]> git.samba.org - sfrench/cifs-2.6.git/blob - drivers/gpu/drm/i915/gvt/gtt.c
Merge branch 'drm-vmwgfx-fixes' of git://people.freedesktop.org/~syeh/repos_linux...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53                                 addr, size);
54                 return false;
55         }
56         return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63                  "invalid guest gmadr %llx\n", g_addr))
64                 return -EACCES;
65
66         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68                           + (g_addr - vgpu_aperture_offset(vgpu));
69         else
70                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71                           + (g_addr - vgpu_hidden_offset(vgpu));
72         return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79                  "invalid host gmadr %llx\n", h_addr))
80                 return -EACCES;
81
82         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85         else
86                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88         return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92                              unsigned long *h_index)
93 {
94         u64 h_addr;
95         int ret;
96
97         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98                                        &h_addr);
99         if (ret)
100                 return ret;
101
102         *h_index = h_addr >> GTT_PAGE_SHIFT;
103         return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107                              unsigned long *g_index)
108 {
109         u64 g_addr;
110         int ret;
111
112         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113                                        &g_addr);
114         if (ret)
115                 return ret;
116
117         *g_index = g_addr >> GTT_PAGE_SHIFT;
118         return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130         (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136         (e)->type = t; \
137         (e)->pdev = p; \
138         memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156
157 struct gtt_type_table_entry {
158         int entry_type;
159         int next_pt_type;
160         int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164         [type] = { \
165                 .entry_type = e_type, \
166                 .next_pt_type = npt_type, \
167                 .pse_entry_type = pse_type, \
168         }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173                         GTT_TYPE_PPGTT_PML4_PT,
174                         GTT_TYPE_INVALID),
175         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176                         GTT_TYPE_PPGTT_PML4_ENTRY,
177                         GTT_TYPE_PPGTT_PDP_PT,
178                         GTT_TYPE_INVALID),
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180                         GTT_TYPE_PPGTT_PML4_ENTRY,
181                         GTT_TYPE_PPGTT_PDP_PT,
182                         GTT_TYPE_INVALID),
183         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184                         GTT_TYPE_PPGTT_PDP_ENTRY,
185                         GTT_TYPE_PPGTT_PDE_PT,
186                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189                         GTT_TYPE_PPGTT_PDE_PT,
190                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192                         GTT_TYPE_PPGTT_PDP_ENTRY,
193                         GTT_TYPE_PPGTT_PDE_PT,
194                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196                         GTT_TYPE_PPGTT_PDE_ENTRY,
197                         GTT_TYPE_PPGTT_PTE_PT,
198                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200                         GTT_TYPE_PPGTT_PDE_ENTRY,
201                         GTT_TYPE_PPGTT_PTE_PT,
202                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205                         GTT_TYPE_INVALID,
206                         GTT_TYPE_INVALID),
207         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209                         GTT_TYPE_INVALID,
210                         GTT_TYPE_INVALID),
211         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212                         GTT_TYPE_PPGTT_PDE_ENTRY,
213                         GTT_TYPE_INVALID,
214                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_ENTRY,
217                         GTT_TYPE_INVALID,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220                         GTT_TYPE_GGTT_PTE,
221                         GTT_TYPE_INVALID,
222                         GTT_TYPE_INVALID),
223 };
224
225 static inline int get_next_pt_type(int type)
226 {
227         return gtt_type_table[type].next_pt_type;
228 }
229
230 static inline int get_entry_type(int type)
231 {
232         return gtt_type_table[type].entry_type;
233 }
234
235 static inline int get_pse_type(int type)
236 {
237         return gtt_type_table[type].pse_entry_type;
238 }
239
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243
244         return readq(addr);
245 }
246
247 static void gtt_invalidate(struct drm_i915_private *dev_priv)
248 {
249         mmio_hw_access_pre(dev_priv);
250         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
251         mmio_hw_access_post(dev_priv);
252 }
253
254 static void write_pte64(struct drm_i915_private *dev_priv,
255                 unsigned long index, u64 pte)
256 {
257         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
258
259         writeq(pte, addr);
260 }
261
262 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
263                 struct intel_gvt_gtt_entry *e,
264                 unsigned long index, bool hypervisor_access, unsigned long gpa,
265                 struct intel_vgpu *vgpu)
266 {
267         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
268         int ret;
269
270         if (WARN_ON(info->gtt_entry_size != 8))
271                 return e;
272
273         if (hypervisor_access) {
274                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
275                                 (index << info->gtt_entry_size_shift),
276                                 &e->val64, 8);
277                 WARN_ON(ret);
278         } else if (!pt) {
279                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
280         } else {
281                 e->val64 = *((u64 *)pt + index);
282         }
283         return e;
284 }
285
286 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
287                 struct intel_gvt_gtt_entry *e,
288                 unsigned long index, bool hypervisor_access, unsigned long gpa,
289                 struct intel_vgpu *vgpu)
290 {
291         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
292         int ret;
293
294         if (WARN_ON(info->gtt_entry_size != 8))
295                 return e;
296
297         if (hypervisor_access) {
298                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
299                                 (index << info->gtt_entry_size_shift),
300                                 &e->val64, 8);
301                 WARN_ON(ret);
302         } else if (!pt) {
303                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
304         } else {
305                 *((u64 *)pt + index) = e->val64;
306         }
307         return e;
308 }
309
310 #define GTT_HAW 46
311
312 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
313 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
314 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
315
316 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
317 {
318         unsigned long pfn;
319
320         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
321                 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
322         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
323                 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
324         else
325                 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
326         return pfn;
327 }
328
329 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
330 {
331         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
332                 e->val64 &= ~ADDR_1G_MASK;
333                 pfn &= (ADDR_1G_MASK >> 12);
334         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
335                 e->val64 &= ~ADDR_2M_MASK;
336                 pfn &= (ADDR_2M_MASK >> 12);
337         } else {
338                 e->val64 &= ~ADDR_4K_MASK;
339                 pfn &= (ADDR_4K_MASK >> 12);
340         }
341
342         e->val64 |= (pfn << 12);
343 }
344
345 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
346 {
347         /* Entry doesn't have PSE bit. */
348         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
349                 return false;
350
351         e->type = get_entry_type(e->type);
352         if (!(e->val64 & (1 << 7)))
353                 return false;
354
355         e->type = get_pse_type(e->type);
356         return true;
357 }
358
359 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
360 {
361         /*
362          * i915 writes PDP root pointer registers without present bit,
363          * it also works, so we need to treat root pointer entry
364          * specifically.
365          */
366         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
367                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
368                 return (e->val64 != 0);
369         else
370                 return (e->val64 & (1 << 0));
371 }
372
373 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
374 {
375         e->val64 &= ~(1 << 0);
376 }
377
378 /*
379  * Per-platform GMA routines.
380  */
381 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
382 {
383         unsigned long x = (gma >> GTT_PAGE_SHIFT);
384
385         trace_gma_index(__func__, gma, x);
386         return x;
387 }
388
389 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
390 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
391 { \
392         unsigned long x = (exp); \
393         trace_gma_index(__func__, gma, x); \
394         return x; \
395 }
396
397 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
398 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
399 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
400 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
401 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
402
403 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
404         .get_entry = gtt_get_entry64,
405         .set_entry = gtt_set_entry64,
406         .clear_present = gtt_entry_clear_present,
407         .test_present = gen8_gtt_test_present,
408         .test_pse = gen8_gtt_test_pse,
409         .get_pfn = gen8_gtt_get_pfn,
410         .set_pfn = gen8_gtt_set_pfn,
411 };
412
413 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
414         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
415         .gma_to_pte_index = gen8_gma_to_pte_index,
416         .gma_to_pde_index = gen8_gma_to_pde_index,
417         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
418         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
419         .gma_to_pml4_index = gen8_gma_to_pml4_index,
420 };
421
422 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
423                 struct intel_gvt_gtt_entry *m)
424 {
425         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
426         unsigned long gfn, mfn;
427
428         *m = *p;
429
430         if (!ops->test_present(p))
431                 return 0;
432
433         gfn = ops->get_pfn(p);
434
435         mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
436         if (mfn == INTEL_GVT_INVALID_ADDR) {
437                 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
438                 return -ENXIO;
439         }
440
441         ops->set_pfn(m, mfn);
442         return 0;
443 }
444
445 /*
446  * MM helpers.
