Merge tag 'pinctrl-v5.11-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29 #include "i915_user_extensions.h"
30
31 struct eb_vma {
32         struct i915_vma *vma;
33         unsigned int flags;
34
35         /** This vma's place in the execbuf reservation list */
36         struct drm_i915_gem_exec_object2 *exec;
37         struct list_head bind_link;
38         struct list_head reloc_link;
39
40         struct hlist_node node;
41         u32 handle;
42 };
43
44 enum {
45         FORCE_CPU_RELOC = 1,
46         FORCE_GTT_RELOC,
47         FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
49 };
50
51 #define __EXEC_OBJECT_HAS_PIN           BIT(31)
52 #define __EXEC_OBJECT_HAS_FENCE         BIT(30)
53 #define __EXEC_OBJECT_NEEDS_MAP         BIT(29)
54 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(28)
55 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 28) /* all of the above */
56 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57
58 #define __EXEC_HAS_RELOC        BIT(31)
59 #define __EXEC_ENGINE_PINNED    BIT(30)
60 #define __EXEC_INTERNAL_FLAGS   (~0u << 30)
61 #define UPDATE                  PIN_OFFSET_FIXED
62
63 #define BATCH_OFFSET_BIAS (256*1024)
64
65 #define __I915_EXEC_ILLEGAL_FLAGS \
66         (__I915_EXEC_UNKNOWN_FLAGS | \
67          I915_EXEC_CONSTANTS_MASK  | \
68          I915_EXEC_RESOURCE_STREAMER)
69
70 /* Catch emission of unexpected errors for CI! */
71 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
72 #undef EINVAL
73 #define EINVAL ({ \
74         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
75         22; \
76 })
77 #endif
78
79 /**
80  * DOC: User command execution
81  *
82  * Userspace submits commands to be executed on the GPU as an instruction
83  * stream within a GEM object we call a batchbuffer. This instructions may
84  * refer to other GEM objects containing auxiliary state such as kernels,
85  * samplers, render targets and even secondary batchbuffers. Userspace does
86  * not know where in the GPU memory these objects reside and so before the
87  * batchbuffer is passed to the GPU for execution, those addresses in the
88  * batchbuffer and auxiliary objects are updated. This is known as relocation,
89  * or patching. To try and avoid having to relocate each object on the next
90  * execution, userspace is told the location of those objects in this pass,
91  * but this remains just a hint as the kernel may choose a new location for
92  * any object in the future.
93  *
94  * At the level of talking to the hardware, submitting a batchbuffer for the
95  * GPU to execute is to add content to a buffer from which the HW
96  * command streamer is reading.
97  *
98  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
99  *    Execlists, this command is not placed on the same buffer as the
100  *    remaining items.
101  *
102  * 2. Add a command to invalidate caches to the buffer.
103  *
104  * 3. Add a batchbuffer start command to the buffer; the start command is
105  *    essentially a token together with the GPU address of the batchbuffer
106  *    to be executed.
107  *
108  * 4. Add a pipeline flush to the buffer.
109  *
110  * 5. Add a memory write command to the buffer to record when the GPU
111  *    is done executing the batchbuffer. The memory write writes the
112  *    global sequence number of the request, ``i915_request::global_seqno``;
113  *    the i915 driver uses the current value in the register to determine
114  *    if the GPU has completed the batchbuffer.
115  *
116  * 6. Add a user interrupt command to the buffer. This command instructs
117  *    the GPU to issue an interrupt when the command, pipeline flush and
118  *    memory write are completed.
119  *
120  * 7. Inform the hardware of the additional commands added to the buffer
121  *    (by updating the tail pointer).
122  *
123  * Processing an execbuf ioctl is conceptually split up into a few phases.
124  *
125  * 1. Validation - Ensure all the pointers, handles and flags are valid.
126  * 2. Reservation - Assign GPU address space for every object
127  * 3. Relocation - Update any addresses to point to the final locations
128  * 4. Serialisation - Order the request with respect to its dependencies
129  * 5. Construction - Construct a request to execute the batchbuffer
130  * 6. Submission (at some point in the future execution)
131  *
132  * Reserving resources for the execbuf is the most complicated phase. We
133  * neither want to have to migrate the object in the address space, nor do
134  * we want to have to update any relocations pointing to this object. Ideally,
135  * we want to leave the object where it is and for all the existing relocations
136  * to match. If the object is given a new address, or if userspace thinks the
137  * object is elsewhere, we have to parse all the relocation entries and update
138  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
139  * all the target addresses in all of its objects match the value in the
140  * relocation entries and that they all match the presumed offsets given by the
141  * list of execbuffer objects. Using this knowledge, we know that if we haven't
142  * moved any buffers, all the relocation entries are valid and we can skip
143  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
144  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
145  *
146  *      The addresses written in the objects must match the corresponding
147  *      reloc.presumed_offset which in turn must match the corresponding
148  *      execobject.offset.
149  *
150  *      Any render targets written to in the batch must be flagged with
151  *      EXEC_OBJECT_WRITE.
152  *
153  *      To avoid stalling, execobject.offset should match the current
154  *      address of that object within the active context.
155  *
156  * The reservation is done is multiple phases. First we try and keep any
157  * object already bound in its current location - so as long as meets the
158  * constraints imposed by the new execbuffer. Any object left unbound after the
159  * first pass is then fitted into any available idle space. If an object does
160  * not fit, all objects are removed from the reservation and the process rerun
161  * after sorting the objects into a priority order (more difficult to fit
162  * objects are tried first). Failing that, the entire VM is cleared and we try
163  * to fit the execbuf once last time before concluding that it simply will not
164  * fit.
165  *
166  * A small complication to all of this is that we allow userspace not only to
167  * specify an alignment and a size for the object in the address space, but
168  * we also allow userspace to specify the exact offset. This objects are
169  * simpler to place (the location is known a priori) all we have to do is make
170  * sure the space is available.
171  *
172  * Once all the objects are in place, patching up the buried pointers to point
173  * to the final locations is a fairly simple job of walking over the relocation
174  * entry arrays, looking up the right address and rewriting the value into
175  * the object. Simple! ... The relocation entries are stored in user memory
176  * and so to access them we have to copy them into a local buffer. That copy
177  * has to avoid taking any pagefaults as they may lead back to a GEM object
178  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
179  * the relocation into multiple passes. First we try to do everything within an
180  * atomic context (avoid the pagefaults) which requires that we never wait. If
181  * we detect that we may wait, or if we need to fault, then we have to fallback
182  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
183  * bells yet?) Dropping the mutex means that we lose all the state we have
184  * built up so far for the execbuf and we must reset any global data. However,
185  * we do leave the objects pinned in their final locations - which is a
186  * potential issue for concurrent execbufs. Once we have left the mutex, we can
187  * allocate and copy all the relocation entries into a large array at our
188  * leisure, reacquire the mutex, reclaim all the objects and other state and
189  * then proceed to update any incorrect addresses with the objects.
190  *
191  * As we process the relocation entries, we maintain a record of whether the
192  * object is being written to. Using NORELOC, we expect userspace to provide
193  * this information instead. We also check whether we can skip the relocation
194  * by comparing the expected value inside the relocation entry with the target's
195  * final address. If they differ, we have to map the current object and rewrite
196  * the 4 or 8 byte pointer within.
197  *
198  * Serialising an execbuf is quite simple according to the rules of the GEM
199  * ABI. Execution within each context is ordered by the order of submission.
200  * Writes to any GEM object are in order of submission and are exclusive. Reads
201  * from a GEM object are unordered with respect to other reads, but ordered by
202  * writes. A write submitted after a read cannot occur before the read, and
203  * similarly any read submitted after a write cannot occur before the write.
204  * Writes are ordered between engines such that only one write occurs at any
205  * time (completing any reads beforehand) - using semaphores where available
206  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
207  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
208  * reads before starting, and any read (either using set-domain or pread) must
209  * flush all GPU writes before starting. (Note we only employ a barrier before,
210  * we currently rely on userspace not concurrently starting a new execution
211  * whilst reading or writing to an object. This may be an advantage or not
212  * depending on how much you trust userspace not to shoot themselves in the
213  * foot.) Serialisation may just result in the request being inserted into
214  * a DAG awaiting its turn, but most simple is to wait on the CPU until
215  * all dependencies are resolved.
216  *
217  * After all of that, is just a matter of closing the request and handing it to
218  * the hardware (well, leaving it in a queue to be executed). However, we also
219  * offer the ability for batchbuffers to be run with elevated privileges so
220  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
221  * Before any batch is given extra privileges we first must check that it
222  * contains no nefarious instructions, we check that each instruction is from
223  * our whitelist and all registers are also from an allowed list. We first
224  * copy the user's batchbuffer to a shadow (so that the user doesn't have
225  * access to it, either by the CPU or GPU as we scan it) and then parse each
226  * instruction. If everything is ok, we set a flag telling the hardware to run
227  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
228  */
229
230 struct eb_fence {
231         struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
232         struct dma_fence *dma_fence;
233         u64 value;
234         struct dma_fence_chain *chain_fence;
235 };
236
237 struct i915_execbuffer {
238         struct drm_i915_private *i915; /** i915 backpointer */
239         struct drm_file *file; /** per-file lookup tables and limits */
240         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
241         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
242         struct eb_vma *vma;
243
244         struct intel_engine_cs *engine; /** engine to queue the request to */
245         struct intel_context *context; /* logical state for the request */
246         struct i915_gem_context *gem_context; /** caller's context */
247
248         struct i915_request *request; /** our request to build */
249         struct eb_vma *batch; /** identity of the batch obj/vma */
250         struct i915_vma *trampoline; /** trampoline used for chaining */
251
252         /** actual size of execobj[] as we may extend it for the cmdparser */
253         unsigned int buffer_count;
254
255         /** list of vma not yet bound during reservation phase */
256         struct list_head unbound;
257
258         /** list of vma that have execobj.relocation_count */
259         struct list_head relocs;
260
261         struct i915_gem_ww_ctx ww;
262
263         /**
264          * Track the most recently used object for relocations, as we
265          * frequently have to perform multiple relocations within the same
266          * obj/page
267          */
268         struct reloc_cache {
269                 struct drm_mm_node node; /** temporary GTT binding */
270                 unsigned long vaddr; /** Current kmap address */
271                 unsigned long page; /** Currently mapped page index */
272                 unsigned int gen; /** Cached value of INTEL_GEN */
273                 bool use_64bit_reloc : 1;
274                 bool has_llc : 1;
275                 bool has_fence : 1;
276                 bool needs_unfenced : 1;
277
278                 struct i915_request *rq;
279                 u32 *rq_cmd;
280                 unsigned int rq_size;
281                 struct intel_gt_buffer_pool_node *pool;
282         } reloc_cache;
283
284         struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
285         struct intel_context *reloc_context;
286
287         u64 invalid_flags; /** Set of execobj.flags that are invalid */
288         u32 context_flags; /** Set of execobj.flags to insert from the ctx */
289
290         u64 batch_len; /** Length of batch within object */
291         u32 batch_start_offset; /** Location within object of batch */
292         u32 batch_flags; /** Flags composed for emit_bb_start() */
293         struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
294
295         /**
296          * Indicate either the size of the hastable used to resolve
297          * relocation handles, or if negative that we are using a direct
298          * index into the execobj[].
299          */
300         int lut_size;
301         struct hlist_head *buckets; /** ht for relocation handles */
302
303         struct eb_fence *fences;
304         unsigned long num_fences;
305 };
306
307 static int eb_parse(struct i915_execbuffer *eb);
308 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
309                                           bool throttle);
310 static void eb_unpin_engine(struct i915_execbuffer *eb);
311
312 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
313 {
314         return intel_engine_requires_cmd_parser(eb->engine) ||
315                 (intel_engine_using_cmd_parser(eb->engine) &&
316                  eb->args->batch_len);
317 }
318
319 static int eb_create(struct i915_execbuffer *eb)
320 {
321         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
322                 unsigned int size = 1 + ilog2(eb->buffer_count);
323
324                 /*
325                  * Without a 1:1 association between relocation handles and
326                  * the execobject[] index, we instead create a hashtable.
327                  * We size it dynamically based on available memory, starting
328                  * first with 1:1 assocative hash and scaling back until
329                  * the allocation succeeds.
330                  *
331                  * Later on we use a positive lut_size to indicate we are
332                  * using this hashtable, and a negative value to indicate a
333                  * direct lookup.
334                  */
335                 do {
336                         gfp_t flags;
337
338                         /* While we can still reduce the allocation size, don't
339                          * raise a warning and allow the allocation to fail.
340                          * On the last pass though, we want to try as hard
341                          * as possible to perform the allocation and warn
342                          * if it fails.
343                          */
344                         flags = GFP_KERNEL;
345                         if (size > 1)
346                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
347
348                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
349                                               flags);
350                         if (eb->buckets)
351                                 break;
352                 } while (--size);
353
354                 if (unlikely(!size))
355                         return -ENOMEM;
356
357                 eb->lut_size = size;
358         } else {
359                 eb->lut_size = -eb->buffer_count;
360         }
361
362         return 0;
363 }
364
365 static bool
366 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
367                  const struct i915_vma *vma,
368                  unsigned int flags)
369 {
370         if (vma->node.size < entry->pad_to_size)
371                 return true;
372
373         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
374                 return true;
375
376         if (flags & EXEC_OBJECT_PINNED &&
377             vma->node.start != entry->offset)
378                 return true;
379
380         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
381             vma->node.start < BATCH_OFFSET_BIAS)
382                 return true;
383
384         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
385             (vma->node.start + vma->node.size + 4095) >> 32)
386                 return true;
387
388         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
389             !i915_vma_is_map_and_fenceable(vma))
390                 return true;
391
392         return false;
393 }
394
395 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
396                         unsigned int exec_flags)
397 {
398         u64 pin_flags = 0;
399
400         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
401                 pin_flags |= PIN_GLOBAL;
402
403         /*
404          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
405          * limit address to the first 4GBs for unflagged objects.
