Merge branch 'for-linus-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (i915_gem_obj_is_pinned(obj))
100                 return "p";
101         else
102                 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107         switch (obj->tiling_mode) {
108         default:
109         case I915_TILING_NONE: return " ";
110         case I915_TILING_X: return "X";
111         case I915_TILING_Y: return "Y";
112         }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123         struct i915_vma *vma;
124         int pin_count = 0;
125
126         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
127                    &obj->base,
128                    get_pin_flag(obj),
129                    get_tiling_flag(obj),
130                    get_global_flag(obj),
131                    obj->base.size / 1024,
132                    obj->base.read_domains,
133                    obj->base.write_domain,
134                    i915_gem_request_get_seqno(obj->last_read_req),
135                    i915_gem_request_get_seqno(obj->last_write_req),
136                    i915_gem_request_get_seqno(obj->last_fenced_req),
137                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138                    obj->dirty ? " dirty" : "",
139                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140         if (obj->base.name)
141                 seq_printf(m, " (name: %d)", obj->base.name);
142         list_for_each_entry(vma, &obj->vma_list, vma_link) {
143                 if (vma->pin_count > 0)
144                         pin_count++;
145         }
146         seq_printf(m, " (pinned x %d)", pin_count);
147         if (obj->pin_display)
148                 seq_printf(m, " (display)");
149         if (obj->fence_reg != I915_FENCE_REG_NONE)
150                 seq_printf(m, " (fence: %d)", obj->fence_reg);
151         list_for_each_entry(vma, &obj->vma_list, vma_link) {
152                 if (!i915_is_ggtt(vma->vm))
153                         seq_puts(m, " (pp");
154                 else
155                         seq_puts(m, " (g");
156                 seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
157                            vma->node.start, vma->node.size,
158                            vma->ggtt_view.type);
159         }
160         if (obj->stolen)
161                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
162         if (obj->pin_mappable || obj->fault_mappable) {
163                 char s[3], *t = s;
164                 if (obj->pin_mappable)
165                         *t++ = 'p';
166                 if (obj->fault_mappable)
167                         *t++ = 'f';
168                 *t = '\0';
169                 seq_printf(m, " (%s mappable)", s);
170         }
171         if (obj->last_read_req != NULL)
172                 seq_printf(m, " (%s)",
173                            i915_gem_request_get_ring(obj->last_read_req)->name);
174         if (obj->frontbuffer_bits)
175                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
176 }
177
178 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
179 {
180         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
181         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
182         seq_putc(m, ' ');
183 }
184
185 static int i915_gem_object_list_info(struct seq_file *m, void *data)
186 {
187         struct drm_info_node *node = m->private;
188         uintptr_t list = (uintptr_t) node->info_ent->data;
189         struct list_head *head;
190         struct drm_device *dev = node->minor->dev;
191         struct drm_i915_private *dev_priv = dev->dev_private;
192         struct i915_address_space *vm = &dev_priv->gtt.base;
193         struct i915_vma *vma;
194         size_t total_obj_size, total_gtt_size;
195         int count, ret;
196
197         ret = mutex_lock_interruptible(&dev->struct_mutex);
198         if (ret)
199                 return ret;
200
201         /* FIXME: the user of this interface might want more than just GGTT */
202         switch (list) {
203         case ACTIVE_LIST:
204                 seq_puts(m, "Active:\n");
205                 head = &vm->active_list;
206                 break;
207         case INACTIVE_LIST:
208                 seq_puts(m, "Inactive:\n");
209                 head = &vm->inactive_list;
210                 break;
211         default:
212                 mutex_unlock(&dev->struct_mutex);
213                 return -EINVAL;
214         }
215
216         total_obj_size = total_gtt_size = count = 0;
217         list_for_each_entry(vma, head, mm_list) {
218                 seq_printf(m, "   ");
219                 describe_obj(m, vma->obj);
220                 seq_printf(m, "\n");
221                 total_obj_size += vma->obj->base.size;
222                 total_gtt_size += vma->node.size;
223                 count++;
224         }
225         mutex_unlock(&dev->struct_mutex);
226
227         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
228                    count, total_obj_size, total_gtt_size);
229         return 0;
230 }
231
232 static int obj_rank_by_stolen(void *priv,
233                               struct list_head *A, struct list_head *B)
234 {
235         struct drm_i915_gem_object *a =
236                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
237         struct drm_i915_gem_object *b =
238                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
239
240         return a->stolen->start - b->stolen->start;
241 }
242
243 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
244 {
245         struct drm_info_node *node = m->private;
246         struct drm_device *dev = node->minor->dev;
247         struct drm_i915_private *dev_priv = dev->dev_private;
248         struct drm_i915_gem_object *obj;
249         size_t total_obj_size, total_gtt_size;
250         LIST_HEAD(stolen);
251         int count, ret;
252
253         ret = mutex_lock_interruptible(&dev->struct_mutex);
254         if (ret)
255                 return ret;
256
257         total_obj_size = total_gtt_size = count = 0;
258         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
259                 if (obj->stolen == NULL)
260                         continue;
261
262                 list_add(&obj->obj_exec_link, &stolen);
263
264                 total_obj_size += obj->base.size;
265                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
266                 count++;
267         }
268         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
269                 if (obj->stolen == NULL)
270                         continue;
271
272                 list_add(&obj->obj_exec_link, &stolen);
273
274                 total_obj_size += obj->base.size;
275                 count++;
276         }
277         list_sort(NULL, &stolen, obj_rank_by_stolen);
278         seq_puts(m, "Stolen:\n");
279         while (!list_empty(&stolen)) {
280                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
281                 seq_puts(m, "   ");
282                 describe_obj(m, obj);
283                 seq_putc(m, '\n');
284                 list_del_init(&obj->obj_exec_link);
285         }
286         mutex_unlock(&dev->struct_mutex);
287
288         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
289                    count, total_obj_size, total_gtt_size);
290         return 0;
291 }
292
293 #define count_objects(list, member) do { \
294         list_for_each_entry(obj, list, member) { \
295                 size += i915_gem_obj_ggtt_size(obj); \
296                 ++count; \
297                 if (obj->map_and_fenceable) { \
298                         mappable_size += i915_gem_obj_ggtt_size(obj); \
299                         ++mappable_count; \
300                 } \
301         } \
302 } while (0)
303
304 struct file_stats {
305         struct drm_i915_file_private *file_priv;
306         int count;
307         size_t total, unbound;
308         size_t global, shared;
309         size_t active, inactive;
310 };
311
312 static int per_file_stats(int id, void *ptr, void *data)
313 {
314         struct drm_i915_gem_object *obj = ptr;
315         struct file_stats *stats = data;
316         struct i915_vma *vma;
317
318         stats->count++;
319         stats->total += obj->base.size;
320
321         if (obj->base.name || obj->base.dma_buf)
322                 stats->shared += obj->base.size;
323
324         if (USES_FULL_PPGTT(obj->base.dev)) {
325                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
326                         struct i915_hw_ppgtt *ppgtt;
327
328                         if (!drm_mm_node_allocated(&vma->node))
329                                 continue;
330
331                         if (i915_is_ggtt(vma->vm)) {
332                                 stats->global += obj->base.size;
333                                 continue;
334                         }
335
336                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
337                         if (ppgtt->file_priv != stats->file_priv)
338                                 continue;
339
340                         if (obj->active) /* XXX per-vma statistic */
341                                 stats->active += obj->base.size;
342                         else
343                                 stats->inactive += obj->base.size;
344
345                         return 0;
346                 }
347         } else {
348                 if (i915_gem_obj_ggtt_bound(obj)) {
349                         stats->global += obj->base.size;
350                         if (obj->active)
351                                 stats->active += obj->base.size;
352                         else
353                                 stats->inactive += obj->base.size;
354                         return 0;
355                 }
356         }
357
358         if (!list_empty(&obj->global_list))
359                 stats->unbound += obj->base.size;
360
361         return 0;
362 }
363
364 #define print_file_stats(m, name, stats) \
365         seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
366                    name, \
367                    stats.count, \
368                    stats.total, \
369                    stats.active, \
370                    stats.inactive, \
371                    stats.global, \
372                    stats.shared, \
373                    stats.unbound)
374
375 static void print_batch_pool_stats(struct seq_file *m,
376                                    struct drm_i915_private *dev_priv)
377 {
378         struct drm_i915_gem_object *obj;
379         struct file_stats stats;
380
381         memset(&stats, 0, sizeof(stats));
382
383         list_for_each_entry(obj,
384                             &dev_priv->mm.batch_pool.cache_list,
385                             batch_pool_list)
386                 per_file_stats(0, obj, &stats);
387
388         print_file_stats(m, "batch pool", stats);
389 }
390
391 #define count_vmas(list, member) do { \
392         list_for_each_entry(vma, list, member) { \
393                 size += i915_gem_obj_ggtt_size(vma->obj); \
394                 ++count; \
395                 if (vma->obj->map_and_fenceable) { \
396                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
397                         ++mappable_count; \
398                 } \
399         } \
400 } while (0)
401
402 static int i915_gem_object_info(struct seq_file *m, void* data)
403 {
404         struct drm_info_node *node = m->private;
405         struct drm_device *dev = node->minor->dev;
406         struct drm_i915_private *dev_priv = dev->dev_private;
407         u32 count, mappable_count, purgeable_count;
408         size_t size, mappable_size, purgeable_size;
409         struct drm_i915_gem_object *obj;
410         struct i915_address_space *vm = &dev_priv->gtt.base;
411         struct drm_file *file;
412         struct i915_vma *vma;
413         int ret;
414
415         ret = mutex_lock_interruptible(&dev->struct_mutex);
416         if (ret)
417                 return ret;
418
419         seq_printf(m, "%u objects, %zu bytes\n",
420                    dev_priv->mm.object_count,
421                    dev_priv->mm.object_memory);
422
423         size = count = mappable_size = mappable_count = 0;
424         count_objects(&dev_priv->mm.bound_list, global_list);
425         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
426                    count, mappable_count, size, mappable_size);
427
428         size = count = mappable_size = mappable_count = 0;
429         count_vmas(&vm->active_list, mm_list);
430         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
431                    count, mappable_count, size, mappable_size);
432
433         size = count = mappable_size = mappable_count = 0;
434         count_vmas(&vm->inactive_list, mm_list);
435         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
436                    count, mappable_count, size, mappable_size);
437
438         size = count = purgeable_size = purgeable_count = 0;
439         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
440                 size += obj->base.size, ++count;
441                 if (obj->madv == I915_MADV_DONTNEED)
442                         purgeable_size += obj->base.size, ++purgeable_count;
443         }
444         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
445
446         size = count = mappable_size = mappable_count = 0;
447         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
448                 if (obj->fault_mappable) {
449                         size += i915_gem_obj_ggtt_size(obj);
450                         ++count;
451                 }
452                 if (obj->pin_mappable) {
453                         mappable_size += i915_gem_obj_ggtt_size(obj);
454                         ++mappable_count;
455                 }
456                 if (obj->madv == I915_MADV_DONTNEED) {
457                         purgeable_size += obj->base.size;
458                         ++purgeable_count;
459                 }
460         }
461         seq_printf(m, "%u purgeable objects, %zu bytes\n",
462                    purgeable_count, purgeable_size);
463         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
464                    mappable_count, mappable_size);
465         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
466                    count, size);
467
468         seq_printf(m, "%zu [%lu] gtt total\n",
469                    dev_priv->gtt.base.total,
470                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
471
472         seq_putc(m, '\n');
473         print_batch_pool_stats(m, dev_priv);
474
475         seq_putc(m, '\n');
476         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
477                 struct file_stats stats;
478                 struct task_struct *task;
479
480                 memset(&stats, 0, sizeof(stats));
481                 stats.file_priv = file->driver_priv;
482                 spin_lock(&file->table_lock);
483                 idr_for_each(&file->object_idr, per_file_stats, &stats);
484                 spin_unlock(&file->table_lock);
485                 /*
486                  * Although we have a valid reference on file->pid, that does
487                  * not guarantee that the task_struct who called get_pid() is
488                  * still alive (e.g. get_pid(current) => fork() => exit()).
489                  * Therefore, we need to protect this ->comm access using RCU.
490                  */
491                 rcu_read_lock();
492                 task = pid_task(file->pid, PIDTYPE_PID);
493                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
494                 rcu_read_unlock();
495         }
496
497         mutex_unlock(&dev->struct_mutex);
498
499         return 0;
500 }
501
502 static int i915_gem_gtt_info(struct seq_file *m, void *data)
503 {
504         struct drm_info_node *node = m->private;
505         struct drm_device *dev = node->minor->dev;
506         uintptr_t list = (uintptr_t) node->info_ent->data;
507         struct drm_i915_private *dev_priv = dev->dev_private;
508         struct drm_i915_gem_object *obj;
509         size_t total_obj_size, total_gtt_size;
510         int count, ret;
511
512         ret = mutex_lock_interruptible(&dev->struct_mutex);
513         if (ret)
514                 return ret;
515
516         total_obj_size = total_gtt_size = count = 0;
517         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
518                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
519                         continue;
520
521                 seq_puts(m, "   ");
522                 describe_obj(m, obj);
523                 seq_putc(m, '\n');
524                 total_obj_size += obj->base.size;
525                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
526                 count++;
527         }
528
529         mutex_unlock(&dev->struct_mutex);
530
531         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
532                    count, total_obj_size, total_gtt_size);
533
534         return 0;
535 }
536
537 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
538 {
539         struct drm_info_node *node = m->private;
540         struct drm_device *dev = node->minor->dev;
541         struct drm_i915_private *dev_priv = dev->dev_private;
542         struct intel_crtc *crtc;
543         int ret;
544
545         ret = mutex_lock_interruptible(&dev->struct_mutex);
546         if (ret)
547                 return ret;
548
549         for_each_intel_crtc(dev, crtc) {
550                 const char pipe = pipe_name(crtc->pipe);
551                 const char plane = plane_name(crtc->plane);
552                 struct intel_unpin_work *work;
553
554                 spin_lock_irq(&dev->event_lock);
555                 work = crtc->unpin_work;
556                 if (work == NULL) {
557                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
558                                    pipe, plane);
559                 } else {
560                         u32 addr;
561
562                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
563                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
564                                            pipe, plane);
565                         } else {
566                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
567                                            pipe, plane);
568                         }
569                         if (work->flip_queued_req) {
570                                 struct intel_engine_cs *ring =
571                                         i915_gem_request_get_ring(work->flip_queued_req);
572
573                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
574                                            ring->name,
575                                            i915_gem_request_get_seqno(work->flip_queued_req),
576                                            dev_priv->next_seqno,
577                                            ring->get_seqno(ring, true),
578                                            i915_gem_request_completed(work->flip_queued_req, true));
579                         } else
580                                 seq_printf(m, "Flip not associated with any ring\n");
581                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
582                                    work->flip_queued_vblank,
583                                    work->flip_ready_vblank,
584                                    drm_crtc_vblank_count(&crtc->base));
585                         if (work->enable_stall_check)
586                                 seq_puts(m, "Stall check enabled, ");
587                         else
588                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
589                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
590
591                         if (INTEL_INFO(dev)->gen >= 4)
592                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
593                         else
594                                 addr = I915_READ(DSPADDR(crtc->plane));
595                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
596
597                         if (work->pending_flip_obj) {
598                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
599                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
600                         }
601                 }
602                 spin_unlock_irq(&dev->event_lock);
603         }
604
605         mutex_unlock(&dev->struct_mutex);
606
607         return 0;
608 }
609
610 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
611 {
612         struct drm_info_node *node = m->private;
613         struct drm_device *dev = node->minor->dev;
614         struct drm_i915_private *dev_priv = dev->dev_private;
615         struct drm_i915_gem_object *obj;
616         int count = 0;
617         int ret;
618
619         ret = mutex_lock_interruptible(&dev->struct_mutex);
620         if (ret)
621                 return ret;
622
623         seq_puts(m, "cache:\n");
624         list_for_each_entry(obj,
625                             &dev_priv->mm.batch_pool.cache_list,
626                             batch_pool_list) {
627                 seq_puts(m, "   ");
628                 describe_obj(m, obj);
629                 seq_putc(m, '\n');
630                 count++;
631         }
632
633         seq_printf(m, "total: %d\n", count);
634
635         mutex_unlock(&dev->struct_mutex);
636
637         return 0;
638 }
639
640 static int i915_gem_request_info(struct seq_file *m, void *data)
641 {
642         struct drm_info_node *node = m->private;
643         struct drm_device *dev = node->minor->dev;
644         struct drm_i915_private *dev_priv = dev->dev_private;
645         struct intel_engine_cs *ring;
646         struct drm_i915_gem_request *gem_request;
647         int ret, count, i;
648
649         ret = mutex_lock_interruptible(&dev->struct_mutex);
650         if (ret)
651                 return ret;
652
653         count = 0;
654         for_each_ring(ring, dev_priv, i) {
655                 if (list_empty(&ring->request_list))
656                         continue;
657
658                 seq_printf(m, "%s requests:\n", ring->name);
659                 list_for_each_entry(gem_request,
660                                     &ring->request_list,
661                                     list) {
662                         seq_printf(m, "    %x @ %d\n",
663                                    gem_request->seqno,
664                                    (int) (jiffies - gem_request->emitted_jiffies));
665                 }
666                 count++;
667         }
668         mutex_unlock(&dev->struct_mutex);
669
670         if (count == 0)
671                 seq_puts(m, "No requests\n");
672
673         return 0;
674 }
675
676 static void i915_ring_seqno_info(struct seq_file *m,
677                                  struct intel_engine_cs *ring)
678 {
679         if (ring->get_seqno) {
680                 seq_printf(m, "Current sequence (%s): %x\n",
681                            ring->name, ring->get_seqno(ring, false));
682         }
683 }
684
685 static int i915_gem_seqno_info(struct seq_file *m, void *data)
686 {
687         struct drm_info_node *node = m->private;
688         struct drm_device *dev = node->minor->dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         struct intel_engine_cs *ring;
691         int ret, i;
692
693         ret = mutex_lock_interruptible(&dev->struct_mutex);
694         if (ret)
695                 return ret;
696         intel_runtime_pm_get(dev_priv);
697
698         for_each_ring(ring, dev_priv, i)
699                 i915_ring_seqno_info(m, ring);
700
701         intel_runtime_pm_put(dev_priv);
702         mutex_unlock(&dev->struct_mutex);
703
704         return 0;
705 }
706
707
708 static int i915_interrupt_info(struct seq_file *m, void *data)
709 {
710         struct drm_info_node *node = m->private;
711         struct drm_device *dev = node->minor->dev;
712         struct drm_i915_private *dev_priv = dev->dev_private;
713         struct intel_engine_cs *ring;
714         int ret, i, pipe;
715
716         ret = mutex_lock_interruptible(&dev->struct_mutex);
717         if (ret)
718                 return ret;
719         intel_runtime_pm_get(dev_priv);
720
721         if (IS_CHERRYVIEW(dev)) {
