Merge branch 'i2c/for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79  */
80
81 #define DRIVER_NAME             "i915"
82 #define DRIVER_DESC             "Intel Graphics"
83 #define DRIVER_DATE             "20170818"
84 #define DRIVER_TIMESTAMP        1503088845
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88  * which may not necessarily be a user visible problem.  This will either
89  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90  * enable distros and users to tailor their preferred amount of i915 abrt
91  * spam.
92  */
93 #define I915_STATE_WARN(condition, format...) ({                        \
94         int __ret_warn_on = !!(condition);                              \
95         if (unlikely(__ret_warn_on))                                    \
96                 if (!WARN(i915.verbose_state_checks, format))           \
97                         DRM_ERROR(format);                              \
98         unlikely(__ret_warn_on);                                        \
99 })
100
101 #define I915_STATE_WARN_ON(x)                                           \
102         I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106         __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109         uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113         uint_fixed_16_16_t fp; \
114         fp.val = UINT_MAX; \
115         fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120         if (val.val == 0)
121                 return true;
122         return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127         uint_fixed_16_16_t fp;
128
129         WARN_ON(val >> 16);
130
131         fp.val = val << 16;
132         return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137         return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142         return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146                                                  uint_fixed_16_16_t min2)
147 {
148         uint_fixed_16_16_t min;
149
150         min.val = min(min1.val, min2.val);
151         return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155                                                  uint_fixed_16_16_t max2)
156 {
157         uint_fixed_16_16_t max;
158
159         max.val = max(max1.val, max2.val);
160         return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165         uint_fixed_16_16_t fp;
166         WARN_ON(val >> 32);
167         fp.val = clamp_t(uint32_t, val, 0, ~0);
168         return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172                                             uint_fixed_16_16_t d)
173 {
174         return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178                                                 uint_fixed_16_16_t mul)
179 {
180         uint64_t intermediate_val;
181
182         intermediate_val = (uint64_t) val * mul.val;
183         intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184         WARN_ON(intermediate_val >> 32);
185         return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189                                              uint_fixed_16_16_t mul)
190 {
191         uint64_t intermediate_val;
192
193         intermediate_val = (uint64_t) val.val * mul.val;
194         intermediate_val = intermediate_val >> 16;
195         return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200         uint64_t interm_val;
201
202         interm_val = (uint64_t)val << 16;
203         interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204         return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208                                                 uint_fixed_16_16_t d)
209 {
210         uint64_t interm_val;
211
212         interm_val = (uint64_t)val << 16;
213         interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214         WARN_ON(interm_val >> 32);
215         return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219                                                      uint_fixed_16_16_t mul)
220 {
221         uint64_t intermediate_val;
222
223         intermediate_val = (uint64_t) val * mul.val;
224         return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228                                              uint_fixed_16_16_t add2)
229 {
230         uint64_t interm_sum;
231
232         interm_sum = (uint64_t) add1.val + add2.val;
233         return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237                                                  uint32_t add2)
238 {
239         uint64_t interm_sum;
240         uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242         interm_sum = (uint64_t) add1.val + interm_add2.val;
243         return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248         return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253         return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258         return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262         INVALID_PIPE = -1,
263         PIPE_A = 0,
264         PIPE_B,
265         PIPE_C,
266         _PIPE_EDP,
267         I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272         TRANSCODER_A = 0,
273         TRANSCODER_B,
274         TRANSCODER_C,
275         TRANSCODER_EDP,
276         TRANSCODER_DSI_A,
277         TRANSCODER_DSI_C,
278         I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283         switch (transcoder) {
284         case TRANSCODER_A:
285                 return "A";
286         case TRANSCODER_B:
287                 return "B";
288         case TRANSCODER_C:
289                 return "C";
290         case TRANSCODER_EDP:
291                 return "EDP";
292         case TRANSCODER_DSI_A:
293                 return "DSI A";
294         case TRANSCODER_DSI_C:
295                 return "DSI C";
296         default:
297                 return "<invalid>";
298         }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303         return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307  * Global legacy plane identifier. Valid only for primary/sprite
308  * planes on pre-g4x, and only for primary planes on g4x+.
309  */
310 enum plane {
311         PLANE_A,
312         PLANE_B,
313         PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320  * Per-pipe plane identifier.
321  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322  * number of planes per CRTC.  Not all platforms really have this many planes,
323  * which means some arrays of size I915_MAX_PLANES may have unused entries
324  * between the topmost sprite plane and the cursor plane.
325  *
326  * This is expected to be passed to various register macros
327  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328  */
329 enum plane_id {
330         PLANE_PRIMARY,
331         PLANE_SPRITE0,
332         PLANE_SPRITE1,
333         PLANE_SPRITE2,
334         PLANE_CURSOR,
335         I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339         for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340                 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343         PORT_NONE = -1,
344         PORT_A = 0,
345         PORT_B,
346         PORT_C,
347         PORT_D,
348         PORT_E,
349         I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356         DPIO_CH0,
357         DPIO_CH1
358 };
359
360 enum dpio_phy {
361         DPIO_PHY0,
362         DPIO_PHY1,
363         DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367         POWER_DOMAIN_PIPE_A,
368         POWER_DOMAIN_PIPE_B,
369         POWER_DOMAIN_PIPE_C,
370         POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371         POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372         POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373         POWER_DOMAIN_TRANSCODER_A,
374         POWER_DOMAIN_TRANSCODER_B,
375         POWER_DOMAIN_TRANSCODER_C,
376         POWER_DOMAIN_TRANSCODER_EDP,
377         POWER_DOMAIN_TRANSCODER_DSI_A,
378         POWER_DOMAIN_TRANSCODER_DSI_C,
379         POWER_DOMAIN_PORT_DDI_A_LANES,
380         POWER_DOMAIN_PORT_DDI_B_LANES,
381         POWER_DOMAIN_PORT_DDI_C_LANES,
382         POWER_DOMAIN_PORT_DDI_D_LANES,
383         POWER_DOMAIN_PORT_DDI_E_LANES,
384         POWER_DOMAIN_PORT_DDI_A_IO,
385         POWER_DOMAIN_PORT_DDI_B_IO,
386         POWER_DOMAIN_PORT_DDI_C_IO,
387         POWER_DOMAIN_PORT_DDI_D_IO,
388         POWER_DOMAIN_PORT_DDI_E_IO,
389         POWER_DOMAIN_PORT_DSI,
390         POWER_DOMAIN_PORT_CRT,
391         POWER_DOMAIN_PORT_OTHER,
392         POWER_DOMAIN_VGA,
393         POWER_DOMAIN_AUDIO,
394         POWER_DOMAIN_PLLS,
395         POWER_DOMAIN_AUX_A,
396         POWER_DOMAIN_AUX_B,
397         POWER_DOMAIN_AUX_C,
398         POWER_DOMAIN_AUX_D,
399         POWER_DOMAIN_GMBUS,
400         POWER_DOMAIN_MODESET,
401         POWER_DOMAIN_INIT,
402
403         POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408                 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410         ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411          (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414         HPD_NONE = 0,
415         HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
416         HPD_CRT,
417         HPD_SDVO_B,
418         HPD_SDVO_C,
419         HPD_PORT_A,
420         HPD_PORT_B,
421         HPD_PORT_C,
422         HPD_PORT_D,
423         HPD_PORT_E,
424         HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428         for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433         struct work_struct hotplug_work;
434
435         struct {
436                 unsigned long last_jiffies;
437                 int count;
438                 enum {
439                         HPD_ENABLED = 0,
440                         HPD_DISABLED = 1,
441                         HPD_MARK_DISABLED = 2
442                 } state;
443         } stats[HPD_NUM_PINS];
444         u32 event_bits;
445         struct delayed_work reenable_work;
446
447         struct intel_digital_port *irq_port[I915_MAX_PORTS];
448         u32 long_port_mask;
449         u32 short_port_mask;
450         struct work_struct dig_port_work;
451
452         struct work_struct poll_init_work;
453         bool poll_enabled;
454
455         unsigned int hpd_storm_threshold;
456
457         /*
458          * if we get a HPD irq from DP and a HPD irq from non-DP
459          * the non-DP HPD could block the workqueue on a mode config
460          * mutex getting, that userspace may have taken. However
461          * userspace is waiting on the DP workqueue to run which is
462          * blocked behind the non-DP one.
463          */
464         struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468         (I915_GEM_DOMAIN_RENDER | \
469          I915_GEM_DOMAIN_SAMPLER | \
470          I915_GEM_DOMAIN_COMMAND | \
471          I915_GEM_DOMAIN_INSTRUCTION | \
472          I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477         for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478                 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p)               \
480         for ((__p) = 0;                                                 \
481              (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482              (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s)                           \
484         for ((__s) = 0;                                                 \
485              (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];        \
486              (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489         for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)  \
490                 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493         list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496         list_for_each_entry(intel_plane,                        \
497                             &(dev)->mode_config.plane_list,     \
498                             base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)         \
501         list_for_each_entry(intel_plane,                                \
502                             &(dev)->mode_config.plane_list,             \
503                             base.head)                                  \
504                 for_each_if ((plane_mask) &                             \
505                              (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)      \
508         list_for_each_entry(intel_plane,                                \
509                             &(dev)->mode_config.plane_list,             \
510                             base.head)                                  \
511                 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc)                            \
514         list_for_each_entry(intel_crtc,                                 \
515                             &(dev)->mode_config.crtc_list,              \
516                             base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)            \
519         list_for_each_entry(intel_crtc,                                 \
520                             &(dev)->mode_config.crtc_list,              \
521                             base.head)                                  \
522                 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder)              \
525         list_for_each_entry(intel_encoder,                      \
526                             &(dev)->mode_config.encoder_list,   \
527                             base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530         while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533         list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534                 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537         list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538                 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask)                             \
541         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
542                 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well)                           \
545         for ((__power_well) = (__dev_priv)->power_domains.power_wells;  \
546              (__power_well) - (__dev_priv)->power_domains.power_wells < \
547                 (__dev_priv)->power_domains.power_well_count;           \
548              (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well)                       \
551         for ((__power_well) = (__dev_priv)->power_domains.power_wells +         \
552                               (__dev_priv)->power_domains.power_well_count - 1; \
553              (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;     \
554              (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)     \
557         for_each_power_well(__dev_priv, __power_well)                           \
558                 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561         for_each_power_well_rev(__dev_priv, __power_well)                       \
562                 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565         for ((__i) = 0; \
566              (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567                      ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568                       (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569              (__i)++) \
570                 for_each_if (plane_state)
571
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575
576 struct drm_i915_file_private {
577         struct drm_i915_private *dev_priv;
578         struct drm_file *file;
579
580         struct {
581                 spinlock_t lock;
582                 struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584  * chosen to prevent the CPU getting more than a frame ahead of the GPU
585  * (when using lax throttling for the frontbuffer). We also use it to
586  * offer free GPU waitboosts for severely congested workloads.
587  */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589         } mm;
590         struct idr context_idr;
591
592         struct intel_rps_client {
593                 atomic_t boosts;
594         } rps;
595
596         unsigned int bsd_engine;
597
598 /* Client can have a maximum of 3 contexts banned before
599  * it is denied of creating new contexts. As one context
600  * ban needs 4 consecutive hangs, and more if there is
601  * progress in between, this is a last resort stop gap measure
602  * to limit the badly behaving clients access to gpu.
603  */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605         atomic_t context_bans;
606 };
607
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610         uint32_t        tu;
611         uint32_t        gmch_m;
612         uint32_t        gmch_n;
613         uint32_t        link_m;
614         uint32_t        link_n;
615 };
616
617 void intel_link_compute_m_n(int bpp, int nlanes,
618                             int pixel_clock, int link_clock,
619                             struct intel_link_m_n *m_n,
620                             bool reduce_m_n);
621
622 /* Interface history:
623  *
624  * 1.1: Original.