406          */
407         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
408                 pin_flags |= PIN_ZONE_4G;
409
410         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
411                 pin_flags |= PIN_MAPPABLE;
412
413         if (exec_flags & EXEC_OBJECT_PINNED)
414                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
415         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
416                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
417
418         return pin_flags;
419 }
420
421 static inline bool
422 eb_pin_vma(struct i915_execbuffer *eb,
423            const struct drm_i915_gem_exec_object2 *entry,
424            struct eb_vma *ev)
425 {
426         struct i915_vma *vma = ev->vma;
427         u64 pin_flags;
428
429         if (vma->node.size)
430                 pin_flags = vma->node.start;
431         else
432                 pin_flags = entry->offset & PIN_OFFSET_MASK;
433
434         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
435         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
436                 pin_flags |= PIN_GLOBAL;
437
438         /* Attempt to reuse the current location if available */
439         /* TODO: Add -EDEADLK handling here */
440         if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) {
441                 if (entry->flags & EXEC_OBJECT_PINNED)
442                         return false;
443
444                 /* Failing that pick any _free_ space if suitable */
445                 if (unlikely(i915_vma_pin_ww(vma, &eb->ww,
446                                              entry->pad_to_size,
447                                              entry->alignment,
448                                              eb_pin_flags(entry, ev->flags) |
449                                              PIN_USER | PIN_NOEVICT)))
450                         return false;
451         }
452
453         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
454                 if (unlikely(i915_vma_pin_fence(vma))) {
455                         i915_vma_unpin(vma);
456                         return false;
457                 }
458
459                 if (vma->fence)
460                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
461         }
462
463         ev->flags |= __EXEC_OBJECT_HAS_PIN;
464         return !eb_vma_misplaced(entry, vma, ev->flags);
465 }
466
467 static inline void
468 eb_unreserve_vma(struct eb_vma *ev)
469 {
470         if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
471                 return;
472
473         if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
474                 __i915_vma_unpin_fence(ev->vma);
475
476         __i915_vma_unpin(ev->vma);
477         ev->flags &= ~__EXEC_OBJECT_RESERVED;
478 }
479
480 static int
481 eb_validate_vma(struct i915_execbuffer *eb,
482                 struct drm_i915_gem_exec_object2 *entry,
483                 struct i915_vma *vma)
484 {
485         if (unlikely(entry->flags & eb->invalid_flags))
486                 return -EINVAL;
487
488         if (unlikely(entry->alignment &&
489                      !is_power_of_2_u64(entry->alignment)))
490                 return -EINVAL;
491
492         /*
493          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
494          * any non-page-aligned or non-canonical addresses.
495          */
496         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
497                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
498                 return -EINVAL;
499
500         /* pad_to_size was once a reserved field, so sanitize it */
501         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
502                 if (unlikely(offset_in_page(entry->pad_to_size)))
503                         return -EINVAL;
504         } else {
505                 entry->pad_to_size = 0;
506         }
507         /*
508          * From drm_mm perspective address space is continuous,
509          * so from this point we're always using non-canonical
510          * form internally.
511          */
512         entry->offset = gen8_noncanonical_addr(entry->offset);
513
514         if (!eb->reloc_cache.has_fence) {
515                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
516         } else {
517                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
518                      eb->reloc_cache.needs_unfenced) &&
519                     i915_gem_object_is_tiled(vma->obj))
520                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
521         }
522
523         if (!(entry->flags & EXEC_OBJECT_PINNED))
524                 entry->flags |= eb->context_flags;
525
526         return 0;
527 }
528
529 static void
530 eb_add_vma(struct i915_execbuffer *eb,
531            unsigned int i, unsigned batch_idx,
532            struct i915_vma *vma)
533 {
534         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
535         struct eb_vma *ev = &eb->vma[i];
536
537         GEM_BUG_ON(i915_vma_is_closed(vma));
538
539         ev->vma = vma;
540         ev->exec = entry;
541         ev->flags = entry->flags;
542
543         if (eb->lut_size > 0) {
544                 ev->handle = entry->handle;
545                 hlist_add_head(&ev->node,
546                                &eb->buckets[hash_32(entry->handle,
547                                                     eb->lut_size)]);
548         }
549
550         if (entry->relocation_count)
551                 list_add_tail(&ev->reloc_link, &eb->relocs);
552
553         /*
554          * SNA is doing fancy tricks with compressing batch buffers, which leads
555          * to negative relocation deltas. Usually that works out ok since the
556          * relocate address is still positive, except when the batch is placed
557          * very low in the GTT. Ensure this doesn't happen.
558          *
559          * Note that actual hangs have only been observed on gen7, but for
560          * paranoia do it everywhere.
561          */
562         if (i == batch_idx) {
563                 if (entry->relocation_count &&
564                     !(ev->flags & EXEC_OBJECT_PINNED))
565                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
566                 if (eb->reloc_cache.has_fence)
567                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
568
569                 eb->batch = ev;
570         }
571 }
572
573 static inline int use_cpu_reloc(const struct reloc_cache *cache,
574                                 const struct drm_i915_gem_object *obj)
575 {
576         if (!i915_gem_object_has_struct_page(obj))
577                 return false;
578
579         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
580                 return true;
581
582         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
583                 return false;
584
585         return (cache->has_llc ||
586                 obj->cache_dirty ||
587                 obj->cache_level != I915_CACHE_NONE);
588 }
589
590 static int eb_reserve_vma(struct i915_execbuffer *eb,
591                           struct eb_vma *ev,
592                           u64 pin_flags)
593 {
594         struct drm_i915_gem_exec_object2 *entry = ev->exec;
595         struct i915_vma *vma = ev->vma;
596         int err;
597
598         if (drm_mm_node_allocated(&vma->node) &&
599             eb_vma_misplaced(entry, vma, ev->flags)) {
600                 err = i915_vma_unbind(vma);
601                 if (err)
602                         return err;
603         }
604
605         err = i915_vma_pin_ww(vma, &eb->ww,
606                            entry->pad_to_size, entry->alignment,
607                            eb_pin_flags(entry, ev->flags) | pin_flags);
608         if (err)
609                 return err;
610
611         if (entry->offset != vma->node.start) {
612                 entry->offset = vma->node.start | UPDATE;
613                 eb->args->flags |= __EXEC_HAS_RELOC;
614         }
615
616         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
617                 err = i915_vma_pin_fence(vma);
618                 if (unlikely(err)) {
619                         i915_vma_unpin(vma);
620                         return err;
621                 }
622
623                 if (vma->fence)
624                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
625         }
626
627         ev->flags |= __EXEC_OBJECT_HAS_PIN;
628         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
629
630         return 0;
631 }
632
633 static int eb_reserve(struct i915_execbuffer *eb)
634 {
635         const unsigned int count = eb->buffer_count;
636         unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
637         struct list_head last;
638         struct eb_vma *ev;
639         unsigned int i, pass;
640         int err = 0;
641
642         /*
643          * Attempt to pin all of the buffers into the GTT.
644          * This is done in 3 phases:
645          *
646          * 1a. Unbind all objects that do not match the GTT constraints for
647          *     the execbuffer (fenceable, mappable, alignment etc).
648          * 1b. Increment pin count for already bound objects.
649          * 2.  Bind new objects.
650          * 3.  Decrement pin count.
651          *
652          * This avoid unnecessary unbinding of later objects in order to make
653          * room for the earlier objects *unless* we need to defragment.
654          */
655         pass = 0;
656         do {
657                 list_for_each_entry(ev, &eb->unbound, bind_link) {
658                         err = eb_reserve_vma(eb, ev, pin_flags);
659                         if (err)
660                                 break;
661                 }
662                 if (err != -ENOSPC)
663                         return err;
664
665                 /* Resort *all* the objects into priority order */
666                 INIT_LIST_HEAD(&eb->unbound);
667                 INIT_LIST_HEAD(&last);
668                 for (i = 0; i < count; i++) {
669                         unsigned int flags;
670
671                         ev = &eb->vma[i];
672                         flags = ev->flags;
673                         if (flags & EXEC_OBJECT_PINNED &&
674                             flags & __EXEC_OBJECT_HAS_PIN)
675                                 continue;
676
677                         eb_unreserve_vma(ev);
678
679                         if (flags & EXEC_OBJECT_PINNED)
680                                 /* Pinned must have their slot */
681                                 list_add(&ev->bind_link, &eb->unbound);
682                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
683                                 /* Map require the lowest 256MiB (aperture) */
684                                 list_add_tail(&ev->bind_link, &eb->unbound);
685                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
686                                 /* Prioritise 4GiB region for restricted bo */
687                                 list_add(&ev->bind_link, &last);
688                         else
689                                 list_add_tail(&ev->bind_link, &last);
690                 }
691                 list_splice_tail(&last, &eb->unbound);
692
693                 switch (pass++) {
694                 case 0:
695                         break;
696
697                 case 1:
698                         /* Too fragmented, unbind everything and retry */
699                         mutex_lock(&eb->context->vm->mutex);
700                         err = i915_gem_evict_vm(eb->context->vm);
701                         mutex_unlock(&eb->context->vm->mutex);
702                         if (err)
703                                 return err;
704                         break;
705
706                 default:
707                         return -ENOSPC;
708                 }
709
710                 pin_flags = PIN_USER;
711         } while (1);
712 }
713
714 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
715 {
716         if (eb->args->flags & I915_EXEC_BATCH_FIRST)
717                 return 0;
718         else
719                 return eb->buffer_count - 1;
720 }
721
722 static int eb_select_context(struct i915_execbuffer *eb)
723 {
724         struct i915_gem_context *ctx;
725
726         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
727         if (unlikely(!ctx))
728                 return -ENOENT;
729
730         eb->gem_context = ctx;
731         if (rcu_access_pointer(ctx->vm))
732                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
733
734         eb->context_flags = 0;
735         if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
736                 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
737
738         return 0;
739 }
740
741 static int __eb_add_lut(struct i915_execbuffer *eb,
742                         u32 handle, struct i915_vma *vma)
743 {
744         struct i915_gem_context *ctx = eb->gem_context;
745         struct i915_lut_handle *lut;
746         int err;
747
748         lut = i915_lut_handle_alloc();
749         if (unlikely(!lut))
750                 return -ENOMEM;
751
752         i915_vma_get(vma);
753         if (!atomic_fetch_inc(&vma->open_count))
754                 i915_vma_reopen(vma);
755         lut->handle = handle;
756         lut->ctx = ctx;
757
758         /* Check that the context hasn't been closed in the meantime */
759         err = -EINTR;
760         if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
761                 struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
762
763                 if (unlikely(vm && vma->vm != vm))
764                         err = -EAGAIN; /* user racing with ctx set-vm */
765                 else if (likely(!i915_gem_context_is_closed(ctx)))
766                         err = radix_tree_insert(&ctx->handles_vma, handle, vma);
767                 else
768                         err = -ENOENT;
769                 if (err == 0) { /* And nor has this handle */
770                         struct drm_i915_gem_object *obj = vma->obj;
771
772                         spin_lock(&obj->lut_lock);
773                         if (idr_find(&eb->file->object_idr, handle) == obj) {
774                                 list_add(&lut->obj_link, &obj->lut_list);
775                         } else {
776                                 radix_tree_delete(&ctx->handles_vma, handle);
777                                 err = -ENOENT;
778                         }
779                         spin_unlock(&obj->lut_lock);
780                 }
781                 mutex_unlock(&ctx->lut_mutex);
782         }
783         if (unlikely(err))
784                 goto err;
785
786         return 0;
787
788 err:
789         i915_vma_close(vma);
790         i915_vma_put(vma);
791         i915_lut_handle_free(lut);
792         return err;
793 }
794
795 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
796 {
797         struct i915_address_space *vm = eb->context->vm;
798
799         do {
800                 struct drm_i915_gem_object *obj;
801                 struct i915_vma *vma;
802                 int err;
803
804                 rcu_read_lock();
805                 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
806                 if (likely(vma && vma->vm == vm))
807                         vma = i915_vma_tryget(vma);
808                 rcu_read_unlock();
809                 if (likely(vma))
810                         return vma;
811
812                 obj = i915_gem_object_lookup(eb->file, handle);
813                 if (unlikely(!obj))
814                         return ERR_PTR(-ENOENT);
815
816                 vma = i915_vma_instance(obj, vm, NULL);
817                 if (IS_ERR(vma)) {
818                         i915_gem_object_put(obj);
819                         return vma;
820                 }
821
822                 err = __eb_add_lut(eb, handle, vma);
823                 if (likely(!err))
824                         return vma;
825
826                 i915_gem_object_put(obj);
827                 if (err != -EEXIST)
828                         return ERR_PTR(err);
829         } while (1);
830 }
831
832 static int eb_lookup_vmas(struct i915_execbuffer *eb)
833 {
834         struct drm_i915_private *i915 = eb->i915;
835         unsigned int batch = eb_batch_index(eb);
