Merge tag 'drm-misc-next-2021-07-22' of git://anongit.freedesktop.org/drm/drm-misc...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / core / dc_resource.c
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include <linux/slab.h>
27
28 #include "dm_services.h"
29
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #include "dcn303/dcn303_resource.h"
61 #include "dcn31/dcn31_resource.h"
62 #endif
63
64 #define DC_LOGGER_INIT(logger)
65
66 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
67 {
68         enum dce_version dc_version = DCE_VERSION_UNKNOWN;
69         switch (asic_id.chip_family) {
70
71 #if defined(CONFIG_DRM_AMD_DC_SI)
72         case FAMILY_SI:
73                 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
74                     ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
75                     ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
76                         dc_version = DCE_VERSION_6_0;
77                 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
78                         dc_version = DCE_VERSION_6_4;
79                 else
80                         dc_version = DCE_VERSION_6_1;
81                 break;
82 #endif
83         case FAMILY_CI:
84                 dc_version = DCE_VERSION_8_0;
85                 break;
86         case FAMILY_KV:
87                 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
88                     ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
89                     ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
90                         dc_version = DCE_VERSION_8_3;
91                 else
92                         dc_version = DCE_VERSION_8_1;
93                 break;
94         case FAMILY_CZ:
95                 dc_version = DCE_VERSION_11_0;
96                 break;
97
98         case FAMILY_VI:
99                 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
100                                 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
101                         dc_version = DCE_VERSION_10_0;
102                         break;
103                 }
104                 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
105                                 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
106                                 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
107                         dc_version = DCE_VERSION_11_2;
108                 }
109                 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
110                         dc_version = DCE_VERSION_11_22;
111                 break;
112         case FAMILY_AI:
113                 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
114                         dc_version = DCE_VERSION_12_1;
115                 else
116                         dc_version = DCE_VERSION_12_0;
117                 break;
118 #if defined(CONFIG_DRM_AMD_DC_DCN)
119         case FAMILY_RV:
120                 dc_version = DCN_VERSION_1_0;
121                 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
122                         dc_version = DCN_VERSION_1_01;
123                 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
124                         dc_version = DCN_VERSION_2_1;
125                 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
126                         dc_version = DCN_VERSION_2_1;
127                 break;
128
129         case FAMILY_NV:
130                 dc_version = DCN_VERSION_2_0;
131                 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
132                         dc_version = DCN_VERSION_3_0;
133                 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
134                         dc_version = DCN_VERSION_3_02;
135                 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
136                         dc_version = DCN_VERSION_3_03;
137                 break;
138
139         case FAMILY_VGH:
140                 dc_version = DCN_VERSION_3_01;
141                 break;
142
143         case FAMILY_YELLOW_CARP:
144                 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
145                         dc_version = DCN_VERSION_3_1;
146                 break;
147 #endif
148
149         default:
150                 dc_version = DCE_VERSION_UNKNOWN;
151                 break;
152         }
153         return dc_version;
154 }
155
156 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
157                                               const struct dc_init_data *init_data,
158                                               enum dce_version dc_version)
159 {
160         struct resource_pool *res_pool = NULL;
161
162         switch (dc_version) {
163 #if defined(CONFIG_DRM_AMD_DC_SI)
164         case DCE_VERSION_6_0:
165                 res_pool = dce60_create_resource_pool(
166                         init_data->num_virtual_links, dc);
167                 break;
168         case DCE_VERSION_6_1:
169                 res_pool = dce61_create_resource_pool(
170                         init_data->num_virtual_links, dc);
171                 break;
172         case DCE_VERSION_6_4:
173                 res_pool = dce64_create_resource_pool(
174                         init_data->num_virtual_links, dc);
175                 break;
176 #endif
177         case DCE_VERSION_8_0:
178                 res_pool = dce80_create_resource_pool(
179                                 init_data->num_virtual_links, dc);
180                 break;
181         case DCE_VERSION_8_1:
182                 res_pool = dce81_create_resource_pool(
183                                 init_data->num_virtual_links, dc);
184                 break;
185         case DCE_VERSION_8_3:
186                 res_pool = dce83_create_resource_pool(
187                                 init_data->num_virtual_links, dc);
188                 break;
189         case DCE_VERSION_10_0:
190                 res_pool = dce100_create_resource_pool(
191                                 init_data->num_virtual_links, dc);
192                 break;
193         case DCE_VERSION_11_0:
194                 res_pool = dce110_create_resource_pool(
195                                 init_data->num_virtual_links, dc,
196                                 init_data->asic_id);
197                 break;
198         case DCE_VERSION_11_2:
199         case DCE_VERSION_11_22:
200                 res_pool = dce112_create_resource_pool(
201                                 init_data->num_virtual_links, dc);
202                 break;
203         case DCE_VERSION_12_0:
204         case DCE_VERSION_12_1:
205                 res_pool = dce120_create_resource_pool(
206                                 init_data->num_virtual_links, dc);
207                 break;
208
209 #if defined(CONFIG_DRM_AMD_DC_DCN)
210         case DCN_VERSION_1_0:
211         case DCN_VERSION_1_01:
212                 res_pool = dcn10_create_resource_pool(init_data, dc);
213                 break;
214         case DCN_VERSION_2_0:
215                 res_pool = dcn20_create_resource_pool(init_data, dc);
216                 break;
217         case DCN_VERSION_2_1:
218                 res_pool = dcn21_create_resource_pool(init_data, dc);
219                 break;
220         case DCN_VERSION_3_0:
221                 res_pool = dcn30_create_resource_pool(init_data, dc);
222                 break;
223         case DCN_VERSION_3_01:
224                 res_pool = dcn301_create_resource_pool(init_data, dc);
225                 break;
226         case DCN_VERSION_3_02:
227                 res_pool = dcn302_create_resource_pool(init_data, dc);
228                 break;
229         case DCN_VERSION_3_03:
230                 res_pool = dcn303_create_resource_pool(init_data, dc);
231                 break;
232         case DCN_VERSION_3_1:
233                 res_pool = dcn31_create_resource_pool(init_data, dc);
234                 break;
235 #endif
236         default:
237                 break;
238         }
239
240         if (res_pool != NULL) {
241                 if (dc->ctx->dc_bios->fw_info_valid) {
242                         res_pool->ref_clocks.xtalin_clock_inKhz =
243                                 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
244                         /* initialize with firmware data first, no all
245                          * ASIC have DCCG SW component. FPGA or
246                          * simulation need initialization of
247                          * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
248                          * with xtalin_clock_inKhz
249                          */
250                         res_pool->ref_clocks.dccg_ref_clock_inKhz =
251                                 res_pool->ref_clocks.xtalin_clock_inKhz;
252                         res_pool->ref_clocks.dchub_ref_clock_inKhz =
253                                 res_pool->ref_clocks.xtalin_clock_inKhz;
254                 } else
255                         ASSERT_CRITICAL(false);
256         }
257
258         return res_pool;
259 }
260
261 void dc_destroy_resource_pool(struct dc  *dc)
262 {
263         if (dc) {
264                 if (dc->res_pool)
265                         dc->res_pool->funcs->destroy(&dc->res_pool);
266
267                 kfree(dc->hwseq);
268         }
269 }
270
271 static void update_num_audio(
272         const struct resource_straps *straps,
273         unsigned int *num_audio,
274         struct audio_support *aud_support)
275 {
276         aud_support->dp_audio = true;
277         aud_support->hdmi_audio_native = false;
278         aud_support->hdmi_audio_on_dongle = false;
279
280         if (straps->hdmi_disable == 0) {
281                 if (straps->dc_pinstraps_audio & 0x2) {
282                         aud_support->hdmi_audio_on_dongle = true;
283                         aud_support->hdmi_audio_native = true;
284                 }
285         }
286
287         switch (straps->audio_stream_number) {
288         case 0: /* multi streams supported */
289                 break;
290         case 1: /* multi streams not supported */
291                 *num_audio = 1;
292                 break;
293         default:
294                 DC_ERR("DC: unexpected audio fuse!\n");
295         }
296 }
297
298 bool resource_construct(
299         unsigned int num_virtual_links,
300         struct dc  *dc,
301         struct resource_pool *pool,
302         const struct resource_create_funcs *create_funcs)
303 {
304         struct dc_context *ctx = dc->ctx;
305         const struct resource_caps *caps = pool->res_cap;
306         int i;
307         unsigned int num_audio = caps->num_audio;
308         struct resource_straps straps = {0};
309
310         if (create_funcs->read_dce_straps)
311                 create_funcs->read_dce_straps(dc->ctx, &straps);
312
313         pool->audio_count = 0;
314         if (create_funcs->create_audio) {
315                 /* find the total number of streams available via the
316                  * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
317                  * registers (one for each pin) starting from pin 1
318                  * up to the max number of audio pins.
319                  * We stop on the first pin where
320                  * PORT_CONNECTIVITY == 1 (as instructed by HW team).