447  */
448 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
449                 void *page_table, struct intel_gvt_gtt_entry *e,
450                 unsigned long index)
451 {
452         struct intel_gvt *gvt = mm->vgpu->gvt;
453         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
454
455         e->type = mm->page_table_entry_type;
456
457         ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
458         ops->test_pse(e);
459         return e;
460 }
461
462 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
463                 void *page_table, struct intel_gvt_gtt_entry *e,
464                 unsigned long index)
465 {
466         struct intel_gvt *gvt = mm->vgpu->gvt;
467         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
468
469         return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
470 }
471
472 /*
473  * PPGTT shadow page table helpers.
474  */
475 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
476                 struct intel_vgpu_ppgtt_spt *spt,
477                 void *page_table, int type,
478                 struct intel_gvt_gtt_entry *e, unsigned long index,
479                 bool guest)
480 {
481         struct intel_gvt *gvt = spt->vgpu->gvt;
482         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
483
484         e->type = get_entry_type(type);
485
486         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
487                 return e;
488
489         ops->get_entry(page_table, e, index, guest,
490                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
491                         spt->vgpu);
492         ops->test_pse(e);
493         return e;
494 }
495
496 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
497                 struct intel_vgpu_ppgtt_spt *spt,
498                 void *page_table, int type,
499                 struct intel_gvt_gtt_entry *e, unsigned long index,
500                 bool guest)
501 {
502         struct intel_gvt *gvt = spt->vgpu->gvt;
503         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
504
505         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
506                 return e;
507
508         return ops->set_entry(page_table, e, index, guest,
509                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
510                         spt->vgpu);
511 }
512
513 #define ppgtt_get_guest_entry(spt, e, index) \
514         ppgtt_spt_get_entry(spt, NULL, \
515                 spt->guest_page_type, e, index, true)
516
517 #define ppgtt_set_guest_entry(spt, e, index) \
518         ppgtt_spt_set_entry(spt, NULL, \
519                 spt->guest_page_type, e, index, true)
520
521 #define ppgtt_get_shadow_entry(spt, e, index) \
522         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
523                 spt->shadow_page.type, e, index, false)
524
525 #define ppgtt_set_shadow_entry(spt, e, index) \
526         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
527                 spt->shadow_page.type, e, index, false)
528
529 /**
530  * intel_vgpu_init_guest_page - init a guest page data structure
531  * @vgpu: a vGPU
532  * @p: a guest page data structure
533  * @gfn: guest memory page frame number
534  * @handler: function will be called when target guest memory page has
535  * been modified.
536  *
537  * This function is called when user wants to track a guest memory page.
538  *
539  * Returns:
540  * Zero on success, negative error code if failed.
541  */
542 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
543                 struct intel_vgpu_guest_page *p,
544                 unsigned long gfn,
545                 int (*handler)(void *, u64, void *, int),
546                 void *data)
547 {
548         INIT_HLIST_NODE(&p->node);
549
550         p->writeprotection = false;
551         p->gfn = gfn;
552         p->handler = handler;
553         p->data = data;
554         p->oos_page = NULL;
555         p->write_cnt = 0;
556
557         hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
558         return 0;
559 }
560
561 static int detach_oos_page(struct intel_vgpu *vgpu,
562                 struct intel_vgpu_oos_page *oos_page);
563
564 /**
565  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
566  * structure
567  * @vgpu: a vGPU
568  * @p: a tracked guest page
569  *
570  * This function is called when user tries to stop tracking a guest memory
571  * page.
572  */
573 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
574                 struct intel_vgpu_guest_page *p)
575 {
576         if (!hlist_unhashed(&p->node))
577                 hash_del(&p->node);
578
579         if (p->oos_page)
580                 detach_oos_page(vgpu, p->oos_page);
581
582         if (p->writeprotection)
583                 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
584 }
585
586 /**
587  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
588  * @vgpu: a vGPU
589  * @gfn: guest memory page frame number
590  *
591  * This function is called when emulation logic wants to know if a trapped GFN
592  * is a tracked guest page.
593  *
594  * Returns:
595  * Pointer to guest page data structure, NULL if failed.
596  */
597 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
598                 struct intel_vgpu *vgpu, unsigned long gfn)
599 {
600         struct intel_vgpu_guest_page *p;
601
602         hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
603                 p, node, gfn) {
604                 if (p->gfn == gfn)
605                         return p;
606         }
607         return NULL;
608 }
609
610 static inline int init_shadow_page(struct intel_vgpu *vgpu,
611                 struct intel_vgpu_shadow_page *p, int type)
612 {
613         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
614         dma_addr_t daddr;
615
616         daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
617         if (dma_mapping_error(kdev, daddr)) {
618                 gvt_vgpu_err("fail to map dma addr\n");
619                 return -EINVAL;
620         }
621
622         p->vaddr = page_address(p->page);
623         p->type = type;
624
625         INIT_HLIST_NODE(&p->node);
626
627         p->mfn = daddr >> GTT_PAGE_SHIFT;
628         hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
629         return 0;
630 }
631
632 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
633                 struct intel_vgpu_shadow_page *p)
634 {
635         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
636
637         dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
638                         PCI_DMA_BIDIRECTIONAL);
639
640         if (!hlist_unhashed(&p->node))
641                 hash_del(&p->node);
642 }
643
644 static inline struct intel_vgpu_shadow_page *find_shadow_page(
645                 struct intel_vgpu *vgpu, unsigned long mfn)
646 {
647         struct intel_vgpu_shadow_page *p;
648
649         hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
650                 p, node, mfn) {
651                 if (p->mfn == mfn)
652                         return p;
653         }
654         return NULL;
655 }
656
657 #define guest_page_to_ppgtt_spt(ptr) \
658         container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
659
660 #define shadow_page_to_ppgtt_spt(ptr) \
661         container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
662
663 static void *alloc_spt(gfp_t gfp_mask)
664 {
665         struct intel_vgpu_ppgtt_spt *spt;
666
667         spt = kzalloc(sizeof(*spt), gfp_mask);
668         if (!spt)
669                 return NULL;
670
671         spt->shadow_page.page = alloc_page(gfp_mask);
672         if (!spt->shadow_page.page) {
673                 kfree(spt);
674                 return NULL;
675         }
676         return spt;
677 }
678
679 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
680 {
681         __free_page(spt->shadow_page.page);
682         kfree(spt);
683 }
684
685 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
686 {
687         trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
688
689         clean_shadow_page(spt->vgpu, &spt->shadow_page);
690         intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
691         list_del_init(&spt->post_shadow_list);
692
693         free_spt(spt);
694 }
695
696 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
697 {
698         struct hlist_node *n;
699         struct intel_vgpu_shadow_page *sp;
700         int i;
701
702         hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
703                 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
704 }
705
706 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
707                 u64 pa, void *p_data, int bytes);
708
709 static int ppgtt_write_protection_handler(void *gp, u64 pa,
710                 void *p_data, int bytes)
711 {
712         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
713         int ret;
714
715         if (bytes != 4 && bytes != 8)
716                 return -EINVAL;
717
718         if (!gpt->writeprotection)
719                 return -EINVAL;
720
721         ret = ppgtt_handle_guest_write_page_table_bytes(gp,
722                 pa, p_data, bytes);
723         if (ret)
724                 return ret;
725         return ret;
726 }
727
728 static int reclaim_one_mm(struct intel_gvt *gvt);
729
730 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
731                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
732 {
733         struct intel_vgpu_ppgtt_spt *spt = NULL;
734         int ret;
735
736 retry:
737         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
738         if (!spt) {
739                 if (reclaim_one_mm(vgpu->gvt))
740                         goto retry;
741
742                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
743                 return ERR_PTR(-ENOMEM);
744         }
745
746         spt->vgpu = vgpu;
747         spt->guest_page_type = type;
748         atomic_set(&spt->refcount, 1);
749         INIT_LIST_HEAD(&spt->post_shadow_list);
750
751         /*
752          * TODO: guest page type may be different with shadow page type,
753          *       when we support PSE page in future.
