b05b2191b919b1ff886f7335ddf423ffbb3751c7
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68
69 #define DP_DPRX_ESI_LEN 14
70
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
75
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
78
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
81 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84
85 struct dp_link_dpll {
86         int clock;
87         struct dpll dpll;
88 };
89
90 static const struct dp_link_dpll g4x_dpll[] = {
91         { 162000,
92                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93         { 270000,
94                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96
97 static const struct dp_link_dpll pch_dpll[] = {
98         { 162000,
99                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100         { 270000,
101                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103
104 static const struct dp_link_dpll vlv_dpll[] = {
105         { 162000,
106                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107         { 270000,
108                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116         /*
117          * CHV requires to program fractional division for m2.
118          * m2 is stored in fixed point format using formula below
119          * (m2_int << 22) | m2_fraction
120          */
121         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
122                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123         { 270000,       /* m2_int = 27, m2_fraction = 0 */
124                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
146         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148
149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
150 {
151         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
152 }
153
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155                                const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159                                            const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161                                       enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
166 {
167         static const int dp_rates[] = {
168                 162000, 270000, 540000, 810000
169         };
170         int i, max_rate;
171
172         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173
174         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175                 if (dp_rates[i] > max_rate)
176                         break;
177                 intel_dp->sink_rates[i] = dp_rates[i];
178         }
179
180         intel_dp->num_sink_rates = i;
181 }
182
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
185 {
186         int i;
187
188         /* Limit results by potentially reduced max rate */
189         for (i = 0; i < len; i++) {
190                 if (rates[len - i - 1] <= max_rate)
191                         return len - i;
192         }
193
194         return 0;
195 }
196
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199                                           int max_rate)
200 {
201         return intel_dp_rate_limit_len(intel_dp->common_rates,
202                                        intel_dp->num_common_rates, max_rate);
203 }
204
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207 {
208         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 }
210
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 {
214         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215         int source_max = intel_dig_port->max_lanes;
216         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218
219         return min3(source_max, sink_max, fia_max);
220 }
221
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 {
224         return intel_dp->max_link_lane_count;
225 }
226
227 int
228 intel_dp_link_required(int pixel_clock, int bpp)
229 {
230         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231         return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 }
233
234 int
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
236 {
237         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238          * link rate that is generally expressed in Gbps. Since, 8 bits of data
239          * is transmitted every LS_Clk per lane, there is no need to account for
240          * the channel encoding that is done in the PHY layer here.
241          */
242
243         return max_link_clock * max_lanes;
244 }
245
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
248 {
249         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250         struct intel_encoder *encoder = &intel_dig_port->base;
251         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252         int max_dotclk = dev_priv->max_dotclk_freq;
253         int ds_max_dotclk;
254
255         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
256
257         if (type != DP_DS_PORT_TYPE_VGA)
258                 return max_dotclk;
259
260         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261                                                     intel_dp->downstream_ports);
262
263         if (ds_max_dotclk != 0)
264                 max_dotclk = min(max_dotclk, ds_max_dotclk);
265
266         return max_dotclk;
267 }
268
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 {
271         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273         enum port port = dig_port->base.port;
274
275         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
276
277         /* Low voltage SKUs are limited to max of 5.4G */
278         if (voltage == VOLTAGE_INFO_0_85V)
279                 return 540000;
280
281         /* For this SKU 8.1G is supported in all ports */
282         if (IS_CNL_WITH_PORT_F(dev_priv))
283                 return 810000;
284
285         /* For other SKUs, max rate on ports A and D is 5.4G */
286         if (port == PORT_A || port == PORT_D)
287                 return 540000;
288
289         return 810000;
290 }
291
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
293 {
294         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297
298         if (intel_phy_is_combo(dev_priv, phy) &&
299             !IS_ELKHARTLAKE(dev_priv) &&
300             !intel_dp_is_edp(intel_dp))
301                 return 540000;
302
303         return 810000;
304 }
305
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
308 {
309         /* The values must be in increasing order */
310         static const int cnl_rates[] = {
311                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
312         };
313         static const int bxt_rates[] = {
314                 162000, 216000, 243000, 270000, 324000, 432000, 540000
315         };
316         static const int skl_rates[] = {
317                 162000, 216000, 270000, 324000, 432000, 540000
318         };
319         static const int hsw_rates[] = {
320                 162000, 270000, 540000
321         };
322         static const int g4x_rates[] = {
323                 162000, 270000
324         };
325         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327         const struct ddi_vbt_port_info *info =
328                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
329         const int *source_rates;
330         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331
332         /* This should only be done once */
333         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
334
335         if (INTEL_GEN(dev_priv) >= 10) {
336                 source_rates = cnl_rates;
337                 size = ARRAY_SIZE(cnl_rates);
338                 if (IS_GEN(dev_priv, 10))
339                         max_rate = cnl_max_source_rate(intel_dp);
340                 else
341                         max_rate = icl_max_source_rate(intel_dp);
342         } else if (IS_GEN9_LP(dev_priv)) {
343                 source_rates = bxt_rates;
344                 size = ARRAY_SIZE(bxt_rates);
345         } else if (IS_GEN9_BC(dev_priv)) {
346                 source_rates = skl_rates;
347                 size = ARRAY_SIZE(skl_rates);
348         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349                    IS_BROADWELL(dev_priv)) {
350                 source_rates = hsw_rates;
351                 size = ARRAY_SIZE(hsw_rates);
352         } else {
353                 source_rates = g4x_rates;
354                 size = ARRAY_SIZE(g4x_rates);
355         }
356
357         if (max_rate && vbt_max_rate)
358                 max_rate = min(max_rate, vbt_max_rate);
359         else if (vbt_max_rate)
360                 max_rate = vbt_max_rate;
361
362         if (max_rate)
363                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
364
365         intel_dp->source_rates = source_rates;
366         intel_dp->num_source_rates = size;
367 }
368
369 static int intersect_rates(const int *source_rates, int source_len,
370                            const int *sink_rates, int sink_len,
371                            int *common_rates)
372 {
373         int i = 0, j = 0, k = 0;
374
375         while (i < source_len && j < sink_len) {
376                 if (source_rates[i] == sink_rates[j]) {
377                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378                                 return k;
379                         common_rates[k] = source_rates[i];
380                         ++k;
381                         ++i;
382                         ++j;
383                 } else if (source_rates[i] < sink_rates[j]) {
384                         ++i;
385                 } else {
386                         ++j;
387                 }
388         }
389         return k;
390 }
391
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
394 {
395         int i;
396
397         for (i = 0; i < len; i++)
398                 if (rate == rates[i])
399                         return i;
400
401         return -1;
402 }
403
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405 {
406         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407
408         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409                                                      intel_dp->num_source_rates,
410                                                      intel_dp->sink_rates,
411                                                      intel_dp->num_sink_rates,
412                                                      intel_dp->common_rates);
413
414         /* Paranoia, there should always be something in common. */
415         if (WARN_ON(intel_dp->num_common_rates == 0)) {
416                 intel_dp->common_rates[0] = 162000;
417                 intel_dp->num_common_rates = 1;
418         }
419 }
420
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422                                        u8 lane_count)
423 {
424         /*
425          * FIXME: we need to synchronize the current link parameters with
426          * hardware readout. Currently fast link training doesn't work on
427          * boot-up.
428          */
429         if (link_rate == 0 ||
430             link_rate > intel_dp->max_link_rate)
431                 return false;
432
433         if (lane_count == 0 ||
434             lane_count > intel_dp_max_lane_count(intel_dp))
435                 return false;
436
437         return true;
438 }
439
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441                                                      int link_rate,
442                                                      u8 lane_count)
443 {
444         const struct drm_display_mode *fixed_mode =
445                 intel_dp->attached_connector->panel.fixed_mode;
446         int mode_rate, max_rate;
447
448         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450         if (mode_rate > max_rate)
451                 return false;
452
453         return true;
454 }
455
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457                                             int link_rate, u8 lane_count)
458 {
459         int index;
460
461         index = intel_dp_rate_index(intel_dp->common_rates,
462                                     intel_dp->num_common_rates,
463                                     link_rate);
464         if (index > 0) {
465                 if (intel_dp_is_edp(intel_dp) &&
466                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467                                                               intel_dp->common_rates[index - 1],
468                                                               lane_count)) {
469                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470                         return 0;
471                 }
472                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473                 intel_dp->max_link_lane_count = lane_count;
474         } else if (lane_count > 1) {
475                 if (intel_dp_is_edp(intel_dp) &&
476                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477                                                               intel_dp_max_common_rate(intel_dp),
478                                                               lane_count >> 1)) {
479                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480                         return 0;
481                 }
482                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483                 intel_dp->max_link_lane_count = lane_count >> 1;
484         } else {
485                 DRM_ERROR("Link Training Unsuccessful\n");
486                 return -1;
487         }
488
489         return 0;
490 }
491
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
493 {
494         return div_u64(mul_u32_u32(mode_clock, 1000000U),
495                        DP_DSC_FEC_OVERHEAD_FACTOR);
496 }
497
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
500 {
501         if (INTEL_GEN(i915) >= 11)
502                 return 7680 * 8;
503         else
504                 return 6144 * 8;
505 }
506
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508                                        u32 link_clock, u32 lane_count,
509                                        u32 mode_clock, u32 mode_hdisplay)
510 {
511         u32 bits_per_pixel, max_bpp_small_joiner_ram;
512         int i;
513
514         /*
515          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517          * for SST -> TimeSlotsPerMTP is 1,
518          * for MST -> TimeSlotsPerMTP has to be calculated
519          */
520         bits_per_pixel = (link_clock * lane_count * 8) /
521                          intel_dp_mode_to_fec_clock(mode_clock);
522         DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
523
524         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526                 mode_hdisplay;
527         DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
528
529         /*
530          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531          * check, output bpp from small joiner RAM check)
532          */
533         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
534
535         /* Error out if the max bpp is less than smallest allowed valid bpp */
536         if (bits_per_pixel < valid_dsc_bpp[0]) {
537                 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538                               bits_per_pixel, valid_dsc_bpp[0]);
539                 return 0;
540         }
541
542         /* Find the nearest match in the array of known BPPs from VESA */
543         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
545                         break;
546         }
547         bits_per_pixel = valid_dsc_bpp[i];
548
549         /*
550          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551          * fractional part is 0
552          */
553         return bits_per_pixel << 4;
554 }
555
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557                                        int mode_clock, int mode_hdisplay)
558 {
559         u8 min_slice_count, i;
560         int max_slice_width;
561
562         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563                 min_slice_count = DIV_ROUND_UP(mode_clock,
564                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
565         else
566                 min_slice_count = DIV_ROUND_UP(mode_clock,
567                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
568
569         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571                 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572                               max_slice_width);
573                 return 0;
574         }
575         /* Also take into account max slice width */
576         min_slice_count = min_t(u8, min_slice_count,
577                                 DIV_ROUND_UP(mode_hdisplay,
578                                              max_slice_width));
579
580         /* Find the closest match to the valid slice count values */
581         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582                 if (valid_dsc_slicecount[i] >
583                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584                                                     false))
585                         break;
586                 if (min_slice_count  <= valid_dsc_slicecount[i])
587                         return valid_dsc_slicecount[i];
588         }
589
590         DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591         return 0;
592 }
593
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
595                                   int hdisplay)
596 {
597         /*
598          * Older platforms don't like hdisplay==4096 with DP.
599          *
600          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601          * and frame counter increment), but we don't get vblank interrupts,
602          * and the pipe underruns immediately. The link also doesn't seem
603          * to get trained properly.
604          *
605          * On CHV the vblank interrupts don't seem to disappear but
606          * otherwise the symptoms are similar.
607          *
608          * TODO: confirm the behaviour on HSW+
609          */
610         return hdisplay == 4096 && !HAS_DDI(dev_priv);
611 }
612
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector *connector,
615                     struct drm_display_mode *mode)
616 {
617         struct intel_dp *intel_dp = intel_attached_dp(connector);
618         struct intel_connector *intel_connector = to_intel_connector(connector);
619         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620         struct drm_i915_private *dev_priv = to_i915(connector->dev);
621         int target_clock = mode->clock;
622         int max_rate, mode_rate, max_lanes, max_link_clock;
623         int max_dotclk;
624         u16 dsc_max_output_bpp = 0;
625         u8 dsc_slice_count = 0;
626
627         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
628                 return MODE_NO_DBLESCAN;
629
630         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
631
632         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633                 if (mode->hdisplay > fixed_mode->hdisplay)
634                         return MODE_PANEL;
635
636                 if (mode->vdisplay > fixed_mode->vdisplay)
637                         return MODE_PANEL;
638
639                 target_clock = fixed_mode->clock;
640         }
641
642         max_link_clock = intel_dp_max_link_rate(intel_dp);
643         max_lanes = intel_dp_max_lane_count(intel_dp);
644
645         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
646         mode_rate = intel_dp_link_required(target_clock, 18);
647
648         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
649                 return MODE_H_ILLEGAL;
650
651         /*
652          * Output bpp is stored in 6.4 format so right shift by 4 to get the
653          * integer value since we support only integer values of bpp.
654          */
655         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
656             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
657                 if (intel_dp_is_edp(intel_dp)) {
658                         dsc_max_output_bpp =
659                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
660                         dsc_slice_count =
661                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
662                                                                 true);
663                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664                         dsc_max_output_bpp =
665                                 intel_dp_dsc_get_output_bpp(dev_priv,
666                                                             max_link_clock,
667                                                             max_lanes,
668                                                             target_clock,
669                                                             mode->hdisplay) >> 4;
670                         dsc_slice_count =
671                                 intel_dp_dsc_get_slice_count(intel_dp,
672                                                              target_clock,
673                                                              mode->hdisplay);
674                 }
675         }
676
677         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
678             target_clock > max_dotclk)
679                 return MODE_CLOCK_HIGH;
680
681         if (mode->clock < 10000)
682                 return MODE_CLOCK_LOW;
683
684         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
685                 return MODE_H_ILLEGAL;
686
687         return intel_mode_valid_max_plane_size(dev_priv, mode);
688 }
689
690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
691 {
692         int i;
693         u32 v = 0;
694
695         if (src_bytes > 4)
696                 src_bytes = 4;
697         for (i = 0; i < src_bytes; i++)
698                 v |= ((u32)src[i]) << ((3 - i) * 8);
699         return v;
700 }
701
702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
703 {
704         int i;
705         if (dst_bytes > 4)
706                 dst_bytes = 4;
707         for (i = 0; i < dst_bytes; i++)
708                 dst[i] = src >> ((3-i) * 8);
709 }
710
711 static void
712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713 static void
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715                                               bool force_disable_vdd);
716 static void
717 intel_dp_pps_init(struct intel_dp *intel_dp);
718
719 static intel_wakeref_t
720 pps_lock(struct intel_dp *intel_dp)
721 {
722         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723         intel_wakeref_t wakeref;
724
725         /*
726          * See intel_power_sequencer_reset() why we need
727          * a power domain reference here.
728          */
729         wakeref = intel_display_power_get(dev_priv,
730                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
731
732         mutex_lock(&dev_priv->pps_mutex);
733
734         return wakeref;
735 }
736
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
739 {
740         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741
742         mutex_unlock(&dev_priv->pps_mutex);
743         intel_display_power_put(dev_priv,
744                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
745                                 wakeref);
746         return 0;
747 }
748
749 #define with_pps_lock(dp, wf) \
750         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
751
752 static void
753 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
754 {
755         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757         enum pipe pipe = intel_dp->pps_pipe;
758         bool pll_enabled, release_cl_override = false;
759         enum dpio_phy phy = DPIO_PHY(pipe);
760         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761         u32 DP;
762
763         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764                  "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765                  pipe_name(pipe), intel_dig_port->base.base.base.id,
766                  intel_dig_port->base.base.name))
767                 return;
768
769         DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770                       pipe_name(pipe), intel_dig_port->base.base.base.id,
771                       intel_dig_port->base.base.name);
772
773         /* Preserve the BIOS-computed detected bit. This is
774          * supposed to be read-only.
775          */
776         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
777         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778         DP |= DP_PORT_WIDTH(1);
779         DP |= DP_LINK_TRAIN_PAT_1;
780
781         if (IS_CHERRYVIEW(dev_priv))
782                 DP |= DP_PIPE_SEL_CHV(pipe);
783         else
784                 DP |= DP_PIPE_SEL(pipe);
785
786         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
787
788         /*
789          * The DPLL for the pipe must be enabled for this to work.
790          * So enable temporarily it if it's not already enabled.
791          */
792         if (!pll_enabled) {
793                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
795
796                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
799                                   pipe_name(pipe));
800                         return;
801                 }
802         }
803
804         /*
805          * Similar magic as in intel_dp_enable_port().
806          * We _must_ do this port enable + disable trick
807          * to make this power sequencer lock onto the port.
808          * Otherwise even VDD force bit won't work.
809          */
810         I915_WRITE(intel_dp->output_reg, DP);
811         POSTING_READ(intel_dp->output_reg);
812
813         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
814         POSTING_READ(intel_dp->output_reg);
815
816         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
817         POSTING_READ(intel_dp->output_reg);
818
819         if (!pll_enabled) {
820                 vlv_force_pll_off(dev_priv, pipe);
821
822                 if (release_cl_override)
823                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
824         }
825 }
826
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829         struct intel_encoder *encoder;
830         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831
832         /*
833          * We don't have power sequencer currently.
834          * Pick one that's not used by other ports.
835          */
836         for_each_intel_dp(&dev_priv->drm, encoder) {
837                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
838
839                 if (encoder->type == INTEL_OUTPUT_EDP) {
840                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841                                 intel_dp->active_pipe != intel_dp->pps_pipe);
842
843                         if (intel_dp->pps_pipe != INVALID_PIPE)
844                                 pipes &= ~(1 << intel_dp->pps_pipe);
845                 } else {
846                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
847
848                         if (intel_dp->active_pipe != INVALID_PIPE)
849                                 pipes &= ~(1 << intel_dp->active_pipe);
850                 }
851         }
852
853         if (pipes == 0)
854                 return INVALID_PIPE;
855
856         return ffs(pipes) - 1;
857 }
858
859 static enum pipe
860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
861 {
862         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864         enum pipe pipe;
865
866         lockdep_assert_held(&dev_priv->pps_mutex);
867
868         /* We should never land here with regular DP ports */
869         WARN_ON(!intel_dp_is_edp(intel_dp));
870
871         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
872                 intel_dp->active_pipe != intel_dp->pps_pipe);
873
874         if (intel_dp->pps_pipe != INVALID_PIPE)
875                 return intel_dp->pps_pipe;
876
877         pipe = vlv_find_free_pps(dev_priv);
878
879         /*
880          * Didn't find one. This should not happen since there
881          * are two power sequencers and up to two eDP ports.
882          */
883         if (WARN_ON(pipe == INVALID_PIPE))
884                 pipe = PIPE_A;
885
886         vlv_steal_power_sequencer(dev_priv, pipe);
887         intel_dp->pps_pipe = pipe;
888
889         DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890                       pipe_name(intel_dp->pps_pipe),
891                       intel_dig_port->base.base.base.id,
892                       intel_dig_port->base.base.name);
893
894         /* init power sequencer on this pipe and port */
895         intel_dp_init_panel_power_sequencer(intel_dp);
896         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897
898         /*
899          * Even vdd force doesn't work until we've made
900          * the power sequencer lock in on the port.
901          */
902         vlv_power_sequencer_kick(intel_dp);
903
904         return intel_dp->pps_pipe;
905 }
906
907 static int
908 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
909 {
910         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911         int backlight_controller = dev_priv->vbt.backlight.controller;
912
913         lockdep_assert_held(&dev_priv->pps_mutex);
914
915         /* We should never land here with regular DP ports */
916         WARN_ON(!intel_dp_is_edp(intel_dp));
917
918         if (!intel_dp->pps_reset)
919                 return backlight_controller;
920
921         intel_dp->pps_reset = false;
922
923         /*
924          * Only the HW needs to be reprogrammed, the SW state is fixed and
925          * has been setup during connector init.
926          */
927         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928
929         return backlight_controller;
930 }
931
932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
933                                enum pipe pipe);
934
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
936                                enum pipe pipe)
937 {
938         return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 }
940
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
942                                 enum pipe pipe)
943 {
944         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 }
946
947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
948                          enum pipe pipe)
949 {
950         return true;
951 }
952
953 static enum pipe
954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
955                      enum port port,
956                      vlv_pipe_check pipe_check)
957 {
958         enum pipe pipe;
959
960         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962                         PANEL_PORT_SELECT_MASK;
963
964                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
965                         continue;
966
967                 if (!pipe_check(dev_priv, pipe))
968                         continue;
969
970                 return pipe;
971         }
972
973         return INVALID_PIPE;
974 }
975
976 static void
977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
978 {
979         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981         enum port port = intel_dig_port->base.port;
982
983         lockdep_assert_held(&dev_priv->pps_mutex);
984
985         /* try to find a pipe with this port selected */
986         /* first pick one where the panel is on */
987         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
988                                                   vlv_pipe_has_pp_on);
989         /* didn't find one? pick one where vdd is on */
990         if (intel_dp->pps_pipe == INVALID_PIPE)
991                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992                                                           vlv_pipe_has_vdd_on);
993         /* didn't find one? pick one with just the correct port */
994         if (intel_dp->pps_pipe == INVALID_PIPE)
995                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996                                                           vlv_pipe_any);
997
998         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999         if (intel_dp->pps_pipe == INVALID_PIPE) {
1000                 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001                               intel_dig_port->base.base.base.id,
1002                               intel_dig_port->base.base.name);
1003                 return;
1004         }
1005
1006         DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007                       intel_dig_port->base.base.base.id,
1008                       intel_dig_port->base.base.name,
1009                       pipe_name(intel_dp->pps_pipe));
1010
1011         intel_dp_init_panel_power_sequencer(intel_dp);
1012         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1013 }
1014
1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1016 {
1017         struct intel_encoder *encoder;
1018
1019         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020                     !IS_GEN9_LP(dev_priv)))
1021                 return;
1022
1023         /*
1024          * We can't grab pps_mutex here due to deadlock with power_domain
1025          * mutex when power_domain functions are called while holding pps_mutex.
1026          * That also means that in order to use pps_pipe the code needs to
1027          * hold both a power domain reference and pps_mutex, and the power domain
1028          * reference get/put must be done while _not_ holding pps_mutex.
1029          * pps_{lock,unlock}() do these steps in the correct order, so one
1030          * should use them always.
1031          */
1032
1033         for_each_intel_dp(&dev_priv->drm, encoder) {
1034                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1035
1036                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1037
1038                 if (encoder->type != INTEL_OUTPUT_EDP)
1039                         continue;
1040
1041                 if (IS_GEN9_LP(dev_priv))
1042                         intel_dp->pps_reset = true;
1043                 else
1044                         intel_dp->pps_pipe = INVALID_PIPE;
1045         }
1046 }
1047
1048 struct pps_registers {
1049         i915_reg_t pp_ctrl;
1050         i915_reg_t pp_stat;
1051         i915_reg_t pp_on;
1052         i915_reg_t pp_off;
1053         i915_reg_t pp_div;
1054 };
1055
1056 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057                                     struct pps_registers *regs)
1058 {
1059         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060         int pps_idx = 0;
1061
1062         memset(regs, 0, sizeof(*regs));
1063
1064         if (IS_GEN9_LP(dev_priv))
1065                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1066         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1067                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1068
1069         regs->pp_ctrl = PP_CONTROL(pps_idx);
1070         regs->pp_stat = PP_STATUS(pps_idx);
1071         regs->pp_on = PP_ON_DELAYS(pps_idx);
1072         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1073
1074         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076                 regs->pp_div = INVALID_MMIO_REG;
1077         else
1078                 regs->pp_div = PP_DIVISOR(pps_idx);
1079 }
1080
1081 static i915_reg_t
1082 _pp_ctrl_reg(struct intel_dp *intel_dp)
1083 {
1084         struct pps_registers regs;
1085
1086         intel_pps_get_registers(intel_dp, &regs);
1087
1088         return regs.pp_ctrl;
1089 }
1090
1091 static i915_reg_t
1092 _pp_stat_reg(struct intel_dp *intel_dp)
1093 {
1094         struct pps_registers regs;
1095
1096         intel_pps_get_registers(intel_dp, &regs);
1097
1098         return regs.pp_stat;
1099 }
1100
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102    This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1104                               void *unused)
1105 {
1106         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1107                                                  edp_notifier);
1108         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109         intel_wakeref_t wakeref;
1110
1111         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112                 return 0;
1113
1114         with_pps_lock(intel_dp, wakeref) {
1115                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1116                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1117                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1118                         u32 pp_div;
1119
1120                         pp_ctrl_reg = PP_CONTROL(pipe);
1121                         pp_div_reg  = PP_DIVISOR(pipe);
1122                         pp_div = I915_READ(pp_div_reg);
1123                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1124
1125                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1126                         I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127                         I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128                         msleep(intel_dp->panel_power_cycle_delay);
1129                 }
1130         }
1131
1132         return 0;
1133 }
1134
1135 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1136 {
1137         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138
1139         lockdep_assert_held(&dev_priv->pps_mutex);
1140
1141         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142             intel_dp->pps_pipe == INVALID_PIPE)
1143                 return false;
1144
1145         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1146 }
1147
1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1149 {
1150         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151
1152         lockdep_assert_held(&dev_priv->pps_mutex);
1153
1154         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155             intel_dp->pps_pipe == INVALID_PIPE)
1156                 return false;
1157
1158         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1159 }
1160
1161 static void
1162 intel_dp_check_edp(struct intel_dp *intel_dp)
1163 {
1164         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165
1166         if (!intel_dp_is_edp(intel_dp))
1167                 return;
1168
1169         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172                               I915_READ(_pp_stat_reg(intel_dp)),
1173                               I915_READ(_pp_ctrl_reg(intel_dp)));
1174         }
1175 }
1176
1177 static u32
1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1179 {
1180         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182         const unsigned int timeout_ms = 10;
1183         u32 status;
1184         bool done;
1185
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1188                                   msecs_to_jiffies_timeout(timeout_ms));
1189
1190         /* just trace the final value */
1191         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1192
1193         if (!done)
1194                 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195                           intel_dp->aux.name, timeout_ms, status);
1196 #undef C
1197
1198         return status;
1199 }
1200
1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1202 {
1203         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1204
1205         if (index)
1206                 return 0;
1207
1208         /*
1209          * The clock divider is based off the hrawclk, and would like to run at
1210          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1211          */
1212         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1213 }
1214
1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1216 {
1217         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1219
1220         if (index)
1221                 return 0;
1222
1223         /*
1224          * The clock divider is based off the cdclk or PCH rawclk, and would
1225          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1226          * divide by 2000 and use that
1227          */
1228         if (dig_port->aux_ch == AUX_CH_A)
1229                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1230         else
1231                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1232 }
1233
1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1235 {
1236         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1237         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1238
1239         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1240                 /* Workaround for non-ULT HSW */
1241                 switch (index) {
1242                 case 0: return 63;
1243                 case 1: return 72;
1244                 default: return 0;
1245                 }
1246         }
1247
1248         return ilk_get_aux_clock_divider(intel_dp, index);
1249 }
1250
1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1252 {
1253         /*
1254          * SKL doesn't need us to program the AUX clock divider (Hardware will
1255          * derive the clock from CDCLK automatically). We still implement the
1256          * get_aux_clock_divider vfunc to plug-in into the existing code.