321                  */
322                 update_num_audio(&straps, &num_audio, &pool->audio_support);
323                 for (i = 0; i < caps->num_audio; i++) {
324                         struct audio *aud = create_funcs->create_audio(ctx, i);
325
326                         if (aud == NULL) {
327                                 DC_ERR("DC: failed to create audio!\n");
328                                 return false;
329                         }
330                         if (!aud->funcs->endpoint_valid(aud)) {
331                                 aud->funcs->destroy(&aud);
332                                 break;
333                         }
334                         pool->audios[i] = aud;
335                         pool->audio_count++;
336                 }
337         }
338
339         pool->stream_enc_count = 0;
340         if (create_funcs->create_stream_encoder) {
341                 for (i = 0; i < caps->num_stream_encoder; i++) {
342                         pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
343                         if (pool->stream_enc[i] == NULL)
344                                 DC_ERR("DC: failed to create stream_encoder!\n");
345                         pool->stream_enc_count++;
346                 }
347         }
348
349 #if defined(CONFIG_DRM_AMD_DC_DCN)
350         for (i = 0; i < caps->num_mpc_3dlut; i++) {
351                 pool->mpc_lut[i] = dc_create_3dlut_func();
352                 if (pool->mpc_lut[i] == NULL)
353                         DC_ERR("DC: failed to create MPC 3dlut!\n");
354                 pool->mpc_shaper[i] = dc_create_transfer_func();
355                 if (pool->mpc_shaper[i] == NULL)
356                         DC_ERR("DC: failed to create MPC shaper!\n");
357         }
358 #endif
359         dc->caps.dynamic_audio = false;
360         if (pool->audio_count < pool->stream_enc_count) {
361                 dc->caps.dynamic_audio = true;
362         }
363         for (i = 0; i < num_virtual_links; i++) {
364                 pool->stream_enc[pool->stream_enc_count] =
365                         virtual_stream_encoder_create(
366                                         ctx, ctx->dc_bios);
367                 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
368                         DC_ERR("DC: failed to create stream_encoder!\n");
369                         return false;
370                 }
371                 pool->stream_enc_count++;
372         }
373
374         dc->hwseq = create_funcs->create_hwseq(ctx);
375
376         return true;
377 }
378 static int find_matching_clock_source(
379                 const struct resource_pool *pool,
380                 struct clock_source *clock_source)
381 {
382
383         int i;
384
385         for (i = 0; i < pool->clk_src_count; i++) {
386                 if (pool->clock_sources[i] == clock_source)
387                         return i;
388         }
389         return -1;
390 }
391
392 void resource_unreference_clock_source(
393                 struct resource_context *res_ctx,
394                 const struct resource_pool *pool,
395                 struct clock_source *clock_source)
396 {
397         int i = find_matching_clock_source(pool, clock_source);
398
399         if (i > -1)
400                 res_ctx->clock_source_ref_count[i]--;
401
402         if (pool->dp_clock_source == clock_source)
403                 res_ctx->dp_clock_source_ref_count--;
404 }
405
406 void resource_reference_clock_source(
407                 struct resource_context *res_ctx,
408                 const struct resource_pool *pool,
409                 struct clock_source *clock_source)
410 {
411         int i = find_matching_clock_source(pool, clock_source);
412
413         if (i > -1)
414                 res_ctx->clock_source_ref_count[i]++;
415
416         if (pool->dp_clock_source == clock_source)
417                 res_ctx->dp_clock_source_ref_count++;
418 }
419
420 int resource_get_clock_source_reference(
421                 struct resource_context *res_ctx,
422                 const struct resource_pool *pool,
423                 struct clock_source *clock_source)
424 {
425         int i = find_matching_clock_source(pool, clock_source);
426
427         if (i > -1)
428                 return res_ctx->clock_source_ref_count[i];
429
430         if (pool->dp_clock_source == clock_source)
431                 return res_ctx->dp_clock_source_ref_count;
432
433         return -1;
434 }
435
436 bool resource_are_vblanks_synchronizable(
437         struct dc_stream_state *stream1,
438         struct dc_stream_state *stream2)
439 {
440         uint32_t base60_refresh_rates[] = {10, 20, 5};
441         uint8_t i;
442         uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
443         uint64_t frame_time_diff;
444
445         if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
446                 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
447                 dc_is_dp_signal(stream1->signal) &&
448                 dc_is_dp_signal(stream2->signal) &&
449                 false == stream1->has_non_synchronizable_pclk &&
450                 false == stream2->has_non_synchronizable_pclk &&
451                 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
452                 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
453                 /* disable refresh rates higher than 60Hz for now */
454                 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
455                                 stream1->timing.v_total > 60)
456                         return false;
457                 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
458                                 stream2->timing.v_total > 60)
459                         return false;
460                 frame_time_diff = (uint64_t)10000 *
461                         stream1->timing.h_total *
462                         stream1->timing.v_total *
463                         stream2->timing.pix_clk_100hz;
464                 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
465                 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
466                 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
467                 for (i = 0; i < rr_count; i++) {
468                         int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
469
470                         if (diff < 0)
471                                 diff = -diff;
472                         if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
473                                 return true;
474                 }
475         }
476         return false;
477 }
478
479 bool resource_are_streams_timing_synchronizable(
480         struct dc_stream_state *stream1,
481         struct dc_stream_state *stream2)
482 {
483         if (stream1->timing.h_total != stream2->timing.h_total)
484                 return false;
485
486         if (stream1->timing.v_total != stream2->timing.v_total)
487                 return false;
488
489         if (stream1->timing.h_addressable
490                                 != stream2->timing.h_addressable)
491                 return false;
492
493         if (stream1->timing.v_addressable
494                                 != stream2->timing.v_addressable)
495                 return false;
496
497         if (stream1->timing.v_front_porch
498                                 != stream2->timing.v_front_porch)
499                 return false;
500
501         if (stream1->timing.pix_clk_100hz
502                                 != stream2->timing.pix_clk_100hz)
503                 return false;
504
505         if (stream1->clamping.c_depth != stream2->clamping.c_depth)
506                 return false;
507
508         if (stream1->phy_pix_clk != stream2->phy_pix_clk
509                         && (!dc_is_dp_signal(stream1->signal)
510                         || !dc_is_dp_signal(stream2->signal)))
511                 return false;
512
513         if (stream1->view_format != stream2->view_format)
514                 return false;
515
516         if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
517                 return false;
518
519         return true;
520 }
521 static bool is_dp_and_hdmi_sharable(
522                 struct dc_stream_state *stream1,
523                 struct dc_stream_state *stream2)
524 {
525         if (stream1->ctx->dc->caps.disable_dp_clk_share)
526                 return false;
527
528         if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
529                 stream2->clamping.c_depth != COLOR_DEPTH_888)
530                 return false;
531
532         return true;
533
534 }
535
536 static bool is_sharable_clk_src(
537         const struct pipe_ctx *pipe_with_clk_src,
538         const struct pipe_ctx *pipe)
539 {
540         if (pipe_with_clk_src->clock_source == NULL)
541                 return false;
542
543         if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
544                 return false;
545
546         if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
547                 (dc_is_dp_signal(pipe->stream->signal) &&
548                 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
549                                      pipe->stream)))
550                 return false;
551
552         if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
553                         && dc_is_dual_link_signal(pipe->stream->signal))
554                 return false;
555
556         if (dc_is_hdmi_signal(pipe->stream->signal)
557                         && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
558                 return false;
559
560         if (!resource_are_streams_timing_synchronizable(
561                         pipe_with_clk_src->stream, pipe->stream))
562                 return false;
563
564         return true;
565 }
566
567 struct clock_source *resource_find_used_clk_src_for_sharing(
568                                         struct resource_context *res_ctx,
569                                         struct pipe_ctx *pipe_ctx)
570 {
571         int i;
572
573         for (i = 0; i < MAX_PIPES; i++) {
574                 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
575                         return res_ctx->pipe_ctx[i].clock_source;
576         }
577
578         return NULL;
579 }
580
581 static enum pixel_format convert_pixel_format_to_dalsurface(
582                 enum surface_pixel_format surface_pixel_format)
583 {
584         enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
585
586         switch (surface_pixel_format) {
587         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
588                 dal_pixel_format = PIXEL_FORMAT_INDEX8;
589                 break;
590         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
591                 dal_pixel_format = PIXEL_FORMAT_RGB565;
592                 break;
593         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
594                 dal_pixel_format = PIXEL_FORMAT_RGB565;
595                 break;
596         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
597                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
598                 break;
599         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
600                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
601                 break;
602         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
603                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
604                 break;
605         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
606                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
607                 break;
608         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
609                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
610                 break;
611         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
612         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
613                 dal_pixel_format = PIXEL_FORMAT_FP16;
614                 break;
615         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
616         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
617                 dal_pixel_format = PIXEL_FORMAT_420BPP8;
618                 break;
619         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
620         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
621                 dal_pixel_format = PIXEL_FORMAT_420BPP10;
622                 break;
623         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
624         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
625         default:
626                 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
627                 break;
628         }
629         return dal_pixel_format;
630 }
631
632 static inline void get_vp_scan_direction(
633         enum dc_rotation_angle rotation,
634         bool horizontal_mirror,
635         bool *orthogonal_rotation,
636         bool *flip_vert_scan_dir,
637         bool *flip_horz_scan_dir)
638 {
639         *orthogonal_rotation = false;
640         *flip_vert_scan_dir = false;
641         *flip_horz_scan_dir = false;
642         if (rotation == ROTATION_ANGLE_180) {
643                 *flip_vert_scan_dir = true;
644                 *flip_horz_scan_dir = true;
645         } else if (rotation == ROTATION_ANGLE_90) {
646                 *orthogonal_rotation = true;
647                 *flip_horz_scan_dir = true;
648         } else if (rotation == ROTATION_ANGLE_270) {
649                 *orthogonal_rotation = true;
650                 *flip_vert_scan_dir = true;
651         }
652
653         if (horizontal_mirror)
654                 *flip_horz_scan_dir = !*flip_horz_scan_dir;
655 }
656
657 int get_num_mpc_splits(struct pipe_ctx *pipe)
658 {
659         int mpc_split_count = 0;
660         struct pipe_ctx *other_pipe = pipe->bottom_pipe;
661
662         while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
663                 mpc_split_count++;
664                 other_pipe = other_pipe->bottom_pipe;
665         }
666         other_pipe = pipe->top_pipe;
667         while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
668                 mpc_split_count++;
669                 other_pipe = other_pipe->top_pipe;
670         }
671
672         return mpc_split_count;
673 }
674
675 int get_num_odm_splits(struct pipe_ctx *pipe)
676 {
677         int odm_split_count = 0;
678         struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
679         while (next_pipe) {
680                 odm_split_count++;
681                 next_pipe = next_pipe->next_odm_pipe;
682         }
683         pipe = pipe->prev_odm_pipe;
684         while (pipe) {
685                 odm_split_count++;
686                 pipe = pipe->prev_odm_pipe;
687         }
688         return odm_split_count;
689 }
690
691 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
692 {
693         *split_count = get_num_odm_splits(pipe_ctx);
694         *split_idx = 0;
695         if (*split_count == 0) {
696                 /*Check for mpc split*/
697                 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
698
699                 *split_count = get_num_mpc_splits(pipe_ctx);
700                 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
701                         (*split_idx)++;
702                         split_pipe = split_pipe->top_pipe;
703                 }
704         } else {
705                 /*Get odm split index*/
706                 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
707
708                 while (split_pipe) {
709                         (*split_idx)++;
710                         split_pipe = split_pipe->prev_odm_pipe;
711                 }
712         }
713 }
714
715 /*
716  * This is a preliminary vp size calculation to allow us to check taps support.
717  * The result is completely overridden afterwards.