625  * 1.2: Add Power Management
626  * 1.3: Add vblank support
627  * 1.4: Fix cmdbuffer path, add heap destroy
628  * 1.5: Add vblank pipe configuration
629  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630  *      - Support vertical blank on secondary display pipe
631  */
632 #define DRIVER_MAJOR            1
633 #define DRIVER_MINOR            6
634 #define DRIVER_PATCHLEVEL       0
635
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640
641 struct intel_opregion {
642         struct opregion_header *header;
643         struct opregion_acpi *acpi;
644         struct opregion_swsci *swsci;
645         u32 swsci_gbda_sub_functions;
646         u32 swsci_sbcb_sub_functions;
647         struct opregion_asle *asle;
648         void *rvda;
649         void *vbt_firmware;
650         const void *vbt;
651         u32 vbt_size;
652         u32 *lid_state;
653         struct work_struct asle_work;
654 };
655 #define OPREGION_SIZE            (8*1024)
656
657 struct intel_overlay;
658 struct intel_overlay_error_state;
659
660 struct sdvo_device_mapping {
661         u8 initialized;
662         u8 dvo_port;
663         u8 slave_addr;
664         u8 dvo_wiring;
665         u8 i2c_pin;
666         u8 ddc_pin;
667 };
668
669 struct intel_connector;
670 struct intel_encoder;
671 struct intel_atomic_state;
672 struct intel_crtc_state;
673 struct intel_initial_plane_config;
674 struct intel_crtc;
675 struct intel_limit;
676 struct dpll;
677 struct intel_cdclk_state;
678
679 struct drm_i915_display_funcs {
680         void (*get_cdclk)(struct drm_i915_private *dev_priv,
681                           struct intel_cdclk_state *cdclk_state);
682         void (*set_cdclk)(struct drm_i915_private *dev_priv,
683                           const struct intel_cdclk_state *cdclk_state);
684         int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
685         int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
686         int (*compute_intermediate_wm)(struct drm_device *dev,
687                                        struct intel_crtc *intel_crtc,
688                                        struct intel_crtc_state *newstate);
689         void (*initial_watermarks)(struct intel_atomic_state *state,
690                                    struct intel_crtc_state *cstate);
691         void (*atomic_update_watermarks)(struct intel_atomic_state *state,
692                                          struct intel_crtc_state *cstate);
693         void (*optimize_watermarks)(struct intel_atomic_state *state,
694                                     struct intel_crtc_state *cstate);
695         int (*compute_global_watermarks)(struct drm_atomic_state *state);
696         void (*update_wm)(struct intel_crtc *crtc);
697         int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
698         /* Returns the active state of the crtc, and if the crtc is active,
699          * fills out the pipe-config with the hw state. */
700         bool (*get_pipe_config)(struct intel_crtc *,
701                                 struct intel_crtc_state *);
702         void (*get_initial_plane_config)(struct intel_crtc *,
703                                          struct intel_initial_plane_config *);
704         int (*crtc_compute_clock)(struct intel_crtc *crtc,
705                                   struct intel_crtc_state *crtc_state);
706         void (*crtc_enable)(struct intel_crtc_state *pipe_config,
707                             struct drm_atomic_state *old_state);
708         void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
709                              struct drm_atomic_state *old_state);
710         void (*update_crtcs)(struct drm_atomic_state *state,
711                              unsigned int *crtc_vblank_mask);
712         void (*audio_codec_enable)(struct drm_connector *connector,
713                                    struct intel_encoder *encoder,
714                                    const struct drm_display_mode *adjusted_mode);
715         void (*audio_codec_disable)(struct intel_encoder *encoder);
716         void (*fdi_link_train)(struct intel_crtc *crtc,
717                                const struct intel_crtc_state *crtc_state);
718         void (*init_clock_gating)(struct drm_i915_private *dev_priv);
719         void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
720         /* clock updates for mode set */
721         /* cursor updates */
722         /* render clock increase/decrease */
723         /* display clock increase/decrease */
724         /* pll clock increase/decrease */
725
726         void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
727         void (*load_luts)(struct drm_crtc_state *crtc_state);
728 };
729
730 #define CSR_VERSION(major, minor)       ((major) << 16 | (minor))
731 #define CSR_VERSION_MAJOR(version)      ((version) >> 16)
732 #define CSR_VERSION_MINOR(version)      ((version) & 0xffff)
733
734 struct intel_csr {
735         struct work_struct work;
736         const char *fw_path;
737         uint32_t *dmc_payload;
738         uint32_t dmc_fw_size;
739         uint32_t version;
740         uint32_t mmio_count;
741         i915_reg_t mmioaddr[8];
742         uint32_t mmiodata[8];
743         uint32_t dc_state;
744         uint32_t allowed_dc_mask;
745 };
746
747 #define DEV_INFO_FOR_EACH_FLAG(func) \
748         func(is_mobile); \
749         func(is_lp); \
750         func(is_alpha_support); \
751         /* Keep has_* in alphabetical order */ \
752         func(has_64bit_reloc); \
753         func(has_aliasing_ppgtt); \
754         func(has_csr); \
755         func(has_ddi); \
756         func(has_dp_mst); \
757         func(has_reset_engine); \
758         func(has_fbc); \
759         func(has_fpga_dbg); \
760         func(has_full_ppgtt); \
761         func(has_full_48bit_ppgtt); \
762         func(has_gmbus_irq); \
763         func(has_gmch_display); \
764         func(has_guc); \
765         func(has_guc_ct); \
766         func(has_hotplug); \
767         func(has_l3_dpf); \
768         func(has_llc); \
769         func(has_logical_ring_contexts); \
770         func(has_overlay); \
771         func(has_pipe_cxsr); \
772         func(has_pooled_eu); \
773         func(has_psr); \
774         func(has_rc6); \
775         func(has_rc6p); \
776         func(has_resource_streamer); \
777         func(has_runtime_pm); \
778         func(has_snoop); \
779         func(unfenced_needs_alignment); \
780         func(cursor_needs_physical); \
781         func(hws_needs_physical); \
782         func(overlay_needs_physical); \
783         func(supports_tv);
784
785 struct sseu_dev_info {
786         u8 slice_mask;
787         u8 subslice_mask;
788         u8 eu_total;
789         u8 eu_per_subslice;
790         u8 min_eu_in_pool;
791         /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
792         u8 subslice_7eu[3];
793         u8 has_slice_pg:1;
794         u8 has_subslice_pg:1;
795         u8 has_eu_pg:1;
796 };
797
798 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
799 {
800         return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
801 }
802
803 /* Keep in gen based order, and chronological order within a gen */
804 enum intel_platform {
805         INTEL_PLATFORM_UNINITIALIZED = 0,
806         INTEL_I830,
807         INTEL_I845G,
808         INTEL_I85X,
809         INTEL_I865G,
810         INTEL_I915G,
811         INTEL_I915GM,
812         INTEL_I945G,
813         INTEL_I945GM,
814         INTEL_G33,
815         INTEL_PINEVIEW,
816         INTEL_I965G,
817         INTEL_I965GM,
818         INTEL_G45,
819         INTEL_GM45,
820         INTEL_IRONLAKE,
821         INTEL_SANDYBRIDGE,
822         INTEL_IVYBRIDGE,
823         INTEL_VALLEYVIEW,
824         INTEL_HASWELL,
825         INTEL_BROADWELL,
826         INTEL_CHERRYVIEW,
827         INTEL_SKYLAKE,
828         INTEL_BROXTON,
829         INTEL_KABYLAKE,
830         INTEL_GEMINILAKE,
831         INTEL_COFFEELAKE,
832         INTEL_CANNONLAKE,
833         INTEL_MAX_PLATFORMS
834 };
835
836 struct intel_device_info {
837         u32 display_mmio_offset;
838         u16 device_id;
839         u8 num_pipes;
840         u8 num_sprites[I915_MAX_PIPES];
841         u8 num_scalers[I915_MAX_PIPES];
842         u8 gen;
843         u16 gen_mask;
844         enum intel_platform platform;
845         u8 ring_mask; /* Rings supported by the HW */
846         u8 num_rings;
847 #define DEFINE_FLAG(name) u8 name:1
848         DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
849 #undef DEFINE_FLAG
850         u16 ddb_size; /* in blocks */
851         /* Register offsets for the various display pipes and transcoders */
852         int pipe_offsets[I915_MAX_TRANSCODERS];
853         int trans_offsets[I915_MAX_TRANSCODERS];
854         int palette_offsets[I915_MAX_PIPES];
855         int cursor_offsets[I915_MAX_PIPES];
856
857         /* Slice/subslice/EU info */
858         struct sseu_dev_info sseu;
859
860         struct color_luts {
861                 u16 degamma_lut_size;
862                 u16 gamma_lut_size;
863         } color;
864 };
865
866 struct intel_display_error_state;
867
868 struct i915_gpu_state {
869         struct kref ref;
870         struct timeval time;
871         struct timeval boottime;
872         struct timeval uptime;
873
874         struct drm_i915_private *i915;
875
876         char error_msg[128];
877         bool simulated;
878         bool awake;
879         bool wakelock;
880         bool suspended;
881         int iommu;
882         u32 reset_count;
883         u32 suspend_count;
884         struct intel_device_info device_info;
885         struct i915_params params;
886
887         /* Generic register state */
888         u32 eir;
889         u32 pgtbl_er;
890         u32 ier;
891         u32 gtier[4], ngtier;
892         u32 ccid;
893         u32 derrmr;
894         u32 forcewake;
895         u32 error; /* gen6+ */
896         u32 err_int; /* gen7 */
897         u32 fault_data0; /* gen8, gen9 */
898         u32 fault_data1; /* gen8, gen9 */
899         u32 done_reg;
900         u32 gac_eco;
901         u32 gam_ecochk;
902         u32 gab_ctl;
903         u32 gfx_mode;
904
905         u32 nfence;
906         u64 fence[I915_MAX_NUM_FENCES];
907         struct intel_overlay_error_state *overlay;
908         struct intel_display_error_state *display;
909         struct drm_i915_error_object *semaphore;
910         struct drm_i915_error_object *guc_log;
911
912         struct drm_i915_error_engine {
913                 int engine_id;
914                 /* Software tracked state */
915                 bool waiting;
916                 int num_waiters;
917                 unsigned long hangcheck_timestamp;
918                 bool hangcheck_stalled;
919                 enum intel_engine_hangcheck_action hangcheck_action;
920                 struct i915_address_space *vm;
921                 int num_requests;
922                 u32 reset_count;
923
924                 /* position of active request inside the ring */
925                 u32 rq_head, rq_post, rq_tail;
926
927                 /* our own tracking of ring head and tail */
928                 u32 cpu_ring_head;
929                 u32 cpu_ring_tail;
930
931                 u32 last_seqno;
932
933                 /* Register state */
934                 u32 start;
935                 u32 tail;
936                 u32 head;
937                 u32 ctl;
938                 u32 mode;
939                 u32 hws;
940                 u32 ipeir;
941                 u32 ipehr;
942                 u32 bbstate;
943                 u32 instpm;
944                 u32 instps;
945                 u32 seqno;
946                 u64 bbaddr;
947                 u64 acthd;
948                 u32 fault_reg;
949                 u64 faddr;
950                 u32 rc_psmi; /* sleep state */
951                 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
952                 struct intel_instdone instdone;
953
954                 struct drm_i915_error_context {
955                         char comm[TASK_COMM_LEN];
956                         pid_t pid;
957                         u32 handle;
958                         u32 hw_id;
959                         int ban_score;
960                         int active;
961                         int guilty;
962                 } context;
963
964                 struct drm_i915_error_object {
965                         u64 gtt_offset;
966                         u64 gtt_size;
967                         int page_count;
968                         int unused;
969                         u32 *pages[0];
970                 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
971
972                 struct drm_i915_error_object **user_bo;
973                 long user_bo_count;
974
975                 struct drm_i915_error_object *wa_ctx;
976
977                 struct drm_i915_error_request {
978                         long jiffies;
979                         pid_t pid;
980                         u32 context;
981                         int ban_score;
982                         u32 seqno;
983                         u32 head;
984                         u32 tail;
985                 } *requests, execlist[2];
986
987                 struct drm_i915_error_waiter {
988                         char comm[TASK_COMM_LEN];
989                         pid_t pid;
990                         u32 seqno;
991                 } *waiters;
992
993                 struct {
994                         u32 gfx_mode;
995                         union {
996                                 u64 pdp[4];
997                                 u32 pp_dir_base;
998                         };
999                 } vm_info;
1000         } engine[I915_NUM_ENGINES];
1001
1002         struct drm_i915_error_buffer {
1003                 u32 size;
1004                 u32 name;
1005                 u32 rseqno[I915_NUM_ENGINES], wseqno;
1006                 u64 gtt_offset;
1007                 u32 read_domains;
1008                 u32 write_domain;
1009                 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1010                 u32 tiling:2;
1011                 u32 dirty:1;
1012                 u32 purgeable:1;
1013                 u32 userptr:1;
1014                 s32 engine:4;
1015                 u32 cache_level:3;
1016         } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1017         u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1018         struct i915_address_space *active_vm[I915_NUM_ENGINES];
1019 };
1020
1021 enum i915_cache_level {
1022         I915_CACHE_NONE = 0,
1023         I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1024         I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1025                               caches, eg sampler/render caches, and the
1026                               large Last-Level-Cache. LLC is coherent with
1027                               the CPU, but L3 is only visible to the GPU. */
1028         I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1029 };
1030
1031 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1032
1033 enum fb_op_origin {
1034         ORIGIN_GTT,
1035         ORIGIN_CPU,
1036         ORIGIN_CS,
1037         ORIGIN_FLIP,
1038         ORIGIN_DIRTYFB,
1039 };
1040
1041 struct intel_fbc {
1042         /* This is always the inner lock when overlapping with struct_mutex and
1043          * it's the outer lock when overlapping with stolen_lock. */
1044         struct mutex lock;
1045         unsigned threshold;
1046         unsigned int possible_framebuffer_bits;
1047         unsigned int busy_bits;
1048         unsigned int visible_pipes_mask;
1049         struct intel_crtc *crtc;
1050
1051         struct drm_mm_node compressed_fb;
1052         struct drm_mm_node *compressed_llb;
1053
1054         bool false_color;
1055
1056         bool enabled;
1057         bool active;
1058
1059         bool underrun_detected;
1060         struct work_struct underrun_work;
1061
1062         /*
1063          * Due to the atomic rules we can't access some structures without the
1064          * appropriate locking, so we cache information here in order to avoid
1065          * these problems.
1066          */
1067         struct intel_fbc_state_cache {
1068                 struct i915_vma *vma;
1069
1070                 struct {
1071                         unsigned int mode_flags;
1072                         uint32_t hsw_bdw_pixel_rate;
1073                 } crtc;
1074
1075                 struct {
1076                         unsigned int rotation;
1077                         int src_w;
1078                         int src_h;
1079                         bool visible;
1080                 } plane;
1081
1082                 struct {
1083                         const struct drm_format_info *format;
1084                         unsigned int stride;
1085                 } fb;
1086         } state_cache;
1087
1088         /*
1089          * This structure contains everything that's relevant to program the
1090          * hardware registers. When we want to figure out if we need to disable
1091          * and re-enable FBC for a new configuration we just check if there's
1092          * something different in the struct. The genx_fbc_activate functions
1093          * are supposed to read from it in order to program the registers.
1094          */
1095         struct intel_fbc_reg_params {
1096                 struct i915_vma *vma;
1097
1098                 struct {
1099                         enum pipe pipe;
1100                         enum plane plane;
1101                         unsigned int fence_y_offset;
1102                 } crtc;
1103
1104                 struct {
1105                         const struct drm_format_info *format;
1106                         unsigned int stride;
1107                 } fb;
1108
1109                 int cfb_size;
1110         } params;
1111
1112         struct intel_fbc_work {
1113                 bool scheduled;
1114                 u32 scheduled_vblank;
1115                 struct work_struct work;
1116         } work;
1117
1118         const char *no_fbc_reason;
1119 };
1120
1121 /*
1122  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1123  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1124  * parsing for same resolution.
1125  */
1126 enum drrs_refresh_rate_type {
1127         DRRS_HIGH_RR,
1128         DRRS_LOW_RR,
1129         DRRS_MAX_RR, /* RR count */
1130 };
1131
1132 enum drrs_support_type {
1133         DRRS_NOT_SUPPORTED = 0,
1134         STATIC_DRRS_SUPPORT = 1,
1135         SEAMLESS_DRRS_SUPPORT = 2
1136 };
1137
1138 struct intel_dp;
1139 struct i915_drrs {
1140         struct mutex mutex;
1141         struct delayed_work work;
1142         struct intel_dp *dp;
1143         unsigned busy_frontbuffer_bits;
1144         enum drrs_refresh_rate_type refresh_rate_type;
1145         enum drrs_support_type type;
1146 };
1147
1148 struct i915_psr {
1149         struct mutex lock;
1150         bool sink_support;
1151         bool source_ok;
1152         struct intel_dp *enabled;
1153         bool active;
1154         struct delayed_work work;
1155         unsigned busy_frontbuffer_bits;
1156         bool psr2_support;
1157         bool aux_frame_sync;
1158         bool link_standby;
1159         bool y_cord_support;
1160         bool colorimetry_support;
1161         bool alpm;
1162 };
1163
1164 enum intel_pch {
1165         PCH_NONE = 0,   /* No PCH present */
1166         PCH_IBX,        /* Ibexpeak PCH */
1167         PCH_CPT,        /* Cougarpoint/Pantherpoint PCH */
1168         PCH_LPT,        /* Lynxpoint/Wildcatpoint PCH */
1169         PCH_SPT,        /* Sunrisepoint PCH */
1170         PCH_KBP,        /* Kaby Lake PCH */
1171         PCH_CNP,        /* Cannon Lake PCH */
1172         PCH_NOP,
1173 };
1174
1175 enum intel_sbi_destination {
1176         SBI_ICLK,
1177         SBI_MPHY,
1178 };
1179
1180 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1181 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1182 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1183 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1184 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1185
1186 struct intel_fbdev;
1187 struct intel_fbc_work;
1188
1189 struct intel_gmbus {
1190         struct i2c_adapter adapter;
1191 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1192         u32 force_bit;
1193         u32 reg0;
1194         i915_reg_t gpio_reg;
1195         struct i2c_algo_bit_data bit_algo;
1196         struct drm_i915_private *dev_priv;
1197 };
1198
1199 struct i915_suspend_saved_registers {
1200         u32 saveDSPARB;
1201         u32 saveFBC_CONTROL;
1202         u32 saveCACHE_MODE_0;
1203         u32 saveMI_ARB_STATE;
1204         u32 saveSWF0[16];
1205         u32 saveSWF1[16];
1206         u32 saveSWF3[3];
1207         uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1208         u32 savePCH_PORT_HOTPLUG;
1209         u16 saveGCDGMBUS;
1210 };
1211
1212 struct vlv_s0ix_state {
1213         /* GAM */
1214         u32 wr_watermark;
1215         u32 gfx_prio_ctrl;
1216         u32 arb_mode;
1217         u32 gfx_pend_tlb0;
1218         u32 gfx_pend_tlb1;
1219         u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1220         u32 media_max_req_count;
1221         u32 gfx_max_req_count;
1222         u32 render_hwsp;
1223         u32 ecochk;
1224         u32 bsd_hwsp;
1225         u32 blt_hwsp;
1226         u32 tlb_rd_addr;
1227
1228         /* MBC */
1229         u32 g3dctl;
1230         u32 gsckgctl;
1231         u32 mbctl;
1232
1233         /* GCP */
1234         u32 ucgctl1;
1235         u32 ucgctl3;
1236         u32 rcgctl1;
1237         u32 rcgctl2;
1238         u32 rstctl;
1239         u32 misccpctl;
1240
1241         /* GPM */
1242         u32 gfxpause;
1243         u32 rpdeuhwtc;
1244         u32 rpdeuc;
1245         u32 ecobus;
1246         u32 pwrdwnupctl;
1247         u32 rp_down_timeout;
1248         u32 rp_deucsw;
1249         u32 rcubmabdtmr;
1250         u32 rcedata;
1251         u32 spare2gh;
1252
1253         /* Display 1 CZ domain */
1254         u32 gt_imr;
1255         u32 gt_ier;
1256         u32 pm_imr;
1257         u32 pm_ier;
1258         u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1259
1260         /* GT SA CZ domain */
1261         u32 tilectl;
1262         u32 gt_fifoctl;
1263         u32 gtlc_wake_ctrl;
1264         u32 gtlc_survive;
1265         u32 pmwgicz;
1266
1267         /* Display 2 CZ domain */
1268         u32 gu_ctl0;
1269         u32 gu_ctl1;
1270         u32 pcbr;
1271         u32 clock_gate_dis2;
1272 };
1273
1274 struct intel_rps_ei {
1275         ktime_t ktime;
1276         u32 render_c0;
1277         u32 media_c0;
1278 };
1279
1280 struct intel_gen6_power_mgmt {
1281         /*
1282          * work, interrupts_enabled and pm_iir are protected by
1283          * dev_priv->irq_lock
1284          */
1285         struct work_struct work;
1286         bool interrupts_enabled;
1287         u32 pm_iir;
1288
1289         /* PM interrupt bits that should never be masked */
1290         u32 pm_intrmsk_mbz;
1291
1292         /* Frequencies are stored in potentially platform dependent multiples.
