false);
2328
2329         idx = intel_ring_sync_index(from, to);
2330
2331         seqno = obj->last_read_seqno;
2332         if (seqno <= from->sync_seqno[idx])
2333                 return 0;
2334
2335         ret = i915_gem_check_olr(obj->ring, seqno);
2336         if (ret)
2337                 return ret;
2338
2339         ret = to->sync_to(to, from, seqno);
2340         if (!ret)
2341                 from->sync_seqno[idx] = seqno;
2342
2343         return ret;
2344 }
2345
2346 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2347 {
2348         u32 old_write_domain, old_read_domains;
2349
2350         /* Act a barrier for all accesses through the GTT */
2351         mb();
2352
2353         /* Force a pagefault for domain tracking on next user access */
2354         i915_gem_release_mmap(obj);
2355
2356         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2357                 return;
2358
2359         old_read_domains = obj->base.read_domains;
2360         old_write_domain = obj->base.write_domain;
2361
2362         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2363         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2364
2365         trace_i915_gem_object_change_domain(obj,
2366                                             old_read_domains,
2367                                             old_write_domain);
2368 }
2369
2370 /**
2371  * Unbinds an object from the GTT aperture.
2372  */
2373 int
2374 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2375 {
2376         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2377         int ret = 0;
2378
2379         if (obj->gtt_space == NULL)
2380                 return 0;
2381
2382         if (obj->pin_count)
2383                 return -EBUSY;
2384
2385         BUG_ON(obj->pages == NULL);
2386
2387         ret = i915_gem_object_finish_gpu(obj);
2388         if (ret)
2389                 return ret;
2390         /* Continue on if we fail due to EIO, the GPU is hung so we
2391          * should be safe and we need to cleanup or else we might
2392          * cause memory corruption through use-after-free.
2393          */
2394
2395         i915_gem_object_finish_gtt(obj);
2396
2397         /* release the fence reg _after_ flushing */
2398         ret = i915_gem_object_put_fence(obj);
2399         if (ret)
2400                 return ret;
2401
2402         trace_i915_gem_object_unbind(obj);
2403
2404         if (obj->has_global_gtt_mapping)
2405                 i915_gem_gtt_unbind_object(obj);
2406         if (obj->has_aliasing_ppgtt_mapping) {
2407                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2408                 obj->has_aliasing_ppgtt_mapping = 0;
2409         }
2410         i915_gem_gtt_finish_object(obj);
2411
2412         list_del(&obj->mm_list);
2413         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2414         /* Avoid an unnecessary call to unbind on rebind. */
2415         obj->map_and_fenceable = true;
2416
2417         drm_mm_put_block(obj->gtt_space);
2418         obj->gtt_space = NULL;
2419         obj->gtt_offset = 0;
2420
2421         return 0;
2422 }
2423
2424 static int i915_ring_idle(struct intel_ring_buffer *ring)
2425 {
2426         if (list_empty(&ring->active_list))
2427                 return 0;
2428
2429         return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2430 }
2431
2432 int i915_gpu_idle(struct drm_device *dev)
2433 {
2434         drm_i915_private_t *dev_priv = dev->dev_private;
2435         struct intel_ring_buffer *ring;
2436         int ret, i;
2437
2438         /* Flush everything onto the inactive list. */
2439         for_each_ring(ring, dev_priv, i) {
2440                 ret = i915_ring_idle(ring);
2441                 if (ret)
2442                         return ret;
2443
2444                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2445                 if (ret)
2446                         return ret;
2447         }
2448
2449         return 0;
2450 }
2451
2452 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2453                                         struct drm_i915_gem_object *obj)
2454 {
2455         drm_i915_private_t *dev_priv = dev->dev_private;
2456         uint64_t val;
2457
2458         if (obj) {
2459                 u32 size = obj->gtt_space->size;
2460
2461                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2462                                  0xfffff000) << 32;
2463                 val |= obj->gtt_offset & 0xfffff000;
2464                 val |= (uint64_t)((obj->stride / 128) - 1) <<
2465                         SANDYBRIDGE_FENCE_PITCH_SHIFT;
2466
2467                 if (obj->tiling_mode == I915_TILING_Y)
2468                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2469                 val |= I965_FENCE_REG_VALID;
2470         } else
2471                 val = 0;
2472
2473         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2474         POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2475 }
2476
2477 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2478                                  struct drm_i915_gem_object *obj)
2479 {
2480         drm_i915_private_t *dev_priv = dev->dev_private;
2481         uint64_t val;
2482
2483         if (obj) {
2484                 u32 size = obj->gtt_space->size;
2485
2486                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2487                                  0xfffff000) << 32;
2488                 val |= obj->gtt_offset & 0xfffff000;
2489                 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2490                 if (obj->tiling_mode == I915_TILING_Y)
2491                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2492                 val |= I965_FENCE_REG_VALID;
2493         } else
2494                 val = 0;
2495
2496         I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2497         POSTING_READ(FENCE_REG_965_0 + reg * 8);
2498 }
2499
2500 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2501                                  struct drm_i915_gem_object *obj)
2502 {
2503         drm_i915_private_t *dev_priv = dev->dev_private;
2504         u32 val;
2505
2506         if (obj) {
2507                 u32 size = obj->gtt_space->size;
2508                 int pitch_val;
2509                 int tile_width;
2510
2511                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2512                      (size & -size) != size ||
2513                      (obj->gtt_offset & (size - 1)),
2514                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2515                      obj->gtt_offset, obj->map_and_fenceable, size);
2516
2517                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2518                         tile_width = 128;
2519                 else
2520                         tile_width = 512;
2521
2522                 /* Note: pitch better be a power of two tile widths */
2523                 pitch_val = obj->stride / tile_width;
2524                 pitch_val = ffs(pitch_val) - 1;
2525
2526                 val = obj->gtt_offset;
2527                 if (obj->tiling_mode == I915_TILING_Y)
2528                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2529                 val |= I915_FENCE_SIZE_BITS(size);
2530                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2531                 val |= I830_FENCE_REG_VALID;
2532         } else
2533                 val = 0;
2534
2535         if (reg < 8)
2536                 reg = FENCE_REG_830_0 + reg * 4;
2537         else
2538                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2539
2540         I915_WRITE(reg, val);
2541         POSTING_READ(reg);
2542 }
2543
2544 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2545                                 struct drm_i915_gem_object *obj)
2546 {
2547         drm_i915_private_t *dev_priv = dev->dev_private;
2548         uint32_t val;
2549
2550         if (obj) {
2551                 u32 size = obj->gtt_space->size;
2552                 uint32_t pitch_val;
2553
2554                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2555                      (size & -size) != size ||
2556                      (obj->gtt_offset & (size - 1)),
2557                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2558                      obj->gtt_offset, size);
2559
2560                 pitch_val = obj->stride / 128;
2561                 pitch_val = ffs(pitch_val) - 1;
2562
2563                 val = obj->gtt_offset;
2564                 if (obj->tiling_mode == I915_TILING_Y)
2565                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2566                 val |= I830_FENCE_SIZE_BITS(size);
2567                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2568                 val |= I830_FENCE_REG_VALID;
2569         } else
2570                 val = 0;
2571
2572         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2573         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2574 }
2575
2576 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2577                                  struct drm_i915_gem_object *obj)
2578 {
2579         switch (INTEL_INFO(dev)->gen) {
2580         case 7:
2581         case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2582         case 5:
2583         case 4: i965_write_fence_reg(dev, reg, obj); break;
2584         case 3: i915_write_fence_reg(dev, reg, obj); break;
2585         case 2: i830_write_fence_reg(dev, reg, obj); break;
2586         default: break;
2587         }
2588 }
2589
2590 static inline int fence_number(struct drm_i915_private *dev_priv,
2591                                struct drm_i915_fence_reg *fence)
2592 {
2593         return fence - dev_priv->fence_regs;
2594 }
2595
2596 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2597                                          struct drm_i915_fence_reg *fence,
2598                                          bool enable)
2599 {
2600         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2601         int reg = fence_number(dev_priv, fence);
2602
2603         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2604
2605         if (enable) {
2606                 obj->fence_reg = reg;
2607                 fence->obj = obj;
2608                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2609         } else {
2610                 obj->fence_reg = I915_FENCE_REG_NONE;
2611                 fence->obj = NULL;
2612                 list_del_init(&fence->lru_list);
2613         }
2614 }
2615
2616 static int
2617 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2618 {
2619         if (obj->last_fenced_seqno) {
2620                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2621                 if (ret)
2622                         return ret;
2623
2624                 obj->last_fenced_seqno = 0;
2625         }
2626
2627         /* Ensure that all CPU reads are completed before installing a fence
2628          * and all writes before removing the fence.