718  */
719 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
720 {
721         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
722
723         data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
724         data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
725         data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
726         data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
727         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
728                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
729                 swap(data->viewport.width, data->viewport.height);
730                 swap(data->viewport_c.width, data->viewport_c.height);
731         }
732 }
733
734 static void calculate_recout(struct pipe_ctx *pipe_ctx)
735 {
736         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
737         const struct dc_stream_state *stream = pipe_ctx->stream;
738         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
739         struct rect surf_clip = plane_state->clip_rect;
740         bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
741         int split_count, split_idx;
742
743         calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
744         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
745                 split_idx = 0;
746
747         /*
748          * Only the leftmost ODM pipe should be offset by a nonzero distance
749          */
750         if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
751                 data->recout.x = stream->dst.x;
752                 if (stream->src.x < surf_clip.x)
753                         data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
754                                                 / stream->src.width;
755         } else
756                 data->recout.x = 0;
757
758         if (stream->src.x > surf_clip.x)
759                 surf_clip.width -= stream->src.x - surf_clip.x;
760         data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
761         if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
762                 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
763
764         data->recout.y = stream->dst.y;
765         if (stream->src.y < surf_clip.y)
766                 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
767                                                 / stream->src.height;
768         else if (stream->src.y > surf_clip.y)
769                 surf_clip.height -= stream->src.y - surf_clip.y;
770
771         data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
772         if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
773                 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
774
775         /* Handle h & v split */
776         if (split_tb) {
777                 ASSERT(data->recout.height % 2 == 0);
778                 data->recout.height /= 2;
779         } else if (split_count) {
780                 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
781                         /* extra pixels in the division remainder need to go to pipes after
782                          * the extra pixel index minus one(epimo) defined here as:
783                          */
784                         int epimo = split_count - data->recout.width % (split_count + 1);
785
786                         data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
787                         if (split_idx > epimo)
788                                 data->recout.x += split_idx - epimo - 1;
789                         ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
790                         data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
791                 } else {
792                         /* odm */
793                         if (split_idx == split_count) {
794                                 /* rightmost pipe is the remainder recout */
795                                 data->recout.width -= data->h_active * split_count - data->recout.x;
796
797                                 /* ODM combine cases with MPO we can get negative widths */
798                                 if (data->recout.width < 0)
799                                         data->recout.width = 0;
800
801                                 data->recout.x = 0;
802                         } else
803                                 data->recout.width = data->h_active - data->recout.x;
804                 }
805         }
806 }
807
808 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
809 {
810         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
811         const struct dc_stream_state *stream = pipe_ctx->stream;
812         struct rect surf_src = plane_state->src_rect;
813         const int in_w = stream->src.width;
814         const int in_h = stream->src.height;
815         const int out_w = stream->dst.width;
816         const int out_h = stream->dst.height;
817
818         /*Swap surf_src height and width since scaling ratios are in recout rotation*/
819         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
820                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
821                 swap(surf_src.height, surf_src.width);
822
823         pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
824                                         surf_src.width,
825                                         plane_state->dst_rect.width);
826         pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
827                                         surf_src.height,
828                                         plane_state->dst_rect.height);
829
830         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
831                 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
832         else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
833                 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
834
835         pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
836                 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
837         pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
838                 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
839
840         pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
841         pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
842
843         if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
844                         || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
845                 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
846                 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
847         }
848         pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
849                         pipe_ctx->plane_res.scl_data.ratios.horz, 19);
850         pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
851                         pipe_ctx->plane_res.scl_data.ratios.vert, 19);
852         pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
853                         pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
854         pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
855                         pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
856 }
857
858
859 /*
860  * We completely calculate vp offset, size and inits here based entirely on scaling
861  * ratios and recout for pixel perfect pipe combine.
862  */
863 static void calculate_init_and_vp(
864                 bool flip_scan_dir,
865                 int recout_offset_within_recout_full,
866                 int recout_size,
867                 int src_size,
868                 int taps,
869                 struct fixed31_32 ratio,
870                 struct fixed31_32 *init,
871                 int *vp_offset,
872                 int *vp_size)
873 {
874         struct fixed31_32 temp;
875         int int_part;
876
877         /*
878          * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
879          * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
880          * All following calculations are based on this logic.
881          *
882          * Init calculated according to formula:
883          *      init = (scaling_ratio + number_of_taps + 1) / 2
884          *      init_bot = init + scaling_ratio
885          *      to get pixel perfect combine add the fraction from calculating vp offset
886          */
887         temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
888         *vp_offset = dc_fixpt_floor(temp);
889         temp.value &= 0xffffffff;
890         *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
891                         dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
892         /*
893          * If viewport has non 0 offset and there are more taps than covered by init then
894          * we should decrease the offset and increase init so we are never sampling
895          * outside of viewport.
896          */
897         int_part = dc_fixpt_floor(*init);
898         if (int_part < taps) {
899                 int_part = taps - int_part;
900                 if (int_part > *vp_offset)
901                         int_part = *vp_offset;
902                 *vp_offset -= int_part;
903                 *init = dc_fixpt_add_int(*init, int_part);
904         }
905         /*
906          * If taps are sampling outside of viewport at end of recout and there are more pixels
907          * available in the surface we should increase the viewport size, regardless set vp to
908          * only what is used.
909          */
910         temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
911         *vp_size = dc_fixpt_floor(temp);
912         if (*vp_size + *vp_offset > src_size)
913                 *vp_size = src_size - *vp_offset;
914
915         /* We did all the math assuming we are scanning same direction as display does,
916          * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
917          * is flipped we simply need to calculate offset from the other side of plane.
918          * Note that outside of viewport all scaling hardware works in recout space.
919          */
920         if (flip_scan_dir)
921                 *vp_offset = src_size - *vp_offset - *vp_size;
922 }
923
924 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
925 {
926         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
927         const struct dc_stream_state *stream = pipe_ctx->stream;
928         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
929         struct rect src = plane_state->src_rect;
930         int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
931                                 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
932         int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
933         bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
934
935         calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
936         /*
937          * recout full is what the recout would have been if we didnt clip
938          * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
939          * offsets of recout within recout full because those are the directions
940          * we scan from and therefore the only ones that affect inits.
941          */
942         recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
943                         * stream->dst.width / stream->src.width;
944         recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
945                         * stream->dst.height / stream->src.height;
946         if (pipe_ctx->prev_odm_pipe && split_idx)
947                 ro_lb = data->h_active * split_idx - recout_full_x;
948         else
949                 ro_lb = data->recout.x - recout_full_x;
950         ro_tb = data->recout.y - recout_full_y;
951         ASSERT(ro_lb >= 0 && ro_tb >= 0);
952
953         /*
954          * Work in recout rotation since that requires less transformations
955          */
956         get_vp_scan_direction(
957                         plane_state->rotation,
958                         plane_state->horizontal_mirror,
959                         &orthogonal_rotation,
960                         &flip_vert_scan_dir,
961                         &flip_horz_scan_dir);
962
963         if (orthogonal_rotation) {
964                 swap(src.width, src.height);
965                 swap(flip_vert_scan_dir, flip_horz_scan_dir);
966         }
967
968         calculate_init_and_vp(
969                         flip_horz_scan_dir,
970                         ro_lb,
971                         data->recout.width,
972                         src.width,
973                         data->taps.h_taps,
974                         data->ratios.horz,
975                         &data->inits.h,
976                         &data->viewport.x,
977                         &data->viewport.width);
978         calculate_init_and_vp(
979                         flip_horz_scan_dir,
980                         ro_lb,
981                         data->recout.width,
982                         src.width / vpc_div,
983                         data->taps.h_taps_c,
984                         data->ratios.horz_c,
985                         &data->inits.h_c,
986                         &data->viewport_c.x,
987                         &data->viewport_c.width);
988         calculate_init_and_vp(
989                         flip_vert_scan_dir,
990                         ro_tb,
991                         data->recout.height,
992                         src.height,
993                         data->taps.v_taps,
994                         data->ratios.vert,
995                         &data->inits.v,
996                         &data->viewport.y,
997                         &data->viewport.height);
998         calculate_init_and_vp(
999                         flip_vert_scan_dir,
1000                         ro_tb,
1001                         data->recout.height,
1002                         src.height / vpc_div,
1003                         data->taps.v_taps_c,
1004                         data->ratios.vert_c,
1005                         &data->inits.v_c,
1006                         &data->viewport_c.y,
1007                         &data->viewport_c.height);
1008         if (orthogonal_rotation) {
1009                 swap(data->viewport.x, data->viewport.y);
1010                 swap(data->viewport.width, data->viewport.height);
1011                 swap(data->viewport_c.x, data->viewport_c.y);
1012                 swap(data->viewport_c.width, data->viewport_c.height);
1013         }
1014         data->viewport.x += src.x;
1015         data->viewport.y += src.y;
1016         ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1017         data->viewport_c.x += src.x / vpc_div;
1018         data->viewport_c.y += src.y / vpc_div;
1019 }
1020
1021 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1022 {
1023         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1024         struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1025         bool res = false;
1026         DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1027
1028         pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1029                         pipe_ctx->plane_state->format);
1030
1031         /* Timing borders are part of vactive that we are also supposed to skip in addition
1032          * to any stream dst offset. Since dm logic assumes dst is in addressable
1033          * space we need to add the the left and top borders to dst offsets temporarily.
1034          * TODO: fix in DM, stream dst is supposed to be in vactive
1035          */
1036         pipe_ctx->stream->dst.x += timing->h_border_left;
1037         pipe_ctx->stream->dst.y += timing->v_border_top;
1038
1039         /* Calculate H and V active size */
1040         pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1041                         timing->h_border_left + timing->h_border_right;
1042         pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1043                 timing->v_border_top + timing->v_border_bottom;
1044         if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1045                 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1046
1047         /* depends on h_active */
1048         calculate_recout(pipe_ctx);
1049         /* depends on pixel format */
1050         calculate_scaling_ratios(pipe_ctx);
1051         /* depends on scaling ratios and recout, does not calculate offset yet */
1052         calculate_viewport_size(pipe_ctx);
1053
1054         /*
1055          * LB calculations depend on vp size, h/v_active and scaling ratios
1056          * Setting line buffer pixel depth to 24bpp yields banding
1057          * on certain displays, such as the Sharp 4k. 36bpp is needed
1058          * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1059          * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1060          * precision on at least DCN display engines. However, at least
1061          * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1062          * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1063          * did not show such problems, so this seems to be the exception.