1293          * In other words, *_freq needs to be multiplied by X to be interesting.
1294          * Soft limits are those which are used for the dynamic reclocking done
1295          * by the driver (raise frequencies under heavy loads, and lower for
1296          * lighter loads). Hard limits are those imposed by the hardware.
1297          *
1298          * A distinction is made for overclocking, which is never enabled by
1299          * default, and is considered to be above the hard limit if it's
1300          * possible at all.
1301          */
1302         u8 cur_freq;            /* Current frequency (cached, may not == HW) */
1303         u8 min_freq_softlimit;  /* Minimum frequency permitted by the driver */
1304         u8 max_freq_softlimit;  /* Max frequency permitted by the driver */
1305         u8 max_freq;            /* Maximum frequency, RP0 if not overclocking */
1306         u8 min_freq;            /* AKA RPn. Minimum frequency */
1307         u8 boost_freq;          /* Frequency to request when wait boosting */
1308         u8 idle_freq;           /* Frequency to request when we are idle */
1309         u8 efficient_freq;      /* AKA RPe. Pre-determined balanced frequency */
1310         u8 rp1_freq;            /* "less than" RP0 power/freqency */
1311         u8 rp0_freq;            /* Non-overclocked max frequency. */
1312         u16 gpll_ref_freq;      /* vlv/chv GPLL reference frequency */
1313
1314         u8 up_threshold; /* Current %busy required to uplock */
1315         u8 down_threshold; /* Current %busy required to downclock */
1316
1317         int last_adj;
1318         enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1319
1320         bool enabled;
1321         struct delayed_work autoenable_work;
1322         atomic_t num_waiters;
1323         atomic_t boosts;
1324
1325         /* manual wa residency calculations */
1326         struct intel_rps_ei ei;
1327
1328         /*
1329          * Protects RPS/RC6 register access and PCU communication.
1330          * Must be taken after struct_mutex if nested. Note that
1331          * this lock may be held for long periods of time when
1332          * talking to hw - so only take it when talking to hw!
1333          */
1334         struct mutex hw_lock;
1335 };
1336
1337 /* defined intel_pm.c */
1338 extern spinlock_t mchdev_lock;
1339
1340 struct intel_ilk_power_mgmt {
1341         u8 cur_delay;
1342         u8 min_delay;
1343         u8 max_delay;
1344         u8 fmax;
1345         u8 fstart;
1346
1347         u64 last_count1;
1348         unsigned long last_time1;
1349         unsigned long chipset_power;
1350         u64 last_count2;
1351         u64 last_time2;
1352         unsigned long gfx_power;
1353         u8 corr;
1354
1355         int c_m;
1356         int r_t;
1357 };
1358
1359 struct drm_i915_private;
1360 struct i915_power_well;
1361
1362 struct i915_power_well_ops {
1363         /*
1364          * Synchronize the well's hw state to match the current sw state, for
1365          * example enable/disable it based on the current refcount. Called
1366          * during driver init and resume time, possibly after first calling
1367          * the enable/disable handlers.
1368          */
1369         void (*sync_hw)(struct drm_i915_private *dev_priv,
1370                         struct i915_power_well *power_well);
1371         /*
1372          * Enable the well and resources that depend on it (for example
1373          * interrupts located on the well). Called after the 0->1 refcount
1374          * transition.
1375          */
1376         void (*enable)(struct drm_i915_private *dev_priv,
1377                        struct i915_power_well *power_well);
1378         /*
1379          * Disable the well and resources that depend on it. Called after
1380          * the 1->0 refcount transition.
1381          */
1382         void (*disable)(struct drm_i915_private *dev_priv,
1383                         struct i915_power_well *power_well);
1384         /* Returns the hw enabled state. */
1385         bool (*is_enabled)(struct drm_i915_private *dev_priv,
1386                            struct i915_power_well *power_well);
1387 };
1388
1389 /* Power well structure for haswell */
1390 struct i915_power_well {
1391         const char *name;
1392         bool always_on;
1393         /* power well enable/disable usage count */
1394         int count;
1395         /* cached hw enabled state */
1396         bool hw_enabled;
1397         u64 domains;
1398         /* unique identifier for this power well */
1399         enum i915_power_well_id id;
1400         /*
1401          * Arbitraty data associated with this power well. Platform and power
1402          * well specific.
1403          */
1404         union {
1405                 struct {
1406                         enum dpio_phy phy;
1407                 } bxt;
1408                 struct {
1409                         /* Mask of pipes whose IRQ logic is backed by the pw */
1410                         u8 irq_pipe_mask;
1411                         /* The pw is backing the VGA functionality */
1412                         bool has_vga:1;
1413                         bool has_fuses:1;
1414                 } hsw;
1415         };
1416         const struct i915_power_well_ops *ops;
1417 };
1418
1419 struct i915_power_domains {
1420         /*
1421          * Power wells needed for initialization at driver init and suspend
1422          * time are on. They are kept on until after the first modeset.
1423          */
1424         bool init_power_on;
1425         bool initializing;
1426         int power_well_count;
1427
1428         struct mutex lock;
1429         int domain_use_count[POWER_DOMAIN_NUM];
1430         struct i915_power_well *power_wells;
1431 };
1432
1433 #define MAX_L3_SLICES 2
1434 struct intel_l3_parity {
1435         u32 *remap_info[MAX_L3_SLICES];
1436         struct work_struct error_work;
1437         int which_slice;
1438 };
1439
1440 struct i915_gem_mm {
1441         /** Memory allocator for GTT stolen memory */
1442         struct drm_mm stolen;
1443         /** Protects the usage of the GTT stolen memory allocator. This is
1444          * always the inner lock when overlapping with struct_mutex. */
1445         struct mutex stolen_lock;
1446
1447         /** List of all objects in gtt_space. Used to restore gtt
1448          * mappings on resume */
1449         struct list_head bound_list;
1450         /**
1451          * List of objects which are not bound to the GTT (thus
1452          * are idle and not used by the GPU). These objects may or may
1453          * not actually have any pages attached.
1454          */
1455         struct list_head unbound_list;
1456
1457         /** List of all objects in gtt_space, currently mmaped by userspace.
1458          * All objects within this list must also be on bound_list.
1459          */
1460         struct list_head userfault_list;
1461
1462         /**
1463          * List of objects which are pending destruction.
1464          */
1465         struct llist_head free_list;
1466         struct work_struct free_work;
1467
1468         /** Usable portion of the GTT for GEM */
1469         dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1470
1471         /** PPGTT used for aliasing the PPGTT with the GTT */
1472         struct i915_hw_ppgtt *aliasing_ppgtt;
1473
1474         struct notifier_block oom_notifier;
1475         struct notifier_block vmap_notifier;
1476         struct shrinker shrinker;
1477
1478         /** LRU list of objects with fence regs on them. */
1479         struct list_head fence_list;
1480
1481         /**
1482          * Workqueue to fault in userptr pages, flushed by the execbuf
1483          * when required but otherwise left to userspace to try again
1484          * on EAGAIN.
1485          */
1486         struct workqueue_struct *userptr_wq;
1487
1488         u64 unordered_timeline;
1489
1490         /* the indicator for dispatch video commands on two BSD rings */
1491         atomic_t bsd_engine_dispatch_index;
1492
1493         /** Bit 6 swizzling required for X tiling */
1494         uint32_t bit_6_swizzle_x;
1495         /** Bit 6 swizzling required for Y tiling */
1496         uint32_t bit_6_swizzle_y;
1497
1498         /* accounting, useful for userland debugging */
1499         spinlock_t object_stat_lock;
1500         u64 object_memory;
1501         u32 object_count;
1502 };
1503
1504 struct drm_i915_error_state_buf {
1505         struct drm_i915_private *i915;
1506         unsigned bytes;
1507         unsigned size;
1508         int err;
1509         u8 *buf;
1510         loff_t start;
1511         loff_t pos;
1512 };
1513
1514 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1515 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1516
1517 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1518 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1519
1520 struct i915_gpu_error {
1521         /* For hangcheck timer */
1522 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1523 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1524
1525         struct delayed_work hangcheck_work;
1526
1527         /* For reset and error_state handling. */
1528         spinlock_t lock;
1529         /* Protected by the above dev->gpu_error.lock. */
1530         struct i915_gpu_state *first_error;
1531
1532         atomic_t pending_fb_pin;
1533
1534         unsigned long missed_irq_rings;
1535
1536         /**
1537          * State variable controlling the reset flow and count
1538          *
1539          * This is a counter which gets incremented when reset is triggered,
1540          *
1541          * Before the reset commences, the I915_RESET_BACKOFF bit is set
1542          * meaning that any waiters holding onto the struct_mutex should
1543          * relinquish the lock immediately in order for the reset to start.
1544          *
1545          * If reset is not completed succesfully, the I915_WEDGE bit is
1546          * set meaning that hardware is terminally sour and there is no
1547          * recovery. All waiters on the reset_queue will be woken when
1548          * that happens.
1549          *
1550          * This counter is used by the wait_seqno code to notice that reset
1551          * event happened and it needs to restart the entire ioctl (since most
1552          * likely the seqno it waited for won't ever signal anytime soon).
1553          *
1554          * This is important for lock-free wait paths, where no contended lock
1555          * naturally enforces the correct ordering between the bail-out of the
1556          * waiter and the gpu reset work code.
1557          */
1558         unsigned long reset_count;
1559
1560         /**
1561          * flags: Control various stages of the GPU reset
1562          *
1563          * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1564          * other users acquiring the struct_mutex. To do this we set the
1565          * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1566          * and then check for that bit before acquiring the struct_mutex (in
1567          * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1568          * secondary role in preventing two concurrent global reset attempts.
1569          *
1570          * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1571          * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1572          * but it may be held by some long running waiter (that we cannot
1573          * interrupt without causing trouble). Once we are ready to do the GPU
1574          * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1575          * they already hold the struct_mutex and want to participate they can
1576          * inspect the bit and do the reset directly, otherwise the worker
1577          * waits for the struct_mutex.
1578          *
1579          * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1580          * acquire the struct_mutex to reset an engine, we need an explicit
1581          * flag to prevent two concurrent reset attempts in the same engine.
1582          * As the number of engines continues to grow, allocate the flags from
1583          * the most significant bits.
1584          *
1585          * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1586          * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1587          * i915_gem_request_alloc(), this bit is checked and the sequence
1588          * aborted (with -EIO reported to userspace) if set.
1589          */
1590         unsigned long flags;
1591 #define I915_RESET_BACKOFF      0
1592 #define I915_RESET_HANDOFF      1
1593 #define I915_RESET_MODESET      2
1594 #define I915_WEDGED             (BITS_PER_LONG - 1)
1595 #define I915_RESET_ENGINE       (I915_WEDGED - I915_NUM_ENGINES)
1596
1597         /** Number of times an engine has been reset */
1598         u32 reset_engine_count[I915_NUM_ENGINES];
1599
1600         /**
1601          * Waitqueue to signal when a hang is detected. Used to for waiters
1602          * to release the struct_mutex for the reset to procede.
1603          */
1604         wait_queue_head_t wait_queue;
1605
1606         /**
1607          * Waitqueue to signal when the reset has completed. Used by clients
1608          * that wait for dev_priv->mm.wedged to settle.
1609          */
1610         wait_queue_head_t reset_queue;
1611
1612         /* For missed irq/seqno simulation. */
1613         unsigned long test_irq_rings;
1614 };
1615
1616 enum modeset_restore {
1617         MODESET_ON_LID_OPEN,
1618         MODESET_DONE,
1619         MODESET_SUSPENDED,
1620 };
1621
1622 #define DP_AUX_A 0x40
1623 #define DP_AUX_B 0x10
1624 #define DP_AUX_C 0x20
1625 #define DP_AUX_D 0x30
1626
1627 #define DDC_PIN_B  0x05
1628 #define DDC_PIN_C  0x04
1629 #define DDC_PIN_D  0x06
1630
1631 struct ddi_vbt_port_info {
1632         /*
1633          * This is an index in the HDMI/DVI DDI buffer translation table.
1634          * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1635          * populate this field.
1636          */
1637 #define HDMI_LEVEL_SHIFT_UNKNOWN        0xff
1638         uint8_t hdmi_level_shift;
1639
1640         uint8_t supports_dvi:1;
1641         uint8_t supports_hdmi:1;
1642         uint8_t supports_dp:1;
1643         uint8_t supports_edp:1;
1644
1645         uint8_t alternate_aux_channel;
1646         uint8_t alternate_ddc_pin;
1647
1648         uint8_t dp_boost_level;
1649         uint8_t hdmi_boost_level;
1650 };
1651
1652 enum psr_lines_to_wait {
1653         PSR_0_LINES_TO_WAIT = 0,
1654         PSR_1_LINE_TO_WAIT,
1655         PSR_4_LINES_TO_WAIT,
1656         PSR_8_LINES_TO_WAIT
1657 };
1658
1659 struct intel_vbt_data {
1660         struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1661         struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1662
1663         /* Feature bits */
1664         unsigned int int_tv_support:1;
1665         unsigned int lvds_dither:1;
1666         unsigned int lvds_vbt:1;
1667         unsigned int int_crt_support:1;
1668         unsigned int lvds_use_ssc:1;
1669         unsigned int display_clock_mode:1;
1670         unsigned int fdi_rx_polarity_inverted:1;
1671         unsigned int panel_type:4;
1672         int lvds_ssc_freq;
1673         unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1674
1675         enum drrs_support_type drrs_type;
1676
1677         struct {
1678                 int rate;
1679                 int lanes;
1680                 int preemphasis;
1681                 int vswing;
1682                 bool low_vswing;
1683                 bool initialized;
1684                 bool support;
1685                 int bpp;
1686                 struct edp_power_seq pps;
1687         } edp;
1688
1689         struct {
1690                 bool full_link;
1691                 bool require_aux_wakeup;
1692                 int idle_frames;
1693                 enum psr_lines_to_wait lines_to_wait;
1694                 int tp1_wakeup_time;
1695                 int tp2_tp3_wakeup_time;
1696         } psr;
1697
1698         struct {
1699                 u16 pwm_freq_hz;
1700                 bool present;
1701                 bool active_low_pwm;
1702                 u8 min_brightness;      /* min_brightness/255 of max */
1703                 u8 controller;          /* brightness controller number */
1704                 enum intel_backlight_type type;
1705         } backlight;
1706
1707         /* MIPI DSI */
1708         struct {
1709                 u16 panel_id;
1710                 struct mipi_config *config;
1711                 struct mipi_pps_data *pps;
1712                 u8 seq_version;
1713                 u32 size;
1714                 u8 *data;
1715                 const u8 *sequence[MIPI_SEQ_MAX];
1716         } dsi;
1717
1718         int crt_ddc_pin;
1719
1720         int child_dev_num;
1721         union child_device_config *child_dev;
1722
1723         struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1724         struct sdvo_device_mapping sdvo_mappings[2];
1725 };
1726
1727 enum intel_ddb_partitioning {
1728         INTEL_DDB_PART_1_2,
1729         INTEL_DDB_PART_5_6, /* IVB+ */
1730 };
1731
1732 struct intel_wm_level {
1733         bool enable;
1734         uint32_t pri_val;
1735         uint32_t spr_val;
1736         uint32_t cur_val;
1737         uint32_t fbc_val;
1738 };
1739
1740 struct ilk_wm_values {
1741         uint32_t wm_pipe[3];
1742         uint32_t wm_lp[3];
1743         uint32_t wm_lp_spr[3];
1744         uint32_t wm_linetime[3];
1745         bool enable_fbc_wm;
1746         enum intel_ddb_partitioning partitioning;
1747 };
1748
1749 struct g4x_pipe_wm {
1750         uint16_t plane[I915_MAX_PLANES];
1751         uint16_t fbc;
1752 };
1753
1754 struct g4x_sr_wm {
1755         uint16_t plane;
1756         uint16_t cursor;
1757         uint16_t fbc;
1758 };
1759
1760 struct vlv_wm_ddl_values {
1761         uint8_t plane[I915_MAX_PLANES];
1762 };
1763
1764 struct vlv_wm_values {
1765         struct g4x_pipe_wm pipe[3];
1766         struct g4x_sr_wm sr;
1767         struct vlv_wm_ddl_values ddl[3];
1768         uint8_t level;
1769         bool cxsr;
1770 };
1771
1772 struct g4x_wm_values {
1773         struct g4x_pipe_wm pipe[2];
1774         struct g4x_sr_wm sr;
1775         struct g4x_sr_wm hpll;
1776         bool cxsr;
1777         bool hpll_en;
1778         bool fbc_en;
1779 };
1780
1781 struct skl_ddb_entry {
1782         uint16_t start, end;    /* in number of blocks, 'end' is exclusive */
1783 };
1784
1785 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1786 {
1787         return entry->end - entry->start;
1788 }
1789
1790 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1791                                        const struct skl_ddb_entry *e2)
1792 {
1793         if (e1->start == e2->start && e1->end == e2->end)
1794                 return true;
1795
1796         return false;
1797 }
1798
1799 struct skl_ddb_allocation {
1800         struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1801         struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1802 };
1803
1804 struct skl_wm_values {
1805         unsigned dirty_pipes;
1806         struct skl_ddb_allocation ddb;
1807 };
1808
1809 struct skl_wm_level {
1810         bool plane_en;
1811         uint16_t plane_res_b;
1812         uint8_t plane_res_l;
1813 };
1814
1815 /*
1816  * This struct helps tracking the state needed for runtime PM, which puts the
1817  * device in PCI D3 state. Notice that when this happens, nothing on the
1818  * graphics device works, even register access, so we don't get interrupts nor
1819  * anything else.
