drm/i915: Combine unbound/bound list tracking for objects
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gem / i915_gem_shrinker.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008-2015 Intel Corporation
5  */
6
7 #include <linux/oom.h>
8 #include <linux/sched/mm.h>
9 #include <linux/shmem_fs.h>
10 #include <linux/slab.h>
11 #include <linux/swap.h>
12 #include <linux/pci.h>
13 #include <linux/dma-buf.h>
14 #include <linux/vmalloc.h>
15 #include <drm/i915_drm.h>
16
17 #include "i915_trace.h"
18
19 static bool shrinker_lock(struct drm_i915_private *i915,
20                           unsigned int flags,
21                           bool *unlock)
22 {
23         struct mutex *m = &i915->drm.struct_mutex;
24
25         switch (mutex_trylock_recursive(m)) {
26         case MUTEX_TRYLOCK_RECURSIVE:
27                 *unlock = false;
28                 return true;
29
30         case MUTEX_TRYLOCK_FAILED:
31                 *unlock = false;
32                 if (flags & I915_SHRINK_ACTIVE &&
33                     mutex_lock_killable_nested(m, I915_MM_SHRINKER) == 0)
34                         *unlock = true;
35                 return *unlock;
36
37         case MUTEX_TRYLOCK_SUCCESS:
38                 *unlock = true;
39                 return true;
40         }
41
42         BUG();
43 }
44
45 static void shrinker_unlock(struct drm_i915_private *i915, bool unlock)
46 {
47         if (!unlock)
48                 return;
49
50         mutex_unlock(&i915->drm.struct_mutex);
51 }
52
53 static bool swap_available(void)
54 {
55         return get_nr_swap_pages() > 0;
56 }
57
58 static bool can_release_pages(struct drm_i915_gem_object *obj)
59 {
60         /* Consider only shrinkable ojects. */
61         if (!i915_gem_object_is_shrinkable(obj))
62                 return false;
63
64         /* Only report true if by unbinding the object and putting its pages
65          * we can actually make forward progress towards freeing physical
66          * pages.
67          *
68          * If the pages are pinned for any other reason than being bound
69          * to the GPU, simply unbinding from the GPU is not going to succeed
70          * in releasing our pin count on the pages themselves.
71          */
72         if (atomic_read(&obj->mm.pages_pin_count) > atomic_read(&obj->bind_count))
73                 return false;
74
75         /* If any vma are "permanently" pinned, it will prevent us from
76          * reclaiming the obj->mm.pages. We only allow scanout objects to claim
77          * a permanent pin, along with a few others like the context objects.
78          * To simplify the scan, and to avoid walking the list of vma under the
79          * object, we just check the count of its permanently pinned.
80          */
81         if (READ_ONCE(obj->pin_global))
82                 return false;
83
84         /* We can only return physical pages to the system if we can either
85          * discard the contents (because the user has marked them as being
86          * purgeable) or if we can move their contents out to swap.
87          */
88         return swap_available() || obj->mm.madv == I915_MADV_DONTNEED;
89 }
90
91 static bool unsafe_drop_pages(struct drm_i915_gem_object *obj)
92 {
93         if (i915_gem_object_unbind(obj) == 0)
94                 __i915_gem_object_put_pages(obj, I915_MM_SHRINKER);
95         return !i915_gem_object_has_pages(obj);
96 }
97
98 static void try_to_writeback(struct drm_i915_gem_object *obj,
99                              unsigned int flags)
100 {
101         switch (obj->mm.madv) {
102         case I915_MADV_DONTNEED:
103                 i915_gem_object_truncate(obj);
104         case __I915_MADV_PURGED:
105                 return;
106         }
107
108         if (flags & I915_SHRINK_WRITEBACK)
109                 i915_gem_object_writeback(obj);
110 }
111
112 /**
113  * i915_gem_shrink - Shrink buffer object caches
114  * @i915: i915 device
115  * @target: amount of memory to make available, in pages
116  * @nr_scanned: optional output for number of pages scanned (incremental)
117  * @flags: control flags for selecting cache types
118  *
119  * This function is the main interface to the shrinker. It will try to release
120  * up to @target pages of main memory backing storage from buffer objects.