1064          */
1065         if (plane_state->ctx->dce_version != DCE_VERSION_11_0)
1066                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1067         else
1068                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1069
1070         pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1071
1072         if (pipe_ctx->plane_res.xfm != NULL)
1073                 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1074                                 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1075
1076         if (pipe_ctx->plane_res.dpp != NULL)
1077                 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1078                                 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1079
1080
1081         if (!res) {
1082                 /* Try 24 bpp linebuffer */
1083                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1084
1085                 if (pipe_ctx->plane_res.xfm != NULL)
1086                         res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1087                                         pipe_ctx->plane_res.xfm,
1088                                         &pipe_ctx->plane_res.scl_data,
1089                                         &plane_state->scaling_quality);
1090
1091                 if (pipe_ctx->plane_res.dpp != NULL)
1092                         res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1093                                         pipe_ctx->plane_res.dpp,
1094                                         &pipe_ctx->plane_res.scl_data,
1095                                         &plane_state->scaling_quality);
1096         }
1097
1098         /*
1099          * Depends on recout, scaling ratios, h_active and taps
1100          * May need to re-check lb size after this in some obscure scenario
1101          */
1102         if (res)
1103                 calculate_inits_and_viewports(pipe_ctx);
1104
1105         /*
1106          * Handle side by side and top bottom 3d recout offsets after vp calculation
1107          * since 3d is special and needs to calculate vp as if there is no recout offset
1108          * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1109          */
1110         if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1111                 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1112                         (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1113                                 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1114                 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1115                         pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1116                 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1117                         pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1118         }
1119
1120         if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1121                         pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1122                 res = false;
1123
1124         DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1125                         "src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1126                         __func__,
1127                         pipe_ctx->pipe_idx,
1128                         pipe_ctx->plane_res.scl_data.viewport.height,
1129                         pipe_ctx->plane_res.scl_data.viewport.width,
1130                         pipe_ctx->plane_res.scl_data.viewport.x,
1131                         pipe_ctx->plane_res.scl_data.viewport.y,
1132                         pipe_ctx->plane_res.scl_data.recout.height,
1133                         pipe_ctx->plane_res.scl_data.recout.width,
1134                         pipe_ctx->plane_res.scl_data.recout.x,
1135                         pipe_ctx->plane_res.scl_data.recout.y,
1136                         pipe_ctx->plane_res.scl_data.h_active,
1137                         pipe_ctx->plane_res.scl_data.v_active,
1138                         plane_state->src_rect.height,
1139                         plane_state->src_rect.width,
1140                         plane_state->src_rect.x,
1141                         plane_state->src_rect.y,
1142                         plane_state->dst_rect.height,
1143                         plane_state->dst_rect.width,
1144                         plane_state->dst_rect.x,
1145                         plane_state->dst_rect.y,
1146                         plane_state->clip_rect.height,
1147                         plane_state->clip_rect.width,
1148                         plane_state->clip_rect.x,
1149                         plane_state->clip_rect.y);
1150
1151         pipe_ctx->stream->dst.x -= timing->h_border_left;
1152         pipe_ctx->stream->dst.y -= timing->v_border_top;
1153
1154         return res;
1155 }
1156
1157
1158 enum dc_status resource_build_scaling_params_for_context(
1159         const struct dc  *dc,
1160         struct dc_state *context)
1161 {
1162         int i;
1163
1164         for (i = 0; i < MAX_PIPES; i++) {
1165                 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1166                                 context->res_ctx.pipe_ctx[i].stream != NULL)
1167                         if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1168                                 return DC_FAIL_SCALING;
1169         }
1170
1171         return DC_OK;
1172 }
1173
1174 struct pipe_ctx *find_idle_secondary_pipe(
1175                 struct resource_context *res_ctx,
1176                 const struct resource_pool *pool,
1177                 const struct pipe_ctx *primary_pipe)
1178 {
1179         int i;
1180         struct pipe_ctx *secondary_pipe = NULL;
1181
1182         /*
1183          * We add a preferred pipe mapping to avoid the chance that
1184          * MPCCs already in use will need to be reassigned to other trees.
1185          * For example, if we went with the strict, assign backwards logic:
1186          *
1187          * (State 1)
1188          * Display A on, no surface, top pipe = 0
1189          * Display B on, no surface, top pipe = 1
1190          *
1191          * (State 2)
1192          * Display A on, no surface, top pipe = 0
1193          * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1194          *
1195          * (State 3)
1196          * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1197          * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1198          *
1199          * The state 2->3 transition requires remapping MPCC 5 from display B
1200          * to display A.
1201          *
1202          * However, with the preferred pipe logic, state 2 would look like:
1203          *
1204          * (State 2)
1205          * Display A on, no surface, top pipe = 0
1206          * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1207          *
1208          * This would then cause 2->3 to not require remapping any MPCCs.
1209          */
1210         if (primary_pipe) {
1211                 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1212                 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1213                         secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1214                         secondary_pipe->pipe_idx = preferred_pipe_idx;
1215                 }
1216         }
1217
1218         /*
1219          * search backwards for the second pipe to keep pipe
1220          * assignment more consistent
1221          */
1222         if (!secondary_pipe)
1223                 for (i = pool->pipe_count - 1; i >= 0; i--) {
1224                         if (res_ctx->pipe_ctx[i].stream == NULL) {
1225                                 secondary_pipe = &res_ctx->pipe_ctx[i];
1226                                 secondary_pipe->pipe_idx = i;
1227                                 break;
1228                         }
1229                 }
1230
1231         return secondary_pipe;
1232 }
1233
1234 struct pipe_ctx *resource_get_head_pipe_for_stream(
1235                 struct resource_context *res_ctx,
1236                 struct dc_stream_state *stream)
1237 {
1238         int i;
1239
1240         for (i = 0; i < MAX_PIPES; i++) {
1241                 if (res_ctx->pipe_ctx[i].stream == stream
1242                                 && !res_ctx->pipe_ctx[i].top_pipe
1243                                 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1244                         return &res_ctx->pipe_ctx[i];
1245         }
1246         return NULL;
1247 }
1248
1249 static struct pipe_ctx *resource_get_tail_pipe(
1250                 struct resource_context *res_ctx,
1251                 struct pipe_ctx *head_pipe)
1252 {
1253         struct pipe_ctx *tail_pipe;
1254
1255         tail_pipe = head_pipe->bottom_pipe;
1256
1257         while (tail_pipe) {
1258                 head_pipe = tail_pipe;
1259                 tail_pipe = tail_pipe->bottom_pipe;
1260         }
1261
1262         return head_pipe;
1263 }
1264
1265 /*
1266  * A free_pipe for a stream is defined here as a pipe
1267  * that has no surface attached yet
1268  */
1269 static struct pipe_ctx *acquire_free_pipe_for_head(
1270                 struct dc_state *context,
1271                 const struct resource_pool *pool,
1272                 struct pipe_ctx *head_pipe)
1273 {
1274         int i;
1275         struct resource_context *res_ctx = &context->res_ctx;
1276
1277         if (!head_pipe->plane_state)
1278                 return head_pipe;
1279
1280         /* Re-use pipe already acquired for this stream if available*/
1281         for (i = pool->pipe_count - 1; i >= 0; i--) {
1282                 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1283                                 !res_ctx->pipe_ctx[i].plane_state) {
1284                         return &res_ctx->pipe_ctx[i];
1285                 }
1286         }
1287
1288         /*
1289          * At this point we have no re-useable pipe for this stream and we need
1290          * to acquire an idle one to satisfy the request
1291          */
1292
1293         if (!pool->funcs->acquire_idle_pipe_for_layer)
1294                 return NULL;
1295
1296         return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1297 }
1298
1299 #if defined(CONFIG_DRM_AMD_DC_DCN)
1300 static int acquire_first_split_pipe(
1301                 struct resource_context *res_ctx,
1302                 const struct resource_pool *pool,
1303                 struct dc_stream_state *stream)
1304 {
1305         int i;
1306
1307         for (i = 0; i < pool->pipe_count; i++) {
1308                 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1309
1310                 if (split_pipe->top_pipe &&
1311                                 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1312                         split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1313                         if (split_pipe->bottom_pipe)
1314                                 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1315
1316                         if (split_pipe->top_pipe->plane_state)
1317                                 resource_build_scaling_params(split_pipe->top_pipe);
1318
1319                         memset(split_pipe, 0, sizeof(*split_pipe));
1320                         split_pipe->stream_res.tg = pool->timing_generators[i];
1321                         split_pipe->plane_res.hubp = pool->hubps[i];
1322                         split_pipe->plane_res.ipp = pool->ipps[i];
1323                         split_pipe->plane_res.dpp = pool->dpps[i];
1324                         split_pipe->stream_res.opp = pool->opps[i];
1325                         split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1326                         split_pipe->pipe_idx = i;
1327
1328                         split_pipe->stream = stream;
1329                         return i;
1330                 }
1331         }
1332         return -1;
1333 }
1334 #endif
1335
1336 bool dc_add_plane_to_context(
1337                 const struct dc *dc,
1338                 struct dc_stream_state *stream,
1339                 struct dc_plane_state *plane_state,
1340                 struct dc_state *context)
1341 {
1342         int i;
1343         struct resource_pool *pool = dc->res_pool;
1344         struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1345         struct dc_stream_status *stream_status = NULL;
1346
1347         for (i = 0; i < context->stream_count; i++)
1348                 if (context->streams[i] == stream) {
1349                         stream_status = &context->stream_status[i];
1350                         break;
1351                 }
1352         if (stream_status == NULL) {
1353                 dm_error("Existing stream not found; failed to attach surface!\n");
1354                 return false;
1355         }
1356
1357
1358         if (stream_status->plane_count == MAX_SURFACE_NUM) {
1359                 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1360                                 plane_state, MAX_SURFACE_NUM);
1361                 return false;
1362         }
1363
1364         head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1365
1366         if (!head_pipe) {
1367                 dm_error("Head pipe not found for stream_state %p !\n", stream);
1368                 return false;
1369         }
1370
1371         /* retain new surface, but only once per stream */
1372         dc_plane_state_retain(plane_state);
1373
1374         while (head_pipe) {
1375                 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1376
1377         #if defined(CONFIG_DRM_AMD_DC_DCN)
1378                 if (!free_pipe) {
1379                         int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1380                         if (pipe_idx >= 0)
1381                                 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1382                 }
1383         #endif
1384                 if (!free_pipe) {
1385                         dc_plane_state_release(plane_state);
1386                         return false;
1387                 }
1388
1389                 free_pipe->plane_state = plane_state;
1390
1391                 if (head_pipe != free_pipe) {
1392                         tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1393                         ASSERT(tail_pipe);