1820  *
1821  * Every piece of our code that needs to actually touch the hardware needs to
1822  * either call intel_runtime_pm_get or call intel_display_power_get with the
1823  * appropriate power domain.
1824  *
1825  * Our driver uses the autosuspend delay feature, which means we'll only really
1826  * suspend if we stay with zero refcount for a certain amount of time. The
1827  * default value is currently very conservative (see intel_runtime_pm_enable), but
1828  * it can be changed with the standard runtime PM files from sysfs.
1829  *
1830  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1831  * goes back to false exactly before we reenable the IRQs. We use this variable
1832  * to check if someone is trying to enable/disable IRQs while they're supposed
1833  * to be disabled. This shouldn't happen and we'll print some error messages in
1834  * case it happens.
1835  *
1836  * For more, read the Documentation/power/runtime_pm.txt.
1837  */
1838 struct i915_runtime_pm {
1839         atomic_t wakeref_count;
1840         bool suspended;
1841         bool irqs_enabled;
1842 };
1843
1844 enum intel_pipe_crc_source {
1845         INTEL_PIPE_CRC_SOURCE_NONE,
1846         INTEL_PIPE_CRC_SOURCE_PLANE1,
1847         INTEL_PIPE_CRC_SOURCE_PLANE2,
1848         INTEL_PIPE_CRC_SOURCE_PF,
1849         INTEL_PIPE_CRC_SOURCE_PIPE,
1850         /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1851         INTEL_PIPE_CRC_SOURCE_TV,
1852         INTEL_PIPE_CRC_SOURCE_DP_B,
1853         INTEL_PIPE_CRC_SOURCE_DP_C,
1854         INTEL_PIPE_CRC_SOURCE_DP_D,
1855         INTEL_PIPE_CRC_SOURCE_AUTO,
1856         INTEL_PIPE_CRC_SOURCE_MAX,
1857 };
1858
1859 struct intel_pipe_crc_entry {
1860         uint32_t frame;
1861         uint32_t crc[5];
1862 };
1863
1864 #define INTEL_PIPE_CRC_ENTRIES_NR       128
1865 struct intel_pipe_crc {
1866         spinlock_t lock;
1867         bool opened;            /* exclusive access to the result file */
1868         struct intel_pipe_crc_entry *entries;
1869         enum intel_pipe_crc_source source;
1870         int head, tail;
1871         wait_queue_head_t wq;
1872         int skipped;
1873 };
1874
1875 struct i915_frontbuffer_tracking {
1876         spinlock_t lock;
1877
1878         /*
1879          * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1880          * scheduled flips.
1881          */
1882         unsigned busy_bits;
1883         unsigned flip_bits;
1884 };
1885
1886 struct i915_wa_reg {
1887         i915_reg_t addr;
1888         u32 value;
1889         /* bitmask representing WA bits */
1890         u32 mask;
1891 };
1892
1893 /*
1894  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1895  * allowing it for RCS as we don't foresee any requirement of having
1896  * a whitelist for other engines. When it is really required for
1897  * other engines then the limit need to be increased.
1898  */
1899 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1900
1901 struct i915_workarounds {
1902         struct i915_wa_reg reg[I915_MAX_WA_REGS];
1903         u32 count;
1904         u32 hw_whitelist_count[I915_NUM_ENGINES];
1905 };
1906
1907 struct i915_virtual_gpu {
1908         bool active;
1909         u32 caps;
1910 };
1911
1912 /* used in computing the new watermarks state */
1913 struct intel_wm_config {
1914         unsigned int num_pipes_active;
1915         bool sprites_enabled;
1916         bool sprites_scaled;
1917 };
1918
1919 struct i915_oa_format {
1920         u32 format;
1921         int size;
1922 };
1923
1924 struct i915_oa_reg {
1925         i915_reg_t addr;
1926         u32 value;
1927 };
1928
1929 struct i915_oa_config {
1930         char uuid[UUID_STRING_LEN + 1];
1931         int id;
1932
1933         const struct i915_oa_reg *mux_regs;
1934         u32 mux_regs_len;
1935         const struct i915_oa_reg *b_counter_regs;
1936         u32 b_counter_regs_len;
1937         const struct i915_oa_reg *flex_regs;
1938         u32 flex_regs_len;
1939
1940         struct attribute_group sysfs_metric;
1941         struct attribute *attrs[2];
1942         struct device_attribute sysfs_metric_id;
1943
1944         atomic_t ref_count;
1945 };
1946
1947 struct i915_perf_stream;
1948
1949 /**
1950  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1951  */
1952 struct i915_perf_stream_ops {
1953         /**
1954          * @enable: Enables the collection of HW samples, either in response to
1955          * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1956          * without `I915_PERF_FLAG_DISABLED`.
1957          */
1958         void (*enable)(struct i915_perf_stream *stream);
1959
1960         /**
1961          * @disable: Disables the collection of HW samples, either in response
1962          * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1963          * the stream.
1964          */
1965         void (*disable)(struct i915_perf_stream *stream);
1966
1967         /**
1968          * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1969          * once there is something ready to read() for the stream
1970          */
1971         void (*poll_wait)(struct i915_perf_stream *stream,
1972                           struct file *file,
1973                           poll_table *wait);
1974
1975         /**
1976          * @wait_unlocked: For handling a blocking read, wait until there is
1977          * something to ready to read() for the stream. E.g. wait on the same
1978          * wait queue that would be passed to poll_wait().
1979          */
1980         int (*wait_unlocked)(struct i915_perf_stream *stream);
1981
1982         /**
1983          * @read: Copy buffered metrics as records to userspace
1984          * **buf**: the userspace, destination buffer
1985          * **count**: the number of bytes to copy, requested by userspace
1986          * **offset**: zero at the start of the read, updated as the read
1987          * proceeds, it represents how many bytes have been copied so far and
1988          * the buffer offset for copying the next record.
1989          *
1990          * Copy as many buffered i915 perf samples and records for this stream
1991          * to userspace as will fit in the given buffer.
1992          *
1993          * Only write complete records; returning -%ENOSPC if there isn't room
1994          * for a complete record.
1995          *
1996          * Return any error condition that results in a short read such as
1997          * -%ENOSPC or -%EFAULT, even though these may be squashed before
1998          * returning to userspace.
1999          */
2000         int (*read)(struct i915_perf_stream *stream,
2001                     char __user *buf,
2002                     size_t count,
2003                     size_t *offset);
2004
2005         /**
2006          * @destroy: Cleanup any stream specific resources.
2007          *
2008          * The stream will always be disabled before this is called.
2009          */
2010         void (*destroy)(struct i915_perf_stream *stream);
2011 };
2012
2013 /**
2014  * struct i915_perf_stream - state for a single open stream FD
2015  */
2016 struct i915_perf_stream {
2017         /**
2018          * @dev_priv: i915 drm device
2019          */
2020         struct drm_i915_private *dev_priv;
2021
2022         /**
2023          * @link: Links the stream into ``&drm_i915_private->streams``
2024          */
2025         struct list_head link;
2026
2027         /**
2028          * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2029          * properties given when opening a stream, representing the contents
2030          * of a single sample as read() by userspace.
2031          */
2032         u32 sample_flags;
2033
2034         /**
2035          * @sample_size: Considering the configured contents of a sample
2036          * combined with the required header size, this is the total size
2037          * of a single sample record.
2038          */
2039         int sample_size;
2040
2041         /**
2042          * @ctx: %NULL if measuring system-wide across all contexts or a
2043          * specific context that is being monitored.
2044          */
2045         struct i915_gem_context *ctx;
2046
2047         /**
2048          * @enabled: Whether the stream is currently enabled, considering
2049          * whether the stream was opened in a disabled state and based
2050          * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2051          */
2052         bool enabled;
2053
2054         /**
2055          * @ops: The callbacks providing the implementation of this specific
2056          * type of configured stream.
2057          */
2058         const struct i915_perf_stream_ops *ops;
2059
2060         /**
2061          * @oa_config: The OA configuration used by the stream.
2062          */
2063         struct i915_oa_config *oa_config;
2064 };
2065
2066 /**
2067  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2068  */
2069 struct i915_oa_ops {
2070         /**
2071          * @is_valid_b_counter_reg: Validates register's address for
2072          * programming boolean counters for a particular platform.
2073          */
2074         bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2075                                        u32 addr);
2076
2077         /**
2078          * @is_valid_mux_reg: Validates register's address for programming mux
2079          * for a particular platform.
2080          */
2081         bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2082
2083         /**
2084          * @is_valid_flex_reg: Validates register's address for programming
2085          * flex EU filtering for a particular platform.
2086          */
2087         bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2088
2089         /**
2090          * @init_oa_buffer: Resets the head and tail pointers of the
2091          * circular buffer for periodic OA reports.
2092          *
2093          * Called when first opening a stream for OA metrics, but also may be
2094          * called in response to an OA buffer overflow or other error
2095          * condition.
2096          *
2097          * Note it may be necessary to clear the full OA buffer here as part of
2098          * maintaining the invariable that new reports must be written to
2099          * zeroed memory for us to be able to reliable detect if an expected
2100          * report has not yet landed in memory.  (At least on Haswell the OA
2101          * buffer tail pointer is not synchronized with reports being visible
2102          * to the CPU)
2103          */
2104         void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2105
2106         /**
2107          * @enable_metric_set: Selects and applies any MUX configuration to set
2108          * up the Boolean and Custom (B/C) counters that are part of the
2109          * counter reports being sampled. May apply system constraints such as
2110          * disabling EU clock gating as required.
2111          */
2112         int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2113                                  const struct i915_oa_config *oa_config);
2114
2115         /**
2116          * @disable_metric_set: Remove system constraints associated with using
2117          * the OA unit.
2118          */
2119         void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2120
2121         /**
2122          * @oa_enable: Enable periodic sampling
2123          */
2124         void (*oa_enable)(struct drm_i915_private *dev_priv);
2125
2126         /**
2127          * @oa_disable: Disable periodic sampling
2128          */
2129         void (*oa_disable)(struct drm_i915_private *dev_priv);
2130
2131         /**
2132          * @read: Copy data from the circular OA buffer into a given userspace
2133          * buffer.
2134          */
2135         int (*read)(struct i915_perf_stream *stream,
2136                     char __user *buf,
2137                     size_t count,
2138                     size_t *offset);
2139
2140         /**
2141          * @oa_hw_tail_read: read the OA tail pointer register
2142          *
2143          * In particular this enables us to share all the fiddly code for
2144          * handling the OA unit tail pointer race that affects multiple
2145          * generations.
2146          */
2147         u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2148 };
2149
2150 struct intel_cdclk_state {
2151         unsigned int cdclk, vco, ref;
2152 };
2153
2154 struct drm_i915_private {
2155         struct drm_device drm;
2156
2157         struct kmem_cache *objects;
2158         struct kmem_cache *vmas;
2159         struct kmem_cache *luts;
2160         struct kmem_cache *requests;
2161         struct kmem_cache *dependencies;
2162         struct kmem_cache *priorities;
2163
2164         const struct intel_device_info info;
2165
2166         void __iomem *regs;
2167
2168         struct intel_uncore uncore;
2169
2170         struct i915_virtual_gpu vgpu;
2171
2172         struct intel_gvt *gvt;
2173
2174         struct intel_huc huc;
2175         struct intel_guc guc;
2176
2177         struct intel_csr csr;
2178
2179         struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2180
2181         /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2182          * controller on different i2c buses. */
2183         struct mutex gmbus_mutex;
2184
2185         /**
2186          * Base address of the gmbus and gpio block.
2187          */
2188         uint32_t gpio_mmio_base;
2189
2190         /* MMIO base address for MIPI regs */
2191         uint32_t mipi_mmio_base;
2192
2193         uint32_t psr_mmio_base;
2194
2195         uint32_t pps_mmio_base;
2196
2197         wait_queue_head_t gmbus_wait_queue;
2198
2199         struct pci_dev *bridge_dev;
2200         struct i915_gem_context *kernel_context;
2201         struct intel_engine_cs *engine[I915_NUM_ENGINES];
2202         struct i915_vma *semaphore;
2203
2204         struct drm_dma_handle *status_page_dmah;
2205         struct resource mch_res;
2206
2207         /* protects the irq masks */
2208         spinlock_t irq_lock;
2209
2210         bool display_irqs_enabled;
2211
2212         /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2213         struct pm_qos_request pm_qos;
2214
2215         /* Sideband mailbox protection */
2216         struct mutex sb_lock;
2217
2218         /** Cached value of IMR to avoid reads in updating the bitfield */
2219         union {
2220                 u32 irq_mask;
2221                 u32 de_irq_mask[I915_MAX_PIPES];
2222         };
2223         u32 gt_irq_mask;
2224         u32 pm_imr;
2225         u32 pm_ier;
2226         u32 pm_rps_events;
2227         u32 pm_guc_events;
2228         u32 pipestat_irq_mask[I915_MAX_PIPES];
2229
2230         struct i915_hotplug hotplug;
2231         struct intel_fbc fbc;
2232         struct i915_drrs drrs;
2233         struct intel_opregion opregion;
2234         struct intel_vbt_data vbt;
2235
2236         bool preserve_bios_swizzle;
2237
2238         /* overlay */
2239         struct intel_overlay *overlay;
2240
2241         /* backlight registers and fields in struct intel_panel */
2242         struct mutex backlight_lock;
2243
2244         /* LVDS info */
2245         bool no_aux_handshake;
2246
2247         /* protects panel power sequencer state */
2248         struct mutex pps_mutex;
2249
2250         struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2251         int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2252
2253         unsigned int fsb_freq, mem_freq, is_ddr3;
2254         unsigned int skl_preferred_vco_freq;
2255         unsigned int max_cdclk_freq;
2256
2257         unsigned int max_dotclk_freq;
2258         unsigned int rawclk_freq;
2259         unsigned int hpll_freq;
2260         unsigned int czclk_freq;
2261
2262         struct {
2263                 /*
2264                  * The current logical cdclk state.