722                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
723                            I915_READ(GEN8_MASTER_IRQ));
724
725                 seq_printf(m, "Display IER:\t%08x\n",
726                            I915_READ(VLV_IER));
727                 seq_printf(m, "Display IIR:\t%08x\n",
728                            I915_READ(VLV_IIR));
729                 seq_printf(m, "Display IIR_RW:\t%08x\n",
730                            I915_READ(VLV_IIR_RW));
731                 seq_printf(m, "Display IMR:\t%08x\n",
732                            I915_READ(VLV_IMR));
733                 for_each_pipe(dev_priv, pipe)
734                         seq_printf(m, "Pipe %c stat:\t%08x\n",
735                                    pipe_name(pipe),
736                                    I915_READ(PIPESTAT(pipe)));
737
738                 seq_printf(m, "Port hotplug:\t%08x\n",
739                            I915_READ(PORT_HOTPLUG_EN));
740                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
741                            I915_READ(VLV_DPFLIPSTAT));
742                 seq_printf(m, "DPINVGTT:\t%08x\n",
743                            I915_READ(DPINVGTT));
744
745                 for (i = 0; i < 4; i++) {
746                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
747                                    i, I915_READ(GEN8_GT_IMR(i)));
748                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
749                                    i, I915_READ(GEN8_GT_IIR(i)));
750                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
751                                    i, I915_READ(GEN8_GT_IER(i)));
752                 }
753
754                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
755                            I915_READ(GEN8_PCU_IMR));
756                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
757                            I915_READ(GEN8_PCU_IIR));
758                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
759                            I915_READ(GEN8_PCU_IER));
760         } else if (INTEL_INFO(dev)->gen >= 8) {
761                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
762                            I915_READ(GEN8_MASTER_IRQ));
763
764                 for (i = 0; i < 4; i++) {
765                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
766                                    i, I915_READ(GEN8_GT_IMR(i)));
767                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
768                                    i, I915_READ(GEN8_GT_IIR(i)));
769                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
770                                    i, I915_READ(GEN8_GT_IER(i)));
771                 }
772
773                 for_each_pipe(dev_priv, pipe) {
774                         if (!intel_display_power_is_enabled(dev_priv,
775                                                 POWER_DOMAIN_PIPE(pipe))) {
776                                 seq_printf(m, "Pipe %c power disabled\n",
777                                            pipe_name(pipe));
778                                 continue;
779                         }
780                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
781                                    pipe_name(pipe),
782                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
783                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
784                                    pipe_name(pipe),
785                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
786                         seq_printf(m, "Pipe %c IER:\t%08x\n",
787                                    pipe_name(pipe),
788                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
789                 }
790
791                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
792                            I915_READ(GEN8_DE_PORT_IMR));
793                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
794                            I915_READ(GEN8_DE_PORT_IIR));
795                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
796                            I915_READ(GEN8_DE_PORT_IER));
797
798                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
799                            I915_READ(GEN8_DE_MISC_IMR));
800                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
801                            I915_READ(GEN8_DE_MISC_IIR));
802                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
803                            I915_READ(GEN8_DE_MISC_IER));
804
805                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
806                            I915_READ(GEN8_PCU_IMR));
807                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
808                            I915_READ(GEN8_PCU_IIR));
809                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
810                            I915_READ(GEN8_PCU_IER));
811         } else if (IS_VALLEYVIEW(dev)) {
812                 seq_printf(m, "Display IER:\t%08x\n",
813                            I915_READ(VLV_IER));
814                 seq_printf(m, "Display IIR:\t%08x\n",
815                            I915_READ(VLV_IIR));
816                 seq_printf(m, "Display IIR_RW:\t%08x\n",
817                            I915_READ(VLV_IIR_RW));
818                 seq_printf(m, "Display IMR:\t%08x\n",
819                            I915_READ(VLV_IMR));
820                 for_each_pipe(dev_priv, pipe)
821                         seq_printf(m, "Pipe %c stat:\t%08x\n",
822                                    pipe_name(pipe),
823                                    I915_READ(PIPESTAT(pipe)));
824
825                 seq_printf(m, "Master IER:\t%08x\n",
826                            I915_READ(VLV_MASTER_IER));
827
828                 seq_printf(m, "Render IER:\t%08x\n",
829                            I915_READ(GTIER));
830                 seq_printf(m, "Render IIR:\t%08x\n",
831                            I915_READ(GTIIR));
832                 seq_printf(m, "Render IMR:\t%08x\n",
833                            I915_READ(GTIMR));
834
835                 seq_printf(m, "PM IER:\t\t%08x\n",
836                            I915_READ(GEN6_PMIER));
837                 seq_printf(m, "PM IIR:\t\t%08x\n",
838                            I915_READ(GEN6_PMIIR));
839                 seq_printf(m, "PM IMR:\t\t%08x\n",
840                            I915_READ(GEN6_PMIMR));
841
842                 seq_printf(m, "Port hotplug:\t%08x\n",
843                            I915_READ(PORT_HOTPLUG_EN));
844                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
845                            I915_READ(VLV_DPFLIPSTAT));
846                 seq_printf(m, "DPINVGTT:\t%08x\n",
847                            I915_READ(DPINVGTT));
848
849         } else if (!HAS_PCH_SPLIT(dev)) {
850                 seq_printf(m, "Interrupt enable:    %08x\n",
851                            I915_READ(IER));
852                 seq_printf(m, "Interrupt identity:  %08x\n",
853                            I915_READ(IIR));
854                 seq_printf(m, "Interrupt mask:      %08x\n",
855                            I915_READ(IMR));
856                 for_each_pipe(dev_priv, pipe)
857                         seq_printf(m, "Pipe %c stat:         %08x\n",
858                                    pipe_name(pipe),
859                                    I915_READ(PIPESTAT(pipe)));
860         } else {
861                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
862                            I915_READ(DEIER));
863                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
864                            I915_READ(DEIIR));
865                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
866                            I915_READ(DEIMR));
867                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
868                            I915_READ(SDEIER));
869                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
870                            I915_READ(SDEIIR));
871                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
872                            I915_READ(SDEIMR));
873                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
874                            I915_READ(GTIER));
875                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
876                            I915_READ(GTIIR));
877                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
878                            I915_READ(GTIMR));
879         }
880         for_each_ring(ring, dev_priv, i) {
881                 if (INTEL_INFO(dev)->gen >= 6) {
882                         seq_printf(m,
883                                    "Graphics Interrupt mask (%s):       %08x\n",
884                                    ring->name, I915_READ_IMR(ring));
885                 }
886                 i915_ring_seqno_info(m, ring);
887         }
888         intel_runtime_pm_put(dev_priv);
889         mutex_unlock(&dev->struct_mutex);
890
891         return 0;
892 }
893
894 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
895 {
896         struct drm_info_node *node = m->private;
897         struct drm_device *dev = node->minor->dev;
898         struct drm_i915_private *dev_priv = dev->dev_private;
899         int i, ret;
900
901         ret = mutex_lock_interruptible(&dev->struct_mutex);
902         if (ret)
903                 return ret;
904
905         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
906         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
907         for (i = 0; i < dev_priv->num_fence_regs; i++) {
908                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
909
910                 seq_printf(m, "Fence %d, pin count = %d, object = ",
911                            i, dev_priv->fence_regs[i].pin_count);
912                 if (obj == NULL)
913                         seq_puts(m, "unused");
914                 else
915                         describe_obj(m, obj);
916                 seq_putc(m, '\n');
917         }
918
919         mutex_unlock(&dev->struct_mutex);
920         return 0;
921 }
922
923 static int i915_hws_info(struct seq_file *m, void *data)
924 {
925         struct drm_info_node *node = m->private;
926         struct drm_device *dev = node->minor->dev;
927         struct drm_i915_private *dev_priv = dev->dev_private;
928         struct intel_engine_cs *ring;
929         const u32 *hws;
930         int i;
931
932         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
933         hws = ring->status_page.page_addr;
934         if (hws == NULL)
935                 return 0;
936
937         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
938                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
939                            i * 4,
940                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
941         }
942         return 0;
943 }
944
945 static ssize_t
946 i915_error_state_write(struct file *filp,
947                        const char __user *ubuf,
948                        size_t cnt,
949                        loff_t *ppos)
950 {
951         struct i915_error_state_file_priv *error_priv = filp->private_data;
952         struct drm_device *dev = error_priv->dev;
953         int ret;
954
955         DRM_DEBUG_DRIVER("Resetting error state\n");
956
957         ret = mutex_lock_interruptible(&dev->struct_mutex);
958         if (ret)
959                 return ret;
960
961         i915_destroy_error_state(dev);
962         mutex_unlock(&dev->struct_mutex);
963
964         return cnt;
965 }
966
967 static int i915_error_state_open(struct inode *inode, struct file *file)
968 {
969         struct drm_device *dev = inode->i_private;
970         struct i915_error_state_file_priv *error_priv;
971
972         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
973         if (!error_priv)
974                 return -ENOMEM;
975
976         error_priv->dev = dev;
977
978         i915_error_state_get(dev, error_priv);
979
980         file->private_data = error_priv;
981
982         return 0;
983 }
984
985 static int i915_error_state_release(struct inode *inode, struct file *file)
986 {
987         struct i915_error_state_file_priv *error_priv = file->private_data;
988
989         i915_error_state_put(error_priv);
990         kfree(error_priv);
991
992         return 0;
993 }
994
995 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
996                                      size_t count, loff_t *pos)
997 {
998         struct i915_error_state_file_priv *error_priv = file->private_data;
999         struct drm_i915_error_state_buf error_str;
1000         loff_t tmp_pos = 0;
1001         ssize_t ret_count = 0;
1002         int ret;
1003
1004         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1005         if (ret)
1006                 return ret;
1007
1008         ret = i915_error_state_to_str(&error_str, error_priv);
1009         if (ret)
1010                 goto out;
1011
1012         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1013                                             error_str.buf,
1014                                             error_str.bytes);
1015
1016         if (ret_count < 0)
1017                 ret = ret_count;
1018         else
1019                 *pos = error_str.start + ret_count;
1020 out:
1021         i915_error_state_buf_release(&error_str);
1022         return ret ?: ret_count;
1023 }
1024
1025 static const struct file_operations i915_error_state_fops = {
1026         .owner = THIS_MODULE,
1027         .open = i915_error_state_open,
1028         .read = i915_error_state_read,
1029         .write = i915_error_state_write,
1030         .llseek = default_llseek,
1031         .release = i915_error_state_release,
1032 };
1033
1034 static int
1035 i915_next_seqno_get(void *data, u64 *val)
1036 {
1037         struct drm_device *dev = data;
1038         struct drm_i915_private *dev_priv = dev->dev_private;
1039         int ret;
1040
1041         ret = mutex_lock_interruptible(&dev->struct_mutex);
1042         if (ret)
1043                 return ret;
1044
1045         *val = dev_priv->next_seqno;
1046         mutex_unlock(&dev->struct_mutex);
1047
1048         return 0;
1049 }
1050
1051 static int
1052 i915_next_seqno_set(void *data, u64 val)
1053 {
1054         struct drm_device *dev = data;
1055         int ret;
1056
1057         ret = mutex_lock_interruptible(&dev->struct_mutex);
1058         if (ret)
1059                 return ret;
1060
1061         ret = i915_gem_set_seqno(dev, val);
1062         mutex_unlock(&dev->struct_mutex);
1063
1064         return ret;
1065 }
1066
1067 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1068                         i915_next_seqno_get, i915_next_seqno_set,
1069                         "0x%llx\n");
1070
1071 static int i915_frequency_info(struct seq_file *m, void *unused)
1072 {
1073         struct drm_info_node *node = m->private;
1074         struct drm_device *dev = node->minor->dev;
1075         struct drm_i915_private *dev_priv = dev->dev_private;
1076         int ret = 0;
1077
1078         intel_runtime_pm_get(dev_priv);
1079
1080         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1081
1082         if (IS_GEN5(dev)) {
1083                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1084                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085
1086                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089                            MEMSTAT_VID_SHIFT);
1090                 seq_printf(m, "Current P-state: %d\n",
1091                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1093                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1094                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1095                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1096                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1097                 u32 rpmodectl, rpinclimit, rpdeclimit;
1098                 u32 rpstat, cagf, reqf;
1099                 u32 rpupei, rpcurup, rpprevup;
1100                 u32 rpdownei, rpcurdown, rpprevdown;
1101                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1102                 int max_freq;
1103
1104                 /* RPSTAT1 is in the GT power well */
1105                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1106                 if (ret)
1107                         goto out;
1108
1109                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1110
1111                 reqf = I915_READ(GEN6_RPNSWREQ);
1112                 if (IS_GEN9(dev))
1113                         reqf >>= 23;
1114                 else {
1115                         reqf &= ~GEN6_TURBO_DISABLE;
1116                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1117                                 reqf >>= 24;
1118                         else
1119                                 reqf >>= 25;
1120                 }
1121                 reqf = intel_gpu_freq(dev_priv, reqf);
1122
1123                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1124                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1125                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1126
1127                 rpstat = I915_READ(GEN6_RPSTAT1);
1128                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1129                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1130                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1131                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1132                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1133                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1134                 if (IS_GEN9(dev))
1135                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1136                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1137                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1138                 else
1139                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1140                 cagf = intel_gpu_freq(dev_priv, cagf);
1141
1142                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1143                 mutex_unlock(&dev->struct_mutex);
1144
1145                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1146                         pm_ier = I915_READ(GEN6_PMIER);
1147                         pm_imr = I915_READ(GEN6_PMIMR);
1148                         pm_isr = I915_READ(GEN6_PMISR);
1149                         pm_iir = I915_READ(GEN6_PMIIR);
1150                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1151                 } else {
1152                         pm_ier = I915_READ(GEN8_GT_IER(2));
1153                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1154                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1155                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1156                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1157                 }
1158                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1159                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1160                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1161                 seq_printf(m, "Render p-state ratio: %d\n",
1162                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1163                 seq_printf(m, "Render p-state VID: %d\n",
1164                            gt_perf_status & 0xff);
1165                 seq_printf(m, "Render p-state limit: %d\n",
1166                            rp_state_limits & 0xff);
1167                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1168                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1169                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1170                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1171                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1172                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1173                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1174                            GEN6_CURICONT_MASK);
1175                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1176                            GEN6_CURBSYTAVG_MASK);
1177                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1178                            GEN6_CURBSYTAVG_MASK);
1179                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1180                            GEN6_CURIAVG_MASK);
1181                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1182                            GEN6_CURBSYTAVG_MASK);
1183                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1184                            GEN6_CURBSYTAVG_MASK);
1185
1186                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1187                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1188                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1189                            intel_gpu_freq(dev_priv, max_freq));
1190
1191                 max_freq = (rp_state_cap & 0xff00) >> 8;
1192                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1193                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1194                            intel_gpu_freq(dev_priv, max_freq));
1195
1196                 max_freq = rp_state_cap & 0xff;
1197                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1198                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1199                            intel_gpu_freq(dev_priv, max_freq));
1200
1201                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1202                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1203
1204                 seq_printf(m, "Idle freq: %d MHz\n",
1205                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1206         } else if (IS_VALLEYVIEW(dev)) {
1207                 u32 freq_sts;
1208
1209                 mutex_lock(&dev_priv->rps.hw_lock);
1210                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1211                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1212                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1213
1214                 seq_printf(m, "max GPU freq: %d MHz\n",
1215                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1216
1217                 seq_printf(m, "min GPU freq: %d MHz\n",
1218                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1219
1220                 seq_printf(m, "idle GPU freq: %d MHz\n",
1221                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1222
1223                 seq_printf(m,
1224                            "efficient (RPe) frequency: %d MHz\n",
1225                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1226
1227                 seq_printf(m, "current GPU freq: %d MHz\n",
1228                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1229                 mutex_unlock(&dev_priv->rps.hw_lock);
1230         } else {
1231                 seq_puts(m, "no P-state info available\n");
1232         }
1233
1234 out:
1235         intel_runtime_pm_put(dev_priv);
1236         return ret;
1237 }
1238
1239 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1240 {
1241         struct drm_info_node *node = m->private;
1242         struct drm_device *dev = node->minor->dev;
1243         struct drm_i915_private *dev_priv = dev->dev_private;
1244         struct intel_engine_cs *ring;
1245         u64 acthd[I915_NUM_RINGS];
1246         u32 seqno[I915_NUM_RINGS];
1247         int i;
1248
1249         if (!i915.enable_hangcheck) {
1250                 seq_printf(m, "Hangcheck disabled\n");
1251                 return 0;
1252         }
1253
1254         intel_runtime_pm_get(dev_priv);
1255
1256         for_each_ring(ring, dev_priv, i) {
1257                 seqno[i] = ring->get_seqno(ring, false);
1258                 acthd[i] = intel_ring_get_active_head(ring);
1259         }
1260
1261         intel_runtime_pm_put(dev_priv);
1262
1263         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1264                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1265                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1266                                             jiffies));