2629          */
2630         if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2631                 mb();
2632
2633         obj->fenced_gpu_access = false;
2634         return 0;
2635 }
2636
2637 int
2638 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2639 {
2640         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2641         int ret;
2642
2643         ret = i915_gem_object_flush_fence(obj);
2644         if (ret)
2645                 return ret;
2646
2647         if (obj->fence_reg == I915_FENCE_REG_NONE)
2648                 return 0;
2649
2650         i915_gem_object_update_fence(obj,
2651                                      &dev_priv->fence_regs[obj->fence_reg],
2652                                      false);
2653         i915_gem_object_fence_lost(obj);
2654
2655         return 0;
2656 }
2657
2658 static struct drm_i915_fence_reg *
2659 i915_find_fence_reg(struct drm_device *dev)
2660 {
2661         struct drm_i915_private *dev_priv = dev->dev_private;
2662         struct drm_i915_fence_reg *reg, *avail;
2663         int i;
2664
2665         /* First try to find a free reg */
2666         avail = NULL;
2667         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2668                 reg = &dev_priv->fence_regs[i];
2669                 if (!reg->obj)
2670                         return reg;
2671
2672                 if (!reg->pin_count)
2673                         avail = reg;
2674         }
2675
2676         if (avail == NULL)
2677                 return NULL;
2678
2679         /* None available, try to steal one or wait for a user to finish */
2680         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2681                 if (reg->pin_count)
2682                         continue;
2683
2684                 return reg;
2685         }
2686
2687         return NULL;
2688 }
2689
2690 /**
2691  * i915_gem_object_get_fence - set up fencing for an object
2692  * @obj: object to map through a fence reg
2693  *
2694  * When mapping objects through the GTT, userspace wants to be able to write
2695  * to them without having to worry about swizzling if the object is tiled.
2696  * This function walks the fence regs looking for a free one for @obj,
2697  * stealing one if it can't find any.
2698  *
2699  * It then sets up the reg based on the object's properties: address, pitch
2700  * and tiling format.
2701  *
2702  * For an untiled surface, this removes any existing fence.
2703  */
2704 int
2705 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2706 {
2707         struct drm_device *dev = obj->base.dev;
2708         struct drm_i915_private *dev_priv = dev->dev_private;
2709         bool enable = obj->tiling_mode != I915_TILING_NONE;
2710         struct drm_i915_fence_reg *reg;
2711         int ret;
2712
2713         /* Have we updated the tiling parameters upon the object and so
2714          * will need to serialise the write to the associated fence register?
2715          */
2716         if (obj->fence_dirty) {
2717                 ret = i915_gem_object_flush_fence(obj);
2718                 if (ret)
2719                         return ret;
2720         }
2721
2722         /* Just update our place in the LRU if our fence is getting reused. */
2723         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2724                 reg = &dev_priv->fence_regs[obj->fence_reg];
2725                 if (!obj->fence_dirty) {
2726                         list_move_tail(&reg->lru_list,
2727                                        &dev_priv->mm.fence_list);
2728                         return 0;
2729                 }
2730         } else if (enable) {
2731                 reg = i915_find_fence_reg(dev);
2732                 if (reg == NULL)
2733                         return -EDEADLK;
2734
2735                 if (reg->obj) {
2736                         struct drm_i915_gem_object *old = reg->obj;
2737
2738                         ret = i915_gem_object_flush_fence(old);
2739                         if (ret)
2740                                 return ret;
2741
2742                         i915_gem_object_fence_lost(old);
2743                 }
2744         } else
2745                 return 0;
2746
2747         i915_gem_object_update_fence(obj, reg, enable);
2748         obj->fence_dirty = false;
2749
2750         return 0;
2751 }
2752
2753 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2754                                      struct drm_mm_node *gtt_space,
2755                                      unsigned long cache_level)
2756 {
2757         struct drm_mm_node *other;
2758
2759         /* On non-LLC machines we have to be careful when putting differing
2760          * types of snoopable memory together to avoid the prefetcher
2761          * crossing memory domains and dieing.
2762          */
2763         if (HAS_LLC(dev))
2764                 return true;
2765
2766         if (gtt_space == NULL)
2767                 return true;
2768
2769         if (list_empty(&gtt_space->node_list))
2770                 return true;
2771
2772         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2773         if (other->allocated && !other->hole_follows && other->color != cache_level)
2774                 return false;
2775
2776         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2777         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2778                 return false;
2779
2780         return true;
2781 }
2782
2783 static void i915_gem_verify_gtt(struct drm_device *dev)
2784 {
2785 #if WATCH_GTT
2786         struct drm_i915_private *dev_priv = dev->dev_private;
2787         struct drm_i915_gem_object *obj;
2788         int err = 0;
2789
2790         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2791                 if (obj->gtt_space == NULL) {
2792                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2793                         err++;
2794                         continue;
2795                 }
2796
2797                 if (obj->cache_level != obj->gtt_space->color) {
2798                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2799                                obj->gtt_space->start,
2800                                obj->gtt_space->start + obj->gtt_space->size,
2801                                obj->cache_level,
2802                                obj->gtt_space->color);
2803                         err++;
2804                         continue;
2805                 }
2806
2807                 if (!i915_gem_valid_gtt_space(dev,
2808                                               obj->gtt_space,
2809                                               obj->cache_level)) {
2810                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2811                                obj->gtt_space->start,
2812                                obj->gtt_space->start + obj->gtt_space->size,
2813                                obj->cache_level);
2814                         err++;
2815                         continue;
2816                 }
2817         }
2818
2819         WARN_ON(err);
2820 #endif
2821 }
2822
2823 /**
2824  * Finds free space in the GTT aperture and binds the object there.