836         unsigned int i;
837         int err = 0;
838
839         INIT_LIST_HEAD(&eb->relocs);
840
841         for (i = 0; i < eb->buffer_count; i++) {
842                 struct i915_vma *vma;
843
844                 vma = eb_lookup_vma(eb, eb->exec[i].handle);
845                 if (IS_ERR(vma)) {
846                         err = PTR_ERR(vma);
847                         goto err;
848                 }
849
850                 err = eb_validate_vma(eb, &eb->exec[i], vma);
851                 if (unlikely(err)) {
852                         i915_vma_put(vma);
853                         goto err;
854                 }
855
856                 eb_add_vma(eb, i, batch, vma);
857         }
858
859         if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
860                 drm_dbg(&i915->drm,
861                         "Attempting to use self-modifying batch buffer\n");
862                 return -EINVAL;
863         }
864
865         if (range_overflows_t(u64,
866                               eb->batch_start_offset, eb->batch_len,
867                               eb->batch->vma->size)) {
868                 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
869                 return -EINVAL;
870         }
871
872         if (eb->batch_len == 0)
873                 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
874         if (unlikely(eb->batch_len == 0)) { /* impossible! */
875                 drm_dbg(&i915->drm, "Invalid batch length\n");
876                 return -EINVAL;
877         }
878
879         return 0;
880
881 err:
882         eb->vma[i].vma = NULL;
883         return err;
884 }
885
886 static int eb_validate_vmas(struct i915_execbuffer *eb)
887 {
888         unsigned int i;
889         int err;
890
891         INIT_LIST_HEAD(&eb->unbound);
892
893         for (i = 0; i < eb->buffer_count; i++) {
894                 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
895                 struct eb_vma *ev = &eb->vma[i];
896                 struct i915_vma *vma = ev->vma;
897
898                 err = i915_gem_object_lock(vma->obj, &eb->ww);
899                 if (err)
900                         return err;
901
902                 if (eb_pin_vma(eb, entry, ev)) {
903                         if (entry->offset != vma->node.start) {
904                                 entry->offset = vma->node.start | UPDATE;
905                                 eb->args->flags |= __EXEC_HAS_RELOC;
906                         }
907                 } else {
908                         eb_unreserve_vma(ev);
909
910                         list_add_tail(&ev->bind_link, &eb->unbound);
911                         if (drm_mm_node_allocated(&vma->node)) {
912                                 err = i915_vma_unbind(vma);
913                                 if (err)
914                                         return err;
915                         }
916                 }
917
918                 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
919                            eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
920         }
921
922         if (!list_empty(&eb->unbound))
923                 return eb_reserve(eb);
924
925         return 0;
926 }
927
928 static struct eb_vma *
929 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
930 {
931         if (eb->lut_size < 0) {
932                 if (handle >= -eb->lut_size)
933                         return NULL;
934                 return &eb->vma[handle];
935         } else {
936                 struct hlist_head *head;
937                 struct eb_vma *ev;
938
939                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
940                 hlist_for_each_entry(ev, head, node) {
941                         if (ev->handle == handle)
942                                 return ev;
943                 }
944                 return NULL;
945         }
946 }
947
948 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
949 {
950         const unsigned int count = eb->buffer_count;
951         unsigned int i;
952
953         for (i = 0; i < count; i++) {
954                 struct eb_vma *ev = &eb->vma[i];
955                 struct i915_vma *vma = ev->vma;
956
957                 if (!vma)
958                         break;
959
960                 eb_unreserve_vma(ev);
961
962                 if (final)
963                         i915_vma_put(vma);
964         }
965
966         eb_unpin_engine(eb);
967 }
968
969 static void eb_destroy(const struct i915_execbuffer *eb)
970 {
971         GEM_BUG_ON(eb->reloc_cache.rq);
972
973         if (eb->lut_size > 0)
974                 kfree(eb->buckets);
975 }
976
977 static inline u64
978 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
979                   const struct i915_vma *target)
980 {
981         return gen8_canonical_addr((int)reloc->delta + target->node.start);
982 }
983
984 static void reloc_cache_clear(struct reloc_cache *cache)
985 {
986         cache->rq = NULL;
987         cache->rq_cmd = NULL;
988         cache->pool = NULL;
989         cache->rq_size = 0;
990 }
991
992 static void reloc_cache_init(struct reloc_cache *cache,
993                              struct drm_i915_private *i915)
994 {
995         cache->page = -1;
996         cache->vaddr = 0;
997         /* Must be a variable in the struct to allow GCC to unroll. */
998         cache->gen = INTEL_GEN(i915);
999         cache->has_llc = HAS_LLC(i915);
1000         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1001         cache->has_fence = cache->gen < 4;
1002         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1003         cache->node.flags = 0;
1004         reloc_cache_clear(cache);
1005 }
1006
1007 static inline void *unmask_page(unsigned long p)
1008 {
1009         return (void *)(uintptr_t)(p & PAGE_MASK);
1010 }
1011
1012 static inline unsigned int unmask_flags(unsigned long p)
1013 {
1014         return p & ~PAGE_MASK;
1015 }
1016
1017 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1018
1019 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1020 {
1021         struct drm_i915_private *i915 =
1022                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1023         return &i915->ggtt;
1024 }
1025
1026 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1027 {
1028         if (!cache->pool)
1029                 return;
1030
1031         /*
1032          * This is a bit nasty, normally we keep objects locked until the end
1033          * of execbuffer, but we already submit this, and have to unlock before
1034          * dropping the reference. Fortunately we can only hold 1 pool node at
1035          * a time, so this should be harmless.
1036          */
1037         i915_gem_ww_unlock_single(cache->pool->obj);
1038         intel_gt_buffer_pool_put(cache->pool);
1039         cache->pool = NULL;
1040 }
1041
1042 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1043 {
1044         struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1045
1046         GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1047         cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1048
1049         i915_gem_object_flush_map(obj);
1050         i915_gem_object_unpin_map(obj);
1051
1052         intel_gt_chipset_flush(cache->rq->engine->gt);
1053
1054         i915_request_add(cache->rq);
1055         reloc_cache_put_pool(eb, cache);
1056         reloc_cache_clear(cache);
1057
1058         eb->reloc_pool = NULL;
1059 }
1060
1061 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1062 {
1063         void *vaddr;
1064
1065         if (cache->rq)
1066                 reloc_gpu_flush(eb, cache);
1067
1068         if (!cache->vaddr)
1069                 return;
1070
1071         vaddr = unmask_page(cache->vaddr);
1072         if (cache->vaddr & KMAP) {
1073                 struct drm_i915_gem_object *obj =
1074                         (struct drm_i915_gem_object *)cache->node.mm;
1075                 if (cache->vaddr & CLFLUSH_AFTER)
1076                         mb();
1077
1078                 kunmap_atomic(vaddr);
1079                 i915_gem_object_finish_access(obj);
1080         } else {
1081                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1082
1083                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1084                 io_mapping_unmap_atomic((void __iomem *)vaddr);
1085
1086                 if (drm_mm_node_allocated(&cache->node)) {
1087                         ggtt->vm.clear_range(&ggtt->vm,
1088                                              cache->node.start,
1089                                              cache->node.size);
1090                         mutex_lock(&ggtt->vm.mutex);
1091                         drm_mm_remove_node(&cache->node);
1092                         mutex_unlock(&ggtt->vm.mutex);
1093                 } else {
1094                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
1095                 }
1096         }
1097
1098         cache->vaddr = 0;
1099         cache->page = -1;
1100 }
1101
1102 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1103                         struct reloc_cache *cache,
1104                         unsigned long pageno)
1105 {
1106         void *vaddr;
1107         struct page *page;
1108
1109         if (cache->vaddr) {
1110                 kunmap_atomic(unmask_page(cache->vaddr));
1111         } else {
1112                 unsigned int flushes;
1113                 int err;
1114
1115                 err = i915_gem_object_prepare_write(obj, &flushes);
1116                 if (err)
1117                         return ERR_PTR(err);
1118
1119                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1120                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1121
1122                 cache->vaddr = flushes | KMAP;
1123                 cache->node.mm = (void *)obj;
1124                 if (flushes)
1125                         mb();
1126         }
1127
1128         page = i915_gem_object_get_page(obj, pageno);
1129         if (!obj->mm.dirty)
1130                 set_page_dirty(page);
1131
1132         vaddr = kmap_atomic(page);
1133         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1134         cache->page = pageno;
1135
1136         return vaddr;
1137 }
1138
1139 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1140                          struct i915_execbuffer *eb,
1141                          unsigned long page)
1142 {
1143         struct reloc_cache *cache = &eb->reloc_cache;
1144         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1145         unsigned long offset;
1146         void *vaddr;
1147
1148         if (cache->vaddr) {
1149                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1150                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1151         } else {
1152                 struct i915_vma *vma;
1153                 int err;
1154
1155                 if (i915_gem_object_is_tiled(obj))
1156                         return ERR_PTR(-EINVAL);
1157
1158                 if (use_cpu_reloc(cache, obj))
1159                         return NULL;
1160
1161                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1162                 if (err)
1163                         return ERR_PTR(err);
1164
1165                 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1166                                                   PIN_MAPPABLE |
1167                                                   PIN_NONBLOCK /* NOWARN */ |
1168                                                   PIN_NOEVICT);
1169                 if (vma == ERR_PTR(-EDEADLK))
1170                         return vma;
1171
1172                 if (IS_ERR(vma)) {
1173                         memset(&cache->node, 0, sizeof(cache->node));
1174                         mutex_lock(&ggtt->vm.mutex);
1175                         err = drm_mm_insert_node_in_range
1176                                 (&ggtt->vm.mm, &cache->node,
1177                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1178                                  0, ggtt->mappable_end,
1179                                  DRM_MM_INSERT_LOW);
1180                         mutex_unlock(&ggtt->vm.mutex);
1181                         if (err) /* no inactive aperture space, use cpu reloc */
1182                                 return NULL;
1183                 } else {
1184                         cache->node.start = vma->node.start;
1185                         cache->node.mm = (void *)vma;
1186                 }
1187         }
1188
1189         offset = cache->node.start;
1190         if (drm_mm_node_allocated(&cache->node)) {
1191                 ggtt->vm.insert_page(&ggtt->vm,
1192                                      i915_gem_object_get_dma_address(obj, page),
1193                                      offset, I915_CACHE_NONE, 0);
1194         } else {
1195                 offset += page << PAGE_SHIFT;
1196         }
1197
1198         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1199                                                          offset);
1200         cache->page = page;
1201         cache->vaddr = (unsigned long)vaddr;
1202
1203         return vaddr;
1204 }
1205
1206 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1207                          struct i915_execbuffer *eb,
1208                          unsigned long page)
1209 {
1210         struct reloc_cache *cache = &eb->reloc_cache;
1211         void *vaddr;
1212
1213         if (cache->page == page) {
1214                 vaddr = unmask_page(cache->vaddr);
1215         } else {
1216                 vaddr = NULL;
1217                 if ((cache->vaddr & KMAP) == 0)
1218                         vaddr = reloc_iomap(obj, eb, page);
1219                 if (!vaddr)
1220                         vaddr = reloc_kmap(obj, cache, page);
1221         }
1222
1223         return vaddr;
1224 }
1225
1226 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1227 {
1228         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1229                 if (flushes & CLFLUSH_BEFORE) {
1230                         clflushopt(addr);
1231                         mb();
1232                 }
1233
1234                 *addr = value;
1235
1236                 /*
1237                  * Writes to the same cacheline are serialised by the CPU
1238                  * (including clflush). On the write path, we only require
1239                  * that it hits memory in an orderly fashion and place
1240                  * mb barriers at the start and end of the relocation phase
1241                  * to ensure ordering of clflush wrt to the system.
1242                  */
1243                 if (flushes & CLFLUSH_AFTER)
1244                         clflushopt(addr);
1245         } else
1246                 *addr = value;
1247 }
1248
1249 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1250 {
1251         struct drm_i915_gem_object *obj = vma->obj;
1252         int err;
1253
1254         assert_vma_held(vma);
1255
1256         if (obj->cache_dirty & ~obj->cache_coherent)
1257                 i915_gem_clflush_object(obj, 0);
1258         obj->write_domain = 0;
1259
1260         err = i915_request_await_object(rq, vma->obj, true);
1261         if (err == 0)
1262                 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1263
1264         return err;
1265 }
1266
1267 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1268                              struct intel_engine_cs *engine,
1269                              struct i915_vma *vma,
1270                              unsigned int len)
1271 {
1272         struct reloc_cache *cache = &eb->reloc_cache;
1273         struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1274         struct i915_request *rq;
1275         struct i915_vma *batch;
1276         u32 *cmd;
1277         int err;
1278
1279         if (!pool) {
1280                 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1281                 if (IS_ERR(pool))
1282                         return PTR_ERR(pool);
1283         }
1284         eb->reloc_pool = NULL;
1285
1286         err = i915_gem_object_lock(pool->obj, &eb->ww);
1287         if (err)
1288                 goto err_pool;
1289
1290         cmd = i915_gem_object_pin_map(pool->obj,
1291                                       cache->has_llc ?