121  * Selection of the specific caches can be done with @flags. This is e.g. useful
122  * when purgeable objects should be removed from caches preferentially.
123  *
124  * Note that it's not guaranteed that released amount is actually available as
125  * free system memory - the pages might still be in-used to due to other reasons
126  * (like cpu mmaps) or the mm core has reused them before we could grab them.
127  * Therefore code that needs to explicitly shrink buffer objects caches (e.g. to
128  * avoid deadlocks in memory reclaim) must fall back to i915_gem_shrink_all().
129  *
130  * Also note that any kind of pinning (both per-vma address space pins and
131  * backing storage pins at the buffer object level) result in the shrinker code
132  * having to skip the object.
133  *
134  * Returns:
135  * The number of pages of backing storage actually released.
136  */
137 unsigned long
138 i915_gem_shrink(struct drm_i915_private *i915,
139                 unsigned long target,
140                 unsigned long *nr_scanned,
141                 unsigned int shrink)
142 {
143         const struct {
144                 struct list_head *list;
145                 unsigned int bit;
146         } phases[] = {
147                 { &i915->mm.purge_list, ~0u },
148                 {
149                         &i915->mm.shrink_list,
150                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND
151                 },
152                 { NULL, 0 },
153         }, *phase;
154         intel_wakeref_t wakeref = 0;
155         unsigned long count = 0;
156         unsigned long scanned = 0;
157         bool unlock;
158
159         if (!shrinker_lock(i915, shrink, &unlock))
160                 return 0;
161
162         /*
163          * When shrinking the active list, also consider active contexts.
164          * Active contexts are pinned until they are retired, and so can
165          * not be simply unbound to retire and unpin their pages. To shrink
166          * the contexts, we must wait until the gpu is idle.
167          *
168          * We don't care about errors here; if we cannot wait upon the GPU,
169          * we will free as much as we can and hope to get a second chance.
170          */
171         if (shrink & I915_SHRINK_ACTIVE)
172                 i915_gem_wait_for_idle(i915,
173                                        I915_WAIT_LOCKED,
174                                        MAX_SCHEDULE_TIMEOUT);
175
176         trace_i915_gem_shrink(i915, target, shrink);
177         i915_retire_requests(i915);
178
179         /*
180          * Unbinding of objects will require HW access; Let us not wake the
181          * device just to recover a little memory. If absolutely necessary,
182          * we will force the wake during oom-notifier.
183          */
184         if (shrink & I915_SHRINK_BOUND) {
185                 wakeref = intel_runtime_pm_get_if_in_use(i915);
186                 if (!wakeref)
187                         shrink &= ~I915_SHRINK_BOUND;
188         }
189
190         /*
191          * As we may completely rewrite the (un)bound list whilst unbinding
192          * (due to retiring requests) we have to strictly process only
193          * one element of the list at the time, and recheck the list
194          * on every iteration.
195          *
196          * In particular, we must hold a reference whilst removing the
197          * object as we may end up waiting for and/or retiring the objects.
198          * This might release the final reference (held by the active list)
199          * and result in the object being freed from under us. This is
200          * similar to the precautions the eviction code must take whilst
201          * removing objects.
202          *
203          * Also note that although these lists do not hold a reference to
204          * the object we can safely grab one here: The final object
205          * unreferencing and the bound_list are both protected by the
206          * dev->struct_mutex and so we won't ever be able to observe an
207          * object on the bound_list with a reference count equals 0.
208          */
209         for (phase = phases; phase->list; phase++) {
210                 struct list_head still_in_list;
211                 struct drm_i915_gem_object *obj;
212                 unsigned long flags;
213
214                 if ((shrink & phase->bit) == 0)
215                         continue;
216
217                 INIT_LIST_HEAD(&still_in_list);
218
219                 /*
220                  * We serialize our access to unreferenced objects through
221                  * the use of the struct_mutex. While the objects are not
222                  * yet freed (due to RCU then a workqueue) we still want
223                  * to be able to shrink their pages, so they remain on
224                  * the unbound/bound list until actually freed.