1394                         free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1395                         free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1396                         free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1397                         free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1398                         free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1399                         free_pipe->clock_source = tail_pipe->clock_source;
1400                         free_pipe->top_pipe = tail_pipe;
1401                         tail_pipe->bottom_pipe = free_pipe;
1402                         if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1403                                 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1404                                 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1405                         }
1406                         if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1407                                 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1408                                 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1409                         }
1410                 }
1411                 head_pipe = head_pipe->next_odm_pipe;
1412         }
1413         /* assign new surfaces*/
1414         stream_status->plane_states[stream_status->plane_count] = plane_state;
1415
1416         stream_status->plane_count++;
1417
1418         return true;
1419 }
1420
1421 bool dc_remove_plane_from_context(
1422                 const struct dc *dc,
1423                 struct dc_stream_state *stream,
1424                 struct dc_plane_state *plane_state,
1425                 struct dc_state *context)
1426 {
1427         int i;
1428         struct dc_stream_status *stream_status = NULL;
1429         struct resource_pool *pool = dc->res_pool;
1430
1431         for (i = 0; i < context->stream_count; i++)
1432                 if (context->streams[i] == stream) {
1433                         stream_status = &context->stream_status[i];
1434                         break;
1435                 }
1436
1437         if (stream_status == NULL) {
1438                 dm_error("Existing stream not found; failed to remove plane.\n");
1439                 return false;
1440         }
1441
1442         /* release pipe for plane*/
1443         for (i = pool->pipe_count - 1; i >= 0; i--) {
1444                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1445
1446                 if (pipe_ctx->plane_state == plane_state) {
1447                         if (pipe_ctx->top_pipe)
1448                                 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1449
1450                         /* Second condition is to avoid setting NULL to top pipe
1451                          * of tail pipe making it look like head pipe in subsequent
1452                          * deletes
1453                          */
1454                         if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1455                                 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1456
1457                         /*
1458                          * For head pipe detach surfaces from pipe for tail
1459                          * pipe just zero it out
1460                          */
1461                         if (!pipe_ctx->top_pipe)
1462                                 pipe_ctx->plane_state = NULL;
1463                         else
1464                                 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1465                 }
1466         }
1467
1468
1469         for (i = 0; i < stream_status->plane_count; i++) {
1470                 if (stream_status->plane_states[i] == plane_state) {
1471
1472                         dc_plane_state_release(stream_status->plane_states[i]);
1473                         break;
1474                 }
1475         }
1476
1477         if (i == stream_status->plane_count) {
1478                 dm_error("Existing plane_state not found; failed to detach it!\n");
1479                 return false;
1480         }
1481
1482         stream_status->plane_count--;
1483
1484         /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1485         for (; i < stream_status->plane_count; i++)
1486                 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1487
1488         stream_status->plane_states[stream_status->plane_count] = NULL;
1489
1490         return true;
1491 }
1492
1493 bool dc_rem_all_planes_for_stream(
1494                 const struct dc *dc,
1495                 struct dc_stream_state *stream,
1496                 struct dc_state *context)
1497 {
1498         int i, old_plane_count;
1499         struct dc_stream_status *stream_status = NULL;
1500         struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1501
1502         for (i = 0; i < context->stream_count; i++)
1503                         if (context->streams[i] == stream) {
1504                                 stream_status = &context->stream_status[i];
1505                                 break;
1506                         }
1507
1508         if (stream_status == NULL) {
1509                 dm_error("Existing stream %p not found!\n", stream);
1510                 return false;
1511         }
1512
1513         old_plane_count = stream_status->plane_count;
1514
1515         for (i = 0; i < old_plane_count; i++)
1516                 del_planes[i] = stream_status->plane_states[i];
1517
1518         for (i = 0; i < old_plane_count; i++)
1519                 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1520                         return false;
1521
1522         return true;
1523 }
1524
1525 static bool add_all_planes_for_stream(
1526                 const struct dc *dc,
1527                 struct dc_stream_state *stream,
1528                 const struct dc_validation_set set[],
1529                 int set_count,
1530                 struct dc_state *context)
1531 {
1532         int i, j;
1533
1534         for (i = 0; i < set_count; i++)
1535                 if (set[i].stream == stream)
1536                         break;
1537
1538         if (i == set_count) {
1539                 dm_error("Stream %p not found in set!\n", stream);
1540                 return false;
1541         }
1542
1543         for (j = 0; j < set[i].plane_count; j++)
1544                 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1545                         return false;
1546
1547         return true;
1548 }
1549
1550 bool dc_add_all_planes_for_stream(
1551                 const struct dc *dc,
1552                 struct dc_stream_state *stream,
1553                 struct dc_plane_state * const *plane_states,
1554                 int plane_count,
1555                 struct dc_state *context)
1556 {
1557         struct dc_validation_set set;
1558         int i;
1559
1560         set.stream = stream;
1561         set.plane_count = plane_count;
1562
1563         for (i = 0; i < plane_count; i++)
1564                 set.plane_states[i] = plane_states[i];
1565
1566         return add_all_planes_for_stream(dc, stream, &set, 1, context);
1567 }
1568
1569 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1570                 struct dc_stream_state *new_stream)
1571 {
1572         if (cur_stream == NULL)
1573                 return true;
1574
1575         /* If output color space is changed, need to reprogram info frames */
1576         if (cur_stream->output_color_space != new_stream->output_color_space)
1577                 return true;
1578
1579         return memcmp(
1580                 &cur_stream->timing,
1581                 &new_stream->timing,
1582                 sizeof(struct dc_crtc_timing)) != 0;
1583 }
1584
1585 static bool are_stream_backends_same(
1586         struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1587 {
1588         if (stream_a == stream_b)
1589                 return true;
1590
1591         if (stream_a == NULL || stream_b == NULL)
1592                 return false;
1593
1594         if (is_timing_changed(stream_a, stream_b))
1595                 return false;
1596
1597         if (stream_a->dpms_off != stream_b->dpms_off)
1598                 return false;
1599
1600         return true;
1601 }
1602
1603 /*
1604  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1605  *
1606  * Checks if there a difference between the two states
1607  * that would require a mode change.
1608  *
1609  * Does not compare cursor position or attributes.
1610  */
1611 bool dc_is_stream_unchanged(
1612         struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1613 {
1614
1615         if (!are_stream_backends_same(old_stream, stream))
1616                 return false;
1617
1618         if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1619                 return false;
1620
1621         return true;
1622 }
1623
1624 /*
1625  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1626  */
1627 bool dc_is_stream_scaling_unchanged(
1628         struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1629 {
1630         if (old_stream == stream)
1631                 return true;
1632
1633         if (old_stream == NULL || stream == NULL)
1634                 return false;
1635
1636         if (memcmp(&old_stream->src,
1637                         &stream->src,
1638                         sizeof(struct rect)) != 0)
1639                 return false;
1640
1641         if (memcmp(&old_stream->dst,
1642                         &stream->dst,
1643                         sizeof(struct rect)) != 0)
1644                 return false;
1645
1646         return true;
1647 }
1648
1649 static void update_stream_engine_usage(
1650                 struct resource_context *res_ctx,
1651                 const struct resource_pool *pool,
1652                 struct stream_encoder *stream_enc,
1653                 bool acquired)
1654 {
1655         int i;
1656
1657         for (i = 0; i < pool->stream_enc_count; i++) {
1658                 if (pool->stream_enc[i] == stream_enc)
1659                         res_ctx->is_stream_enc_acquired[i] = acquired;
1660         }
1661 }
1662
1663 /* TODO: release audio object */
1664 void update_audio_usage(
1665                 struct resource_context *res_ctx,
1666                 const struct resource_pool *pool,
1667                 struct audio *audio,
1668                 bool acquired)
1669 {
1670         int i;
1671         for (i = 0; i < pool->audio_count; i++) {
1672                 if (pool->audios[i] == audio)
1673                         res_ctx->is_audio_acquired[i] = acquired;
1674         }
1675 }
1676
1677 static int acquire_first_free_pipe(
1678                 struct resource_context *res_ctx,
1679                 const struct resource_pool *pool,
1680                 struct dc_stream_state *stream)
1681 {
1682         int i;
1683
1684         for (i = 0; i < pool->pipe_count; i++) {
1685                 if (!res_ctx->pipe_ctx[i].stream) {
1686                         struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1687
1688                         pipe_ctx->stream_res.tg = pool->timing_generators[i];
1689                         pipe_ctx->plane_res.mi = pool->mis[i];
1690                         pipe_ctx->plane_res.hubp = pool->hubps[i];
1691                         pipe_ctx->plane_res.ipp = pool->ipps[i];
1692                         pipe_ctx->plane_res.xfm = pool->transforms[i];
1693                         pipe_ctx->plane_res.dpp = pool->dpps[i];
1694                         pipe_ctx->stream_res.opp = pool->opps[i];
1695                         if (pool->dpps[i])
1696                                 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1697                         pipe_ctx->pipe_idx = i;
1698
1699
1700                         pipe_ctx->stream = stream;
1701                         return i;
1702                 }
1703         }
1704         return -1;
1705 }
1706
1707 static struct audio *find_first_free_audio(
1708                 struct resource_context *res_ctx,
1709                 const struct resource_pool *pool,
1710                 enum engine_id id,
1711                 enum dce_version dc_version)
1712 {
1713         int i, available_audio_count;
1714
1715         available_audio_count = pool->audio_count;
1716
1717         for (i = 0; i < available_audio_count; i++) {
1718                 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1719                         /*we have enough audio endpoint, find the matching inst*/
1720                         if (id != i)
1721                                 continue;
1722                         return pool->audios[i];
1723                 }
1724         }
1725
1726         /* use engine id to find free audio */
1727         if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1728                 return pool->audios[id];
1729         }
1730         /*not found the matching one, first come first serve*/
1731         for (i = 0; i < available_audio_count; i++) {
1732                 if (res_ctx->is_audio_acquired[i] == false) {
1733                         return pool->audios[i];
1734                 }
1735         }
1736         return 0;
1737 }
1738
1739 /*
1740  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1741  */
1742 enum dc_status dc_add_stream_to_ctx(
1743                 struct dc *dc,
1744                 struct dc_state *new_ctx,
1745                 struct dc_stream_state *stream)
1746 {
1747         enum dc_status res;
1748         DC_LOGGER_INIT(dc->ctx->logger);
1749
1750         if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1751                 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1752                 return DC_ERROR_UNEXPECTED;
1753         }
1754
1755         new_ctx->streams[new_ctx->stream_count] = stream;
1756         dc_stream_retain(stream);
1757         new_ctx->stream_count++;
1758
1759         res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1760         if (res != DC_OK)
1761                 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1762
1763         return res;
1764 }
1765
1766 /*
1767  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1768  */