1257          */
1258         return index ? 0 : 1;
1259 }
1260
1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1262                                 int send_bytes,
1263                                 u32 aux_clock_divider)
1264 {
1265         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1266         struct drm_i915_private *dev_priv =
1267                         to_i915(intel_dig_port->base.base.dev);
1268         u32 precharge, timeout;
1269
1270         if (IS_GEN(dev_priv, 6))
1271                 precharge = 3;
1272         else
1273                 precharge = 5;
1274
1275         if (IS_BROADWELL(dev_priv))
1276                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1277         else
1278                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1279
1280         return DP_AUX_CH_CTL_SEND_BUSY |
1281                DP_AUX_CH_CTL_DONE |
1282                DP_AUX_CH_CTL_INTERRUPT |
1283                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1284                timeout |
1285                DP_AUX_CH_CTL_RECEIVE_ERROR |
1286                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1287                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1288                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1289 }
1290
1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1292                                 int send_bytes,
1293                                 u32 unused)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_i915_private *i915 =
1297                         to_i915(intel_dig_port->base.base.dev);
1298         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1299         u32 ret;
1300
1301         ret = DP_AUX_CH_CTL_SEND_BUSY |
1302               DP_AUX_CH_CTL_DONE |
1303               DP_AUX_CH_CTL_INTERRUPT |
1304               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1305               DP_AUX_CH_CTL_TIME_OUT_MAX |
1306               DP_AUX_CH_CTL_RECEIVE_ERROR |
1307               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1308               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1310
1311         if (intel_phy_is_tc(i915, phy) &&
1312             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1313                 ret |= DP_AUX_CH_CTL_TBT_IO;
1314
1315         return ret;
1316 }
1317
1318 static int
1319 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1320                   const u8 *send, int send_bytes,
1321                   u8 *recv, int recv_size,
1322                   u32 aux_send_ctl_flags)
1323 {
1324         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325         struct drm_i915_private *i915 =
1326                         to_i915(intel_dig_port->base.base.dev);
1327         struct intel_uncore *uncore = &i915->uncore;
1328         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329         bool is_tc_port = intel_phy_is_tc(i915, phy);
1330         i915_reg_t ch_ctl, ch_data[5];
1331         u32 aux_clock_divider;
1332         enum intel_display_power_domain aux_domain =
1333                 intel_aux_power_domain(intel_dig_port);
1334         intel_wakeref_t aux_wakeref;
1335         intel_wakeref_t pps_wakeref;
1336         int i, ret, recv_bytes;
1337         int try, clock = 0;
1338         u32 status;
1339         bool vdd;
1340
1341         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1342         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1343                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1344
1345         if (is_tc_port)
1346                 intel_tc_port_lock(intel_dig_port);
1347
1348         aux_wakeref = intel_display_power_get(i915, aux_domain);
1349         pps_wakeref = pps_lock(intel_dp);
1350
1351         /*
1352          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353          * In such cases we want to leave VDD enabled and it's up to upper layers
1354          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1355          * ourselves.
1356          */
1357         vdd = edp_panel_vdd_on(intel_dp);
1358
1359         /* dp aux is extremely sensitive to irq latency, hence request the
1360          * lowest possible wakeup latency and so prevent the cpu from going into
1361          * deep sleep states.
1362          */
1363         pm_qos_update_request(&i915->pm_qos, 0);
1364
1365         intel_dp_check_edp(intel_dp);
1366
1367         /* Try to wait for any previous AUX channel activity */
1368         for (try = 0; try < 3; try++) {
1369                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1370                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1371                         break;
1372                 msleep(1);
1373         }
1374         /* just trace the final value */
1375         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1376
1377         if (try == 3) {
1378                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1379
1380                 if (status != intel_dp->aux_busy_last_status) {
1381                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1382                              status);
1383                         intel_dp->aux_busy_last_status = status;
1384                 }
1385
1386                 ret = -EBUSY;
1387                 goto out;
1388         }
1389
1390         /* Only 5 data registers! */
1391         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1392                 ret = -E2BIG;
1393                 goto out;
1394         }
1395
1396         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1397                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1398                                                           send_bytes,
1399                                                           aux_clock_divider);
1400
1401                 send_ctl |= aux_send_ctl_flags;
1402
1403                 /* Must try at least 3 times according to DP spec */
1404                 for (try = 0; try < 5; try++) {
1405                         /* Load the send data into the aux channel data registers */
1406                         for (i = 0; i < send_bytes; i += 4)
1407                                 intel_uncore_write(uncore,
1408                                                    ch_data[i >> 2],
1409                                                    intel_dp_pack_aux(send + i,
1410                                                                      send_bytes - i));
1411
1412                         /* Send the command and wait for it to complete */
1413                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1414
1415                         status = intel_dp_aux_wait_done(intel_dp);
1416
1417                         /* Clear done status and any errors */
1418                         intel_uncore_write(uncore,
1419                                            ch_ctl,
1420                                            status |
1421                                            DP_AUX_CH_CTL_DONE |
1422                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1423                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1424
1425                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426                          *   400us delay required for errors and timeouts
1427                          *   Timeout errors from the HW already meet this
1428                          *   requirement so skip to next iteration
1429                          */
1430                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1431                                 continue;
1432
1433                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1434                                 usleep_range(400, 500);
1435                                 continue;
1436                         }
1437                         if (status & DP_AUX_CH_CTL_DONE)
1438                                 goto done;
1439                 }
1440         }
1441
1442         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1443                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1444                 ret = -EBUSY;
1445                 goto out;
1446         }
1447
1448 done:
1449         /* Check for timeout or receive error.
1450          * Timeouts occur when the sink is not connected
1451          */
1452         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1453                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1454                 ret = -EIO;
1455                 goto out;
1456         }
1457
1458         /* Timeouts occur when the device isn't connected, so they're
1459          * "normal" -- don't fill the kernel log with these */
1460         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1461                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1462                 ret = -ETIMEDOUT;
1463                 goto out;
1464         }
1465
1466         /* Unload any bytes sent back from the other side */
1467         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1468                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1469
1470         /*
1471          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472          * We have no idea of what happened so we return -EBUSY so
1473          * drm layer takes care for the necessary retries.
1474          */
1475         if (recv_bytes == 0 || recv_bytes > 20) {
1476                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1477                               recv_bytes);
1478                 ret = -EBUSY;
1479                 goto out;
1480         }
1481
1482         if (recv_bytes > recv_size)
1483                 recv_bytes = recv_size;
1484
1485         for (i = 0; i < recv_bytes; i += 4)
1486                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1487                                     recv + i, recv_bytes - i);
1488
1489         ret = recv_bytes;
1490 out:
1491         pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1492
1493         if (vdd)
1494                 edp_panel_vdd_off(intel_dp, false);
1495
1496         pps_unlock(intel_dp, pps_wakeref);
1497         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1498
1499         if (is_tc_port)
1500                 intel_tc_port_unlock(intel_dig_port);
1501
1502         return ret;
1503 }
1504
1505 #define BARE_ADDRESS_SIZE       3
1506 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1507
1508 static void
1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1510                     const struct drm_dp_aux_msg *msg)
1511 {
1512         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1513         txbuf[1] = (msg->address >> 8) & 0xff;
1514         txbuf[2] = msg->address & 0xff;
1515         txbuf[3] = msg->size - 1;
1516 }
1517
1518 static ssize_t
1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1520 {
1521         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1522         u8 txbuf[20], rxbuf[20];
1523         size_t txsize, rxsize;
1524         int ret;
1525
1526         intel_dp_aux_header(txbuf, msg);
1527
1528         switch (msg->request & ~DP_AUX_I2C_MOT) {
1529         case DP_AUX_NATIVE_WRITE:
1530         case DP_AUX_I2C_WRITE:
1531         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1532                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1533                 rxsize = 2; /* 0 or 1 data bytes */
1534
1535                 if (WARN_ON(txsize > 20))
1536                         return -E2BIG;
1537
1538                 WARN_ON(!msg->buffer != !msg->size);
1539
1540                 if (msg->buffer)
1541                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1542
1543                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1544                                         rxbuf, rxsize, 0);
1545                 if (ret > 0) {
1546                         msg->reply = rxbuf[0] >> 4;
1547
1548                         if (ret > 1) {
1549                                 /* Number of bytes written in a short write. */
1550                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1551                         } else {
1552                                 /* Return payload size. */
1553                                 ret = msg->size;
1554                         }
1555                 }
1556                 break;
1557
1558         case DP_AUX_NATIVE_READ:
1559         case DP_AUX_I2C_READ:
1560                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1561                 rxsize = msg->size + 1;
1562
1563                 if (WARN_ON(rxsize > 20))
1564                         return -E2BIG;
1565
1566                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1567                                         rxbuf, rxsize, 0);
1568                 if (ret > 0) {
1569                         msg->reply = rxbuf[0] >> 4;
1570                         /*
1571                          * Assume happy day, and copy the data. The caller is
1572                          * expected to check msg->reply before touching it.
1573                          *
1574                          * Return payload size.
1575                          */
1576                         ret--;
1577                         memcpy(msg->buffer, rxbuf + 1, ret);
1578                 }
1579                 break;
1580
1581         default:
1582                 ret = -EINVAL;
1583                 break;
1584         }
1585
1586         return ret;
1587 }
1588
1589
1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1591 {
1592         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1593         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1594         enum aux_ch aux_ch = dig_port->aux_ch;
1595
1596         switch (aux_ch) {
1597         case AUX_CH_B:
1598         case AUX_CH_C:
1599         case AUX_CH_D:
1600                 return DP_AUX_CH_CTL(aux_ch);
1601         default:
1602                 MISSING_CASE(aux_ch);
1603                 return DP_AUX_CH_CTL(AUX_CH_B);
1604         }
1605 }
1606
1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611         enum aux_ch aux_ch = dig_port->aux_ch;
1612
1613         switch (aux_ch) {
1614         case AUX_CH_B:
1615         case AUX_CH_C:
1616         case AUX_CH_D:
1617                 return DP_AUX_CH_DATA(aux_ch, index);
1618         default:
1619                 MISSING_CASE(aux_ch);
1620                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1621         }
1622 }
1623
1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1625 {
1626         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1627         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1628         enum aux_ch aux_ch = dig_port->aux_ch;
1629
1630         switch (aux_ch) {
1631         case AUX_CH_A:
1632                 return DP_AUX_CH_CTL(aux_ch);
1633         case AUX_CH_B:
1634         case AUX_CH_C:
1635         case AUX_CH_D:
1636                 return PCH_DP_AUX_CH_CTL(aux_ch);
1637         default:
1638                 MISSING_CASE(aux_ch);
1639                 return DP_AUX_CH_CTL(AUX_CH_A);
1640         }
1641 }
1642
1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647         enum aux_ch aux_ch = dig_port->aux_ch;
1648
1649         switch (aux_ch) {
1650         case AUX_CH_A:
1651                 return DP_AUX_CH_DATA(aux_ch, index);
1652         case AUX_CH_B:
1653         case AUX_CH_C:
1654         case AUX_CH_D:
1655                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1656         default:
1657                 MISSING_CASE(aux_ch);
1658                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1659         }
1660 }
1661
1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666         enum aux_ch aux_ch = dig_port->aux_ch;
1667
1668         switch (aux_ch) {
1669         case AUX_CH_A:
1670         case AUX_CH_B:
1671         case AUX_CH_C:
1672         case AUX_CH_D:
1673         case AUX_CH_E:
1674         case AUX_CH_F:
1675         case AUX_CH_G:
1676                 return DP_AUX_CH_CTL(aux_ch);
1677         default:
1678                 MISSING_CASE(aux_ch);
1679                 return DP_AUX_CH_CTL(AUX_CH_A);
1680         }
1681 }
1682
1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1684 {
1685         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687         enum aux_ch aux_ch = dig_port->aux_ch;
1688
1689         switch (aux_ch) {
1690         case AUX_CH_A:
1691         case AUX_CH_B:
1692         case AUX_CH_C:
1693         case AUX_CH_D:
1694         case AUX_CH_E:
1695         case AUX_CH_F:
1696         case AUX_CH_G:
1697                 return DP_AUX_CH_DATA(aux_ch, index);
1698         default:
1699                 MISSING_CASE(aux_ch);
1700                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1701         }
1702 }
1703
1704 static void
1705 intel_dp_aux_fini(struct intel_dp *intel_dp)
1706 {
1707         kfree(intel_dp->aux.name);
1708 }
1709
1710 static void
1711 intel_dp_aux_init(struct intel_dp *intel_dp)
1712 {
1713         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715         struct intel_encoder *encoder = &dig_port->base;
1716
1717         if (INTEL_GEN(dev_priv) >= 9) {
1718                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1719                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1720         } else if (HAS_PCH_SPLIT(dev_priv)) {
1721                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1722                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1723         } else {
1724                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1725                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1726         }
1727
1728         if (INTEL_GEN(dev_priv) >= 9)
1729                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1730         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1731                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1732         else if (HAS_PCH_SPLIT(dev_priv))
1733                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1734         else
1735                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1736
1737         if (INTEL_GEN(dev_priv) >= 9)
1738                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1739         else
1740                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1741
1742         drm_dp_aux_init(&intel_dp->aux);
1743
1744         /* Failure to allocate our preferred name is not critical */
1745         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1746                                        port_name(encoder->port));
1747         intel_dp->aux.transfer = intel_dp_aux_transfer;
1748 }
1749
1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1751 {
1752         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1753
1754         return max_rate >= 540000;
1755 }
1756
1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1758 {
1759         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1760
1761         return max_rate >= 810000;
1762 }
1763
1764 static void
1765 intel_dp_set_clock(struct intel_encoder *encoder,
1766                    struct intel_crtc_state *pipe_config)
1767 {
1768         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769         const struct dp_link_dpll *divisor = NULL;
1770         int i, count = 0;
1771
1772         if (IS_G4X(dev_priv)) {
1773                 divisor = g4x_dpll;
1774                 count = ARRAY_SIZE(g4x_dpll);
1775         } else if (HAS_PCH_SPLIT(dev_priv)) {
1776                 divisor = pch_dpll;
1777                 count = ARRAY_SIZE(pch_dpll);
1778         } else if (IS_CHERRYVIEW(dev_priv)) {
1779                 divisor = chv_dpll;
1780                 count = ARRAY_SIZE(chv_dpll);
1781         } else if (IS_VALLEYVIEW(dev_priv)) {
1782                 divisor = vlv_dpll;
1783                 count = ARRAY_SIZE(vlv_dpll);
1784         }
1785
1786         if (divisor && count) {
1787                 for (i = 0; i < count; i++) {
1788                         if (pipe_config->port_clock == divisor[i].clock) {
1789                                 pipe_config->dpll = divisor[i].dpll;
1790                                 pipe_config->clock_set = true;
1791                                 break;
1792                         }
1793                 }
1794         }
1795 }
1796
1797 static void snprintf_int_array(char *str, size_t len,
1798                                const int *array, int nelem)
1799 {
1800         int i;
1801
1802         str[0] = '\0';
1803
1804         for (i = 0; i < nelem; i++) {
1805                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1806                 if (r >= len)
1807                         return;
1808                 str += r;
1809                 len -= r;
1810         }
1811 }
1812
1813 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1814 {
1815         char str[128]; /* FIXME: too big for stack? */
1816
1817         if ((drm_debug & DRM_UT_KMS) == 0)
1818                 return;
1819
1820         snprintf_int_array(str, sizeof(str),
1821                            intel_dp->source_rates, intel_dp->num_source_rates);
1822         DRM_DEBUG_KMS("source rates: %s\n", str);
1823
1824         snprintf_int_array(str, sizeof(str),
1825                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1826         DRM_DEBUG_KMS("sink rates: %s\n", str);
1827
1828         snprintf_int_array(str, sizeof(str),
1829                            intel_dp->common_rates, intel_dp->num_common_rates);
1830         DRM_DEBUG_KMS("common rates: %s\n", str);
1831 }
1832
1833 int
1834 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1835 {
1836         int len;
1837
1838         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1839         if (WARN_ON(len <= 0))
1840                 return 162000;
1841
1842         return intel_dp->common_rates[len - 1];
1843 }
1844
1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1846 {
1847         int i = intel_dp_rate_index(intel_dp->sink_rates,
1848                                     intel_dp->num_sink_rates, rate);
1849
1850         if (WARN_ON(i < 0))
1851                 i = 0;
1852
1853         return i;
1854 }
1855
1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1857                            u8 *link_bw, u8 *rate_select)
1858 {
1859         /* eDP 1.4 rate select method. */
1860         if (intel_dp->use_rate_select) {
1861                 *link_bw = 0;
1862                 *rate_select =
1863                         intel_dp_rate_select(intel_dp, port_clock);
1864         } else {
1865                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1866                 *rate_select = 0;
1867         }
1868 }
1869
1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1871                                          const struct intel_crtc_state *pipe_config)
1872 {
1873         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1874
1875         /* On TGL, FEC is supported on all Pipes */
1876         if (INTEL_GEN(dev_priv) >= 12)
1877                 return true;
1878
1879         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1880                 return true;
1881
1882         return false;
1883 }
1884
1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1886                                   const struct intel_crtc_state *pipe_config)
1887 {
1888         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1889                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1890 }
1891
1892 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1893                                          const struct intel_crtc_state *pipe_config)
1894 {
1895         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1896
1897         if (!INTEL_INFO(dev_priv)->display.has_dsc)
1898                 return false;
1899
1900         /* On TGL, DSC is supported on all Pipes */
1901         if (INTEL_GEN(dev_priv) >= 12)
1902                 return true;
1903
1904         if (INTEL_GEN(dev_priv) >= 10 &&
1905             pipe_config->cpu_transcoder != TRANSCODER_A)
1906                 return true;
1907
1908         return false;
1909 }
1910
1911 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1912                                   const struct intel_crtc_state *pipe_config)
1913 {
1914         if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1915                 return false;
1916
1917         return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1918                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1919 }
1920
1921 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1922                                 struct intel_crtc_state *pipe_config)
1923 {
1924         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1925         struct intel_connector *intel_connector = intel_dp->attached_connector;
1926         int bpp, bpc;
1927
1928         bpp = pipe_config->pipe_bpp;
1929         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1930
1931         if (bpc > 0)
1932                 bpp = min(bpp, 3*bpc);
1933
1934         if (intel_dp_is_edp(intel_dp)) {
1935                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1936                 if (intel_connector->base.display_info.bpc == 0 &&
1937                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1938                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1939                                       dev_priv->vbt.edp.bpp);
1940                         bpp = dev_priv->vbt.edp.bpp;
1941                 }
1942         }
1943
1944         return bpp;
1945 }
1946
1947 /* Adjust link config limits based on compliance test requests. */
1948 void
1949 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1950                                   struct intel_crtc_state *pipe_config,
1951                                   struct link_config_limits *limits)
1952 {
1953         /* For DP Compliance we override the computed bpp for the pipe */
1954         if (intel_dp->compliance.test_data.bpc != 0) {
1955                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1956
1957                 limits->min_bpp = limits->max_bpp = bpp;
1958                 pipe_config->dither_force_disable = bpp == 6 * 3;
1959
1960                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1961         }
1962
1963         /* Use values requested by Compliance Test Request */
1964         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1965                 int index;
1966
1967                 /* Validate the compliance test data since max values
1968                  * might have changed due to link train fallback.
1969                  */
1970                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1971                                                intel_dp->compliance.test_lane_count)) {
1972                         index = intel_dp_rate_index(intel_dp->common_rates,
1973                                                     intel_dp->num_common_rates,
1974                                                     intel_dp->compliance.test_link_rate);
1975                         if (index >= 0)
1976                                 limits->min_clock = limits->max_clock = index;
1977                         limits->min_lane_count = limits->max_lane_count =
1978                                 intel_dp->compliance.test_lane_count;
1979                 }
1980         }
1981 }
1982
1983 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1984 {
1985         /*
1986          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1987          * format of the number of bytes per pixel will be half the number
1988          * of bytes of RGB pixel.
1989          */
1990         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1991                 bpp /= 2;
1992
1993         return bpp;
1994 }
1995
1996 /* Optimize link config in order: max bpp, min clock, min lanes */
1997 static int
1998 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1999                                   struct intel_crtc_state *pipe_config,
2000                                   const struct link_config_limits *limits)
2001 {
2002         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2003         int bpp, clock, lane_count;
2004         int mode_rate, link_clock, link_avail;
2005
2006         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2007                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2008
2009                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2010                                                    output_bpp);
2011
2012                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2013                         for (lane_count = limits->min_lane_count;
2014                              lane_count <= limits->max_lane_count;
2015                              lane_count <<= 1) {
2016                                 link_clock = intel_dp->common_rates[clock];
2017                                 link_avail = intel_dp_max_data_rate(link_clock,
2018                                                                     lane_count);
2019
2020                                 if (mode_rate <= link_avail) {
2021                                         pipe_config->lane_count = lane_count;
2022                                         pipe_config->pipe_bpp = bpp;
2023                                         pipe_config->port_clock = link_clock;
2024
2025                                         return 0;
2026                                 }
2027                         }
2028                 }
2029         }
2030
2031         return -EINVAL;
2032 }
2033
2034 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2035 {
2036         int i, num_bpc;
2037         u8 dsc_bpc[3] = {0};
2038
2039         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2040                                                        dsc_bpc);
2041         for (i = 0; i < num_bpc; i++) {
2042                 if (dsc_max_bpc >= dsc_bpc[i])
2043                         return dsc_bpc[i] * 3;
2044         }
2045
2046         return 0;
2047 }
2048
2049 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2050                                        struct intel_crtc_state *pipe_config,
2051                                        struct drm_connector_state *conn_state,
2052                                        struct link_config_limits *limits)
2053 {
2054         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2055         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2056         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2057         u8 dsc_max_bpc;
2058         int pipe_bpp;
2059         int ret;
2060
2061         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2062                 intel_dp_supports_fec(intel_dp, pipe_config);
2063
2064         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2065                 return -EINVAL;
2066
2067         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2068         if (INTEL_GEN(dev_priv) >= 12)
2069                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2070         else
2071                 dsc_max_bpc = min_t(u8, 10,
2072                                     conn_state->max_requested_bpc);
2073
2074         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2075
2076         /* Min Input BPC for ICL+ is 8 */
2077         if (pipe_bpp < 8 * 3) {
2078                 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2079                 return -EINVAL;
2080         }
2081
2082         /*
2083          * For now enable DSC for max bpp, max link rate, max lane count.
2084          * Optimize this later for the minimum possible link rate/lane count
2085          * with DSC enabled for the requested mode.