2265                  * See intel_atomic_state.cdclk.logical
2266                  *
2267                  * For reading holding any crtc lock is sufficient,
2268                  * for writing must hold all of them.
2269                  */
2270                 struct intel_cdclk_state logical;
2271                 /*
2272                  * The current actual cdclk state.
2273                  * See intel_atomic_state.cdclk.actual
2274                  */
2275                 struct intel_cdclk_state actual;
2276                 /* The current hardware cdclk state */
2277                 struct intel_cdclk_state hw;
2278         } cdclk;
2279
2280         /**
2281          * wq - Driver workqueue for GEM.
2282          *
2283          * NOTE: Work items scheduled here are not allowed to grab any modeset
2284          * locks, for otherwise the flushing done in the pageflip code will
2285          * result in deadlocks.
2286          */
2287         struct workqueue_struct *wq;
2288
2289         /* Display functions */
2290         struct drm_i915_display_funcs display;
2291
2292         /* PCH chipset type */
2293         enum intel_pch pch_type;
2294         unsigned short pch_id;
2295
2296         unsigned long quirks;
2297
2298         enum modeset_restore modeset_restore;
2299         struct mutex modeset_restore_lock;
2300         struct drm_atomic_state *modeset_restore_state;
2301         struct drm_modeset_acquire_ctx reset_ctx;
2302
2303         struct list_head vm_list; /* Global list of all address spaces */
2304         struct i915_ggtt ggtt; /* VM representing the global address space */
2305
2306         struct i915_gem_mm mm;
2307         DECLARE_HASHTABLE(mm_structs, 7);
2308         struct mutex mm_lock;
2309
2310         /* Kernel Modesetting */
2311
2312         struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2313         struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2314
2315 #ifdef CONFIG_DEBUG_FS
2316         struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2317 #endif
2318
2319         /* dpll and cdclk state is protected by connection_mutex */
2320         int num_shared_dpll;
2321         struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2322         const struct intel_dpll_mgr *dpll_mgr;
2323
2324         /*
2325          * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2326          * Must be global rather than per dpll, because on some platforms
2327          * plls share registers.
2328          */
2329         struct mutex dpll_lock;
2330
2331         unsigned int active_crtcs;
2332         unsigned int min_pixclk[I915_MAX_PIPES];
2333
2334         int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2335
2336         struct i915_workarounds workarounds;
2337
2338         struct i915_frontbuffer_tracking fb_tracking;
2339
2340         struct intel_atomic_helper {
2341                 struct llist_head free_list;
2342                 struct work_struct free_work;
2343         } atomic_helper;
2344
2345         u16 orig_clock;
2346
2347         bool mchbar_need_disable;
2348
2349         struct intel_l3_parity l3_parity;
2350
2351         /* Cannot be determined by PCIID. You must always read a register. */
2352         u32 edram_cap;
2353
2354         /* gen6+ rps state */
2355         struct intel_gen6_power_mgmt rps;
2356
2357         /* ilk-only ips/rps state. Everything in here is protected by the global
2358          * mchdev_lock in intel_pm.c */
2359         struct intel_ilk_power_mgmt ips;
2360
2361         struct i915_power_domains power_domains;
2362
2363         struct i915_psr psr;
2364
2365         struct i915_gpu_error gpu_error;
2366
2367         struct drm_i915_gem_object *vlv_pctx;
2368
2369         /* list of fbdev register on this device */
2370         struct intel_fbdev *fbdev;
2371         struct work_struct fbdev_suspend_work;
2372
2373         struct drm_property *broadcast_rgb_property;
2374         struct drm_property *force_audio_property;
2375
2376         /* hda/i915 audio component */
2377         struct i915_audio_component *audio_component;
2378         bool audio_component_registered;
2379         /**
2380          * av_mutex - mutex for audio/video sync
2381          *
2382          */
2383         struct mutex av_mutex;
2384
2385         struct {
2386                 struct list_head list;
2387                 struct llist_head free_list;
2388                 struct work_struct free_work;
2389
2390                 /* The hw wants to have a stable context identifier for the
2391                  * lifetime of the context (for OA, PASID, faults, etc).
2392                  * This is limited in execlists to 21 bits.
2393                  */
2394                 struct ida hw_ida;
2395 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2396         } contexts;
2397
2398         u32 fdi_rx_config;
2399
2400         /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2401         u32 chv_phy_control;
2402         /*
2403          * Shadows for CHV DPLL_MD regs to keep the state
2404          * checker somewhat working in the presence hardware
2405          * crappiness (can't read out DPLL_MD for pipes B & C).
2406          */
2407         u32 chv_dpll_md[I915_MAX_PIPES];
2408         u32 bxt_phy_grc;
2409
2410         u32 suspend_count;
2411         bool suspended_to_idle;
2412         struct i915_suspend_saved_registers regfile;
2413         struct vlv_s0ix_state vlv_s0ix_state;
2414
2415         enum {
2416                 I915_SAGV_UNKNOWN = 0,
2417                 I915_SAGV_DISABLED,
2418                 I915_SAGV_ENABLED,
2419                 I915_SAGV_NOT_CONTROLLED
2420         } sagv_status;
2421
2422         struct {
2423                 /*
2424                  * Raw watermark latency values:
2425                  * in 0.1us units for WM0,
2426                  * in 0.5us units for WM1+.
2427                  */
2428                 /* primary */
2429                 uint16_t pri_latency[5];
2430                 /* sprite */
2431                 uint16_t spr_latency[5];
2432                 /* cursor */
2433                 uint16_t cur_latency[5];
2434                 /*
2435                  * Raw watermark memory latency values
2436                  * for SKL for all 8 levels
2437                  * in 1us units.
2438                  */
2439                 uint16_t skl_latency[8];
2440
2441                 /* current hardware state */
2442                 union {
2443                         struct ilk_wm_values hw;
2444                         struct skl_wm_values skl_hw;
2445                         struct vlv_wm_values vlv;
2446                         struct g4x_wm_values g4x;
2447                 };
2448
2449                 uint8_t max_level;
2450
2451                 /*
2452                  * Should be held around atomic WM register writing; also
2453                  * protects * intel_crtc->wm.active and
2454                  * cstate->wm.need_postvbl_update.
2455                  */
2456                 struct mutex wm_mutex;
2457
2458                 /*
2459                  * Set during HW readout of watermarks/DDB.  Some platforms
2460                  * need to know when we're still using BIOS-provided values
2461                  * (which we don't fully trust).
2462                  */
2463                 bool distrust_bios_wm;
2464         } wm;
2465
2466         struct i915_runtime_pm pm;
2467
2468         struct {
2469                 bool initialized;
2470
2471                 struct kobject *metrics_kobj;
2472                 struct ctl_table_header *sysctl_header;
2473
2474                 /*
2475                  * Lock associated with adding/modifying/removing OA configs
2476                  * in dev_priv->perf.metrics_idr.
2477                  */
2478                 struct mutex metrics_lock;
2479
2480                 /*
2481                  * List of dynamic configurations, you need to hold
2482                  * dev_priv->perf.metrics_lock to access it.
2483                  */
2484                 struct idr metrics_idr;
2485
2486                 /*
2487                  * Lock associated with anything below within this structure
2488                  * except exclusive_stream.
2489                  */
2490                 struct mutex lock;
2491                 struct list_head streams;
2492
2493                 struct {
2494                         /*
2495                          * The stream currently using the OA unit. If accessed
2496                          * outside a syscall associated to its file
2497                          * descriptor, you need to hold
2498                          * dev_priv->drm.struct_mutex.
2499                          */
2500                         struct i915_perf_stream *exclusive_stream;
2501
2502                         u32 specific_ctx_id;
2503
2504                         struct hrtimer poll_check_timer;
2505                         wait_queue_head_t poll_wq;
2506                         bool pollin;
2507
2508                         /**
2509                          * For rate limiting any notifications of spurious
2510                          * invalid OA reports
2511                          */
2512                         struct ratelimit_state spurious_report_rs;
2513
2514                         bool periodic;
2515                         int period_exponent;
2516                         int timestamp_frequency;
2517
2518                         struct i915_oa_config test_config;
2519
2520                         struct {
2521                                 struct i915_vma *vma;
2522                                 u8 *vaddr;
2523                                 u32 last_ctx_id;
2524                                 int format;
2525                                 int format_size;
2526
2527                                 /**
2528                                  * Locks reads and writes to all head/tail state
2529                                  *
2530                                  * Consider: the head and tail pointer state
2531                                  * needs to be read consistently from a hrtimer
2532                                  * callback (atomic context) and read() fop
2533                                  * (user context) with tail pointer updates
2534                                  * happening in atomic context and head updates
2535                                  * in user context and the (unlikely)
2536                                  * possibility of read() errors needing to
2537                                  * reset all head/tail state.
2538                                  *
2539                                  * Note: Contention or performance aren't
2540                                  * currently a significant concern here
2541                                  * considering the relatively low frequency of
2542                                  * hrtimer callbacks (5ms period) and that
2543                                  * reads typically only happen in response to a
2544                                  * hrtimer event and likely complete before the
2545                                  * next callback.
2546                                  *
2547                                  * Note: This lock is not held *while* reading
2548                                  * and copying data to userspace so the value
2549                                  * of head observed in htrimer callbacks won't
2550                                  * represent any partial consumption of data.
2551                                  */
2552                                 spinlock_t ptr_lock;
2553
2554                                 /**
2555                                  * One 'aging' tail pointer and one 'aged'
2556                                  * tail pointer ready to used for reading.
2557                                  *
2558                                  * Initial values of 0xffffffff are invalid
2559                                  * and imply that an update is required
2560                                  * (and should be ignored by an attempted
2561                                  * read)
2562                                  */
2563                                 struct {
2564                                         u32 offset;
2565                                 } tails[2];
2566
2567                                 /**
2568                                  * Index for the aged tail ready to read()
2569                                  * data up to.
2570                                  */
2571                                 unsigned int aged_tail_idx;
2572
2573                                 /**
2574                                  * A monotonic timestamp for when the current
2575                                  * aging tail pointer was read; used to
2576                                  * determine when it is old enough to trust.
2577                                  */
2578                                 u64 aging_timestamp;
2579
2580                                 /**
2581                                  * Although we can always read back the head
2582                                  * pointer register, we prefer to avoid
2583                                  * trusting the HW state, just to avoid any
2584                                  * risk that some hardware condition could
2585                                  * somehow bump the head pointer unpredictably
2586                                  * and cause us to forward the wrong OA buffer
2587                                  * data to userspace.
2588                                  */
2589                                 u32 head;
2590                         } oa_buffer;
2591
2592                         u32 gen7_latched_oastatus1;
2593                         u32 ctx_oactxctrl_offset;
2594                         u32 ctx_flexeu0_offset;
2595
2596                         /**
2597                          * The RPT_ID/reason field for Gen8+ includes a bit
2598                          * to determine if the CTX ID in the report is valid
2599                          * but the specific bit differs between Gen 8 and 9
2600                          */
2601                         u32 gen8_valid_ctx_bit;
2602
2603                         struct i915_oa_ops ops;
2604                         const struct i915_oa_format *oa_formats;
2605                 } oa;
2606         } perf;
2607
2608         /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2609         struct {
2610                 void (*resume)(struct drm_i915_private *);
2611                 void (*cleanup_engine)(struct intel_engine_cs *engine);
2612
2613                 struct list_head timelines;
2614                 struct i915_gem_timeline global_timeline;
2615                 u32 active_requests;
2616
2617                 /**
2618                  * Is the GPU currently considered idle, or busy executing
2619                  * userspace requests? Whilst idle, we allow runtime power
2620                  * management to power down the hardware and display clocks.
2621                  * In order to reduce the effect on performance, there
2622                  * is a slight delay before we do so.
2623                  */
2624                 bool awake;
2625
2626                 /**
2627                  * We leave the user IRQ off as much as possible,
2628                  * but this means that requests will finish and never
2629                  * be retired once the system goes idle. Set a timer to
2630                  * fire periodically while the ring is running. When it
2631                  * fires, go retire requests.
2632                  */
2633                 struct delayed_work retire_work;
2634
2635                 /**
2636                  * When we detect an idle GPU, we want to turn on
2637                  * powersaving features. So once we see that there
2638                  * are no more requests outstanding and no more
2639                  * arrive within a small period of time, we fire
2640                  * off the idle_work.
2641                  */
2642                 struct delayed_work idle_work;
2643
2644                 ktime_t last_init_time;
2645         } gt;
2646
2647         /* perform PHY state sanity checks? */
2648         bool chv_phy_assert[2];
2649
2650         bool ipc_enabled;
2651
2652         /* Used to save the pipe-to-encoder mapping for audio */
2653         struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2654
2655         /* necessary resource sharing with HDMI LPE audio driver. */
2656         struct {
2657                 struct platform_device *platdev;
2658                 int     irq;
2659         } lpe_audio;
2660
2661         /*
2662          * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2663          * will be rejected. Instead look for a better place.
2664          */
2665 };
2666
2667 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2668 {
2669         return container_of(dev, struct drm_i915_private, drm);
2670 }
2671
2672 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2673 {
2674         return to_i915(dev_get_drvdata(kdev));
2675 }
2676
2677 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2678 {
2679         return container_of(guc, struct drm_i915_private, guc);
2680 }
2681
2682 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2683 {
2684         return container_of(huc, struct drm_i915_private, huc);
2685 }
2686
2687 /* Simple iterator over all initialised engines */
2688 #define for_each_engine(engine__, dev_priv__, id__) \
2689         for ((id__) = 0; \
2690              (id__) < I915_NUM_ENGINES; \
2691              (id__)++) \
2692                 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2693
2694 /* Iterator over subset of engines selected by mask */
2695 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2696         for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;        \
2697              tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2698
2699 enum hdmi_force_audio {
2700         HDMI_AUDIO_OFF_DVI = -2,        /* no aux data for HDMI-DVI converter */
2701         HDMI_AUDIO_OFF,                 /* force turn off HDMI audio */
2702         HDMI_AUDIO_AUTO,                /* trust EDID */
2703         HDMI_AUDIO_ON,                  /* force turn on HDMI audio */
2704 };
2705
2706 #define I915_GTT_OFFSET_NONE ((u32)-1)
2707
2708 /*
2709  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2710  * considered to be the frontbuffer for the given plane interface-wise. This
2711  * doesn't mean that the hw necessarily already scans it out, but that any
2712  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2713  *
2714  * We have one bit per pipe and per scanout plane type.
2715  */
2716 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2717 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2718 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2719         (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2720 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2721         (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2722 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2723         (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2724 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2725         (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2726 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2727         (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2728
2729 /*
2730  * Optimised SGL iterator for GEM objects
2731  */
2732 static __always_inline struct sgt_iter {
2733         struct scatterlist *sgp;
2734         union {
2735                 unsigned long pfn;
2736                 dma_addr_t dma;
2737         };
2738         unsigned int curr;
2739         unsigned int max;
2740 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2741         struct sgt_iter s = { .sgp = sgl };
2742
2743         if (s.sgp) {
2744                 s.max = s.curr = s.sgp->offset;
2745                 s.max += s.sgp->length;
2746                 if (dma)
2747                         s.dma = sg_dma_address(s.sgp);
2748                 else
2749                         s.pfn = page_to_pfn(sg_page(s.sgp));
2750         }
2751
2752         return s;
2753 }
2754
2755 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2756 {
2757         ++sg;
2758         if (unlikely(sg_is_chain(sg)))
2759                 sg = sg_chain_ptr(sg);
2760         return sg;
2761 }
2762
2763 /**
2764  * __sg_next - return the next scatterlist entry in a list
2765  * @sg:         The current sg entry
2766  *
2767  * Description:
2768  *   If the entry is the last, return NULL; otherwise, step to the next
2769  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2770  *   otherwise just return the pointer to the current element.