2825  */
2826 static int
2827 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2828                             unsigned alignment,
2829                             bool map_and_fenceable,
2830                             bool nonblocking)
2831 {
2832         struct drm_device *dev = obj->base.dev;
2833         drm_i915_private_t *dev_priv = dev->dev_private;
2834         struct drm_mm_node *free_space;
2835         u32 size, fence_size, fence_alignment, unfenced_alignment;
2836         bool mappable, fenceable;
2837         int ret;
2838
2839         if (obj->madv != I915_MADV_WILLNEED) {
2840                 DRM_ERROR("Attempting to bind a purgeable object\n");
2841                 return -EINVAL;
2842         }
2843
2844         fence_size = i915_gem_get_gtt_size(dev,
2845                                            obj->base.size,
2846                                            obj->tiling_mode);
2847         fence_alignment = i915_gem_get_gtt_alignment(dev,
2848                                                      obj->base.size,
2849                                                      obj->tiling_mode);
2850         unfenced_alignment =
2851                 i915_gem_get_unfenced_gtt_alignment(dev,
2852                                                     obj->base.size,
2853                                                     obj->tiling_mode);
2854
2855         if (alignment == 0)
2856                 alignment = map_and_fenceable ? fence_alignment :
2857                                                 unfenced_alignment;
2858         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2859                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2860                 return -EINVAL;
2861         }
2862
2863         size = map_and_fenceable ? fence_size : obj->base.size;
2864
2865         /* If the object is bigger than the entire aperture, reject it early
2866          * before evicting everything in a vain attempt to find space.
2867          */
2868         if (obj->base.size >
2869             (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2870                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2871                 return -E2BIG;
2872         }
2873
2874         ret = i915_gem_object_get_pages_gtt(obj);
2875         if (ret)
2876                 return ret;
2877
2878  search_free:
2879         if (map_and_fenceable)
2880                 free_space =
2881                         drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2882                                                           size, alignment, obj->cache_level,
2883                                                           0, dev_priv->mm.gtt_mappable_end,
2884                                                           false);
2885         else
2886                 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2887                                                       size, alignment, obj->cache_level,
2888                                                       false);
2889
2890         if (free_space != NULL) {
2891                 if (map_and_fenceable)
2892                         obj->gtt_space =
2893                                 drm_mm_get_block_range_generic(free_space,
2894                                                                size, alignment, obj->cache_level,
2895                                                                0, dev_priv->mm.gtt_mappable_end,
2896                                                                false);
2897                 else
2898                         obj->gtt_space =
2899                                 drm_mm_get_block_generic(free_space,
2900                                                          size, alignment, obj->cache_level,
2901                                                          false);
2902         }
2903         if (obj->gtt_space == NULL) {
2904                 ret = i915_gem_evict_something(dev, size, alignment,
2905                                                obj->cache_level,
2906                                                map_and_fenceable,
2907                                                nonblocking);
2908                 if (ret)
2909                         return ret;
2910
2911                 goto search_free;
2912         }
2913         if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2914                                               obj->gtt_space,
2915                                               obj->cache_level))) {
2916                 drm_mm_put_block(obj->gtt_space);
2917                 obj->gtt_space = NULL;
2918                 return -EINVAL;
2919         }
2920
2921
2922         ret = i915_gem_gtt_prepare_object(obj);
2923         if (ret) {
2924                 drm_mm_put_block(obj->gtt_space);
2925                 obj->gtt_space = NULL;
2926                 return ret;
2927         }
2928
2929         if (!dev_priv->mm.aliasing_ppgtt)
2930                 i915_gem_gtt_bind_object(obj, obj->cache_level);
2931
2932         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2933         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2934
2935         obj->gtt_offset = obj->gtt_space->start;
2936
2937         fenceable =
2938                 obj->gtt_space->size == fence_size &&
2939                 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2940
2941         mappable =
2942                 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2943
2944         obj->map_and_fenceable = mappable && fenceable;
2945
2946         trace_i915_gem_object_bind(obj, map_and_fenceable);
2947         i915_gem_verify_gtt(dev);
2948         return 0;
2949 }
2950
2951 void
2952 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2953 {
2954         /* If we don't have a page list set up, then we're not pinned
2955          * to GPU, and we can ignore the cache flush because it'll happen
2956          * again at bind time.
2957          */
2958         if (obj->pages == NULL)
2959                 return;
2960
2961         /* If the GPU is snooping the contents of the CPU cache,
2962          * we do not need to manually clear the CPU cache lines.  However,
2963          * the caches are only snooped when the render cache is
2964          * flushed/invalidated.  As we always have to emit invalidations
2965          * and flushes when moving into and out of the RENDER domain, correct
2966          * snooping behaviour occurs naturally as the result of our domain
2967          * tracking.
2968          */
2969         if (obj->cache_level != I915_CACHE_NONE)
2970                 return;
2971
2972         trace_i915_gem_object_clflush(obj);
2973
2974         drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2975 }
2976
2977 /** Flushes the GTT write domain for the object if it's dirty. */
2978 static void
2979 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2980 {
2981         uint32_t old_write_domain;
2982
2983         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2984                 return;
2985
2986         /* No actual flushing is required for the GTT write domain.  Writes
2987          * to it immediately go to main memory as far as we know, so there's
2988          * no chipset flush.  It also doesn't land in render cache.
2989          *
2990          * However, we do have to enforce the order so that all writes through
2991          * the GTT land before any writes to the device, such as updates to
2992          * the GATT itself.
2993          */
2994         wmb();
2995
2996         old_write_domain = obj->base.write_domain;
2997         obj->base.write_domain = 0;
2998
2999         trace_i915_gem_object_change_domain(obj,
3000                                             obj->base.read_domains,
3001                                             old_write_domain);
3002 }
3003
3004 /** Flushes the CPU write domain for the object if it's dirty. */
3005 static void
3006 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3007 {
3008         uint32_t old_write_domain;
3009
3010         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3011                 return;
3012
3013         i915_gem_clflush_object(obj);
3014         intel_gtt_chipset_flush();
3015         old_write_domain = obj->base.write_domain;
3016         obj->base.write_domain = 0;
3017
3018         trace_i915_gem_object_change_domain(obj,
3019                                             obj->base.read_domains,
3020                                             old_write_domain);
3021 }
3022
3023 /**
3024  * Moves a single object to the GTT read, and possibly write domain.
3025  *
3026  * This function returns when the move is complete, including waiting on
3027  * flushes to occur.
3028  */
3029 int
3030 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3031 {
3032         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3033         uint32_t old_write_domain, old_read_domains;
3034         int ret;
3035
3036         /* Not valid to be called on unbound objects. */
3037         if (obj->gtt_space == NULL)
3038                 return -EINVAL;
3039
3040         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3041                 return 0;
3042
3043         ret = i915_gem_object_wait_rendering(obj, !write);
3044         if (ret)
3045                 return ret;
3046
3047         i915_gem_object_flush_cpu_write_domain(obj);
3048
3049         old_write_domain = obj->base.write_domain;
3050         old_read_domains = obj->base.read_domains;
3051
3052         /* It should now be out of any other write domains, and we can update
3053          * the domain values for our changes.
3054          */
3055         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3056         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3057         if (write) {
3058                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3059                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3060                 obj->dirty = 1;
3061         }
3062
3063         trace_i915_gem_object_change_domain(obj,
3064                                             old_read_domains,
3065                                             old_write_domain);
3066
3067         /* And bump the LRU for this access */
3068         if (i915_gem_object_is_inactive(obj))
3069                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3070
3071         return 0;
3072 }
3073
3074 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3075                                     enum i915_cache_level cache_level)
3076 {
3077         struct drm_device *dev = obj->base.dev;
3078         drm_i915_private_t *dev_priv = dev->dev_private;
3079         int ret;
3080
3081         if (obj->cache_level == cache_level)
3082                 return 0;
3083
3084         if (obj->pin_count) {
3085                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3086                 return -EBUSY;
3087         }
3088
3089         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3090                 ret = i915_gem_object_unbind(obj);
3091                 if (ret)
3092                         return ret;
3093         }
3094
3095         if (obj->gtt_space) {
3096                 ret = i915_gem_object_finish_gpu(obj);
3097                 if (ret)
3098                         return ret;
3099
3100                 i915_gem_object_finish_gtt(obj);
3101
3102                 /* Before SandyBridge, you could not use tiling or fence
3103                  * registers with snooped memory, so relinquish any fences
3104                  * currently pointing to our region in the aperture.