754          */
755         ret = init_shadow_page(vgpu, &spt->shadow_page, type);
756         if (ret) {
757                 gvt_vgpu_err("fail to initialize shadow page for spt\n");
758                 goto err;
759         }
760
761         ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
762                         gfn, ppgtt_write_protection_handler, NULL);
763         if (ret) {
764                 gvt_vgpu_err("fail to initialize guest page for spt\n");
765                 goto err;
766         }
767
768         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
769         return spt;
770 err:
771         ppgtt_free_shadow_page(spt);
772         return ERR_PTR(ret);
773 }
774
775 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
776                 struct intel_vgpu *vgpu, unsigned long mfn)
777 {
778         struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
779
780         if (p)
781                 return shadow_page_to_ppgtt_spt(p);
782
783         gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
784         return NULL;
785 }
786
787 #define pt_entry_size_shift(spt) \
788         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
789
790 #define pt_entries(spt) \
791         (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
792
793 #define for_each_present_guest_entry(spt, e, i) \
794         for (i = 0; i < pt_entries(spt); i++) \
795         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
796                 ppgtt_get_guest_entry(spt, e, i)))
797
798 #define for_each_present_shadow_entry(spt, e, i) \
799         for (i = 0; i < pt_entries(spt); i++) \
800         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
801                 ppgtt_get_shadow_entry(spt, e, i)))
802
803 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
804 {
805         int v = atomic_read(&spt->refcount);
806
807         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
808
809         atomic_inc(&spt->refcount);
810 }
811
812 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
813
814 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
815                 struct intel_gvt_gtt_entry *e)
816 {
817         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
818         struct intel_vgpu_ppgtt_spt *s;
819         intel_gvt_gtt_type_t cur_pt_type;
820
821         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
822                 return -EINVAL;
823
824         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
825                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
826                 cur_pt_type = get_next_pt_type(e->type) + 1;
827                 if (ops->get_pfn(e) ==
828                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
829                         return 0;
830         }
831         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
832         if (!s) {
833                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
834                                 ops->get_pfn(e));
835                 return -ENXIO;
836         }
837         return ppgtt_invalidate_shadow_page(s);
838 }
839
840 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
841 {
842         struct intel_vgpu *vgpu = spt->vgpu;
843         struct intel_gvt_gtt_entry e;
844         unsigned long index;
845         int ret;
846         int v = atomic_read(&spt->refcount);
847
848         trace_spt_change(spt->vgpu->id, "die", spt,
849                         spt->guest_page.gfn, spt->shadow_page.type);
850
851         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
852
853         if (atomic_dec_return(&spt->refcount) > 0)
854                 return 0;
855
856         if (gtt_type_is_pte_pt(spt->shadow_page.type))
857                 goto release;
858
859         for_each_present_shadow_entry(spt, &e, index) {
860                 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
861                         gvt_vgpu_err("GVT doesn't support pse bit for now\n");
862                         return -EINVAL;
863                 }
864                 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
865                                 spt->vgpu, &e);
866                 if (ret)
867                         goto fail;
868         }
869 release:
870         trace_spt_change(spt->vgpu->id, "release", spt,
871                         spt->guest_page.gfn, spt->shadow_page.type);
872         ppgtt_free_shadow_page(spt);
873         return 0;
874 fail:
875         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
876                         spt, e.val64, e.type);
877         return ret;
878 }
879
880 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
881
882 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
883                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
884 {
885         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
886         struct intel_vgpu_ppgtt_spt *s = NULL;
887         struct intel_vgpu_guest_page *g;
888         int ret;
889
890         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
891                 ret = -EINVAL;
892                 goto fail;
893         }
894
895         g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
896         if (g) {
897                 s = guest_page_to_ppgtt_spt(g);
898                 ppgtt_get_shadow_page(s);
899         } else {
900                 int type = get_next_pt_type(we->type);
901
902                 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
903                 if (IS_ERR(s)) {
904                         ret = PTR_ERR(s);
905                         goto fail;
906                 }
907
908                 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
909                 if (ret)
910                         goto fail;
911
912                 ret = ppgtt_populate_shadow_page(s);
913                 if (ret)
914                         goto fail;
915
916                 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
917                         s->shadow_page.type);
918         }
919         return s;
920 fail:
921         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
922                         s, we->val64, we->type);
923         return ERR_PTR(ret);
924 }
925
926 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
927                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
928 {
929         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
930
931         se->type = ge->type;
932         se->val64 = ge->val64;
933
934         ops->set_pfn(se, s->shadow_page.mfn);
935 }
936
937 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
938 {
939         struct intel_vgpu *vgpu = spt->vgpu;
940         struct intel_vgpu_ppgtt_spt *s;
941         struct intel_gvt_gtt_entry se, ge;
942         unsigned long i;
943         int ret;
944
945         trace_spt_change(spt->vgpu->id, "born", spt,
946                         spt->guest_page.gfn, spt->shadow_page.type);
947
948         if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
949                 for_each_present_guest_entry(spt, &ge, i) {
950                         ret = gtt_entry_p2m(vgpu, &ge, &se);
951                         if (ret)
952                                 goto fail;
953                         ppgtt_set_shadow_entry(spt, &se, i);
954                 }
955                 return 0;
956         }
957
958         for_each_present_guest_entry(spt, &ge, i) {
959                 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
960                         gvt_vgpu_err("GVT doesn't support pse bit now\n");
961                         ret = -EINVAL;
962                         goto fail;
963                 }
964
965                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
966                 if (IS_ERR(s)) {
967                         ret = PTR_ERR(s);
968                         goto fail;
969                 }
970                 ppgtt_get_shadow_entry(spt, &se, i);
971                 ppgtt_generate_shadow_entry(&se, s, &ge);
972                 ppgtt_set_shadow_entry(spt, &se, i);
973         }
974         return 0;
975 fail:
976         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
977                         spt, ge.val64, ge.type);
978         return ret;
979 }
980
981 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
982                 unsigned long index)
983 {
984         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
985         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
986         struct intel_vgpu *vgpu = spt->vgpu;
987         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988         struct intel_gvt_gtt_entry e;
989         int ret;
990
991         ppgtt_get_shadow_entry(spt, &e, index);
992
993         trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
994                          index);
995
996         if (!ops->test_present(&e))
997                 return 0;
998
999         if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1000                 return 0;
1001
1002         if (gtt_type_is_pt(get_next_pt_type(e.type))) {
1003                 struct intel_vgpu_ppgtt_spt *s =
1004                         ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
1005                 if (!s) {
1006                         gvt_vgpu_err("fail to find guest page\n");
1007                         ret = -ENXIO;
1008                         goto fail;
1009                 }
1010                 ret = ppgtt_invalidate_shadow_page(s);
1011                 if (ret)
1012                         goto fail;
1013         }
1014         ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
1015         ppgtt_set_shadow_entry(spt, &e, index);
1016         return 0;
1017 fail:
1018         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1019                         spt, e.val64, e.type);
1020         return ret;
1021 }
1022