2771  **/
2772 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2773 {
2774 #ifdef CONFIG_DEBUG_SG
2775         BUG_ON(sg->sg_magic != SG_MAGIC);
2776 #endif
2777         return sg_is_last(sg) ? NULL : ____sg_next(sg);
2778 }
2779
2780 /**
2781  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2782  * @__dmap:     DMA address (output)
2783  * @__iter:     'struct sgt_iter' (iterator state, internal)
2784  * @__sgt:      sg_table to iterate over (input)
2785  */
2786 #define for_each_sgt_dma(__dmap, __iter, __sgt)                         \
2787         for ((__iter) = __sgt_iter((__sgt)->sgl, true);                 \
2788              ((__dmap) = (__iter).dma + (__iter).curr);                 \
2789              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2790              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2791
2792 /**
2793  * for_each_sgt_page - iterate over the pages of the given sg_table
2794  * @__pp:       page pointer (output)
2795  * @__iter:     'struct sgt_iter' (iterator state, internal)
2796  * @__sgt:      sg_table to iterate over (input)
2797  */
2798 #define for_each_sgt_page(__pp, __iter, __sgt)                          \
2799         for ((__iter) = __sgt_iter((__sgt)->sgl, false);                \
2800              ((__pp) = (__iter).pfn == 0 ? NULL :                       \
2801               pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2802              (((__iter).curr += PAGE_SIZE) < (__iter).max) ||           \
2803              ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2804
2805 static inline const struct intel_device_info *
2806 intel_info(const struct drm_i915_private *dev_priv)
2807 {
2808         return &dev_priv->info;
2809 }
2810
2811 #define INTEL_INFO(dev_priv)    intel_info((dev_priv))
2812
2813 #define INTEL_GEN(dev_priv)     ((dev_priv)->info.gen)
2814 #define INTEL_DEVID(dev_priv)   ((dev_priv)->info.device_id)
2815
2816 #define REVID_FOREVER           0xff
2817 #define INTEL_REVID(dev_priv)   ((dev_priv)->drm.pdev->revision)
2818
2819 #define GEN_FOREVER (0)
2820 /*
2821  * Returns true if Gen is in inclusive range [Start, End].
2822  *
2823  * Use GEN_FOREVER for unbound start and or end.
2824  */
2825 #define IS_GEN(dev_priv, s, e) ({ \
2826         unsigned int __s = (s), __e = (e); \
2827         BUILD_BUG_ON(!__builtin_constant_p(s)); \
2828         BUILD_BUG_ON(!__builtin_constant_p(e)); \
2829         if ((__s) != GEN_FOREVER) \
2830                 __s = (s) - 1; \
2831         if ((__e) == GEN_FOREVER) \
2832                 __e = BITS_PER_LONG - 1; \
2833         else \
2834                 __e = (e) - 1; \
2835         !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2836 })
2837
2838 /*
2839  * Return true if revision is in range [since,until] inclusive.
2840  *
2841  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2842  */
2843 #define IS_REVID(p, since, until) \
2844         (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2845
2846 #define IS_I830(dev_priv)       ((dev_priv)->info.platform == INTEL_I830)
2847 #define IS_I845G(dev_priv)      ((dev_priv)->info.platform == INTEL_I845G)
2848 #define IS_I85X(dev_priv)       ((dev_priv)->info.platform == INTEL_I85X)
2849 #define IS_I865G(dev_priv)      ((dev_priv)->info.platform == INTEL_I865G)
2850 #define IS_I915G(dev_priv)      ((dev_priv)->info.platform == INTEL_I915G)
2851 #define IS_I915GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I915GM)
2852 #define IS_I945G(dev_priv)      ((dev_priv)->info.platform == INTEL_I945G)
2853 #define IS_I945GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I945GM)
2854 #define IS_I965G(dev_priv)      ((dev_priv)->info.platform == INTEL_I965G)
2855 #define IS_I965GM(dev_priv)     ((dev_priv)->info.platform == INTEL_I965GM)
2856 #define IS_G45(dev_priv)        ((dev_priv)->info.platform == INTEL_G45)
2857 #define IS_GM45(dev_priv)       ((dev_priv)->info.platform == INTEL_GM45)
2858 #define IS_G4X(dev_priv)        (IS_G45(dev_priv) || IS_GM45(dev_priv))
2859 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2860 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2861 #define IS_PINEVIEW(dev_priv)   ((dev_priv)->info.platform == INTEL_PINEVIEW)
2862 #define IS_G33(dev_priv)        ((dev_priv)->info.platform == INTEL_G33)
2863 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2864 #define IS_IVYBRIDGE(dev_priv)  ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2865 #define IS_IVB_GT1(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0156 || \
2866                                  INTEL_DEVID(dev_priv) == 0x0152 || \
2867                                  INTEL_DEVID(dev_priv) == 0x015a)
2868 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2869 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2870 #define IS_HASWELL(dev_priv)    ((dev_priv)->info.platform == INTEL_HASWELL)
2871 #define IS_BROADWELL(dev_priv)  ((dev_priv)->info.platform == INTEL_BROADWELL)
2872 #define IS_SKYLAKE(dev_priv)    ((dev_priv)->info.platform == INTEL_SKYLAKE)
2873 #define IS_BROXTON(dev_priv)    ((dev_priv)->info.platform == INTEL_BROXTON)
2874 #define IS_KABYLAKE(dev_priv)   ((dev_priv)->info.platform == INTEL_KABYLAKE)
2875 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2876 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2877 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2878 #define IS_MOBILE(dev_priv)     ((dev_priv)->info.is_mobile)
2879 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2880                                     (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2881 #define IS_BDW_ULT(dev_priv)    (IS_BROADWELL(dev_priv) && \
2882                                  ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||       \
2883                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||        \
2884                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2885 /* ULX machines are also considered ULT. */
2886 #define IS_BDW_ULX(dev_priv)    (IS_BROADWELL(dev_priv) && \
2887                                  (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2888 #define IS_BDW_GT3(dev_priv)    (IS_BROADWELL(dev_priv) && \
2889                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2890 #define IS_HSW_ULT(dev_priv)    (IS_HASWELL(dev_priv) && \
2891                                  (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2892 #define IS_HSW_GT3(dev_priv)    (IS_HASWELL(dev_priv) && \
2893                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2894 /* ULX machines are also considered ULT. */
2895 #define IS_HSW_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x0A0E || \
2896                                  INTEL_DEVID(dev_priv) == 0x0A1E)
2897 #define IS_SKL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x1906 || \
2898                                  INTEL_DEVID(dev_priv) == 0x1913 || \
2899                                  INTEL_DEVID(dev_priv) == 0x1916 || \
2900                                  INTEL_DEVID(dev_priv) == 0x1921 || \
2901                                  INTEL_DEVID(dev_priv) == 0x1926)
2902 #define IS_SKL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x190E || \
2903                                  INTEL_DEVID(dev_priv) == 0x1915 || \
2904                                  INTEL_DEVID(dev_priv) == 0x191E)
2905 #define IS_KBL_ULT(dev_priv)    (INTEL_DEVID(dev_priv) == 0x5906 || \
2906                                  INTEL_DEVID(dev_priv) == 0x5913 || \
2907                                  INTEL_DEVID(dev_priv) == 0x5916 || \
2908                                  INTEL_DEVID(dev_priv) == 0x5921 || \
2909                                  INTEL_DEVID(dev_priv) == 0x5926)
2910 #define IS_KBL_ULX(dev_priv)    (INTEL_DEVID(dev_priv) == 0x590E || \
2911                                  INTEL_DEVID(dev_priv) == 0x5915 || \
2912                                  INTEL_DEVID(dev_priv) == 0x591E)
2913 #define IS_SKL_GT2(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2914                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2915 #define IS_SKL_GT3(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2916                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2917 #define IS_SKL_GT4(dev_priv)    (IS_SKYLAKE(dev_priv) && \
2918                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2919 #define IS_KBL_GT2(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2920                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2921 #define IS_KBL_GT3(dev_priv)    (IS_KABYLAKE(dev_priv) && \
2922                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2923 #define IS_CFL_ULT(dev_priv)    (IS_COFFEELAKE(dev_priv) && \
2924                                  (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2925
2926 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2927
2928 #define SKL_REVID_A0            0x0
2929 #define SKL_REVID_B0            0x1
2930 #define SKL_REVID_C0            0x2
2931 #define SKL_REVID_D0            0x3
2932 #define SKL_REVID_E0            0x4
2933 #define SKL_REVID_F0            0x5
2934 #define SKL_REVID_G0            0x6
2935 #define SKL_REVID_H0            0x7
2936
2937 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2938
2939 #define BXT_REVID_A0            0x0
2940 #define BXT_REVID_A1            0x1
2941 #define BXT_REVID_B0            0x3
2942 #define BXT_REVID_B_LAST        0x8
2943 #define BXT_REVID_C0            0x9
2944
2945 #define IS_BXT_REVID(dev_priv, since, until) \
2946         (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2947
2948 #define KBL_REVID_A0            0x0
2949 #define KBL_REVID_B0            0x1
2950 #define KBL_REVID_C0            0x2
2951 #define KBL_REVID_D0            0x3
2952 #define KBL_REVID_E0            0x4
2953
2954 #define IS_KBL_REVID(dev_priv, since, until) \
2955         (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2956
2957 #define GLK_REVID_A0            0x0
2958 #define GLK_REVID_A1            0x1
2959
2960 #define IS_GLK_REVID(dev_priv, since, until) \
2961         (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2962
2963 #define CNL_REVID_A0            0x0
2964 #define CNL_REVID_B0            0x1
2965
2966 #define IS_CNL_REVID(p, since, until) \
2967         (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2968
2969 /*
2970  * The genX designation typically refers to the render engine, so render
2971  * capability related checks should use IS_GEN, while display and other checks
2972  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2973  * chips, etc.).
2974  */
2975 #define IS_GEN2(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(1)))
2976 #define IS_GEN3(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(2)))
2977 #define IS_GEN4(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(3)))
2978 #define IS_GEN5(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(4)))
2979 #define IS_GEN6(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(5)))
2980 #define IS_GEN7(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(6)))
2981 #define IS_GEN8(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(7)))
2982 #define IS_GEN9(dev_priv)       (!!((dev_priv)->info.gen_mask & BIT(8)))
2983 #define IS_GEN10(dev_priv)      (!!((dev_priv)->info.gen_mask & BIT(9)))
2984
2985 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2986 #define IS_GEN9_LP(dev_priv)    (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2987 #define IS_GEN9_BC(dev_priv)    (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2988
2989 #define ENGINE_MASK(id) BIT(id)
2990 #define RENDER_RING     ENGINE_MASK(RCS)
2991 #define BSD_RING        ENGINE_MASK(VCS)
2992 #define BLT_RING        ENGINE_MASK(BCS)
2993 #define VEBOX_RING      ENGINE_MASK(VECS)
2994 #define BSD2_RING       ENGINE_MASK(VCS2)
2995 #define ALL_ENGINES     (~0)
2996
2997 #define HAS_ENGINE(dev_priv, id) \
2998         (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2999
3000 #define HAS_BSD(dev_priv)       HAS_ENGINE(dev_priv, VCS)
3001 #define HAS_BSD2(dev_priv)      HAS_ENGINE(dev_priv, VCS2)
3002 #define HAS_BLT(dev_priv)       HAS_ENGINE(dev_priv, BCS)
3003 #define HAS_VEBOX(dev_priv)     HAS_ENGINE(dev_priv, VECS)
3004
3005 #define HAS_LLC(dev_priv)       ((dev_priv)->info.has_llc)
3006 #define HAS_SNOOP(dev_priv)     ((dev_priv)->info.has_snoop)
3007 #define HAS_EDRAM(dev_priv)     (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3008 #define HAS_WT(dev_priv)        ((IS_HASWELL(dev_priv) || \
3009                                  IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3010
3011 #define HWS_NEEDS_PHYSICAL(dev_priv)    ((dev_priv)->info.hws_needs_physical)
3012
3013 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3014                 ((dev_priv)->info.has_logical_ring_contexts)
3015 #define USES_PPGTT(dev_priv)            (i915.enable_ppgtt)
3016 #define USES_FULL_PPGTT(dev_priv)       (i915.enable_ppgtt >= 2)
3017 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3018
3019 #define HAS_OVERLAY(dev_priv)            ((dev_priv)->info.has_overlay)
3020 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3021                 ((dev_priv)->info.overlay_needs_physical)
3022
3023 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3024 #define HAS_BROKEN_CS_TLB(dev_priv)     (IS_I830(dev_priv) || IS_I845G(dev_priv))
3025
3026 /* WaRsDisableCoarsePowerGating:skl,bxt */
3027 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3028         (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3029
3030 /*
3031  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3032  * even when in MSI mode. This results in spurious interrupt warnings if the
3033  * legacy irq no. is shared with another device. The kernel then disables that
3034  * interrupt source and so prevents the other device from working properly.
3035  */
3036 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
3037 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3038
3039 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3040  * rows, which changed the alignment requirements and fence programming.
3041  */
3042 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3043                                          !(IS_I915G(dev_priv) || \
3044                                          IS_I915GM(dev_priv)))
3045 #define SUPPORTS_TV(dev_priv)           ((dev_priv)->info.supports_tv)
3046 #define I915_HAS_HOTPLUG(dev_priv)      ((dev_priv)->info.has_hotplug)
3047
3048 #define HAS_FW_BLC(dev_priv)    (INTEL_GEN(dev_priv) > 2)
3049 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3050 #define HAS_FBC(dev_priv)       ((dev_priv)->info.has_fbc)
3051 #define HAS_CUR_FBC(dev_priv)   (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3052
3053 #define HAS_IPS(dev_priv)       (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3054
3055 #define HAS_DP_MST(dev_priv)    ((dev_priv)->info.has_dp_mst)
3056
3057 #define HAS_DDI(dev_priv)                ((dev_priv)->info.has_ddi)
3058 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3059 #define HAS_PSR(dev_priv)                ((dev_priv)->info.has_psr)
3060 #define HAS_RC6(dev_priv)                ((dev_priv)->info.has_rc6)
3061 #define HAS_RC6p(dev_priv)               ((dev_priv)->info.has_rc6p)
3062
3063 #define HAS_CSR(dev_priv)       ((dev_priv)->info.has_csr)
3064
3065 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3066 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3067
3068 /*
3069  * For now, anything with a GuC requires uCode loading, and then supports
3070  * command submission once loaded. But these are logically independent
3071  * properties, so we have separate macros to test them.
3072  */
3073 #define HAS_GUC(dev_priv)       ((dev_priv)->info.has_guc)
3074 #define HAS_GUC_CT(dev_priv)    ((dev_priv)->info.has_guc_ct)
3075 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3076 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3077 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3078
3079 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3080
3081 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3082
3083 #define INTEL_PCH_DEVICE_ID_MASK                0xff80
3084 #define INTEL_PCH_IBX_DEVICE_ID_TYPE            0x3b00
3085 #define INTEL_PCH_CPT_DEVICE_ID_TYPE            0x1c00
3086 #define INTEL_PCH_PPT_DEVICE_ID_TYPE            0x1e00
3087 #define INTEL_PCH_LPT_DEVICE_ID_TYPE            0x8c00
3088 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE         0x9c00
3089 #define INTEL_PCH_WPT_DEVICE_ID_TYPE            0x8c80
3090 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE         0x9c80
3091 #define INTEL_PCH_SPT_DEVICE_ID_TYPE            0xA100
3092 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE         0x9D00
3093 #define INTEL_PCH_KBP_DEVICE_ID_TYPE            0xA280
3094 #define INTEL_PCH_CNP_DEVICE_ID_TYPE            0xA300
3095 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE         0x9D80
3096 #define INTEL_PCH_P2X_DEVICE_ID_TYPE            0x7100
3097 #define INTEL_PCH_P3X_DEVICE_ID_TYPE            0x7000
3098 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE           0x2900 /* qemu q35 has 2918 */
3099
3100 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3101 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3102 #define HAS_PCH_CNP_LP(dev_priv) \
3103         ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3104 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3105 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3106 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3107 #define HAS_PCH_LPT_LP(dev_priv) \
3108         ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3109          (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3110 #define HAS_PCH_LPT_H(dev_priv) \
3111         ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3112          (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3113 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3114 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3115 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3116 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3117
3118 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3119
3120 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3121
3122 /* DPF == dynamic parity feature */
3123 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3124 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3125                                  2 : HAS_L3_DPF(dev_priv))
3126
3127 #define GT_FREQUENCY_MULTIPLIER 50
3128 #define GEN9_FREQ_SCALER 3
3129
3130 #include "i915_trace.h"
3131
3132 static inline bool intel_vtd_active(void)
3133 {
3134 #ifdef CONFIG_INTEL_IOMMU
3135         if (intel_iommu_gfx_mapped)
3136                 return true;
3137 #endif
3138         return false;
3139 }
3140
3141 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3142 {
3143         return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3144 }
3145
3146 static inline bool
3147 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3148 {
3149         return IS_BROXTON(dev_priv) && intel_vtd_active();
3150 }
3151
3152 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3153                                 int enable_ppgtt);
3154
3155 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3156
3157 /* i915_drv.c */
3158 void __printf(3, 4)
3159 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3160               const char *fmt, ...);
3161
3162 #define i915_report_error(dev_priv, fmt, ...)                              \
3163         __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3164
3165 #ifdef CONFIG_COMPAT
3166 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3167                               unsigned long arg);
3168 #else
3169 #define i915_compat_ioctl NULL
3170 #endif
3171 extern const struct dev_pm_ops i915_pm_ops;
3172
3173 extern int i915_driver_load(struct pci_dev *pdev,
3174                             const struct pci_device_id *ent);
3175 extern void i915_driver_unload(struct drm_device *dev);
3176 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3177 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3178
3179 #define I915_RESET_QUIET BIT(0)
3180 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3181 extern int i915_reset_engine(struct intel_engine_cs *engine,
3182                              unsigned int flags);
3183
3184 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3185 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3186 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3187 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3188 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3189 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3190 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3191 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3192 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3193
3194 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3195 int intel_engines_init(struct drm_i915_private *dev_priv);
3196
3197 /* intel_hotplug.c */
3198 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3199                            u32 pin_mask, u32 long_mask);
3200 void intel_hpd_init(struct drm_i915_private *dev_priv);
3201 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3202 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3203 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3204 enum hpd_pin intel_hpd_pin(enum port port);
3205 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3206 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3207
3208 /* i915_irq.c */
3209 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3210 {
3211         unsigned long delay;
3212
3213         if (unlikely(!i915.enable_hangcheck))
3214                 return;
3215
3216         /* Don't continually defer the hangcheck so that it is always run at
3217          * least once after work has been scheduled on any ring. Otherwise,
3218          * we will ignore a hung ring if a second ring is kept busy.