3105                  */
3106                 if (INTEL_INFO(dev)->gen < 6) {
3107                         ret = i915_gem_object_put_fence(obj);
3108                         if (ret)
3109                                 return ret;
3110                 }
3111
3112                 if (obj->has_global_gtt_mapping)
3113                         i915_gem_gtt_bind_object(obj, cache_level);
3114                 if (obj->has_aliasing_ppgtt_mapping)
3115                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3116                                                obj, cache_level);
3117
3118                 obj->gtt_space->color = cache_level;
3119         }
3120
3121         if (cache_level == I915_CACHE_NONE) {
3122                 u32 old_read_domains, old_write_domain;
3123
3124                 /* If we're coming from LLC cached, then we haven't
3125                  * actually been tracking whether the data is in the
3126                  * CPU cache or not, since we only allow one bit set
3127                  * in obj->write_domain and have been skipping the clflushes.
3128                  * Just set it to the CPU cache for now.
3129                  */
3130                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3131                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3132
3133                 old_read_domains = obj->base.read_domains;
3134                 old_write_domain = obj->base.write_domain;
3135
3136                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3137                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3138
3139                 trace_i915_gem_object_change_domain(obj,
3140                                                     old_read_domains,
3141                                                     old_write_domain);
3142         }
3143
3144         obj->cache_level = cache_level;
3145         i915_gem_verify_gtt(dev);
3146         return 0;
3147 }
3148
3149 int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
3150                                 struct drm_file *file)
3151 {
3152         struct drm_i915_gem_cacheing *args = data;
3153         struct drm_i915_gem_object *obj;
3154         int ret;
3155
3156         ret = i915_mutex_lock_interruptible(dev);
3157         if (ret)
3158                 return ret;
3159
3160         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3161         if (&obj->base == NULL) {
3162                 ret = -ENOENT;
3163                 goto unlock;
3164         }
3165
3166         args->cacheing = obj->cache_level != I915_CACHE_NONE;
3167
3168         drm_gem_object_unreference(&obj->base);
3169 unlock:
3170         mutex_unlock(&dev->struct_mutex);
3171         return ret;
3172 }
3173
3174 int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
3175                                 struct drm_file *file)
3176 {
3177         struct drm_i915_gem_cacheing *args = data;
3178         struct drm_i915_gem_object *obj;
3179         enum i915_cache_level level;
3180         int ret;
3181
3182         ret = i915_mutex_lock_interruptible(dev);
3183         if (ret)
3184                 return ret;
3185
3186         switch (args->cacheing) {
3187         case I915_CACHEING_NONE:
3188                 level = I915_CACHE_NONE;
3189                 break;
3190         case I915_CACHEING_CACHED:
3191                 level = I915_CACHE_LLC;
3192                 break;
3193         default:
3194                 return -EINVAL;
3195         }
3196
3197         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3198         if (&obj->base == NULL) {
3199                 ret = -ENOENT;
3200                 goto unlock;
3201         }
3202
3203         ret = i915_gem_object_set_cache_level(obj, level);
3204
3205         drm_gem_object_unreference(&obj->base);
3206 unlock:
3207         mutex_unlock(&dev->struct_mutex);
3208         return ret;
3209 }
3210
3211 /*
3212  * Prepare buffer for display plane (scanout, cursors, etc).
3213  * Can be called from an uninterruptible phase (modesetting) and allows
3214  * any flushes to be pipelined (for pageflips).
3215  */
3216 int
3217 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3218                                      u32 alignment,
3219                                      struct intel_ring_buffer *pipelined)
3220 {
3221         u32 old_read_domains, old_write_domain;
3222         int ret;
3223
3224         if (pipelined != obj->ring) {
3225                 ret = i915_gem_object_sync(obj, pipelined);
3226                 if (ret)
3227                         return ret;
3228         }
3229
3230         /* The display engine is not coherent with the LLC cache on gen6.  As
3231          * a result, we make sure that the pinning that is about to occur is
3232          * done with uncached PTEs. This is lowest common denominator for all
3233          * chipsets.
3234          *
3235          * However for gen6+, we could do better by using the GFDT bit instead
3236          * of uncaching, which would allow us to flush all the LLC-cached data
3237          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3238          */
3239         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3240         if (ret)
3241                 return ret;
3242
3243         /* As the user may map the buffer once pinned in the display plane
3244          * (e.g. libkms for the bootup splash), we have to ensure that we
3245          * always use map_and_fenceable for all scanout buffers.
3246          */
3247         ret = i915_gem_object_pin(obj, alignment, true, false);
3248         if (ret)
3249                 return ret;
3250
3251         i915_gem_object_flush_cpu_write_domain(obj);
3252
3253         old_write_domain = obj->base.write_domain;
3254         old_read_domains = obj->base.read_domains;
3255
3256         /* It should now be out of any other write domains, and we can update
3257          * the domain values for our changes.
3258          */
3259         obj->base.write_domain = 0;
3260         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3261
3262         trace_i915_gem_object_change_domain(obj,
3263                                             old_read_domains,
3264                                             old_write_domain);
3265
3266         return 0;
3267 }
3268
3269 int
3270 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3271 {
3272         int ret;
3273
3274         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3275                 return 0;
3276
3277         ret = i915_gem_object_wait_rendering(obj, false);
3278         if (ret)
3279                 return ret;
3280
3281         /* Ensure that we invalidate the GPU's caches and TLBs. */
3282         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3283         return 0;
3284 }
3285
3286 /**
3287  * Moves a single object to the CPU read, and possibly write domain.
3288  *
3289  * This function returns when the move is complete, including waiting on
3290  * flushes to occur.
3291  */
3292 int
3293 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3294 {
3295         uint32_t old_write_domain, old_read_domains;
3296         int ret;
3297
3298         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3299                 return 0;
3300
3301         ret = i915_gem_object_wait_rendering(obj, !write);
3302         if (ret)
3303                 return ret;
3304
3305         i915_gem_object_flush_gtt_write_domain(obj);
3306
3307         old_write_domain = obj->base.write_domain;
3308         old_read_domains = obj->base.read_domains;
3309
3310         /* Flush the CPU cache if it's still invalid. */
3311         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3312                 i915_gem_clflush_object(obj);
3313
3314                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3315         }
3316
3317         /* It should now be out of any other write domains, and we can update
3318          * the domain values for our changes.
3319          */
3320         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3321
3322         /* If we're writing through the CPU, then the GPU read domains will
3323          * need to be invalidated at next use.
3324          */
3325         if (write) {
3326                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3327                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3328         }
3329
3330         trace_i915_gem_object_change_domain(obj,
3331                                             old_read_domains,
3332                                             old_write_domain);
3333
3334         return 0;
3335 }
3336
3337 /* Throttle our rendering by waiting until the ring has completed our requests
3338  * emitted over 20 msec ago.
3339  *
3340  * Note that if we were to use the current jiffies each time around the loop,
3341  * we wouldn't escape the function with any frames outstanding if the time to
3342  * render a frame was over 20ms.
3343  *
3344  * This should get us reasonable parallelism between CPU and GPU but also
3345  * relatively low latency when blocking on a particular request to finish.