1267         } else
1268                 seq_printf(m, "Hangcheck inactive\n");
1269
1270         for_each_ring(ring, dev_priv, i) {
1271                 seq_printf(m, "%s:\n", ring->name);
1272                 seq_printf(m, "\tseqno = %x [current %x]\n",
1273                            ring->hangcheck.seqno, seqno[i]);
1274                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1275                            (long long)ring->hangcheck.acthd,
1276                            (long long)acthd[i]);
1277                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1278                            (long long)ring->hangcheck.max_acthd);
1279                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1280                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1281         }
1282
1283         return 0;
1284 }
1285
1286 static int ironlake_drpc_info(struct seq_file *m)
1287 {
1288         struct drm_info_node *node = m->private;
1289         struct drm_device *dev = node->minor->dev;
1290         struct drm_i915_private *dev_priv = dev->dev_private;
1291         u32 rgvmodectl, rstdbyctl;
1292         u16 crstandvid;
1293         int ret;
1294
1295         ret = mutex_lock_interruptible(&dev->struct_mutex);
1296         if (ret)
1297                 return ret;
1298         intel_runtime_pm_get(dev_priv);
1299
1300         rgvmodectl = I915_READ(MEMMODECTL);
1301         rstdbyctl = I915_READ(RSTDBYCTL);
1302         crstandvid = I915_READ16(CRSTANDVID);
1303
1304         intel_runtime_pm_put(dev_priv);
1305         mutex_unlock(&dev->struct_mutex);
1306
1307         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1308                    "yes" : "no");
1309         seq_printf(m, "Boost freq: %d\n",
1310                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1311                    MEMMODE_BOOST_FREQ_SHIFT);
1312         seq_printf(m, "HW control enabled: %s\n",
1313                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1314         seq_printf(m, "SW control enabled: %s\n",
1315                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1316         seq_printf(m, "Gated voltage change: %s\n",
1317                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1318         seq_printf(m, "Starting frequency: P%d\n",
1319                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1320         seq_printf(m, "Max P-state: P%d\n",
1321                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1322         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1323         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1324         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1325         seq_printf(m, "Render standby enabled: %s\n",
1326                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1327         seq_puts(m, "Current RS state: ");
1328         switch (rstdbyctl & RSX_STATUS_MASK) {
1329         case RSX_STATUS_ON:
1330                 seq_puts(m, "on\n");
1331                 break;
1332         case RSX_STATUS_RC1:
1333                 seq_puts(m, "RC1\n");
1334                 break;
1335         case RSX_STATUS_RC1E:
1336                 seq_puts(m, "RC1E\n");
1337                 break;
1338         case RSX_STATUS_RS1:
1339                 seq_puts(m, "RS1\n");
1340                 break;
1341         case RSX_STATUS_RS2:
1342                 seq_puts(m, "RS2 (RC6)\n");
1343                 break;
1344         case RSX_STATUS_RS3:
1345                 seq_puts(m, "RC3 (RC6+)\n");
1346                 break;
1347         default:
1348                 seq_puts(m, "unknown\n");
1349                 break;
1350         }
1351
1352         return 0;
1353 }
1354
1355 static int i915_forcewake_domains(struct seq_file *m, void *data)
1356 {
1357         struct drm_info_node *node = m->private;
1358         struct drm_device *dev = node->minor->dev;
1359         struct drm_i915_private *dev_priv = dev->dev_private;
1360         struct intel_uncore_forcewake_domain *fw_domain;
1361         int i;
1362
1363         spin_lock_irq(&dev_priv->uncore.lock);
1364         for_each_fw_domain(fw_domain, dev_priv, i) {
1365                 seq_printf(m, "%s.wake_count = %u\n",
1366                            intel_uncore_forcewake_domain_to_str(i),
1367                            fw_domain->wake_count);
1368         }
1369         spin_unlock_irq(&dev_priv->uncore.lock);
1370
1371         return 0;
1372 }
1373
1374 static int vlv_drpc_info(struct seq_file *m)
1375 {
1376         struct drm_info_node *node = m->private;
1377         struct drm_device *dev = node->minor->dev;
1378         struct drm_i915_private *dev_priv = dev->dev_private;
1379         u32 rpmodectl1, rcctl1, pw_status;
1380
1381         intel_runtime_pm_get(dev_priv);
1382
1383         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1384         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1385         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1386
1387         intel_runtime_pm_put(dev_priv);
1388
1389         seq_printf(m, "Video Turbo Mode: %s\n",
1390                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1391         seq_printf(m, "Turbo enabled: %s\n",
1392                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1393         seq_printf(m, "HW control enabled: %s\n",
1394                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1395         seq_printf(m, "SW control enabled: %s\n",
1396                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1397                           GEN6_RP_MEDIA_SW_MODE));
1398         seq_printf(m, "RC6 Enabled: %s\n",
1399                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1400                                         GEN6_RC_CTL_EI_MODE(1))));
1401         seq_printf(m, "Render Power Well: %s\n",
1402                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1403         seq_printf(m, "Media Power Well: %s\n",
1404                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1405
1406         seq_printf(m, "Render RC6 residency since boot: %u\n",
1407                    I915_READ(VLV_GT_RENDER_RC6));
1408         seq_printf(m, "Media RC6 residency since boot: %u\n",
1409                    I915_READ(VLV_GT_MEDIA_RC6));
1410
1411         return i915_forcewake_domains(m, NULL);
1412 }
1413
1414 static int gen6_drpc_info(struct seq_file *m)
1415 {
1416         struct drm_info_node *node = m->private;
1417         struct drm_device *dev = node->minor->dev;
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1420         unsigned forcewake_count;
1421         int count = 0, ret;
1422
1423         ret = mutex_lock_interruptible(&dev->struct_mutex);
1424         if (ret)
1425                 return ret;
1426         intel_runtime_pm_get(dev_priv);
1427
1428         spin_lock_irq(&dev_priv->uncore.lock);
1429         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1430         spin_unlock_irq(&dev_priv->uncore.lock);
1431
1432         if (forcewake_count) {
1433                 seq_puts(m, "RC information inaccurate because somebody "
1434                             "holds a forcewake reference \n");
1435         } else {
1436                 /* NB: we cannot use forcewake, else we read the wrong values */
1437                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1438                         udelay(10);
1439                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1440         }
1441
1442         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1443         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1444
1445         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1446         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1447         mutex_unlock(&dev->struct_mutex);
1448         mutex_lock(&dev_priv->rps.hw_lock);
1449         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1450         mutex_unlock(&dev_priv->rps.hw_lock);
1451
1452         intel_runtime_pm_put(dev_priv);
1453
1454         seq_printf(m, "Video Turbo Mode: %s\n",
1455                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1456         seq_printf(m, "HW control enabled: %s\n",
1457                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1458         seq_printf(m, "SW control enabled: %s\n",
1459                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1460                           GEN6_RP_MEDIA_SW_MODE));
1461         seq_printf(m, "RC1e Enabled: %s\n",
1462                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1463         seq_printf(m, "RC6 Enabled: %s\n",
1464                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1465         seq_printf(m, "Deep RC6 Enabled: %s\n",
1466                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1467         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1468                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1469         seq_puts(m, "Current RC state: ");
1470         switch (gt_core_status & GEN6_RCn_MASK) {
1471         case GEN6_RC0:
1472                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1473                         seq_puts(m, "Core Power Down\n");
1474                 else
1475                         seq_puts(m, "on\n");
1476                 break;
1477         case GEN6_RC3:
1478                 seq_puts(m, "RC3\n");
1479                 break;
1480         case GEN6_RC6:
1481                 seq_puts(m, "RC6\n");
1482                 break;
1483         case GEN6_RC7:
1484                 seq_puts(m, "RC7\n");
1485                 break;
1486         default:
1487                 seq_puts(m, "Unknown\n");
1488                 break;
1489         }
1490
1491         seq_printf(m, "Core Power Down: %s\n",
1492                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1493
1494         /* Not exactly sure what this is */
1495         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1496                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1497         seq_printf(m, "RC6 residency since boot: %u\n",
1498                    I915_READ(GEN6_GT_GFX_RC6));
1499         seq_printf(m, "RC6+ residency since boot: %u\n",
1500                    I915_READ(GEN6_GT_GFX_RC6p));
1501         seq_printf(m, "RC6++ residency since boot: %u\n",
1502                    I915_READ(GEN6_GT_GFX_RC6pp));
1503
1504         seq_printf(m, "RC6   voltage: %dmV\n",
1505                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1506         seq_printf(m, "RC6+  voltage: %dmV\n",
1507                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1508         seq_printf(m, "RC6++ voltage: %dmV\n",
1509                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1510         return 0;
1511 }
1512
1513 static int i915_drpc_info(struct seq_file *m, void *unused)
1514 {
1515         struct drm_info_node *node = m->private;
1516         struct drm_device *dev = node->minor->dev;
1517
1518         if (IS_VALLEYVIEW(dev))
1519                 return vlv_drpc_info(m);
1520         else if (INTEL_INFO(dev)->gen >= 6)
1521                 return gen6_drpc_info(m);
1522         else
1523                 return ironlake_drpc_info(m);
1524 }
1525
1526 static int i915_fbc_status(struct seq_file *m, void *unused)
1527 {
1528         struct drm_info_node *node = m->private;
1529         struct drm_device *dev = node->minor->dev;
1530         struct drm_i915_private *dev_priv = dev->dev_private;
1531
1532         if (!HAS_FBC(dev)) {
1533                 seq_puts(m, "FBC unsupported on this chipset\n");
1534                 return 0;
1535         }
1536
1537         intel_runtime_pm_get(dev_priv);
1538
1539         if (intel_fbc_enabled(dev)) {
1540                 seq_puts(m, "FBC enabled\n");
1541         } else {
1542                 seq_puts(m, "FBC disabled: ");
1543                 switch (dev_priv->fbc.no_fbc_reason) {
1544                 case FBC_OK:
1545                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1546                         break;
1547                 case FBC_UNSUPPORTED:
1548                         seq_puts(m, "unsupported by this chipset");
1549                         break;
1550                 case FBC_NO_OUTPUT:
1551                         seq_puts(m, "no outputs");
1552                         break;
1553                 case FBC_STOLEN_TOO_SMALL:
1554                         seq_puts(m, "not enough stolen memory");
1555                         break;
1556                 case FBC_UNSUPPORTED_MODE:
1557                         seq_puts(m, "mode not supported");
1558                         break;
1559                 case FBC_MODE_TOO_LARGE:
1560                         seq_puts(m, "mode too large");
1561                         break;
1562                 case FBC_BAD_PLANE:
1563                         seq_puts(m, "FBC unsupported on plane");
1564                         break;
1565                 case FBC_NOT_TILED:
1566                         seq_puts(m, "scanout buffer not tiled");
1567                         break;
1568                 case FBC_MULTIPLE_PIPES:
1569                         seq_puts(m, "multiple pipes are enabled");
1570                         break;
1571                 case FBC_MODULE_PARAM:
1572                         seq_puts(m, "disabled per module param (default off)");
1573                         break;
1574                 case FBC_CHIP_DEFAULT:
1575                         seq_puts(m, "disabled per chip default");
1576                         break;
1577                 default:
1578                         seq_puts(m, "unknown reason");
1579                 }
1580                 seq_putc(m, '\n');
1581         }
1582
1583         intel_runtime_pm_put(dev_priv);
1584
1585         return 0;
1586 }
1587
1588 static int i915_fbc_fc_get(void *data, u64 *val)
1589 {
1590         struct drm_device *dev = data;
1591         struct drm_i915_private *dev_priv = dev->dev_private;
1592
1593         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1594                 return -ENODEV;
1595
1596         drm_modeset_lock_all(dev);
1597         *val = dev_priv->fbc.false_color;
1598         drm_modeset_unlock_all(dev);
1599
1600         return 0;
1601 }
1602
1603 static int i915_fbc_fc_set(void *data, u64 val)
1604 {
1605         struct drm_device *dev = data;
1606         struct drm_i915_private *dev_priv = dev->dev_private;
1607         u32 reg;
1608
1609         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1610                 return -ENODEV;
1611
1612         drm_modeset_lock_all(dev);
1613
1614         reg = I915_READ(ILK_DPFC_CONTROL);
1615         dev_priv->fbc.false_color = val;
1616
1617         I915_WRITE(ILK_DPFC_CONTROL, val ?
1618                    (reg | FBC_CTL_FALSE_COLOR) :
1619                    (reg & ~FBC_CTL_FALSE_COLOR));
1620
1621         drm_modeset_unlock_all(dev);
1622         return 0;
1623 }
1624
1625 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1626                         i915_fbc_fc_get, i915_fbc_fc_set,
1627                         "%llu\n");
1628
1629 static int i915_ips_status(struct seq_file *m, void *unused)
1630 {
1631         struct drm_info_node *node = m->private;
1632         struct drm_device *dev = node->minor->dev;
1633         struct drm_i915_private *dev_priv = dev->dev_private;
1634
1635         if (!HAS_IPS(dev)) {
1636                 seq_puts(m, "not supported\n");
1637                 return 0;
1638         }
1639
1640         intel_runtime_pm_get(dev_priv);
1641
1642         seq_printf(m, "Enabled by kernel parameter: %s\n",
1643                    yesno(i915.enable_ips));
1644
1645         if (INTEL_INFO(dev)->gen >= 8) {
1646                 seq_puts(m, "Currently: unknown\n");
1647         } else {
1648                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1649                         seq_puts(m, "Currently: enabled\n");
1650                 else
1651                         seq_puts(m, "Currently: disabled\n");
1652         }
1653
1654         intel_runtime_pm_put(dev_priv);
1655
1656         return 0;
1657 }
1658
1659 static int i915_sr_status(struct seq_file *m, void *unused)
1660 {
1661         struct drm_info_node *node = m->private;
1662         struct drm_device *dev = node->minor->dev;
1663         struct drm_i915_private *dev_priv = dev->dev_private;
1664         bool sr_enabled = false;
1665
1666         intel_runtime_pm_get(dev_priv);
1667
1668         if (HAS_PCH_SPLIT(dev))
1669                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1670         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1671                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1672         else if (IS_I915GM(dev))
1673                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1674         else if (IS_PINEVIEW(dev))
1675                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1676
1677         intel_runtime_pm_put(dev_priv);
1678
1679         seq_printf(m, "self-refresh: %s\n",
1680                    sr_enabled ? "enabled" : "disabled");
1681
1682         return 0;
1683 }
1684
1685 static int i915_emon_status(struct seq_file *m, void *unused)
1686 {
1687         struct drm_info_node *node = m->private;
1688         struct drm_device *dev = node->minor->dev;
1689         struct drm_i915_private *dev_priv = dev->dev_private;
1690         unsigned long temp, chipset, gfx;
1691         int ret;
1692
1693         if (!IS_GEN5(dev))
1694                 return -ENODEV;
1695
1696         ret = mutex_lock_interruptible(&dev->struct_mutex);
1697         if (ret)
1698                 return ret;
1699
1700         temp = i915_mch_val(dev_priv);
1701         chipset = i915_chipset_val(dev_priv);
1702         gfx = i915_gfx_val(dev_priv);
1703         mutex_unlock(&dev->struct_mutex);
1704
1705         seq_printf(m, "GMCH temp: %ld\n", temp);
1706         seq_printf(m, "Chipset power: %ld\n", chipset);
1707         seq_printf(m, "GFX power: %ld\n", gfx);
1708         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1709
1710         return 0;
1711 }
1712
1713 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1714 {
1715         struct drm_info_node *node = m->private;
1716         struct drm_device *dev = node->minor->dev;
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         int ret = 0;
1719         int gpu_freq, ia_freq;
1720
1721         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1722                 seq_puts(m, "unsupported on this chipset\n");
1723                 return 0;
1724         }
1725
1726         intel_runtime_pm_get(dev_priv);
1727
1728         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1729
1730         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1731         if (ret)
1732                 goto out;
1733
1734         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1735
1736         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1737              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1738              gpu_freq++) {
1739                 ia_freq = gpu_freq;
1740                 sandybridge_pcode_read(dev_priv,
1741                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1742                                        &ia_freq);
1743                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1744                            intel_gpu_freq(dev_priv, gpu_freq),
1745                            ((ia_freq >> 0) & 0xff) * 100,
1746                            ((ia_freq >> 8) & 0xff) * 100);
1747         }
1748
1749         mutex_unlock(&dev_priv->rps.hw_lock);
1750
1751 out:
1752         intel_runtime_pm_put(dev_priv);
1753         return ret;
1754 }
1755
1756 static int i915_opregion(struct seq_file *m, void *unused)
1757 {
1758         struct drm_info_node *node = m->private;
1759         struct drm_device *dev = node->minor->dev;
1760         struct drm_i915_private *dev_priv = dev->dev_private;
1761         struct intel_opregion *opregion = &dev_priv->opregion;
1762         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1763         int ret;
1764
1765         if (data == NULL)
1766                 return -ENOMEM;
1767
1768         ret = mutex_lock_interruptible(&dev->struct_mutex);
1769         if (ret)
1770                 goto out;
1771
1772         if (opregion->header) {
1773                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1774                 seq_write(m, data, OPREGION_SIZE);
1775         }
1776
1777         mutex_unlock(&dev->struct_mutex);
1778
1779 out:
1780         kfree(data);
1781         return 0;
1782 }
1783
1784 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1785 {
1786         struct drm_info_node *node = m->private;
1787         struct drm_device *dev = node->minor->dev;
1788         struct intel_fbdev *ifbdev = NULL;
1789         struct intel_framebuffer *fb;
1790
1791 #ifdef CONFIG_DRM_I915_FBDEV
1792         struct drm_i915_private *dev_priv = dev->dev_private;
1793
1794         ifbdev = dev_priv->fbdev;
1795         fb = to_intel_framebuffer(ifbdev->helper.fb);
1796
1797         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1798                    fb->base.width,
1799                    fb->base.height,
1800                    fb->base.depth,
1801                    fb->base.bits_per_pixel,
1802                    fb->base.modifier[0],
1803                    atomic_read(&fb->base.refcount.refcount));
1804         describe_obj(m, fb->obj);
1805         seq_putc(m, '\n');
1806 #endif
1807
1808         mutex_lock(&dev->mode_config.fb_lock);
1809         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1810                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1811                         continue;
1812
1813                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1814                            fb->base.width,
1815                            fb->base.height,
1816                            fb->base.depth,
1817                            fb->base.bits_per_pixel,
1818                            fb->base.modifier[0],
1819                            atomic_read(&fb->base.refcount.refcount));
1820                 describe_obj(m, fb->obj);
1821                 seq_putc(m, '\n');
1822         }
1823         mutex_unlock(&dev->mode_config.fb_lock);
1824
1825         return 0;
1826 }
1827
1828 static void describe_ctx_ringbuf(struct seq_file *m,
1829                                  struct intel_ringbuffer *ringbuf)
1830 {
1831         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1832                    ringbuf->space, ringbuf->head, ringbuf->tail,
1833                    ringbuf->last_retired_head);
1834 }
1835
1836 static int i915_context_status(struct seq_file *m, void *unused)
1837 {
1838         struct drm_info_node *node = m->private;
1839         struct drm_device *dev = node->minor->dev;
1840         struct drm_i915_private *dev_priv = dev->dev_private;
1841         struct intel_engine_cs *ring;
1842         struct intel_context *ctx;
1843         int ret, i;
1844
1845         ret = mutex_lock_interruptible(&dev->struct_mutex);
1846         if (ret)
1847                 return ret;
1848
1849         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1850                 if (!i915.enable_execlists &&
1851                     ctx->legacy_hw_ctx.rcs_state == NULL)
1852                         continue;
1853
1854                 seq_puts(m, "HW context ");
1855                 describe_ctx(m, ctx);
1856                 for_each_ring(ring, dev_priv, i) {
1857                         if (ring->default_context == ctx)
1858                                 seq_printf(m, "(default context %s) ",
1859                                            ring->name);
1860                 }
1861
1862                 if (i915.enable_execlists) {
1863                         seq_putc(m, '\n');
1864                         for_each_ring(ring, dev_priv, i) {
1865                                 struct drm_i915_gem_object *ctx_obj =
1866                                         ctx->engine[i].state;
1867                                 struct intel_ringbuffer *ringbuf =
1868                                         ctx->engine[i].ringbuf;
1869
1870                                 seq_printf(m, "%s: ", ring->name);