1769 enum dc_status dc_remove_stream_from_ctx(
1770                         struct dc *dc,
1771                         struct dc_state *new_ctx,
1772                         struct dc_stream_state *stream)
1773 {
1774         int i;
1775         struct dc_context *dc_ctx = dc->ctx;
1776         struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1777         struct pipe_ctx *odm_pipe;
1778
1779         if (!del_pipe) {
1780                 DC_ERROR("Pipe not found for stream %p !\n", stream);
1781                 return DC_ERROR_UNEXPECTED;
1782         }
1783
1784         odm_pipe = del_pipe->next_odm_pipe;
1785
1786         /* Release primary pipe */
1787         ASSERT(del_pipe->stream_res.stream_enc);
1788         update_stream_engine_usage(
1789                         &new_ctx->res_ctx,
1790                                 dc->res_pool,
1791                         del_pipe->stream_res.stream_enc,
1792                         false);
1793         /* Release link encoder from stream in new dc_state. */
1794         if (dc->res_pool->funcs->link_enc_unassign)
1795                 dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1796
1797         if (del_pipe->stream_res.audio)
1798                 update_audio_usage(
1799                         &new_ctx->res_ctx,
1800                         dc->res_pool,
1801                         del_pipe->stream_res.audio,
1802                         false);
1803
1804         resource_unreference_clock_source(&new_ctx->res_ctx,
1805                                           dc->res_pool,
1806                                           del_pipe->clock_source);
1807
1808         if (dc->res_pool->funcs->remove_stream_from_ctx)
1809                 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1810
1811         while (odm_pipe) {
1812                 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1813
1814                 memset(odm_pipe, 0, sizeof(*odm_pipe));
1815                 odm_pipe = next_odm_pipe;
1816         }
1817         memset(del_pipe, 0, sizeof(*del_pipe));
1818
1819         for (i = 0; i < new_ctx->stream_count; i++)
1820                 if (new_ctx->streams[i] == stream)
1821                         break;
1822
1823         if (new_ctx->streams[i] != stream) {
1824                 DC_ERROR("Context doesn't have stream %p !\n", stream);
1825                 return DC_ERROR_UNEXPECTED;
1826         }
1827
1828         dc_stream_release(new_ctx->streams[i]);
1829         new_ctx->stream_count--;
1830
1831         /* Trim back arrays */
1832         for (; i < new_ctx->stream_count; i++) {
1833                 new_ctx->streams[i] = new_ctx->streams[i + 1];
1834                 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1835         }
1836
1837         new_ctx->streams[new_ctx->stream_count] = NULL;
1838         memset(
1839                         &new_ctx->stream_status[new_ctx->stream_count],
1840                         0,
1841                         sizeof(new_ctx->stream_status[0]));
1842
1843         return DC_OK;
1844 }
1845
1846 static struct dc_stream_state *find_pll_sharable_stream(
1847                 struct dc_stream_state *stream_needs_pll,
1848                 struct dc_state *context)
1849 {
1850         int i;
1851
1852         for (i = 0; i < context->stream_count; i++) {
1853                 struct dc_stream_state *stream_has_pll = context->streams[i];
1854
1855                 /* We are looking for non dp, non virtual stream */
1856                 if (resource_are_streams_timing_synchronizable(
1857                         stream_needs_pll, stream_has_pll)
1858                         && !dc_is_dp_signal(stream_has_pll->signal)
1859                         && stream_has_pll->link->connector_signal
1860                         != SIGNAL_TYPE_VIRTUAL)
1861                         return stream_has_pll;
1862
1863         }
1864
1865         return NULL;
1866 }
1867
1868 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1869 {
1870         uint32_t pix_clk = timing->pix_clk_100hz;
1871         uint32_t normalized_pix_clk = pix_clk;
1872
1873         if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1874                 pix_clk /= 2;
1875         if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1876                 switch (timing->display_color_depth) {
1877                 case COLOR_DEPTH_666:
1878                 case COLOR_DEPTH_888:
1879                         normalized_pix_clk = pix_clk;
1880                         break;
1881                 case COLOR_DEPTH_101010:
1882                         normalized_pix_clk = (pix_clk * 30) / 24;
1883                         break;
1884                 case COLOR_DEPTH_121212:
1885                         normalized_pix_clk = (pix_clk * 36) / 24;
1886                 break;
1887                 case COLOR_DEPTH_161616:
1888                         normalized_pix_clk = (pix_clk * 48) / 24;
1889                 break;
1890                 default:
1891                         ASSERT(0);
1892                 break;
1893                 }
1894         }
1895         return normalized_pix_clk;
1896 }
1897
1898 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1899 {
1900         /* update actual pixel clock on all streams */
1901         if (dc_is_hdmi_signal(stream->signal))
1902                 stream->phy_pix_clk = get_norm_pix_clk(
1903                         &stream->timing) / 10;
1904         else
1905                 stream->phy_pix_clk =
1906                         stream->timing.pix_clk_100hz / 10;
1907
1908         if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
1909                 stream->phy_pix_clk *= 2;
1910 }
1911
1912 static int acquire_resource_from_hw_enabled_state(
1913                 struct resource_context *res_ctx,
1914                 const struct resource_pool *pool,
1915                 struct dc_stream_state *stream)
1916 {
1917         struct dc_link *link = stream->link;
1918         unsigned int i, inst, tg_inst = 0;
1919
1920         /* Check for enabled DIG to identify enabled display */
1921         if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1922                 return -1;
1923
1924         inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1925
1926         if (inst == ENGINE_ID_UNKNOWN)
1927                 return -1;
1928
1929         for (i = 0; i < pool->stream_enc_count; i++) {
1930                 if (pool->stream_enc[i]->id == inst) {
1931                         tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
1932                                 pool->stream_enc[i]);
1933                         break;
1934                 }
1935         }
1936
1937         // tg_inst not found
1938         if (i == pool->stream_enc_count)
1939                 return -1;
1940
1941         if (tg_inst >= pool->timing_generator_count)
1942                 return -1;
1943
1944         if (!res_ctx->pipe_ctx[tg_inst].stream) {
1945                 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
1946
1947                 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
1948                 pipe_ctx->plane_res.mi = pool->mis[tg_inst];
1949                 pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
1950                 pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
1951                 pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
1952                 pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
1953                 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
1954
1955                 if (pool->dpps[tg_inst]) {
1956                         pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
1957
1958                         // Read DPP->MPCC->OPP Pipe from HW State
1959                         if (pool->mpc->funcs->read_mpcc_state) {
1960                                 struct mpcc_state s = {0};
1961
1962                                 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
1963
1964                                 if (s.dpp_id < MAX_MPCC)
1965                                         pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
1966
1967                                 if (s.bot_mpcc_id < MAX_MPCC)
1968                                         pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
1969                                                         &pool->mpc->mpcc_array[s.bot_mpcc_id];
1970
1971                                 if (s.opp_id < MAX_OPP)
1972                                         pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
1973                         }
1974                 }
1975                 pipe_ctx->pipe_idx = tg_inst;
1976
1977                 pipe_ctx->stream = stream;
1978                 return tg_inst;
1979         }
1980
1981         return -1;
1982 }
1983
1984 static void mark_seamless_boot_stream(
1985                 const struct dc  *dc,
1986                 struct dc_stream_state *stream)
1987 {
1988         struct dc_bios *dcb = dc->ctx->dc_bios;
1989
1990         /* TODO: Check Linux */
1991         if (dc->config.allow_seamless_boot_optimization &&
1992                         !dcb->funcs->is_accelerated_mode(dcb)) {
1993                 if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
1994                         stream->apply_seamless_boot_optimization = true;
1995         }
1996 }
1997
1998 enum dc_status resource_map_pool_resources(
1999                 const struct dc  *dc,
2000                 struct dc_state *context,
2001                 struct dc_stream_state *stream)
2002 {
2003         const struct resource_pool *pool = dc->res_pool;
2004         int i;
2005         struct dc_context *dc_ctx = dc->ctx;
2006         struct pipe_ctx *pipe_ctx = NULL;
2007         int pipe_idx = -1;
2008
2009         calculate_phy_pix_clks(stream);
2010
2011         mark_seamless_boot_stream(dc, stream);
2012
2013         if (stream->apply_seamless_boot_optimization) {
2014                 pipe_idx = acquire_resource_from_hw_enabled_state(
2015                                 &context->res_ctx,
2016                                 pool,
2017                                 stream);
2018                 if (pipe_idx < 0)
2019                         /* hw resource was assigned to other stream */
2020                         stream->apply_seamless_boot_optimization = false;
2021         }
2022
2023         if (pipe_idx < 0)
2024                 /* acquire new resources */
2025                 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2026
2027 #ifdef CONFIG_DRM_AMD_DC_DCN
2028         if (pipe_idx < 0)
2029                 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2030 #endif
2031
2032         if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2033                 return DC_NO_CONTROLLER_RESOURCE;
2034
2035         pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2036
2037         pipe_ctx->stream_res.stream_enc =
2038                 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2039                         &context->res_ctx, pool, stream);
2040
2041         if (!pipe_ctx->stream_res.stream_enc)
2042                 return DC_NO_STREAM_ENC_RESOURCE;
2043
2044         update_stream_engine_usage(
2045                 &context->res_ctx, pool,
2046                 pipe_ctx->stream_res.stream_enc,
2047                 true);
2048
2049         /* TODO: Add check if ASIC support and EDID audio */
2050         if (!stream->converter_disable_audio &&
2051             dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2052             stream->audio_info.mode_count && stream->audio_info.flags.all) {
2053                 pipe_ctx->stream_res.audio = find_first_free_audio(
2054                 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2055
2056                 /*
2057                  * Audio assigned in order first come first get.
2058                  * There are asics which has number of audio
2059                  * resources less then number of pipes
2060                  */
2061                 if (pipe_ctx->stream_res.audio)
2062                         update_audio_usage(&context->res_ctx, pool,
2063                                            pipe_ctx->stream_res.audio, true);
2064         }
2065
2066         /* Add ABM to the resource if on EDP */
2067         if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2068 #if defined(CONFIG_DRM_AMD_DC_DCN)
2069                 if (pool->abm)
2070                         pipe_ctx->stream_res.abm = pool->abm;
2071                 else
2072                         pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2073 #else
2074                 pipe_ctx->stream_res.abm = pool->abm;
2075 #endif
2076         }
2077
2078         for (i = 0; i < context->stream_count; i++)
2079                 if (context->streams[i] == stream) {
2080                         context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2081                         context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2082                         context->stream_status[i].audio_inst =
2083                                 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2084
2085                         return DC_OK;
2086                 }
2087
2088         DC_ERROR("Stream %p not found in new ctx!\n", stream);
2089         return DC_ERROR_UNEXPECTED;
2090 }
2091
2092 /**
2093  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2094  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2095  * @dc: copy out of dc->current_state
2096  * @dst_ctx: copy into this
2097  */
2098 void dc_resource_state_copy_construct_current(
2099                 const struct dc *dc,
2100                 struct dc_state *dst_ctx)
2101 {
2102         dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2103 }
2104
2105
2106 void dc_resource_state_construct(
2107                 const struct dc *dc,
2108                 struct dc_state *dst_ctx)
2109 {
2110         dst_ctx->clk_mgr = dc->clk_mgr;
2111 }
2112
2113
2114 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2115 {
2116         return dc->res_pool->res_cap->num_dsc > 0;
2117 }
2118
2119
2120 /**
2121  * dc_validate_global_state() - Determine if HW can support a given state
2122  * Checks HW resource availability and bandwidth requirement.