1292                                       I915_MAP_FORCE_WB :
1293                                       I915_MAP_FORCE_WC);
1294         if (IS_ERR(cmd)) {
1295                 err = PTR_ERR(cmd);
1296                 goto err_pool;
1297         }
1298
1299         memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1300
1301         batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1302         if (IS_ERR(batch)) {
1303                 err = PTR_ERR(batch);
1304                 goto err_unmap;
1305         }
1306
1307         err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1308         if (err)
1309                 goto err_unmap;
1310
1311         if (engine == eb->context->engine) {
1312                 rq = i915_request_create(eb->context);
1313         } else {
1314                 struct intel_context *ce = eb->reloc_context;
1315
1316                 if (!ce) {
1317                         ce = intel_context_create(engine);
1318                         if (IS_ERR(ce)) {
1319                                 err = PTR_ERR(ce);
1320                                 goto err_unpin;
1321                         }
1322
1323                         i915_vm_put(ce->vm);
1324                         ce->vm = i915_vm_get(eb->context->vm);
1325                         eb->reloc_context = ce;
1326                 }
1327
1328                 err = intel_context_pin_ww(ce, &eb->ww);
1329                 if (err)
1330                         goto err_unpin;
1331
1332                 rq = i915_request_create(ce);
1333                 intel_context_unpin(ce);
1334         }
1335         if (IS_ERR(rq)) {
1336                 err = PTR_ERR(rq);
1337                 goto err_unpin;
1338         }
1339
1340         err = intel_gt_buffer_pool_mark_active(pool, rq);
1341         if (err)
1342                 goto err_request;
1343
1344         err = reloc_move_to_gpu(rq, vma);
1345         if (err)
1346                 goto err_request;
1347
1348         err = eb->engine->emit_bb_start(rq,
1349                                         batch->node.start, PAGE_SIZE,
1350                                         cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1351         if (err)
1352                 goto skip_request;
1353
1354         assert_vma_held(batch);
1355         err = i915_request_await_object(rq, batch->obj, false);
1356         if (err == 0)
1357                 err = i915_vma_move_to_active(batch, rq, 0);
1358         if (err)
1359                 goto skip_request;
1360
1361         rq->batch = batch;
1362         i915_vma_unpin(batch);
1363
1364         cache->rq = rq;
1365         cache->rq_cmd = cmd;
1366         cache->rq_size = 0;
1367         cache->pool = pool;
1368
1369         /* Return with batch mapping (cmd) still pinned */
1370         return 0;
1371
1372 skip_request:
1373         i915_request_set_error_once(rq, err);
1374 err_request:
1375         i915_request_add(rq);
1376 err_unpin:
1377         i915_vma_unpin(batch);
1378 err_unmap:
1379         i915_gem_object_unpin_map(pool->obj);
1380 err_pool:
1381         eb->reloc_pool = pool;
1382         return err;
1383 }
1384
1385 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1386 {
1387         return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1388 }
1389
1390 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1391                       struct i915_vma *vma,
1392                       unsigned int len)
1393 {
1394         struct reloc_cache *cache = &eb->reloc_cache;
1395         u32 *cmd;
1396
1397         if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1398                 reloc_gpu_flush(eb, cache);
1399
1400         if (unlikely(!cache->rq)) {
1401                 int err;
1402                 struct intel_engine_cs *engine = eb->engine;
1403
1404                 if (!reloc_can_use_engine(engine)) {
1405                         engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1406                         if (!engine)
1407                                 return ERR_PTR(-ENODEV);
1408                 }
1409
1410                 err = __reloc_gpu_alloc(eb, engine, vma, len);
1411                 if (unlikely(err))
1412                         return ERR_PTR(err);
1413         }
1414
1415         cmd = cache->rq_cmd + cache->rq_size;
1416         cache->rq_size += len;
1417
1418         return cmd;
1419 }
1420
1421 static inline bool use_reloc_gpu(struct i915_vma *vma)
1422 {
1423         if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1424                 return true;
1425
1426         if (DBG_FORCE_RELOC)
1427                 return false;
1428
1429         return !dma_resv_test_signaled_rcu(vma->resv, true);
1430 }
1431
1432 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1433 {
1434         struct page *page;
1435         unsigned long addr;
1436
1437         GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1438
1439         page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1440         addr = PFN_PHYS(page_to_pfn(page));
1441         GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1442
1443         return addr + offset_in_page(offset);
1444 }
1445
1446 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1447                               struct i915_vma *vma,
1448                               u64 offset,
1449                               u64 target_addr)
1450 {
1451         const unsigned int gen = eb->reloc_cache.gen;
1452         unsigned int len;
1453         u32 *batch;
1454         u64 addr;
1455
1456         if (gen >= 8)
1457                 len = offset & 7 ? 8 : 5;
1458         else if (gen >= 4)
1459                 len = 4;
1460         else
1461                 len = 3;
1462
1463         batch = reloc_gpu(eb, vma, len);
1464         if (batch == ERR_PTR(-EDEADLK))
1465                 return -EDEADLK;
1466         else if (IS_ERR(batch))
1467                 return false;
1468
1469         addr = gen8_canonical_addr(vma->node.start + offset);
1470         if (gen >= 8) {
1471                 if (offset & 7) {
1472                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1473                         *batch++ = lower_32_bits(addr);
1474                         *batch++ = upper_32_bits(addr);
1475                         *batch++ = lower_32_bits(target_addr);
1476
1477                         addr = gen8_canonical_addr(addr + 4);
1478
1479                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1480                         *batch++ = lower_32_bits(addr);
1481                         *batch++ = upper_32_bits(addr);
1482                         *batch++ = upper_32_bits(target_addr);
1483                 } else {
1484                         *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1485                         *batch++ = lower_32_bits(addr);
1486                         *batch++ = upper_32_bits(addr);
1487                         *batch++ = lower_32_bits(target_addr);
1488                         *batch++ = upper_32_bits(target_addr);
1489                 }
1490         } else if (gen >= 6) {
1491                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1492                 *batch++ = 0;
1493                 *batch++ = addr;
1494                 *batch++ = target_addr;
1495         } else if (IS_I965G(eb->i915)) {
1496                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1497                 *batch++ = 0;
1498                 *batch++ = vma_phys_addr(vma, offset);
1499                 *batch++ = target_addr;
1500         } else if (gen >= 4) {
1501                 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1502                 *batch++ = 0;
1503                 *batch++ = addr;
1504                 *batch++ = target_addr;
1505         } else if (gen >= 3 &&
1506                    !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1507                 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1508                 *batch++ = addr;
1509                 *batch++ = target_addr;
1510         } else {
1511                 *batch++ = MI_STORE_DWORD_IMM;
1512                 *batch++ = vma_phys_addr(vma, offset);
1513                 *batch++ = target_addr;
1514         }
1515
1516         return true;
1517 }
1518
1519 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1520                             struct i915_vma *vma,
1521                             u64 offset,
1522                             u64 target_addr)
1523 {
1524         if (eb->reloc_cache.vaddr)
1525                 return false;
1526
1527         if (!use_reloc_gpu(vma))
1528                 return false;
1529
1530         return __reloc_entry_gpu(eb, vma, offset, target_addr);
1531 }
1532
1533 static u64
1534 relocate_entry(struct i915_vma *vma,
1535                const struct drm_i915_gem_relocation_entry *reloc,
1536                struct i915_execbuffer *eb,
1537                const struct i915_vma *target)
1538 {
1539         u64 target_addr = relocation_target(reloc, target);
1540         u64 offset = reloc->offset;
1541         int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1542
1543         if (reloc_gpu < 0)
1544                 return reloc_gpu;
1545
1546         if (!reloc_gpu) {
1547                 bool wide = eb->reloc_cache.use_64bit_reloc;
1548                 void *vaddr;
1549
1550 repeat:
1551                 vaddr = reloc_vaddr(vma->obj, eb,
1552                                     offset >> PAGE_SHIFT);
1553                 if (IS_ERR(vaddr))
1554                         return PTR_ERR(vaddr);
1555
1556                 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1557                 clflush_write32(vaddr + offset_in_page(offset),
1558                                 lower_32_bits(target_addr),
1559                                 eb->reloc_cache.vaddr);
1560
1561                 if (wide) {
1562                         offset += sizeof(u32);
1563                         target_addr >>= 32;
1564                         wide = false;
1565                         goto repeat;
1566                 }
1567         }
1568
1569         return target->node.start | UPDATE;
1570 }
1571
1572 static u64
1573 eb_relocate_entry(struct i915_execbuffer *eb,
1574                   struct eb_vma *ev,
1575                   const struct drm_i915_gem_relocation_entry *reloc)
1576 {
1577         struct drm_i915_private *i915 = eb->i915;
1578         struct eb_vma *target;
1579         int err;
1580
1581         /* we've already hold a reference to all valid objects */
1582         target = eb_get_vma(eb, reloc->target_handle);
1583         if (unlikely(!target))
1584                 return -ENOENT;
1585
1586         /* Validate that the target is in a valid r/w GPU domain */
1587         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1588                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1589                           "target %d offset %d "
1590                           "read %08x write %08x",
1591                           reloc->target_handle,
1592                           (int) reloc->offset,
1593                           reloc->read_domains,
1594                           reloc->write_domain);
1595                 return -EINVAL;
1596         }
1597         if (unlikely((reloc->write_domain | reloc->read_domains)
1598                      & ~I915_GEM_GPU_DOMAINS)) {
1599                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1600                           "target %d offset %d "
1601                           "read %08x write %08x",
1602                           reloc->target_handle,
1603                           (int) reloc->offset,
1604                           reloc->read_domains,
1605                           reloc->write_domain);
1606                 return -EINVAL;
1607         }
1608
1609         if (reloc->write_domain) {
1610                 target->flags |= EXEC_OBJECT_WRITE;
1611
1612                 /*
1613                  * Sandybridge PPGTT errata: We need a global gtt mapping
1614                  * for MI and pipe_control writes because the gpu doesn't
1615                  * properly redirect them through the ppgtt for non_secure
1616                  * batchbuffers.
1617                  */
1618                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1619                     IS_GEN(eb->i915, 6)) {
1620                         err = i915_vma_bind(target->vma,
1621                                             target->vma->obj->cache_level,
1622                                             PIN_GLOBAL, NULL);
1623                         if (err)
1624                                 return err;
1625                 }
1626         }
1627
1628         /*
1629          * If the relocation already has the right value in it, no
1630          * more work needs to be done.
1631          */
1632         if (!DBG_FORCE_RELOC &&
1633             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1634                 return 0;
1635
1636         /* Check that the relocation address is valid... */
1637         if (unlikely(reloc->offset >
1638                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1639                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1640                           "target %d offset %d size %d.\n",
1641                           reloc->target_handle,
1642                           (int)reloc->offset,
1643                           (int)ev->vma->size);
1644                 return -EINVAL;
1645         }
1646         if (unlikely(reloc->offset & 3)) {
1647                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1648                           "target %d offset %d.\n",
1649                           reloc->target_handle,
1650                           (int)reloc->offset);
1651                 return -EINVAL;
1652         }
1653
1654         /*
1655          * If we write into the object, we need to force the synchronisation
1656          * barrier, either with an asynchronous clflush or if we executed the
1657          * patching using the GPU (though that should be serialised by the
1658          * timeline). To be completely sure, and since we are required to
1659          * do relocations we are already stalling, disable the user's opt
1660          * out of our synchronisation.
1661          */
1662         ev->flags &= ~EXEC_OBJECT_ASYNC;
1663
1664         /* and update the user's relocation entry */
1665         return relocate_entry(ev->vma, reloc, eb, target->vma);
1666 }
1667
1668 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1669 {
1670 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1671         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1672         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1673         struct drm_i915_gem_relocation_entry __user *urelocs =
1674                 u64_to_user_ptr(entry->relocs_ptr);
1675         unsigned long remain = entry->relocation_count;
1676
1677         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1678                 return -EINVAL;
1679
1680         /*
1681          * We must check that the entire relocation array is safe
1682          * to read. However, if the array is not writable the user loses
1683          * the updated relocation values.
1684          */
1685         if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1686                 return -EFAULT;
1687
1688         do {
1689                 struct drm_i915_gem_relocation_entry *r = stack;
1690                 unsigned int count =
1691                         min_t(unsigned long, remain, ARRAY_SIZE(stack));
1692                 unsigned int copied;
1693
1694                 /*
1695                  * This is the fast path and we cannot handle a pagefault
1696                  * whilst holding the struct mutex lest the user pass in the
1697                  * relocations contained within a mmaped bo. For in such a case
1698                  * we, the page fault handler would call i915_gem_fault() and
1699                  * we would try to acquire the struct mutex again. Obviously
1700                  * this is bad and so lockdep complains vehemently.
1701                  */
1702                 pagefault_disable();
1703                 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1704                 pagefault_enable();
1705                 if (unlikely(copied)) {
1706                         remain = -EFAULT;
1707                         goto out;
1708                 }
1709
1710                 remain -= count;
1711                 do {
1712                         u64 offset = eb_relocate_entry(eb, ev, r);
1713
1714                         if (likely(offset == 0)) {
1715                         } else if ((s64)offset < 0) {
1716                                 remain = (int)offset;
1717                                 goto out;
1718                         } else {
1719                                 /*
1720                                  * Note that reporting an error now
1721                                  * leaves everything in an inconsistent
1722                                  * state as we have *already* changed
1723                                  * the relocation value inside the
1724                                  * object. As we have not changed the
1725                                  * reloc.presumed_offset or will not
1726                                  * change the execobject.offset, on the
1727                                  * call we may not rewrite the value
1728                                  * inside the object, leaving it
1729                                  * dangling and causing a GPU hang. Unless
1730                                  * userspace dynamically rebuilds the
1731                                  * relocations on each execbuf rather than
1732                                  * presume a static tree.
1733                                  *
1734                                  * We did previously check if the relocations
1735                                  * were writable (access_ok), an error now
1736                                  * would be a strange race with mprotect,
1737                                  * having already demonstrated that we
1738                                  * can read from this userspace address.