2086          */
2087         pipe_config->pipe_bpp = pipe_bpp;
2088         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2089         pipe_config->lane_count = limits->max_lane_count;
2090
2091         if (intel_dp_is_edp(intel_dp)) {
2092                 pipe_config->dsc.compressed_bpp =
2093                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2094                               pipe_config->pipe_bpp);
2095                 pipe_config->dsc.slice_count =
2096                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2097                                                         true);
2098         } else {
2099                 u16 dsc_max_output_bpp;
2100                 u8 dsc_dp_slice_count;
2101
2102                 dsc_max_output_bpp =
2103                         intel_dp_dsc_get_output_bpp(dev_priv,
2104                                                     pipe_config->port_clock,
2105                                                     pipe_config->lane_count,
2106                                                     adjusted_mode->crtc_clock,
2107                                                     adjusted_mode->crtc_hdisplay);
2108                 dsc_dp_slice_count =
2109                         intel_dp_dsc_get_slice_count(intel_dp,
2110                                                      adjusted_mode->crtc_clock,
2111                                                      adjusted_mode->crtc_hdisplay);
2112                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2113                         DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2114                         return -EINVAL;
2115                 }
2116                 pipe_config->dsc.compressed_bpp = min_t(u16,
2117                                                                dsc_max_output_bpp >> 4,
2118                                                                pipe_config->pipe_bpp);
2119                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2120         }
2121         /*
2122          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2123          * is greater than the maximum Cdclock and if slice count is even
2124          * then we need to use 2 VDSC instances.
2125          */
2126         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2127                 if (pipe_config->dsc.slice_count > 1) {
2128                         pipe_config->dsc.dsc_split = true;
2129                 } else {
2130                         DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2131                         return -EINVAL;
2132                 }
2133         }
2134
2135         ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
2136         if (ret < 0) {
2137                 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2138                               "Compressed BPP = %d\n",
2139                               pipe_config->pipe_bpp,
2140                               pipe_config->dsc.compressed_bpp);
2141                 return ret;
2142         }
2143
2144         pipe_config->dsc.compression_enable = true;
2145         DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2146                       "Compressed Bpp = %d Slice Count = %d\n",
2147                       pipe_config->pipe_bpp,
2148                       pipe_config->dsc.compressed_bpp,
2149                       pipe_config->dsc.slice_count);
2150
2151         return 0;
2152 }
2153
2154 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2155 {
2156         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2157                 return 6 * 3;
2158         else
2159                 return 8 * 3;
2160 }
2161
2162 static int
2163 intel_dp_compute_link_config(struct intel_encoder *encoder,
2164                              struct intel_crtc_state *pipe_config,
2165                              struct drm_connector_state *conn_state)
2166 {
2167         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2168         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2169         struct link_config_limits limits;
2170         int common_len;
2171         int ret;
2172
2173         common_len = intel_dp_common_len_rate_limit(intel_dp,
2174                                                     intel_dp->max_link_rate);
2175
2176         /* No common link rates between source and sink */
2177         WARN_ON(common_len <= 0);
2178
2179         limits.min_clock = 0;
2180         limits.max_clock = common_len - 1;
2181
2182         limits.min_lane_count = 1;
2183         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2184
2185         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2186         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2187
2188         if (intel_dp_is_edp(intel_dp)) {
2189                 /*
2190                  * Use the maximum clock and number of lanes the eDP panel
2191                  * advertizes being capable of. The panels are generally
2192                  * designed to support only a single clock and lane
2193                  * configuration, and typically these values correspond to the
2194                  * native resolution of the panel.
2195                  */
2196                 limits.min_lane_count = limits.max_lane_count;
2197                 limits.min_clock = limits.max_clock;
2198         }
2199
2200         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2201
2202         DRM_DEBUG_KMS("DP link computation with max lane count %i "
2203                       "max rate %d max bpp %d pixel clock %iKHz\n",
2204                       limits.max_lane_count,
2205                       intel_dp->common_rates[limits.max_clock],
2206                       limits.max_bpp, adjusted_mode->crtc_clock);
2207
2208         /*
2209          * Optimize for slow and wide. This is the place to add alternative
2210          * optimization policy.
2211          */
2212         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2213
2214         /* enable compression if the mode doesn't fit available BW */
2215         DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2216         if (ret || intel_dp->force_dsc_en) {
2217                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2218                                                   conn_state, &limits);
2219                 if (ret < 0)
2220                         return ret;
2221         }
2222
2223         if (pipe_config->dsc.compression_enable) {
2224                 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2225                               pipe_config->lane_count, pipe_config->port_clock,
2226                               pipe_config->pipe_bpp,
2227                               pipe_config->dsc.compressed_bpp);
2228
2229                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2230                               intel_dp_link_required(adjusted_mode->crtc_clock,
2231                                                      pipe_config->dsc.compressed_bpp),
2232                               intel_dp_max_data_rate(pipe_config->port_clock,
2233                                                      pipe_config->lane_count));
2234         } else {
2235                 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2236                               pipe_config->lane_count, pipe_config->port_clock,
2237                               pipe_config->pipe_bpp);
2238
2239                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2240                               intel_dp_link_required(adjusted_mode->crtc_clock,
2241                                                      pipe_config->pipe_bpp),
2242                               intel_dp_max_data_rate(pipe_config->port_clock,
2243                                                      pipe_config->lane_count));
2244         }
2245         return 0;
2246 }
2247
2248 static int
2249 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2250                          struct drm_connector *connector,
2251                          struct intel_crtc_state *crtc_state)
2252 {
2253         const struct drm_display_info *info = &connector->display_info;
2254         const struct drm_display_mode *adjusted_mode =
2255                 &crtc_state->base.adjusted_mode;
2256         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2257         int ret;
2258
2259         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2260             !intel_dp_get_colorimetry_status(intel_dp) ||
2261             !connector->ycbcr_420_allowed)
2262                 return 0;
2263
2264         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2265
2266         /* YCBCR 420 output conversion needs a scaler */
2267         ret = skl_update_scaler_crtc(crtc_state);
2268         if (ret) {
2269                 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2270                 return ret;
2271         }
2272
2273         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2274
2275         return 0;
2276 }
2277
2278 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2279                                   const struct drm_connector_state *conn_state)
2280 {
2281         const struct intel_digital_connector_state *intel_conn_state =
2282                 to_intel_digital_connector_state(conn_state);
2283         const struct drm_display_mode *adjusted_mode =
2284                 &crtc_state->base.adjusted_mode;
2285
2286         /*
2287          * Our YCbCr output is always limited range.
2288          * crtc_state->limited_color_range only applies to RGB,
2289          * and it must never be set for YCbCr or we risk setting
2290          * some conflicting bits in PIPECONF which will mess up
2291          * the colors on the monitor.
2292          */
2293         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2294                 return false;
2295
2296         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2297                 /*
2298                  * See:
2299                  * CEA-861-E - 5.1 Default Encoding Parameters
2300                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2301                  */
2302                 return crtc_state->pipe_bpp != 18 &&
2303                         drm_default_rgb_quant_range(adjusted_mode) ==
2304                         HDMI_QUANTIZATION_RANGE_LIMITED;
2305         } else {
2306                 return intel_conn_state->broadcast_rgb ==
2307                         INTEL_BROADCAST_RGB_LIMITED;
2308         }
2309 }
2310
2311 int
2312 intel_dp_compute_config(struct intel_encoder *encoder,
2313                         struct intel_crtc_state *pipe_config,
2314                         struct drm_connector_state *conn_state)
2315 {
2316         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2317         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2318         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2319         struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2320         enum port port = encoder->port;
2321         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2322         struct intel_connector *intel_connector = intel_dp->attached_connector;
2323         struct intel_digital_connector_state *intel_conn_state =
2324                 to_intel_digital_connector_state(conn_state);
2325         bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2326                                            DP_DPCD_QUIRK_CONSTANT_N);
2327         int ret = 0, output_bpp;
2328
2329         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2330                 pipe_config->has_pch_encoder = true;
2331
2332         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2333
2334         if (lspcon->active)
2335                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2336         else
2337                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2338                                                pipe_config);
2339
2340         if (ret)
2341                 return ret;
2342
2343         pipe_config->has_drrs = false;
2344         if (IS_G4X(dev_priv) || port == PORT_A)
2345                 pipe_config->has_audio = false;
2346         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2347                 pipe_config->has_audio = intel_dp->has_audio;
2348         else
2349                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2350
2351         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2352                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2353                                        adjusted_mode);
2354
2355                 if (INTEL_GEN(dev_priv) >= 9) {
2356                         ret = skl_update_scaler_crtc(pipe_config);
2357                         if (ret)
2358                                 return ret;
2359                 }
2360
2361                 if (HAS_GMCH(dev_priv))
2362                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2363                                                  conn_state->scaling_mode);
2364                 else
2365                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2366                                                 conn_state->scaling_mode);
2367         }
2368
2369         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2370                 return -EINVAL;
2371
2372         if (HAS_GMCH(dev_priv) &&
2373             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2374                 return -EINVAL;
2375
2376         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2377                 return -EINVAL;
2378
2379         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2380                 return -EINVAL;
2381
2382         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2383         if (ret < 0)
2384                 return ret;
2385
2386         pipe_config->limited_color_range =
2387                 intel_dp_limited_color_range(pipe_config, conn_state);
2388
2389         if (pipe_config->dsc.compression_enable)
2390                 output_bpp = pipe_config->dsc.compressed_bpp;
2391         else
2392                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2393
2394         intel_link_compute_m_n(output_bpp,
2395                                pipe_config->lane_count,
2396                                adjusted_mode->crtc_clock,
2397                                pipe_config->port_clock,
2398                                &pipe_config->dp_m_n,
2399                                constant_n, pipe_config->fec_enable);
2400
2401         if (intel_connector->panel.downclock_mode != NULL &&
2402                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2403                         pipe_config->has_drrs = true;
2404                         intel_link_compute_m_n(output_bpp,
2405                                                pipe_config->lane_count,
2406                                                intel_connector->panel.downclock_mode->clock,
2407                                                pipe_config->port_clock,
2408                                                &pipe_config->dp_m2_n2,
2409                                                constant_n, pipe_config->fec_enable);
2410         }
2411
2412         if (!HAS_DDI(dev_priv))
2413                 intel_dp_set_clock(encoder, pipe_config);
2414
2415         intel_psr_compute_config(intel_dp, pipe_config);
2416
2417         return 0;
2418 }
2419
2420 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2421                               int link_rate, u8 lane_count,
2422                               bool link_mst)
2423 {
2424         intel_dp->link_trained = false;
2425         intel_dp->link_rate = link_rate;
2426         intel_dp->lane_count = lane_count;
2427         intel_dp->link_mst = link_mst;
2428 }
2429
2430 static void intel_dp_prepare(struct intel_encoder *encoder,
2431                              const struct intel_crtc_state *pipe_config)
2432 {
2433         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2434         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2435         enum port port = encoder->port;
2436         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2437         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2438
2439         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2440                                  pipe_config->lane_count,
2441                                  intel_crtc_has_type(pipe_config,
2442                                                      INTEL_OUTPUT_DP_MST));
2443
2444         intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2445         intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2446
2447         /*
2448          * There are four kinds of DP registers:
2449          *
2450          *      IBX PCH
2451          *      SNB CPU
2452          *      IVB CPU
2453          *      CPT PCH
2454          *
2455          * IBX PCH and CPU are the same for almost everything,
2456          * except that the CPU DP PLL is configured in this
2457          * register
2458          *
2459          * CPT PCH is quite different, having many bits moved
2460          * to the TRANS_DP_CTL register instead. That
2461          * configuration happens (oddly) in ironlake_pch_enable
2462          */
2463
2464         /* Preserve the BIOS-computed detected bit. This is
2465          * supposed to be read-only.
2466          */
2467         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2468
2469         /* Handle DP bits in common between all three register formats */
2470         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2471         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2472
2473         /* Split out the IBX/CPU vs CPT settings */
2474
2475         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2476                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2477                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2478                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2479                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2480                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2481
2482                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2483                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2484
2485                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2486         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2487                 u32 trans_dp;
2488
2489                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2490
2491                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2492                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2493                         trans_dp |= TRANS_DP_ENH_FRAMING;
2494                 else
2495                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2496                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2497         } else {
2498                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2499                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2500
2501                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2502                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2503                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2504                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2505                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2506
2507                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2508                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2509
2510                 if (IS_CHERRYVIEW(dev_priv))
2511                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2512                 else
2513                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2514         }
2515 }
2516
2517 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2518 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2519
2520 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2521 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2522
2523 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2524 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2525
2526 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2527
2528 static void wait_panel_status(struct intel_dp *intel_dp,
2529                                        u32 mask,
2530                                        u32 value)
2531 {
2532         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2533         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2534
2535         lockdep_assert_held(&dev_priv->pps_mutex);
2536
2537         intel_pps_verify_state(intel_dp);
2538
2539         pp_stat_reg = _pp_stat_reg(intel_dp);
2540         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2541
2542         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2543                         mask, value,
2544                         I915_READ(pp_stat_reg),
2545                         I915_READ(pp_ctrl_reg));
2546
2547         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2548                                        mask, value, 5000))
2549                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2550                                 I915_READ(pp_stat_reg),
2551                                 I915_READ(pp_ctrl_reg));
2552
2553         DRM_DEBUG_KMS("Wait complete\n");
2554 }
2555
2556 static void wait_panel_on(struct intel_dp *intel_dp)
2557 {
2558         DRM_DEBUG_KMS("Wait for panel power on\n");
2559         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2560 }
2561
2562 static void wait_panel_off(struct intel_dp *intel_dp)
2563 {
2564         DRM_DEBUG_KMS("Wait for panel power off time\n");
2565         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2566 }
2567
2568 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2569 {
2570         ktime_t panel_power_on_time;
2571         s64 panel_power_off_duration;
2572
2573         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2574
2575         /* take the difference of currrent time and panel power off time
2576          * and then make panel wait for t11_t12 if needed. */
2577         panel_power_on_time = ktime_get_boottime();
2578         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2579
2580         /* When we disable the VDD override bit last we have to do the manual
2581          * wait. */
2582         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2583                 wait_remaining_ms_from_jiffies(jiffies,
2584                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2585
2586         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2587 }
2588
2589 static void wait_backlight_on(struct intel_dp *intel_dp)
2590 {
2591         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2592                                        intel_dp->backlight_on_delay);
2593 }
2594
2595 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2596 {
2597         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2598                                        intel_dp->backlight_off_delay);
2599 }
2600
2601 /* Read the current pp_control value, unlocking the register if it
2602  * is locked
2603  */
2604
2605 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2606 {
2607         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2608         u32 control;
2609
2610         lockdep_assert_held(&dev_priv->pps_mutex);
2611
2612         control = I915_READ(_pp_ctrl_reg(intel_dp));
2613         if (WARN_ON(!HAS_DDI(dev_priv) &&
2614                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2615                 control &= ~PANEL_UNLOCK_MASK;
2616                 control |= PANEL_UNLOCK_REGS;
2617         }
2618         return control;
2619 }
2620
2621 /*
2622  * Must be paired with edp_panel_vdd_off().
2623  * Must hold pps_mutex around the whole on/off sequence.
2624  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2625  */
2626 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2627 {
2628         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2629         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2630         u32 pp;
2631         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2632         bool need_to_disable = !intel_dp->want_panel_vdd;
2633
2634         lockdep_assert_held(&dev_priv->pps_mutex);
2635
2636         if (!intel_dp_is_edp(intel_dp))
2637                 return false;
2638
2639         cancel_delayed_work(&intel_dp->panel_vdd_work);
2640         intel_dp->want_panel_vdd = true;
2641
2642         if (edp_have_panel_vdd(intel_dp))
2643                 return need_to_disable;
2644
2645         intel_display_power_get(dev_priv,
2646                                 intel_aux_power_domain(intel_dig_port));
2647
2648         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2649                       intel_dig_port->base.base.base.id,
2650                       intel_dig_port->base.base.name);
2651
2652         if (!edp_have_panel_power(intel_dp))
2653                 wait_panel_power_cycle(intel_dp);
2654
2655         pp = ironlake_get_pp_control(intel_dp);
2656         pp |= EDP_FORCE_VDD;
2657
2658         pp_stat_reg = _pp_stat_reg(intel_dp);
2659         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2660
2661         I915_WRITE(pp_ctrl_reg, pp);
2662         POSTING_READ(pp_ctrl_reg);
2663         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2664                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2665         /*
2666          * If the panel wasn't on, delay before accessing aux channel
2667          */
2668         if (!edp_have_panel_power(intel_dp)) {
2669                 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2670                               intel_dig_port->base.base.base.id,
2671                               intel_dig_port->base.base.name);
2672                 msleep(intel_dp->panel_power_up_delay);
2673         }
2674
2675         return need_to_disable;
2676 }
2677
2678 /*
2679  * Must be paired with intel_edp_panel_vdd_off() or
2680  * intel_edp_panel_off().
2681  * Nested calls to these functions are not allowed since
2682  * we drop the lock. Caller must use some higher level
2683  * locking to prevent nested calls from other threads.
2684  */
2685 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2686 {
2687         intel_wakeref_t wakeref;
2688         bool vdd;
2689
2690         if (!intel_dp_is_edp(intel_dp))
2691                 return;
2692
2693         vdd = false;
2694         with_pps_lock(intel_dp, wakeref)
2695                 vdd = edp_panel_vdd_on(intel_dp);
2696         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2697                         dp_to_dig_port(intel_dp)->base.base.base.id,
2698                         dp_to_dig_port(intel_dp)->base.base.name);
2699 }
2700
2701 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2702 {
2703         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2704         struct intel_digital_port *intel_dig_port =
2705                 dp_to_dig_port(intel_dp);
2706         u32 pp;
2707         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2708
2709         lockdep_assert_held(&dev_priv->pps_mutex);
2710
2711         WARN_ON(intel_dp->want_panel_vdd);
2712
2713         if (!edp_have_panel_vdd(intel_dp))
2714                 return;
2715
2716         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2717                       intel_dig_port->base.base.base.id,
2718                       intel_dig_port->base.base.name);
2719
2720         pp = ironlake_get_pp_control(intel_dp);
2721         pp &= ~EDP_FORCE_VDD;
2722
2723         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2724         pp_stat_reg = _pp_stat_reg(intel_dp);
2725
2726         I915_WRITE(pp_ctrl_reg, pp);
2727         POSTING_READ(pp_ctrl_reg);
2728
2729         /* Make sure sequencer is idle before allowing subsequent activity */
2730         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2731         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2732
2733         if ((pp & PANEL_POWER_ON) == 0)
2734                 intel_dp->panel_power_off_time = ktime_get_boottime();
2735
2736         intel_display_power_put_unchecked(dev_priv,
2737                                           intel_aux_power_domain(intel_dig_port));
2738 }
2739
2740 static void edp_panel_vdd_work(struct work_struct *__work)
2741 {
2742         struct intel_dp *intel_dp =
2743                 container_of(to_delayed_work(__work),
2744                              struct intel_dp, panel_vdd_work);
2745         intel_wakeref_t wakeref;
2746
2747         with_pps_lock(intel_dp, wakeref) {
2748                 if (!intel_dp->want_panel_vdd)
2749                         edp_panel_vdd_off_sync(intel_dp);
2750         }
2751 }
2752
2753 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2754 {
2755         unsigned long delay;
2756
2757         /*
2758          * Queue the timer to fire a long time from now (relative to the power
2759          * down delay) to keep the panel power up across a sequence of
2760          * operations.
2761          */
2762         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2763         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2764 }
2765
2766 /*
2767  * Must be paired with edp_panel_vdd_on().
2768  * Must hold pps_mutex around the whole on/off sequence.
2769  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2770  */
2771 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2772 {
2773         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2774
2775         lockdep_assert_held(&dev_priv->pps_mutex);
2776
2777         if (!intel_dp_is_edp(intel_dp))
2778                 return;
2779
2780         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2781                         dp_to_dig_port(intel_dp)->base.base.base.id,
2782                         dp_to_dig_port(intel_dp)->base.base.name);
2783
2784         intel_dp->want_panel_vdd = false;
2785
2786         if (sync)
2787                 edp_panel_vdd_off_sync(intel_dp);
2788         else
2789                 edp_panel_vdd_schedule_off(intel_dp);
2790 }
2791
2792 static void edp_panel_on(struct intel_dp *intel_dp)
2793 {
2794         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2795         u32 pp;
2796         i915_reg_t pp_ctrl_reg;
2797
2798         lockdep_assert_held(&dev_priv->pps_mutex);
2799
2800         if (!intel_dp_is_edp(intel_dp))
2801                 return;
2802
2803         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2804                       dp_to_dig_port(intel_dp)->base.base.base.id,
2805                       dp_to_dig_port(intel_dp)->base.base.name);
2806
2807         if (WARN(edp_have_panel_power(intel_dp),
2808                  "[ENCODER:%d:%s] panel power already on\n",
2809                  dp_to_dig_port(intel_dp)->base.base.base.id,
2810                  dp_to_dig_port(intel_dp)->base.base.name))
2811                 return;
2812
2813         wait_panel_power_cycle(intel_dp);
2814
2815         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2816         pp = ironlake_get_pp_control(intel_dp);
2817         if (IS_GEN(dev_priv, 5)) {
2818                 /* ILK workaround: disable reset around power sequence */
2819                 pp &= ~PANEL_POWER_RESET;
2820                 I915_WRITE(pp_ctrl_reg, pp);
2821                 POSTING_READ(pp_ctrl_reg);
2822         }
2823
2824         pp |= PANEL_POWER_ON;
2825         if (!IS_GEN(dev_priv, 5))
2826                 pp |= PANEL_POWER_RESET;
2827
2828         I915_WRITE(pp_ctrl_reg, pp);
2829         POSTING_READ(pp_ctrl_reg);
2830
2831         wait_panel_on(intel_dp);
2832         intel_dp->last_power_on = jiffies;
2833
2834         if (IS_GEN(dev_priv, 5)) {
2835                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2836                 I915_WRITE(pp_ctrl_reg, pp);
2837                 POSTING_READ(pp_ctrl_reg);
2838         }
2839 }
2840
2841 void intel_edp_panel_on(struct intel_dp *intel_dp)
2842 {
2843         intel_wakeref_t wakeref;
2844
2845         if (!intel_dp_is_edp(intel_dp))
2846                 return;
2847
2848         with_pps_lock(intel_dp, wakeref)
2849                 edp_panel_on(intel_dp);
2850 }
2851
2852
2853 static void edp_panel_off(struct intel_dp *intel_dp)
2854 {
2855         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2856         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2857         u32 pp;
2858         i915_reg_t pp_ctrl_reg;
2859
2860         lockdep_assert_held(&dev_priv->pps_mutex);
2861
2862         if (!intel_dp_is_edp(intel_dp))
2863                 return;
2864
2865         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2866                       dig_port->base.base.base.id, dig_port->base.base.name);
2867
2868         WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2869              dig_port->base.base.base.id, dig_port->base.base.name);
2870
2871         pp = ironlake_get_pp_control(intel_dp);
2872         /* We need to switch off panel power _and_ force vdd, for otherwise some
2873          * panels get very unhappy and cease to work. */
2874         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2875                 EDP_BLC_ENABLE);
2876
2877         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2878
2879         intel_dp->want_panel_vdd = false;
2880
2881         I915_WRITE(pp_ctrl_reg, pp);
2882         POSTING_READ(pp_ctrl_reg);
2883
2884         wait_panel_off(intel_dp);
2885         intel_dp->panel_power_off_time = ktime_get_boottime();
2886
2887         /* We got a reference when we enabled the VDD. */
2888         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2889 }
2890
2891 void intel_edp_panel_off(struct intel_dp *intel_dp)
2892 {
2893         intel_wakeref_t wakeref;
2894
2895         if (!intel_dp_is_edp(intel_dp))
2896                 return;
2897
2898         with_pps_lock(intel_dp, wakeref)
2899                 edp_panel_off(intel_dp);
2900 }
2901
2902 /* Enable backlight in the panel power control. */
2903 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2904 {
2905         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2906         intel_wakeref_t wakeref;
2907
2908         /*
2909          * If we enable the backlight right away following a panel power
2910          * on, we may see slight flicker as the panel syncs with the eDP
2911          * link.  So delay a bit to make sure the image is solid before
2912          * allowing it to appear.
2913          */
2914         wait_backlight_on(intel_dp);
2915
2916         with_pps_lock(intel_dp, wakeref) {
2917                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2918                 u32 pp;
2919
2920                 pp = ironlake_get_pp_control(intel_dp);
2921                 pp |= EDP_BLC_ENABLE;
2922
2923                 I915_WRITE(pp_ctrl_reg, pp);
2924                 POSTING_READ(pp_ctrl_reg);
2925         }
2926 }
2927
2928 /* Enable backlight PWM and backlight PP control. */
2929 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2930                             const struct drm_connector_state *conn_state)
2931 {
2932         struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2933
2934         if (!intel_dp_is_edp(intel_dp))
2935                 return;
2936
2937         DRM_DEBUG_KMS("\n");
2938
2939         intel_panel_enable_backlight(crtc_state, conn_state);
2940         _intel_edp_backlight_on(intel_dp);
2941 }
2942
2943 /* Disable backlight in the panel power control. */
2944 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2945 {
2946         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2947         intel_wakeref_t wakeref;
2948
2949         if (!intel_dp_is_edp(intel_dp))
2950                 return;
2951
2952         with_pps_lock(intel_dp, wakeref) {
2953                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2954                 u32 pp;
2955
2956                 pp = ironlake_get_pp_control(intel_dp);
2957                 pp &= ~EDP_BLC_ENABLE;
2958
2959                 I915_WRITE(pp_ctrl_reg, pp);
2960                 POSTING_READ(pp_ctrl_reg);
2961         }
2962
2963         intel_dp->last_backlight_off = jiffies;
2964         edp_wait_backlight_off(intel_dp);
2965 }
2966
2967 /* Disable backlight PP control and backlight PWM. */
2968 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2969 {
2970         struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2971
2972         if (!intel_dp_is_edp(intel_dp))
2973                 return;
2974
2975         DRM_DEBUG_KMS("\n");
2976
2977         _intel_edp_backlight_off(intel_dp);
2978         intel_panel_disable_backlight(old_conn_state);
2979 }
2980
2981 /*
2982  * Hook for controlling the panel power control backlight through the bl_power
2983  * sysfs attribute. Take care to handle multiple calls.