1871                                 if (ctx_obj)
1872                                         describe_obj(m, ctx_obj);
1873                                 if (ringbuf)
1874                                         describe_ctx_ringbuf(m, ringbuf);
1875                                 seq_putc(m, '\n');
1876                         }
1877                 } else {
1878                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1879                 }
1880
1881                 seq_putc(m, '\n');
1882         }
1883
1884         mutex_unlock(&dev->struct_mutex);
1885
1886         return 0;
1887 }
1888
1889 static void i915_dump_lrc_obj(struct seq_file *m,
1890                               struct intel_engine_cs *ring,
1891                               struct drm_i915_gem_object *ctx_obj)
1892 {
1893         struct page *page;
1894         uint32_t *reg_state;
1895         int j;
1896         unsigned long ggtt_offset = 0;
1897
1898         if (ctx_obj == NULL) {
1899                 seq_printf(m, "Context on %s with no gem object\n",
1900                            ring->name);
1901                 return;
1902         }
1903
1904         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1905                    intel_execlists_ctx_id(ctx_obj));
1906
1907         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1908                 seq_puts(m, "\tNot bound in GGTT\n");
1909         else
1910                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1911
1912         if (i915_gem_object_get_pages(ctx_obj)) {
1913                 seq_puts(m, "\tFailed to get pages for context object\n");
1914                 return;
1915         }
1916
1917         page = i915_gem_object_get_page(ctx_obj, 1);
1918         if (!WARN_ON(page == NULL)) {
1919                 reg_state = kmap_atomic(page);
1920
1921                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1922                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1923                                    ggtt_offset + 4096 + (j * 4),
1924                                    reg_state[j], reg_state[j + 1],
1925                                    reg_state[j + 2], reg_state[j + 3]);
1926                 }
1927                 kunmap_atomic(reg_state);
1928         }
1929
1930         seq_putc(m, '\n');
1931 }
1932
1933 static int i915_dump_lrc(struct seq_file *m, void *unused)
1934 {
1935         struct drm_info_node *node = (struct drm_info_node *) m->private;
1936         struct drm_device *dev = node->minor->dev;
1937         struct drm_i915_private *dev_priv = dev->dev_private;
1938         struct intel_engine_cs *ring;
1939         struct intel_context *ctx;
1940         int ret, i;
1941
1942         if (!i915.enable_execlists) {
1943                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1944                 return 0;
1945         }
1946
1947         ret = mutex_lock_interruptible(&dev->struct_mutex);
1948         if (ret)
1949                 return ret;
1950
1951         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1952                 for_each_ring(ring, dev_priv, i) {
1953                         if (ring->default_context != ctx)
1954                                 i915_dump_lrc_obj(m, ring,
1955                                                   ctx->engine[i].state);
1956                 }
1957         }
1958
1959         mutex_unlock(&dev->struct_mutex);
1960
1961         return 0;
1962 }
1963
1964 static int i915_execlists(struct seq_file *m, void *data)
1965 {
1966         struct drm_info_node *node = (struct drm_info_node *)m->private;
1967         struct drm_device *dev = node->minor->dev;
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         struct intel_engine_cs *ring;
1970         u32 status_pointer;
1971         u8 read_pointer;
1972         u8 write_pointer;
1973         u32 status;
1974         u32 ctx_id;
1975         struct list_head *cursor;
1976         int ring_id, i;
1977         int ret;
1978
1979         if (!i915.enable_execlists) {
1980                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1981                 return 0;
1982         }
1983
1984         ret = mutex_lock_interruptible(&dev->struct_mutex);
1985         if (ret)
1986                 return ret;
1987
1988         intel_runtime_pm_get(dev_priv);
1989
1990         for_each_ring(ring, dev_priv, ring_id) {
1991                 struct drm_i915_gem_request *head_req = NULL;
1992                 int count = 0;
1993                 unsigned long flags;
1994
1995                 seq_printf(m, "%s\n", ring->name);
1996
1997                 status = I915_READ(RING_EXECLIST_STATUS(ring));
1998                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1999                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2000                            status, ctx_id);
2001
2002                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2003                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2004
2005                 read_pointer = ring->next_context_status_buffer;
2006                 write_pointer = status_pointer & 0x07;
2007                 if (read_pointer > write_pointer)
2008                         write_pointer += 6;
2009                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2010                            read_pointer, write_pointer);
2011
2012                 for (i = 0; i < 6; i++) {
2013                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2014                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2015
2016                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2017                                    i, status, ctx_id);
2018                 }
2019
2020                 spin_lock_irqsave(&ring->execlist_lock, flags);
2021                 list_for_each(cursor, &ring->execlist_queue)
2022                         count++;
2023                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2024                                 struct drm_i915_gem_request, execlist_link);
2025                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2026
2027                 seq_printf(m, "\t%d requests in queue\n", count);
2028                 if (head_req) {
2029                         struct drm_i915_gem_object *ctx_obj;
2030
2031                         ctx_obj = head_req->ctx->engine[ring_id].state;
2032                         seq_printf(m, "\tHead request id: %u\n",
2033                                    intel_execlists_ctx_id(ctx_obj));
2034                         seq_printf(m, "\tHead request tail: %u\n",
2035                                    head_req->tail);
2036                 }
2037
2038                 seq_putc(m, '\n');
2039         }
2040
2041         intel_runtime_pm_put(dev_priv);
2042         mutex_unlock(&dev->struct_mutex);
2043
2044         return 0;
2045 }
2046
2047 static const char *swizzle_string(unsigned swizzle)
2048 {
2049         switch (swizzle) {
2050         case I915_BIT_6_SWIZZLE_NONE:
2051                 return "none";
2052         case I915_BIT_6_SWIZZLE_9:
2053                 return "bit9";
2054         case I915_BIT_6_SWIZZLE_9_10:
2055                 return "bit9/bit10";
2056         case I915_BIT_6_SWIZZLE_9_11:
2057                 return "bit9/bit11";
2058         case I915_BIT_6_SWIZZLE_9_10_11:
2059                 return "bit9/bit10/bit11";
2060         case I915_BIT_6_SWIZZLE_9_17:
2061                 return "bit9/bit17";
2062         case I915_BIT_6_SWIZZLE_9_10_17:
2063                 return "bit9/bit10/bit17";
2064         case I915_BIT_6_SWIZZLE_UNKNOWN:
2065                 return "unknown";
2066         }
2067
2068         return "bug";
2069 }
2070
2071 static int i915_swizzle_info(struct seq_file *m, void *data)
2072 {
2073         struct drm_info_node *node = m->private;
2074         struct drm_device *dev = node->minor->dev;
2075         struct drm_i915_private *dev_priv = dev->dev_private;
2076         int ret;
2077
2078         ret = mutex_lock_interruptible(&dev->struct_mutex);
2079         if (ret)
2080                 return ret;
2081         intel_runtime_pm_get(dev_priv);
2082
2083         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2084                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2085         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2086                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2087
2088         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2089                 seq_printf(m, "DDC = 0x%08x\n",
2090                            I915_READ(DCC));
2091                 seq_printf(m, "DDC2 = 0x%08x\n",
2092                            I915_READ(DCC2));
2093                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2094                            I915_READ16(C0DRB3));
2095                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2096                            I915_READ16(C1DRB3));
2097         } else if (INTEL_INFO(dev)->gen >= 6) {
2098                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2099                            I915_READ(MAD_DIMM_C0));
2100                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2101                            I915_READ(MAD_DIMM_C1));
2102                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2103                            I915_READ(MAD_DIMM_C2));
2104                 seq_printf(m, "TILECTL = 0x%08x\n",
2105                            I915_READ(TILECTL));
2106                 if (INTEL_INFO(dev)->gen >= 8)
2107                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2108                                    I915_READ(GAMTARBMODE));
2109                 else
2110                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2111                                    I915_READ(ARB_MODE));
2112                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2113                            I915_READ(DISP_ARB_CTL));
2114         }
2115
2116         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2117                 seq_puts(m, "L-shaped memory detected\n");
2118
2119         intel_runtime_pm_put(dev_priv);
2120         mutex_unlock(&dev->struct_mutex);
2121
2122         return 0;
2123 }
2124
2125 static int per_file_ctx(int id, void *ptr, void *data)
2126 {
2127         struct intel_context *ctx = ptr;
2128         struct seq_file *m = data;
2129         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2130
2131         if (!ppgtt) {
2132                 seq_printf(m, "  no ppgtt for context %d\n",
2133                            ctx->user_handle);
2134                 return 0;
2135         }
2136
2137         if (i915_gem_context_is_default(ctx))
2138                 seq_puts(m, "  default context:\n");
2139         else
2140                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2141         ppgtt->debug_dump(ppgtt, m);
2142
2143         return 0;
2144 }
2145
2146 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2147 {
2148         struct drm_i915_private *dev_priv = dev->dev_private;
2149         struct intel_engine_cs *ring;
2150         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2151         int unused, i;
2152
2153         if (!ppgtt)
2154                 return;
2155
2156         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2157         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2158         for_each_ring(ring, dev_priv, unused) {
2159                 seq_printf(m, "%s\n", ring->name);
2160                 for (i = 0; i < 4; i++) {
2161                         u32 offset = 0x270 + i * 8;
2162                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2163                         pdp <<= 32;
2164                         pdp |= I915_READ(ring->mmio_base + offset);
2165                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2166                 }
2167         }
2168 }
2169
2170 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2171 {
2172         struct drm_i915_private *dev_priv = dev->dev_private;
2173         struct intel_engine_cs *ring;
2174         struct drm_file *file;
2175         int i;
2176
2177         if (INTEL_INFO(dev)->gen == 6)
2178                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2179
2180         for_each_ring(ring, dev_priv, i) {
2181                 seq_printf(m, "%s\n", ring->name);
2182                 if (INTEL_INFO(dev)->gen == 7)
2183                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2184                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2185                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2186                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2187         }
2188         if (dev_priv->mm.aliasing_ppgtt) {
2189                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2190
2191                 seq_puts(m, "aliasing PPGTT:\n");
2192                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
2193
2194                 ppgtt->debug_dump(ppgtt, m);
2195         }
2196
2197         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2198                 struct drm_i915_file_private *file_priv = file->driver_priv;
2199
2200                 seq_printf(m, "proc: %s\n",
2201                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2202                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2203         }
2204         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2205 }
2206
2207 static int i915_ppgtt_info(struct seq_file *m, void *data)
2208 {
2209         struct drm_info_node *node = m->private;
2210         struct drm_device *dev = node->minor->dev;
2211         struct drm_i915_private *dev_priv = dev->dev_private;
2212
2213         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2214         if (ret)
2215                 return ret;
2216         intel_runtime_pm_get(dev_priv);
2217
2218         if (INTEL_INFO(dev)->gen >= 8)
2219                 gen8_ppgtt_info(m, dev);
2220         else if (INTEL_INFO(dev)->gen >= 6)
2221                 gen6_ppgtt_info(m, dev);
2222
2223         intel_runtime_pm_put(dev_priv);
2224         mutex_unlock(&dev->struct_mutex);
2225
2226         return 0;
2227 }
2228
2229 static int i915_llc(struct seq_file *m, void *data)
2230 {
2231         struct drm_info_node *node = m->private;
2232         struct drm_device *dev = node->minor->dev;
2233         struct drm_i915_private *dev_priv = dev->dev_private;
2234
2235         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2236         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2237         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2238
2239         return 0;
2240 }
2241
2242 static int i915_edp_psr_status(struct seq_file *m, void *data)
2243 {
2244         struct drm_info_node *node = m->private;
2245         struct drm_device *dev = node->minor->dev;
2246         struct drm_i915_private *dev_priv = dev->dev_private;
2247         u32 psrperf = 0;
2248         u32 stat[3];
2249         enum pipe pipe;
2250         bool enabled = false;
2251
2252         if (!HAS_PSR(dev)) {
2253                 seq_puts(m, "PSR not supported\n");
2254                 return 0;
2255         }
2256
2257         intel_runtime_pm_get(dev_priv);
2258
2259         mutex_lock(&dev_priv->psr.lock);
2260         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2261         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2262         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2263         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2264         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2265                    dev_priv->psr.busy_frontbuffer_bits);
2266         seq_printf(m, "Re-enable work scheduled: %s\n",
2267                    yesno(work_busy(&dev_priv->psr.work.work)));
2268
2269         if (HAS_DDI(dev))
2270                 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2271         else {
2272                 for_each_pipe(dev_priv, pipe) {
2273                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2274                                 VLV_EDP_PSR_CURR_STATE_MASK;
2275                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2276                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2277                                 enabled = true;
2278                 }
2279         }
2280         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2281
2282         if (!HAS_DDI(dev))
2283                 for_each_pipe(dev_priv, pipe) {
2284                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2285                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2286                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2287                 }
2288         seq_puts(m, "\n");
2289
2290         seq_printf(m, "Link standby: %s\n",
2291                    yesno((bool)dev_priv->psr.link_standby));
2292
2293         /* CHV PSR has no kind of performance counter */
2294         if (HAS_DDI(dev)) {
2295                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2296                         EDP_PSR_PERF_CNT_MASK;
2297
2298                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2299         }
2300         mutex_unlock(&dev_priv->psr.lock);
2301
2302         intel_runtime_pm_put(dev_priv);
2303         return 0;
2304 }
2305
2306 static int i915_sink_crc(struct seq_file *m, void *data)
2307 {
2308         struct drm_info_node *node = m->private;
2309         struct drm_device *dev = node->minor->dev;
2310         struct intel_encoder *encoder;
2311         struct intel_connector *connector;
2312         struct intel_dp *intel_dp = NULL;
2313         int ret;
2314         u8 crc[6];
2315
2316         drm_modeset_lock_all(dev);
2317         for_each_intel_connector(dev, connector) {
2318
2319                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2320                         continue;
2321
2322                 if (!connector->base.encoder)
2323                         continue;
2324
2325                 encoder = to_intel_encoder(connector->base.encoder);
2326                 if (encoder->type != INTEL_OUTPUT_EDP)
2327                         continue;
2328
2329                 intel_dp = enc_to_intel_dp(&encoder->base);
2330
2331                 ret = intel_dp_sink_crc(intel_dp, crc);
2332                 if (ret)
2333                         goto out;
2334
2335                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2336                            crc[0], crc[1], crc[2],
2337                            crc[3], crc[4], crc[5]);
2338                 goto out;
2339         }
2340         ret = -ENODEV;
2341 out:
2342         drm_modeset_unlock_all(dev);
2343         return ret;
2344 }
2345
2346 static int i915_energy_uJ(struct seq_file *m, void *data)
2347 {
2348         struct drm_info_node *node = m->private;
2349         struct drm_device *dev = node->minor->dev;
2350         struct drm_i915_private *dev_priv = dev->dev_private;
2351         u64 power;
2352         u32 units;
2353
2354         if (INTEL_INFO(dev)->gen < 6)
2355                 return -ENODEV;
2356
2357         intel_runtime_pm_get(dev_priv);
2358
2359         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2360         power = (power & 0x1f00) >> 8;
2361         units = 1000000 / (1 << power); /* convert to uJ */
2362         power = I915_READ(MCH_SECP_NRG_STTS);
2363         power *= units;
2364
2365         intel_runtime_pm_put(dev_priv);
2366
2367         seq_printf(m, "%llu", (long long unsigned)power);
2368
2369         return 0;
2370 }
2371
2372 static int i915_pc8_status(struct seq_file *m, void *unused)
2373 {
2374         struct drm_info_node *node = m->private;
2375         struct drm_device *dev = node->minor->dev;
2376         struct drm_i915_private *dev_priv = dev->dev_private;
2377
2378         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2379                 seq_puts(m, "not supported\n");
2380                 return 0;
2381         }
2382
2383         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2384         seq_printf(m, "IRQs disabled: %s\n",
2385                    yesno(!intel_irqs_enabled(dev_priv)));
2386
2387         return 0;
2388 }
2389
2390 static const char *power_domain_str(enum intel_display_power_domain domain)
2391 {
2392         switch (domain) {
2393         case POWER_DOMAIN_PIPE_A:
2394                 return "PIPE_A";
2395         case POWER_DOMAIN_PIPE_B:
2396                 return "PIPE_B";
2397         case POWER_DOMAIN_PIPE_C:
2398                 return "PIPE_C";
2399         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2400                 return "PIPE_A_PANEL_FITTER";
2401         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2402                 return "PIPE_B_PANEL_FITTER";
2403         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2404                 return "PIPE_C_PANEL_FITTER";
2405         case POWER_DOMAIN_TRANSCODER_A:
2406                 return "TRANSCODER_A";
2407         case POWER_DOMAIN_TRANSCODER_B:
2408                 return "TRANSCODER_B";
2409         case POWER_DOMAIN_TRANSCODER_C:
2410                 return "TRANSCODER_C";
2411         case POWER_DOMAIN_TRANSCODER_EDP:
2412                 return "TRANSCODER_EDP";
2413         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2414                 return "PORT_DDI_A_2_LANES";
2415         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2416                 return "PORT_DDI_A_4_LANES";
2417         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2418                 return "PORT_DDI_B_2_LANES";
2419         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2420                 return "PORT_DDI_B_4_LANES";
2421         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2422                 return "PORT_DDI_C_2_LANES";
2423         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2424                 return "PORT_DDI_C_4_LANES";
2425         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2426                 return "PORT_DDI_D_2_LANES";
2427         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2428                 return "PORT_DDI_D_4_LANES";
2429         case POWER_DOMAIN_PORT_DSI:
2430                 return "PORT_DSI";
2431         case POWER_DOMAIN_PORT_CRT:
2432                 return "PORT_CRT";
2433         case POWER_DOMAIN_PORT_OTHER:
2434                 return "PORT_OTHER";
2435         case POWER_DOMAIN_VGA:
2436                 return "VGA";
2437         case POWER_DOMAIN_AUDIO:
2438                 return "AUDIO";
2439         case POWER_DOMAIN_PLLS:
2440                 return "PLLS";
2441         case POWER_DOMAIN_AUX_A:
2442                 return "AUX_A";
2443         case POWER_DOMAIN_AUX_B:
2444                 return "AUX_B";
2445         case POWER_DOMAIN_AUX_C:
2446                 return "AUX_C";
2447         case POWER_DOMAIN_AUX_D:
2448                 return "AUX_D";
2449         case POWER_DOMAIN_INIT:
2450                 return "INIT";
2451         default:
2452                 MISSING_CASE(domain);
2453                 return "?";
2454         }
2455 }
2456
2457 static int i915_power_domain_info(struct seq_file *m, void *unused)
2458 {
2459         struct drm_info_node *node = m->private;
2460         struct drm_device *dev = node->minor->dev;
2461         struct drm_i915_private *dev_priv = dev->dev_private;
2462         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2463         int i;
2464
2465         mutex_lock(&power_domains->lock);
2466
2467         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2468         for (i = 0; i < power_domains->power_well_count; i++) {
2469                 struct i915_power_well *power_well;
2470                 enum intel_display_power_domain power_domain;
2471
2472                 power_well = &power_domains->power_wells[i];
2473                 seq_printf(m, "%-25s %d\n", power_well->name,
2474                            power_well->count);
2475
2476                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2477                      power_domain++) {
2478                         if (!(BIT(power_domain) & power_well->domains))
2479                                 continue;
2480
2481                         seq_printf(m, "  %-23s %d\n",
2482                                  power_domain_str(power_domain),