3346  */
3347 static int
3348 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3349 {
3350         struct drm_i915_private *dev_priv = dev->dev_private;
3351         struct drm_i915_file_private *file_priv = file->driver_priv;
3352         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3353         struct drm_i915_gem_request *request;
3354         struct intel_ring_buffer *ring = NULL;
3355         u32 seqno = 0;
3356         int ret;
3357
3358         if (atomic_read(&dev_priv->mm.wedged))
3359                 return -EIO;
3360
3361         spin_lock(&file_priv->mm.lock);
3362         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3363                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3364                         break;
3365
3366                 ring = request->ring;
3367                 seqno = request->seqno;
3368         }
3369         spin_unlock(&file_priv->mm.lock);
3370
3371         if (seqno == 0)
3372                 return 0;
3373
3374         ret = __wait_seqno(ring, seqno, true, NULL);
3375         if (ret == 0)
3376                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3377
3378         return ret;
3379 }
3380
3381 int
3382 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3383                     uint32_t alignment,
3384                     bool map_and_fenceable,
3385                     bool nonblocking)
3386 {
3387         int ret;
3388
3389         BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3390
3391         if (obj->gtt_space != NULL) {
3392                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3393                     (map_and_fenceable && !obj->map_and_fenceable)) {
3394                         WARN(obj->pin_count,
3395                              "bo is already pinned with incorrect alignment:"
3396                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3397                              " obj->map_and_fenceable=%d\n",
3398                              obj->gtt_offset, alignment,
3399                              map_and_fenceable,
3400                              obj->map_and_fenceable);
3401                         ret = i915_gem_object_unbind(obj);
3402                         if (ret)
3403                                 return ret;
3404                 }
3405         }
3406
3407         if (obj->gtt_space == NULL) {
3408                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3409                                                   map_and_fenceable,
3410                                                   nonblocking);
3411                 if (ret)
3412                         return ret;
3413         }
3414
3415         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3416                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3417
3418         obj->pin_count++;
3419         obj->pin_mappable |= map_and_fenceable;
3420
3421         return 0;
3422 }
3423
3424 void
3425 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3426 {
3427         BUG_ON(obj->pin_count == 0);
3428         BUG_ON(obj->gtt_space == NULL);
3429
3430         if (--obj->pin_count == 0)
3431                 obj->pin_mappable = false;
3432 }
3433
3434 int
3435 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3436                    struct drm_file *file)
3437 {
3438         struct drm_i915_gem_pin *args = data;
3439         struct drm_i915_gem_object *obj;
3440         int ret;
3441
3442         ret = i915_mutex_lock_interruptible(dev);
3443         if (ret)
3444                 return ret;
3445
3446         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3447         if (&obj->base == NULL) {
3448                 ret = -ENOENT;
3449                 goto unlock;
3450         }
3451
3452         if (obj->madv != I915_MADV_WILLNEED) {
3453                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3454                 ret = -EINVAL;
3455                 goto out;
3456         }
3457
3458         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3459                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3460                           args->handle);
3461                 ret = -EINVAL;
3462                 goto out;
3463         }
3464
3465         obj->user_pin_count++;
3466         obj->pin_filp = file;
3467         if (obj->user_pin_count == 1) {
3468                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3469                 if (ret)
3470                         goto out;
3471         }
3472
3473         /* XXX - flush the CPU caches for pinned objects
3474          * as the X server doesn't manage domains yet
3475          */
3476         i915_gem_object_flush_cpu_write_domain(obj);
3477         args->offset = obj->gtt_offset;
3478 out:
3479         drm_gem_object_unreference(&obj->base);
3480 unlock:
3481         mutex_unlock(&dev->struct_mutex);
3482         return ret;
3483 }
3484
3485 int
3486 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3487                      struct drm_file *file)
3488 {
3489         struct drm_i915_gem_pin *args = data;
3490         struct drm_i915_gem_object *obj;
3491         int ret;
3492
3493         ret = i915_mutex_lock_interruptible(dev);
3494         if (ret)
3495                 return ret;
3496
3497         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3498         if (&obj->base == NULL) {
3499                 ret = -ENOENT;
3500                 goto unlock;
3501         }
3502
3503         if (obj->pin_filp != file) {
3504                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3505                           args->handle);
3506                 ret = -EINVAL;
3507                 goto out;
3508         }
3509         obj->user_pin_count--;
3510         if (obj->user_pin_count == 0) {
3511                 obj->pin_filp = NULL;
3512                 i915_gem_object_unpin(obj);
3513         }
3514
3515 out:
3516         drm_gem_object_unreference(&obj->base);
3517 unlock:
3518         mutex_unlock(&dev->struct_mutex);
3519         return ret;
3520 }
3521
3522 int
3523 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3524                     struct drm_file *file)
3525 {
3526         struct drm_i915_gem_busy *args = data;
3527         struct drm_i915_gem_object *obj;
3528         int ret;
3529
3530         ret = i915_mutex_lock_interruptible(dev);
3531         if (ret)
3532                 return ret;
3533
3534         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3535         if (&obj->base == NULL) {
3536                 ret = -ENOENT;
3537                 goto unlock;
3538         }
3539
3540         /* Count all active objects as busy, even if they are currently not used
3541          * by the gpu. Users of this interface expect objects to eventually
3542          * become non-busy without any further actions, therefore emit any
3543          * necessary flushes here.
3544          */
3545         ret = i915_gem_object_flush_active(obj);
3546
3547         args->busy = obj->active;
3548         if (obj->ring) {
3549                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3550                 args->busy |= intel_ring_flag(obj->ring) << 16;
3551         }
3552
3553         drm_gem_object_unreference(&obj->base);
3554 unlock:
3555         mutex_unlock(&dev->struct_mutex);
3556         return ret;
3557 }
3558
3559 int
3560 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3561                         struct drm_file *file_priv)
3562 {
3563         return i915_gem_ring_throttle(dev, file_priv);
3564 }
3565
3566 int
3567 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3568                        struct drm_file *file_priv)
3569 {
3570         struct drm_i915_gem_madvise *args = data;
3571         struct drm_i915_gem_object *obj;
3572         int ret;
3573
3574         switch (args->madv) {
3575         case I915_MADV_DONTNEED:
3576         case I915_MADV_WILLNEED:
3577             break;
3578         default:
3579             return -EINVAL;
3580         }
3581
3582         ret = i915_mutex_lock_interruptible(dev);
3583         if (ret)
3584                 return ret;
3585
3586         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3587         if (&obj->base == NULL) {
3588                 ret = -ENOENT;
3589                 goto unlock;
3590         }
3591
3592         if (obj->pin_count) {
3593                 ret = -EINVAL;
3594                 goto out;
3595         }
3596
3597         if (obj->madv != __I915_MADV_PURGED)
3598                 obj->madv = args->madv;
3599
3600         /* if the object is no longer attached, discard its backing storage */
3601         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3602                 i915_gem_object_truncate(obj);
3603
3604         args->retained = obj->madv != __I915_MADV_PURGED;
3605
3606 out:
3607         drm_gem_object_unreference(&obj->base);
3608 unlock:
3609         mutex_unlock(&dev->struct_mutex);
3610         return ret;
3611 }
3612
3613 void i915_gem_object_init(struct drm_i915_gem_object *obj)
3614 {
3615         obj->base.driver_private = NULL;
3616
3617         INIT_LIST_HEAD(&obj->mm_list);
3618         INIT_LIST_HEAD(&obj->gtt_list);
3619         INIT_LIST_HEAD(&obj->ring_list);
3620         INIT_LIST_HEAD(&obj->exec_list);
3621
3622         obj->fence_reg = I915_FENCE_REG_NONE;
3623         obj->madv = I915_MADV_WILLNEED;
3624         /* Avoid an unnecessary call to unbind on the first bind. */
3625         obj->map_and_fenceable = true;
3626
3627         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3628 }
3629
3630 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3631                                                   size_t size)
3632 {
3633         struct drm_i915_gem_object *obj;
3634         struct address_space *mapping;
3635         u32 mask;
3636
3637         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3638         if (obj == NULL)
3639                 return NULL;
3640
3641         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3642                 kfree(obj);
3643                 return NULL;
3644         }
3645
3646         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3647         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3648                 /* 965gm cannot relocate objects above 4GiB. */
3649                 mask &= ~__GFP_HIGHMEM;
3650                 mask |= __GFP_DMA32;
3651         }
3652
3653         mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3654         mapping_set_gfp_mask(mapping, mask);
3655
3656         i915_gem_object_init(obj);
3657
3658         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3659         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3660
3661         if (HAS_LLC(dev)) {
3662                 /* On some devices, we can have the GPU use the LLC (the CPU
3663                  * cache) for about a 10% performance improvement
3664                  * compared to uncached.  Graphics requests other than
3665                  * display scanout are coherent with the CPU in
3666                  * accessing this cache.  This means in this mode we
3667                  * don't need to clflush on the CPU side, and on the
3668                  * GPU side we only need to flush internal caches to
3669                  * get data visible to the CPU.