1023 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1024                 struct intel_gvt_gtt_entry *we, unsigned long index)
1025 {
1026         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1027         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1028         struct intel_vgpu *vgpu = spt->vgpu;
1029         struct intel_gvt_gtt_entry m;
1030         struct intel_vgpu_ppgtt_spt *s;
1031         int ret;
1032
1033         trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1034                 we->val64, index);
1035
1036         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1037                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1038                 if (IS_ERR(s)) {
1039                         ret = PTR_ERR(s);
1040                         goto fail;
1041                 }
1042                 ppgtt_get_shadow_entry(spt, &m, index);
1043                 ppgtt_generate_shadow_entry(&m, s, we);
1044                 ppgtt_set_shadow_entry(spt, &m, index);
1045         } else {
1046                 ret = gtt_entry_p2m(vgpu, we, &m);
1047                 if (ret)
1048                         goto fail;
1049                 ppgtt_set_shadow_entry(spt, &m, index);
1050         }
1051         return 0;
1052 fail:
1053         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1054                 spt, we->val64, we->type);
1055         return ret;
1056 }
1057
1058 static int sync_oos_page(struct intel_vgpu *vgpu,
1059                 struct intel_vgpu_oos_page *oos_page)
1060 {
1061         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1062         struct intel_gvt *gvt = vgpu->gvt;
1063         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1064         struct intel_vgpu_ppgtt_spt *spt =
1065                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1066         struct intel_gvt_gtt_entry old, new, m;
1067         int index;
1068         int ret;
1069
1070         trace_oos_change(vgpu->id, "sync", oos_page->id,
1071                         oos_page->guest_page, spt->guest_page_type);
1072
1073         old.type = new.type = get_entry_type(spt->guest_page_type);
1074         old.val64 = new.val64 = 0;
1075
1076         for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1077                 index++) {
1078                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1079                 ops->get_entry(NULL, &new, index, true,
1080                         oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1081
1082                 if (old.val64 == new.val64
1083                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1084                         continue;
1085
1086                 trace_oos_sync(vgpu->id, oos_page->id,
1087                                 oos_page->guest_page, spt->guest_page_type,
1088                                 new.val64, index);
1089
1090                 ret = gtt_entry_p2m(vgpu, &new, &m);
1091                 if (ret)
1092                         return ret;
1093
1094                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1095                 ppgtt_set_shadow_entry(spt, &m, index);
1096         }
1097
1098         oos_page->guest_page->write_cnt = 0;
1099         list_del_init(&spt->post_shadow_list);
1100         return 0;
1101 }
1102
1103 static int detach_oos_page(struct intel_vgpu *vgpu,
1104                 struct intel_vgpu_oos_page *oos_page)
1105 {
1106         struct intel_gvt *gvt = vgpu->gvt;
1107         struct intel_vgpu_ppgtt_spt *spt =
1108                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1109
1110         trace_oos_change(vgpu->id, "detach", oos_page->id,
1111                         oos_page->guest_page, spt->guest_page_type);
1112
1113         oos_page->guest_page->write_cnt = 0;
1114         oos_page->guest_page->oos_page = NULL;
1115         oos_page->guest_page = NULL;
1116
1117         list_del_init(&oos_page->vm_list);
1118         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1119
1120         return 0;
1121 }
1122
1123 static int attach_oos_page(struct intel_vgpu *vgpu,
1124                 struct intel_vgpu_oos_page *oos_page,
1125                 struct intel_vgpu_guest_page *gpt)
1126 {
1127         struct intel_gvt *gvt = vgpu->gvt;
1128         int ret;
1129
1130         ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1131                 oos_page->mem, GTT_PAGE_SIZE);
1132         if (ret)
1133                 return ret;
1134
1135         oos_page->guest_page = gpt;
1136         gpt->oos_page = oos_page;
1137
1138         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1139
1140         trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1141                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1142         return 0;
1143 }
1144
1145 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1146                 struct intel_vgpu_guest_page *gpt)
1147 {
1148         int ret;
1149
1150         ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1151         if (ret)
1152                 return ret;
1153
1154         trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1155                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1156
1157         list_del_init(&gpt->oos_page->vm_list);
1158         return sync_oos_page(vgpu, gpt->oos_page);
1159 }
1160
1161 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1162                 struct intel_vgpu_guest_page *gpt)
1163 {
1164         struct intel_gvt *gvt = vgpu->gvt;
1165         struct intel_gvt_gtt *gtt = &gvt->gtt;
1166         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1167         int ret;
1168
1169         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1170
1171         if (list_empty(&gtt->oos_page_free_list_head)) {
1172                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1173                         struct intel_vgpu_oos_page, list);
1174                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1175                 if (ret)
1176                         return ret;
1177                 ret = detach_oos_page(vgpu, oos_page);
1178                 if (ret)
1179                         return ret;
1180         } else
1181                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1182                         struct intel_vgpu_oos_page, list);
1183         return attach_oos_page(vgpu, oos_page, gpt);
1184 }
1185
1186 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1187                 struct intel_vgpu_guest_page *gpt)
1188 {
1189         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1190
1191         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1192                 return -EINVAL;
1193
1194         trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1195                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1196
1197         list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1198         return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1199 }
1200
1201 /**
1202  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1203  * @vgpu: a vGPU
1204  *
1205  * This function is called before submitting a guest workload to host,
1206  * to sync all the out-of-synced shadow for vGPU
1207  *
1208  * Returns:
1209  * Zero on success, negative error code if failed.
1210  */
1211 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1212 {
1213         struct list_head *pos, *n;
1214         struct intel_vgpu_oos_page *oos_page;
1215         int ret;
1216
1217         if (!enable_out_of_sync)
1218                 return 0;
1219
1220         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1221                 oos_page = container_of(pos,
1222                                 struct intel_vgpu_oos_page, vm_list);
1223                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1224                 if (ret)
1225                         return ret;
1226         }
1227         return 0;
1228 }
1229
1230 /*
1231  * The heart of PPGTT shadow page table.
1232  */
1233 static int ppgtt_handle_guest_write_page_table(
1234                 struct intel_vgpu_guest_page *gpt,
1235                 struct intel_gvt_gtt_entry *we, unsigned long index)
1236 {
1237         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1238         struct intel_vgpu *vgpu = spt->vgpu;
1239         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1240
1241         int ret;
1242         int new_present;
1243
1244         new_present = ops->test_present(we);
1245
1246         ret = ppgtt_handle_guest_entry_removal(gpt, index);
1247         if (ret)
1248                 goto fail;
1249
1250         if (new_present) {
1251                 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1252                 if (ret)
1253                         goto fail;
1254         }
1255         return 0;
1256 fail:
1257         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1258                         spt, we->val64, we->type);
1259         return ret;
1260 }
1261
1262 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1263 {
1264         return enable_out_of_sync
1265                 && gtt_type_is_pte_pt(
1266                         guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1267                 && gpt->write_cnt >= 2;
1268 }
1269
1270 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1271                 unsigned long index)
1272 {
1273         set_bit(index, spt->post_shadow_bitmap);
1274         if (!list_empty(&spt->post_shadow_list))
1275                 return;
1276
1277         list_add_tail(&spt->post_shadow_list,
1278                         &spt->vgpu->gtt.post_shadow_list_head);
1279 }
1280
1281 /**
1282  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1283  * @vgpu: a vGPU
1284  *
1285  * This function is called before submitting a guest workload to host,
1286  * to flush all the post shadows for a vGPU.