1739                                  */
1740                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1741                                 __put_user(offset,
1742                                            &urelocs[r - stack].presumed_offset);
1743                         }
1744                 } while (r++, --count);
1745                 urelocs += ARRAY_SIZE(stack);
1746         } while (remain);
1747 out:
1748         reloc_cache_reset(&eb->reloc_cache, eb);
1749         return remain;
1750 }
1751
1752 static int
1753 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1754 {
1755         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1756         struct drm_i915_gem_relocation_entry *relocs =
1757                 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1758         unsigned int i;
1759         int err;
1760
1761         for (i = 0; i < entry->relocation_count; i++) {
1762                 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1763
1764                 if ((s64)offset < 0) {
1765                         err = (int)offset;
1766                         goto err;
1767                 }
1768         }
1769         err = 0;
1770 err:
1771         reloc_cache_reset(&eb->reloc_cache, eb);
1772         return err;
1773 }
1774
1775 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1776 {
1777         const char __user *addr, *end;
1778         unsigned long size;
1779         char __maybe_unused c;
1780
1781         size = entry->relocation_count;
1782         if (size == 0)
1783                 return 0;
1784
1785         if (size > N_RELOC(ULONG_MAX))
1786                 return -EINVAL;
1787
1788         addr = u64_to_user_ptr(entry->relocs_ptr);
1789         size *= sizeof(struct drm_i915_gem_relocation_entry);
1790         if (!access_ok(addr, size))
1791                 return -EFAULT;
1792
1793         end = addr + size;
1794         for (; addr < end; addr += PAGE_SIZE) {
1795                 int err = __get_user(c, addr);
1796                 if (err)
1797                         return err;
1798         }
1799         return __get_user(c, end - 1);
1800 }
1801
1802 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1803 {
1804         struct drm_i915_gem_relocation_entry *relocs;
1805         const unsigned int count = eb->buffer_count;
1806         unsigned int i;
1807         int err;
1808
1809         for (i = 0; i < count; i++) {
1810                 const unsigned int nreloc = eb->exec[i].relocation_count;
1811                 struct drm_i915_gem_relocation_entry __user *urelocs;
1812                 unsigned long size;
1813                 unsigned long copied;
1814
1815                 if (nreloc == 0)
1816                         continue;
1817
1818                 err = check_relocations(&eb->exec[i]);
1819                 if (err)
1820                         goto err;
1821
1822                 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1823                 size = nreloc * sizeof(*relocs);
1824
1825                 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1826                 if (!relocs) {
1827                         err = -ENOMEM;
1828                         goto err;
1829                 }
1830
1831                 /* copy_from_user is limited to < 4GiB */
1832                 copied = 0;
1833                 do {
1834                         unsigned int len =
1835                                 min_t(u64, BIT_ULL(31), size - copied);
1836
1837                         if (__copy_from_user((char *)relocs + copied,
1838                                              (char __user *)urelocs + copied,
1839                                              len))
1840                                 goto end;
1841
1842                         copied += len;
1843                 } while (copied < size);
1844
1845                 /*
1846                  * As we do not update the known relocation offsets after
1847                  * relocating (due to the complexities in lock handling),
1848                  * we need to mark them as invalid now so that we force the
1849                  * relocation processing next time. Just in case the target
1850                  * object is evicted and then rebound into its old
1851                  * presumed_offset before the next execbuffer - if that
1852                  * happened we would make the mistake of assuming that the
1853                  * relocations were valid.
1854                  */
1855                 if (!user_access_begin(urelocs, size))
1856                         goto end;
1857
1858                 for (copied = 0; copied < nreloc; copied++)
1859                         unsafe_put_user(-1,
1860                                         &urelocs[copied].presumed_offset,
1861                                         end_user);
1862                 user_access_end();
1863
1864                 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1865         }
1866
1867         return 0;
1868
1869 end_user:
1870         user_access_end();
1871 end:
1872         kvfree(relocs);
1873         err = -EFAULT;
1874 err:
1875         while (i--) {
1876                 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1877                 if (eb->exec[i].relocation_count)
1878                         kvfree(relocs);
1879         }
1880         return err;
1881 }
1882
1883 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1884 {
1885         const unsigned int count = eb->buffer_count;
1886         unsigned int i;
1887
1888         for (i = 0; i < count; i++) {
1889                 int err;
1890
1891                 err = check_relocations(&eb->exec[i]);
1892                 if (err)
1893                         return err;
1894         }
1895
1896         return 0;
1897 }
1898
1899 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1900                                            struct i915_request *rq)
1901 {
1902         bool have_copy = false;
1903         struct eb_vma *ev;
1904         int err = 0;
1905
1906 repeat:
1907         if (signal_pending(current)) {
1908                 err = -ERESTARTSYS;
1909                 goto out;
1910         }
1911
1912         /* We may process another execbuffer during the unlock... */
1913         eb_release_vmas(eb, false);
1914         i915_gem_ww_ctx_fini(&eb->ww);
1915
1916         if (rq) {
1917                 /* nonblocking is always false */
1918                 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
1919                                       MAX_SCHEDULE_TIMEOUT) < 0) {
1920                         i915_request_put(rq);
1921                         rq = NULL;
1922
1923                         err = -EINTR;
1924                         goto err_relock;
1925                 }
1926
1927                 i915_request_put(rq);
1928                 rq = NULL;
1929         }
1930
1931         /*
1932          * We take 3 passes through the slowpatch.
1933          *
1934          * 1 - we try to just prefault all the user relocation entries and
1935          * then attempt to reuse the atomic pagefault disabled fast path again.
1936          *
1937          * 2 - we copy the user entries to a local buffer here outside of the
1938          * local and allow ourselves to wait upon any rendering before
1939          * relocations
1940          *
1941          * 3 - we already have a local copy of the relocation entries, but
1942          * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1943          */
1944         if (!err) {
1945                 err = eb_prefault_relocations(eb);
1946         } else if (!have_copy) {
1947                 err = eb_copy_relocations(eb);
1948                 have_copy = err == 0;
1949         } else {
1950                 cond_resched();
1951                 err = 0;
1952         }
1953
1954         if (!err)
1955                 flush_workqueue(eb->i915->mm.userptr_wq);
1956
1957 err_relock:
1958         i915_gem_ww_ctx_init(&eb->ww, true);
1959         if (err)
1960                 goto out;
1961
1962         /* reacquire the objects */
1963 repeat_validate:
1964         rq = eb_pin_engine(eb, false);
1965         if (IS_ERR(rq)) {
1966                 err = PTR_ERR(rq);
1967                 rq = NULL;
1968                 goto err;
1969         }
1970
1971         /* We didn't throttle, should be NULL */
1972         GEM_WARN_ON(rq);
1973
1974         err = eb_validate_vmas(eb);
1975         if (err)
1976                 goto err;
1977
1978         GEM_BUG_ON(!eb->batch);
1979
1980         list_for_each_entry(ev, &eb->relocs, reloc_link) {
1981                 if (!have_copy) {
1982                         pagefault_disable();
1983                         err = eb_relocate_vma(eb, ev);
1984                         pagefault_enable();
1985                         if (err)
1986                                 break;
1987                 } else {
1988                         err = eb_relocate_vma_slow(eb, ev);
1989                         if (err)
1990                                 break;
1991                 }
1992         }
1993
1994         if (err == -EDEADLK)
1995                 goto err;
1996
1997         if (err && !have_copy)
1998                 goto repeat;
1999
2000         if (err)
2001                 goto err;
2002
2003         /* as last step, parse the command buffer */
2004         err = eb_parse(eb);
2005         if (err)
2006                 goto err;
2007
2008         /*
2009          * Leave the user relocations as are, this is the painfully slow path,
2010          * and we want to avoid the complication of dropping the lock whilst
2011          * having buffers reserved in the aperture and so causing spurious
2012          * ENOSPC for random operations.
2013          */
2014
2015 err:
2016         if (err == -EDEADLK) {
2017                 eb_release_vmas(eb, false);
2018                 err = i915_gem_ww_ctx_backoff(&eb->ww);
2019                 if (!err)
2020                         goto repeat_validate;
2021         }
2022
2023         if (err == -EAGAIN)
2024                 goto repeat;
2025
2026 out:
2027         if (have_copy) {
2028                 const unsigned int count = eb->buffer_count;
2029                 unsigned int i;
2030
2031                 for (i = 0; i < count; i++) {
2032                         const struct drm_i915_gem_exec_object2 *entry =
2033                                 &eb->exec[i];
2034                         struct drm_i915_gem_relocation_entry *relocs;
2035
2036                         if (!entry->relocation_count)
2037                                 continue;
2038
2039                         relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2040                         kvfree(relocs);
2041                 }
2042         }
2043
2044         if (rq)
2045                 i915_request_put(rq);
2046
2047         return err;
2048 }
2049
2050 static int eb_relocate_parse(struct i915_execbuffer *eb)
2051 {
2052         int err;
2053         struct i915_request *rq = NULL;
2054         bool throttle = true;
2055
2056 retry:
2057         rq = eb_pin_engine(eb, throttle);
2058         if (IS_ERR(rq)) {
2059                 err = PTR_ERR(rq);
2060                 rq = NULL;
2061                 if (err != -EDEADLK)
2062                         return err;
2063
2064                 goto err;
2065         }
2066
2067         if (rq) {
2068                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2069
2070                 /* Need to drop all locks now for throttling, take slowpath */
2071                 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2072                 if (err == -ETIME) {
2073                         if (nonblock) {
2074                                 err = -EWOULDBLOCK;
2075                                 i915_request_put(rq);
2076                                 goto err;
2077                         }
2078                         goto slow;
2079                 }
2080                 i915_request_put(rq);
2081                 rq = NULL;
2082         }
2083
2084         /* only throttle once, even if we didn't need to throttle */
2085         throttle = false;
2086
2087         err = eb_validate_vmas(eb);
2088         if (err == -EAGAIN)
2089                 goto slow;
2090         else if (err)
2091                 goto err;
2092
2093         /* The objects are in their final locations, apply the relocations. */
2094         if (eb->args->flags & __EXEC_HAS_RELOC) {
2095                 struct eb_vma *ev;
2096
2097                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
2098                         err = eb_relocate_vma(eb, ev);
2099                         if (err)
2100                                 break;
2101                 }
2102
2103                 if (err == -EDEADLK)
2104                         goto err;
2105                 else if (err)
2106                         goto slow;
2107         }
2108
2109         if (!err)
2110                 err = eb_parse(eb);
2111
2112 err:
2113         if (err == -EDEADLK) {
2114                 eb_release_vmas(eb, false);
2115                 err = i915_gem_ww_ctx_backoff(&eb->ww);
2116                 if (!err)
2117                         goto retry;
2118         }
2119
2120         return err;
2121
2122 slow:
2123         err = eb_relocate_parse_slow(eb, rq);
2124         if (err)
2125                 /*
2126                  * If the user expects the execobject.offset and
2127                  * reloc.presumed_offset to be an exact match,
2128                  * as for using NO_RELOC, then we cannot update
2129                  * the execobject.offset until we have completed
2130                  * relocation.
2131                  */
2132                 eb->args->flags &= ~__EXEC_HAS_RELOC;
2133
2134         return err;
2135 }
2136
2137 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2138 {
2139         const unsigned int count = eb->buffer_count;
2140         unsigned int i = count;
2141         int err = 0;
2142
2143         while (i--) {
2144                 struct eb_vma *ev = &eb->vma[i];
2145                 struct i915_vma *vma = ev->vma;
2146                 unsigned int flags = ev->flags;
2147                 struct drm_i915_gem_object *obj = vma->obj;
2148
2149                 assert_vma_held(vma);
2150
2151                 if (flags & EXEC_OBJECT_CAPTURE) {
2152                         struct i915_capture_list *capture;
2153
2154                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2155                         if (capture) {
2156                                 capture->next = eb->request->capture_list;
2157                                 capture->vma = vma;
2158                                 eb->request->capture_list = capture;
2159                         }
2160                 }
2161
2162                 /*
2163                  * If the GPU is not _reading_ through the CPU cache, we need
2164                  * to make sure that any writes (both previous GPU writes from
2165                  * before a change in snooping levels and normal CPU writes)
2166                  * caught in that cache are flushed to main memory.
2167                  *
2168                  * We want to say
2169                  *   obj->cache_dirty &&
2170                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2171                  * but gcc's optimiser doesn't handle that as well and emits
2172                  * two jumps instead of one. Maybe one day...