2984  */
2985 static void intel_edp_backlight_power(struct intel_connector *connector,
2986                                       bool enable)
2987 {
2988         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2989         intel_wakeref_t wakeref;
2990         bool is_enabled;
2991
2992         is_enabled = false;
2993         with_pps_lock(intel_dp, wakeref)
2994                 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2995         if (is_enabled == enable)
2996                 return;
2997
2998         DRM_DEBUG_KMS("panel power control backlight %s\n",
2999                       enable ? "enable" : "disable");
3000
3001         if (enable)
3002                 _intel_edp_backlight_on(intel_dp);
3003         else
3004                 _intel_edp_backlight_off(intel_dp);
3005 }
3006
3007 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3008 {
3009         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3010         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3011         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3012
3013         I915_STATE_WARN(cur_state != state,
3014                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3015                         dig_port->base.base.base.id, dig_port->base.base.name,
3016                         onoff(state), onoff(cur_state));
3017 }
3018 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3019
3020 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3021 {
3022         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3023
3024         I915_STATE_WARN(cur_state != state,
3025                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3026                         onoff(state), onoff(cur_state));
3027 }
3028 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3029 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3030
3031 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
3032                                 const struct intel_crtc_state *pipe_config)
3033 {
3034         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3035         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3036
3037         assert_pipe_disabled(dev_priv, crtc->pipe);
3038         assert_dp_port_disabled(intel_dp);
3039         assert_edp_pll_disabled(dev_priv);
3040
3041         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3042                       pipe_config->port_clock);
3043
3044         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3045
3046         if (pipe_config->port_clock == 162000)
3047                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3048         else
3049                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3050
3051         I915_WRITE(DP_A, intel_dp->DP);
3052         POSTING_READ(DP_A);
3053         udelay(500);
3054
3055         /*
3056          * [DevILK] Work around required when enabling DP PLL
3057          * while a pipe is enabled going to FDI:
3058          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3059          * 2. Program DP PLL enable
3060          */
3061         if (IS_GEN(dev_priv, 5))
3062                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3063
3064         intel_dp->DP |= DP_PLL_ENABLE;
3065
3066         I915_WRITE(DP_A, intel_dp->DP);
3067         POSTING_READ(DP_A);
3068         udelay(200);
3069 }
3070
3071 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
3072                                  const struct intel_crtc_state *old_crtc_state)
3073 {
3074         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3075         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3076
3077         assert_pipe_disabled(dev_priv, crtc->pipe);
3078         assert_dp_port_disabled(intel_dp);
3079         assert_edp_pll_enabled(dev_priv);
3080
3081         DRM_DEBUG_KMS("disabling eDP PLL\n");
3082
3083         intel_dp->DP &= ~DP_PLL_ENABLE;
3084
3085         I915_WRITE(DP_A, intel_dp->DP);
3086         POSTING_READ(DP_A);
3087         udelay(200);
3088 }
3089
3090 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3091 {
3092         /*
3093          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3094          * be capable of signalling downstream hpd with a long pulse.
3095          * Whether or not that means D3 is safe to use is not clear,
3096          * but let's assume so until proven otherwise.
3097          *
3098          * FIXME should really check all downstream ports...
3099          */
3100         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3101                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3102                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3103 }
3104
3105 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3106                                            const struct intel_crtc_state *crtc_state,
3107                                            bool enable)
3108 {
3109         int ret;
3110
3111         if (!crtc_state->dsc.compression_enable)
3112                 return;
3113
3114         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3115                                  enable ? DP_DECOMPRESSION_EN : 0);
3116         if (ret < 0)
3117                 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3118                               enable ? "enable" : "disable");
3119 }
3120
3121 /* If the sink supports it, try to set the power state appropriately */
3122 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3123 {
3124         int ret, i;
3125
3126         /* Should have a valid DPCD by this point */
3127         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3128                 return;
3129
3130         if (mode != DRM_MODE_DPMS_ON) {
3131                 if (downstream_hpd_needs_d0(intel_dp))
3132                         return;
3133
3134                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3135                                          DP_SET_POWER_D3);
3136         } else {
3137                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3138
3139                 /*
3140                  * When turning on, we need to retry for 1ms to give the sink
3141                  * time to wake up.
3142                  */
3143                 for (i = 0; i < 3; i++) {
3144                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3145                                                  DP_SET_POWER_D0);
3146                         if (ret == 1)
3147                                 break;
3148                         msleep(1);
3149                 }
3150
3151                 if (ret == 1 && lspcon->active)
3152                         lspcon_wait_pcon_mode(lspcon);
3153         }
3154
3155         if (ret != 1)
3156                 DRM_DEBUG_KMS("failed to %s sink power state\n",
3157                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3158 }
3159
3160 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3161                                  enum port port, enum pipe *pipe)
3162 {
3163         enum pipe p;
3164
3165         for_each_pipe(dev_priv, p) {
3166                 u32 val = I915_READ(TRANS_DP_CTL(p));
3167
3168                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3169                         *pipe = p;
3170                         return true;
3171                 }
3172         }
3173
3174         DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3175
3176         /* must initialize pipe to something for the asserts */
3177         *pipe = PIPE_A;
3178
3179         return false;
3180 }
3181
3182 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3183                            i915_reg_t dp_reg, enum port port,
3184                            enum pipe *pipe)
3185 {
3186         bool ret;
3187         u32 val;
3188
3189         val = I915_READ(dp_reg);
3190
3191         ret = val & DP_PORT_EN;
3192
3193         /* asserts want to know the pipe even if the port is disabled */
3194         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3195                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3196         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3197                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3198         else if (IS_CHERRYVIEW(dev_priv))
3199                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3200         else
3201                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3202
3203         return ret;
3204 }
3205
3206 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3207                                   enum pipe *pipe)
3208 {
3209         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3210         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3211         intel_wakeref_t wakeref;
3212         bool ret;
3213
3214         wakeref = intel_display_power_get_if_enabled(dev_priv,
3215                                                      encoder->power_domain);
3216         if (!wakeref)
3217                 return false;
3218
3219         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3220                                     encoder->port, pipe);
3221
3222         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3223
3224         return ret;
3225 }
3226
3227 static void intel_dp_get_config(struct intel_encoder *encoder,
3228                                 struct intel_crtc_state *pipe_config)
3229 {
3230         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3231         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3232         u32 tmp, flags = 0;
3233         enum port port = encoder->port;
3234         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3235
3236         if (encoder->type == INTEL_OUTPUT_EDP)
3237                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3238         else
3239                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3240
3241         tmp = I915_READ(intel_dp->output_reg);
3242
3243         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3244
3245         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3246                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3247
3248                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3249                         flags |= DRM_MODE_FLAG_PHSYNC;
3250                 else
3251                         flags |= DRM_MODE_FLAG_NHSYNC;
3252
3253                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3254                         flags |= DRM_MODE_FLAG_PVSYNC;
3255                 else
3256                         flags |= DRM_MODE_FLAG_NVSYNC;
3257         } else {
3258                 if (tmp & DP_SYNC_HS_HIGH)
3259                         flags |= DRM_MODE_FLAG_PHSYNC;
3260                 else
3261                         flags |= DRM_MODE_FLAG_NHSYNC;
3262
3263                 if (tmp & DP_SYNC_VS_HIGH)
3264                         flags |= DRM_MODE_FLAG_PVSYNC;
3265                 else
3266                         flags |= DRM_MODE_FLAG_NVSYNC;
3267         }
3268
3269         pipe_config->base.adjusted_mode.flags |= flags;
3270
3271         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3272                 pipe_config->limited_color_range = true;
3273
3274         pipe_config->lane_count =
3275                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3276
3277         intel_dp_get_m_n(crtc, pipe_config);
3278
3279         if (port == PORT_A) {
3280                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3281                         pipe_config->port_clock = 162000;
3282                 else
3283                         pipe_config->port_clock = 270000;
3284         }
3285
3286         pipe_config->base.adjusted_mode.crtc_clock =
3287                 intel_dotclock_calculate(pipe_config->port_clock,
3288                                          &pipe_config->dp_m_n);
3289
3290         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3291             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3292                 /*
3293                  * This is a big fat ugly hack.
3294                  *
3295                  * Some machines in UEFI boot mode provide us a VBT that has 18
3296                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3297                  * unknown we fail to light up. Yet the same BIOS boots up with
3298                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3299                  * max, not what it tells us to use.
3300                  *
3301                  * Note: This will still be broken if the eDP panel is not lit
3302                  * up by the BIOS, and thus we can't get the mode at module
3303                  * load.
3304                  */
3305                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3306                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3307                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3308         }
3309 }
3310
3311 static void intel_disable_dp(struct intel_encoder *encoder,
3312                              const struct intel_crtc_state *old_crtc_state,
3313                              const struct drm_connector_state *old_conn_state)
3314 {
3315         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3316
3317         intel_dp->link_trained = false;
3318
3319         if (old_crtc_state->has_audio)
3320                 intel_audio_codec_disable(encoder,
3321                                           old_crtc_state, old_conn_state);
3322
3323         /* Make sure the panel is off before trying to change the mode. But also
3324          * ensure that we have vdd while we switch off the panel. */
3325         intel_edp_panel_vdd_on(intel_dp);
3326         intel_edp_backlight_off(old_conn_state);
3327         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3328         intel_edp_panel_off(intel_dp);
3329 }
3330
3331 static void g4x_disable_dp(struct intel_encoder *encoder,
3332                            const struct intel_crtc_state *old_crtc_state,
3333                            const struct drm_connector_state *old_conn_state)
3334 {
3335         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3336 }
3337
3338 static void vlv_disable_dp(struct intel_encoder *encoder,
3339                            const struct intel_crtc_state *old_crtc_state,
3340                            const struct drm_connector_state *old_conn_state)
3341 {
3342         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3343 }
3344
3345 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3346                                 const struct intel_crtc_state *old_crtc_state,
3347                                 const struct drm_connector_state *old_conn_state)
3348 {
3349         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3350         enum port port = encoder->port;
3351
3352         /*
3353          * Bspec does not list a specific disable sequence for g4x DP.
3354          * Follow the ilk+ sequence (disable pipe before the port) for
3355          * g4x DP as it does not suffer from underruns like the normal
3356          * g4x modeset sequence (disable pipe after the port).
3357          */
3358         intel_dp_link_down(encoder, old_crtc_state);
3359
3360         /* Only ilk+ has port A */
3361         if (port == PORT_A)
3362                 ironlake_edp_pll_off(intel_dp, old_crtc_state);
3363 }
3364
3365 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3366                                 const struct intel_crtc_state *old_crtc_state,
3367                                 const struct drm_connector_state *old_conn_state)
3368 {
3369         intel_dp_link_down(encoder, old_crtc_state);
3370 }
3371
3372 static void chv_post_disable_dp(struct intel_encoder *encoder,
3373                                 const struct intel_crtc_state *old_crtc_state,
3374                                 const struct drm_connector_state *old_conn_state)
3375 {
3376         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3377
3378         intel_dp_link_down(encoder, old_crtc_state);
3379
3380         vlv_dpio_get(dev_priv);
3381
3382         /* Assert data lane reset */
3383         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3384
3385         vlv_dpio_put(dev_priv);
3386 }
3387
3388 static void
3389 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3390                          u32 *DP,
3391                          u8 dp_train_pat)
3392 {
3393         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3394         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3395         enum port port = intel_dig_port->base.port;
3396         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3397
3398         if (dp_train_pat & train_pat_mask)
3399                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3400                               dp_train_pat & train_pat_mask);
3401
3402         if (HAS_DDI(dev_priv)) {
3403                 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3404
3405                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3406                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3407                 else
3408                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3409
3410                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3411                 switch (dp_train_pat & train_pat_mask) {
3412                 case DP_TRAINING_PATTERN_DISABLE:
3413                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3414
3415                         break;
3416                 case DP_TRAINING_PATTERN_1:
3417                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3418                         break;
3419                 case DP_TRAINING_PATTERN_2:
3420                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3421                         break;
3422                 case DP_TRAINING_PATTERN_3:
3423                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3424                         break;
3425                 case DP_TRAINING_PATTERN_4:
3426                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3427                         break;
3428                 }
3429                 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3430
3431         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3432                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3433                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3434
3435                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3436                 case DP_TRAINING_PATTERN_DISABLE:
3437                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3438                         break;
3439                 case DP_TRAINING_PATTERN_1:
3440                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3441                         break;
3442                 case DP_TRAINING_PATTERN_2:
3443                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3444                         break;
3445                 case DP_TRAINING_PATTERN_3:
3446                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3447                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3448                         break;
3449                 }
3450
3451         } else {
3452                 *DP &= ~DP_LINK_TRAIN_MASK;
3453
3454                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3455                 case DP_TRAINING_PATTERN_DISABLE:
3456                         *DP |= DP_LINK_TRAIN_OFF;
3457                         break;
3458                 case DP_TRAINING_PATTERN_1:
3459                         *DP |= DP_LINK_TRAIN_PAT_1;
3460                         break;
3461                 case DP_TRAINING_PATTERN_2:
3462                         *DP |= DP_LINK_TRAIN_PAT_2;
3463                         break;
3464                 case DP_TRAINING_PATTERN_3:
3465                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3466                         *DP |= DP_LINK_TRAIN_PAT_2;
3467                         break;
3468                 }
3469         }
3470 }
3471
3472 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3473                                  const struct intel_crtc_state *old_crtc_state)
3474 {
3475         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3476
3477         /* enable with pattern 1 (as per spec) */
3478
3479         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3480
3481         /*
3482          * Magic for VLV/CHV. We _must_ first set up the register
3483          * without actually enabling the port, and then do another
3484          * write to enable the port. Otherwise link training will
3485          * fail when the power sequencer is freshly used for this port.
3486          */
3487         intel_dp->DP |= DP_PORT_EN;
3488         if (old_crtc_state->has_audio)
3489                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3490
3491         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3492         POSTING_READ(intel_dp->output_reg);
3493 }
3494
3495 static void intel_enable_dp(struct intel_encoder *encoder,
3496                             const struct intel_crtc_state *pipe_config,
3497                             const struct drm_connector_state *conn_state)
3498 {
3499         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3500         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3501         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3502         u32 dp_reg = I915_READ(intel_dp->output_reg);
3503         enum pipe pipe = crtc->pipe;
3504         intel_wakeref_t wakeref;
3505
3506         if (WARN_ON(dp_reg & DP_PORT_EN))
3507                 return;
3508
3509         with_pps_lock(intel_dp, wakeref) {
3510                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3511                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3512
3513                 intel_dp_enable_port(intel_dp, pipe_config);
3514
3515                 edp_panel_vdd_on(intel_dp);
3516                 edp_panel_on(intel_dp);
3517                 edp_panel_vdd_off(intel_dp, true);
3518         }
3519
3520         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3521                 unsigned int lane_mask = 0x0;
3522
3523                 if (IS_CHERRYVIEW(dev_priv))
3524                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3525
3526                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3527                                     lane_mask);
3528         }
3529
3530         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3531         intel_dp_start_link_train(intel_dp);
3532         intel_dp_stop_link_train(intel_dp);
3533
3534         if (pipe_config->has_audio) {
3535                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3536                                  pipe_name(pipe));
3537                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3538         }
3539 }
3540
3541 static void g4x_enable_dp(struct intel_encoder *encoder,
3542                           const struct intel_crtc_state *pipe_config,
3543                           const struct drm_connector_state *conn_state)
3544 {
3545         intel_enable_dp(encoder, pipe_config, conn_state);
3546         intel_edp_backlight_on(pipe_config, conn_state);
3547 }
3548
3549 static void vlv_enable_dp(struct intel_encoder *encoder,
3550                           const struct intel_crtc_state *pipe_config,
3551                           const struct drm_connector_state *conn_state)
3552 {
3553         intel_edp_backlight_on(pipe_config, conn_state);
3554 }
3555
3556 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3557                               const struct intel_crtc_state *pipe_config,
3558                               const struct drm_connector_state *conn_state)
3559 {
3560         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3561         enum port port = encoder->port;
3562
3563         intel_dp_prepare(encoder, pipe_config);
3564
3565         /* Only ilk+ has port A */
3566         if (port == PORT_A)
3567                 ironlake_edp_pll_on(intel_dp, pipe_config);
3568 }
3569
3570 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3571 {
3572         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3573         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3574         enum pipe pipe = intel_dp->pps_pipe;
3575         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3576
3577         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3578
3579         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3580                 return;
3581
3582         edp_panel_vdd_off_sync(intel_dp);
3583
3584         /*
3585          * VLV seems to get confused when multiple power sequencers
3586          * have the same port selected (even if only one has power/vdd
3587          * enabled). The failure manifests as vlv_wait_port_ready() failing
3588          * CHV on the other hand doesn't seem to mind having the same port
3589          * selected in multiple power sequencers, but let's clear the
3590          * port select always when logically disconnecting a power sequencer
3591          * from a port.
3592          */
3593         DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3594                       pipe_name(pipe), intel_dig_port->base.base.base.id,
3595                       intel_dig_port->base.base.name);
3596         I915_WRITE(pp_on_reg, 0);
3597         POSTING_READ(pp_on_reg);
3598
3599         intel_dp->pps_pipe = INVALID_PIPE;
3600 }
3601
3602 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3603                                       enum pipe pipe)
3604 {
3605         struct intel_encoder *encoder;
3606
3607         lockdep_assert_held(&dev_priv->pps_mutex);
3608
3609         for_each_intel_dp(&dev_priv->drm, encoder) {
3610                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3611
3612                 WARN(intel_dp->active_pipe == pipe,
3613                      "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3614                      pipe_name(pipe), encoder->base.base.id,
3615                      encoder->base.name);
3616
3617                 if (intel_dp->pps_pipe != pipe)
3618                         continue;
3619
3620                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3621                               pipe_name(pipe), encoder->base.base.id,
3622                               encoder->base.name);
3623
3624                 /* make sure vdd is off before we steal it */
3625                 vlv_detach_power_sequencer(intel_dp);
3626         }
3627 }
3628
3629 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3630                                            const struct intel_crtc_state *crtc_state)
3631 {
3632         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3633         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3634         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3635
3636         lockdep_assert_held(&dev_priv->pps_mutex);
3637
3638         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3639
3640         if (intel_dp->pps_pipe != INVALID_PIPE &&
3641             intel_dp->pps_pipe != crtc->pipe) {
3642                 /*
3643                  * If another power sequencer was being used on this
3644                  * port previously make sure to turn off vdd there while
3645                  * we still have control of it.
3646                  */
3647                 vlv_detach_power_sequencer(intel_dp);
3648         }
3649
3650         /*
3651          * We may be stealing the power
3652          * sequencer from another port.
3653          */
3654         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3655
3656         intel_dp->active_pipe = crtc->pipe;
3657
3658         if (!intel_dp_is_edp(intel_dp))
3659                 return;
3660
3661         /* now it's all ours */
3662         intel_dp->pps_pipe = crtc->pipe;
3663
3664         DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3665                       pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3666                       encoder->base.name);
3667
3668         /* init power sequencer on this pipe and port */
3669         intel_dp_init_panel_power_sequencer(intel_dp);
3670         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3671 }
3672
3673 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3674                               const struct intel_crtc_state *pipe_config,
3675                               const struct drm_connector_state *conn_state)
3676 {
3677         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3678
3679         intel_enable_dp(encoder, pipe_config, conn_state);
3680 }
3681
3682 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3683                                   const struct intel_crtc_state *pipe_config,
3684                                   const struct drm_connector_state *conn_state)
3685 {
3686         intel_dp_prepare(encoder, pipe_config);
3687
3688         vlv_phy_pre_pll_enable(encoder, pipe_config);
3689 }
3690
3691 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3692                               const struct intel_crtc_state *pipe_config,
3693                               const struct drm_connector_state *conn_state)
3694 {
3695         chv_phy_pre_encoder_enable(encoder, pipe_config);
3696
3697         intel_enable_dp(encoder, pipe_config, conn_state);
3698
3699         /* Second common lane will stay alive on its own now */
3700         chv_phy_release_cl2_override(encoder);
3701 }
3702
3703 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3704                                   const struct intel_crtc_state *pipe_config,
3705                                   const struct drm_connector_state *conn_state)
3706 {
3707         intel_dp_prepare(encoder, pipe_config);
3708
3709         chv_phy_pre_pll_enable(encoder, pipe_config);
3710 }
3711
3712 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3713                                     const struct intel_crtc_state *old_crtc_state,
3714                                     const struct drm_connector_state *old_conn_state)
3715 {
3716         chv_phy_post_pll_disable(encoder, old_crtc_state);
3717 }
3718
3719 /*
3720  * Fetch AUX CH registers 0x202 - 0x207 which contain
3721  * link status information
3722  */
3723 bool
3724 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3725 {
3726         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3727                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3728 }
3729
3730 /* These are source-specific values. */
3731 u8
3732 intel_dp_voltage_max(struct intel_dp *intel_dp)
3733 {
3734         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3735         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3736         enum port port = encoder->port;
3737
3738         if (HAS_DDI(dev_priv))
3739                 return intel_ddi_dp_voltage_max(encoder);
3740         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3741                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3742         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3743                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3744         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3745                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3746         else
3747                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3748 }
3749
3750 u8
3751 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3752 {
3753         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3754         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3755         enum port port = encoder->port;
3756
3757         if (HAS_DDI(dev_priv)) {
3758                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3759         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3760                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3761                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3762                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3763                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3764                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3765                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3766                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3767                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3768                 default:
3769                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3770                 }
3771         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3772                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3773                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3774                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3775                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3776                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3777                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3778                 default:
3779                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3780                 }
3781         } else {
3782                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3783                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3784                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3785                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3786                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3787                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3788                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3789                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3790                 default:
3791                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3792                 }
3793         }
3794 }
3795
3796 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3797 {
3798         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3799         unsigned long demph_reg_value, preemph_reg_value,
3800                 uniqtranscale_reg_value;
3801         u8 train_set = intel_dp->train_set[0];
3802
3803         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3804         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3805                 preemph_reg_value = 0x0004000;
3806                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3807                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3808                         demph_reg_value = 0x2B405555;
3809                         uniqtranscale_reg_value = 0x552AB83A;
3810                         break;
3811                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3812                         demph_reg_value = 0x2B404040;
3813                         uniqtranscale_reg_value = 0x5548B83A;
3814                         break;
3815                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3816                         demph_reg_value = 0x2B245555;
3817                         uniqtranscale_reg_value = 0x5560B83A;
3818                         break;
3819                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3820                         demph_reg_value = 0x2B405555;
3821                         uniqtranscale_reg_value = 0x5598DA3A;
3822                         break;
3823                 default:
3824                         return 0;
3825                 }
3826                 break;
3827         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3828                 preemph_reg_value = 0x0002000;
3829                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3830                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3831                         demph_reg_value = 0x2B404040;
3832                         uniqtranscale_reg_value = 0x5552B83A;
3833                         break;
3834                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3835                         demph_reg_value = 0x2B404848;
3836                         uniqtranscale_reg_value = 0x5580B83A;
3837                         break;
3838                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3839                         demph_reg_value = 0x2B404040;
3840                         uniqtranscale_reg_value = 0x55ADDA3A;
3841                         break;
3842                 default:
3843                         return 0;
3844                 }
3845                 break;
3846         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3847                 preemph_reg_value = 0x0000000;
3848                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3849                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3850                         demph_reg_value = 0x2B305555;
3851                         uniqtranscale_reg_value = 0x5570B83A;
3852                         break;
3853                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3854                         demph_reg_value = 0x2B2B4040;
3855                         uniqtranscale_reg_value = 0x55ADDA3A;
3856                         break;
3857                 default:
3858                         return 0;
3859                 }
3860                 break;
3861         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3862                 preemph_reg_value = 0x0006000;
3863                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3864                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3865                         demph_reg_value = 0x1B405555;
3866                         uniqtranscale_reg_value = 0x55ADDA3A;
3867                         break;
3868                 default:
3869                         return 0;
3870                 }
3871                 break;
3872         default:
3873                 return 0;
3874         }
3875
3876         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3877                                  uniqtranscale_reg_value, 0);
3878
3879         return 0;
3880 }
3881
3882 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3883 {
3884         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3885         u32 deemph_reg_value, margin_reg_value;
3886         bool uniq_trans_scale = false;
3887         u8 train_set = intel_dp->train_set[0];
3888
3889         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3890         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3891                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3892                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3893                         deemph_reg_value = 128;
3894                         margin_reg_value = 52;
3895                         break;
3896                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3897                         deemph_reg_value = 128;
3898                         margin_reg_value = 77;
3899                         break;
3900                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3901                         deemph_reg_value = 128;
3902                         margin_reg_value = 102;
3903                         break;
3904                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3905                         deemph_reg_value = 128;
3906                         margin_reg_value = 154;
3907                         uniq_trans_scale = true;
3908                         break;
3909                 default:
3910                         return 0;
3911                 }
3912                 break;
3913         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3914                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3915                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3916                         deemph_reg_value = 85;
3917                         margin_reg_value = 78;
3918                         break;
3919                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3920                         deemph_reg_value = 85;
3921                         margin_reg_value = 116;
3922                         break;
3923                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3924                         deemph_reg_value = 85;
3925                         margin_reg_value = 154;
3926                         break;
3927                 default:
3928                         return 0;
3929                 }
3930                 break;
3931         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3932                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3933                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3934                         deemph_reg_value = 64;
3935                         margin_reg_value = 104;
3936                         break;
3937                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3938                         deemph_reg_value = 64;
3939                         margin_reg_value = 154;
3940                         break;
3941                 default:
3942                         return 0;
3943                 }
3944                 break;
3945         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3946                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3947                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3948                         deemph_reg_value = 43;
3949                         margin_reg_value = 154;
3950                         break;
3951                 default:
3952                         return 0;
3953                 }
3954                 break;
3955         default:
3956                 return 0;
3957         }
3958
3959         chv_set_phy_signal_level(encoder, deemph_reg_value,
3960                                  margin_reg_value, uniq_trans_scale);
3961
3962         return 0;
3963 }
3964
3965 static u32
3966 g4x_signal_levels(u8 train_set)
3967 {
3968         u32 signal_levels = 0;
3969
3970         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3971         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3972         default:
3973                 signal_levels |= DP_VOLTAGE_0_4;
3974                 break;
3975         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3976                 signal_levels |= DP_VOLTAGE_0_6;
3977                 break;
3978         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3979                 signal_levels |= DP_VOLTAGE_0_8;
3980                 break;
3981         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3982                 signal_levels |= DP_VOLTAGE_1_2;
3983                 break;
3984         }
3985         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3986         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3987         default:
3988                 signal_levels |= DP_PRE_EMPHASIS_0;
3989                 break;
3990         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3991                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3992                 break;
3993         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3994                 signal_levels |= DP_PRE_EMPHASIS_6;
3995                 break;
3996         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3997                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3998                 break;
3999         }
4000         return signal_levels;
4001 }
4002
4003 /* SNB CPU eDP voltage swing and pre-emphasis control */
4004 static u32
4005 snb_cpu_edp_signal_levels(u8 train_set)
4006 {
4007         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4008                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4009         switch (signal_levels) {
4010         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4011         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4012                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4013         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4014                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4015         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4016         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4017                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4018         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4019         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4020                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4021         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4022         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4023                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4024         default:
4025                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4026                               "0x%x\n", signal_levels);
4027                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4028         }
4029 }
4030
4031 /* IVB CPU eDP voltage swing and pre-emphasis control */
4032 static u32
4033 ivb_cpu_edp_signal_levels(u8 train_set)
4034 {
4035         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4036                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4037         switch (signal_levels) {
4038         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4039                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4040         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4041                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4042         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4043                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4044
4045         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4046                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4047         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4048                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4049
4050         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4051                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4052         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4053                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4054
4055         default:
4056                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4057                               "0x%x\n", signal_levels);
4058                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4059         }
4060 }
4061
4062 void
4063 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4064 {
4065         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4066         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4067         enum port port = intel_dig_port->base.port;
4068         u32 signal_levels, mask = 0;
4069         u8 train_set = intel_dp->train_set[0];
4070
4071         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4072                 signal_levels = bxt_signal_levels(intel_dp);
4073         } else if (HAS_DDI(dev_priv)) {
4074                 signal_levels = ddi_signal_levels(intel_dp);
4075                 mask = DDI_BUF_EMP_MASK;
4076         } else if (IS_CHERRYVIEW(dev_priv)) {
4077                 signal_levels = chv_signal_levels(intel_dp);
4078         } else if (IS_VALLEYVIEW(dev_priv)) {
4079                 signal_levels = vlv_signal_levels(intel_dp);
4080         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4081                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4082                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4083         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4084                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4085                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4086         } else {
4087                 signal_levels = g4x_signal_levels(train_set);
4088                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4089         }
4090
4091         if (mask)
4092                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4093
4094         DRM_DEBUG_KMS("Using vswing level %d\n",
4095                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4096         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4097                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4098                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
4099
4100         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4101
4102         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4103         POSTING_READ(intel_dp->output_reg);
4104 }
4105
4106 void
4107 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4108                                        u8 dp_train_pat)
4109 {
4110         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4111         struct drm_i915_private *dev_priv =
4112                 to_i915(intel_dig_port->base.base.dev);
4113
4114         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4115
4116         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4117         POSTING_READ(intel_dp->output_reg);
4118 }
4119
4120 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4121 {
4122         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4123         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4124         enum port port = intel_dig_port->base.port;
4125         u32 val;
4126
4127         if (!HAS_DDI(dev_priv))
4128                 return;
4129
4130         val = I915_READ(intel_dp->regs.dp_tp_ctl);
4131         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4132         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4133         I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4134
4135         /*
4136          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4137          * reason we need to set idle transmission mode is to work around a HW
4138          * issue where we enable the pipe while not in idle link-training mode.