1287  *
1288  * Returns:
1289  * Zero on success, negative error code if failed.
1290  */
1291 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1292 {
1293         struct list_head *pos, *n;
1294         struct intel_vgpu_ppgtt_spt *spt;
1295         struct intel_gvt_gtt_entry ge;
1296         unsigned long index;
1297         int ret;
1298
1299         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1300                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1301                                 post_shadow_list);
1302
1303                 for_each_set_bit(index, spt->post_shadow_bitmap,
1304                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1305                         ppgtt_get_guest_entry(spt, &ge, index);
1306
1307                         ret = ppgtt_handle_guest_write_page_table(
1308                                         &spt->guest_page, &ge, index);
1309                         if (ret)
1310                                 return ret;
1311                         clear_bit(index, spt->post_shadow_bitmap);
1312                 }
1313                 list_del_init(&spt->post_shadow_list);
1314         }
1315         return 0;
1316 }
1317
1318 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1319                 u64 pa, void *p_data, int bytes)
1320 {
1321         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1322         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1323         struct intel_vgpu *vgpu = spt->vgpu;
1324         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1325         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1326         struct intel_gvt_gtt_entry we;
1327         unsigned long index;
1328         int ret;
1329
1330         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1331
1332         ppgtt_get_guest_entry(spt, &we, index);
1333
1334         ops->test_pse(&we);
1335
1336         if (bytes == info->gtt_entry_size) {
1337                 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1338                 if (ret)
1339                         return ret;
1340         } else {
1341                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1342                         ret = ppgtt_handle_guest_entry_removal(gpt, index);
1343                         if (ret)
1344                                 return ret;
1345                 }
1346
1347                 ppgtt_set_post_shadow(spt, index);
1348         }
1349
1350         if (!enable_out_of_sync)
1351                 return 0;
1352
1353         gpt->write_cnt++;
1354
1355         if (gpt->oos_page)
1356                 ops->set_entry(gpt->oos_page->mem, &we, index,
1357                                 false, 0, vgpu);
1358
1359         if (can_do_out_of_sync(gpt)) {
1360                 if (!gpt->oos_page)
1361                         ppgtt_allocate_oos_page(vgpu, gpt);
1362
1363                 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1364                 if (ret < 0)
1365                         return ret;
1366         }
1367         return 0;
1368 }
1369
1370 /*
1371  * mm page table allocation policy for bdw+
1372  *  - for ggtt, only virtual page table will be allocated.
1373  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1374  */
1375 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1376 {
1377         struct intel_vgpu *vgpu = mm->vgpu;
1378         struct intel_gvt *gvt = vgpu->gvt;
1379         const struct intel_gvt_device_info *info = &gvt->device_info;
1380         void *mem;
1381
1382         if (mm->type == INTEL_GVT_MM_PPGTT) {
1383                 mm->page_table_entry_cnt = 4;
1384                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1385                         info->gtt_entry_size;
1386                 mem = kzalloc(mm->has_shadow_page_table ?
1387                         mm->page_table_entry_size * 2
1388                                 : mm->page_table_entry_size, GFP_KERNEL);
1389                 if (!mem)
1390                         return -ENOMEM;
1391                 mm->virtual_page_table = mem;
1392                 if (!mm->has_shadow_page_table)
1393                         return 0;
1394                 mm->shadow_page_table = mem + mm->page_table_entry_size;
1395         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1396                 mm->page_table_entry_cnt =
1397                         (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1398                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1399                         info->gtt_entry_size;
1400                 mem = vzalloc(mm->page_table_entry_size);
1401                 if (!mem)
1402                         return -ENOMEM;
1403                 mm->virtual_page_table = mem;
1404         }
1405         return 0;
1406 }
1407
1408 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1409 {
1410         if (mm->type == INTEL_GVT_MM_PPGTT) {
1411                 kfree(mm->virtual_page_table);
1412         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1413                 if (mm->virtual_page_table)
1414                         vfree(mm->virtual_page_table);
1415         }
1416         mm->virtual_page_table = mm->shadow_page_table = NULL;
1417 }
1418
1419 static void invalidate_mm(struct intel_vgpu_mm *mm)
1420 {
1421         struct intel_vgpu *vgpu = mm->vgpu;
1422         struct intel_gvt *gvt = vgpu->gvt;
1423         struct intel_gvt_gtt *gtt = &gvt->gtt;
1424         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1425         struct intel_gvt_gtt_entry se;
1426         int i;
1427
1428         if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1429                 return;
1430
1431         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1432                 ppgtt_get_shadow_root_entry(mm, &se, i);
1433                 if (!ops->test_present(&se))
1434                         continue;
1435                 ppgtt_invalidate_shadow_page_by_shadow_entry(
1436                                 vgpu, &se);
1437                 se.val64 = 0;
1438                 ppgtt_set_shadow_root_entry(mm, &se, i);
1439
1440                 trace_gpt_change(vgpu->id, "destroy root pointer",
1441                                 NULL, se.type, se.val64, i);
1442         }
1443         mm->shadowed = false;
1444 }
1445
1446 /**
1447  * intel_vgpu_destroy_mm - destroy a mm object
1448  * @mm: a kref object
1449  *
1450  * This function is used to destroy a mm object for vGPU
1451  *
1452  */
1453 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1454 {
1455         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1456         struct intel_vgpu *vgpu = mm->vgpu;
1457         struct intel_gvt *gvt = vgpu->gvt;
1458         struct intel_gvt_gtt *gtt = &gvt->gtt;
1459
1460         if (!mm->initialized)
1461                 goto out;
1462
1463         list_del(&mm->list);
1464         list_del(&mm->lru_list);
1465
1466         if (mm->has_shadow_page_table)
1467                 invalidate_mm(mm);
1468
1469         gtt->mm_free_page_table(mm);
1470 out:
1471         kfree(mm);
1472 }
1473
1474 static int shadow_mm(struct intel_vgpu_mm *mm)
1475 {
1476         struct intel_vgpu *vgpu = mm->vgpu;
1477         struct intel_gvt *gvt = vgpu->gvt;
1478         struct intel_gvt_gtt *gtt = &gvt->gtt;
1479         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1480         struct intel_vgpu_ppgtt_spt *spt;
1481         struct intel_gvt_gtt_entry ge, se;
1482         int i;
1483         int ret;
1484
1485         if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1486                 return 0;
1487
1488         mm->shadowed = true;
1489
1490         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1491                 ppgtt_get_guest_root_entry(mm, &ge, i);
1492                 if (!ops->test_present(&ge))
1493                         continue;
1494
1495                 trace_gpt_change(vgpu->id, __func__, NULL,
1496                                 ge.type, ge.val64, i);
1497
1498                 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1499                 if (IS_ERR(spt)) {
1500                         gvt_vgpu_err("fail to populate guest root pointer\n");
1501                         ret = PTR_ERR(spt);
1502                         goto fail;
1503                 }
1504                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1505                 ppgtt_set_shadow_root_entry(mm, &se, i);
1506
1507                 trace_gpt_change(vgpu->id, "populate root pointer",
1508                                 NULL, se.type, se.val64, i);
1509         }
1510         return 0;
1511 fail:
1512         invalidate_mm(mm);
1513         return ret;
1514 }
1515
1516 /**
1517  * intel_vgpu_create_mm - create a mm object for a vGPU
1518  * @vgpu: a vGPU
1519  * @mm_type: mm object type, should be PPGTT or GGTT
1520  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1521  *      to populate shadow later.