2483                                  power_domains->domain_use_count[power_domain]);
2484                 }
2485         }
2486
2487         mutex_unlock(&power_domains->lock);
2488
2489         return 0;
2490 }
2491
2492 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2493                                  struct drm_display_mode *mode)
2494 {
2495         int i;
2496
2497         for (i = 0; i < tabs; i++)
2498                 seq_putc(m, '\t');
2499
2500         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2501                    mode->base.id, mode->name,
2502                    mode->vrefresh, mode->clock,
2503                    mode->hdisplay, mode->hsync_start,
2504                    mode->hsync_end, mode->htotal,
2505                    mode->vdisplay, mode->vsync_start,
2506                    mode->vsync_end, mode->vtotal,
2507                    mode->type, mode->flags);
2508 }
2509
2510 static void intel_encoder_info(struct seq_file *m,
2511                                struct intel_crtc *intel_crtc,
2512                                struct intel_encoder *intel_encoder)
2513 {
2514         struct drm_info_node *node = m->private;
2515         struct drm_device *dev = node->minor->dev;
2516         struct drm_crtc *crtc = &intel_crtc->base;
2517         struct intel_connector *intel_connector;
2518         struct drm_encoder *encoder;
2519
2520         encoder = &intel_encoder->base;
2521         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2522                    encoder->base.id, encoder->name);
2523         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2524                 struct drm_connector *connector = &intel_connector->base;
2525                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2526                            connector->base.id,
2527                            connector->name,
2528                            drm_get_connector_status_name(connector->status));
2529                 if (connector->status == connector_status_connected) {
2530                         struct drm_display_mode *mode = &crtc->mode;
2531                         seq_printf(m, ", mode:\n");
2532                         intel_seq_print_mode(m, 2, mode);
2533                 } else {
2534                         seq_putc(m, '\n');
2535                 }
2536         }
2537 }
2538
2539 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2540 {
2541         struct drm_info_node *node = m->private;
2542         struct drm_device *dev = node->minor->dev;
2543         struct drm_crtc *crtc = &intel_crtc->base;
2544         struct intel_encoder *intel_encoder;
2545
2546         if (crtc->primary->fb)
2547                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2548                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2549                            crtc->primary->fb->width, crtc->primary->fb->height);
2550         else
2551                 seq_puts(m, "\tprimary plane disabled\n");
2552         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2553                 intel_encoder_info(m, intel_crtc, intel_encoder);
2554 }
2555
2556 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2557 {
2558         struct drm_display_mode *mode = panel->fixed_mode;
2559
2560         seq_printf(m, "\tfixed mode:\n");
2561         intel_seq_print_mode(m, 2, mode);
2562 }
2563
2564 static void intel_dp_info(struct seq_file *m,
2565                           struct intel_connector *intel_connector)
2566 {
2567         struct intel_encoder *intel_encoder = intel_connector->encoder;
2568         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2569
2570         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2571         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2572                    "no");
2573         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2574                 intel_panel_info(m, &intel_connector->panel);
2575 }
2576
2577 static void intel_hdmi_info(struct seq_file *m,
2578                             struct intel_connector *intel_connector)
2579 {
2580         struct intel_encoder *intel_encoder = intel_connector->encoder;
2581         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2582
2583         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2584                    "no");
2585 }
2586
2587 static void intel_lvds_info(struct seq_file *m,
2588                             struct intel_connector *intel_connector)
2589 {
2590         intel_panel_info(m, &intel_connector->panel);
2591 }
2592
2593 static void intel_connector_info(struct seq_file *m,
2594                                  struct drm_connector *connector)
2595 {
2596         struct intel_connector *intel_connector = to_intel_connector(connector);
2597         struct intel_encoder *intel_encoder = intel_connector->encoder;
2598         struct drm_display_mode *mode;
2599
2600         seq_printf(m, "connector %d: type %s, status: %s\n",
2601                    connector->base.id, connector->name,
2602                    drm_get_connector_status_name(connector->status));
2603         if (connector->status == connector_status_connected) {
2604                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2605                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2606                            connector->display_info.width_mm,
2607                            connector->display_info.height_mm);
2608                 seq_printf(m, "\tsubpixel order: %s\n",
2609                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2610                 seq_printf(m, "\tCEA rev: %d\n",
2611                            connector->display_info.cea_rev);
2612         }
2613         if (intel_encoder) {
2614                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2615                     intel_encoder->type == INTEL_OUTPUT_EDP)
2616                         intel_dp_info(m, intel_connector);
2617                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2618                         intel_hdmi_info(m, intel_connector);
2619                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2620                         intel_lvds_info(m, intel_connector);
2621         }
2622
2623         seq_printf(m, "\tmodes:\n");
2624         list_for_each_entry(mode, &connector->modes, head)
2625                 intel_seq_print_mode(m, 2, mode);
2626 }
2627
2628 static bool cursor_active(struct drm_device *dev, int pipe)
2629 {
2630         struct drm_i915_private *dev_priv = dev->dev_private;
2631         u32 state;
2632
2633         if (IS_845G(dev) || IS_I865G(dev))
2634                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2635         else
2636                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2637
2638         return state;
2639 }
2640
2641 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2642 {
2643         struct drm_i915_private *dev_priv = dev->dev_private;
2644         u32 pos;
2645
2646         pos = I915_READ(CURPOS(pipe));
2647
2648         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2649         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2650                 *x = -*x;
2651
2652         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2653         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2654                 *y = -*y;
2655
2656         return cursor_active(dev, pipe);
2657 }
2658
2659 static int i915_display_info(struct seq_file *m, void *unused)
2660 {
2661         struct drm_info_node *node = m->private;
2662         struct drm_device *dev = node->minor->dev;
2663         struct drm_i915_private *dev_priv = dev->dev_private;
2664         struct intel_crtc *crtc;
2665         struct drm_connector *connector;
2666
2667         intel_runtime_pm_get(dev_priv);
2668         drm_modeset_lock_all(dev);
2669         seq_printf(m, "CRTC info\n");
2670         seq_printf(m, "---------\n");
2671         for_each_intel_crtc(dev, crtc) {
2672                 bool active;
2673                 int x, y;
2674
2675                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2676                            crtc->base.base.id, pipe_name(crtc->pipe),
2677                            yesno(crtc->active), crtc->config->pipe_src_w,
2678                            crtc->config->pipe_src_h);
2679                 if (crtc->active) {
2680                         intel_crtc_info(m, crtc);
2681
2682                         active = cursor_position(dev, crtc->pipe, &x, &y);
2683                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2684                                    yesno(crtc->cursor_base),
2685                                    x, y, crtc->base.cursor->state->crtc_w,
2686                                    crtc->base.cursor->state->crtc_h,
2687                                    crtc->cursor_addr, yesno(active));
2688                 }
2689
2690                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2691                            yesno(!crtc->cpu_fifo_underrun_disabled),
2692                            yesno(!crtc->pch_fifo_underrun_disabled));
2693         }
2694
2695         seq_printf(m, "\n");
2696         seq_printf(m, "Connector info\n");
2697         seq_printf(m, "--------------\n");
2698         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2699                 intel_connector_info(m, connector);
2700         }
2701         drm_modeset_unlock_all(dev);
2702         intel_runtime_pm_put(dev_priv);
2703
2704         return 0;
2705 }
2706
2707 static int i915_semaphore_status(struct seq_file *m, void *unused)
2708 {
2709         struct drm_info_node *node = (struct drm_info_node *) m->private;
2710         struct drm_device *dev = node->minor->dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         struct intel_engine_cs *ring;
2713         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2714         int i, j, ret;
2715
2716         if (!i915_semaphore_is_enabled(dev)) {
2717                 seq_puts(m, "Semaphores are disabled\n");
2718                 return 0;
2719         }
2720
2721         ret = mutex_lock_interruptible(&dev->struct_mutex);
2722         if (ret)
2723                 return ret;
2724         intel_runtime_pm_get(dev_priv);
2725
2726         if (IS_BROADWELL(dev)) {
2727                 struct page *page;
2728                 uint64_t *seqno;
2729
2730                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2731
2732                 seqno = (uint64_t *)kmap_atomic(page);
2733                 for_each_ring(ring, dev_priv, i) {
2734                         uint64_t offset;
2735
2736                         seq_printf(m, "%s\n", ring->name);
2737
2738                         seq_puts(m, "  Last signal:");
2739                         for (j = 0; j < num_rings; j++) {
2740                                 offset = i * I915_NUM_RINGS + j;
2741                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2742                                            seqno[offset], offset * 8);
2743                         }
2744                         seq_putc(m, '\n');
2745
2746                         seq_puts(m, "  Last wait:  ");
2747                         for (j = 0; j < num_rings; j++) {
2748                                 offset = i + (j * I915_NUM_RINGS);
2749                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2750                                            seqno[offset], offset * 8);
2751                         }
2752                         seq_putc(m, '\n');
2753
2754                 }
2755                 kunmap_atomic(seqno);
2756         } else {
2757                 seq_puts(m, "  Last signal:");
2758                 for_each_ring(ring, dev_priv, i)
2759                         for (j = 0; j < num_rings; j++)
2760                                 seq_printf(m, "0x%08x\n",
2761                                            I915_READ(ring->semaphore.mbox.signal[j]));
2762                 seq_putc(m, '\n');
2763         }
2764
2765         seq_puts(m, "\nSync seqno:\n");
2766         for_each_ring(ring, dev_priv, i) {
2767                 for (j = 0; j < num_rings; j++) {
2768                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2769                 }
2770                 seq_putc(m, '\n');
2771         }
2772         seq_putc(m, '\n');
2773
2774         intel_runtime_pm_put(dev_priv);
2775         mutex_unlock(&dev->struct_mutex);
2776         return 0;
2777 }
2778
2779 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2780 {
2781         struct drm_info_node *node = (struct drm_info_node *) m->private;
2782         struct drm_device *dev = node->minor->dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         int i;
2785
2786         drm_modeset_lock_all(dev);
2787         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2788                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2789
2790                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2791                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2792                            pll->config.crtc_mask, pll->active, yesno(pll->on));
2793                 seq_printf(m, " tracked hardware state:\n");
2794                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
2795                 seq_printf(m, " dpll_md: 0x%08x\n",
2796                            pll->config.hw_state.dpll_md);
2797                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
2798                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
2799                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
2800         }
2801         drm_modeset_unlock_all(dev);
2802
2803         return 0;
2804 }
2805
2806 static int i915_wa_registers(struct seq_file *m, void *unused)
2807 {
2808         int i;
2809         int ret;
2810         struct drm_info_node *node = (struct drm_info_node *) m->private;
2811         struct drm_device *dev = node->minor->dev;
2812         struct drm_i915_private *dev_priv = dev->dev_private;
2813
2814         ret = mutex_lock_interruptible(&dev->struct_mutex);
2815         if (ret)
2816                 return ret;
2817
2818         intel_runtime_pm_get(dev_priv);
2819
2820         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2821         for (i = 0; i < dev_priv->workarounds.count; ++i) {
2822                 u32 addr, mask, value, read;
2823                 bool ok;
2824
2825                 addr = dev_priv->workarounds.reg[i].addr;
2826                 mask = dev_priv->workarounds.reg[i].mask;
2827                 value = dev_priv->workarounds.reg[i].value;
2828                 read = I915_READ(addr);
2829                 ok = (value & mask) == (read & mask);
2830                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2831                            addr, value, mask, read, ok ? "OK" : "FAIL");
2832         }
2833
2834         intel_runtime_pm_put(dev_priv);
2835         mutex_unlock(&dev->struct_mutex);
2836
2837         return 0;
2838 }
2839
2840 static int i915_ddb_info(struct seq_file *m, void *unused)
2841 {
2842         struct drm_info_node *node = m->private;
2843         struct drm_device *dev = node->minor->dev;
2844         struct drm_i915_private *dev_priv = dev->dev_private;
2845         struct skl_ddb_allocation *ddb;
2846         struct skl_ddb_entry *entry;
2847         enum pipe pipe;
2848         int plane;
2849
2850         if (INTEL_INFO(dev)->gen < 9)
2851                 return 0;
2852
2853         drm_modeset_lock_all(dev);
2854
2855         ddb = &dev_priv->wm.skl_hw.ddb;
2856
2857         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2858
2859         for_each_pipe(dev_priv, pipe) {
2860                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2861
2862                 for_each_plane(dev_priv, pipe, plane) {
2863                         entry = &ddb->plane[pipe][plane];
2864                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
2865                                    entry->start, entry->end,
2866                                    skl_ddb_entry_size(entry));
2867                 }
2868
2869                 entry = &ddb->cursor[pipe];
2870                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
2871                            entry->end, skl_ddb_entry_size(entry));
2872         }
2873
2874         drm_modeset_unlock_all(dev);
2875
2876         return 0;
2877 }
2878
2879 static void drrs_status_per_crtc(struct seq_file *m,
2880                 struct drm_device *dev, struct intel_crtc *intel_crtc)
2881 {
2882         struct intel_encoder *intel_encoder;
2883         struct drm_i915_private *dev_priv = dev->dev_private;
2884         struct i915_drrs *drrs = &dev_priv->drrs;
2885         int vrefresh = 0;
2886
2887         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
2888                 /* Encoder connected on this CRTC */
2889                 switch (intel_encoder->type) {
2890                 case INTEL_OUTPUT_EDP:
2891                         seq_puts(m, "eDP:\n");
2892                         break;
2893                 case INTEL_OUTPUT_DSI:
2894                         seq_puts(m, "DSI:\n");
2895                         break;
2896                 case INTEL_OUTPUT_HDMI:
2897                         seq_puts(m, "HDMI:\n");
2898                         break;
2899                 case INTEL_OUTPUT_DISPLAYPORT:
2900                         seq_puts(m, "DP:\n");
2901                         break;
2902                 default:
2903                         seq_printf(m, "Other encoder (id=%d).\n",
2904                                                 intel_encoder->type);
2905                         return;
2906                 }
2907         }
2908
2909         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
2910                 seq_puts(m, "\tVBT: DRRS_type: Static");
2911         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
2912                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
2913         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
2914                 seq_puts(m, "\tVBT: DRRS_type: None");
2915         else
2916                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
2917
2918         seq_puts(m, "\n\n");
2919
2920         if (intel_crtc->config->has_drrs) {
2921                 struct intel_panel *panel;
2922
2923                 mutex_lock(&drrs->mutex);
2924                 /* DRRS Supported */
2925                 seq_puts(m, "\tDRRS Supported: Yes\n");
2926
2927                 /* disable_drrs() will make drrs->dp NULL */
2928                 if (!drrs->dp) {
2929                         seq_puts(m, "Idleness DRRS: Disabled");
2930                         mutex_unlock(&drrs->mutex);
2931                         return;
2932                 }
2933
2934                 panel = &drrs->dp->attached_connector->panel;
2935                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
2936                                         drrs->busy_frontbuffer_bits);
2937
2938                 seq_puts(m, "\n\t\t");
2939                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
2940                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
2941                         vrefresh = panel->fixed_mode->vrefresh;
2942                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
2943                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
2944                         vrefresh = panel->downclock_mode->vrefresh;
2945                 } else {
2946                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
2947                                                 drrs->refresh_rate_type);
2948                         mutex_unlock(&drrs->mutex);
2949                         return;
2950                 }
2951                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
2952
2953                 seq_puts(m, "\n\t\t");
2954                 mutex_unlock(&drrs->mutex);
2955         } else {
2956                 /* DRRS not supported. Print the VBT parameter*/
2957                 seq_puts(m, "\tDRRS Supported : No");
2958         }
2959         seq_puts(m, "\n");
2960 }
2961
2962 static int i915_drrs_status(struct seq_file *m, void *unused)
2963 {
2964         struct drm_info_node *node = m->private;
2965         struct drm_device *dev = node->minor->dev;
2966         struct intel_crtc *intel_crtc;
2967         int active_crtc_cnt = 0;
2968
2969         for_each_intel_crtc(dev, intel_crtc) {
2970                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
2971
2972                 if (intel_crtc->active) {
2973                         active_crtc_cnt++;
2974                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
2975
2976                         drrs_status_per_crtc(m, dev, intel_crtc);
2977                 }
2978
2979                 drm_modeset_unlock(&intel_crtc->base.mutex);
2980         }
2981
2982         if (!active_crtc_cnt)
2983                 seq_puts(m, "No active crtc found\n");
2984
2985         return 0;
2986 }
2987
2988 struct pipe_crc_info {
2989         const char *name;
2990         struct drm_device *dev;
2991         enum pipe pipe;
2992 };
2993
2994 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2995 {
2996         struct drm_info_node *node = (struct drm_info_node *) m->private;
2997         struct drm_device *dev = node->minor->dev;
2998         struct drm_encoder *encoder;
2999         struct intel_encoder *intel_encoder;
3000         struct intel_digital_port *intel_dig_port;
3001         drm_modeset_lock_all(dev);
3002         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3003                 intel_encoder = to_intel_encoder(encoder);
3004                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3005                         continue;
3006                 intel_dig_port = enc_to_dig_port(encoder);
3007                 if (!intel_dig_port->dp.can_mst)
3008                         continue;
3009
3010                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3011         }
3012         drm_modeset_unlock_all(dev);
3013         return 0;
3014 }
3015
3016 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3017 {
3018         struct pipe_crc_info *info = inode->i_private;
3019         struct drm_i915_private *dev_priv = info->dev->dev_private;
3020         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3021
3022         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3023                 return -ENODEV;
3024
3025         spin_lock_irq(&pipe_crc->lock);
3026
3027         if (pipe_crc->opened) {
3028                 spin_unlock_irq(&pipe_crc->lock);
3029                 return -EBUSY; /* already open */
3030         }
3031
3032         pipe_crc->opened = true;
3033         filep->private_data = inode->i_private;
3034
3035         spin_unlock_irq(&pipe_crc->lock);
3036
3037         return 0;
3038 }
3039
3040 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3041 {
3042         struct pipe_crc_info *info = inode->i_private;
3043         struct drm_i915_private *dev_priv = info->dev->dev_private;
3044         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3045
3046         spin_lock_irq(&pipe_crc->lock);
3047         pipe_crc->opened = false;
3048         spin_unlock_irq(&pipe_crc->lock);
3049
3050         return 0;
3051 }
3052
3053 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3054 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3055 /* account for \'0' */
3056 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3057
3058 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3059 {
3060         assert_spin_locked(&pipe_crc->lock);
3061         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3062                         INTEL_PIPE_CRC_ENTRIES_NR);
3063 }
3064
3065 static ssize_t
3066 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3067                    loff_t *pos)
3068 {
3069         struct pipe_crc_info *info = filep->private_data;
3070         struct drm_device *dev = info->dev;
3071         struct drm_i915_private *dev_priv = dev->dev_private;
3072         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3073         char buf[PIPE_CRC_BUFFER_LEN];
3074         int n_entries;
3075         ssize_t bytes_read;
3076
3077         /*
3078          * Don't allow user space to provide buffers not big enough to hold
3079          * a line of data.