2123  * @dc: dc struct for this driver
2124  * @new_ctx: state to be validated
2125  * @fast_validate: set to true if only yes/no to support matters
2126  *
2127  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2128  */
2129 enum dc_status dc_validate_global_state(
2130                 struct dc *dc,
2131                 struct dc_state *new_ctx,
2132                 bool fast_validate)
2133 {
2134         enum dc_status result = DC_ERROR_UNEXPECTED;
2135         int i, j;
2136
2137         if (!new_ctx)
2138                 return DC_ERROR_UNEXPECTED;
2139 #if defined(CONFIG_DRM_AMD_DC_DCN)
2140
2141         /*
2142          * Update link encoder to stream assignment.
2143          * TODO: Split out reason allocation from validation.
2144          */
2145         if (dc->res_pool->funcs->link_encs_assign)
2146                 dc->res_pool->funcs->link_encs_assign(
2147                         dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2148 #endif
2149
2150         if (dc->res_pool->funcs->validate_global) {
2151                 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2152                 if (result != DC_OK)
2153                         return result;
2154         }
2155
2156         for (i = 0; i < new_ctx->stream_count; i++) {
2157                 struct dc_stream_state *stream = new_ctx->streams[i];
2158
2159                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2160                         struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2161
2162                         if (pipe_ctx->stream != stream)
2163                                 continue;
2164
2165                         if (dc->res_pool->funcs->patch_unknown_plane_state &&
2166                                         pipe_ctx->plane_state &&
2167                                         pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2168                                 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2169                                 if (result != DC_OK)
2170                                         return result;
2171                         }
2172
2173                         /* Switch to dp clock source only if there is
2174                          * no non dp stream that shares the same timing
2175                          * with the dp stream.
2176                          */
2177                         if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2178                                 !find_pll_sharable_stream(stream, new_ctx)) {
2179
2180                                 resource_unreference_clock_source(
2181                                                 &new_ctx->res_ctx,
2182                                                 dc->res_pool,
2183                                                 pipe_ctx->clock_source);
2184
2185                                 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2186                                 resource_reference_clock_source(
2187                                                 &new_ctx->res_ctx,
2188                                                 dc->res_pool,
2189                                                  pipe_ctx->clock_source);
2190                         }
2191                 }
2192         }
2193
2194         result = resource_build_scaling_params_for_context(dc, new_ctx);
2195
2196         if (result == DC_OK)
2197                 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2198                         result = DC_FAIL_BANDWIDTH_VALIDATE;
2199
2200         return result;
2201 }
2202
2203 static void patch_gamut_packet_checksum(
2204                 struct dc_info_packet *gamut_packet)
2205 {
2206         /* For gamut we recalc checksum */
2207         if (gamut_packet->valid) {
2208                 uint8_t chk_sum = 0;
2209                 uint8_t *ptr;
2210                 uint8_t i;
2211
2212                 /*start of the Gamut data. */
2213                 ptr = &gamut_packet->sb[3];
2214
2215                 for (i = 0; i <= gamut_packet->sb[1]; i++)
2216                         chk_sum += ptr[i];
2217
2218                 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2219         }
2220 }
2221
2222 static void set_avi_info_frame(
2223                 struct dc_info_packet *info_packet,
2224                 struct pipe_ctx *pipe_ctx)
2225 {
2226         struct dc_stream_state *stream = pipe_ctx->stream;
2227         enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2228         uint32_t pixel_encoding = 0;
2229         enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2230         enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2231         bool itc = false;
2232         uint8_t itc_value = 0;
2233         uint8_t cn0_cn1 = 0;
2234         unsigned int cn0_cn1_value = 0;
2235         uint8_t *check_sum = NULL;
2236         uint8_t byte_index = 0;
2237         union hdmi_info_packet hdmi_info;
2238         union display_content_support support = {0};
2239         unsigned int vic = pipe_ctx->stream->timing.vic;
2240         enum dc_timing_3d_format format;
2241
2242         memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2243
2244         color_space = pipe_ctx->stream->output_color_space;
2245         if (color_space == COLOR_SPACE_UNKNOWN)
2246                 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2247                         COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2248
2249         /* Initialize header */
2250         hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2251         /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2252         * not be used in HDMI 2.0 (Section 10.1) */
2253         hdmi_info.bits.header.version = 2;
2254         hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2255
2256         /*
2257          * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2258          * according to HDMI 2.0 spec (Section 10.1)
2259          */
2260
2261         switch (stream->timing.pixel_encoding) {
2262         case PIXEL_ENCODING_YCBCR422:
2263                 pixel_encoding = 1;
2264                 break;
2265
2266         case PIXEL_ENCODING_YCBCR444:
2267                 pixel_encoding = 2;
2268                 break;
2269         case PIXEL_ENCODING_YCBCR420:
2270                 pixel_encoding = 3;
2271                 break;
2272
2273         case PIXEL_ENCODING_RGB:
2274         default:
2275                 pixel_encoding = 0;
2276         }
2277
2278         /* Y0_Y1_Y2 : The pixel encoding */
2279         /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2280         hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2281
2282         /* A0 = 1 Active Format Information valid */
2283         hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2284
2285         /* B0, B1 = 3; Bar info data is valid */
2286         hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2287
2288         hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2289
2290         /* S0, S1 : Underscan / Overscan */
2291         /* TODO: un-hardcode scan type */
2292         scan_type = SCANNING_TYPE_UNDERSCAN;
2293         hdmi_info.bits.S0_S1 = scan_type;
2294
2295         /* C0, C1 : Colorimetry */
2296         if (color_space == COLOR_SPACE_YCBCR709 ||
2297                         color_space == COLOR_SPACE_YCBCR709_LIMITED)
2298                 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2299         else if (color_space == COLOR_SPACE_YCBCR601 ||
2300                         color_space == COLOR_SPACE_YCBCR601_LIMITED)
2301                 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2302         else {
2303                 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2304         }
2305         if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2306                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2307                         color_space == COLOR_SPACE_2020_YCBCR) {
2308                 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2309                 hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2310         } else if (color_space == COLOR_SPACE_ADOBERGB) {
2311                 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2312                 hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2313         }
2314
2315         /* TODO: un-hardcode aspect ratio */
2316         aspect = stream->timing.aspect_ratio;
2317
2318         switch (aspect) {
2319         case ASPECT_RATIO_4_3:
2320         case ASPECT_RATIO_16_9:
2321                 hdmi_info.bits.M0_M1 = aspect;
2322                 break;
2323
2324         case ASPECT_RATIO_NO_DATA:
2325         case ASPECT_RATIO_64_27:
2326         case ASPECT_RATIO_256_135:
2327         default:
2328                 hdmi_info.bits.M0_M1 = 0;
2329         }
2330
2331         /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2332         hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2333
2334         /* TODO: un-hardcode cn0_cn1 and itc */
2335
2336         cn0_cn1 = 0;
2337         cn0_cn1_value = 0;
2338
2339         itc = true;
2340         itc_value = 1;
2341
2342         support = stream->content_support;
2343
2344         if (itc) {
2345                 if (!support.bits.valid_content_type) {
2346                         cn0_cn1_value = 0;
2347                 } else {
2348                         if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2349                                 if (support.bits.graphics_content == 1) {
2350                                         cn0_cn1_value = 0;
2351                                 }
2352                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2353                                 if (support.bits.photo_content == 1) {
2354                                         cn0_cn1_value = 1;
2355                                 } else {
2356                                         cn0_cn1_value = 0;
2357                                         itc_value = 0;
2358                                 }
2359                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2360                                 if (support.bits.cinema_content == 1) {
2361                                         cn0_cn1_value = 2;
2362                                 } else {
2363                                         cn0_cn1_value = 0;
2364                                         itc_value = 0;
2365                                 }
2366                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2367                                 if (support.bits.game_content == 1) {
2368                                         cn0_cn1_value = 3;
2369                                 } else {
2370                                         cn0_cn1_value = 0;
2371                                         itc_value = 0;
2372                                 }
2373                         }
2374                 }
2375                 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2376                 hdmi_info.bits.ITC = itc_value;
2377         }
2378
2379         if (stream->qs_bit == 1) {
2380                 if (color_space == COLOR_SPACE_SRGB ||
2381                         color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2382                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2383                 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2384                                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2385                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2386                 else
2387                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2388         } else
2389                 hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2390
2391         /* TODO : We should handle YCC quantization */
2392         /* but we do not have matrix calculation */
2393         if (stream->qy_bit == 1) {
2394                 if (color_space == COLOR_SPACE_SRGB ||
2395                         color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2396                         hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2397                 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2398                                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2399                         hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2400                 else
2401                         hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2402         } else
2403                 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2404
2405         ///VIC
2406         format = stream->timing.timing_3d_format;
2407         /*todo, add 3DStereo support*/
2408         if (format != TIMING_3D_FORMAT_NONE) {
2409                 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2410                 switch (pipe_ctx->stream->timing.hdmi_vic) {
2411                 case 1:
2412                         vic = 95;
2413                         break;
2414                 case 2:
2415                         vic = 94;
2416                         break;
2417                 case 3:
2418                         vic = 93;
2419                         break;
2420                 case 4:
2421                         vic = 98;
2422                         break;
2423                 default:
2424                         break;
2425                 }
2426         }
2427         /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2428         hdmi_info.bits.VIC0_VIC7 = vic;
2429         if (vic >= 128)
2430                 hdmi_info.bits.header.version = 3;
2431         /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2432          * the Source shall use 20 AVI InfoFrame Version 4
2433          */
2434         if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2435                         hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2436                 hdmi_info.bits.header.version = 4;
2437                 hdmi_info.bits.header.length = 14;
2438         }
2439
2440         /* pixel repetition
2441          * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2442          * repetition start from 1 */
2443         hdmi_info.bits.PR0_PR3 = 0;
2444
2445         /* Bar Info
2446          * barTop:    Line Number of End of Top Bar.
2447          * barBottom: Line Number of Start of Bottom Bar.
2448          * barLeft:   Pixel Number of End of Left Bar.