225                  */
226                 spin_lock_irqsave(&i915->mm.obj_lock, flags);
227                 while (count < target &&
228                        (obj = list_first_entry_or_null(phase->list,
229                                                        typeof(*obj),
230                                                        mm.link))) {
231                         list_move_tail(&obj->mm.link, &still_in_list);
232
233                         if (shrink & I915_SHRINK_VMAPS &&
234                             !is_vmalloc_addr(obj->mm.mapping))
235                                 continue;
236
237                         if (!(shrink & I915_SHRINK_ACTIVE) &&
238                             (i915_gem_object_is_active(obj) ||
239                              i915_gem_object_is_framebuffer(obj)))
240                                 continue;
241
242                         if (!(shrink & I915_SHRINK_BOUND) &&
243                             atomic_read(&obj->bind_count))
244                                 continue;
245
246                         if (!can_release_pages(obj))
247                                 continue;
248
249                         spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
250
251                         if (unsafe_drop_pages(obj)) {
252                                 /* May arrive from get_pages on another bo */
253                                 mutex_lock_nested(&obj->mm.lock,
254                                                   I915_MM_SHRINKER);
255                                 if (!i915_gem_object_has_pages(obj)) {
256                                         try_to_writeback(obj, shrink);
257                                         count += obj->base.size >> PAGE_SHIFT;
258                                 }
259                                 mutex_unlock(&obj->mm.lock);
260                         }
261                         scanned += obj->base.size >> PAGE_SHIFT;
262
263                         spin_lock_irqsave(&i915->mm.obj_lock, flags);
264                 }
265                 list_splice_tail(&still_in_list, phase->list);
266                 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
267         }
268
269         if (shrink & I915_SHRINK_BOUND)
270                 intel_runtime_pm_put(i915, wakeref);
271
272         i915_retire_requests(i915);
273
274         shrinker_unlock(i915, unlock);
275
276         if (nr_scanned)
277                 *nr_scanned += scanned;
278         return count;
279 }
280
281 /**
282  * i915_gem_shrink_all - Shrink buffer object caches completely
283  * @i915: i915 device
284  *
285  * This is a simple wraper around i915_gem_shrink() to aggressively shrink all
286  * caches completely. It also first waits for and retires all outstanding
287  * requests to also be able to release backing storage for active objects.
288  *
289  * This should only be used in code to intentionally quiescent the gpu or as a
290  * last-ditch effort when memory seems to have run out.
291  *
292  * Returns:
293  * The number of pages of backing storage actually released.
294  */
295 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915)
296 {
297         intel_wakeref_t wakeref;
298         unsigned long freed = 0;
299
300         with_intel_runtime_pm(i915, wakeref) {
301                 freed = i915_gem_shrink(i915, -1UL, NULL,
302                                         I915_SHRINK_BOUND |
303                                         I915_SHRINK_UNBOUND |
304                                         I915_SHRINK_ACTIVE);
305         }
306
307         return freed;
308 }
309
310 static unsigned long
311 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
312 {
313         struct drm_i915_private *i915 =
314                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
315         unsigned long num_objects;
316         unsigned long count;
317
318         count = READ_ONCE(i915->mm.shrink_memory) >> PAGE_SHIFT;
319         num_objects = READ_ONCE(i915->mm.shrink_count);
320
321         /*
322          * Update our preferred vmscan batch size for the next pass.
323          * Our rough guess for an effective batch size is roughly 2
324          * available GEM objects worth of pages. That is we don't want
325          * the shrinker to fire, until it is worth the cost of freeing an
326          * entire GEM object.