3080          */
3081         if (count < PIPE_CRC_LINE_LEN)
3082                 return -EINVAL;
3083
3084         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3085                 return 0;
3086
3087         /* nothing to read */
3088         spin_lock_irq(&pipe_crc->lock);
3089         while (pipe_crc_data_count(pipe_crc) == 0) {
3090                 int ret;
3091
3092                 if (filep->f_flags & O_NONBLOCK) {
3093                         spin_unlock_irq(&pipe_crc->lock);
3094                         return -EAGAIN;
3095                 }
3096
3097                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3098                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3099                 if (ret) {
3100                         spin_unlock_irq(&pipe_crc->lock);
3101                         return ret;
3102                 }
3103         }
3104
3105         /* We now have one or more entries to read */
3106         n_entries = count / PIPE_CRC_LINE_LEN;
3107
3108         bytes_read = 0;
3109         while (n_entries > 0) {
3110                 struct intel_pipe_crc_entry *entry =
3111                         &pipe_crc->entries[pipe_crc->tail];
3112                 int ret;
3113
3114                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3115                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3116                         break;
3117
3118                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3119                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3120
3121                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3122                                        "%8u %8x %8x %8x %8x %8x\n",
3123                                        entry->frame, entry->crc[0],
3124                                        entry->crc[1], entry->crc[2],
3125                                        entry->crc[3], entry->crc[4]);
3126
3127                 spin_unlock_irq(&pipe_crc->lock);
3128
3129                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3130                 if (ret == PIPE_CRC_LINE_LEN)
3131                         return -EFAULT;
3132
3133                 user_buf += PIPE_CRC_LINE_LEN;
3134                 n_entries--;
3135
3136                 spin_lock_irq(&pipe_crc->lock);
3137         }
3138
3139         spin_unlock_irq(&pipe_crc->lock);
3140
3141         return bytes_read;
3142 }
3143
3144 static const struct file_operations i915_pipe_crc_fops = {
3145         .owner = THIS_MODULE,
3146         .open = i915_pipe_crc_open,
3147         .read = i915_pipe_crc_read,
3148         .release = i915_pipe_crc_release,
3149 };
3150
3151 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3152         {
3153                 .name = "i915_pipe_A_crc",
3154                 .pipe = PIPE_A,
3155         },
3156         {
3157                 .name = "i915_pipe_B_crc",
3158                 .pipe = PIPE_B,
3159         },
3160         {
3161                 .name = "i915_pipe_C_crc",
3162                 .pipe = PIPE_C,
3163         },
3164 };
3165
3166 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3167                                 enum pipe pipe)
3168 {
3169         struct drm_device *dev = minor->dev;
3170         struct dentry *ent;
3171         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3172
3173         info->dev = dev;
3174         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3175                                   &i915_pipe_crc_fops);
3176         if (!ent)
3177                 return -ENOMEM;
3178
3179         return drm_add_fake_info_node(minor, ent, info);
3180 }
3181
3182 static const char * const pipe_crc_sources[] = {
3183         "none",
3184         "plane1",
3185         "plane2",
3186         "pf",
3187         "pipe",
3188         "TV",
3189         "DP-B",
3190         "DP-C",
3191         "DP-D",
3192         "auto",
3193 };
3194
3195 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3196 {
3197         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3198         return pipe_crc_sources[source];
3199 }
3200
3201 static int display_crc_ctl_show(struct seq_file *m, void *data)
3202 {
3203         struct drm_device *dev = m->private;
3204         struct drm_i915_private *dev_priv = dev->dev_private;
3205         int i;
3206
3207         for (i = 0; i < I915_MAX_PIPES; i++)
3208                 seq_printf(m, "%c %s\n", pipe_name(i),
3209                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3210
3211         return 0;
3212 }
3213
3214 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3215 {
3216         struct drm_device *dev = inode->i_private;
3217
3218         return single_open(file, display_crc_ctl_show, dev);
3219 }
3220
3221 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3222                                  uint32_t *val)
3223 {
3224         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3225                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3226
3227         switch (*source) {
3228         case INTEL_PIPE_CRC_SOURCE_PIPE:
3229                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3230                 break;
3231         case INTEL_PIPE_CRC_SOURCE_NONE:
3232                 *val = 0;
3233                 break;
3234         default:
3235                 return -EINVAL;
3236         }
3237
3238         return 0;
3239 }
3240
3241 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3242                                      enum intel_pipe_crc_source *source)
3243 {
3244         struct intel_encoder *encoder;
3245         struct intel_crtc *crtc;
3246         struct intel_digital_port *dig_port;
3247         int ret = 0;
3248
3249         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3250
3251         drm_modeset_lock_all(dev);
3252         for_each_intel_encoder(dev, encoder) {
3253                 if (!encoder->base.crtc)
3254                         continue;
3255
3256                 crtc = to_intel_crtc(encoder->base.crtc);
3257
3258                 if (crtc->pipe != pipe)
3259                         continue;
3260
3261                 switch (encoder->type) {
3262                 case INTEL_OUTPUT_TVOUT:
3263                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3264                         break;
3265                 case INTEL_OUTPUT_DISPLAYPORT:
3266                 case INTEL_OUTPUT_EDP:
3267                         dig_port = enc_to_dig_port(&encoder->base);
3268                         switch (dig_port->port) {
3269                         case PORT_B:
3270                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3271                                 break;
3272                         case PORT_C:
3273                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3274                                 break;
3275                         case PORT_D:
3276                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3277                                 break;
3278                         default:
3279                                 WARN(1, "nonexisting DP port %c\n",
3280                                      port_name(dig_port->port));
3281                                 break;
3282                         }
3283                         break;
3284                 default:
3285                         break;
3286                 }
3287         }
3288         drm_modeset_unlock_all(dev);
3289
3290         return ret;
3291 }
3292
3293 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3294                                 enum pipe pipe,
3295                                 enum intel_pipe_crc_source *source,
3296                                 uint32_t *val)
3297 {
3298         struct drm_i915_private *dev_priv = dev->dev_private;
3299         bool need_stable_symbols = false;
3300
3301         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3302                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3303                 if (ret)
3304                         return ret;
3305         }
3306
3307         switch (*source) {
3308         case INTEL_PIPE_CRC_SOURCE_PIPE:
3309                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3310                 break;
3311         case INTEL_PIPE_CRC_SOURCE_DP_B:
3312                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3313                 need_stable_symbols = true;
3314                 break;
3315         case INTEL_PIPE_CRC_SOURCE_DP_C:
3316                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3317                 need_stable_symbols = true;
3318                 break;
3319         case INTEL_PIPE_CRC_SOURCE_DP_D:
3320                 if (!IS_CHERRYVIEW(dev))
3321                         return -EINVAL;
3322                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3323                 need_stable_symbols = true;
3324                 break;
3325         case INTEL_PIPE_CRC_SOURCE_NONE:
3326                 *val = 0;
3327                 break;
3328         default:
3329                 return -EINVAL;
3330         }
3331
3332         /*
3333          * When the pipe CRC tap point is after the transcoders we need
3334          * to tweak symbol-level features to produce a deterministic series of
3335          * symbols for a given frame. We need to reset those features only once
3336          * a frame (instead of every nth symbol):
3337          *   - DC-balance: used to ensure a better clock recovery from the data
3338          *     link (SDVO)
3339          *   - DisplayPort scrambling: used for EMI reduction
3340          */
3341         if (need_stable_symbols) {
3342                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3343
3344                 tmp |= DC_BALANCE_RESET_VLV;
3345                 switch (pipe) {
3346                 case PIPE_A:
3347                         tmp |= PIPE_A_SCRAMBLE_RESET;
3348                         break;
3349                 case PIPE_B:
3350                         tmp |= PIPE_B_SCRAMBLE_RESET;
3351                         break;
3352                 case PIPE_C:
3353                         tmp |= PIPE_C_SCRAMBLE_RESET;
3354                         break;
3355                 default:
3356                         return -EINVAL;
3357                 }
3358                 I915_WRITE(PORT_DFT2_G4X, tmp);
3359         }
3360
3361         return 0;
3362 }
3363
3364 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3365                                  enum pipe pipe,
3366                                  enum intel_pipe_crc_source *source,
3367                                  uint32_t *val)
3368 {
3369         struct drm_i915_private *dev_priv = dev->dev_private;
3370         bool need_stable_symbols = false;
3371
3372         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3373                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3374                 if (ret)
3375                         return ret;
3376         }
3377
3378         switch (*source) {
3379         case INTEL_PIPE_CRC_SOURCE_PIPE:
3380                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3381                 break;
3382         case INTEL_PIPE_CRC_SOURCE_TV:
3383                 if (!SUPPORTS_TV(dev))
3384                         return -EINVAL;
3385                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3386                 break;
3387         case INTEL_PIPE_CRC_SOURCE_DP_B:
3388                 if (!IS_G4X(dev))
3389                         return -EINVAL;
3390                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3391                 need_stable_symbols = true;
3392                 break;
3393         case INTEL_PIPE_CRC_SOURCE_DP_C:
3394                 if (!IS_G4X(dev))
3395                         return -EINVAL;
3396                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3397                 need_stable_symbols = true;
3398                 break;
3399         case INTEL_PIPE_CRC_SOURCE_DP_D:
3400                 if (!IS_G4X(dev))
3401                         return -EINVAL;
3402                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3403                 need_stable_symbols = true;
3404                 break;
3405         case INTEL_PIPE_CRC_SOURCE_NONE:
3406                 *val = 0;
3407                 break;
3408         default:
3409                 return -EINVAL;
3410         }
3411
3412         /*
3413          * When the pipe CRC tap point is after the transcoders we need
3414          * to tweak symbol-level features to produce a deterministic series of
3415          * symbols for a given frame. We need to reset those features only once
3416          * a frame (instead of every nth symbol):
3417          *   - DC-balance: used to ensure a better clock recovery from the data
3418          *     link (SDVO)
3419          *   - DisplayPort scrambling: used for EMI reduction
3420          */
3421         if (need_stable_symbols) {
3422                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3423
3424                 WARN_ON(!IS_G4X(dev));
3425
3426                 I915_WRITE(PORT_DFT_I9XX,
3427                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3428
3429                 if (pipe == PIPE_A)
3430                         tmp |= PIPE_A_SCRAMBLE_RESET;
3431                 else
3432                         tmp |= PIPE_B_SCRAMBLE_RESET;
3433
3434                 I915_WRITE(PORT_DFT2_G4X, tmp);
3435         }
3436
3437         return 0;
3438 }
3439
3440 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3441                                          enum pipe pipe)
3442 {
3443         struct drm_i915_private *dev_priv = dev->dev_private;
3444         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3445
3446         switch (pipe) {
3447         case PIPE_A:
3448                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3449                 break;
3450         case PIPE_B:
3451                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3452                 break;
3453         case PIPE_C:
3454                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3455                 break;
3456         default:
3457                 return;
3458         }
3459         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3460                 tmp &= ~DC_BALANCE_RESET_VLV;
3461         I915_WRITE(PORT_DFT2_G4X, tmp);
3462
3463 }
3464
3465 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3466                                          enum pipe pipe)
3467 {
3468         struct drm_i915_private *dev_priv = dev->dev_private;
3469         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3470
3471         if (pipe == PIPE_A)
3472                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3473         else
3474                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3475         I915_WRITE(PORT_DFT2_G4X, tmp);
3476
3477         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3478                 I915_WRITE(PORT_DFT_I9XX,
3479                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3480         }
3481 }
3482
3483 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3484                                 uint32_t *val)
3485 {
3486         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3487                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3488
3489         switch (*source) {
3490         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3491                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3492                 break;
3493         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3494                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3495                 break;
3496         case INTEL_PIPE_CRC_SOURCE_PIPE:
3497                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3498                 break;
3499         case INTEL_PIPE_CRC_SOURCE_NONE:
3500                 *val = 0;
3501                 break;
3502         default:
3503                 return -EINVAL;
3504         }
3505
3506         return 0;
3507 }
3508
3509 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3510 {
3511         struct drm_i915_private *dev_priv = dev->dev_private;
3512         struct intel_crtc *crtc =
3513                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3514
3515         drm_modeset_lock_all(dev);
3516         /*
3517          * If we use the eDP transcoder we need to make sure that we don't
3518          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3519          * relevant on hsw with pipe A when using the always-on power well
3520          * routing.
3521          */
3522         if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3523             !crtc->config->pch_pfit.enabled) {
3524                 crtc->config->pch_pfit.force_thru = true;
3525
3526                 intel_display_power_get(dev_priv,
3527                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3528
3529                 dev_priv->display.crtc_disable(&crtc->base);
3530                 dev_priv->display.crtc_enable(&crtc->base);
3531         }
3532         drm_modeset_unlock_all(dev);
3533 }
3534
3535 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3536 {
3537         struct drm_i915_private *dev_priv = dev->dev_private;
3538         struct intel_crtc *crtc =
3539                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3540
3541         drm_modeset_lock_all(dev);
3542         /*
3543          * If we use the eDP transcoder we need to make sure that we don't
3544          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3545          * relevant on hsw with pipe A when using the always-on power well
3546          * routing.