3670                  *
3671                  * However, we maintain the display planes as UC, and so
3672                  * need to rebind when first used as such.
3673                  */
3674                 obj->cache_level = I915_CACHE_LLC;
3675         } else
3676                 obj->cache_level = I915_CACHE_NONE;
3677
3678         return obj;
3679 }
3680
3681 int i915_gem_init_object(struct drm_gem_object *obj)
3682 {
3683         BUG();
3684
3685         return 0;
3686 }
3687
3688 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3689 {
3690         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3691         struct drm_device *dev = obj->base.dev;
3692         drm_i915_private_t *dev_priv = dev->dev_private;
3693
3694         trace_i915_gem_object_destroy(obj);
3695
3696         if (gem_obj->import_attach)
3697                 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3698
3699         if (obj->phys_obj)
3700                 i915_gem_detach_phys_object(dev, obj);
3701
3702         obj->pin_count = 0;
3703         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3704                 bool was_interruptible;
3705
3706                 was_interruptible = dev_priv->mm.interruptible;
3707                 dev_priv->mm.interruptible = false;
3708
3709                 WARN_ON(i915_gem_object_unbind(obj));
3710
3711                 dev_priv->mm.interruptible = was_interruptible;
3712         }
3713
3714         i915_gem_object_put_pages_gtt(obj);
3715         i915_gem_object_free_mmap_offset(obj);
3716
3717         drm_gem_object_release(&obj->base);
3718         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3719
3720         kfree(obj->bit_17);
3721         kfree(obj);
3722 }
3723
3724 int
3725 i915_gem_idle(struct drm_device *dev)
3726 {
3727         drm_i915_private_t *dev_priv = dev->dev_private;
3728         int ret;
3729
3730         mutex_lock(&dev->struct_mutex);
3731
3732         if (dev_priv->mm.suspended) {
3733                 mutex_unlock(&dev->struct_mutex);
3734                 return 0;
3735         }
3736
3737         ret = i915_gpu_idle(dev);
3738         if (ret) {
3739                 mutex_unlock(&dev->struct_mutex);
3740                 return ret;
3741         }
3742         i915_gem_retire_requests(dev);
3743
3744         /* Under UMS, be paranoid and evict. */
3745         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3746                 i915_gem_evict_everything(dev);
3747
3748         i915_gem_reset_fences(dev);
3749
3750         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3751          * We need to replace this with a semaphore, or something.
3752          * And not confound mm.suspended!
3753          */
3754         dev_priv->mm.suspended = 1;
3755         del_timer_sync(&dev_priv->hangcheck_timer);
3756
3757         i915_kernel_lost_context(dev);
3758         i915_gem_cleanup_ringbuffer(dev);
3759
3760         mutex_unlock(&dev->struct_mutex);
3761
3762         /* Cancel the retire work handler, which should be idle now. */
3763         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3764
3765         return 0;
3766 }
3767
3768 void i915_gem_l3_remap(struct drm_device *dev)
3769 {
3770         drm_i915_private_t *dev_priv = dev->dev_private;
3771         u32 misccpctl;
3772         int i;
3773
3774         if (!IS_IVYBRIDGE(dev))
3775                 return;
3776
3777         if (!dev_priv->mm.l3_remap_info)
3778                 return;
3779
3780         misccpctl = I915_READ(GEN7_MISCCPCTL);
3781         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3782         POSTING_READ(GEN7_MISCCPCTL);
3783
3784         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3785                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3786                 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3787                         DRM_DEBUG("0x%x was already programmed to %x\n",
3788                                   GEN7_L3LOG_BASE + i, remap);
3789                 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3790                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3791                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3792         }
3793
3794         /* Make sure all the writes land before disabling dop clock gating */
3795         POSTING_READ(GEN7_L3LOG_BASE);
3796
3797         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3798 }
3799
3800 void i915_gem_init_swizzling(struct drm_device *dev)
3801 {
3802         drm_i915_private_t *dev_priv = dev->dev_private;
3803
3804         if (INTEL_INFO(dev)->gen < 5 ||
3805             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3806                 return;
3807
3808         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3809                                  DISP_TILE_SURFACE_SWIZZLING);
3810
3811         if (IS_GEN5(dev))
3812                 return;
3813
3814         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3815         if (IS_GEN6(dev))
3816                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3817         else
3818                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3819 }
3820
3821 void i915_gem_init_ppgtt(struct drm_device *dev)
3822 {
3823         drm_i915_private_t *dev_priv = dev->dev_private;
3824         uint32_t pd_offset;
3825         struct intel_ring_buffer *ring;
3826         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3827         uint32_t __iomem *pd_addr;
3828         uint32_t pd_entry;
3829         int i;
3830
3831         if (!dev_priv->mm.aliasing_ppgtt)
3832                 return;
3833
3834
3835         pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3836         for (i = 0; i < ppgtt->num_pd_entries; i++) {
3837                 dma_addr_t pt_addr;
3838
3839                 if (dev_priv->mm.gtt->needs_dmar)
3840                         pt_addr = ppgtt->pt_dma_addr[i];
3841                 else
3842                         pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3843
3844                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3845                 pd_entry |= GEN6_PDE_VALID;
3846
3847                 writel(pd_entry, pd_addr + i);
3848         }
3849         readl(pd_addr);
3850
3851         pd_offset = ppgtt->pd_offset;
3852         pd_offset /= 64; /* in cachelines, */
3853         pd_offset <<= 16;
3854
3855         if (INTEL_INFO(dev)->gen == 6) {
3856                 uint32_t ecochk, gab_ctl, ecobits;
3857
3858                 ecobits = I915_READ(GAC_ECO_BITS); 
3859                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3860
3861                 gab_ctl = I915_READ(GAB_CTL);
3862                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3863
3864                 ecochk = I915_READ(GAM_ECOCHK);
3865                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3866                                        ECOCHK_PPGTT_CACHE64B);
3867                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3868         } else if (INTEL_INFO(dev)->gen >= 7) {
3869                 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3870                 /* GFX_MODE is per-ring on gen7+ */
3871         }
3872
3873         for_each_ring(ring, dev_priv, i) {
3874                 if (INTEL_INFO(dev)->gen >= 7)
3875                         I915_WRITE(RING_MODE_GEN7(ring),
3876                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3877
3878                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3879                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3880         }
3881 }
3882
3883 static bool
3884 intel_enable_blt(struct drm_device *dev)
3885 {
3886         if (!HAS_BLT(dev))
3887                 return false;
3888
3889         /* The blitter was dysfunctional on early prototypes */
3890         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3891                 DRM_INFO("BLT not supported on this pre-production hardware;"
3892                          " graphics performance will be degraded.\n");
3893                 return false;
3894         }
3895
3896         return true;
3897 }
3898
3899 int
3900 i915_gem_init_hw(struct drm_device *dev)
3901 {
3902         drm_i915_private_t *dev_priv = dev->dev_private;
3903         int ret;
3904
3905         if (!intel_enable_gtt())
3906                 return -EIO;
3907
3908         i915_gem_l3_remap(dev);
3909
3910         i915_gem_init_swizzling(dev);
3911
3912         ret = intel_init_render_ring_buffer(dev);
3913         if (ret)
3914                 return ret;
3915
3916         if (HAS_BSD(dev)) {
3917                 ret = intel_init_bsd_ring_buffer(dev);
3918                 if (ret)
3919                         goto cleanup_render_ring;
3920         }
3921
3922         if (intel_enable_blt(dev)) {
3923                 ret = intel_init_blt_ring_buffer(dev);
3924                 if (ret)
3925                         goto cleanup_bsd_ring;
3926         }
3927
3928         dev_priv->next_seqno = 1;
3929
3930         /*
3931          * XXX: There was some w/a described somewhere suggesting loading
3932          * contexts before PPGTT.