4139          * In this case there is requirement to wait for a minimum number of
4140          * idle patterns to be sent.
4141          */
4142         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4143                 return;
4144
4145         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4146                                   DP_TP_STATUS_IDLE_DONE, 1))
4147                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4148 }
4149
4150 static void
4151 intel_dp_link_down(struct intel_encoder *encoder,
4152                    const struct intel_crtc_state *old_crtc_state)
4153 {
4154         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4155         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4156         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4157         enum port port = encoder->port;
4158         u32 DP = intel_dp->DP;
4159
4160         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4161                 return;
4162
4163         DRM_DEBUG_KMS("\n");
4164
4165         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4166             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4167                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4168                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4169         } else {
4170                 DP &= ~DP_LINK_TRAIN_MASK;
4171                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4172         }
4173         I915_WRITE(intel_dp->output_reg, DP);
4174         POSTING_READ(intel_dp->output_reg);
4175
4176         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4177         I915_WRITE(intel_dp->output_reg, DP);
4178         POSTING_READ(intel_dp->output_reg);
4179
4180         /*
4181          * HW workaround for IBX, we need to move the port
4182          * to transcoder A after disabling it to allow the
4183          * matching HDMI port to be enabled on transcoder A.
4184          */
4185         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4186                 /*
4187                  * We get CPU/PCH FIFO underruns on the other pipe when
4188                  * doing the workaround. Sweep them under the rug.
4189                  */
4190                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4191                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4192
4193                 /* always enable with pattern 1 (as per spec) */
4194                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4195                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4196                         DP_LINK_TRAIN_PAT_1;
4197                 I915_WRITE(intel_dp->output_reg, DP);
4198                 POSTING_READ(intel_dp->output_reg);
4199
4200                 DP &= ~DP_PORT_EN;
4201                 I915_WRITE(intel_dp->output_reg, DP);
4202                 POSTING_READ(intel_dp->output_reg);
4203
4204                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4205                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4206                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4207         }
4208
4209         msleep(intel_dp->panel_power_down_delay);
4210
4211         intel_dp->DP = DP;
4212
4213         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4214                 intel_wakeref_t wakeref;
4215
4216                 with_pps_lock(intel_dp, wakeref)
4217                         intel_dp->active_pipe = INVALID_PIPE;
4218         }
4219 }
4220
4221 static void
4222 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4223 {
4224         u8 dpcd_ext[6];
4225
4226         /*
4227          * Prior to DP1.3 the bit represented by
4228          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4229          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4230          * the true capability of the panel. The only way to check is to
4231          * then compare 0000h and 2200h.
4232          */
4233         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4234               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4235                 return;
4236
4237         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4238                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4239                 DRM_ERROR("DPCD failed read at extended capabilities\n");
4240                 return;
4241         }
4242
4243         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4244                 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4245                 return;
4246         }
4247
4248         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4249                 return;
4250
4251         DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4252                       (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4253
4254         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4255 }
4256
4257 bool
4258 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4259 {
4260         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4261                              sizeof(intel_dp->dpcd)) < 0)
4262                 return false; /* aux transfer failed */
4263
4264         intel_dp_extended_receiver_capabilities(intel_dp);
4265
4266         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4267
4268         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4269 }
4270
4271 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4272 {
4273         u8 dprx = 0;
4274
4275         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4276                               &dprx) != 1)
4277                 return false;
4278         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4279 }
4280
4281 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4282 {
4283         /*
4284          * Clear the cached register set to avoid using stale values
4285          * for the sinks that do not support DSC.
4286          */
4287         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4288
4289         /* Clear fec_capable to avoid using stale values */
4290         intel_dp->fec_capable = 0;
4291
4292         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4293         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4294             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4295                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4296                                      intel_dp->dsc_dpcd,
4297                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4298                         DRM_ERROR("Failed to read DPCD register 0x%x\n",
4299                                   DP_DSC_SUPPORT);
4300
4301                 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4302                               (int)sizeof(intel_dp->dsc_dpcd),
4303                               intel_dp->dsc_dpcd);
4304
4305                 /* FEC is supported only on DP 1.4 */
4306                 if (!intel_dp_is_edp(intel_dp) &&
4307                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4308                                       &intel_dp->fec_capable) < 0)
4309                         DRM_ERROR("Failed to read FEC DPCD register\n");
4310
4311                 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4312         }
4313 }
4314
4315 static bool
4316 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4317 {
4318         struct drm_i915_private *dev_priv =
4319                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4320
4321         /* this function is meant to be called only once */
4322         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4323
4324         if (!intel_dp_read_dpcd(intel_dp))
4325                 return false;
4326
4327         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4328                          drm_dp_is_branch(intel_dp->dpcd));
4329
4330         /*
4331          * Read the eDP display control registers.
4332          *
4333          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4334          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4335          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4336          * method). The display control registers should read zero if they're
4337          * not supported anyway.
4338          */
4339         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4340                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4341                              sizeof(intel_dp->edp_dpcd))
4342                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4343                               intel_dp->edp_dpcd);
4344
4345         /*
4346          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4347          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4348          */
4349         intel_psr_init_dpcd(intel_dp);
4350
4351         /* Read the eDP 1.4+ supported link rates. */
4352         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4353                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4354                 int i;
4355
4356                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4357                                 sink_rates, sizeof(sink_rates));
4358
4359                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4360                         int val = le16_to_cpu(sink_rates[i]);
4361
4362                         if (val == 0)
4363                                 break;
4364
4365                         /* Value read multiplied by 200kHz gives the per-lane
4366                          * link rate in kHz. The source rates are, however,
4367                          * stored in terms of LS_Clk kHz. The full conversion
4368                          * back to symbols is
4369                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4370                          */
4371                         intel_dp->sink_rates[i] = (val * 200) / 10;
4372                 }
4373                 intel_dp->num_sink_rates = i;
4374         }
4375
4376         /*
4377          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4378          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4379          */
4380         if (intel_dp->num_sink_rates)
4381                 intel_dp->use_rate_select = true;
4382         else
4383                 intel_dp_set_sink_rates(intel_dp);
4384
4385         intel_dp_set_common_rates(intel_dp);
4386
4387         /* Read the eDP DSC DPCD registers */
4388         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4389                 intel_dp_get_dsc_sink_cap(intel_dp);
4390
4391         return true;
4392 }
4393
4394
4395 static bool
4396 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4397 {
4398         if (!intel_dp_read_dpcd(intel_dp))
4399                 return false;
4400
4401         /*
4402          * Don't clobber cached eDP rates. Also skip re-reading
4403          * the OUI/ID since we know it won't change.
4404          */
4405         if (!intel_dp_is_edp(intel_dp)) {
4406                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4407                                  drm_dp_is_branch(intel_dp->dpcd));
4408
4409                 intel_dp_set_sink_rates(intel_dp);
4410                 intel_dp_set_common_rates(intel_dp);
4411         }
4412
4413         /*
4414          * Some eDP panels do not set a valid value for sink count, that is why
4415          * it don't care about read it here and in intel_edp_init_dpcd().
4416          */
4417         if (!intel_dp_is_edp(intel_dp) &&
4418             !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4419                 u8 count;
4420                 ssize_t r;
4421
4422                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4423                 if (r < 1)
4424                         return false;
4425
4426                 /*
4427                  * Sink count can change between short pulse hpd hence
4428                  * a member variable in intel_dp will track any changes
4429                  * between short pulse interrupts.
4430                  */
4431                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4432
4433                 /*
4434                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4435                  * a dongle is present but no display. Unless we require to know
4436                  * if a dongle is present or not, we don't need to update
4437                  * downstream port information. So, an early return here saves
4438                  * time from performing other operations which are not required.
4439                  */
4440                 if (!intel_dp->sink_count)
4441                         return false;
4442         }
4443
4444         if (!drm_dp_is_branch(intel_dp->dpcd))
4445                 return true; /* native DP sink */
4446
4447         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4448                 return true; /* no per-port downstream info */
4449
4450         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4451                              intel_dp->downstream_ports,
4452                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4453                 return false; /* downstream port status fetch failed */
4454
4455         return true;
4456 }
4457
4458 static bool
4459 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4460 {
4461         u8 mstm_cap;
4462
4463         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4464                 return false;
4465
4466         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4467                 return false;
4468
4469         return mstm_cap & DP_MST_CAP;
4470 }
4471
4472 static bool
4473 intel_dp_can_mst(struct intel_dp *intel_dp)
4474 {
4475         return i915_modparams.enable_dp_mst &&
4476                 intel_dp->can_mst &&
4477                 intel_dp_sink_can_mst(intel_dp);
4478 }
4479
4480 static void
4481 intel_dp_configure_mst(struct intel_dp *intel_dp)
4482 {
4483         struct intel_encoder *encoder =
4484                 &dp_to_dig_port(intel_dp)->base;
4485         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4486
4487         DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4488                       encoder->base.base.id, encoder->base.name,
4489                       yesno(intel_dp->can_mst), yesno(sink_can_mst),
4490                       yesno(i915_modparams.enable_dp_mst));
4491
4492         if (!intel_dp->can_mst)
4493                 return;
4494
4495         intel_dp->is_mst = sink_can_mst &&
4496                 i915_modparams.enable_dp_mst;
4497
4498         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4499                                         intel_dp->is_mst);
4500 }
4501
4502 static bool
4503 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4504 {
4505         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4506                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4507                 DP_DPRX_ESI_LEN;
4508 }
4509
4510 bool
4511 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4512                        const struct drm_connector_state *conn_state)
4513 {
4514         /*
4515          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4516          * of Color Encoding Format and Content Color Gamut], in order to
4517          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4518          */
4519         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4520                 return true;
4521
4522         switch (conn_state->colorspace) {
4523         case DRM_MODE_COLORIMETRY_SYCC_601:
4524         case DRM_MODE_COLORIMETRY_OPYCC_601:
4525         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4526         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4527         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4528                 return true;
4529         default:
4530                 break;
4531         }
4532
4533         return false;
4534 }
4535
4536 static void
4537 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4538                        const struct intel_crtc_state *crtc_state,
4539                        const struct drm_connector_state *conn_state)
4540 {
4541         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4542         struct dp_sdp vsc_sdp = {};
4543
4544         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4545         vsc_sdp.sdp_header.HB0 = 0;
4546         vsc_sdp.sdp_header.HB1 = 0x7;
4547
4548         /*
4549          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4550          * Colorimetry Format indication.
4551          */
4552         vsc_sdp.sdp_header.HB2 = 0x5;
4553
4554         /*
4555          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4556          * Colorimetry Format indication (HB2 = 05h).
4557          */
4558         vsc_sdp.sdp_header.HB3 = 0x13;
4559
4560         /* DP 1.4a spec, Table 2-120 */
4561         switch (crtc_state->output_format) {
4562         case INTEL_OUTPUT_FORMAT_YCBCR444:
4563                 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4564                 break;
4565         case INTEL_OUTPUT_FORMAT_YCBCR420:
4566                 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4567                 break;
4568         case INTEL_OUTPUT_FORMAT_RGB:
4569         default:
4570                 /* RGB: DB16[7:4] = 0h */
4571                 break;
4572         }
4573
4574         switch (conn_state->colorspace) {
4575         case DRM_MODE_COLORIMETRY_BT709_YCC:
4576                 vsc_sdp.db[16] |= 0x1;
4577                 break;
4578         case DRM_MODE_COLORIMETRY_XVYCC_601:
4579                 vsc_sdp.db[16] |= 0x2;
4580                 break;
4581         case DRM_MODE_COLORIMETRY_XVYCC_709:
4582                 vsc_sdp.db[16] |= 0x3;
4583                 break;
4584         case DRM_MODE_COLORIMETRY_SYCC_601:
4585                 vsc_sdp.db[16] |= 0x4;
4586                 break;
4587         case DRM_MODE_COLORIMETRY_OPYCC_601:
4588                 vsc_sdp.db[16] |= 0x5;
4589                 break;
4590         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4591         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4592                 vsc_sdp.db[16] |= 0x6;
4593                 break;
4594         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4595                 vsc_sdp.db[16] |= 0x7;
4596                 break;
4597         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4598         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4599                 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4600                 break;
4601         default:
4602                 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4603
4604                 /* RGB->YCBCR color conversion uses the BT.709 color space. */
4605                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4606                         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4607                 break;
4608         }
4609
4610         /*
4611          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4612          * the following Component Bit Depth values are defined:
4613          * 001b = 8bpc.
4614          * 010b = 10bpc.
4615          * 011b = 12bpc.
4616          * 100b = 16bpc.
4617          */
4618         switch (crtc_state->pipe_bpp) {
4619         case 24: /* 8bpc */
4620                 vsc_sdp.db[17] = 0x1;
4621                 break;
4622         case 30: /* 10bpc */
4623                 vsc_sdp.db[17] = 0x2;
4624                 break;
4625         case 36: /* 12bpc */
4626                 vsc_sdp.db[17] = 0x3;
4627                 break;
4628         case 48: /* 16bpc */
4629                 vsc_sdp.db[17] = 0x4;
4630                 break;
4631         default:
4632                 MISSING_CASE(crtc_state->pipe_bpp);
4633                 break;
4634         }
4635
4636         /*
4637          * Dynamic Range (Bit 7)
4638          * 0 = VESA range, 1 = CTA range.
4639          * all YCbCr are always limited range
4640          */
4641         vsc_sdp.db[17] |= 0x80;
4642
4643         /*
4644          * Content Type (Bits 2:0)
4645          * 000b = Not defined.
4646          * 001b = Graphics.
4647          * 010b = Photo.
4648          * 011b = Video.
4649          * 100b = Game
4650          * All other values are RESERVED.
4651          * Note: See CTA-861-G for the definition and expected
4652          * processing by a stream sink for the above contect types.
4653          */
4654         vsc_sdp.db[18] = 0;
4655
4656         intel_dig_port->write_infoframe(&intel_dig_port->base,
4657                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4658 }
4659
4660 static void
4661 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4662                                           const struct intel_crtc_state *crtc_state,
4663                                           const struct drm_connector_state *conn_state)
4664 {
4665         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4666         struct dp_sdp infoframe_sdp = {};
4667         struct hdmi_drm_infoframe drm_infoframe = {};
4668         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4669         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4670         ssize_t len;
4671         int ret;
4672
4673         ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4674         if (ret) {
4675                 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4676                 return;
4677         }
4678
4679         len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4680         if (len < 0) {
4681                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4682                 return;
4683         }
4684
4685         if (len != infoframe_size) {
4686                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4687                 return;
4688         }
4689
4690         /*
4691          * Set up the infoframe sdp packet for HDR static metadata.
4692          * Prepare VSC Header for SU as per DP 1.4a spec,
4693          * Table 2-100 and Table 2-101
4694          */
4695
4696         /* Packet ID, 00h for non-Audio INFOFRAME */
4697         infoframe_sdp.sdp_header.HB0 = 0;
4698         /*
4699          * Packet Type 80h + Non-audio INFOFRAME Type value
4700          * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4701          */
4702         infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4703         /*
4704          * Least Significant Eight Bits of (Data Byte Count – 1)
4705          * infoframe_size - 1,
4706          */
4707         infoframe_sdp.sdp_header.HB2 = 0x1D;
4708         /* INFOFRAME SDP Version Number */
4709         infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4710         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4711         infoframe_sdp.db[0] = drm_infoframe.version;
4712         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4713         infoframe_sdp.db[1] = drm_infoframe.length;
4714         /*
4715          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4716          * HDMI_INFOFRAME_HEADER_SIZE
4717          */
4718         BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4719         memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4720                HDMI_DRM_INFOFRAME_SIZE);
4721
4722         /*
4723          * Size of DP infoframe sdp packet for HDR static metadata is consist of
4724          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4725          * - Two Data Blocks: 2 bytes
4726          *    CTA Header Byte2 (INFOFRAME Version Number)
4727          *    CTA Header Byte3 (Length of INFOFRAME)
4728          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4729          *
4730          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4731          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4732          * will pad rest of the size.
4733          */
4734         intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4735                                         HDMI_PACKET_TYPE_GAMUT_METADATA,
4736                                         &infoframe_sdp,
4737                                         sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4738 }
4739
4740 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4741                          const struct intel_crtc_state *crtc_state,
4742                          const struct drm_connector_state *conn_state)
4743 {
4744         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4745                 return;
4746
4747         intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4748 }
4749
4750 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4751                                   const struct intel_crtc_state *crtc_state,
4752                                   const struct drm_connector_state *conn_state)
4753 {
4754         if (!conn_state->hdr_output_metadata)
4755                 return;
4756
4757         intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4758                                                   crtc_state,
4759                                                   conn_state);
4760 }
4761
4762 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4763 {
4764         int status = 0;
4765         int test_link_rate;
4766         u8 test_lane_count, test_link_bw;
4767         /* (DP CTS 1.2)
4768          * 4.3.1.11
4769          */
4770         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4771         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4772                                    &test_lane_count);
4773
4774         if (status <= 0) {
4775                 DRM_DEBUG_KMS("Lane count read failed\n");
4776                 return DP_TEST_NAK;
4777         }
4778         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4779
4780         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4781                                    &test_link_bw);
4782         if (status <= 0) {
4783                 DRM_DEBUG_KMS("Link Rate read failed\n");
4784                 return DP_TEST_NAK;
4785         }
4786         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4787
4788         /* Validate the requested link rate and lane count */
4789         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4790                                         test_lane_count))
4791                 return DP_TEST_NAK;
4792
4793         intel_dp->compliance.test_lane_count = test_lane_count;
4794         intel_dp->compliance.test_link_rate = test_link_rate;
4795
4796         return DP_TEST_ACK;
4797 }
4798
4799 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4800 {
4801         u8 test_pattern;
4802         u8 test_misc;
4803         __be16 h_width, v_height;
4804         int status = 0;
4805
4806         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4807         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4808                                    &test_pattern);
4809         if (status <= 0) {
4810                 DRM_DEBUG_KMS("Test pattern read failed\n");
4811                 return DP_TEST_NAK;
4812         }
4813         if (test_pattern != DP_COLOR_RAMP)
4814                 return DP_TEST_NAK;
4815
4816         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4817                                   &h_width, 2);
4818         if (status <= 0) {
4819                 DRM_DEBUG_KMS("H Width read failed\n");
4820                 return DP_TEST_NAK;
4821         }
4822
4823         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4824                                   &v_height, 2);
4825         if (status <= 0) {
4826                 DRM_DEBUG_KMS("V Height read failed\n");
4827                 return DP_TEST_NAK;
4828         }
4829
4830         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4831                                    &test_misc);
4832         if (status <= 0) {
4833                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4834                 return DP_TEST_NAK;
4835         }
4836         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4837                 return DP_TEST_NAK;
4838         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4839                 return DP_TEST_NAK;
4840         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4841         case DP_TEST_BIT_DEPTH_6:
4842                 intel_dp->compliance.test_data.bpc = 6;
4843                 break;
4844         case DP_TEST_BIT_DEPTH_8:
4845                 intel_dp->compliance.test_data.bpc = 8;
4846                 break;
4847         default:
4848                 return DP_TEST_NAK;
4849         }
4850
4851         intel_dp->compliance.test_data.video_pattern = test_pattern;
4852         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4853         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4854         /* Set test active flag here so userspace doesn't interrupt things */
4855         intel_dp->compliance.test_active = 1;
4856
4857         return DP_TEST_ACK;
4858 }
4859
4860 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4861 {
4862         u8 test_result = DP_TEST_ACK;
4863         struct intel_connector *intel_connector = intel_dp->attached_connector;
4864         struct drm_connector *connector = &intel_connector->base;
4865
4866         if (intel_connector->detect_edid == NULL ||
4867             connector->edid_corrupt ||
4868             intel_dp->aux.i2c_defer_count > 6) {
4869                 /* Check EDID read for NACKs, DEFERs and corruption
4870                  * (DP CTS 1.2 Core r1.1)
4871                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4872                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4873                  *    4.2.2.6 : EDID corruption detected
4874                  * Use failsafe mode for all cases
4875                  */
4876                 if (intel_dp->aux.i2c_nack_count > 0 ||
4877                         intel_dp->aux.i2c_defer_count > 0)
4878                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4879                                       intel_dp->aux.i2c_nack_count,
4880                                       intel_dp->aux.i2c_defer_count);
4881                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4882         } else {
4883                 struct edid *block = intel_connector->detect_edid;
4884
4885                 /* We have to write the checksum
4886                  * of the last block read
4887                  */
4888                 block += intel_connector->detect_edid->extensions;
4889
4890                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4891                                        block->checksum) <= 0)
4892                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4893
4894                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4895                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4896         }
4897
4898         /* Set test active flag here so userspace doesn't interrupt things */
4899         intel_dp->compliance.test_active = 1;
4900
4901         return test_result;
4902 }
4903
4904 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4905 {
4906         u8 test_result = DP_TEST_NAK;
4907         return test_result;
4908 }
4909
4910 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4911 {
4912         u8 response = DP_TEST_NAK;
4913         u8 request = 0;
4914         int status;
4915
4916         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4917         if (status <= 0) {
4918                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4919                 goto update_status;
4920         }
4921
4922         switch (request) {
4923         case DP_TEST_LINK_TRAINING:
4924                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4925                 response = intel_dp_autotest_link_training(intel_dp);
4926                 break;
4927         case DP_TEST_LINK_VIDEO_PATTERN:
4928                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4929                 response = intel_dp_autotest_video_pattern(intel_dp);
4930                 break;
4931         case DP_TEST_LINK_EDID_READ:
4932                 DRM_DEBUG_KMS("EDID test requested\n");
4933                 response = intel_dp_autotest_edid(intel_dp);
4934                 break;
4935         case DP_TEST_LINK_PHY_TEST_PATTERN:
4936                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4937                 response = intel_dp_autotest_phy_pattern(intel_dp);
4938                 break;
4939         default:
4940                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4941                 break;
4942         }
4943
4944         if (response & DP_TEST_ACK)
4945                 intel_dp->compliance.test_type = request;
4946
4947 update_status:
4948         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4949         if (status <= 0)
4950                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4951 }
4952
4953 static int
4954 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4955 {
4956         bool bret;
4957
4958         if (intel_dp->is_mst) {
4959                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4960                 int ret = 0;
4961                 int retry;
4962                 bool handled;
4963
4964                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4965                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4966 go_again:
4967                 if (bret == true) {
4968
4969                         /* check link status - esi[10] = 0x200c */
4970                         if (intel_dp->active_mst_links > 0 &&
4971                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4972                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4973                                 intel_dp_start_link_train(intel_dp);
4974                                 intel_dp_stop_link_train(intel_dp);
4975                         }
4976
4977                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4978                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4979
4980                         if (handled) {
4981                                 for (retry = 0; retry < 3; retry++) {
4982                                         int wret;
4983                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4984                                                                  DP_SINK_COUNT_ESI+1,
4985                                                                  &esi[1], 3);
4986                                         if (wret == 3) {
4987                                                 break;
4988                                         }
4989                                 }
4990
4991                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4992                                 if (bret == true) {
4993                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4994                                         goto go_again;
4995                                 }
4996                         } else
4997                                 ret = 0;
4998
4999                         return ret;
5000                 } else {
5001                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5002                         intel_dp->is_mst = false;
5003                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5004                                                         intel_dp->is_mst);
5005                 }
5006         }
5007         return -EINVAL;
5008 }
5009
5010 static bool
5011 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5012 {
5013         u8 link_status[DP_LINK_STATUS_SIZE];
5014
5015         if (!intel_dp->link_trained)
5016                 return false;
5017
5018         /*
5019          * While PSR source HW is enabled, it will control main-link sending
5020          * frames, enabling and disabling it so trying to do a retrain will fail
5021          * as the link would or not be on or it could mix training patterns
5022          * and frame data at the same time causing retrain to fail.