3547          */
3548         if (crtc->config->pch_pfit.force_thru) {
3549                 crtc->config->pch_pfit.force_thru = false;
3550
3551                 dev_priv->display.crtc_disable(&crtc->base);
3552                 dev_priv->display.crtc_enable(&crtc->base);
3553
3554                 intel_display_power_put(dev_priv,
3555                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3556         }
3557         drm_modeset_unlock_all(dev);
3558 }
3559
3560 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3561                                 enum pipe pipe,
3562                                 enum intel_pipe_crc_source *source,
3563                                 uint32_t *val)
3564 {
3565         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3566                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3567
3568         switch (*source) {
3569         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3570                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3571                 break;
3572         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3573                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3574                 break;
3575         case INTEL_PIPE_CRC_SOURCE_PF:
3576                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3577                         hsw_trans_edp_pipe_A_crc_wa(dev);
3578
3579                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3580                 break;
3581         case INTEL_PIPE_CRC_SOURCE_NONE:
3582                 *val = 0;
3583                 break;
3584         default:
3585                 return -EINVAL;
3586         }
3587
3588         return 0;
3589 }
3590
3591 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3592                                enum intel_pipe_crc_source source)
3593 {
3594         struct drm_i915_private *dev_priv = dev->dev_private;
3595         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3596         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3597                                                                         pipe));
3598         u32 val = 0; /* shut up gcc */
3599         int ret;
3600
3601         if (pipe_crc->source == source)
3602                 return 0;
3603
3604         /* forbid changing the source without going back to 'none' */
3605         if (pipe_crc->source && source)
3606                 return -EINVAL;
3607
3608         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3609                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3610                 return -EIO;
3611         }
3612
3613         if (IS_GEN2(dev))
3614                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3615         else if (INTEL_INFO(dev)->gen < 5)
3616                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3617         else if (IS_VALLEYVIEW(dev))
3618                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3619         else if (IS_GEN5(dev) || IS_GEN6(dev))
3620                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3621         else
3622                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3623
3624         if (ret != 0)
3625                 return ret;
3626
3627         /* none -> real source transition */
3628         if (source) {
3629                 struct intel_pipe_crc_entry *entries;
3630
3631                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3632                                  pipe_name(pipe), pipe_crc_source_name(source));
3633
3634                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3635                                   sizeof(pipe_crc->entries[0]),
3636                                   GFP_KERNEL);
3637                 if (!entries)
3638                         return -ENOMEM;
3639
3640                 /*
3641                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3642                  * enabled and disabled dynamically based on package C states,
3643                  * user space can't make reliable use of the CRCs, so let's just
3644                  * completely disable it.
3645                  */
3646                 hsw_disable_ips(crtc);
3647
3648                 spin_lock_irq(&pipe_crc->lock);
3649                 kfree(pipe_crc->entries);
3650                 pipe_crc->entries = entries;
3651                 pipe_crc->head = 0;
3652                 pipe_crc->tail = 0;
3653                 spin_unlock_irq(&pipe_crc->lock);
3654         }
3655
3656         pipe_crc->source = source;
3657
3658         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3659         POSTING_READ(PIPE_CRC_CTL(pipe));
3660
3661         /* real source -> none transition */
3662         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3663                 struct intel_pipe_crc_entry *entries;
3664                 struct intel_crtc *crtc =
3665                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3666
3667                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3668                                  pipe_name(pipe));
3669
3670                 drm_modeset_lock(&crtc->base.mutex, NULL);
3671                 if (crtc->active)
3672                         intel_wait_for_vblank(dev, pipe);
3673                 drm_modeset_unlock(&crtc->base.mutex);
3674
3675                 spin_lock_irq(&pipe_crc->lock);
3676                 entries = pipe_crc->entries;
3677                 pipe_crc->entries = NULL;
3678                 pipe_crc->head = 0;
3679                 pipe_crc->tail = 0;
3680                 spin_unlock_irq(&pipe_crc->lock);
3681
3682                 kfree(entries);
3683
3684                 if (IS_G4X(dev))
3685                         g4x_undo_pipe_scramble_reset(dev, pipe);
3686                 else if (IS_VALLEYVIEW(dev))
3687                         vlv_undo_pipe_scramble_reset(dev, pipe);
3688                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3689                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3690
3691                 hsw_enable_ips(crtc);
3692         }
3693
3694         return 0;
3695 }
3696
3697 /*
3698  * Parse pipe CRC command strings:
3699  *   command: wsp* object wsp+ name wsp+ source wsp*
3700  *   object: 'pipe'
3701  *   name: (A | B | C)
3702  *   source: (none | plane1 | plane2 | pf)
3703  *   wsp: (#0x20 | #0x9 | #0xA)+
3704  *
3705  * eg.:
3706  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3707  *  "pipe A none"    ->  Stop CRC
3708  */
3709 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3710 {
3711         int n_words = 0;
3712
3713         while (*buf) {
3714                 char *end;
3715
3716                 /* skip leading white space */
3717                 buf = skip_spaces(buf);
3718                 if (!*buf)
3719                         break;  /* end of buffer */
3720
3721                 /* find end of word */
3722                 for (end = buf; *end && !isspace(*end); end++)
3723                         ;
3724
3725                 if (n_words == max_words) {
3726                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3727                                          max_words);
3728                         return -EINVAL; /* ran out of words[] before bytes */
3729                 }
3730
3731                 if (*end)
3732                         *end++ = '\0';
3733                 words[n_words++] = buf;
3734                 buf = end;
3735         }
3736
3737         return n_words;
3738 }
3739
3740 enum intel_pipe_crc_object {
3741         PIPE_CRC_OBJECT_PIPE,
3742 };
3743
3744 static const char * const pipe_crc_objects[] = {
3745         "pipe",
3746 };
3747
3748 static int
3749 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3750 {
3751         int i;
3752
3753         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3754                 if (!strcmp(buf, pipe_crc_objects[i])) {
3755                         *o = i;
3756                         return 0;
3757                     }
3758
3759         return -EINVAL;
3760 }
3761
3762 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3763 {
3764         const char name = buf[0];
3765
3766         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3767                 return -EINVAL;
3768
3769         *pipe = name - 'A';
3770
3771         return 0;
3772 }
3773
3774 static int
3775 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3776 {
3777         int i;
3778
3779         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3780                 if (!strcmp(buf, pipe_crc_sources[i])) {
3781                         *s = i;
3782                         return 0;
3783                     }
3784
3785         return -EINVAL;
3786 }
3787
3788 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3789 {
3790 #define N_WORDS 3
3791         int n_words;
3792         char *words[N_WORDS];
3793         enum pipe pipe;
3794         enum intel_pipe_crc_object object;
3795         enum intel_pipe_crc_source source;
3796
3797         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3798         if (n_words != N_WORDS) {
3799                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3800                                  N_WORDS);
3801                 return -EINVAL;
3802         }
3803
3804         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3805                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3806                 return -EINVAL;
3807         }
3808
3809         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3810                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3811                 return -EINVAL;
3812         }
3813
3814         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3815                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3816                 return -EINVAL;
3817         }
3818
3819         return pipe_crc_set_source(dev, pipe, source);
3820 }
3821
3822 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3823                                      size_t len, loff_t *offp)
3824 {
3825         struct seq_file *m = file->private_data;
3826         struct drm_device *dev = m->private;
3827         char *tmpbuf;
3828         int ret;
3829
3830         if (len == 0)
3831                 return 0;
3832
3833         if (len > PAGE_SIZE - 1) {
3834                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3835                                  PAGE_SIZE);
3836                 return -E2BIG;
3837         }
3838
3839         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3840         if (!tmpbuf)
3841                 return -ENOMEM;
3842
3843         if (copy_from_user(tmpbuf, ubuf, len)) {
3844                 ret = -EFAULT;
3845                 goto out;
3846         }
3847         tmpbuf[len] = '\0';
3848
3849         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3850
3851 out:
3852         kfree(tmpbuf);
3853         if (ret < 0)
3854                 return ret;
3855
3856         *offp += len;
3857         return len;
3858 }
3859
3860 static const struct file_operations i915_display_crc_ctl_fops = {
3861         .owner = THIS_MODULE,
3862         .open = display_crc_ctl_open,
3863         .read = seq_read,
3864         .llseek = seq_lseek,
3865         .release = single_release,
3866         .write = display_crc_ctl_write
3867 };
3868
3869 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3870 {
3871         struct drm_device *dev = m->private;
3872         int num_levels = ilk_wm_max_level(dev) + 1;
3873         int level;
3874
3875         drm_modeset_lock_all(dev);
3876
3877         for (level = 0; level < num_levels; level++) {
3878                 unsigned int latency = wm[level];
3879
3880                 /*
3881                  * - WM1+ latency values in 0.5us units
3882                  * - latencies are in us on gen9
3883                  */
3884                 if (INTEL_INFO(dev)->gen >= 9)
3885                         latency *= 10;
3886                 else if (level > 0)
3887                         latency *= 5;
3888
3889                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3890                            level, wm[level], latency / 10, latency % 10);
3891         }
3892
3893         drm_modeset_unlock_all(dev);
3894 }
3895
3896 static int pri_wm_latency_show(struct seq_file *m, void *data)
3897 {
3898         struct drm_device *dev = m->private;
3899         struct drm_i915_private *dev_priv = dev->dev_private;
3900         const uint16_t *latencies;
3901
3902         if (INTEL_INFO(dev)->gen >= 9)
3903                 latencies = dev_priv->wm.skl_latency;
3904         else
3905                 latencies = to_i915(dev)->wm.pri_latency;
3906
3907         wm_latency_show(m, latencies);
3908
3909         return 0;
3910 }
3911
3912 static int spr_wm_latency_show(struct seq_file *m, void *data)
3913 {
3914         struct drm_device *dev = m->private;
3915         struct drm_i915_private *dev_priv = dev->dev_private;
3916         const uint16_t *latencies;
3917
3918         if (INTEL_INFO(dev)->gen >= 9)
3919                 latencies = dev_priv->wm.skl_latency;
3920         else
3921                 latencies = to_i915(dev)->wm.spr_latency;
3922
3923         wm_latency_show(m, latencies);
3924
3925         return 0;
3926 }
3927
3928 static int cur_wm_latency_show(struct seq_file *m, void *data)
3929 {
3930         struct drm_device *dev = m->private;
3931         struct drm_i915_private *dev_priv = dev->dev_private;
3932         const uint16_t *latencies;
3933
3934         if (INTEL_INFO(dev)->gen >= 9)
3935                 latencies = dev_priv->wm.skl_latency;
3936         else
3937                 latencies = to_i915(dev)->wm.cur_latency;
3938
3939         wm_latency_show(m, latencies);
3940
3941         return 0;
3942 }
3943
3944 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3945 {
3946         struct drm_device *dev = inode->i_private;
3947
3948         if (HAS_GMCH_DISPLAY(dev))
3949                 return -ENODEV;
3950
3951         return single_open(file, pri_wm_latency_show, dev);
3952 }
3953
3954 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3955 {
3956         struct drm_device *dev = inode->i_private;
3957
3958         if (HAS_GMCH_DISPLAY(dev))
3959                 return -ENODEV;
3960
3961         return single_open(file, spr_wm_latency_show, dev);
3962 }
3963
3964 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3965 {
3966         struct drm_device *dev = inode->i_private;
3967
3968         if (HAS_GMCH_DISPLAY(dev))
3969                 return -ENODEV;
3970
3971         return single_open(file, cur_wm_latency_show, dev);
3972 }
3973
3974 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3975                                 size_t len, loff_t *offp, uint16_t wm[8])
3976 {
3977         struct seq_file *m = file->private_data;
3978         struct drm_device *dev = m->private;
3979         uint16_t new[8] = { 0 };
3980         int num_levels = ilk_wm_max_level(dev) + 1;
3981         int level;
3982         int ret;
3983         char tmp[32];
3984
3985         if (len >= sizeof(tmp))
3986                 return -EINVAL;
3987
3988         if (copy_from_user(tmp, ubuf, len))
3989                 return -EFAULT;
3990
3991         tmp[len] = '\0';
3992
3993         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3994                      &new[0], &new[1], &new[2], &new[3],
3995                      &new[4], &new[5], &new[6], &new[7]);
3996         if (ret != num_levels)
3997                 return -EINVAL;
3998
3999         drm_modeset_lock_all(dev);
4000
4001         for (level = 0; level < num_levels; level++)
4002                 wm[level] = new[level];
4003
4004         drm_modeset_unlock_all(dev);
4005
4006         return len;
4007 }
4008
4009
4010 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4011                                     size_t len, loff_t *offp)
4012 {
4013         struct seq_file *m = file->private_data;
4014         struct drm_device *dev = m->private;
4015         struct drm_i915_private *dev_priv = dev->dev_private;
4016         uint16_t *latencies;
4017
4018         if (INTEL_INFO(dev)->gen >= 9)
4019                 latencies = dev_priv->wm.skl_latency;
4020         else
4021                 latencies = to_i915(dev)->wm.pri_latency;
4022
4023         return wm_latency_write(file, ubuf, len, offp, latencies);
4024 }
4025
4026 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4027                                     size_t len, loff_t *offp)
4028 {
4029         struct seq_file *m = file->private_data;
4030         struct drm_device *dev = m->private;
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032         uint16_t *latencies;
4033
4034         if (INTEL_INFO(dev)->gen >= 9)
4035                 latencies = dev_priv->wm.skl_latency;
4036         else
4037                 latencies = to_i915(dev)->wm.spr_latency;
4038
4039         return wm_latency_write(file, ubuf, len, offp, latencies);
4040 }
4041
4042 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4043                                     size_t len, loff_t *offp)
4044 {
4045         struct seq_file *m = file->private_data;
4046         struct drm_device *dev = m->private;
4047         struct drm_i915_private *dev_priv = dev->dev_private;
4048         uint16_t *latencies;
4049
4050         if (INTEL_INFO(dev)->gen >= 9)
4051                 latencies = dev_priv->wm.skl_latency;
4052         else
4053                 latencies = to_i915(dev)->wm.cur_latency;
4054
4055         return wm_latency_write(file, ubuf, len, offp, latencies);
4056 }
4057
4058 static const struct file_operations i915_pri_wm_latency_fops = {
4059         .owner = THIS_MODULE,
4060         .open = pri_wm_latency_open,
4061         .read = seq_read,
4062         .llseek = seq_lseek,
4063         .release = single_release,
4064         .write = pri_wm_latency_write
4065 };
4066
4067 static const struct file_operations i915_spr_wm_latency_fops = {
4068         .owner = THIS_MODULE,
4069         .open = spr_wm_latency_open,
4070         .read = seq_read,
4071         .llseek = seq_lseek,
4072         .release = single_release,
4073         .write = spr_wm_latency_write
4074 };
4075
4076 static const struct file_operations i915_cur_wm_latency_fops = {
4077         .owner = THIS_MODULE,
4078         .open = cur_wm_latency_open,
4079         .read = seq_read,
4080         .llseek = seq_lseek,
4081         .release = single_release,
4082         .write = cur_wm_latency_write
4083 };
4084
4085 static int
4086 i915_wedged_get(void *data, u64 *val)
4087 {
4088         struct drm_device *dev = data;
4089         struct drm_i915_private *dev_priv = dev->dev_private;
4090
4091         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4092
4093         return 0;
4094 }
4095
4096 static int
4097 i915_wedged_set(void *data, u64 val)
4098 {
4099         struct drm_device *dev = data;
4100         struct drm_i915_private *dev_priv = dev->dev_private;
4101
4102         /*
4103          * There is no safeguard against this debugfs entry colliding
4104          * with the hangcheck calling same i915_handle_error() in
4105          * parallel, causing an explosion. For now we assume that the
4106          * test harness is responsible enough not to inject gpu hangs
4107          * while it is writing to 'i915_wedged'
4108          */
4109
4110         if (i915_reset_in_progress(&dev_priv->gpu_error))
4111                 return -EAGAIN;
4112
4113         intel_runtime_pm_get(dev_priv);
4114
4115         i915_handle_error(dev, val,
4116                           "Manually setting wedged to %llu", val);
4117
4118         intel_runtime_pm_put(dev_priv);
4119
4120         return 0;
4121 }
4122
4123 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4124                         i915_wedged_get, i915_wedged_set,
4125                         "%llu\n");
4126
4127 static int
4128 i915_ring_stop_get(void *data, u64 *val)
4129 {
4130         struct drm_device *dev = data;
4131         struct drm_i915_private *dev_priv = dev->dev_private;
4132
4133         *val = dev_priv->gpu_error.stop_rings;
4134
4135         return 0;
4136 }
4137
4138 static int
4139 i915_ring_stop_set(void *data, u64 val)
4140 {
4141         struct drm_device *dev = data;
4142         struct drm_i915_private *dev_priv = dev->dev_private;
4143         int ret;
4144
4145         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4146
4147         ret = mutex_lock_interruptible(&dev->struct_mutex);
4148         if (ret)
4149                 return ret;
4150
4151         dev_priv->gpu_error.stop_rings = val;
4152         mutex_unlock(&dev->struct_mutex);
4153
4154         return 0;
4155 }
4156
4157 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4158                         i915_ring_stop_get, i915_ring_stop_set,
4159                         "0x%08llx\n");
4160
4161 static int
4162 i915_ring_missed_irq_get(void *data, u64 *val)
4163 {
4164         struct drm_device *dev = data;
4165         struct drm_i915_private *dev_priv = dev->dev_private;
4166
4167         *val = dev_priv->gpu_error.missed_irq_rings;
4168         return 0;
4169 }
4170
4171 static int
4172 i915_ring_missed_irq_set(void *data, u64 val)
4173 {
4174         struct drm_device *dev = data;
4175         struct drm_i915_private *dev_priv = dev->dev_private;
4176         int ret;
4177
4178         /* Lock against concurrent debugfs callers */
4179         ret = mutex_lock_interruptible(&dev->struct_mutex);
4180         if (ret)
4181                 return ret;
4182         dev_priv->gpu_error.missed_irq_rings = val;
4183         mutex_unlock(&dev->struct_mutex);
4184
4185         return 0;
4186 }
4187
4188 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4189                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4190                         "0x%08llx\n");
4191
4192 static int
4193 i915_ring_test_irq_get(void *data, u64 *val)
4194 {
4195         struct drm_device *dev = data;
4196         struct drm_i915_private *dev_priv = dev->dev_private;
4197
4198         *val = dev_priv->gpu_error.test_irq_rings;
4199
4200         return 0;
4201 }
4202
4203 static int
4204 i915_ring_test_irq_set(void *data, u64 val)
4205 {
4206         struct drm_device *dev = data;
4207         struct drm_i915_private *dev_priv = dev->dev_private;
4208         int ret;
4209
4210         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4211
4212         /* Lock against concurrent debugfs callers */
4213         ret = mutex_lock_interruptible(&dev->struct_mutex);
4214         if (ret)
4215                 return ret;
4216
4217         dev_priv->gpu_error.test_irq_rings = val;
4218         mutex_unlock(&dev->struct_mutex);
4219
4220         return 0;
4221 }
4222
4223 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4224                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4225                         "0x%08llx\n");
4226
4227 #define DROP_UNBOUND 0x1
4228 #define DROP_BOUND 0x2
4229 #define DROP_RETIRE 0x4
4230 #define DROP_ACTIVE 0x8
4231 #define DROP_ALL (DROP_UNBOUND | \
4232                   DROP_BOUND | \
4233                   DROP_RETIRE | \
4234                   DROP_ACTIVE)
4235 static int
4236 i915_drop_caches_get(void *data, u64 *val)
4237 {
4238         *val = DROP_ALL;
4239
4240         return 0;
4241 }
4242
4243 static int
4244 i915_drop_caches_set(void *data, u64 val)
4245 {
4246         struct drm_device *dev = data;
4247         struct drm_i915_private *dev_priv = dev->dev_private;
4248         int ret;
4249
4250         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4251
4252         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4253          * on ioctls on -EAGAIN. */
4254         ret = mutex_lock_interruptible(&dev->struct_mutex);
4255         if (ret)
4256                 return ret;
4257
4258         if (val & DROP_ACTIVE) {
4259                 ret = i915_gpu_idle(dev);
4260                 if (ret)
4261                         goto unlock;
4262         }
4263
4264         if (val & (DROP_RETIRE | DROP_ACTIVE))
4265                 i915_gem_retire_requests(dev);
4266
4267         if (val & DROP_BOUND)
4268                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4269
4270         if (val & DROP_UNBOUND)
4271                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4272
4273 unlock:
4274         mutex_unlock(&dev->struct_mutex);
4275
4276         return ret;
4277 }
4278
4279 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4280                         i915_drop_caches_get, i915_drop_caches_set,
4281                         "0x%08llx\n");
4282
4283 static int
4284 i915_max_freq_get(void *data, u64 *val)
4285 {
4286         struct drm_device *dev = data;
4287         struct drm_i915_private *dev_priv = dev->dev_private;
4288         int ret;
4289
4290         if (INTEL_INFO(dev)->gen < 6)
4291                 return -ENODEV;
4292
4293         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4294
4295         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4296         if (ret)
4297                 return ret;
4298
4299         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4300         mutex_unlock(&dev_priv->rps.hw_lock);
4301
4302         return 0;
4303 }
4304
4305 static int
4306 i915_max_freq_set(void *data, u64 val)
4307 {
4308         struct drm_device *dev = data;
4309         struct drm_i915_private *dev_priv = dev->dev_private;
4310         u32 hw_max, hw_min;
4311         int ret;
4312
4313         if (INTEL_INFO(dev)->gen < 6)
4314                 return -ENODEV;
4315
4316         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4317
4318         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4319
4320         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4321         if (ret)
4322                 return ret;
4323
4324         /*
4325          * Turbo will still be enabled, but won't go above the set value.