3933          */
3934         i915_gem_context_init(dev);
3935         i915_gem_init_ppgtt(dev);
3936
3937         return 0;
3938
3939 cleanup_bsd_ring:
3940         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3941 cleanup_render_ring:
3942         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3943         return ret;
3944 }
3945
3946 static bool
3947 intel_enable_ppgtt(struct drm_device *dev)
3948 {
3949         if (i915_enable_ppgtt >= 0)
3950                 return i915_enable_ppgtt;
3951
3952 #ifdef CONFIG_INTEL_IOMMU
3953         /* Disable ppgtt on SNB if VT-d is on. */
3954         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3955                 return false;
3956 #endif
3957
3958         return true;
3959 }
3960
3961 int i915_gem_init(struct drm_device *dev)
3962 {
3963         struct drm_i915_private *dev_priv = dev->dev_private;
3964         unsigned long gtt_size, mappable_size;
3965         int ret;
3966
3967         gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3968         mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3969
3970         mutex_lock(&dev->struct_mutex);
3971         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3972                 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3973                  * aperture accordingly when using aliasing ppgtt. */
3974                 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3975
3976                 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3977
3978                 ret = i915_gem_init_aliasing_ppgtt(dev);
3979                 if (ret) {
3980                         mutex_unlock(&dev->struct_mutex);
3981                         return ret;
3982                 }
3983         } else {
3984                 /* Let GEM Manage all of the aperture.
3985                  *
3986                  * However, leave one page at the end still bound to the scratch
3987                  * page.  There are a number of places where the hardware
3988                  * apparently prefetches past the end of the object, and we've
3989                  * seen multiple hangs with the GPU head pointer stuck in a
3990                  * batchbuffer bound at the last page of the aperture.  One page
3991                  * should be enough to keep any prefetching inside of the
3992                  * aperture.
3993                  */
3994                 i915_gem_init_global_gtt(dev, 0, mappable_size,
3995                                          gtt_size);
3996         }
3997
3998         ret = i915_gem_init_hw(dev);
3999         mutex_unlock(&dev->struct_mutex);
4000         if (ret) {
4001                 i915_gem_cleanup_aliasing_ppgtt(dev);
4002                 return ret;
4003         }
4004
4005         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4006         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4007                 dev_priv->dri1.allow_batchbuffer = 1;
4008         return 0;
4009 }
4010
4011 void
4012 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4013 {
4014         drm_i915_private_t *dev_priv = dev->dev_private;
4015         struct intel_ring_buffer *ring;
4016         int i;
4017
4018         for_each_ring(ring, dev_priv, i)
4019                 intel_cleanup_ring_buffer(ring);
4020 }
4021
4022 int
4023 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4024                        struct drm_file *file_priv)
4025 {
4026         drm_i915_private_t *dev_priv = dev->dev_private;
4027         int ret;
4028
4029         if (drm_core_check_feature(dev, DRIVER_MODESET))
4030                 return 0;
4031
4032         if (atomic_read(&dev_priv->mm.wedged)) {
4033                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4034                 atomic_set(&dev_priv->mm.wedged, 0);
4035         }
4036
4037         mutex_lock(&dev->struct_mutex);
4038         dev_priv->mm.suspended = 0;
4039
4040         ret = i915_gem_init_hw(dev);
4041         if (ret != 0) {
4042                 mutex_unlock(&dev->struct_mutex);
4043                 return ret;
4044         }
4045
4046         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4047         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4048         mutex_unlock(&dev->struct_mutex);
4049
4050         ret = drm_irq_install(dev);
4051         if (ret)
4052                 goto cleanup_ringbuffer;
4053
4054         return 0;
4055
4056 cleanup_ringbuffer:
4057         mutex_lock(&dev->struct_mutex);
4058         i915_gem_cleanup_ringbuffer(dev);
4059         dev_priv->mm.suspended = 1;
4060         mutex_unlock(&dev->struct_mutex);
4061
4062         return ret;
4063 }
4064
4065 int
4066 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4067                        struct drm_file *file_priv)
4068 {
4069         if (drm_core_check_feature(dev, DRIVER_MODESET))
4070                 return 0;
4071
4072         drm_irq_uninstall(dev);
4073         return i915_gem_idle(dev);
4074 }
4075
4076 void
4077 i915_gem_lastclose(struct drm_device *dev)
4078 {
4079         int ret;
4080
4081         if (drm_core_check_feature(dev, DRIVER_MODESET))
4082                 return;
4083
4084         ret = i915_gem_idle(dev);
4085         if (ret)
4086                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4087 }
4088
4089 static void
4090 init_ring_lists(struct intel_ring_buffer *ring)
4091 {
4092         INIT_LIST_HEAD(&ring->active_list);
4093         INIT_LIST_HEAD(&ring->request_list);
4094 }
4095
4096 void
4097 i915_gem_load(struct drm_device *dev)
4098 {
4099         int i;
4100         drm_i915_private_t *dev_priv = dev->dev_private;
4101
4102         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4103         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4104         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4105         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4106         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4107         for (i = 0; i < I915_NUM_RINGS; i++)
4108                 init_ring_lists(&dev_priv->ring[i]);
4109         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4110                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4111         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4112                           i915_gem_retire_work_handler);
4113         init_completion(&dev_priv->error_completion);
4114
4115         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4116         if (IS_GEN3(dev)) {
4117                 I915_WRITE(MI_ARB_STATE,
4118                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4119         }
4120
4121         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4122
4123         /* Old X drivers will take 0-2 for front, back, depth buffers */
4124         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4125                 dev_priv->fence_reg_start = 3;
4126
4127         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4128                 dev_priv->num_fence_regs = 16;
4129         else
4130                 dev_priv->num_fence_regs = 8;
4131
4132         /* Initialize fence registers to zero */
4133         i915_gem_reset_fences(dev);
4134
4135         i915_gem_detect_bit_6_swizzle(dev);
4136         init_waitqueue_head(&dev_priv->pending_flip_queue);
4137
4138         dev_priv->mm.interruptible = true;
4139
4140         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4141         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4142         register_shrinker(&dev_priv->mm.inactive_shrinker);
4143 }
4144
4145 /*
4146  * Create a physically contiguous memory object for this object
4147  * e.g. for cursor + overlay regs
4148  */
4149 static int i915_gem_init_phys_object(struct drm_device *dev,
4150                                      int id, int size, int align)
4151 {
4152         drm_i915_private_t *dev_priv = dev->dev_private;
4153         struct drm_i915_gem_phys_object *phys_obj;
4154         int ret;
4155
4156         if (dev_priv->mm.phys_objs[id - 1] || !size)