3219          */
3220
3221         delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3222         queue_delayed_work(system_long_wq,
3223                            &dev_priv->gpu_error.hangcheck_work, delay);
3224 }
3225
3226 __printf(3, 4)
3227 void i915_handle_error(struct drm_i915_private *dev_priv,
3228                        u32 engine_mask,
3229                        const char *fmt, ...);
3230
3231 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3232 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3233 int intel_irq_install(struct drm_i915_private *dev_priv);
3234 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3235
3236 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3237 {
3238         return dev_priv->gvt;
3239 }
3240
3241 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3242 {
3243         return dev_priv->vgpu.active;
3244 }
3245
3246 void
3247 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3248                      u32 status_mask);
3249
3250 void
3251 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3252                       u32 status_mask);
3253
3254 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3255 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3256 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3257                                    uint32_t mask,
3258                                    uint32_t bits);
3259 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3260                             uint32_t interrupt_mask,
3261                             uint32_t enabled_irq_mask);
3262 static inline void
3263 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3264 {
3265         ilk_update_display_irq(dev_priv, bits, bits);
3266 }
3267 static inline void
3268 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3269 {
3270         ilk_update_display_irq(dev_priv, bits, 0);
3271 }
3272 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3273                          enum pipe pipe,
3274                          uint32_t interrupt_mask,
3275                          uint32_t enabled_irq_mask);
3276 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3277                                        enum pipe pipe, uint32_t bits)
3278 {
3279         bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3280 }
3281 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3282                                         enum pipe pipe, uint32_t bits)
3283 {
3284         bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3285 }
3286 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3287                                   uint32_t interrupt_mask,
3288                                   uint32_t enabled_irq_mask);
3289 static inline void
3290 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3291 {
3292         ibx_display_interrupt_update(dev_priv, bits, bits);
3293 }
3294 static inline void
3295 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3296 {
3297         ibx_display_interrupt_update(dev_priv, bits, 0);
3298 }
3299
3300 /* i915_gem.c */
3301 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3302                           struct drm_file *file_priv);
3303 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3304                          struct drm_file *file_priv);
3305 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3306                           struct drm_file *file_priv);
3307 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3308                         struct drm_file *file_priv);
3309 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3310                         struct drm_file *file_priv);
3311 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3312                               struct drm_file *file_priv);
3313 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3314                              struct drm_file *file_priv);
3315 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3316                         struct drm_file *file_priv);
3317 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3318                          struct drm_file *file_priv);
3319 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3320                         struct drm_file *file_priv);
3321 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3322                                struct drm_file *file);
3323 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3324                                struct drm_file *file);
3325 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3326                             struct drm_file *file_priv);
3327 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3328                            struct drm_file *file_priv);
3329 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3330                               struct drm_file *file_priv);
3331 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3332                               struct drm_file *file_priv);
3333 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3334 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3335 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3336                            struct drm_file *file);
3337 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3338                                 struct drm_file *file_priv);
3339 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3340                         struct drm_file *file_priv);
3341 void i915_gem_sanitize(struct drm_i915_private *i915);
3342 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3343 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3344 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3345 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3346 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3347
3348 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3349 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3350 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3351                          const struct drm_i915_gem_object_ops *ops);
3352 struct drm_i915_gem_object *
3353 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3354 struct drm_i915_gem_object *
3355 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3356                                  const void *data, size_t size);
3357 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3358 void i915_gem_free_object(struct drm_gem_object *obj);
3359
3360 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3361 {
3362         /* A single pass should suffice to release all the freed objects (along
3363          * most call paths) , but be a little more paranoid in that freeing
3364          * the objects does take a little amount of time, during which the rcu
3365          * callbacks could have added new objects into the freed list, and
3366          * armed the work again.
3367          */
3368         do {
3369                 rcu_barrier();
3370         } while (flush_work(&i915->mm.free_work));
3371 }
3372
3373 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3374 {
3375         /*
3376          * Similar to objects above (see i915_gem_drain_freed-objects), in
3377          * general we have workers that are armed by RCU and then rearm
3378          * themselves in their callbacks. To be paranoid, we need to
3379          * drain the workqueue a second time after waiting for the RCU
3380          * grace period so that we catch work queued via RCU from the first
3381          * pass. As neither drain_workqueue() nor flush_workqueue() report
3382          * a result, we make an assumption that we only don't require more
3383          * than 2 passes to catch all recursive RCU delayed work.
3384          *
3385          */
3386         int pass = 2;
3387         do {
3388                 rcu_barrier();
3389                 drain_workqueue(i915->wq);
3390         } while (--pass);
3391 }
3392
3393 struct i915_vma * __must_check
3394 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3395                          const struct i915_ggtt_view *view,
3396                          u64 size,
3397                          u64 alignment,
3398                          u64 flags);
3399
3400 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3401 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3402
3403 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3404
3405 static inline int __sg_page_count(const struct scatterlist *sg)
3406 {
3407         return sg->length >> PAGE_SHIFT;
3408 }
3409
3410 struct scatterlist *
3411 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3412                        unsigned int n, unsigned int *offset);
3413
3414 struct page *
3415 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3416                          unsigned int n);
3417
3418 struct page *
3419 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3420                                unsigned int n);
3421
3422 dma_addr_t
3423 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3424                                 unsigned long n);
3425
3426 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3427                                  struct sg_table *pages);
3428 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3429
3430 static inline int __must_check
3431 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3432 {
3433         might_lock(&obj->mm.lock);
3434
3435         if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3436                 return 0;
3437
3438         return __i915_gem_object_get_pages(obj);
3439 }
3440
3441 static inline void
3442 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3443 {
3444         GEM_BUG_ON(!obj->mm.pages);
3445
3446         atomic_inc(&obj->mm.pages_pin_count);
3447 }
3448
3449 static inline bool
3450 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3451 {
3452         return atomic_read(&obj->mm.pages_pin_count);
3453 }
3454
3455 static inline void
3456 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3457 {
3458         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3459         GEM_BUG_ON(!obj->mm.pages);
3460
3461         atomic_dec(&obj->mm.pages_pin_count);
3462 }
3463
3464 static inline void
3465 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3466 {
3467         __i915_gem_object_unpin_pages(obj);
3468 }
3469
3470 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3471         I915_MM_NORMAL = 0,
3472         I915_MM_SHRINKER
3473 };
3474
3475 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3476                                  enum i915_mm_subclass subclass);
3477 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3478
3479 enum i915_map_type {
3480         I915_MAP_WB = 0,
3481         I915_MAP_WC,
3482 #define I915_MAP_OVERRIDE BIT(31)
3483         I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3484         I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3485 };
3486
3487 /**
3488  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3489  * @obj: the object to map into kernel address space
3490  * @type: the type of mapping, used to select pgprot_t
3491  *
3492  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3493  * pages and then returns a contiguous mapping of the backing storage into
3494  * the kernel address space. Based on the @type of mapping, the PTE will be
3495  * set to either WriteBack or WriteCombine (via pgprot_t).
3496  *
3497  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3498  * mapping is no longer required.
3499  *
3500  * Returns the pointer through which to access the mapped object, or an
3501  * ERR_PTR() on error.
3502  */
3503 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3504                                            enum i915_map_type type);
3505
3506 /**
3507  * i915_gem_object_unpin_map - releases an earlier mapping
3508  * @obj: the object to unmap
3509  *
3510  * After pinning the object and mapping its pages, once you are finished
3511  * with your access, call i915_gem_object_unpin_map() to release the pin
3512  * upon the mapping. Once the pin count reaches zero, that mapping may be
3513  * removed.
3514  */
3515 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3516 {
3517         i915_gem_object_unpin_pages(obj);
3518 }
3519
3520 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3521                                     unsigned int *needs_clflush);
3522 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3523                                      unsigned int *needs_clflush);
3524 #define CLFLUSH_BEFORE  BIT(0)
3525 #define CLFLUSH_AFTER   BIT(1)
3526 #define CLFLUSH_FLAGS   (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3527
3528 static inline void
3529 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3530 {
3531         i915_gem_object_unpin_pages(obj);
3532 }
3533
3534 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3535 void i915_vma_move_to_active(struct i915_vma *vma,
3536                              struct drm_i915_gem_request *req,
3537                              unsigned int flags);
3538 int i915_gem_dumb_create(struct drm_file *file_priv,
3539                          struct drm_device *dev,
3540                          struct drm_mode_create_dumb *args);
3541 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3542                       uint32_t handle, uint64_t *offset);
3543 int i915_gem_mmap_gtt_version(void);
3544
3545 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3546                        struct drm_i915_gem_object *new,
3547                        unsigned frontbuffer_bits);
3548
3549 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3550
3551 struct drm_i915_gem_request *
3552 i915_gem_find_active_request(struct intel_engine_cs *engine);
3553
3554 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3555
3556 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3557 {
3558         return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3559 }
3560
3561 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3562 {
3563         return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3564 }
3565
3566 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3567 {
3568         return unlikely(test_bit(I915_WEDGED, &error->flags));
3569 }
3570
3571 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3572 {
3573         return i915_reset_backoff(error) | i915_terminally_wedged(error);
3574 }
3575
3576 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3577 {
3578         return READ_ONCE(error->reset_count);
3579 }
3580
3581 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3582                                           struct intel_engine_cs *engine)
3583 {
3584         return READ_ONCE(error->reset_engine_count[engine->id]);
3585 }
3586
3587 struct drm_i915_gem_request *
3588 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3589 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3590 void i915_gem_reset(struct drm_i915_private *dev_priv);
3591 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3592 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3593 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3594 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3595 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3596                            struct drm_i915_gem_request *request);
3597
3598 void i915_gem_init_mmio(struct drm_i915_private *i915);
3599 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3600 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3601 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3602 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3603 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3604                            unsigned int flags);
3605 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3606 void i915_gem_resume(struct drm_i915_private *dev_priv);
3607 int i915_gem_fault(struct vm_fault *vmf);
3608 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3609                          unsigned int flags,
3610                          long timeout,
3611                          struct intel_rps_client *rps);
3612 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3613                                   unsigned int flags,
3614                                   int priority);
3615 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3616
3617 int __must_check
3618 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3619 int __must_check
3620 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3621 int __must_check
3622 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3623 struct i915_vma * __must_check
3624 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3625                                      u32 alignment,
3626                                      const struct i915_ggtt_view *view);
3627 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3628 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3629                                 int align);
3630 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3631 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3632
3633 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3634                                     enum i915_cache_level cache_level);
3635
3636 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3637                                 struct dma_buf *dma_buf);
3638
3639 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3640                                 struct drm_gem_object *gem_obj, int flags);
3641
3642 static inline struct i915_hw_ppgtt *
3643 i915_vm_to_ppgtt(struct i915_address_space *vm)
3644 {
3645         return container_of(vm, struct i915_hw_ppgtt, base);
3646 }
3647
3648 /* i915_gem_fence_reg.c */
3649 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3650 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3651
3652 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3653 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3654
3655 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3656 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3657                                        struct sg_table *pages);
3658 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3659                                          struct sg_table *pages);
3660
3661 static inline struct i915_gem_context *
3662 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3663 {
3664         return idr_find(&file_priv->context_idr, id);
3665 }
3666
3667 static inline struct i915_gem_context *
3668 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3669 {
3670         struct i915_gem_context *ctx;
3671
3672         rcu_read_lock();
3673         ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3674         if (ctx && !kref_get_unless_zero(&ctx->ref))
3675                 ctx = NULL;
3676         rcu_read_unlock();
3677
3678         return ctx;
3679 }
3680
3681 static inline struct intel_timeline *
3682 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3683                                  struct intel_engine_cs *engine)
3684 {
3685         struct i915_address_space *vm;
3686
3687         vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3688         return &vm->timeline.engine[engine->id];
3689 }
3690
3691 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3692                          struct drm_file *file);
3693 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3694                                struct drm_file *file);
3695 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3696                                   struct drm_file *file);
3697 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3698                             struct i915_gem_context *ctx,
3699                             uint32_t *reg_state);
3700
3701 /* i915_gem_evict.c */
3702 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3703                                           u64 min_size, u64 alignment,
3704                                           unsigned cache_level,
3705                                           u64 start, u64 end,
3706                                           unsigned flags);
3707 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3708                                          struct drm_mm_node *node,
3709                                          unsigned int flags);
3710 int i915_gem_evict_vm(struct i915_address_space *vm);
3711
3712 /* belongs in i915_gem_gtt.h */
3713 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3714 {
3715         wmb();
3716         if (INTEL_GEN(dev_priv) < 6)
3717                 intel_gtt_chipset_flush();
3718 }
3719
3720 /* i915_gem_stolen.c */
3721 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3722                                 struct drm_mm_node *node, u64 size,
3723                                 unsigned alignment);
3724 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3725                                          struct drm_mm_node *node, u64 size,
3726                                          unsigned alignment, u64 start,
3727                                          u64 end);
3728 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3729                                  struct drm_mm_node *node);
3730 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3731 void i915_gem_cleanup_stolen(struct drm_device *dev);
3732 struct drm_i915_gem_object *
3733 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3734 struct drm_i915_gem_object *
3735 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3736                                                u32 stolen_offset,
3737                                                u32 gtt_offset,
3738                                                u32 size);
3739
3740 /* i915_gem_internal.c */
3741 struct drm_i915_gem_object *
3742 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3743                                 phys_addr_t size);
3744
3745 /* i915_gem_shrinker.c */
3746 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3747                               unsigned long target,
3748                               unsigned long *nr_scanned,
3749                               unsigned flags);
3750 #define I915_SHRINK_PURGEABLE 0x1
3751 #define I915_SHRINK_UNBOUND 0x2
3752 #define I915_SHRINK_BOUND 0x4
3753 #define I915_SHRINK_ACTIVE 0x8
3754 #define I915_SHRINK_VMAPS 0x10
3755 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3756 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3757 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3758
3759
3760 /* i915_gem_tiling.c */
3761 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3762 {
3763         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3764
3765         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3766                 i915_gem_object_is_tiled(obj);
3767 }
3768
3769 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3770                         unsigned int tiling, unsigned int stride);
3771 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3772                              unsigned int tiling, unsigned int stride);
3773
3774 /* i915_debugfs.c */
3775 #ifdef CONFIG_DEBUG_FS
3776 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3777 int i915_debugfs_connector_add(struct drm_connector *connector);
3778 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3779 #else
3780 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3781 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3782 { return 0; }
3783 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3784 #endif
3785
3786 /* i915_gpu_error.c */
3787 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3788
3789 __printf(2, 3)
3790 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3791 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3792                             const struct i915_gpu_state *gpu);
3793 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3794                               struct drm_i915_private *i915,
3795                               size_t count, loff_t pos);
3796 static inline void i915_error_state_buf_release(
3797         struct drm_i915_error_state_buf *eb)