4326          */
4327         val = intel_freq_opcode(dev_priv, val);
4328
4329         hw_max = dev_priv->rps.max_freq;
4330         hw_min = dev_priv->rps.min_freq;
4331
4332         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4333                 mutex_unlock(&dev_priv->rps.hw_lock);
4334                 return -EINVAL;
4335         }
4336
4337         dev_priv->rps.max_freq_softlimit = val;
4338
4339         intel_set_rps(dev, val);
4340
4341         mutex_unlock(&dev_priv->rps.hw_lock);
4342
4343         return 0;
4344 }
4345
4346 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4347                         i915_max_freq_get, i915_max_freq_set,
4348                         "%llu\n");
4349
4350 static int
4351 i915_min_freq_get(void *data, u64 *val)
4352 {
4353         struct drm_device *dev = data;
4354         struct drm_i915_private *dev_priv = dev->dev_private;
4355         int ret;
4356
4357         if (INTEL_INFO(dev)->gen < 6)
4358                 return -ENODEV;
4359
4360         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4361
4362         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4363         if (ret)
4364                 return ret;
4365
4366         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4367         mutex_unlock(&dev_priv->rps.hw_lock);
4368
4369         return 0;
4370 }
4371
4372 static int
4373 i915_min_freq_set(void *data, u64 val)
4374 {
4375         struct drm_device *dev = data;
4376         struct drm_i915_private *dev_priv = dev->dev_private;
4377         u32 hw_max, hw_min;
4378         int ret;
4379
4380         if (INTEL_INFO(dev)->gen < 6)
4381                 return -ENODEV;
4382
4383         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4384
4385         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4386
4387         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4388         if (ret)
4389                 return ret;
4390
4391         /*
4392          * Turbo will still be enabled, but won't go below the set value.
4393          */
4394         val = intel_freq_opcode(dev_priv, val);
4395
4396         hw_max = dev_priv->rps.max_freq;
4397         hw_min = dev_priv->rps.min_freq;
4398
4399         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4400                 mutex_unlock(&dev_priv->rps.hw_lock);
4401                 return -EINVAL;
4402         }
4403
4404         dev_priv->rps.min_freq_softlimit = val;
4405
4406         intel_set_rps(dev, val);
4407
4408         mutex_unlock(&dev_priv->rps.hw_lock);
4409
4410         return 0;
4411 }
4412
4413 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4414                         i915_min_freq_get, i915_min_freq_set,
4415                         "%llu\n");
4416
4417 static int
4418 i915_cache_sharing_get(void *data, u64 *val)
4419 {
4420         struct drm_device *dev = data;
4421         struct drm_i915_private *dev_priv = dev->dev_private;
4422         u32 snpcr;
4423         int ret;
4424
4425         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4426                 return -ENODEV;
4427
4428         ret = mutex_lock_interruptible(&dev->struct_mutex);
4429         if (ret)
4430                 return ret;
4431         intel_runtime_pm_get(dev_priv);
4432
4433         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4434
4435         intel_runtime_pm_put(dev_priv);
4436         mutex_unlock(&dev_priv->dev->struct_mutex);
4437
4438         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4439
4440         return 0;
4441 }
4442
4443 static int
4444 i915_cache_sharing_set(void *data, u64 val)
4445 {
4446         struct drm_device *dev = data;
4447         struct drm_i915_private *dev_priv = dev->dev_private;
4448         u32 snpcr;
4449
4450         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4451                 return -ENODEV;
4452
4453         if (val > 3)
4454                 return -EINVAL;
4455
4456         intel_runtime_pm_get(dev_priv);
4457         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4458
4459         /* Update the cache sharing policy here as well */
4460         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4461         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4462         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4463         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4464
4465         intel_runtime_pm_put(dev_priv);
4466         return 0;
4467 }
4468
4469 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4470                         i915_cache_sharing_get, i915_cache_sharing_set,
4471                         "%llu\n");
4472
4473 static int i915_sseu_status(struct seq_file *m, void *unused)
4474 {
4475         struct drm_info_node *node = (struct drm_info_node *) m->private;
4476         struct drm_device *dev = node->minor->dev;
4477         struct drm_i915_private *dev_priv = dev->dev_private;
4478         unsigned int s_tot = 0, ss_tot = 0, ss_per = 0, eu_tot = 0, eu_per = 0;
4479
4480         if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4481                 return -ENODEV;
4482
4483         seq_puts(m, "SSEU Device Info\n");
4484         seq_printf(m, "  Available Slice Total: %u\n",
4485                    INTEL_INFO(dev)->slice_total);
4486         seq_printf(m, "  Available Subslice Total: %u\n",
4487                    INTEL_INFO(dev)->subslice_total);
4488         seq_printf(m, "  Available Subslice Per Slice: %u\n",
4489                    INTEL_INFO(dev)->subslice_per_slice);
4490         seq_printf(m, "  Available EU Total: %u\n",
4491                    INTEL_INFO(dev)->eu_total);
4492         seq_printf(m, "  Available EU Per Subslice: %u\n",
4493                    INTEL_INFO(dev)->eu_per_subslice);
4494         seq_printf(m, "  Has Slice Power Gating: %s\n",
4495                    yesno(INTEL_INFO(dev)->has_slice_pg));
4496         seq_printf(m, "  Has Subslice Power Gating: %s\n",
4497                    yesno(INTEL_INFO(dev)->has_subslice_pg));
4498         seq_printf(m, "  Has EU Power Gating: %s\n",
4499                    yesno(INTEL_INFO(dev)->has_eu_pg));
4500
4501         seq_puts(m, "SSEU Device Status\n");
4502         if (IS_CHERRYVIEW(dev)) {
4503                 const int ss_max = 2;
4504                 int ss;
4505                 u32 sig1[ss_max], sig2[ss_max];
4506
4507                 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4508                 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4509                 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4510                 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4511
4512                 for (ss = 0; ss < ss_max; ss++) {
4513                         unsigned int eu_cnt;
4514
4515                         if (sig1[ss] & CHV_SS_PG_ENABLE)
4516                                 /* skip disabled subslice */
4517                                 continue;
4518
4519                         s_tot = 1;
4520                         ss_per++;
4521                         eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4522                                  ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4523                                  ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4524                                  ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4525                         eu_tot += eu_cnt;
4526                         eu_per = max(eu_per, eu_cnt);
4527                 }
4528                 ss_tot = ss_per;
4529         } else if (IS_SKYLAKE(dev)) {
4530                 const int s_max = 3, ss_max = 4;
4531                 int s, ss;
4532                 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4533
4534                 s_reg[0] = I915_READ(GEN9_SLICE0_PGCTL_ACK);
4535                 s_reg[1] = I915_READ(GEN9_SLICE1_PGCTL_ACK);
4536                 s_reg[2] = I915_READ(GEN9_SLICE2_PGCTL_ACK);
4537                 eu_reg[0] = I915_READ(GEN9_SLICE0_SS01_EU_PGCTL_ACK);
4538                 eu_reg[1] = I915_READ(GEN9_SLICE0_SS23_EU_PGCTL_ACK);
4539                 eu_reg[2] = I915_READ(GEN9_SLICE1_SS01_EU_PGCTL_ACK);
4540                 eu_reg[3] = I915_READ(GEN9_SLICE1_SS23_EU_PGCTL_ACK);
4541                 eu_reg[4] = I915_READ(GEN9_SLICE2_SS01_EU_PGCTL_ACK);
4542                 eu_reg[5] = I915_READ(GEN9_SLICE2_SS23_EU_PGCTL_ACK);
4543                 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4544                              GEN9_PGCTL_SSA_EU19_ACK |
4545                              GEN9_PGCTL_SSA_EU210_ACK |
4546                              GEN9_PGCTL_SSA_EU311_ACK;
4547                 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4548                              GEN9_PGCTL_SSB_EU19_ACK |
4549                              GEN9_PGCTL_SSB_EU210_ACK |
4550                              GEN9_PGCTL_SSB_EU311_ACK;
4551
4552                 for (s = 0; s < s_max; s++) {
4553                         if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4554                                 /* skip disabled slice */
4555                                 continue;
4556
4557                         s_tot++;
4558                         ss_per = INTEL_INFO(dev)->subslice_per_slice;
4559                         ss_tot += ss_per;
4560                         for (ss = 0; ss < ss_max; ss++) {
4561                                 unsigned int eu_cnt;
4562
4563                                 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4564                                                        eu_mask[ss%2]);
4565                                 eu_tot += eu_cnt;
4566                                 eu_per = max(eu_per, eu_cnt);
4567                         }
4568                 }
4569         }
4570         seq_printf(m, "  Enabled Slice Total: %u\n", s_tot);
4571         seq_printf(m, "  Enabled Subslice Total: %u\n", ss_tot);
4572         seq_printf(m, "  Enabled Subslice Per Slice: %u\n", ss_per);
4573         seq_printf(m, "  Enabled EU Total: %u\n", eu_tot);
4574         seq_printf(m, "  Enabled EU Per Subslice: %u\n", eu_per);
4575
4576         return 0;
4577 }
4578
4579 static int i915_forcewake_open(struct inode *inode, struct file *file)
4580 {
4581         struct drm_device *dev = inode->i_private;
4582         struct drm_i915_private *dev_priv = dev->dev_private;
4583
4584         if (INTEL_INFO(dev)->gen < 6)
4585                 return 0;
4586
4587         intel_runtime_pm_get(dev_priv);
4588         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4589
4590         return 0;
4591 }
4592
4593 static int i915_forcewake_release(struct inode *inode, struct file *file)
4594 {
4595         struct drm_device *dev = inode->i_private;
4596         struct drm_i915_private *dev_priv = dev->dev_private;
4597
4598         if (INTEL_INFO(dev)->gen < 6)
4599                 return 0;
4600
4601         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4602         intel_runtime_pm_put(dev_priv);
4603
4604         return 0;
4605 }
4606
4607 static const struct file_operations i915_forcewake_fops = {
4608         .owner = THIS_MODULE,
4609         .open = i915_forcewake_open,
4610         .release = i915_forcewake_release,
4611 };
4612
4613 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4614 {
4615         struct drm_device *dev = minor->dev;
4616         struct dentry *ent;
4617
4618         ent = debugfs_create_file("i915_forcewake_user",
4619                                   S_IRUSR,
4620                                   root, dev,
4621                                   &i915_forcewake_fops);
4622         if (!ent)
4623                 return -ENOMEM;
4624
4625         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4626 }
4627
4628 static int i915_debugfs_create(struct dentry *root,
4629                                struct drm_minor *minor,
4630                                const char *name,
4631                                const struct file_operations *fops)
4632 {
4633         struct drm_device *dev = minor->dev;
4634         struct dentry *ent;
4635
4636         ent = debugfs_create_file(name,
4637                                   S_IRUGO | S_IWUSR,
4638                                   root, dev,
4639                                   fops);
4640         if (!ent)
4641                 return -ENOMEM;
4642
4643         return drm_add_fake_info_node(minor, ent, fops);
4644 }
4645
4646 static const struct drm_info_list i915_debugfs_list[] = {
4647         {"i915_capabilities", i915_capabilities, 0},
4648         {"i915_gem_objects", i915_gem_object_info, 0},
4649         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4650         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4651         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4652         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4653         {"i915_gem_stolen", i915_gem_stolen_list_info },
4654         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4655         {"i915_gem_request", i915_gem_request_info, 0},
4656         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4657         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4658         {"i915_gem_interrupt", i915_interrupt_info, 0},
4659         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4660         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4661         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4662         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4663         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4664         {"i915_frequency_info", i915_frequency_info, 0},
4665         {"i915_hangcheck_info", i915_hangcheck_info, 0},
4666         {"i915_drpc_info", i915_drpc_info, 0},
4667         {"i915_emon_status", i915_emon_status, 0},
4668         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4669         {"i915_fbc_status", i915_fbc_status, 0},
4670         {"i915_ips_status", i915_ips_status, 0},
4671         {"i915_sr_status", i915_sr_status, 0},
4672         {"i915_opregion", i915_opregion, 0},
4673         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4674         {"i915_context_status", i915_context_status, 0},
4675         {"i915_dump_lrc", i915_dump_lrc, 0},
4676         {"i915_execlists", i915_execlists, 0},
4677         {"i915_forcewake_domains", i915_forcewake_domains, 0},
4678         {"i915_swizzle_info", i915_swizzle_info, 0},
4679         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4680         {"i915_llc", i915_llc, 0},
4681         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4682         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4683         {"i915_energy_uJ", i915_energy_uJ, 0},
4684         {"i915_pc8_status", i915_pc8_status, 0},
4685         {"i915_power_domain_info", i915_power_domain_info, 0},
4686         {"i915_display_info", i915_display_info, 0},
4687         {"i915_semaphore_status", i915_semaphore_status, 0},
4688         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4689         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4690         {"i915_wa_registers", i915_wa_registers, 0},
4691         {"i915_ddb_info", i915_ddb_info, 0},
4692         {"i915_sseu_status", i915_sseu_status, 0},
4693         {"i915_drrs_status", i915_drrs_status, 0},
4694 };
4695 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4696
4697 static const struct i915_debugfs_files {
4698         const char *name;
4699         const struct file_operations *fops;
4700 } i915_debugfs_files[] = {
4701         {"i915_wedged", &i915_wedged_fops},
4702         {"i915_max_freq", &i915_max_freq_fops},
4703         {"i915_min_freq", &i915_min_freq_fops},
4704         {"i915_cache_sharing", &i915_cache_sharing_fops},
4705         {"i915_ring_stop", &i915_ring_stop_fops},
4706         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4707         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4708         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4709         {"i915_error_state", &i915_error_state_fops},
4710         {"i915_next_seqno", &i915_next_seqno_fops},
4711         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4712         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4713         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4714         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4715         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4716 };
4717
4718 void intel_display_crc_init(struct drm_device *dev)
4719 {
4720         struct drm_i915_private *dev_priv = dev->dev_private;
4721         enum pipe pipe;
4722
4723         for_each_pipe(dev_priv, pipe) {
4724                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4725
4726                 pipe_crc->opened = false;
4727                 spin_lock_init(&pipe_crc->lock);
4728                 init_waitqueue_head(&pipe_crc->wq);
4729         }
4730 }
4731
4732 int i915_debugfs_init(struct drm_minor *minor)
4733 {
4734         int ret, i;
4735
4736         ret = i915_forcewake_create(minor->debugfs_root, minor);
4737         if (ret)
4738                 return ret;
4739
4740         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4741                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4742                 if (ret)
4743                         return ret;
4744         }
4745
4746         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4747                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4748                                           i915_debugfs_files[i].name,
4749                                           i915_debugfs_files[i].fops);
4750                 if (ret)
4751                         return ret;
4752         }
4753
4754         return drm_debugfs_create_files(i915_debugfs_list,
4755                                         I915_DEBUGFS_ENTRIES,
4756                                         minor->debugfs_root, minor);
4757 }
4758
4759 void i915_debugfs_cleanup(struct drm_minor *minor)
4760 {
4761         int i;
4762
4763         drm_debugfs_remove_files(i915_debugfs_list,
4764                                  I915_DEBUGFS_ENTRIES, minor);
4765
4766         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4767                                  1, minor);
4768
4769         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4770                 struct drm_info_list *info_list =
4771                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4772
4773                 drm_debugfs_remove_files(info_list, 1, minor);
4774         }
4775
4776         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4777                 struct drm_info_list *info_list =
4778                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4779
4780                 drm_debugfs_remove_files(info_list, 1, minor);
4781         }
4782 }