1522  * @page_table_level: describe the page table level of the mm object
1523  * @pde_base_index: pde root pointer base in GGTT MMIO.
1524  *
1525  * This function is used to create a mm object for a vGPU.
1526  *
1527  * Returns:
1528  * Zero on success, negative error code in pointer if failed.
1529  */
1530 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1531                 int mm_type, void *virtual_page_table, int page_table_level,
1532                 u32 pde_base_index)
1533 {
1534         struct intel_gvt *gvt = vgpu->gvt;
1535         struct intel_gvt_gtt *gtt = &gvt->gtt;
1536         struct intel_vgpu_mm *mm;
1537         int ret;
1538
1539         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1540         if (!mm) {
1541                 ret = -ENOMEM;
1542                 goto fail;
1543         }
1544
1545         mm->type = mm_type;
1546
1547         if (page_table_level == 1)
1548                 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1549         else if (page_table_level == 3)
1550                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1551         else if (page_table_level == 4)
1552                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1553         else {
1554                 WARN_ON(1);
1555                 ret = -EINVAL;
1556                 goto fail;
1557         }
1558
1559         mm->page_table_level = page_table_level;
1560         mm->pde_base_index = pde_base_index;
1561
1562         mm->vgpu = vgpu;
1563         mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1564
1565         kref_init(&mm->ref);
1566         atomic_set(&mm->pincount, 0);
1567         INIT_LIST_HEAD(&mm->list);
1568         INIT_LIST_HEAD(&mm->lru_list);
1569         list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1570
1571         ret = gtt->mm_alloc_page_table(mm);
1572         if (ret) {
1573                 gvt_vgpu_err("fail to allocate page table for mm\n");
1574                 goto fail;
1575         }
1576
1577         mm->initialized = true;
1578
1579         if (virtual_page_table)
1580                 memcpy(mm->virtual_page_table, virtual_page_table,
1581                                 mm->page_table_entry_size);
1582
1583         if (mm->has_shadow_page_table) {
1584                 ret = shadow_mm(mm);
1585                 if (ret)
1586                         goto fail;
1587                 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1588         }
1589         return mm;
1590 fail:
1591         gvt_vgpu_err("fail to create mm\n");
1592         if (mm)
1593                 intel_gvt_mm_unreference(mm);
1594         return ERR_PTR(ret);
1595 }
1596
1597 /**
1598  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1599  * @mm: a vGPU mm object
1600  *
1601  * This function is called when user doesn't want to use a vGPU mm object
1602  */
1603 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1604 {
1605         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1606                 return;
1607
1608         atomic_dec(&mm->pincount);
1609 }
1610
1611 /**
1612  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1613  * @vgpu: a vGPU
1614  *
1615  * This function is called when user wants to use a vGPU mm object. If this
1616  * mm object hasn't been shadowed yet, the shadow will be populated at this
1617  * time.
1618  *
1619  * Returns:
1620  * Zero on success, negative error code if failed.
1621  */
1622 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1623 {
1624         int ret;
1625
1626         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1627                 return 0;
1628
1629         atomic_inc(&mm->pincount);
1630
1631         if (!mm->shadowed) {
1632                 ret = shadow_mm(mm);
1633                 if (ret)
1634                         return ret;
1635         }
1636
1637         list_del_init(&mm->lru_list);
1638         list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1639         return 0;
1640 }
1641
1642 static int reclaim_one_mm(struct intel_gvt *gvt)
1643 {
1644         struct intel_vgpu_mm *mm;
1645         struct list_head *pos, *n;
1646
1647         list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1648                 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1649
1650                 if (mm->type != INTEL_GVT_MM_PPGTT)
1651                         continue;
1652                 if (atomic_read(&mm->pincount))
1653                         continue;
1654
1655                 list_del_init(&mm->lru_list);
1656                 invalidate_mm(mm);
1657                 return 1;
1658         }
1659         return 0;
1660 }
1661
1662 /*
1663  * GMA translation APIs.
1664  */
1665 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1666                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1667 {
1668         struct intel_vgpu *vgpu = mm->vgpu;
1669         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1670         struct intel_vgpu_ppgtt_spt *s;
1671
1672         if (WARN_ON(!mm->has_shadow_page_table))
1673                 return -EINVAL;
1674
1675         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1676         if (!s)
1677                 return -ENXIO;
1678
1679         if (!guest)
1680                 ppgtt_get_shadow_entry(s, e, index);
1681         else
1682                 ppgtt_get_guest_entry(s, e, index);
1683         return 0;
1684 }
1685
1686 /**
1687  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1688  * @mm: mm object. could be a PPGTT or GGTT mm object
1689  * @gma: graphics memory address in this mm object
1690  *
1691  * This function is used to translate a graphics memory address in specific
1692  * graphics memory space to guest physical address.
1693  *
1694  * Returns:
1695  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1696  */
1697 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1698 {
1699         struct intel_vgpu *vgpu = mm->vgpu;
1700         struct intel_gvt *gvt = vgpu->gvt;
1701         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1702         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1703         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1704         unsigned long gma_index[4];
1705         struct intel_gvt_gtt_entry e;
1706         int i, index;
1707         int ret;
1708
1709         if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1710                 return INTEL_GVT_INVALID_ADDR;
1711
1712         if (mm->type == INTEL_GVT_MM_GGTT) {
1713                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1714                         goto err;
1715
1716                 ggtt_get_guest_entry(mm, &e,
1717                         gma_ops->gma_to_ggtt_pte_index(gma));
1718                 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1719                         + (gma & ~GTT_PAGE_MASK);
1720
1721                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1722                 return gpa;
1723         }
1724
1725         switch (mm->page_table_level) {
1726         case 4:
1727                 ppgtt_get_shadow_root_entry(mm, &e, 0);
1728                 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1729                 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1730                 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1731                 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1732                 index = 4;
1733                 break;
1734         case 3:
1735                 ppgtt_get_shadow_root_entry(mm, &e,
1736                                 gma_ops->gma_to_l3_pdp_index(gma));
1737                 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1738                 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1739                 index = 2;
1740                 break;
1741         case 2:
1742                 ppgtt_get_shadow_root_entry(mm, &e,
1743                                 gma_ops->gma_to_pde_index(gma));
1744                 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1745                 index = 1;
1746                 break;
1747         default:
1748                 WARN_ON(1);
1749                 goto err;
1750         }
1751
1752         /* walk into the shadow page table and get gpa from guest entry */
1753         for (i = 0; i < index; i++) {
1754                 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1755                         (i == index - 1));
1756                 if (ret)
1757                         goto err;
1758         }
1759
1760         gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1761                 + (gma & ~GTT_PAGE_MASK);
1762
1763         trace_gma_translate(vgpu->id, "ppgtt", 0,
1764                         mm->page_table_level, gma, gpa);
1765         return gpa;
1766 err:
1767         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1768         return INTEL_GVT_INVALID_ADDR;
1769 }
1770
1771 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1772         unsigned int off, void *p_data, unsigned int bytes)
1773 {
1774         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1775         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1776         unsigned long index = off >> info->gtt_entry_size_shift;
1777         struct intel_gvt_gtt_entry e;
1778
1779         if (bytes != 4 && bytes != 8)
1780                 return -EINVAL;
1781
1782         ggtt_get_guest_entry(ggtt_mm, &e, index);
1783         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1784                         bytes);
1785         return 0;
1786 }
1787
1788 /**
1789  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1790  * @vgpu: a vGPU
1791  * @off: register offset
1792  * @p_data: data will be returned to guest
1793  * @bytes: data length
1794  *
1795  * This function is used to emulate the GTT MMIO register read
1796  *
1797  * Returns:
1798  * Zero on success, error code if failed.