3798 {
3799         kfree(eb->buf);
3800 }
3801
3802 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3803 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3804                               u32 engine_mask,
3805                               const char *error_msg);
3806
3807 static inline struct i915_gpu_state *
3808 i915_gpu_state_get(struct i915_gpu_state *gpu)
3809 {
3810         kref_get(&gpu->ref);
3811         return gpu;
3812 }
3813
3814 void __i915_gpu_state_free(struct kref *kref);
3815 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3816 {
3817         if (gpu)
3818                 kref_put(&gpu->ref, __i915_gpu_state_free);
3819 }
3820
3821 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3822 void i915_reset_error_state(struct drm_i915_private *i915);
3823
3824 #else
3825
3826 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3827                                             u32 engine_mask,
3828                                             const char *error_msg)
3829 {
3830 }
3831
3832 static inline struct i915_gpu_state *
3833 i915_first_error_state(struct drm_i915_private *i915)
3834 {
3835         return NULL;
3836 }
3837
3838 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3839 {
3840 }
3841
3842 #endif
3843
3844 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3845
3846 /* i915_cmd_parser.c */
3847 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3848 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3849 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3850 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3851                             struct drm_i915_gem_object *batch_obj,
3852                             struct drm_i915_gem_object *shadow_batch_obj,
3853                             u32 batch_start_offset,
3854                             u32 batch_len,
3855                             bool is_master);
3856
3857 /* i915_perf.c */
3858 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3859 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3860 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3861 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3862
3863 /* i915_suspend.c */
3864 extern int i915_save_state(struct drm_i915_private *dev_priv);
3865 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3866
3867 /* i915_sysfs.c */
3868 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3869 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3870
3871 /* intel_lpe_audio.c */
3872 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3873 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3874 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3875 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3876                             enum pipe pipe, enum port port,
3877                             const void *eld, int ls_clock, bool dp_output);
3878
3879 /* intel_i2c.c */
3880 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3881 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3882 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3883                                      unsigned int pin);
3884
3885 extern struct i2c_adapter *
3886 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3887 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3888 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3889 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3890 {
3891         return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3892 }
3893 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3894
3895 /* intel_bios.c */
3896 void intel_bios_init(struct drm_i915_private *dev_priv);
3897 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3898 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3899 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3900 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3901 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3902 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3903 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3904 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3905                                      enum port port);
3906 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3907                                 enum port port);
3908
3909
3910 /* intel_opregion.c */
3911 #ifdef CONFIG_ACPI
3912 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3913 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3914 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3915 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3916 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3917                                          bool enable);
3918 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3919                                          pci_power_t state);
3920 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3921 #else
3922 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3923 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3924 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3925 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3926 {
3927 }
3928 static inline int
3929 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3930 {
3931         return 0;
3932 }
3933 static inline int
3934 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3935 {
3936         return 0;
3937 }
3938 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3939 {
3940         return -ENODEV;
3941 }
3942 #endif
3943
3944 /* intel_acpi.c */
3945 #ifdef CONFIG_ACPI
3946 extern void intel_register_dsm_handler(void);
3947 extern void intel_unregister_dsm_handler(void);
3948 #else
3949 static inline void intel_register_dsm_handler(void) { return; }
3950 static inline void intel_unregister_dsm_handler(void) { return; }
3951 #endif /* CONFIG_ACPI */
3952
3953 /* intel_device_info.c */
3954 static inline struct intel_device_info *
3955 mkwrite_device_info(struct drm_i915_private *dev_priv)
3956 {
3957         return (struct intel_device_info *)&dev_priv->info;
3958 }
3959
3960 const char *intel_platform_name(enum intel_platform platform);
3961 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3962 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3963
3964 /* modesetting */
3965 extern void intel_modeset_init_hw(struct drm_device *dev);
3966 extern int intel_modeset_init(struct drm_device *dev);
3967 extern void intel_modeset_gem_init(struct drm_device *dev);
3968 extern void intel_modeset_cleanup(struct drm_device *dev);
3969 extern int intel_connector_register(struct drm_connector *);
3970 extern void intel_connector_unregister(struct drm_connector *);
3971 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3972                                        bool state);
3973 extern void intel_display_resume(struct drm_device *dev);
3974 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3975 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3976 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3977 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3978 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3979 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3980                                   bool enable);
3981
3982 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3983                         struct drm_file *file);
3984
3985 /* overlay */
3986 extern struct intel_overlay_error_state *
3987 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3988 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3989                                             struct intel_overlay_error_state *error);
3990
3991 extern struct intel_display_error_state *
3992 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3993 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3994                                             struct intel_display_error_state *error);
3995
3996 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3997 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3998 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3999                       u32 reply_mask, u32 reply, int timeout_base_ms);
4000
4001 /* intel_sideband.c */
4002 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4003 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4004 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4005 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4006 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4007 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4008 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4009 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4010 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4011 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4012 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4013 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4014 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4015 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4016                    enum intel_sbi_destination destination);
4017 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4018                      enum intel_sbi_destination destination);
4019 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4020 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4021
4022 /* intel_dpio_phy.c */
4023 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4024                              enum dpio_phy *phy, enum dpio_channel *ch);
4025 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4026                                   enum port port, u32 margin, u32 scale,
4027                                   u32 enable, u32 deemphasis);
4028 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4029 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4030 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4031                             enum dpio_phy phy);
4032 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4033                               enum dpio_phy phy);
4034 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4035                                              uint8_t lane_count);
4036 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4037                                      uint8_t lane_lat_optim_mask);
4038 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4039
4040 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4041                               u32 deemph_reg_value, u32 margin_reg_value,
4042                               bool uniq_trans_scale);
4043 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4044                               bool reset);
4045 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4046 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4047 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4048 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4049
4050 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4051                               u32 demph_reg_value, u32 preemph_reg_value,
4052                               u32 uniqtranscale_reg_value, u32 tx3_demph);
4053 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4054 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4055 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4056
4057 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4058 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4059 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4060                            const i915_reg_t reg);
4061
4062 #define I915_READ8(reg)         dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4063 #define I915_WRITE8(reg, val)   dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4064
4065 #define I915_READ16(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4066 #define I915_WRITE16(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4067 #define I915_READ16_NOTRACE(reg)        dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4068 #define I915_WRITE16_NOTRACE(reg, val)  dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4069
4070 #define I915_READ(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4071 #define I915_WRITE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4072 #define I915_READ_NOTRACE(reg)          dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4073 #define I915_WRITE_NOTRACE(reg, val)    dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4074
4075 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4076  * will be implemented using 2 32-bit writes in an arbitrary order with
4077  * an arbitrary delay between them. This can cause the hardware to
4078  * act upon the intermediate value, possibly leading to corruption and
4079  * machine death. For this reason we do not support I915_WRITE64, or
4080  * dev_priv->uncore.funcs.mmio_writeq.
4081  *
4082  * When reading a 64-bit value as two 32-bit values, the delay may cause
4083  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4084  * occasionally a 64-bit register does not actualy support a full readq
4085  * and must be read using two 32-bit reads.
4086  *
4087  * You have been warned.
4088  */
4089 #define I915_READ64(reg)        dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4090
4091 #define I915_READ64_2x32(lower_reg, upper_reg) ({                       \
4092         u32 upper, lower, old_upper, loop = 0;                          \
4093         upper = I915_READ(upper_reg);                                   \
4094         do {                                                            \
4095                 old_upper = upper;                                      \
4096                 lower = I915_READ(lower_reg);                           \
4097                 upper = I915_READ(upper_reg);                           \
4098         } while (upper != old_upper && loop++ < 2);                     \
4099         (u64)upper << 32 | lower; })
4100
4101 #define POSTING_READ(reg)       (void)I915_READ_NOTRACE(reg)
4102 #define POSTING_READ16(reg)     (void)I915_READ16_NOTRACE(reg)
4103
4104 #define __raw_read(x, s) \
4105 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4106                                              i915_reg_t reg) \
4107 { \
4108         return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4109 }
4110
4111 #define __raw_write(x, s) \
4112 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4113                                        i915_reg_t reg, uint##x##_t val) \
4114 { \
4115         write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4116 }
4117 __raw_read(8, b)
4118 __raw_read(16, w)
4119 __raw_read(32, l)
4120 __raw_read(64, q)
4121
4122 __raw_write(8, b)
4123 __raw_write(16, w)
4124 __raw_write(32, l)
4125 __raw_write(64, q)
4126
4127 #undef __raw_read
4128 #undef __raw_write
4129
4130 /* These are untraced mmio-accessors that are only valid to be used inside
4131  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4132  * controlled.
4133  *
4134  * Think twice, and think again, before using these.
4135  *
4136  * As an example, these accessors can possibly be used between:
4137  *
4138  * spin_lock_irq(&dev_priv->uncore.lock);
4139  * intel_uncore_forcewake_get__locked();
4140  *
4141  * and
4142  *
4143  * intel_uncore_forcewake_put__locked();
4144  * spin_unlock_irq(&dev_priv->uncore.lock);
4145  *
4146  *
4147  * Note: some registers may not need forcewake held, so
4148  * intel_uncore_forcewake_{get,put} can be omitted, see
4149  * intel_uncore_forcewake_for_reg().
4150  *
4151  * Certain architectures will die if the same cacheline is concurrently accessed
4152  * by different clients (e.g. on Ivybridge). Access to registers should
4153  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4154  * a more localised lock guarding all access to that bank of registers.
4155  */
4156 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4157 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4158 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4159 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4160
4161 /* "Broadcast RGB" property */
4162 #define INTEL_BROADCAST_RGB_AUTO 0
4163 #define INTEL_BROADCAST_RGB_FULL 1
4164 #define INTEL_BROADCAST_RGB_LIMITED 2
4165
4166 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4167 {
4168         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4169                 return VLV_VGACNTRL;
4170         else if (INTEL_GEN(dev_priv) >= 5)
4171                 return CPU_VGACNTRL;
4172         else
4173                 return VGACNTRL;
4174 }
4175
4176 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4177 {
4178         unsigned long j = msecs_to_jiffies(m);
4179
4180         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4181 }
4182
4183 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4184 {
4185         /* nsecs_to_jiffies64() does not guard against overflow */
4186         if (NSEC_PER_SEC % HZ &&
4187             div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4188                 return MAX_JIFFY_OFFSET;
4189
4190         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4191 }
4192
4193 static inline unsigned long
4194 timespec_to_jiffies_timeout(const struct timespec *value)
4195 {
4196         unsigned long j = timespec_to_jiffies(value);
4197
4198         return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4199 }
4200
4201 /*
4202  * If you need to wait X milliseconds between events A and B, but event B
4203  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4204  * when event A happened, then just before event B you call this function and
4205  * pass the timestamp as the first argument, and X as the second argument.
4206  */
4207 static inline void
4208 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4209 {
4210         unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4211
4212         /*
4213          * Don't re-read the value of "jiffies" every time since it may change
4214          * behind our back and break the math.
4215          */
4216         tmp_jiffies = jiffies;
4217         target_jiffies = timestamp_jiffies +
4218                          msecs_to_jiffies_timeout(to_wait_ms);
4219
4220         if (time_after(target_jiffies, tmp_jiffies)) {
4221                 remaining_jiffies = target_jiffies - tmp_jiffies;
4222                 while (remaining_jiffies)
4223                         remaining_jiffies =
4224                             schedule_timeout_uninterruptible(remaining_jiffies);
4225         }
4226 }
4227
4228 static inline bool
4229 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4230 {
4231         struct intel_engine_cs *engine = req->engine;
4232         u32 seqno;
4233
4234         /* Note that the engine may have wrapped around the seqno, and
4235          * so our request->global_seqno will be ahead of the hardware,
4236          * even though it completed the request before wrapping. We catch
4237          * this by kicking all the waiters before resetting the seqno
4238          * in hardware, and also signal the fence.
4239          */
4240         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4241                 return true;
4242
4243         /* The request was dequeued before we were awoken. We check after
4244          * inspecting the hw to confirm that this was the same request
4245          * that generated the HWS update. The memory barriers within
4246          * the request execution are sufficient to ensure that a check
4247          * after reading the value from hw matches this request.
4248          */
4249         seqno = i915_gem_request_global_seqno(req);
4250         if (!seqno)
4251                 return false;
4252
4253         /* Before we do the heavier coherent read of the seqno,
4254          * check the value (hopefully) in the CPU cacheline.
4255          */
4256         if (__i915_gem_request_completed(req, seqno))
4257                 return true;
4258
4259         /* Ensure our read of the seqno is coherent so that we
4260          * do not "miss an interrupt" (i.e. if this is the last
4261          * request and the seqno write from the GPU is not visible
4262          * by the time the interrupt fires, we will see that the
4263          * request is incomplete and go back to sleep awaiting
4264          * another interrupt that will never come.)
4265          *
4266          * Strictly, we only need to do this once after an interrupt,
4267          * but it is easier and safer to do it every time the waiter
4268          * is woken.
4269          */
4270         if (engine->irq_seqno_barrier &&
4271             test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4272                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4273
4274                 /* The ordering of irq_posted versus applying the barrier
4275                  * is crucial. The clearing of the current irq_posted must
4276                  * be visible before we perform the barrier operation,
4277                  * such that if a subsequent interrupt arrives, irq_posted
4278                  * is reasserted and our task rewoken (which causes us to
4279                  * do another __i915_request_irq_complete() immediately
4280                  * and reapply the barrier). Conversely, if the clear
4281                  * occurs after the barrier, then an interrupt that arrived
4282                  * whilst we waited on the barrier would not trigger a
4283                  * barrier on the next pass, and the read may not see the
4284                  * seqno update.
4285                  */
4286                 engine->irq_seqno_barrier(engine);
4287
4288                 /* If we consume the irq, but we are no longer the bottom-half,
4289                  * the real bottom-half may not have serialised their own
4290                  * seqno check with the irq-barrier (i.e. may have inspected
4291                  * the seqno before we believe it coherent since they see
4292                  * irq_posted == false but we are still running).
4293                  */
4294                 spin_lock_irq(&b->irq_lock);
4295                 if (b->irq_wait && b->irq_wait->tsk != current)
4296                         /* Note that if the bottom-half is changed as we
4297                          * are sending the wake-up, the new bottom-half will
4298                          * be woken by whomever made the change. We only have
4299                          * to worry about when we steal the irq-posted for
4300                          * ourself.
4301                          */
4302                         wake_up_process(b->irq_wait->tsk);
4303                 spin_unlock_irq(&b->irq_lock);
4304
4305                 if (__i915_gem_request_completed(req, seqno))
4306                         return true;
4307         }
4308
4309         return false;
4310 }
4311
4312 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4313 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4314
4315 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4316  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4317  * perform the operation. To check beforehand, pass in the parameters to
4318  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4319  * you only need to pass in the minor offsets, page-aligned pointers are
4320  * always valid.
4321  *
4322  * For just checking for SSE4.1, in the foreknowledge that the future use
4323  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4324  */
4325 #define i915_can_memcpy_from_wc(dst, src, len) \
4326         i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4327
4328 #define i915_has_memcpy_from_wc() \
4329         i915_memcpy_from_wc(NULL, NULL, 0)
4330
4331 /* i915_mm.c */
4332 int remap_io_mapping(struct vm_area_struct *vma,
4333                      unsigned long addr, unsigned long pfn, unsigned long size,
4334                      struct io_mapping *iomap);
4335
4336 static inline bool
4337 intel_engine_can_store_dword(struct intel_engine_cs *engine)
4338 {
4339         return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4340                                               engine->class);
4341 }
4342
4343 #endif