327          */
328         if (num_objects) {
329                 unsigned long avg = 2 * count / num_objects;
330
331                 i915->mm.shrinker.batch =
332                         max((i915->mm.shrinker.batch + avg) >> 1,
333                             128ul /* default SHRINK_BATCH */);
334         }
335
336         return count;
337 }
338
339 static unsigned long
340 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
341 {
342         struct drm_i915_private *i915 =
343                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
344         unsigned long freed;
345         bool unlock;
346
347         sc->nr_scanned = 0;
348
349         if (!shrinker_lock(i915, 0, &unlock))
350                 return SHRINK_STOP;
351
352         freed = i915_gem_shrink(i915,
353                                 sc->nr_to_scan,
354                                 &sc->nr_scanned,
355                                 I915_SHRINK_BOUND |
356                                 I915_SHRINK_UNBOUND |
357                                 I915_SHRINK_WRITEBACK);
358         if (sc->nr_scanned < sc->nr_to_scan && current_is_kswapd()) {
359                 intel_wakeref_t wakeref;
360
361                 with_intel_runtime_pm(i915, wakeref) {
362                         freed += i915_gem_shrink(i915,
363                                                  sc->nr_to_scan - sc->nr_scanned,
364                                                  &sc->nr_scanned,
365                                                  I915_SHRINK_ACTIVE |
366                                                  I915_SHRINK_BOUND |
367                                                  I915_SHRINK_UNBOUND |
368                                                  I915_SHRINK_WRITEBACK);
369                 }
370         }
371
372         shrinker_unlock(i915, unlock);
373
374         return sc->nr_scanned ? freed : SHRINK_STOP;
375 }
376
377 static int
378 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
379 {
380         struct drm_i915_private *i915 =
381                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
382         struct drm_i915_gem_object *obj;
383         unsigned long unevictable, available, freed_pages;
384         intel_wakeref_t wakeref;
385         unsigned long flags;
386
387         freed_pages = 0;
388         with_intel_runtime_pm(i915, wakeref)
389                 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
390                                                I915_SHRINK_BOUND |
391                                                I915_SHRINK_UNBOUND |
392                                                I915_SHRINK_WRITEBACK);
393
394         /* Because we may be allocating inside our own driver, we cannot
395          * assert that there are no objects with pinned pages that are not
396          * being pointed to by hardware.
397          */
398         available = unevictable = 0;
399         spin_lock_irqsave(&i915->mm.obj_lock, flags);
400         list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
401                 if (!can_release_pages(obj))
402                         unevictable += obj->base.size >> PAGE_SHIFT;
403                 else
404                         available += obj->base.size >> PAGE_SHIFT;
405         }
406         spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
407
408         if (freed_pages || available)
409                 pr_info("Purging GPU memory, %lu pages freed, "
410                         "%lu pages still pinned, %lu pages left available.\n",
411                         freed_pages, unevictable, available);
412
413         *(unsigned long *)ptr += freed_pages;
414         return NOTIFY_DONE;
415 }
416
417 static int
418 i915_gem_shrinker_vmap(struct notifier_block *nb, unsigned long event, void *ptr)
419 {
420         struct drm_i915_private *i915 =
421                 container_of(nb, struct drm_i915_private, mm.vmap_notifier);
422         struct i915_vma *vma, *next;
423         unsigned long freed_pages = 0;
424         intel_wakeref_t wakeref;
425         bool unlock;
426
427         if (!shrinker_lock(i915, 0, &unlock))
428                 return NOTIFY_DONE;
429
430         /* Force everything onto the inactive lists */
431         if (i915_gem_wait_for_idle(i915,
432                                    I915_WAIT_LOCKED,
433                                    MAX_SCHEDULE_TIMEOUT))
434                 goto out;
435
436         with_intel_runtime_pm(i915, wakeref)
437                 freed_pages += i915_gem_shrink(i915, -1UL, NULL,
438                                                I915_SHRINK_BOUND |
439                                                I915_SHRINK_UNBOUND |
440                                                I915_SHRINK_VMAPS);
441
442         /* We also want to clear any cached iomaps as they wrap vmap */
443         mutex_lock(&i915->ggtt.vm.mutex);
444         list_for_each_entry_safe(vma, next,
445                                  &i915->ggtt.vm.bound_list, vm_link) {
446                 unsigned long count = vma->node.size >> PAGE_SHIFT;
447
448                 if (!vma->iomap || i915_vma_is_active(vma))
449                         continue;
450
451                 mutex_unlock(&i915->ggtt.vm.mutex);
452                 if (i915_vma_unbind(vma) == 0)
453                         freed_pages += count;
454                 mutex_lock(&i915->ggtt.vm.mutex);
455         }
456         mutex_unlock(&i915->ggtt.vm.mutex);
457
458 out:
459         shrinker_unlock(i915, unlock);
460
461         *(unsigned long *)ptr += freed_pages;
462         return NOTIFY_DONE;
463 }
464
465 /**
466  * i915_gem_shrinker_register - Register the i915 shrinker
467  * @i915: i915 device
468  *
469  * This function registers and sets up the i915 shrinker and OOM handler.