5023          * Also when exiting PSR, HW will retrain the link anyways fixing
5024          * any link status error.
5025          */
5026         if (intel_psr_enabled(intel_dp))
5027                 return false;
5028
5029         if (!intel_dp_get_link_status(intel_dp, link_status))
5030                 return false;
5031
5032         /*
5033          * Validate the cached values of intel_dp->link_rate and
5034          * intel_dp->lane_count before attempting to retrain.
5035          */
5036         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5037                                         intel_dp->lane_count))
5038                 return false;
5039
5040         /* Retrain if Channel EQ or CR not ok */
5041         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5042 }
5043
5044 int intel_dp_retrain_link(struct intel_encoder *encoder,
5045                           struct drm_modeset_acquire_ctx *ctx)
5046 {
5047         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5048         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
5049         struct intel_connector *connector = intel_dp->attached_connector;
5050         struct drm_connector_state *conn_state;
5051         struct intel_crtc_state *crtc_state;
5052         struct intel_crtc *crtc;
5053         int ret;
5054
5055         /* FIXME handle the MST connectors as well */
5056
5057         if (!connector || connector->base.status != connector_status_connected)
5058                 return 0;
5059
5060         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5061                                ctx);
5062         if (ret)
5063                 return ret;
5064
5065         conn_state = connector->base.state;
5066
5067         crtc = to_intel_crtc(conn_state->crtc);
5068         if (!crtc)
5069                 return 0;
5070
5071         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5072         if (ret)
5073                 return ret;
5074
5075         crtc_state = to_intel_crtc_state(crtc->base.state);
5076
5077         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5078
5079         if (!crtc_state->base.active)
5080                 return 0;
5081
5082         if (conn_state->commit &&
5083             !try_wait_for_completion(&conn_state->commit->hw_done))
5084                 return 0;
5085
5086         if (!intel_dp_needs_link_retrain(intel_dp))
5087                 return 0;
5088
5089         /* Suppress underruns caused by re-training */
5090         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5091         if (crtc_state->has_pch_encoder)
5092                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5093                                                       intel_crtc_pch_transcoder(crtc), false);
5094
5095         intel_dp_start_link_train(intel_dp);
5096         intel_dp_stop_link_train(intel_dp);
5097
5098         /* Keep underrun reporting disabled until things are stable */
5099         intel_wait_for_vblank(dev_priv, crtc->pipe);
5100
5101         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5102         if (crtc_state->has_pch_encoder)
5103                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5104                                                       intel_crtc_pch_transcoder(crtc), true);
5105
5106         return 0;
5107 }
5108
5109 /*
5110  * If display is now connected check links status,
5111  * there has been known issues of link loss triggering
5112  * long pulse.
5113  *
5114  * Some sinks (eg. ASUS PB287Q) seem to perform some
5115  * weird HPD ping pong during modesets. So we can apparently
5116  * end up with HPD going low during a modeset, and then
5117  * going back up soon after. And once that happens we must
5118  * retrain the link to get a picture. That's in case no
5119  * userspace component reacted to intermittent HPD dip.
5120  */
5121 static enum intel_hotplug_state
5122 intel_dp_hotplug(struct intel_encoder *encoder,
5123                  struct intel_connector *connector,
5124                  bool irq_received)
5125 {
5126         struct drm_modeset_acquire_ctx ctx;
5127         enum intel_hotplug_state state;
5128         int ret;
5129
5130         state = intel_encoder_hotplug(encoder, connector, irq_received);
5131
5132         drm_modeset_acquire_init(&ctx, 0);
5133
5134         for (;;) {
5135                 ret = intel_dp_retrain_link(encoder, &ctx);
5136
5137                 if (ret == -EDEADLK) {
5138                         drm_modeset_backoff(&ctx);
5139                         continue;
5140                 }
5141
5142                 break;
5143         }
5144
5145         drm_modeset_drop_locks(&ctx);
5146         drm_modeset_acquire_fini(&ctx);
5147         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5148
5149         /*
5150          * Keeping it consistent with intel_ddi_hotplug() and
5151          * intel_hdmi_hotplug().
5152          */
5153         if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5154                 state = INTEL_HOTPLUG_RETRY;
5155
5156         return state;
5157 }
5158
5159 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5160 {
5161         u8 val;
5162
5163         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5164                 return;
5165
5166         if (drm_dp_dpcd_readb(&intel_dp->aux,
5167                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5168                 return;
5169
5170         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5171
5172         if (val & DP_AUTOMATED_TEST_REQUEST)
5173                 intel_dp_handle_test_request(intel_dp);
5174
5175         if (val & DP_CP_IRQ)
5176                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5177
5178         if (val & DP_SINK_SPECIFIC_IRQ)
5179                 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5180 }
5181
5182 /*
5183  * According to DP spec
5184  * 5.1.2:
5185  *  1. Read DPCD
5186  *  2. Configure link according to Receiver Capabilities
5187  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5188  *  4. Check link status on receipt of hot-plug interrupt
5189  *
5190  * intel_dp_short_pulse -  handles short pulse interrupts
5191  * when full detection is not required.
5192  * Returns %true if short pulse is handled and full detection
5193  * is NOT required and %false otherwise.
5194  */
5195 static bool
5196 intel_dp_short_pulse(struct intel_dp *intel_dp)
5197 {
5198         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5199         u8 old_sink_count = intel_dp->sink_count;
5200         bool ret;
5201
5202         /*
5203          * Clearing compliance test variables to allow capturing
5204          * of values for next automated test request.
5205          */
5206         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5207
5208         /*
5209          * Now read the DPCD to see if it's actually running
5210          * If the current value of sink count doesn't match with
5211          * the value that was stored earlier or dpcd read failed
5212          * we need to do full detection
5213          */
5214         ret = intel_dp_get_dpcd(intel_dp);
5215
5216         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5217                 /* No need to proceed if we are going to do full detect */
5218                 return false;
5219         }
5220
5221         intel_dp_check_service_irq(intel_dp);
5222
5223         /* Handle CEC interrupts, if any */
5224         drm_dp_cec_irq(&intel_dp->aux);
5225
5226         /* defer to the hotplug work for link retraining if needed */
5227         if (intel_dp_needs_link_retrain(intel_dp))
5228                 return false;
5229
5230         intel_psr_short_pulse(intel_dp);
5231
5232         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5233                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5234                 /* Send a Hotplug Uevent to userspace to start modeset */
5235                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5236         }
5237
5238         return true;
5239 }
5240
5241 /* XXX this is probably wrong for multiple downstream ports */
5242 static enum drm_connector_status
5243 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5244 {
5245         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5246         u8 *dpcd = intel_dp->dpcd;
5247         u8 type;
5248
5249         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5250                 return connector_status_connected;
5251
5252         if (lspcon->active)
5253                 lspcon_resume(lspcon);
5254
5255         if (!intel_dp_get_dpcd(intel_dp))
5256                 return connector_status_disconnected;
5257
5258         /* if there's no downstream port, we're done */
5259         if (!drm_dp_is_branch(dpcd))
5260                 return connector_status_connected;
5261
5262         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5263         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5264             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5265
5266                 return intel_dp->sink_count ?
5267                 connector_status_connected : connector_status_disconnected;
5268         }
5269
5270         if (intel_dp_can_mst(intel_dp))
5271                 return connector_status_connected;
5272
5273         /* If no HPD, poke DDC gently */
5274         if (drm_probe_ddc(&intel_dp->aux.ddc))
5275                 return connector_status_connected;
5276
5277         /* Well we tried, say unknown for unreliable port types */
5278         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5279                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5280                 if (type == DP_DS_PORT_TYPE_VGA ||
5281                     type == DP_DS_PORT_TYPE_NON_EDID)
5282                         return connector_status_unknown;
5283         } else {
5284                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5285                         DP_DWN_STRM_PORT_TYPE_MASK;
5286                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5287                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5288                         return connector_status_unknown;
5289         }
5290
5291         /* Anything else is out of spec, warn and ignore */
5292         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5293         return connector_status_disconnected;
5294 }
5295
5296 static enum drm_connector_status
5297 edp_detect(struct intel_dp *intel_dp)
5298 {
5299         return connector_status_connected;
5300 }
5301
5302 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5303 {
5304         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5305         u32 bit;
5306
5307         switch (encoder->hpd_pin) {
5308         case HPD_PORT_B:
5309                 bit = SDE_PORTB_HOTPLUG;
5310                 break;
5311         case HPD_PORT_C:
5312                 bit = SDE_PORTC_HOTPLUG;
5313                 break;
5314         case HPD_PORT_D:
5315                 bit = SDE_PORTD_HOTPLUG;
5316                 break;
5317         default:
5318                 MISSING_CASE(encoder->hpd_pin);
5319                 return false;
5320         }
5321
5322         return I915_READ(SDEISR) & bit;
5323 }
5324
5325 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5326 {
5327         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5328         u32 bit;
5329
5330         switch (encoder->hpd_pin) {
5331         case HPD_PORT_B:
5332                 bit = SDE_PORTB_HOTPLUG_CPT;
5333                 break;
5334         case HPD_PORT_C:
5335                 bit = SDE_PORTC_HOTPLUG_CPT;
5336                 break;
5337         case HPD_PORT_D:
5338                 bit = SDE_PORTD_HOTPLUG_CPT;
5339                 break;
5340         default:
5341                 MISSING_CASE(encoder->hpd_pin);
5342                 return false;
5343         }
5344
5345         return I915_READ(SDEISR) & bit;
5346 }
5347
5348 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5349 {
5350         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5351         u32 bit;
5352
5353         switch (encoder->hpd_pin) {
5354         case HPD_PORT_A:
5355                 bit = SDE_PORTA_HOTPLUG_SPT;
5356                 break;
5357         case HPD_PORT_E:
5358                 bit = SDE_PORTE_HOTPLUG_SPT;
5359                 break;
5360         default:
5361                 return cpt_digital_port_connected(encoder);
5362         }
5363
5364         return I915_READ(SDEISR) & bit;
5365 }
5366
5367 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5368 {
5369         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5370         u32 bit;
5371
5372         switch (encoder->hpd_pin) {
5373         case HPD_PORT_B:
5374                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5375                 break;
5376         case HPD_PORT_C:
5377                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5378                 break;
5379         case HPD_PORT_D:
5380                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5381                 break;
5382         default:
5383                 MISSING_CASE(encoder->hpd_pin);
5384                 return false;
5385         }
5386
5387         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5388 }
5389
5390 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5391 {
5392         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5393         u32 bit;
5394
5395         switch (encoder->hpd_pin) {
5396         case HPD_PORT_B:
5397                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5398                 break;
5399         case HPD_PORT_C:
5400                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5401                 break;
5402         case HPD_PORT_D:
5403                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5404                 break;
5405         default:
5406                 MISSING_CASE(encoder->hpd_pin);
5407                 return false;
5408         }
5409
5410         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5411 }
5412
5413 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5414 {
5415         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5416
5417         if (encoder->hpd_pin == HPD_PORT_A)
5418                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5419         else
5420                 return ibx_digital_port_connected(encoder);
5421 }
5422
5423 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5424 {
5425         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5426
5427         if (encoder->hpd_pin == HPD_PORT_A)
5428                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5429         else
5430                 return cpt_digital_port_connected(encoder);
5431 }
5432
5433 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5434 {
5435         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5436
5437         if (encoder->hpd_pin == HPD_PORT_A)
5438                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5439         else
5440                 return cpt_digital_port_connected(encoder);
5441 }
5442
5443 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5444 {
5445         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5446
5447         if (encoder->hpd_pin == HPD_PORT_A)
5448                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5449         else
5450                 return cpt_digital_port_connected(encoder);
5451 }
5452
5453 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5454 {
5455         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5456         u32 bit;
5457
5458         switch (encoder->hpd_pin) {
5459         case HPD_PORT_A:
5460                 bit = BXT_DE_PORT_HP_DDIA;
5461                 break;
5462         case HPD_PORT_B:
5463                 bit = BXT_DE_PORT_HP_DDIB;
5464                 break;
5465         case HPD_PORT_C:
5466                 bit = BXT_DE_PORT_HP_DDIC;
5467                 break;
5468         default:
5469                 MISSING_CASE(encoder->hpd_pin);
5470                 return false;
5471         }
5472
5473         return I915_READ(GEN8_DE_PORT_ISR) & bit;
5474 }
5475
5476 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5477                                       enum phy phy)
5478 {
5479         if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5480                 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5481
5482         return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5483 }
5484
5485 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5486 {
5487         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5488         struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5489         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5490
5491         if (intel_phy_is_combo(dev_priv, phy))
5492                 return intel_combo_phy_connected(dev_priv, phy);
5493         else if (intel_phy_is_tc(dev_priv, phy))
5494                 return intel_tc_port_connected(dig_port);
5495         else
5496                 MISSING_CASE(encoder->hpd_pin);
5497
5498         return false;
5499 }
5500
5501 /*
5502  * intel_digital_port_connected - is the specified port connected?
5503  * @encoder: intel_encoder
5504  *
5505  * In cases where there's a connector physically connected but it can't be used
5506  * by our hardware we also return false, since the rest of the driver should
5507  * pretty much treat the port as disconnected. This is relevant for type-C
5508  * (starting on ICL) where there's ownership involved.
5509  *
5510  * Return %true if port is connected, %false otherwise.
5511  */
5512 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5513 {
5514         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5515
5516         if (HAS_GMCH(dev_priv)) {
5517                 if (IS_GM45(dev_priv))
5518                         return gm45_digital_port_connected(encoder);
5519                 else
5520                         return g4x_digital_port_connected(encoder);
5521         }
5522
5523         if (INTEL_GEN(dev_priv) >= 11)
5524                 return icl_digital_port_connected(encoder);
5525         else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5526                 return spt_digital_port_connected(encoder);
5527         else if (IS_GEN9_LP(dev_priv))
5528                 return bxt_digital_port_connected(encoder);
5529         else if (IS_GEN(dev_priv, 8))
5530                 return bdw_digital_port_connected(encoder);
5531         else if (IS_GEN(dev_priv, 7))
5532                 return ivb_digital_port_connected(encoder);
5533         else if (IS_GEN(dev_priv, 6))
5534                 return snb_digital_port_connected(encoder);
5535         else if (IS_GEN(dev_priv, 5))
5536                 return ilk_digital_port_connected(encoder);
5537
5538         MISSING_CASE(INTEL_GEN(dev_priv));
5539         return false;
5540 }
5541
5542 bool intel_digital_port_connected(struct intel_encoder *encoder)
5543 {
5544         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5545         bool is_connected = false;
5546         intel_wakeref_t wakeref;
5547
5548         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5549                 is_connected = __intel_digital_port_connected(encoder);
5550
5551         return is_connected;
5552 }
5553
5554 static struct edid *
5555 intel_dp_get_edid(struct intel_dp *intel_dp)
5556 {
5557         struct intel_connector *intel_connector = intel_dp->attached_connector;
5558
5559         /* use cached edid if we have one */
5560         if (intel_connector->edid) {
5561                 /* invalid edid */
5562                 if (IS_ERR(intel_connector->edid))
5563                         return NULL;
5564
5565                 return drm_edid_duplicate(intel_connector->edid);
5566         } else
5567                 return drm_get_edid(&intel_connector->base,
5568                                     &intel_dp->aux.ddc);
5569 }
5570
5571 static void
5572 intel_dp_set_edid(struct intel_dp *intel_dp)
5573 {
5574         struct intel_connector *intel_connector = intel_dp->attached_connector;
5575         struct edid *edid;
5576
5577         intel_dp_unset_edid(intel_dp);
5578         edid = intel_dp_get_edid(intel_dp);
5579         intel_connector->detect_edid = edid;
5580
5581         intel_dp->has_audio = drm_detect_monitor_audio(edid);
5582         drm_dp_cec_set_edid(&intel_dp->aux, edid);
5583 }
5584
5585 static void
5586 intel_dp_unset_edid(struct intel_dp *intel_dp)
5587 {
5588         struct intel_connector *intel_connector = intel_dp->attached_connector;
5589
5590         drm_dp_cec_unset_edid(&intel_dp->aux);
5591         kfree(intel_connector->detect_edid);
5592         intel_connector->detect_edid = NULL;
5593
5594         intel_dp->has_audio = false;
5595 }
5596
5597 static int
5598 intel_dp_detect(struct drm_connector *connector,
5599                 struct drm_modeset_acquire_ctx *ctx,
5600                 bool force)
5601 {
5602         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5603         struct intel_dp *intel_dp = intel_attached_dp(connector);
5604         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5605         struct intel_encoder *encoder = &dig_port->base;
5606         enum drm_connector_status status;
5607
5608         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5609                       connector->base.id, connector->name);
5610         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5611
5612         /* Can't disconnect eDP */
5613         if (intel_dp_is_edp(intel_dp))
5614                 status = edp_detect(intel_dp);
5615         else if (intel_digital_port_connected(encoder))
5616                 status = intel_dp_detect_dpcd(intel_dp);
5617         else
5618                 status = connector_status_disconnected;
5619
5620         if (status == connector_status_disconnected) {
5621                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5622                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5623
5624                 if (intel_dp->is_mst) {
5625                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5626                                       intel_dp->is_mst,
5627                                       intel_dp->mst_mgr.mst_state);
5628                         intel_dp->is_mst = false;
5629                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5630                                                         intel_dp->is_mst);
5631                 }
5632
5633                 goto out;
5634         }
5635
5636         if (intel_dp->reset_link_params) {
5637                 /* Initial max link lane count */
5638                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5639
5640                 /* Initial max link rate */
5641                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5642
5643                 intel_dp->reset_link_params = false;
5644         }
5645
5646         intel_dp_print_rates(intel_dp);
5647
5648         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5649         if (INTEL_GEN(dev_priv) >= 11)
5650                 intel_dp_get_dsc_sink_cap(intel_dp);
5651
5652         intel_dp_configure_mst(intel_dp);
5653
5654         if (intel_dp->is_mst) {
5655                 /*
5656                  * If we are in MST mode then this connector
5657                  * won't appear connected or have anything
5658                  * with EDID on it
5659                  */
5660                 status = connector_status_disconnected;
5661                 goto out;
5662         }
5663
5664         /*
5665          * Some external monitors do not signal loss of link synchronization
5666          * with an IRQ_HPD, so force a link status check.
5667          */
5668         if (!intel_dp_is_edp(intel_dp)) {
5669                 int ret;
5670
5671                 ret = intel_dp_retrain_link(encoder, ctx);
5672                 if (ret)
5673                         return ret;
5674         }
5675
5676         /*
5677          * Clearing NACK and defer counts to get their exact values
5678          * while reading EDID which are required by Compliance tests
5679          * 4.2.2.4 and 4.2.2.5
5680          */
5681         intel_dp->aux.i2c_nack_count = 0;
5682         intel_dp->aux.i2c_defer_count = 0;
5683
5684         intel_dp_set_edid(intel_dp);
5685         if (intel_dp_is_edp(intel_dp) ||
5686             to_intel_connector(connector)->detect_edid)
5687                 status = connector_status_connected;
5688
5689         intel_dp_check_service_irq(intel_dp);
5690
5691 out:
5692         if (status != connector_status_connected && !intel_dp->is_mst)
5693                 intel_dp_unset_edid(intel_dp);
5694
5695         /*
5696          * Make sure the refs for power wells enabled during detect are
5697          * dropped to avoid a new detect cycle triggered by HPD polling.
5698          */
5699         intel_display_power_flush_work(dev_priv);
5700
5701         return status;
5702 }
5703
5704 static void
5705 intel_dp_force(struct drm_connector *connector)
5706 {
5707         struct intel_dp *intel_dp = intel_attached_dp(connector);
5708         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5709         struct intel_encoder *intel_encoder = &dig_port->base;
5710         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5711         enum intel_display_power_domain aux_domain =
5712                 intel_aux_power_domain(dig_port);
5713         intel_wakeref_t wakeref;
5714
5715         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5716                       connector->base.id, connector->name);
5717         intel_dp_unset_edid(intel_dp);
5718
5719         if (connector->status != connector_status_connected)
5720                 return;
5721
5722         wakeref = intel_display_power_get(dev_priv, aux_domain);
5723
5724         intel_dp_set_edid(intel_dp);
5725
5726         intel_display_power_put(dev_priv, aux_domain, wakeref);
5727 }
5728
5729 static int intel_dp_get_modes(struct drm_connector *connector)
5730 {
5731         struct intel_connector *intel_connector = to_intel_connector(connector);
5732         struct edid *edid;
5733
5734         edid = intel_connector->detect_edid;
5735         if (edid) {
5736                 int ret = intel_connector_update_modes(connector, edid);
5737                 if (ret)
5738                         return ret;
5739         }
5740
5741         /* if eDP has no EDID, fall back to fixed mode */
5742         if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5743             intel_connector->panel.fixed_mode) {
5744                 struct drm_display_mode *mode;
5745
5746                 mode = drm_mode_duplicate(connector->dev,
5747                                           intel_connector->panel.fixed_mode);
5748                 if (mode) {
5749                         drm_mode_probed_add(connector, mode);
5750                         return 1;
5751                 }
5752         }
5753
5754         return 0;
5755 }
5756
5757 static int
5758 intel_dp_connector_register(struct drm_connector *connector)
5759 {
5760         struct intel_dp *intel_dp = intel_attached_dp(connector);
5761         int ret;
5762
5763         ret = intel_connector_register(connector);
5764         if (ret)
5765                 return ret;
5766
5767         i915_debugfs_connector_add(connector);
5768
5769         DRM_DEBUG_KMS("registering %s bus for %s\n",
5770                       intel_dp->aux.name, connector->kdev->kobj.name);
5771
5772         intel_dp->aux.dev = connector->kdev;
5773         ret = drm_dp_aux_register(&intel_dp->aux);
5774         if (!ret)
5775                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
5776         return ret;
5777 }
5778
5779 static void
5780 intel_dp_connector_unregister(struct drm_connector *connector)
5781 {
5782         struct intel_dp *intel_dp = intel_attached_dp(connector);
5783
5784         drm_dp_cec_unregister_connector(&intel_dp->aux);
5785         drm_dp_aux_unregister(&intel_dp->aux);
5786         intel_connector_unregister(connector);
5787 }
5788
5789 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5790 {
5791         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5792         struct intel_dp *intel_dp = &intel_dig_port->dp;
5793
5794         intel_dp_mst_encoder_cleanup(intel_dig_port);
5795         if (intel_dp_is_edp(intel_dp)) {
5796                 intel_wakeref_t wakeref;
5797
5798                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5799                 /*
5800                  * vdd might still be enabled do to the delayed vdd off.