2173                  */
2174                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2175                         if (i915_gem_clflush_object(obj, 0))
2176                                 flags &= ~EXEC_OBJECT_ASYNC;
2177                 }
2178
2179                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2180                         err = i915_request_await_object
2181                                 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
2182                 }
2183
2184                 if (err == 0)
2185                         err = i915_vma_move_to_active(vma, eb->request, flags);
2186         }
2187
2188         if (unlikely(err))
2189                 goto err_skip;
2190
2191         /* Unconditionally flush any chipset caches (for streaming writes). */
2192         intel_gt_chipset_flush(eb->engine->gt);
2193         return 0;
2194
2195 err_skip:
2196         i915_request_set_error_once(eb->request, err);
2197         return err;
2198 }
2199
2200 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2201 {
2202         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2203                 return -EINVAL;
2204
2205         /* Kernel clipping was a DRI1 misfeature */
2206         if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2207                              I915_EXEC_USE_EXTENSIONS))) {
2208                 if (exec->num_cliprects || exec->cliprects_ptr)
2209                         return -EINVAL;
2210         }
2211
2212         if (exec->DR4 == 0xffffffff) {
2213                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2214                 exec->DR4 = 0;
2215         }
2216         if (exec->DR1 || exec->DR4)
2217                 return -EINVAL;
2218
2219         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2220                 return -EINVAL;
2221
2222         return 0;
2223 }
2224
2225 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2226 {
2227         u32 *cs;
2228         int i;
2229
2230         if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
2231                 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2232                 return -EINVAL;
2233         }
2234
2235         cs = intel_ring_begin(rq, 4 * 2 + 2);
2236         if (IS_ERR(cs))
2237                 return PTR_ERR(cs);
2238
2239         *cs++ = MI_LOAD_REGISTER_IMM(4);
2240         for (i = 0; i < 4; i++) {
2241                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2242                 *cs++ = 0;
2243         }
2244         *cs++ = MI_NOOP;
2245         intel_ring_advance(rq, cs);
2246
2247         return 0;
2248 }
2249
2250 static struct i915_vma *
2251 shadow_batch_pin(struct i915_execbuffer *eb,
2252                  struct drm_i915_gem_object *obj,
2253                  struct i915_address_space *vm,
2254                  unsigned int flags)
2255 {
2256         struct i915_vma *vma;
2257         int err;
2258
2259         vma = i915_vma_instance(obj, vm, NULL);
2260         if (IS_ERR(vma))
2261                 return vma;
2262
2263         err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2264         if (err)
2265                 return ERR_PTR(err);
2266
2267         return vma;
2268 }
2269
2270 struct eb_parse_work {
2271         struct dma_fence_work base;
2272         struct intel_engine_cs *engine;
2273         struct i915_vma *batch;
2274         struct i915_vma *shadow;
2275         struct i915_vma *trampoline;
2276         unsigned long batch_offset;
2277         unsigned long batch_length;
2278 };
2279
2280 static int __eb_parse(struct dma_fence_work *work)
2281 {
2282         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2283
2284         return intel_engine_cmd_parser(pw->engine,
2285                                        pw->batch,
2286                                        pw->batch_offset,
2287                                        pw->batch_length,
2288                                        pw->shadow,
2289                                        pw->trampoline);
2290 }
2291
2292 static void __eb_parse_release(struct dma_fence_work *work)
2293 {
2294         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2295
2296         if (pw->trampoline)
2297                 i915_active_release(&pw->trampoline->active);
2298         i915_active_release(&pw->shadow->active);
2299         i915_active_release(&pw->batch->active);
2300 }
2301
2302 static const struct dma_fence_work_ops eb_parse_ops = {
2303         .name = "eb_parse",
2304         .work = __eb_parse,
2305         .release = __eb_parse_release,
2306 };
2307
2308 static inline int
2309 __parser_mark_active(struct i915_vma *vma,
2310                      struct intel_timeline *tl,
2311                      struct dma_fence *fence)
2312 {
2313         struct intel_gt_buffer_pool_node *node = vma->private;
2314
2315         return i915_active_ref(&node->active, tl->fence_context, fence);
2316 }
2317
2318 static int
2319 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2320 {
2321         int err;
2322
2323         mutex_lock(&tl->mutex);
2324
2325         err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2326         if (err)
2327                 goto unlock;
2328
2329         if (pw->trampoline) {
2330                 err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2331                 if (err)
2332                         goto unlock;
2333         }
2334
2335 unlock:
2336         mutex_unlock(&tl->mutex);
2337         return err;
2338 }
2339
2340 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2341                              struct i915_vma *shadow,
2342                              struct i915_vma *trampoline)
2343 {
2344         struct eb_parse_work *pw;
2345         int err;
2346
2347         GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2348         GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2349
2350         pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2351         if (!pw)
2352                 return -ENOMEM;
2353
2354         err = i915_active_acquire(&eb->batch->vma->active);
2355         if (err)
2356                 goto err_free;
2357
2358         err = i915_active_acquire(&shadow->active);
2359         if (err)
2360                 goto err_batch;
2361
2362         if (trampoline) {
2363                 err = i915_active_acquire(&trampoline->active);
2364                 if (err)
2365                         goto err_shadow;
2366         }
2367
2368         dma_fence_work_init(&pw->base, &eb_parse_ops);
2369
2370         pw->engine = eb->engine;
2371         pw->batch = eb->batch->vma;
2372         pw->batch_offset = eb->batch_start_offset;
2373         pw->batch_length = eb->batch_len;
2374         pw->shadow = shadow;
2375         pw->trampoline = trampoline;
2376
2377         /* Mark active refs early for this worker, in case we get interrupted */
2378         err = parser_mark_active(pw, eb->context->timeline);
2379         if (err)
2380                 goto err_commit;
2381
2382         err = dma_resv_reserve_shared(pw->batch->resv, 1);
2383         if (err)
2384                 goto err_commit;
2385
2386         /* Wait for all writes (and relocs) into the batch to complete */
2387         err = i915_sw_fence_await_reservation(&pw->base.chain,
2388                                               pw->batch->resv, NULL, false,
2389                                               0, I915_FENCE_GFP);
2390         if (err < 0)
2391                 goto err_commit;
2392
2393         /* Keep the batch alive and unwritten as we parse */
2394         dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2395
2396         /* Force execution to wait for completion of the parser */
2397         dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2398
2399         dma_fence_work_commit_imm(&pw->base);
2400         return 0;
2401
2402 err_commit:
2403         i915_sw_fence_set_error_once(&pw->base.chain, err);
2404         dma_fence_work_commit_imm(&pw->base);
2405         return err;
2406
2407 err_shadow:
2408         i915_active_release(&shadow->active);
2409 err_batch:
2410         i915_active_release(&eb->batch->vma->active);
2411 err_free:
2412         kfree(pw);
2413         return err;
2414 }
2415
2416 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2417 {
2418         /*
2419          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2420          * batch" bit. Hence we need to pin secure batches into the global gtt.
2421          * hsw should have this fixed, but bdw mucks it up again. */
2422         if (eb->batch_flags & I915_DISPATCH_SECURE)
2423                 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2424
2425         return NULL;
2426 }
2427
2428 static int eb_parse(struct i915_execbuffer *eb)
2429 {
2430         struct drm_i915_private *i915 = eb->i915;
2431         struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2432         struct i915_vma *shadow, *trampoline, *batch;
2433         unsigned long len;
2434         int err;
2435
2436         if (!eb_use_cmdparser(eb)) {
2437                 batch = eb_dispatch_secure(eb, eb->batch->vma);
2438                 if (IS_ERR(batch))
2439                         return PTR_ERR(batch);
2440
2441                 goto secure_batch;
2442         }
2443
2444         len = eb->batch_len;
2445         if (!CMDPARSER_USES_GGTT(eb->i915)) {
2446                 /*
2447                  * ppGTT backed shadow buffers must be mapped RO, to prevent
2448                  * post-scan tampering
2449                  */
2450                 if (!eb->context->vm->has_read_only) {
2451                         drm_dbg(&i915->drm,
2452                                 "Cannot prevent post-scan tampering without RO capable vm\n");
2453                         return -EINVAL;
2454                 }
2455         } else {
2456                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2457         }
2458         if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2459                 return -EINVAL;
2460
2461         if (!pool) {
2462                 pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2463                 if (IS_ERR(pool))
2464                         return PTR_ERR(pool);
2465                 eb->batch_pool = pool;
2466         }
2467
2468         err = i915_gem_object_lock(pool->obj, &eb->ww);
2469         if (err)
2470                 goto err;
2471
2472         shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2473         if (IS_ERR(shadow)) {
2474                 err = PTR_ERR(shadow);
2475                 goto err;
2476         }
2477         i915_gem_object_set_readonly(shadow->obj);
2478         shadow->private = pool;
2479
2480         trampoline = NULL;
2481         if (CMDPARSER_USES_GGTT(eb->i915)) {
2482                 trampoline = shadow;
2483
2484                 shadow = shadow_batch_pin(eb, pool->obj,
2485                                           &eb->engine->gt->ggtt->vm,
2486                                           PIN_GLOBAL);
2487                 if (IS_ERR(shadow)) {
2488                         err = PTR_ERR(shadow);
2489                         shadow = trampoline;
2490                         goto err_shadow;
2491                 }
2492                 shadow->private = pool;
2493
2494                 eb->batch_flags |= I915_DISPATCH_SECURE;
2495         }
2496
2497         batch = eb_dispatch_secure(eb, shadow);
2498         if (IS_ERR(batch)) {
2499                 err = PTR_ERR(batch);
2500                 goto err_trampoline;
2501         }
2502
2503         err = eb_parse_pipeline(eb, shadow, trampoline);
2504         if (err)
2505                 goto err_unpin_batch;
2506
2507         eb->batch = &eb->vma[eb->buffer_count++];
2508         eb->batch->vma = i915_vma_get(shadow);
2509         eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2510
2511         eb->trampoline = trampoline;
2512         eb->batch_start_offset = 0;
2513
2514 secure_batch:
2515         if (batch) {
2516                 eb->batch = &eb->vma[eb->buffer_count++];
2517                 eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2518                 eb->batch->vma = i915_vma_get(batch);
2519         }
2520         return 0;
2521
2522 err_unpin_batch:
2523         if (batch)
2524                 i915_vma_unpin(batch);
2525 err_trampoline:
2526         if (trampoline)
2527                 i915_vma_unpin(trampoline);
2528 err_shadow:
2529         i915_vma_unpin(shadow);
2530 err:
2531         return err;
2532 }
2533
2534 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2535 {
2536         int err;
2537
2538         err = eb_move_to_gpu(eb);
2539         if (err)
2540                 return err;
2541
2542         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2543                 err = i915_reset_gen7_sol_offsets(eb->request);
2544                 if (err)
2545                         return err;
2546         }
2547
2548         /*
2549          * After we completed waiting for other engines (using HW semaphores)
2550          * then we can signal that this request/batch is ready to run. This
2551          * allows us to determine if the batch is still waiting on the GPU
2552          * or actually running by checking the breadcrumb.
2553          */
2554         if (eb->engine->emit_init_breadcrumb) {
2555                 err = eb->engine->emit_init_breadcrumb(eb->request);
2556                 if (err)
2557                         return err;
2558         }
2559
2560         err = eb->engine->emit_bb_start(eb->request,
2561                                         batch->node.start +
2562                                         eb->batch_start_offset,
2563                                         eb->batch_len,
2564                                         eb->batch_flags);
2565         if (err)
2566                 return err;
2567
2568         if (eb->trampoline) {
2569                 GEM_BUG_ON(eb->batch_start_offset);
2570                 err = eb->engine->emit_bb_start(eb->request,
2571                                                 eb->trampoline->node.start +
2572                                                 eb->batch_len,
2573                                                 0, 0);
2574                 if (err)
2575                         return err;
2576         }
2577
2578         if (intel_context_nopreempt(eb->context))
2579                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2580
2581         return 0;
2582 }
2583
2584 static int num_vcs_engines(const struct drm_i915_private *i915)
2585 {
2586         return hweight64(VDBOX_MASK(&i915->gt));
2587 }
2588
2589 /*
2590  * Find one BSD ring to dispatch the corresponding BSD command.
2591  * The engine index is returned.
2592  */
2593 static unsigned int
2594 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2595                          struct drm_file *file)
2596 {
2597         struct drm_i915_file_private *file_priv = file->driver_priv;
2598
2599         /* Check whether the file_priv has already selected one ring. */
2600         if ((int)file_priv->bsd_engine < 0)
2601                 file_priv->bsd_engine =
2602                         get_random_int() % num_vcs_engines(dev_priv);
2603
2604         return file_priv->bsd_engine;
2605 }
2606
2607 static const enum intel_engine_id user_ring_map[] = {
2608         [I915_EXEC_DEFAULT]     = RCS0,
2609         [I915_EXEC_RENDER]      = RCS0,
2610         [I915_EXEC_BLT]         = BCS0,
2611         [I915_EXEC_BSD]         = VCS0,
2612         [I915_EXEC_VEBOX]       = VECS0
2613 };
2614
2615 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2616 {
2617         struct intel_ring *ring = ce->ring;
2618         struct intel_timeline *tl = ce->timeline;
2619         struct i915_request *rq;
2620
2621         /*
2622          * Completely unscientific finger-in-the-air estimates for suitable
2623          * maximum user request size (to avoid blocking) and then backoff.
2624          */
2625         if (intel_ring_update_space(ring) >= PAGE_SIZE)
2626                 return NULL;
2627
2628         /*
2629          * Find a request that after waiting upon, there will be at least half
2630          * the ring available. The hysteresis allows us to compete for the
2631          * shared ring and should mean that we sleep less often prior to
2632          * claiming our resources, but not so long that the ring completely
2633          * drains before we can submit our next request.
2634          */
2635         list_for_each_entry(rq, &tl->requests, link) {
2636                 if (rq->ring != ring)
2637                         continue;
2638
2639                 if (__intel_ring_space(rq->postfix,
2640                                        ring->emit, ring->size) > ring->size / 2)
2641                         break;
2642         }
2643         if (&rq->link == &tl->requests)
2644                 return NULL; /* weird, we will check again later for real */
2645
2646         return i915_request_get(rq);
2647 }
2648
2649 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2650 {
2651         struct intel_context *ce = eb->context;
2652         struct intel_timeline *tl;
2653         struct i915_request *rq = NULL;
2654         int err;
2655
2656         GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2657
2658         if (unlikely(intel_context_is_banned(ce)))
2659                 return ERR_PTR(-EIO);
2660
2661         /*
2662          * Pinning the contexts may generate requests in order to acquire
2663          * GGTT space, so do this first before we reserve a seqno for
2664          * ourselves.
2665          */
2666         err = intel_context_pin_ww(ce, &eb->ww);
2667         if (err)
2668                 return ERR_PTR(err);
2669
2670         /*
2671          * Take a local wakeref for preparing to dispatch the execbuf as
2672          * we expect to access the hardware fairly frequently in the
2673          * process, and require the engine to be kept awake between accesses.
2674          * Upon dispatch, we acquire another prolonged wakeref that we hold
2675          * until the timeline is idle, which in turn releases the wakeref
2676          * taken on the engine, and the parent device.