4157                 return 0;
4158
4159         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4160         if (!phys_obj)
4161                 return -ENOMEM;
4162
4163         phys_obj->id = id;
4164
4165         phys_obj->handle = drm_pci_alloc(dev, size, align);
4166         if (!phys_obj->handle) {
4167                 ret = -ENOMEM;
4168                 goto kfree_obj;
4169         }
4170 #ifdef CONFIG_X86
4171         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4172 #endif
4173
4174         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4175
4176         return 0;
4177 kfree_obj:
4178         kfree(phys_obj);
4179         return ret;
4180 }
4181
4182 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4183 {
4184         drm_i915_private_t *dev_priv = dev->dev_private;
4185         struct drm_i915_gem_phys_object *phys_obj;
4186
4187         if (!dev_priv->mm.phys_objs[id - 1])
4188                 return;
4189
4190         phys_obj = dev_priv->mm.phys_objs[id - 1];
4191         if (phys_obj->cur_obj) {
4192                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4193         }
4194
4195 #ifdef CONFIG_X86
4196         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4197 #endif
4198         drm_pci_free(dev, phys_obj->handle);
4199         kfree(phys_obj);
4200         dev_priv->mm.phys_objs[id - 1] = NULL;
4201 }
4202
4203 void i915_gem_free_all_phys_object(struct drm_device *dev)
4204 {
4205         int i;
4206
4207         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4208                 i915_gem_free_phys_object(dev, i);
4209 }
4210
4211 void i915_gem_detach_phys_object(struct drm_device *dev,
4212                                  struct drm_i915_gem_object *obj)
4213 {
4214         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4215         char *vaddr;
4216         int i;
4217         int page_count;
4218
4219         if (!obj->phys_obj)
4220                 return;
4221         vaddr = obj->phys_obj->handle->vaddr;
4222
4223         page_count = obj->base.size / PAGE_SIZE;
4224         for (i = 0; i < page_count; i++) {
4225                 struct page *page = shmem_read_mapping_page(mapping, i);
4226                 if (!IS_ERR(page)) {
4227                         char *dst = kmap_atomic(page);
4228                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4229                         kunmap_atomic(dst);
4230
4231                         drm_clflush_pages(&page, 1);
4232
4233                         set_page_dirty(page);
4234                         mark_page_accessed(page);
4235                         page_cache_release(page);
4236                 }
4237         }
4238         intel_gtt_chipset_flush();
4239
4240         obj->phys_obj->cur_obj = NULL;
4241         obj->phys_obj = NULL;
4242 }
4243
4244 int
4245 i915_gem_attach_phys_object(struct drm_device *dev,
4246                             struct drm_i915_gem_object *obj,
4247                             int id,
4248                             int align)
4249 {
4250         struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4251         drm_i915_private_t *dev_priv = dev->dev_private;
4252         int ret = 0;
4253         int page_count;
4254         int i;
4255
4256         if (id > I915_MAX_PHYS_OBJECT)
4257                 return -EINVAL;
4258
4259         if (obj->phys_obj) {
4260                 if (obj->phys_obj->id == id)
4261                         return 0;
4262                 i915_gem_detach_phys_object(dev, obj);
4263         }
4264
4265         /* create a new object */
4266         if (!dev_priv->mm.phys_objs[id - 1]) {
4267                 ret = i915_gem_init_phys_object(dev, id,
4268                                                 obj->base.size, align);
4269                 if (ret) {
4270                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4271                                   id, obj->base.size);
4272                         return ret;
4273                 }
4274         }
4275
4276         /* bind to the object */
4277         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4278         obj->phys_obj->cur_obj = obj;
4279
4280         page_count = obj->base.size / PAGE_SIZE;
4281
4282         for (i = 0; i < page_count; i++) {
4283                 struct page *page;
4284                 char *dst, *src;
4285
4286                 page = shmem_read_mapping_page(mapping, i);
4287                 if (IS_ERR(page))
4288                         return PTR_ERR(page);
4289
4290                 src = kmap_atomic(page);
4291                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4292                 memcpy(dst, src, PAGE_SIZE);
4293                 kunmap_atomic(src);
4294
4295                 mark_page_accessed(page);
4296                 page_cache_release(page);
4297         }
4298
4299         return 0;
4300 }
4301
4302 static int
4303 i915_gem_phys_pwrite(struct drm_device *dev,
4304                      struct drm_i915_gem_object *obj,
4305                      struct drm_i915_gem_pwrite *args,
4306                      struct drm_file *file_priv)
4307 {
4308         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4309         char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4310
4311         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4312                 unsigned long unwritten;
4313
4314                 /* The physical object once assigned is fixed for the lifetime
4315                  * of the obj, so we can safely drop the lock and continue
4316                  * to access vaddr.
4317                  */
4318                 mutex_unlock(&dev->struct_mutex);
4319                 unwritten = copy_from_user(vaddr, user_data, args->size);
4320                 mutex_lock(&dev->struct_mutex);
4321                 if (unwritten)
4322                         return -EFAULT;
4323         }
4324
4325         intel_gtt_chipset_flush();
4326         return 0;
4327 }
4328
4329 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4330 {
4331         struct drm_i915_file_private *file_priv = file->driver_priv;
4332
4333         /* Clean up our request list when the client is going away, so that
4334          * later retire_requests won't dereference our soon-to-be-gone
4335          * file_priv.
4336          */
4337         spin_lock(&file_priv->mm.lock);
4338         while (!list_empty(&file_priv->mm.request_list)) {
4339                 struct drm_i915_gem_request *request;
4340
4341                 request = list_first_entry(&file_priv->mm.request_list,
4342                                            struct drm_i915_gem_request,
4343                                            client_list);
4344                 list_del(&request->client_list);
4345                 request->file_priv = NULL;
4346         }
4347         spin_unlock(&file_priv->mm.lock);
4348 }
4349
4350 static int
4351 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4352 {
4353         struct drm_i915_private *dev_priv =
4354                 container_of(shrinker,
4355                              struct drm_i915_private,
4356                              mm.inactive_shrinker);
4357         struct drm_device *dev = dev_priv->dev;
4358         struct drm_i915_gem_object *obj;
4359         int nr_to_scan = sc->nr_to_scan;
4360         int cnt;
4361
4362         if (!mutex_trylock(&dev->struct_mutex))
4363                 return 0;
4364
4365         if (nr_to_scan) {
4366                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4367                 if (nr_to_scan > 0)
4368                         i915_gem_shrink_all(dev_priv);
4369         }
4370
4371         cnt = 0;
4372         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4373                 cnt += obj->base.size >> PAGE_SHIFT;
4374         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4375                 if (obj->pin_count == 0)
4376                         cnt += obj->base.size >> PAGE_SHIFT;
4377
4378         mutex_unlock(&dev->struct_mutex);
4379         return cnt;
4380 }