5801                  * Make sure vdd is actually turned off here.
5802                  */
5803                 with_pps_lock(intel_dp, wakeref)
5804                         edp_panel_vdd_off_sync(intel_dp);
5805
5806                 if (intel_dp->edp_notifier.notifier_call) {
5807                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5808                         intel_dp->edp_notifier.notifier_call = NULL;
5809                 }
5810         }
5811
5812         intel_dp_aux_fini(intel_dp);
5813 }
5814
5815 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5816 {
5817         intel_dp_encoder_flush_work(encoder);
5818
5819         drm_encoder_cleanup(encoder);
5820         kfree(enc_to_dig_port(encoder));
5821 }
5822
5823 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5824 {
5825         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5826         intel_wakeref_t wakeref;
5827
5828         if (!intel_dp_is_edp(intel_dp))
5829                 return;
5830
5831         /*
5832          * vdd might still be enabled do to the delayed vdd off.
5833          * Make sure vdd is actually turned off here.
5834          */
5835         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5836         with_pps_lock(intel_dp, wakeref)
5837                 edp_panel_vdd_off_sync(intel_dp);
5838 }
5839
5840 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5841 {
5842         long ret;
5843
5844 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5845         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5846                                                msecs_to_jiffies(timeout));
5847
5848         if (!ret)
5849                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5850 }
5851
5852 static
5853 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5854                                 u8 *an)
5855 {
5856         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5857         static const struct drm_dp_aux_msg msg = {
5858                 .request = DP_AUX_NATIVE_WRITE,
5859                 .address = DP_AUX_HDCP_AKSV,
5860                 .size = DRM_HDCP_KSV_LEN,
5861         };
5862         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5863         ssize_t dpcd_ret;
5864         int ret;
5865
5866         /* Output An first, that's easy */
5867         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5868                                      an, DRM_HDCP_AN_LEN);
5869         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5870                 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5871                               dpcd_ret);
5872                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5873         }
5874
5875         /*
5876          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5877          * order to get it on the wire, we need to create the AUX header as if
5878          * we were writing the data, and then tickle the hardware to output the
5879          * data once the header is sent out.
5880          */
5881         intel_dp_aux_header(txbuf, &msg);
5882
5883         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5884                                 rxbuf, sizeof(rxbuf),
5885                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5886         if (ret < 0) {
5887                 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5888                 return ret;
5889         } else if (ret == 0) {
5890                 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5891                 return -EIO;
5892         }
5893
5894         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5895         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5896                 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5897                               reply);
5898                 return -EIO;
5899         }
5900         return 0;
5901 }
5902
5903 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5904                                    u8 *bksv)
5905 {
5906         ssize_t ret;
5907         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5908                                DRM_HDCP_KSV_LEN);
5909         if (ret != DRM_HDCP_KSV_LEN) {
5910                 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5911                 return ret >= 0 ? -EIO : ret;
5912         }
5913         return 0;
5914 }
5915
5916 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5917                                       u8 *bstatus)
5918 {
5919         ssize_t ret;
5920         /*
5921          * For some reason the HDMI and DP HDCP specs call this register
5922          * definition by different names. In the HDMI spec, it's called BSTATUS,
5923          * but in DP it's called BINFO.
5924          */
5925         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5926                                bstatus, DRM_HDCP_BSTATUS_LEN);
5927         if (ret != DRM_HDCP_BSTATUS_LEN) {
5928                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5929                 return ret >= 0 ? -EIO : ret;
5930         }
5931         return 0;
5932 }
5933
5934 static
5935 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5936                              u8 *bcaps)
5937 {
5938         ssize_t ret;
5939
5940         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5941                                bcaps, 1);
5942         if (ret != 1) {
5943                 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5944                 return ret >= 0 ? -EIO : ret;
5945         }
5946
5947         return 0;
5948 }
5949
5950 static
5951 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5952                                    bool *repeater_present)
5953 {
5954         ssize_t ret;
5955         u8 bcaps;
5956
5957         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5958         if (ret)
5959                 return ret;
5960
5961         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5962         return 0;
5963 }
5964
5965 static
5966 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5967                                 u8 *ri_prime)
5968 {
5969         ssize_t ret;
5970         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5971                                ri_prime, DRM_HDCP_RI_LEN);
5972         if (ret != DRM_HDCP_RI_LEN) {
5973                 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5974                 return ret >= 0 ? -EIO : ret;
5975         }
5976         return 0;
5977 }
5978
5979 static
5980 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5981                                  bool *ksv_ready)
5982 {
5983         ssize_t ret;
5984         u8 bstatus;
5985         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5986                                &bstatus, 1);
5987         if (ret != 1) {
5988                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5989                 return ret >= 0 ? -EIO : ret;
5990         }
5991         *ksv_ready = bstatus & DP_BSTATUS_READY;
5992         return 0;
5993 }
5994
5995 static
5996 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5997                                 int num_downstream, u8 *ksv_fifo)
5998 {
5999         ssize_t ret;
6000         int i;
6001
6002         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6003         for (i = 0; i < num_downstream; i += 3) {
6004                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6005                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6006                                        DP_AUX_HDCP_KSV_FIFO,
6007                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6008                                        len);
6009                 if (ret != len) {
6010                         DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6011                                       i, ret);
6012                         return ret >= 0 ? -EIO : ret;
6013                 }
6014         }
6015         return 0;
6016 }
6017
6018 static
6019 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6020                                     int i, u32 *part)
6021 {
6022         ssize_t ret;
6023
6024         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6025                 return -EINVAL;
6026
6027         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6028                                DP_AUX_HDCP_V_PRIME(i), part,
6029                                DRM_HDCP_V_PRIME_PART_LEN);
6030         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6031                 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6032                 return ret >= 0 ? -EIO : ret;
6033         }
6034         return 0;
6035 }
6036
6037 static
6038 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6039                                     bool enable)
6040 {
6041         /* Not used for single stream DisplayPort setups */
6042         return 0;
6043 }
6044
6045 static
6046 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6047 {
6048         ssize_t ret;
6049         u8 bstatus;
6050
6051         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6052                                &bstatus, 1);
6053         if (ret != 1) {
6054                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6055                 return false;
6056         }
6057
6058         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6059 }
6060
6061 static
6062 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6063                           bool *hdcp_capable)
6064 {
6065         ssize_t ret;
6066         u8 bcaps;
6067
6068         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6069         if (ret)
6070                 return ret;
6071
6072         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6073         return 0;
6074 }
6075
6076 struct hdcp2_dp_errata_stream_type {
6077         u8      msg_id;
6078         u8      stream_type;
6079 } __packed;
6080
6081 struct hdcp2_dp_msg_data {
6082         u8 msg_id;
6083         u32 offset;
6084         bool msg_detectable;
6085         u32 timeout;
6086         u32 timeout2; /* Added for non_paired situation */
6087 };
6088
6089 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6090         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6091         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6092           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6093         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6094           false, 0, 0 },
6095         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6096           false, 0, 0 },
6097         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6098           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6099           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6100         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6101           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6102           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6103         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6104         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6105           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6106         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6107           0, 0 },
6108         { HDCP_2_2_REP_SEND_RECVID_LIST,
6109           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6110           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6111         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6112           0, 0 },
6113         { HDCP_2_2_REP_STREAM_MANAGE,
6114           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6115           0, 0 },
6116         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6117           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6118 /* local define to shovel this through the write_2_2 interface */
6119 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6120         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6121           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6122           0, 0 },
6123 };
6124
6125 static inline
6126 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6127                                   u8 *rx_status)
6128 {
6129         ssize_t ret;
6130
6131         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6132                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6133                                HDCP_2_2_DP_RXSTATUS_LEN);
6134         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6135                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6136                 return ret >= 0 ? -EIO : ret;
6137         }
6138
6139         return 0;
6140 }
6141
6142 static
6143 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6144                                   u8 msg_id, bool *msg_ready)
6145 {
6146         u8 rx_status;
6147         int ret;
6148
6149         *msg_ready = false;
6150         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6151         if (ret < 0)
6152                 return ret;
6153
6154         switch (msg_id) {
6155         case HDCP_2_2_AKE_SEND_HPRIME:
6156                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6157                         *msg_ready = true;
6158                 break;
6159         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6160                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6161                         *msg_ready = true;
6162                 break;
6163         case HDCP_2_2_REP_SEND_RECVID_LIST:
6164                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6165                         *msg_ready = true;
6166                 break;
6167         default:
6168                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6169                 return -EINVAL;
6170         }
6171
6172         return 0;
6173 }
6174
6175 static ssize_t
6176 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6177                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6178 {
6179         struct intel_dp *dp = &intel_dig_port->dp;
6180         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6181         u8 msg_id = hdcp2_msg_data->msg_id;
6182         int ret, timeout;
6183         bool msg_ready = false;
6184
6185         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6186                 timeout = hdcp2_msg_data->timeout2;
6187         else
6188                 timeout = hdcp2_msg_data->timeout;
6189
6190         /*
6191          * There is no way to detect the CERT, LPRIME and STREAM_READY
6192          * availability. So Wait for timeout and read the msg.
6193          */
6194         if (!hdcp2_msg_data->msg_detectable) {
6195                 mdelay(timeout);
6196                 ret = 0;
6197         } else {
6198                 /*
6199                  * As we want to check the msg availability at timeout, Ignoring
6200                  * the timeout at wait for CP_IRQ.
6201                  */
6202                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6203                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6204                                                     msg_id, &msg_ready);
6205                 if (!msg_ready)
6206                         ret = -ETIMEDOUT;
6207         }
6208
6209         if (ret)
6210                 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6211                               hdcp2_msg_data->msg_id, ret, timeout);
6212
6213         return ret;
6214 }
6215
6216 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6217 {
6218         int i;
6219
6220         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6221                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6222                         return &hdcp2_dp_msg_data[i];
6223
6224         return NULL;
6225 }
6226
6227 static
6228 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6229                              void *buf, size_t size)
6230 {
6231         struct intel_dp *dp = &intel_dig_port->dp;
6232         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6233         unsigned int offset;
6234         u8 *byte = buf;
6235         ssize_t ret, bytes_to_write, len;
6236         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6237
6238         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6239         if (!hdcp2_msg_data)
6240                 return -EINVAL;
6241
6242         offset = hdcp2_msg_data->offset;
6243
6244         /* No msg_id in DP HDCP2.2 msgs */
6245         bytes_to_write = size - 1;
6246         byte++;
6247
6248         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6249
6250         while (bytes_to_write) {
6251                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6252                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6253
6254                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6255                                         offset, (void *)byte, len);
6256                 if (ret < 0)
6257                         return ret;
6258
6259                 bytes_to_write -= ret;
6260                 byte += ret;
6261                 offset += ret;
6262         }
6263
6264         return size;
6265 }
6266
6267 static
6268 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6269 {
6270         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6271         u32 dev_cnt;
6272         ssize_t ret;
6273
6274         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6275                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6276                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6277         if (ret != HDCP_2_2_RXINFO_LEN)
6278                 return ret >= 0 ? -EIO : ret;
6279
6280         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6281                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6282
6283         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6284                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6285
6286         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6287                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6288                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6289
6290         return ret;
6291 }
6292
6293 static
6294 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6295                             u8 msg_id, void *buf, size_t size)
6296 {
6297         unsigned int offset;
6298         u8 *byte = buf;
6299         ssize_t ret, bytes_to_recv, len;
6300         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6301
6302         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6303         if (!hdcp2_msg_data)
6304                 return -EINVAL;
6305         offset = hdcp2_msg_data->offset;
6306
6307         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6308         if (ret < 0)
6309                 return ret;
6310
6311         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6312                 ret = get_receiver_id_list_size(intel_dig_port);
6313                 if (ret < 0)
6314                         return ret;
6315
6316                 size = ret;
6317         }
6318         bytes_to_recv = size - 1;
6319
6320         /* DP adaptation msgs has no msg_id */
6321         byte++;
6322
6323         while (bytes_to_recv) {
6324                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6325                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6326
6327                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6328                                        (void *)byte, len);
6329                 if (ret < 0) {
6330                         DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6331                         return ret;
6332                 }
6333
6334                 bytes_to_recv -= ret;
6335                 byte += ret;
6336                 offset += ret;
6337         }
6338         byte = buf;
6339         *byte = msg_id;
6340
6341         return size;
6342 }
6343
6344 static
6345 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6346                                       bool is_repeater, u8 content_type)
6347 {
6348         struct hdcp2_dp_errata_stream_type stream_type_msg;
6349
6350         if (is_repeater)
6351                 return 0;
6352
6353         /*
6354          * Errata for DP: As Stream type is used for encryption, Receiver
6355          * should be communicated with stream type for the decryption of the
6356          * content.
6357          * Repeater will be communicated with stream type as a part of it's
6358          * auth later in time.
6359          */
6360         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6361         stream_type_msg.stream_type = content_type;
6362
6363         return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6364                                         sizeof(stream_type_msg));
6365 }
6366
6367 static
6368 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6369 {
6370         u8 rx_status;
6371         int ret;
6372
6373         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6374         if (ret)
6375                 return ret;
6376
6377         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6378                 ret = HDCP_REAUTH_REQUEST;
6379         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6380                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6381         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6382                 ret = HDCP_TOPOLOGY_CHANGE;
6383
6384         return ret;
6385 }
6386
6387 static
6388 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6389                            bool *capable)
6390 {
6391         u8 rx_caps[3];
6392         int ret;
6393
6394         *capable = false;
6395         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6396                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6397                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6398         if (ret != HDCP_2_2_RXCAPS_LEN)
6399                 return ret >= 0 ? -EIO : ret;
6400
6401         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6402             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6403                 *capable = true;
6404
6405         return 0;
6406 }
6407
6408 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6409         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6410         .read_bksv = intel_dp_hdcp_read_bksv,
6411         .read_bstatus = intel_dp_hdcp_read_bstatus,
6412         .repeater_present = intel_dp_hdcp_repeater_present,
6413         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6414         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6415         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6416         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6417         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6418         .check_link = intel_dp_hdcp_check_link,
6419         .hdcp_capable = intel_dp_hdcp_capable,
6420         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6421         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6422         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6423         .check_2_2_link = intel_dp_hdcp2_check_link,
6424         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6425         .protocol = HDCP_PROTOCOL_DP,
6426 };
6427
6428 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6429 {
6430         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6431         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6432
6433         lockdep_assert_held(&dev_priv->pps_mutex);
6434
6435         if (!edp_have_panel_vdd(intel_dp))
6436                 return;
6437
6438         /*
6439          * The VDD bit needs a power domain reference, so if the bit is
6440          * already enabled when we boot or resume, grab this reference and
6441          * schedule a vdd off, so we don't hold on to the reference
6442          * indefinitely.
6443          */
6444         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6445         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6446
6447         edp_panel_vdd_schedule_off(intel_dp);
6448 }
6449
6450 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6451 {
6452         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6453         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6454         enum pipe pipe;
6455
6456         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6457                                   encoder->port, &pipe))
6458                 return pipe;
6459
6460         return INVALID_PIPE;
6461 }
6462
6463 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6464 {
6465         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6466         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6467         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6468         intel_wakeref_t wakeref;
6469
6470         if (!HAS_DDI(dev_priv))
6471                 intel_dp->DP = I915_READ(intel_dp->output_reg);
6472
6473         if (lspcon->active)
6474                 lspcon_resume(lspcon);
6475
6476         intel_dp->reset_link_params = true;
6477
6478         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6479             !intel_dp_is_edp(intel_dp))
6480                 return;
6481
6482         with_pps_lock(intel_dp, wakeref) {
6483                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6484                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6485
6486                 if (intel_dp_is_edp(intel_dp)) {
6487                         /*
6488                          * Reinit the power sequencer, in case BIOS did
6489                          * something nasty with it.
6490                          */
6491                         intel_dp_pps_init(intel_dp);
6492                         intel_edp_panel_vdd_sanitize(intel_dp);
6493                 }
6494         }
6495 }
6496
6497 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6498         .force = intel_dp_force,
6499         .fill_modes = drm_helper_probe_single_connector_modes,
6500         .atomic_get_property = intel_digital_connector_atomic_get_property,
6501         .atomic_set_property = intel_digital_connector_atomic_set_property,
6502         .late_register = intel_dp_connector_register,
6503         .early_unregister = intel_dp_connector_unregister,
6504         .destroy = intel_connector_destroy,
6505         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6506         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6507 };
6508
6509 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6510         .detect_ctx = intel_dp_detect,
6511         .get_modes = intel_dp_get_modes,
6512         .mode_valid = intel_dp_mode_valid,
6513         .atomic_check = intel_digital_connector_atomic_check,
6514 };
6515
6516 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6517         .reset = intel_dp_encoder_reset,
6518         .destroy = intel_dp_encoder_destroy,
6519 };
6520
6521 enum irqreturn
6522 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6523 {
6524         struct intel_dp *intel_dp = &intel_dig_port->dp;
6525
6526         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6527                 /*
6528                  * vdd off can generate a long pulse on eDP which
6529                  * would require vdd on to handle it, and thus we
6530                  * would end up in an endless cycle of
6531                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6532                  */
6533                 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6534                               intel_dig_port->base.base.base.id,
6535                               intel_dig_port->base.base.name);
6536                 return IRQ_HANDLED;
6537         }
6538
6539         DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6540                       intel_dig_port->base.base.base.id,
6541                       intel_dig_port->base.base.name,
6542                       long_hpd ? "long" : "short");
6543
6544         if (long_hpd) {
6545                 intel_dp->reset_link_params = true;
6546                 return IRQ_NONE;
6547         }
6548
6549         if (intel_dp->is_mst) {
6550                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6551                         /*
6552                          * If we were in MST mode, and device is not
6553                          * there, get out of MST mode
6554                          */
6555                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6556                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6557                         intel_dp->is_mst = false;
6558                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6559                                                         intel_dp->is_mst);
6560
6561                         return IRQ_NONE;
6562                 }
6563         }
6564
6565         if (!intel_dp->is_mst) {
6566                 bool handled;
6567
6568                 handled = intel_dp_short_pulse(intel_dp);
6569
6570                 if (!handled)
6571                         return IRQ_NONE;
6572         }
6573
6574         return IRQ_HANDLED;
6575 }
6576
6577 /* check the VBT to see whether the eDP is on another port */
6578 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6579 {
6580         /*
6581          * eDP not supported on g4x. so bail out early just
6582          * for a bit extra safety in case the VBT is bonkers.
6583          */
6584         if (INTEL_GEN(dev_priv) < 5)
6585                 return false;
6586
6587         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6588                 return true;
6589
6590         return intel_bios_is_port_edp(dev_priv, port);
6591 }
6592
6593 static void
6594 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6595 {
6596         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6597         enum port port = dp_to_dig_port(intel_dp)->base.port;
6598
6599         if (!IS_G4X(dev_priv) && port != PORT_A)
6600                 intel_attach_force_audio_property(connector);
6601
6602         intel_attach_broadcast_rgb_property(connector);
6603         if (HAS_GMCH(dev_priv))
6604                 drm_connector_attach_max_bpc_property(connector, 6, 10);
6605         else if (INTEL_GEN(dev_priv) >= 5)
6606                 drm_connector_attach_max_bpc_property(connector, 6, 12);
6607
6608         intel_attach_colorspace_property(connector);
6609
6610         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6611                 drm_object_attach_property(&connector->base,
6612                                            connector->dev->mode_config.hdr_output_metadata_property,
6613                                            0);
6614
6615         if (intel_dp_is_edp(intel_dp)) {
6616                 u32 allowed_scalers;
6617
6618                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6619                 if (!HAS_GMCH(dev_priv))
6620                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6621
6622                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6623
6624                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6625
6626         }
6627 }
6628
6629 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6630 {
6631         intel_dp->panel_power_off_time = ktime_get_boottime();
6632         intel_dp->last_power_on = jiffies;
6633         intel_dp->last_backlight_off = jiffies;
6634 }
6635
6636 static void
6637 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6638 {
6639         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6640         u32 pp_on, pp_off, pp_ctl;
6641         struct pps_registers regs;
6642
6643         intel_pps_get_registers(intel_dp, &regs);
6644
6645         pp_ctl = ironlake_get_pp_control(intel_dp);
6646
6647         /* Ensure PPS is unlocked */
6648         if (!HAS_DDI(dev_priv))
6649                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6650
6651         pp_on = I915_READ(regs.pp_on);
6652         pp_off = I915_READ(regs.pp_off);
6653
6654         /* Pull timing values out of registers */
6655         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6656         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6657         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6658         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6659
6660         if (i915_mmio_reg_valid(regs.pp_div)) {
6661                 u32 pp_div;
6662
6663                 pp_div = I915_READ(regs.pp_div);
6664
6665                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6666         } else {
6667                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6668         }
6669 }
6670
6671 static void
6672 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6673 {
6674         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6675                       state_name,
6676                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6677 }
6678
6679 static void
6680 intel_pps_verify_state(struct intel_dp *intel_dp)
6681 {
6682         struct edp_power_seq hw;
6683         struct edp_power_seq *sw = &intel_dp->pps_delays;
6684
6685         intel_pps_readout_hw_state(intel_dp, &hw);
6686
6687         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6688             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6689                 DRM_ERROR("PPS state mismatch\n");
6690                 intel_pps_dump_state("sw", sw);
6691                 intel_pps_dump_state("hw", &hw);
6692         }
6693 }
6694
6695 static void
6696 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6697 {
6698         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6699         struct edp_power_seq cur, vbt, spec,
6700                 *final = &intel_dp->pps_delays;
6701
6702         lockdep_assert_held(&dev_priv->pps_mutex);
6703
6704         /* already initialized? */
6705         if (final->t11_t12 != 0)
6706                 return;
6707
6708         intel_pps_readout_hw_state(intel_dp, &cur);
6709
6710         intel_pps_dump_state("cur", &cur);
6711
6712         vbt = dev_priv->vbt.edp.pps;
6713         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6714          * of 500ms appears to be too short. Ocassionally the panel
6715          * just fails to power back on. Increasing the delay to 800ms
6716          * seems sufficient to avoid this problem.
6717          */
6718         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6719                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6720                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6721                               vbt.t11_t12);
6722         }
6723         /* T11_T12 delay is special and actually in units of 100ms, but zero
6724          * based in the hw (so we need to add 100 ms). But the sw vbt
6725          * table multiplies it with 1000 to make it in units of 100usec,
6726          * too. */
6727         vbt.t11_t12 += 100 * 10;
6728
6729         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6730          * our hw here, which are all in 100usec. */
6731         spec.t1_t3 = 210 * 10;
6732         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6733         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6734         spec.t10 = 500 * 10;
6735         /* This one is special and actually in units of 100ms, but zero
6736          * based in the hw (so we need to add 100 ms). But the sw vbt
6737          * table multiplies it with 1000 to make it in units of 100usec,
6738          * too. */
6739         spec.t11_t12 = (510 + 100) * 10;
6740
6741         intel_pps_dump_state("vbt", &vbt);
6742
6743         /* Use the max of the register settings and vbt. If both are
6744          * unset, fall back to the spec limits. */
6745 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
6746                                        spec.field : \
6747                                        max(cur.field, vbt.field))
6748         assign_final(t1_t3);
6749         assign_final(t8);
6750         assign_final(t9);
6751         assign_final(t10);
6752         assign_final(t11_t12);
6753 #undef assign_final
6754
6755 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
6756         intel_dp->panel_power_up_delay = get_delay(t1_t3);
6757         intel_dp->backlight_on_delay = get_delay(t8);
6758         intel_dp->backlight_off_delay = get_delay(t9);
6759         intel_dp->panel_power_down_delay = get_delay(t10);
6760         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6761 #undef get_delay
6762
6763         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6764                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6765                       intel_dp->panel_power_cycle_delay);
6766
6767         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6768                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6769
6770         /*
6771          * We override the HW backlight delays to 1 because we do manual waits
6772          * on them. For T8, even BSpec recommends doing it. For T9, if we
6773          * don't do this, we'll end up waiting for the backlight off delay
6774          * twice: once when we do the manual sleep, and once when we disable
6775          * the panel and wait for the PP_STATUS bit to become zero.
6776          */
6777         final->t8 = 1;
6778         final->t9 = 1;
6779
6780         /*
6781          * HW has only a 100msec granularity for t11_t12 so round it up
6782          * accordingly.
6783          */
6784         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6785 }
6786
6787 static void
6788 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6789                                               bool force_disable_vdd)
6790 {
6791         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6792         u32 pp_on, pp_off, port_sel = 0;
6793         int div = dev_priv->rawclk_freq / 1000;
6794         struct pps_registers regs;
6795         enum port port = dp_to_dig_port(intel_dp)->base.port;
6796         const struct edp_power_seq *seq = &intel_dp->pps_delays;
6797
6798         lockdep_assert_held(&dev_priv->pps_mutex);
6799
6800         intel_pps_get_registers(intel_dp, &regs);
6801
6802         /*
6803          * On some VLV machines the BIOS can leave the VDD
6804          * enabled even on power sequencers which aren't
6805          * hooked up to any port. This would mess up the
6806          * power domain tracking the first time we pick
6807          * one of these power sequencers for use since
6808          * edp_panel_vdd_on() would notice that the VDD was
6809          * already on and therefore wouldn't grab the power
6810          * domain reference. Disable VDD first to avoid this.