2677          */
2678         tl = intel_context_timeline_lock(ce);
2679         if (IS_ERR(tl)) {
2680                 intel_context_unpin(ce);
2681                 return ERR_CAST(tl);
2682         }
2683
2684         intel_context_enter(ce);
2685         if (throttle)
2686                 rq = eb_throttle(eb, ce);
2687         intel_context_timeline_unlock(tl);
2688
2689         eb->args->flags |= __EXEC_ENGINE_PINNED;
2690         return rq;
2691 }
2692
2693 static void eb_unpin_engine(struct i915_execbuffer *eb)
2694 {
2695         struct intel_context *ce = eb->context;
2696         struct intel_timeline *tl = ce->timeline;
2697
2698         if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2699                 return;
2700
2701         eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2702
2703         mutex_lock(&tl->mutex);
2704         intel_context_exit(ce);
2705         mutex_unlock(&tl->mutex);
2706
2707         intel_context_unpin(ce);
2708 }
2709
2710 static unsigned int
2711 eb_select_legacy_ring(struct i915_execbuffer *eb)
2712 {
2713         struct drm_i915_private *i915 = eb->i915;
2714         struct drm_i915_gem_execbuffer2 *args = eb->args;
2715         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2716
2717         if (user_ring_id != I915_EXEC_BSD &&
2718             (args->flags & I915_EXEC_BSD_MASK)) {
2719                 drm_dbg(&i915->drm,
2720                         "execbuf with non bsd ring but with invalid "
2721                         "bsd dispatch flags: %d\n", (int)(args->flags));
2722                 return -1;
2723         }
2724
2725         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2726                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2727
2728                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2729                         bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2730                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2731                            bsd_idx <= I915_EXEC_BSD_RING2) {
2732                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2733                         bsd_idx--;
2734                 } else {
2735                         drm_dbg(&i915->drm,
2736                                 "execbuf with unknown bsd ring: %u\n",
2737                                 bsd_idx);
2738                         return -1;
2739                 }
2740
2741                 return _VCS(bsd_idx);
2742         }
2743
2744         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2745                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2746                         user_ring_id);
2747                 return -1;
2748         }
2749
2750         return user_ring_map[user_ring_id];
2751 }
2752
2753 static int
2754 eb_select_engine(struct i915_execbuffer *eb)
2755 {
2756         struct intel_context *ce;
2757         unsigned int idx;
2758         int err;
2759
2760         if (i915_gem_context_user_engines(eb->gem_context))
2761                 idx = eb->args->flags & I915_EXEC_RING_MASK;
2762         else
2763                 idx = eb_select_legacy_ring(eb);
2764
2765         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2766         if (IS_ERR(ce))
2767                 return PTR_ERR(ce);
2768
2769         intel_gt_pm_get(ce->engine->gt);
2770
2771         if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2772                 err = intel_context_alloc_state(ce);
2773                 if (err)
2774                         goto err;
2775         }
2776
2777         /*
2778          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2779          * EIO if the GPU is already wedged.
2780          */
2781         err = intel_gt_terminally_wedged(ce->engine->gt);
2782         if (err)
2783                 goto err;
2784
2785         eb->context = ce;
2786         eb->engine = ce->engine;
2787
2788         /*
2789          * Make sure engine pool stays alive even if we call intel_context_put
2790          * during ww handling. The pool is destroyed when last pm reference
2791          * is dropped, which breaks our -EDEADLK handling.
2792          */
2793         return err;
2794
2795 err:
2796         intel_gt_pm_put(ce->engine->gt);
2797         intel_context_put(ce);
2798         return err;
2799 }
2800
2801 static void
2802 eb_put_engine(struct i915_execbuffer *eb)
2803 {
2804         intel_gt_pm_put(eb->engine->gt);
2805         intel_context_put(eb->context);
2806 }
2807
2808 static void
2809 __free_fence_array(struct eb_fence *fences, unsigned int n)
2810 {
2811         while (n--) {
2812                 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2813                 dma_fence_put(fences[n].dma_fence);
2814                 kfree(fences[n].chain_fence);
2815         }
2816         kvfree(fences);
2817 }
2818
2819 static int
2820 add_timeline_fence_array(struct i915_execbuffer *eb,
2821                          const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2822 {
2823         struct drm_i915_gem_exec_fence __user *user_fences;
2824         u64 __user *user_values;
2825         struct eb_fence *f;
2826         u64 nfences;
2827         int err = 0;
2828
2829         nfences = timeline_fences->fence_count;
2830         if (!nfences)
2831                 return 0;
2832
2833         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2834         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2835         if (nfences > min_t(unsigned long,
2836                             ULONG_MAX / sizeof(*user_fences),
2837                             SIZE_MAX / sizeof(*f)) - eb->num_fences)
2838                 return -EINVAL;
2839
2840         user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2841         if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2842                 return -EFAULT;
2843
2844         user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2845         if (!access_ok(user_values, nfences * sizeof(*user_values)))
2846                 return -EFAULT;
2847
2848         f = krealloc(eb->fences,
2849                      (eb->num_fences + nfences) * sizeof(*f),
2850                      __GFP_NOWARN | GFP_KERNEL);
2851         if (!f)
2852                 return -ENOMEM;
2853
2854         eb->fences = f;
2855         f += eb->num_fences;
2856
2857         BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2858                      ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2859
2860         while (nfences--) {
2861                 struct drm_i915_gem_exec_fence user_fence;
2862                 struct drm_syncobj *syncobj;
2863                 struct dma_fence *fence = NULL;
2864                 u64 point;
2865
2866                 if (__copy_from_user(&user_fence,
2867                                      user_fences++,
2868                                      sizeof(user_fence)))
2869                         return -EFAULT;
2870
2871                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2872                         return -EINVAL;
2873
2874                 if (__get_user(point, user_values++))
2875                         return -EFAULT;
2876
2877                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2878                 if (!syncobj) {
2879                         DRM_DEBUG("Invalid syncobj handle provided\n");
2880                         return -ENOENT;
2881                 }
2882
2883                 fence = drm_syncobj_fence_get(syncobj);
2884
2885                 if (!fence && user_fence.flags &&
2886                     !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2887                         DRM_DEBUG("Syncobj handle has no fence\n");
2888                         drm_syncobj_put(syncobj);
2889                         return -EINVAL;
2890                 }
2891
2892                 if (fence)
2893                         err = dma_fence_chain_find_seqno(&fence, point);
2894
2895                 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2896                         DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2897                         dma_fence_put(fence);
2898                         drm_syncobj_put(syncobj);
2899                         return err;
2900                 }
2901
2902                 /*
2903                  * A point might have been signaled already and
2904                  * garbage collected from the timeline. In this case
2905                  * just ignore the point and carry on.
2906                  */
2907                 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2908                         drm_syncobj_put(syncobj);
2909                         continue;
2910                 }
2911
2912                 /*
2913                  * For timeline syncobjs we need to preallocate chains for
2914                  * later signaling.
2915                  */
2916                 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2917                         /*
2918                          * Waiting and signaling the same point (when point !=
2919                          * 0) would break the timeline.
2920                          */
2921                         if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2922                                 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2923                                 dma_fence_put(fence);
2924                                 drm_syncobj_put(syncobj);
2925                                 return -EINVAL;
2926                         }
2927
2928                         f->chain_fence =
2929                                 kmalloc(sizeof(*f->chain_fence),
2930                                         GFP_KERNEL);
2931                         if (!f->chain_fence) {
2932                                 drm_syncobj_put(syncobj);
2933                                 dma_fence_put(fence);
2934                                 return -ENOMEM;
2935                         }
2936                 } else {
2937                         f->chain_fence = NULL;
2938                 }
2939
2940                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2941                 f->dma_fence = fence;
2942                 f->value = point;
2943                 f++;
2944                 eb->num_fences++;
2945         }
2946
2947         return 0;
2948 }
2949
2950 static int add_fence_array(struct i915_execbuffer *eb)
2951 {
2952         struct drm_i915_gem_execbuffer2 *args = eb->args;
2953         struct drm_i915_gem_exec_fence __user *user;
2954         unsigned long num_fences = args->num_cliprects;
2955         struct eb_fence *f;
2956
2957         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2958                 return 0;
2959
2960         if (!num_fences)
2961                 return 0;
2962
2963         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2964         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2965         if (num_fences > min_t(unsigned long,
2966                                ULONG_MAX / sizeof(*user),
2967                                SIZE_MAX / sizeof(*f) - eb->num_fences))
2968                 return -EINVAL;
2969
2970         user = u64_to_user_ptr(args->cliprects_ptr);
2971         if (!access_ok(user, num_fences * sizeof(*user)))
2972                 return -EFAULT;
2973
2974         f = krealloc(eb->fences,
2975                      (eb->num_fences + num_fences) * sizeof(*f),
2976                      __GFP_NOWARN | GFP_KERNEL);
2977         if (!f)
2978                 return -ENOMEM;
2979
2980         eb->fences = f;
2981         f += eb->num_fences;
2982         while (num_fences--) {
2983                 struct drm_i915_gem_exec_fence user_fence;
2984                 struct drm_syncobj *syncobj;
2985                 struct dma_fence *fence = NULL;
2986
2987                 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2988                         return -EFAULT;
2989
2990                 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2991                         return -EINVAL;
2992
2993                 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2994                 if (!syncobj) {
2995                         DRM_DEBUG("Invalid syncobj handle provided\n");
2996                         return -ENOENT;
2997                 }
2998
2999                 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3000                         fence = drm_syncobj_fence_get(syncobj);
3001                         if (!fence) {
3002                                 DRM_DEBUG("Syncobj handle has no fence\n");
3003                                 drm_syncobj_put(syncobj);
3004                                 return -EINVAL;
3005                         }
3006                 }
3007
3008                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3009                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3010
3011                 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3012                 f->dma_fence = fence;
3013                 f->value = 0;
3014                 f->chain_fence = NULL;
3015                 f++;
3016                 eb->num_fences++;
3017         }
3018
3019         return 0;
3020 }
3021
3022 static void put_fence_array(struct eb_fence *fences, int num_fences)
3023 {
3024         if (fences)
3025                 __free_fence_array(fences, num_fences);
3026 }
3027
3028 static int
3029 await_fence_array(struct i915_execbuffer *eb)
3030 {
3031         unsigned int n;
3032         int err;
3033
3034         for (n = 0; n < eb->num_fences; n++) {
3035                 struct drm_syncobj *syncobj;
3036                 unsigned int flags;
3037
3038                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3039
3040                 if (!eb->fences[n].dma_fence)
3041                         continue;
3042
3043                 err = i915_request_await_dma_fence(eb->request,
3044                                                    eb->fences[n].dma_fence);
3045                 if (err < 0)
3046                         return err;
3047         }
3048
3049         return 0;
3050 }
3051
3052 static void signal_fence_array(const struct i915_execbuffer *eb)
3053 {
3054         struct dma_fence * const fence = &eb->request->fence;
3055         unsigned int n;
3056
3057         for (n = 0; n < eb->num_fences; n++) {
3058                 struct drm_syncobj *syncobj;
3059                 unsigned int flags;
3060
3061                 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3062                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
3063                         continue;
3064
3065                 if (eb->fences[n].chain_fence) {
3066                         drm_syncobj_add_point(syncobj,
3067                                               eb->fences[n].chain_fence,
3068                                               fence,
3069                                               eb->fences[n].value);
3070                         /*
3071                          * The chain's ownership is transferred to the
3072                          * timeline.
3073                          */
3074                         eb->fences[n].chain_fence = NULL;
3075                 } else {
3076                         drm_syncobj_replace_fence(syncobj, fence);
3077                 }
3078         }
3079 }
3080
3081 static int
3082 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3083 {
3084         struct i915_execbuffer *eb = data;
3085         struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3086
3087         if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3088                 return -EFAULT;
3089
3090         return add_timeline_fence_array(eb, &timeline_fences);
3091 }
3092
3093 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3094 {
3095         struct i915_request *rq, *rn;
3096
3097         list_for_each_entry_safe(rq, rn, &tl->requests, link)
3098                 if (rq == end || !i915_request_retire(rq))
3099                         break;
3100 }
3101
3102 static int eb_request_add(struct i915_execbuffer *eb, int err)
3103 {
3104         struct i915_request *rq = eb->request;
3105         struct intel_timeline * const tl = i915_request_timeline(rq);
3106         struct i915_sched_attr attr = {};
3107         struct i915_request *prev;
3108
3109         lockdep_assert_held(&tl->mutex);
3110         lockdep_unpin_lock(&tl->mutex, rq->cookie);
3111
3112         trace_i915_request_add(rq);
3113
3114         prev = __i915_request_commit(rq);
3115
3116         /* Check that the context wasn't destroyed before submission */
3117         if (likely(!intel_context_is_closed(eb->context))) {
3118                 attr = eb->gem_context->sched;
3119         } else {
3120                 /* Serialise with context_close via the add_to_timeline */
3121                 i915_request_set_error_once(rq, -ENOENT);
3122                 __i915_request_skip(rq);
3123                 err = -ENOENT; /* override any transient errors */
3124         }
3125
3126         __i915_request_queue(rq, &attr);
3127
3128         /* Try to clean up the client's timeline after submitting the request */
3129         if (prev)
3130                 retire_requests(tl, prev);
3131
3132         mutex_unlock(&tl->mutex);
3133
3134         return err;
3135 }
3136
3137 static const i915_user_extension_fn execbuf_extensions[] = {
3138         [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3139 };
3140
3141 static int
3142 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3143                           struct i915_execbuffer *eb)
3144 {
3145         if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3146                 return 0;
3147
3148         /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3149          * have another flag also using it at the same time.