1799  */
1800 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1801         void *p_data, unsigned int bytes)
1802 {
1803         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1804         int ret;
1805
1806         if (bytes != 4 && bytes != 8)
1807                 return -EINVAL;
1808
1809         off -= info->gtt_start_offset;
1810         ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1811         return ret;
1812 }
1813
1814 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1815         void *p_data, unsigned int bytes)
1816 {
1817         struct intel_gvt *gvt = vgpu->gvt;
1818         const struct intel_gvt_device_info *info = &gvt->device_info;
1819         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1820         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1821         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1822         unsigned long gma;
1823         struct intel_gvt_gtt_entry e, m;
1824         int ret;
1825
1826         if (bytes != 4 && bytes != 8)
1827                 return -EINVAL;
1828
1829         gma = g_gtt_index << GTT_PAGE_SHIFT;
1830
1831         /* the VM may configure the whole GM space when ballooning is used */
1832         if (!vgpu_gmadr_is_valid(vgpu, gma))
1833                 return 0;
1834
1835         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1836
1837         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1838                         bytes);
1839
1840         if (ops->test_present(&e)) {
1841                 ret = gtt_entry_p2m(vgpu, &e, &m);
1842                 if (ret) {
1843                         gvt_vgpu_err("fail to translate guest gtt entry\n");
1844                         /* guest driver may read/write the entry when partial
1845                          * update the entry in this situation p2m will fail
1846                          * settting the shadow entry to point to a scratch page
1847                          */
1848                         ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1849                 }
1850         } else {
1851                 m = e;
1852                 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1853         }
1854
1855         ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1856         gtt_invalidate(gvt->dev_priv);
1857         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1858         return 0;
1859 }
1860
1861 /*
1862  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1863  * @vgpu: a vGPU
1864  * @off: register offset
1865  * @p_data: data from guest write
1866  * @bytes: data length
1867  *
1868  * This function is used to emulate the GTT MMIO register write
1869  *
1870  * Returns:
1871  * Zero on success, error code if failed.
1872  */
1873 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1874         void *p_data, unsigned int bytes)
1875 {
1876         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1877         int ret;
1878
1879         if (bytes != 4 && bytes != 8)
1880                 return -EINVAL;
1881
1882         off -= info->gtt_start_offset;
1883         ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1884         return ret;
1885 }
1886
1887 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1888                 intel_gvt_gtt_type_t type)
1889 {
1890         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1891         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1892         int page_entry_num = GTT_PAGE_SIZE >>
1893                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1894         void *scratch_pt;
1895         int i;
1896         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1897         dma_addr_t daddr;
1898
1899         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1900                 return -EINVAL;
1901
1902         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1903         if (!scratch_pt) {
1904                 gvt_vgpu_err("fail to allocate scratch page\n");
1905                 return -ENOMEM;
1906         }
1907
1908         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1909                         4096, PCI_DMA_BIDIRECTIONAL);
1910         if (dma_mapping_error(dev, daddr)) {
1911                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1912                 __free_page(virt_to_page(scratch_pt));
1913                 return -ENOMEM;
1914         }
1915         gtt->scratch_pt[type].page_mfn =
1916                 (unsigned long)(daddr >> GTT_PAGE_SHIFT);
1917         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1918         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1919                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1920
1921         /* Build the tree by full filled the scratch pt with the entries which
1922          * point to the next level scratch pt or scratch page. The
1923          * scratch_pt[type] indicate the scratch pt/scratch page used by the
1924          * 'type' pt.
1925          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1926          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1927          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1928          */
1929         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1930                 struct intel_gvt_gtt_entry se;
1931
1932                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1933                 se.type = get_entry_type(type - 1);
1934                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1935
1936                 /* The entry parameters like present/writeable/cache type
1937                  * set to the same as i915's scratch page tree.
1938                  */
1939                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1940                 if (type == GTT_TYPE_PPGTT_PDE_PT)
1941                         se.val64 |= PPAT_CACHED_INDEX;
1942
1943                 for (i = 0; i < page_entry_num; i++)
1944                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1945         }
1946
1947         return 0;
1948 }
1949
1950 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1951 {
1952         int i;
1953         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1954         dma_addr_t daddr;
1955
1956         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1957                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1958                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1959                                         GTT_PAGE_SHIFT);
1960                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1961                         __free_page(vgpu->gtt.scratch_pt[i].page);
1962                         vgpu->gtt.scratch_pt[i].page = NULL;
1963                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
1964                 }
1965         }
1966
1967         return 0;
1968 }
1969
1970 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1971 {
1972         int i, ret;
1973
1974         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1975                 ret = alloc_scratch_pages(vgpu, i);
1976                 if (ret)
1977                         goto err;
1978         }
1979
1980         return 0;
1981
1982 err:
1983         release_scratch_page_tree(vgpu);
1984         return ret;
1985 }
1986
1987 /**
1988  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1989  * @vgpu: a vGPU
1990  *
1991  * This function is used to initialize per-vGPU graphics memory virtualization
1992  * components.
1993  *
1994  * Returns:
1995  * Zero on success, error code if failed.
1996  */
1997 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1998 {
1999         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2000         struct intel_vgpu_mm *ggtt_mm;
2001
2002         hash_init(gtt->guest_page_hash_table);
2003         hash_init(gtt->shadow_page_hash_table);
2004
2005         INIT_LIST_HEAD(&gtt->mm_list_head);
2006         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2007         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2008
2009         intel_vgpu_reset_ggtt(vgpu);
2010
2011         ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2012                         NULL, 1, 0);
2013         if (IS_ERR(ggtt_mm)) {
2014                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2015                 return PTR_ERR(ggtt_mm);
2016         }
2017
2018         gtt->ggtt_mm = ggtt_mm;
2019
2020         return create_scratch_page_tree(vgpu);
2021 }
2022
2023 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2024 {
2025         struct list_head *pos, *n;
2026         struct intel_vgpu_mm *mm;
2027
2028         list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2029                 mm = container_of(pos, struct intel_vgpu_mm, list);
2030                 if (mm->type == type) {
2031                         vgpu->gvt->gtt.mm_free_page_table(mm);
2032                         list_del(&mm->list);
2033                         list_del(&mm->lru_list);
2034                         kfree(mm);
2035                 }
2036         }
2037 }
2038
2039 /**
2040  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2041  * @vgpu: a vGPU
2042  *
2043  * This function is used to clean up per-vGPU graphics memory virtualization
2044  * components.
2045  *
2046  * Returns:
2047  * Zero on success, error code if failed.
2048  */
2049 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2050 {
2051         ppgtt_free_all_shadow_page(vgpu);
2052         release_scratch_page_tree(vgpu);
2053
2054         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2055         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2056 }
2057
2058 static void clean_spt_oos(struct intel_gvt *gvt)
2059 {
2060         struct intel_gvt_gtt *gtt = &gvt->gtt;
2061         struct list_head *pos, *n;
2062         struct intel_vgpu_oos_page *oos_page;
2063
2064         WARN(!list_empty(&gtt->oos_page_use_list_head),
2065                 "someone is still using oos page\n");
2066
2067         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2068                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2069                 list_del(&oos_page->list);
2070                 kfree(oos_page);
2071         }
2072 }
2073
2074 static int setup_spt_oos(struct intel_gvt *gvt)
2075 {
2076         struct intel_gvt_gtt *gtt = &gvt->gtt;
2077         struct intel_vgpu_oos_page *oos_page;
2078         int i;
2079         int ret;
2080
2081         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2082         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2083
2084         for (i = 0; i < preallocated_oos_pages; i++) {
2085                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2086                 if (!oos_page) {
2087                         ret = -ENOMEM;
2088                         goto fail;
2089                 }
2090
2091                 INIT_LIST_HEAD(&oos_page->list);
2092                 INIT_LIST_HEAD(&oos_page->vm_list);
2093                 oos_page->id = i;
2094                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2095         }
2096
2097         gvt_dbg_mm("%d oos pages preallocated\n", i);
2098
2099         return 0;
2100 fail:
2101         clean_spt_oos(gvt);
2102         return ret;
2103 }
2104
2105 /**
2106  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2107  * @vgpu: a vGPU
2108  * @page_table_level: PPGTT page table level
2109  * @root_entry: PPGTT page table root pointers
2110  *
2111  * This function is used to find a PPGTT mm object from mm object pool
2112  *
2113  * Returns:
2114  * pointer to mm object on success, NULL if failed.