6811          * This also avoids spuriously turning the VDD on as
6812          * soon as the new power sequencer gets initialized.
6813          */
6814         if (force_disable_vdd) {
6815                 u32 pp = ironlake_get_pp_control(intel_dp);
6816
6817                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6818
6819                 if (pp & EDP_FORCE_VDD)
6820                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
6821
6822                 pp &= ~EDP_FORCE_VDD;
6823
6824                 I915_WRITE(regs.pp_ctrl, pp);
6825         }
6826
6827         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6828                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6829         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6830                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6831
6832         /* Haswell doesn't have any port selection bits for the panel
6833          * power sequencer any more. */
6834         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6835                 port_sel = PANEL_PORT_SELECT_VLV(port);
6836         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6837                 switch (port) {
6838                 case PORT_A:
6839                         port_sel = PANEL_PORT_SELECT_DPA;
6840                         break;
6841                 case PORT_C:
6842                         port_sel = PANEL_PORT_SELECT_DPC;
6843                         break;
6844                 case PORT_D:
6845                         port_sel = PANEL_PORT_SELECT_DPD;
6846                         break;
6847                 default:
6848                         MISSING_CASE(port);
6849                         break;
6850                 }
6851         }
6852
6853         pp_on |= port_sel;
6854
6855         I915_WRITE(regs.pp_on, pp_on);
6856         I915_WRITE(regs.pp_off, pp_off);
6857
6858         /*
6859          * Compute the divisor for the pp clock, simply match the Bspec formula.
6860          */
6861         if (i915_mmio_reg_valid(regs.pp_div)) {
6862                 I915_WRITE(regs.pp_div,
6863                            REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6864                            REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6865         } else {
6866                 u32 pp_ctl;
6867
6868                 pp_ctl = I915_READ(regs.pp_ctrl);
6869                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6870                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6871                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6872         }
6873
6874         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6875                       I915_READ(regs.pp_on),
6876                       I915_READ(regs.pp_off),
6877                       i915_mmio_reg_valid(regs.pp_div) ?
6878                       I915_READ(regs.pp_div) :
6879                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6880 }
6881
6882 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6883 {
6884         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6885
6886         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6887                 vlv_initial_power_sequencer_setup(intel_dp);
6888         } else {
6889                 intel_dp_init_panel_power_sequencer(intel_dp);
6890                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6891         }
6892 }
6893
6894 /**
6895  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6896  * @dev_priv: i915 device
6897  * @crtc_state: a pointer to the active intel_crtc_state
6898  * @refresh_rate: RR to be programmed
6899  *
6900  * This function gets called when refresh rate (RR) has to be changed from
6901  * one frequency to another. Switches can be between high and low RR
6902  * supported by the panel or to any other RR based on media playback (in
6903  * this case, RR value needs to be passed from user space).
6904  *
6905  * The caller of this function needs to take a lock on dev_priv->drrs.
6906  */
6907 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6908                                     const struct intel_crtc_state *crtc_state,
6909                                     int refresh_rate)
6910 {
6911         struct intel_dp *intel_dp = dev_priv->drrs.dp;
6912         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6913         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6914
6915         if (refresh_rate <= 0) {
6916                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6917                 return;
6918         }
6919
6920         if (intel_dp == NULL) {
6921                 DRM_DEBUG_KMS("DRRS not supported.\n");
6922                 return;
6923         }
6924
6925         if (!intel_crtc) {
6926                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6927                 return;
6928         }
6929
6930         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6931                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6932                 return;
6933         }
6934
6935         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6936                         refresh_rate)
6937                 index = DRRS_LOW_RR;
6938
6939         if (index == dev_priv->drrs.refresh_rate_type) {
6940                 DRM_DEBUG_KMS(
6941                         "DRRS requested for previously set RR...ignoring\n");
6942                 return;
6943         }
6944
6945         if (!crtc_state->base.active) {
6946                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6947                 return;
6948         }
6949
6950         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6951                 switch (index) {
6952                 case DRRS_HIGH_RR:
6953                         intel_dp_set_m_n(crtc_state, M1_N1);
6954                         break;
6955                 case DRRS_LOW_RR:
6956                         intel_dp_set_m_n(crtc_state, M2_N2);
6957                         break;
6958                 case DRRS_MAX_RR:
6959                 default:
6960                         DRM_ERROR("Unsupported refreshrate type\n");
6961                 }
6962         } else if (INTEL_GEN(dev_priv) > 6) {
6963                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6964                 u32 val;
6965
6966                 val = I915_READ(reg);
6967                 if (index > DRRS_HIGH_RR) {
6968                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6969                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6970                         else
6971                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
6972                 } else {
6973                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6974                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6975                         else
6976                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6977                 }
6978                 I915_WRITE(reg, val);
6979         }
6980
6981         dev_priv->drrs.refresh_rate_type = index;
6982
6983         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6984 }
6985
6986 /**
6987  * intel_edp_drrs_enable - init drrs struct if supported
6988  * @intel_dp: DP struct
6989  * @crtc_state: A pointer to the active crtc state.
6990  *
6991  * Initializes frontbuffer_bits and drrs.dp
6992  */
6993 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6994                            const struct intel_crtc_state *crtc_state)
6995 {
6996         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6997
6998         if (!crtc_state->has_drrs) {
6999                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7000                 return;
7001         }
7002
7003         if (dev_priv->psr.enabled) {
7004                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7005                 return;
7006         }
7007
7008         mutex_lock(&dev_priv->drrs.mutex);
7009         if (dev_priv->drrs.dp) {
7010                 DRM_DEBUG_KMS("DRRS already enabled\n");
7011                 goto unlock;
7012         }
7013
7014         dev_priv->drrs.busy_frontbuffer_bits = 0;
7015
7016         dev_priv->drrs.dp = intel_dp;
7017
7018 unlock:
7019         mutex_unlock(&dev_priv->drrs.mutex);
7020 }
7021
7022 /**
7023  * intel_edp_drrs_disable - Disable DRRS
7024  * @intel_dp: DP struct
7025  * @old_crtc_state: Pointer to old crtc_state.
7026  *
7027  */
7028 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7029                             const struct intel_crtc_state *old_crtc_state)
7030 {
7031         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7032
7033         if (!old_crtc_state->has_drrs)
7034                 return;
7035
7036         mutex_lock(&dev_priv->drrs.mutex);
7037         if (!dev_priv->drrs.dp) {
7038                 mutex_unlock(&dev_priv->drrs.mutex);
7039                 return;
7040         }
7041
7042         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7043                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7044                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7045
7046         dev_priv->drrs.dp = NULL;
7047         mutex_unlock(&dev_priv->drrs.mutex);
7048
7049         cancel_delayed_work_sync(&dev_priv->drrs.work);
7050 }
7051
7052 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7053 {
7054         struct drm_i915_private *dev_priv =
7055                 container_of(work, typeof(*dev_priv), drrs.work.work);
7056         struct intel_dp *intel_dp;
7057
7058         mutex_lock(&dev_priv->drrs.mutex);
7059
7060         intel_dp = dev_priv->drrs.dp;
7061
7062         if (!intel_dp)
7063                 goto unlock;
7064
7065         /*
7066          * The delayed work can race with an invalidate hence we need to
7067          * recheck.
7068          */
7069
7070         if (dev_priv->drrs.busy_frontbuffer_bits)
7071                 goto unlock;
7072
7073         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7074                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7075
7076                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7077                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7078         }
7079
7080 unlock:
7081         mutex_unlock(&dev_priv->drrs.mutex);
7082 }
7083
7084 /**
7085  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7086  * @dev_priv: i915 device
7087  * @frontbuffer_bits: frontbuffer plane tracking bits
7088  *
7089  * This function gets called everytime rendering on the given planes start.
7090  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7091  *
7092  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7093  */
7094 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7095                                unsigned int frontbuffer_bits)
7096 {
7097         struct drm_crtc *crtc;
7098         enum pipe pipe;
7099
7100         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7101                 return;
7102
7103         cancel_delayed_work(&dev_priv->drrs.work);
7104
7105         mutex_lock(&dev_priv->drrs.mutex);
7106         if (!dev_priv->drrs.dp) {
7107                 mutex_unlock(&dev_priv->drrs.mutex);
7108                 return;
7109         }
7110
7111         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7112         pipe = to_intel_crtc(crtc)->pipe;
7113
7114         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7115         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7116
7117         /* invalidate means busy screen hence upclock */
7118         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7119                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7120                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7121
7122         mutex_unlock(&dev_priv->drrs.mutex);
7123 }
7124
7125 /**
7126  * intel_edp_drrs_flush - Restart Idleness DRRS
7127  * @dev_priv: i915 device
7128  * @frontbuffer_bits: frontbuffer plane tracking bits
7129  *
7130  * This function gets called every time rendering on the given planes has
7131  * completed or flip on a crtc is completed. So DRRS should be upclocked
7132  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7133  * if no other planes are dirty.
7134  *
7135  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7136  */
7137 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7138                           unsigned int frontbuffer_bits)
7139 {
7140         struct drm_crtc *crtc;
7141         enum pipe pipe;
7142
7143         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7144                 return;
7145
7146         cancel_delayed_work(&dev_priv->drrs.work);
7147
7148         mutex_lock(&dev_priv->drrs.mutex);
7149         if (!dev_priv->drrs.dp) {
7150                 mutex_unlock(&dev_priv->drrs.mutex);
7151                 return;
7152         }
7153
7154         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7155         pipe = to_intel_crtc(crtc)->pipe;
7156
7157         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7158         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7159
7160         /* flush means busy screen hence upclock */
7161         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7162                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7163                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7164
7165         /*
7166          * flush also means no more activity hence schedule downclock, if all
7167          * other fbs are quiescent too
7168          */
7169         if (!dev_priv->drrs.busy_frontbuffer_bits)
7170                 schedule_delayed_work(&dev_priv->drrs.work,
7171                                 msecs_to_jiffies(1000));
7172         mutex_unlock(&dev_priv->drrs.mutex);
7173 }
7174
7175 /**
7176  * DOC: Display Refresh Rate Switching (DRRS)
7177  *
7178  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7179  * which enables swtching between low and high refresh rates,
7180  * dynamically, based on the usage scenario. This feature is applicable
7181  * for internal panels.
7182  *
7183  * Indication that the panel supports DRRS is given by the panel EDID, which
7184  * would list multiple refresh rates for one resolution.
7185  *
7186  * DRRS is of 2 types - static and seamless.
7187  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7188  * (may appear as a blink on screen) and is used in dock-undock scenario.
7189  * Seamless DRRS involves changing RR without any visual effect to the user
7190  * and can be used during normal system usage. This is done by programming
7191  * certain registers.
7192  *
7193  * Support for static/seamless DRRS may be indicated in the VBT based on
7194  * inputs from the panel spec.
7195  *
7196  * DRRS saves power by switching to low RR based on usage scenarios.
7197  *
7198  * The implementation is based on frontbuffer tracking implementation.  When
7199  * there is a disturbance on the screen triggered by user activity or a periodic
7200  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7201  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7202  * made.
7203  *
7204  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7205  * and intel_edp_drrs_flush() are called.
7206  *
7207  * DRRS can be further extended to support other internal panels and also
7208  * the scenario of video playback wherein RR is set based on the rate
7209  * requested by userspace.
7210  */
7211
7212 /**
7213  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7214  * @connector: eDP connector
7215  * @fixed_mode: preferred mode of panel
7216  *
7217  * This function is  called only once at driver load to initialize basic
7218  * DRRS stuff.
7219  *
7220  * Returns:
7221  * Downclock mode if panel supports it, else return NULL.
7222  * DRRS support is determined by the presence of downclock mode (apart
7223  * from VBT setting).
7224  */
7225 static struct drm_display_mode *
7226 intel_dp_drrs_init(struct intel_connector *connector,
7227                    struct drm_display_mode *fixed_mode)
7228 {
7229         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7230         struct drm_display_mode *downclock_mode = NULL;
7231
7232         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7233         mutex_init(&dev_priv->drrs.mutex);
7234
7235         if (INTEL_GEN(dev_priv) <= 6) {
7236                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7237                 return NULL;
7238         }
7239
7240         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7241                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7242                 return NULL;
7243         }
7244
7245         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7246         if (!downclock_mode) {
7247                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7248                 return NULL;
7249         }
7250
7251         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7252
7253         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7254         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7255         return downclock_mode;
7256 }
7257
7258 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7259                                      struct intel_connector *intel_connector)
7260 {
7261         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7262         struct drm_device *dev = &dev_priv->drm;
7263         struct drm_connector *connector = &intel_connector->base;
7264         struct drm_display_mode *fixed_mode = NULL;
7265         struct drm_display_mode *downclock_mode = NULL;
7266         bool has_dpcd;
7267         enum pipe pipe = INVALID_PIPE;
7268         intel_wakeref_t wakeref;
7269         struct edid *edid;
7270
7271         if (!intel_dp_is_edp(intel_dp))
7272                 return true;
7273
7274         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7275
7276         /*
7277          * On IBX/CPT we may get here with LVDS already registered. Since the
7278          * driver uses the only internal power sequencer available for both
7279          * eDP and LVDS bail out early in this case to prevent interfering
7280          * with an already powered-on LVDS power sequencer.
7281          */
7282         if (intel_get_lvds_encoder(dev_priv)) {
7283                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7284                 DRM_INFO("LVDS was detected, not registering eDP\n");
7285
7286                 return false;
7287         }
7288
7289         with_pps_lock(intel_dp, wakeref) {
7290                 intel_dp_init_panel_power_timestamps(intel_dp);
7291                 intel_dp_pps_init(intel_dp);
7292                 intel_edp_panel_vdd_sanitize(intel_dp);
7293         }
7294
7295         /* Cache DPCD and EDID for edp. */
7296         has_dpcd = intel_edp_init_dpcd(intel_dp);
7297
7298         if (!has_dpcd) {
7299                 /* if this fails, presume the device is a ghost */
7300                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7301                 goto out_vdd_off;
7302         }
7303
7304         mutex_lock(&dev->mode_config.mutex);
7305         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7306         if (edid) {
7307                 if (drm_add_edid_modes(connector, edid)) {
7308                         drm_connector_update_edid_property(connector,
7309                                                                 edid);
7310                 } else {
7311                         kfree(edid);
7312                         edid = ERR_PTR(-EINVAL);
7313                 }
7314         } else {
7315                 edid = ERR_PTR(-ENOENT);
7316         }
7317         intel_connector->edid = edid;
7318
7319         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7320         if (fixed_mode)
7321                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7322
7323         /* fallback to VBT if available for eDP */
7324         if (!fixed_mode)
7325                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7326         mutex_unlock(&dev->mode_config.mutex);
7327
7328         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7329                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7330                 register_reboot_notifier(&intel_dp->edp_notifier);
7331
7332                 /*
7333                  * Figure out the current pipe for the initial backlight setup.
7334                  * If the current pipe isn't valid, try the PPS pipe, and if that
7335                  * fails just assume pipe A.
7336                  */
7337                 pipe = vlv_active_pipe(intel_dp);
7338
7339                 if (pipe != PIPE_A && pipe != PIPE_B)
7340                         pipe = intel_dp->pps_pipe;
7341
7342                 if (pipe != PIPE_A && pipe != PIPE_B)
7343                         pipe = PIPE_A;
7344
7345                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7346                               pipe_name(pipe));
7347         }
7348
7349         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7350         intel_connector->panel.backlight.power = intel_edp_backlight_power;
7351         intel_panel_setup_backlight(connector, pipe);
7352
7353         if (fixed_mode)
7354                 drm_connector_init_panel_orientation_property(
7355                         connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7356
7357         return true;
7358
7359 out_vdd_off:
7360         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7361         /*
7362          * vdd might still be enabled do to the delayed vdd off.
7363          * Make sure vdd is actually turned off here.
7364          */
7365         with_pps_lock(intel_dp, wakeref)
7366                 edp_panel_vdd_off_sync(intel_dp);
7367
7368         return false;
7369 }
7370
7371 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7372 {
7373         struct intel_connector *intel_connector;
7374         struct drm_connector *connector;
7375
7376         intel_connector = container_of(work, typeof(*intel_connector),
7377                                        modeset_retry_work);
7378         connector = &intel_connector->base;
7379         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7380                       connector->name);
7381
7382         /* Grab the locks before changing connector property*/
7383         mutex_lock(&connector->dev->mode_config.mutex);
7384         /* Set connector link status to BAD and send a Uevent to notify
7385          * userspace to do a modeset.
7386          */
7387         drm_connector_set_link_status_property(connector,
7388                                                DRM_MODE_LINK_STATUS_BAD);
7389         mutex_unlock(&connector->dev->mode_config.mutex);
7390         /* Send Hotplug uevent so userspace can reprobe */
7391         drm_kms_helper_hotplug_event(connector->dev);
7392 }
7393
7394 bool
7395 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7396                         struct intel_connector *intel_connector)
7397 {
7398         struct drm_connector *connector = &intel_connector->base;
7399         struct intel_dp *intel_dp = &intel_dig_port->dp;
7400         struct intel_encoder *intel_encoder = &intel_dig_port->base;
7401         struct drm_device *dev = intel_encoder->base.dev;
7402         struct drm_i915_private *dev_priv = to_i915(dev);
7403         enum port port = intel_encoder->port;
7404         enum phy phy = intel_port_to_phy(dev_priv, port);
7405         int type;
7406
7407         /* Initialize the work for modeset in case of link train failure */
7408         INIT_WORK(&intel_connector->modeset_retry_work,
7409                   intel_dp_modeset_retry_work_fn);
7410
7411         if (WARN(intel_dig_port->max_lanes < 1,
7412                  "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7413                  intel_dig_port->max_lanes, intel_encoder->base.base.id,
7414                  intel_encoder->base.name))
7415                 return false;
7416
7417         intel_dp_set_source_rates(intel_dp);
7418
7419         intel_dp->reset_link_params = true;
7420         intel_dp->pps_pipe = INVALID_PIPE;
7421         intel_dp->active_pipe = INVALID_PIPE;
7422
7423         /* Preserve the current hw state. */
7424         intel_dp->DP = I915_READ(intel_dp->output_reg);
7425         intel_dp->attached_connector = intel_connector;
7426
7427         if (intel_dp_is_port_edp(dev_priv, port)) {
7428                 /*
7429                  * Currently we don't support eDP on TypeC ports, although in
7430                  * theory it could work on TypeC legacy ports.
7431                  */
7432                 WARN_ON(intel_phy_is_tc(dev_priv, phy));
7433                 type = DRM_MODE_CONNECTOR_eDP;
7434         } else {
7435                 type = DRM_MODE_CONNECTOR_DisplayPort;
7436         }
7437
7438         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7439                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7440
7441         /*
7442          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7443          * for DP the encoder type can be set by the caller to
7444          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7445          */
7446         if (type == DRM_MODE_CONNECTOR_eDP)
7447                 intel_encoder->type = INTEL_OUTPUT_EDP;
7448
7449         /* eDP only on port B and/or C on vlv/chv */
7450         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7451                     intel_dp_is_edp(intel_dp) &&
7452                     port != PORT_B && port != PORT_C))
7453                 return false;
7454
7455         DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7456                       type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7457                       intel_encoder->base.base.id, intel_encoder->base.name);
7458
7459         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7460         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7461
7462         if (!HAS_GMCH(dev_priv))
7463                 connector->interlace_allowed = true;
7464         connector->doublescan_allowed = 0;
7465
7466         if (INTEL_GEN(dev_priv) >= 11)
7467                 connector->ycbcr_420_allowed = true;
7468
7469         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7470
7471         intel_dp_aux_init(intel_dp);
7472
7473         intel_connector_attach_encoder(intel_connector, intel_encoder);
7474
7475         if (HAS_DDI(dev_priv))
7476                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7477         else
7478                 intel_connector->get_hw_state = intel_connector_get_hw_state;
7479
7480         /* init MST on ports that can support it */
7481         intel_dp_mst_encoder_init(intel_dig_port,
7482                                   intel_connector->base.base.id);
7483
7484         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7485                 intel_dp_aux_fini(intel_dp);
7486                 intel_dp_mst_encoder_cleanup(intel_dig_port);
7487                 goto fail;
7488         }
7489
7490         intel_dp_add_properties(intel_dp, connector);
7491
7492         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7493                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7494                 if (ret)
7495                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7496         }
7497
7498         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7499          * 0xd.  Failure to do so will result in spurious interrupts being
7500          * generated on the port when a cable is not attached.
7501          */
7502         if (IS_G45(dev_priv)) {
7503                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7504                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7505         }
7506
7507         return true;
7508
7509 fail:
7510         drm_connector_cleanup(connector);
7511
7512         return false;
7513 }
7514
7515 bool intel_dp_init(struct drm_i915_private *dev_priv,
7516                    i915_reg_t output_reg,
7517                    enum port port)
7518 {
7519         struct intel_digital_port *intel_dig_port;
7520         struct intel_encoder *intel_encoder;
7521         struct drm_encoder *encoder;
7522         struct intel_connector *intel_connector;
7523
7524         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7525         if (!intel_dig_port)
7526                 return false;
7527
7528         intel_connector = intel_connector_alloc();
7529         if (!intel_connector)
7530                 goto err_connector_alloc;
7531
7532         intel_encoder = &intel_dig_port->base;
7533         encoder = &intel_encoder->base;
7534
7535         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7536                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7537                              "DP %c", port_name(port)))
7538                 goto err_encoder_init;
7539
7540         intel_encoder->hotplug = intel_dp_hotplug;
7541         intel_encoder->compute_config = intel_dp_compute_config;
7542         intel_encoder->get_hw_state = intel_dp_get_hw_state;
7543         intel_encoder->get_config = intel_dp_get_config;
7544         intel_encoder->update_pipe = intel_panel_update_backlight;
7545         intel_encoder->suspend = intel_dp_encoder_suspend;
7546         if (IS_CHERRYVIEW(dev_priv)) {
7547                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7548                 intel_encoder->pre_enable = chv_pre_enable_dp;
7549                 intel_encoder->enable = vlv_enable_dp;
7550                 intel_encoder->disable = vlv_disable_dp;
7551                 intel_encoder->post_disable = chv_post_disable_dp;
7552                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7553         } else if (IS_VALLEYVIEW(dev_priv)) {
7554                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7555                 intel_encoder->pre_enable = vlv_pre_enable_dp;
7556                 intel_encoder->enable = vlv_enable_dp;
7557                 intel_encoder->disable = vlv_disable_dp;
7558                 intel_encoder->post_disable = vlv_post_disable_dp;
7559         } else {
7560                 intel_encoder->pre_enable = g4x_pre_enable_dp;
7561                 intel_encoder->enable = g4x_enable_dp;
7562                 intel_encoder->disable = g4x_disable_dp;
7563                 intel_encoder->post_disable = g4x_post_disable_dp;
7564         }
7565
7566         intel_dig_port->dp.output_reg = output_reg;
7567         intel_dig_port->max_lanes = 4;
7568
7569         intel_encoder->type = INTEL_OUTPUT_DP;
7570         intel_encoder->power_domain = intel_port_to_power_domain(port);
7571         if (IS_CHERRYVIEW(dev_priv)) {
7572                 if (port == PORT_D)
7573                         intel_encoder->pipe_mask = BIT(PIPE_C);
7574                 else
7575                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7576         } else {
7577                 intel_encoder->pipe_mask = ~0;
7578         }
7579         intel_encoder->cloneable = 0;
7580         intel_encoder->port = port;
7581
7582         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7583
7584         if (port != PORT_A)
7585                 intel_infoframe_init(intel_dig_port);
7586
7587         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7588         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7589                 goto err_init_connector;
7590
7591         return true;
7592
7593 err_init_connector:
7594         drm_encoder_cleanup(encoder);
7595 err_encoder_init:
7596         kfree(intel_connector);
7597 err_connector_alloc:
7598         kfree(intel_dig_port);
7599         return false;
7600 }
7601
7602 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7603 {
7604         struct intel_encoder *encoder;
7605
7606         for_each_intel_encoder(&dev_priv->drm, encoder) {
7607                 struct intel_dp *intel_dp;
7608
7609                 if (encoder->type != INTEL_OUTPUT_DDI)
7610                         continue;
7611
7612                 intel_dp = enc_to_intel_dp(&encoder->base);
7613
7614                 if (!intel_dp->can_mst)
7615                         continue;
7616
7617                 if (intel_dp->is_mst)
7618                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7619         }
7620 }
7621
7622 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7623 {
7624         struct intel_encoder *encoder;
7625
7626         for_each_intel_encoder(&dev_priv->drm, encoder) {
7627                 struct intel_dp *intel_dp;
7628                 int ret;
7629
7630                 if (encoder->type != INTEL_OUTPUT_DDI)
7631                         continue;
7632
7633                 intel_dp = enc_to_intel_dp(&encoder->base);
7634
7635                 if (!intel_dp->can_mst)
7636                         continue;
7637
7638                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7639                                                      true);
7640                 if (ret) {
7641                         intel_dp->is_mst = false;
7642                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7643                                                         false);
7644                 }
7645         }
7646 }