3150          */
3151         if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3152                 return -EINVAL;
3153
3154         if (args->num_cliprects != 0)
3155                 return -EINVAL;
3156
3157         return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3158                                     execbuf_extensions,
3159                                     ARRAY_SIZE(execbuf_extensions),
3160                                     eb);
3161 }
3162
3163 static int
3164 i915_gem_do_execbuffer(struct drm_device *dev,
3165                        struct drm_file *file,
3166                        struct drm_i915_gem_execbuffer2 *args,
3167                        struct drm_i915_gem_exec_object2 *exec)
3168 {
3169         struct drm_i915_private *i915 = to_i915(dev);
3170         struct i915_execbuffer eb;
3171         struct dma_fence *in_fence = NULL;
3172         struct sync_file *out_fence = NULL;
3173         struct i915_vma *batch;
3174         int out_fence_fd = -1;
3175         int err;
3176
3177         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3178         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3179                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3180
3181         eb.i915 = i915;
3182         eb.file = file;
3183         eb.args = args;
3184         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3185                 args->flags |= __EXEC_HAS_RELOC;
3186
3187         eb.exec = exec;
3188         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3189         eb.vma[0].vma = NULL;
3190         eb.reloc_pool = eb.batch_pool = NULL;
3191         eb.reloc_context = NULL;
3192
3193         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3194         reloc_cache_init(&eb.reloc_cache, eb.i915);
3195
3196         eb.buffer_count = args->buffer_count;
3197         eb.batch_start_offset = args->batch_start_offset;
3198         eb.batch_len = args->batch_len;
3199         eb.trampoline = NULL;
3200
3201         eb.fences = NULL;
3202         eb.num_fences = 0;
3203
3204         eb.batch_flags = 0;
3205         if (args->flags & I915_EXEC_SECURE) {
3206                 if (INTEL_GEN(i915) >= 11)
3207                         return -ENODEV;
3208
3209                 /* Return -EPERM to trigger fallback code on old binaries. */
3210                 if (!HAS_SECURE_BATCHES(i915))
3211                         return -EPERM;
3212
3213                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3214                         return -EPERM;
3215
3216                 eb.batch_flags |= I915_DISPATCH_SECURE;
3217         }
3218         if (args->flags & I915_EXEC_IS_PINNED)
3219                 eb.batch_flags |= I915_DISPATCH_PINNED;
3220
3221         err = parse_execbuf2_extensions(args, &eb);
3222         if (err)
3223                 goto err_ext;
3224
3225         err = add_fence_array(&eb);
3226         if (err)
3227                 goto err_ext;
3228
3229 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3230         if (args->flags & IN_FENCES) {
3231                 if ((args->flags & IN_FENCES) == IN_FENCES)
3232                         return -EINVAL;
3233
3234                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3235                 if (!in_fence) {
3236                         err = -EINVAL;
3237                         goto err_ext;
3238                 }
3239         }
3240 #undef IN_FENCES
3241
3242         if (args->flags & I915_EXEC_FENCE_OUT) {
3243                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3244                 if (out_fence_fd < 0) {
3245                         err = out_fence_fd;
3246                         goto err_in_fence;
3247                 }
3248         }
3249
3250         err = eb_create(&eb);
3251         if (err)
3252                 goto err_out_fence;
3253
3254         GEM_BUG_ON(!eb.lut_size);
3255
3256         err = eb_select_context(&eb);
3257         if (unlikely(err))
3258                 goto err_destroy;
3259
3260         err = eb_select_engine(&eb);
3261         if (unlikely(err))
3262                 goto err_context;
3263
3264         err = eb_lookup_vmas(&eb);
3265         if (err) {
3266                 eb_release_vmas(&eb, true);
3267                 goto err_engine;
3268         }
3269
3270         i915_gem_ww_ctx_init(&eb.ww, true);
3271
3272         err = eb_relocate_parse(&eb);
3273         if (err) {
3274                 /*
3275                  * If the user expects the execobject.offset and
3276                  * reloc.presumed_offset to be an exact match,
3277                  * as for using NO_RELOC, then we cannot update
3278                  * the execobject.offset until we have completed
3279                  * relocation.
3280                  */
3281                 args->flags &= ~__EXEC_HAS_RELOC;
3282                 goto err_vma;
3283         }
3284
3285         ww_acquire_done(&eb.ww.ctx);
3286
3287         batch = eb.batch->vma;
3288
3289         /* All GPU relocation batches must be submitted prior to the user rq */
3290         GEM_BUG_ON(eb.reloc_cache.rq);
3291
3292         /* Allocate a request for this batch buffer nice and early. */
3293         eb.request = i915_request_create(eb.context);
3294         if (IS_ERR(eb.request)) {
3295                 err = PTR_ERR(eb.request);
3296                 goto err_vma;
3297         }
3298
3299         if (in_fence) {
3300                 if (args->flags & I915_EXEC_FENCE_SUBMIT)
3301                         err = i915_request_await_execution(eb.request,
3302                                                            in_fence,
3303                                                            eb.engine->bond_execute);
3304                 else
3305                         err = i915_request_await_dma_fence(eb.request,
3306                                                            in_fence);
3307                 if (err < 0)
3308                         goto err_request;
3309         }
3310
3311         if (eb.fences) {
3312                 err = await_fence_array(&eb);
3313                 if (err)
3314                         goto err_request;
3315         }
3316
3317         if (out_fence_fd != -1) {
3318                 out_fence = sync_file_create(&eb.request->fence);
3319                 if (!out_fence) {
3320                         err = -ENOMEM;
3321                         goto err_request;
3322                 }
3323         }
3324
3325         /*
3326          * Whilst this request exists, batch_obj will be on the
3327          * active_list, and so will hold the active reference. Only when this
3328          * request is retired will the the batch_obj be moved onto the
3329          * inactive_list and lose its active reference. Hence we do not need
3330          * to explicitly hold another reference here.
3331          */
3332         eb.request->batch = batch;
3333         if (eb.batch_pool)
3334                 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3335
3336         trace_i915_request_queue(eb.request, eb.batch_flags);
3337         err = eb_submit(&eb, batch);
3338 err_request:
3339         i915_request_get(eb.request);
3340         err = eb_request_add(&eb, err);
3341
3342         if (eb.fences)
3343                 signal_fence_array(&eb);
3344
3345         if (out_fence) {
3346                 if (err == 0) {
3347                         fd_install(out_fence_fd, out_fence->file);
3348                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3349                         args->rsvd2 |= (u64)out_fence_fd << 32;
3350                         out_fence_fd = -1;
3351                 } else {
3352                         fput(out_fence->file);
3353                 }
3354         }
3355         i915_request_put(eb.request);
3356
3357 err_vma:
3358         eb_release_vmas(&eb, true);
3359         if (eb.trampoline)
3360                 i915_vma_unpin(eb.trampoline);
3361         WARN_ON(err == -EDEADLK);
3362         i915_gem_ww_ctx_fini(&eb.ww);
3363
3364         if (eb.batch_pool)
3365                 intel_gt_buffer_pool_put(eb.batch_pool);
3366         if (eb.reloc_pool)
3367                 intel_gt_buffer_pool_put(eb.reloc_pool);
3368         if (eb.reloc_context)
3369                 intel_context_put(eb.reloc_context);
3370 err_engine:
3371         eb_put_engine(&eb);
3372 err_context:
3373         i915_gem_context_put(eb.gem_context);
3374 err_destroy:
3375         eb_destroy(&eb);
3376 err_out_fence:
3377         if (out_fence_fd != -1)
3378                 put_unused_fd(out_fence_fd);
3379 err_in_fence:
3380         dma_fence_put(in_fence);
3381 err_ext:
3382         put_fence_array(eb.fences, eb.num_fences);
3383         return err;
3384 }
3385
3386 static size_t eb_element_size(void)
3387 {
3388         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3389 }
3390
3391 static bool check_buffer_count(size_t count)
3392 {
3393         const size_t sz = eb_element_size();
3394
3395         /*
3396          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3397          * array size (see eb_create()). Otherwise, we can accept an array as
3398          * large as can be addressed (though use large arrays at your peril)!
3399          */
3400
3401         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3402 }
3403
3404 /*
3405  * Legacy execbuffer just creates an exec2 list from the original exec object
3406  * list array and passes it to the real function.
3407  */
3408 int
3409 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
3410                           struct drm_file *file)
3411 {
3412         struct drm_i915_private *i915 = to_i915(dev);
3413         struct drm_i915_gem_execbuffer *args = data;
3414         struct drm_i915_gem_execbuffer2 exec2;
3415         struct drm_i915_gem_exec_object *exec_list = NULL;
3416         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3417         const size_t count = args->buffer_count;
3418         unsigned int i;
3419         int err;
3420
3421         if (!check_buffer_count(count)) {
3422                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3423                 return -EINVAL;
3424         }
3425
3426         exec2.buffers_ptr = args->buffers_ptr;
3427         exec2.buffer_count = args->buffer_count;
3428         exec2.batch_start_offset = args->batch_start_offset;
3429         exec2.batch_len = args->batch_len;
3430         exec2.DR1 = args->DR1;
3431         exec2.DR4 = args->DR4;
3432         exec2.num_cliprects = args->num_cliprects;
3433         exec2.cliprects_ptr = args->cliprects_ptr;
3434         exec2.flags = I915_EXEC_RENDER;
3435         i915_execbuffer2_set_context_id(exec2, 0);
3436
3437         err = i915_gem_check_execbuffer(&exec2);
3438         if (err)
3439                 return err;
3440
3441         /* Copy in the exec list from userland */
3442         exec_list = kvmalloc_array(count, sizeof(*exec_list),
3443                                    __GFP_NOWARN | GFP_KERNEL);
3444
3445         /* Allocate extra slots for use by the command parser */
3446         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3447                                     __GFP_NOWARN | GFP_KERNEL);
3448         if (exec_list == NULL || exec2_list == NULL) {
3449                 drm_dbg(&i915->drm,
3450                         "Failed to allocate exec list for %d buffers\n",
3451                         args->buffer_count);
3452                 kvfree(exec_list);
3453                 kvfree(exec2_list);
3454                 return -ENOMEM;
3455         }
3456         err = copy_from_user(exec_list,
3457                              u64_to_user_ptr(args->buffers_ptr),
3458                              sizeof(*exec_list) * count);
3459         if (err) {
3460                 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
3461                         args->buffer_count, err);
3462                 kvfree(exec_list);
3463                 kvfree(exec2_list);
3464                 return -EFAULT;
3465         }
3466
3467         for (i = 0; i < args->buffer_count; i++) {
3468                 exec2_list[i].handle = exec_list[i].handle;
3469                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3470                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3471                 exec2_list[i].alignment = exec_list[i].alignment;
3472                 exec2_list[i].offset = exec_list[i].offset;
3473                 if (INTEL_GEN(to_i915(dev)) < 4)
3474                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3475                 else
3476                         exec2_list[i].flags = 0;
3477         }
3478
3479         err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3480         if (exec2.flags & __EXEC_HAS_RELOC) {
3481                 struct drm_i915_gem_exec_object __user *user_exec_list =
3482                         u64_to_user_ptr(args->buffers_ptr);
3483
3484                 /* Copy the new buffer offsets back to the user's exec list. */
3485                 for (i = 0; i < args->buffer_count; i++) {
3486                         if (!(exec2_list[i].offset & UPDATE))
3487                                 continue;
3488
3489                         exec2_list[i].offset =
3490                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3491                         exec2_list[i].offset &= PIN_OFFSET_MASK;
3492                         if (__copy_to_user(&user_exec_list[i].offset,
3493                                            &exec2_list[i].offset,
3494                                            sizeof(user_exec_list[i].offset)))
3495                                 break;
3496                 }
3497         }
3498
3499         kvfree(exec_list);
3500         kvfree(exec2_list);
3501         return err;
3502 }
3503
3504 int
3505 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3506                            struct drm_file *file)
3507 {
3508         struct drm_i915_private *i915 = to_i915(dev);
3509         struct drm_i915_gem_execbuffer2 *args = data;
3510         struct drm_i915_gem_exec_object2 *exec2_list;
3511         const size_t count = args->buffer_count;
3512         int err;
3513
3514         if (!check_buffer_count(count)) {
3515                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3516                 return -EINVAL;
3517         }
3518
3519         err = i915_gem_check_execbuffer(args);
3520         if (err)
3521                 return err;
3522
3523         /* Allocate extra slots for use by the command parser */
3524         exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3525                                     __GFP_NOWARN | GFP_KERNEL);
3526         if (exec2_list == NULL) {
3527                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3528                         count);
3529                 return -ENOMEM;
3530         }
3531         if (copy_from_user(exec2_list,
3532                            u64_to_user_ptr(args->buffers_ptr),
3533                            sizeof(*exec2_list) * count)) {
3534                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3535                 kvfree(exec2_list);
3536                 return -EFAULT;
3537         }
3538
3539         err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3540
3541         /*
3542          * Now that we have begun execution of the batchbuffer, we ignore
3543          * any new error after this point. Also given that we have already
3544          * updated the associated relocations, we try to write out the current
3545          * object locations irrespective of any error.
3546          */
3547         if (args->flags & __EXEC_HAS_RELOC) {
3548                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3549                         u64_to_user_ptr(args->buffers_ptr);
3550                 unsigned int i;
3551
3552                 /* Copy the new buffer offsets back to the user's exec list. */
3553                 /*
3554                  * Note: count * sizeof(*user_exec_list) does not overflow,
3555                  * because we checked 'count' in check_buffer_count().
3556                  *
3557                  * And this range already got effectively checked earlier
3558                  * when we did the "copy_from_user()" above.
3559                  */
3560                 if (!user_write_access_begin(user_exec_list,
3561                                              count * sizeof(*user_exec_list)))
3562                         goto end;
3563
3564                 for (i = 0; i < args->buffer_count; i++) {
3565                         if (!(exec2_list[i].offset & UPDATE))
3566                                 continue;
3567
3568                         exec2_list[i].offset =
3569                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3570                         unsafe_put_user(exec2_list[i].offset,
3571                                         &user_exec_list[i].offset,
3572                                         end_user);
3573                 }
3574 end_user:
3575                 user_write_access_end();
3576 end:;
3577         }
3578
3579         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3580         kvfree(exec2_list);
3581         return err;
3582 }
3583
3584 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3585 #include "selftests/i915_gem_execbuffer.c"
3586 #endif