2115  */
2116 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2117                 int page_table_level, void *root_entry)
2118 {
2119         struct list_head *pos;
2120         struct intel_vgpu_mm *mm;
2121         u64 *src, *dst;
2122
2123         list_for_each(pos, &vgpu->gtt.mm_list_head) {
2124                 mm = container_of(pos, struct intel_vgpu_mm, list);
2125                 if (mm->type != INTEL_GVT_MM_PPGTT)
2126                         continue;
2127
2128                 if (mm->page_table_level != page_table_level)
2129                         continue;
2130
2131                 src = root_entry;
2132                 dst = mm->virtual_page_table;
2133
2134                 if (page_table_level == 3) {
2135                         if (src[0] == dst[0]
2136                                         && src[1] == dst[1]
2137                                         && src[2] == dst[2]
2138                                         && src[3] == dst[3])
2139                                 return mm;
2140                 } else {
2141                         if (src[0] == dst[0])
2142                                 return mm;
2143                 }
2144         }
2145         return NULL;
2146 }
2147
2148 /**
2149  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2150  * g2v notification
2151  * @vgpu: a vGPU
2152  * @page_table_level: PPGTT page table level
2153  *
2154  * This function is used to create a PPGTT mm object from a guest to GVT-g
2155  * notification.
2156  *
2157  * Returns:
2158  * Zero on success, negative error code if failed.
2159  */
2160 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2161                 int page_table_level)
2162 {
2163         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2164         struct intel_vgpu_mm *mm;
2165
2166         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2167                 return -EINVAL;
2168
2169         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2170         if (mm) {
2171                 intel_gvt_mm_reference(mm);
2172         } else {
2173                 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2174                                 pdp, page_table_level, 0);
2175                 if (IS_ERR(mm)) {
2176                         gvt_vgpu_err("fail to create mm\n");
2177                         return PTR_ERR(mm);
2178                 }
2179         }
2180         return 0;
2181 }
2182
2183 /**
2184  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2185  * g2v notification
2186  * @vgpu: a vGPU
2187  * @page_table_level: PPGTT page table level
2188  *
2189  * This function is used to create a PPGTT mm object from a guest to GVT-g
2190  * notification.
2191  *
2192  * Returns:
2193  * Zero on success, negative error code if failed.
2194  */
2195 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2196                 int page_table_level)
2197 {
2198         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2199         struct intel_vgpu_mm *mm;
2200
2201         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2202                 return -EINVAL;
2203
2204         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2205         if (!mm) {
2206                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2207                 return -EINVAL;
2208         }
2209         intel_gvt_mm_unreference(mm);
2210         return 0;
2211 }
2212
2213 /**
2214  * intel_gvt_init_gtt - initialize mm components of a GVT device
2215  * @gvt: GVT device
2216  *
2217  * This function is called at the initialization stage, to initialize
2218  * the mm components of a GVT device.
2219  *
2220  * Returns:
2221  * zero on success, negative error code if failed.
2222  */
2223 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2224 {
2225         int ret;
2226         void *page;
2227         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2228         dma_addr_t daddr;
2229
2230         gvt_dbg_core("init gtt\n");
2231
2232         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2233                 || IS_KABYLAKE(gvt->dev_priv)) {
2234                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2235                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2236                 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2237                 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2238         } else {
2239                 return -ENODEV;
2240         }
2241
2242         page = (void *)get_zeroed_page(GFP_KERNEL);
2243         if (!page) {
2244                 gvt_err("fail to allocate scratch ggtt page\n");
2245                 return -ENOMEM;
2246         }
2247
2248         daddr = dma_map_page(dev, virt_to_page(page), 0,
2249                         4096, PCI_DMA_BIDIRECTIONAL);
2250         if (dma_mapping_error(dev, daddr)) {
2251                 gvt_err("fail to dmamap scratch ggtt page\n");
2252                 __free_page(virt_to_page(page));
2253                 return -ENOMEM;
2254         }
2255         gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2256         gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2257
2258         if (enable_out_of_sync) {
2259                 ret = setup_spt_oos(gvt);
2260                 if (ret) {
2261                         gvt_err("fail to initialize SPT oos\n");
2262                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2263                         __free_page(gvt->gtt.scratch_ggtt_page);
2264                         return ret;
2265                 }
2266         }
2267         INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2268         return 0;
2269 }
2270
2271 /**
2272  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2273  * @gvt: GVT device
2274  *
2275  * This function is called at the driver unloading stage, to clean up the
2276  * the mm components of a GVT device.
2277  *
2278  */
2279 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2280 {
2281         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2282         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2283                                         GTT_PAGE_SHIFT);
2284
2285         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2286
2287         __free_page(gvt->gtt.scratch_ggtt_page);
2288
2289         if (enable_out_of_sync)
2290                 clean_spt_oos(gvt);
2291 }
2292
2293 /**
2294  * intel_vgpu_reset_ggtt - reset the GGTT entry
2295  * @vgpu: a vGPU
2296  *
2297  * This function is called at the vGPU create stage
2298  * to reset all the GGTT entries.
2299  *
2300  */
2301 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2302 {
2303         struct intel_gvt *gvt = vgpu->gvt;
2304         struct drm_i915_private *dev_priv = gvt->dev_priv;
2305         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2306         u32 index;
2307         u32 offset;
2308         u32 num_entries;
2309         struct intel_gvt_gtt_entry e;
2310
2311         memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2312         e.type = GTT_TYPE_GGTT_PTE;
2313         ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2314         e.val64 |= _PAGE_PRESENT;
2315
2316         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2317         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2318         for (offset = 0; offset < num_entries; offset++)
2319                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2320
2321         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2322         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2323         for (offset = 0; offset < num_entries; offset++)
2324                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2325
2326         gtt_invalidate(dev_priv);
2327 }
2328
2329 /**
2330  * intel_vgpu_reset_gtt - reset the all GTT related status
2331  * @vgpu: a vGPU
2332  * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
2333  *
2334  * This function is called from vfio core to reset reset all
2335  * GTT related status, including GGTT, PPGTT, scratch page.
2336  *
2337  */
2338 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
2339 {
2340         int i;
2341
2342         ppgtt_free_all_shadow_page(vgpu);
2343
2344         /* Shadow pages are only created when there is no page
2345          * table tracking data, so remove page tracking data after
2346          * removing the shadow pages.
2347          */
2348         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2349
2350         if (!dmlr)
2351                 return;
2352
2353         intel_vgpu_reset_ggtt(vgpu);
2354
2355         /* clear scratch page for security */
2356         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2357                 if (vgpu->gtt.scratch_pt[i].page != NULL)
2358                         memset(page_address(vgpu->gtt.scratch_pt[i].page),
2359                                 0, PAGE_SIZE);
2360         }
2361 }