470  */
471 void i915_gem_shrinker_register(struct drm_i915_private *i915)
472 {
473         i915->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
474         i915->mm.shrinker.count_objects = i915_gem_shrinker_count;
475         i915->mm.shrinker.seeks = DEFAULT_SEEKS;
476         i915->mm.shrinker.batch = 4096;
477         WARN_ON(register_shrinker(&i915->mm.shrinker));
478
479         i915->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
480         WARN_ON(register_oom_notifier(&i915->mm.oom_notifier));
481
482         i915->mm.vmap_notifier.notifier_call = i915_gem_shrinker_vmap;
483         WARN_ON(register_vmap_purge_notifier(&i915->mm.vmap_notifier));
484 }
485
486 /**
487  * i915_gem_shrinker_unregister - Unregisters the i915 shrinker
488  * @i915: i915 device
489  *
490  * This function unregisters the i915 shrinker and OOM handler.
491  */
492 void i915_gem_shrinker_unregister(struct drm_i915_private *i915)
493 {
494         WARN_ON(unregister_vmap_purge_notifier(&i915->mm.vmap_notifier));
495         WARN_ON(unregister_oom_notifier(&i915->mm.oom_notifier));
496         unregister_shrinker(&i915->mm.shrinker);
497 }
498
499 void i915_gem_shrinker_taints_mutex(struct drm_i915_private *i915,
500                                     struct mutex *mutex)
501 {
502         bool unlock = false;
503
504         if (!IS_ENABLED(CONFIG_LOCKDEP))
505                 return;
506
507         if (!lockdep_is_held_type(&i915->drm.struct_mutex, -1)) {
508                 mutex_acquire(&i915->drm.struct_mutex.dep_map,
509                               I915_MM_NORMAL, 0, _RET_IP_);
510                 unlock = true;
511         }
512
513         fs_reclaim_acquire(GFP_KERNEL);
514
515         /*
516          * As we invariably rely on the struct_mutex within the shrinker,
517          * but have a complicated recursion dance, taint all the mutexes used
518          * within the shrinker with the struct_mutex. For completeness, we
519          * taint with all subclass of struct_mutex, even though we should
520          * only need tainting by I915_MM_NORMAL to catch possible ABBA
521          * deadlocks from using struct_mutex inside @mutex.
522          */
523         mutex_acquire(&i915->drm.struct_mutex.dep_map,
524                       I915_MM_SHRINKER, 0, _RET_IP_);
525
526         mutex_acquire(&mutex->dep_map, 0, 0, _RET_IP_);
527         mutex_release(&mutex->dep_map, 0, _RET_IP_);
528
529         mutex_release(&i915->drm.struct_mutex.dep_map, 0, _RET_IP_);
530
531         fs_reclaim_release(GFP_KERNEL);
532
533         if (unlock)
534                 mutex_release(&i915->drm.struct_mutex.dep_map, 0, _RET_IP_);
535 }