2449          * barRight:  Pixel Number of Start of Right Bar. */
2450         hdmi_info.bits.bar_top = stream->timing.v_border_top;
2451         hdmi_info.bits.bar_bottom = (stream->timing.v_total
2452                         - stream->timing.v_border_bottom + 1);
2453         hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2454         hdmi_info.bits.bar_right = (stream->timing.h_total
2455                         - stream->timing.h_border_right + 1);
2456
2457     /* Additional Colorimetry Extension
2458      * Used in conduction with C0-C1 and EC0-EC2
2459      * 0 = DCI-P3 RGB (D65)
2460      * 1 = DCI-P3 RGB (theater)
2461      */
2462         hdmi_info.bits.ACE0_ACE3 = 0;
2463
2464         /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2465         check_sum = &hdmi_info.packet_raw_data.sb[0];
2466
2467         *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2468
2469         for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2470                 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2471
2472         /* one byte complement */
2473         *check_sum = (uint8_t) (0x100 - *check_sum);
2474
2475         /* Store in hw_path_mode */
2476         info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2477         info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2478         info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2479
2480         for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2481                 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2482
2483         info_packet->valid = true;
2484 }
2485
2486 static void set_vendor_info_packet(
2487                 struct dc_info_packet *info_packet,
2488                 struct dc_stream_state *stream)
2489 {
2490         /* SPD info packet for FreeSync */
2491
2492         /* Check if Freesync is supported. Return if false. If true,
2493          * set the corresponding bit in the info packet
2494          */
2495         if (!stream->vsp_infopacket.valid)
2496                 return;
2497
2498         *info_packet = stream->vsp_infopacket;
2499 }
2500
2501 static void set_spd_info_packet(
2502                 struct dc_info_packet *info_packet,
2503                 struct dc_stream_state *stream)
2504 {
2505         /* SPD info packet for FreeSync */
2506
2507         /* Check if Freesync is supported. Return if false. If true,
2508          * set the corresponding bit in the info packet
2509          */
2510         if (!stream->vrr_infopacket.valid)
2511                 return;
2512
2513         *info_packet = stream->vrr_infopacket;
2514 }
2515
2516 static void set_hdr_static_info_packet(
2517                 struct dc_info_packet *info_packet,
2518                 struct dc_stream_state *stream)
2519 {
2520         /* HDR Static Metadata info packet for HDR10 */
2521
2522         if (!stream->hdr_static_metadata.valid ||
2523                         stream->use_dynamic_meta)
2524                 return;
2525
2526         *info_packet = stream->hdr_static_metadata;
2527 }
2528
2529 static void set_vsc_info_packet(
2530                 struct dc_info_packet *info_packet,
2531                 struct dc_stream_state *stream)
2532 {
2533         if (!stream->vsc_infopacket.valid)
2534                 return;
2535
2536         *info_packet = stream->vsc_infopacket;
2537 }
2538
2539 void dc_resource_state_destruct(struct dc_state *context)
2540 {
2541         int i, j;
2542
2543         for (i = 0; i < context->stream_count; i++) {
2544                 for (j = 0; j < context->stream_status[i].plane_count; j++)
2545                         dc_plane_state_release(
2546                                 context->stream_status[i].plane_states[j]);
2547
2548                 context->stream_status[i].plane_count = 0;
2549                 dc_stream_release(context->streams[i]);
2550                 context->streams[i] = NULL;
2551         }
2552         context->stream_count = 0;
2553 }
2554
2555 void dc_resource_state_copy_construct(
2556                 const struct dc_state *src_ctx,
2557                 struct dc_state *dst_ctx)
2558 {
2559         int i, j;
2560         struct kref refcount = dst_ctx->refcount;
2561
2562         *dst_ctx = *src_ctx;
2563
2564         for (i = 0; i < MAX_PIPES; i++) {
2565                 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2566
2567                 if (cur_pipe->top_pipe)
2568                         cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2569
2570                 if (cur_pipe->bottom_pipe)
2571                         cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2572
2573                 if (cur_pipe->next_odm_pipe)
2574                         cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2575
2576                 if (cur_pipe->prev_odm_pipe)
2577                         cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2578         }
2579
2580         for (i = 0; i < dst_ctx->stream_count; i++) {
2581                 dc_stream_retain(dst_ctx->streams[i]);
2582                 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2583                         dc_plane_state_retain(
2584                                 dst_ctx->stream_status[i].plane_states[j]);
2585         }
2586
2587         /* context refcount should not be overridden */
2588         dst_ctx->refcount = refcount;
2589
2590 }
2591
2592 struct clock_source *dc_resource_find_first_free_pll(
2593                 struct resource_context *res_ctx,
2594                 const struct resource_pool *pool)
2595 {
2596         int i;
2597
2598         for (i = 0; i < pool->clk_src_count; ++i) {
2599                 if (res_ctx->clock_source_ref_count[i] == 0)
2600                         return pool->clock_sources[i];
2601         }
2602
2603         return NULL;
2604 }
2605
2606 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2607 {
2608         enum signal_type signal = SIGNAL_TYPE_NONE;
2609         struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2610
2611         /* default all packets to invalid */
2612         info->avi.valid = false;
2613         info->gamut.valid = false;
2614         info->vendor.valid = false;
2615         info->spd.valid = false;
2616         info->hdrsmd.valid = false;
2617         info->vsc.valid = false;
2618
2619         signal = pipe_ctx->stream->signal;
2620
2621         /* HDMi and DP have different info packets*/
2622         if (dc_is_hdmi_signal(signal)) {
2623                 set_avi_info_frame(&info->avi, pipe_ctx);
2624
2625                 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2626
2627                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2628
2629                 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2630
2631         } else if (dc_is_dp_signal(signal)) {
2632                 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2633
2634                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2635
2636                 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2637         }
2638
2639         patch_gamut_packet_checksum(&info->gamut);
2640 }
2641
2642 enum dc_status resource_map_clock_resources(
2643                 const struct dc  *dc,
2644                 struct dc_state *context,
2645                 struct dc_stream_state *stream)
2646 {
2647         /* acquire new resources */
2648         const struct resource_pool *pool = dc->res_pool;
2649         struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2650                                 &context->res_ctx, stream);
2651
2652         if (!pipe_ctx)
2653                 return DC_ERROR_UNEXPECTED;
2654
2655         if (dc_is_dp_signal(pipe_ctx->stream->signal)
2656                 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2657                 pipe_ctx->clock_source = pool->dp_clock_source;
2658         else {
2659                 pipe_ctx->clock_source = NULL;
2660
2661                 if (!dc->config.disable_disp_pll_sharing)
2662                         pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2663                                 &context->res_ctx,
2664                                 pipe_ctx);
2665
2666                 if (pipe_ctx->clock_source == NULL)
2667                         pipe_ctx->clock_source =
2668                                 dc_resource_find_first_free_pll(
2669                                         &context->res_ctx,
2670                                         pool);
2671         }
2672
2673         if (pipe_ctx->clock_source == NULL)
2674                 return DC_NO_CLOCK_SOURCE_RESOURCE;
2675
2676         resource_reference_clock_source(
2677                 &context->res_ctx, pool,
2678                 pipe_ctx->clock_source);
2679
2680         return DC_OK;
2681 }
2682
2683 /*
2684  * Note: We need to disable output if clock sources change,
2685  * since bios does optimization and doesn't apply if changing
2686  * PHY when not already disabled.
2687  */
2688 bool pipe_need_reprogram(
2689                 struct pipe_ctx *pipe_ctx_old,
2690                 struct pipe_ctx *pipe_ctx)
2691 {
2692         if (!pipe_ctx_old->stream)
2693                 return false;
2694
2695         if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2696                 return true;
2697
2698         if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2699                 return true;
2700
2701         if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2702                 return true;
2703
2704         if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2705                         && pipe_ctx_old->stream != pipe_ctx->stream)
2706                 return true;
2707
2708         if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2709                 return true;
2710
2711         if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2712                 return true;
2713
2714         if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2715                 return true;
2716
2717         if (false == pipe_ctx_old->stream->link->link_state_valid &&
2718                 false == pipe_ctx_old->stream->dpms_off)
2719                 return true;
2720
2721         if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2722                 return true;
2723
2724         /* DIG link encoder resource assignment for stream changed. */
2725         if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2726                 return true;
2727
2728         return false;
2729 }
2730
2731 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2732                 struct bit_depth_reduction_params *fmt_bit_depth)
2733 {
2734         enum dc_dither_option option = stream->dither_option;
2735         enum dc_pixel_encoding pixel_encoding =
2736                         stream->timing.pixel_encoding;
2737
2738         memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2739
2740         if (option == DITHER_OPTION_DEFAULT) {
2741                 switch (stream->timing.display_color_depth) {
2742                 case COLOR_DEPTH_666:
2743                         option = DITHER_OPTION_SPATIAL6;
2744                         break;
2745                 case COLOR_DEPTH_888:
2746                         option = DITHER_OPTION_SPATIAL8;
2747                         break;
2748                 case COLOR_DEPTH_101010:
2749                         option = DITHER_OPTION_SPATIAL10;
2750                         break;
2751                 default:
2752                         option = DITHER_OPTION_DISABLE;
2753                 }
2754         }
2755
2756         if (option == DITHER_OPTION_DISABLE)
2757                 return;
2758
2759         if (option == DITHER_OPTION_TRUN6) {
2760                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2761                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2762         } else if (option == DITHER_OPTION_TRUN8 ||
2763                         option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2764                         option == DITHER_OPTION_TRUN8_FM6) {
2765                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2766                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2767         } else if (option == DITHER_OPTION_TRUN10        ||
2768                         option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2769                         option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2770                         option == DITHER_OPTION_TRUN10_FM8     ||
2771                         option == DITHER_OPTION_TRUN10_FM6     ||
2772                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2773                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2774                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2775         }
2776
2777         /* special case - Formatter can only reduce by 4 bits at most.
2778          * When reducing from 12 to 6 bits,
2779          * HW recommends we use trunc with round mode
2780          * (if we did nothing, trunc to 10 bits would be used)
2781          * note that any 12->10 bit reduction is ignored prior to DCE8,
2782          * as the input was 10 bits.
2783          */
2784         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2785                         option == DITHER_OPTION_SPATIAL6 ||
2786                         option == DITHER_OPTION_FM6) {
2787                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2788                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2789                 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2790         }
2791
2792         /* spatial dither
2793          * note that spatial modes 1-3 are never used
2794          */
2795         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2796                         option == DITHER_OPTION_SPATIAL6 ||
2797                         option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2798                         option == DITHER_OPTION_TRUN8_SPATIAL6) {
2799                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2800                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2801                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2802                 fmt_bit_depth->flags.RGB_RANDOM =
2803                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2804         } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2805                         option == DITHER_OPTION_SPATIAL8 ||
2806                         option == DITHER_OPTION_SPATIAL8_FM6        ||
2807                         option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2808                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2809                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2810                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2811                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2812                 fmt_bit_depth->flags.RGB_RANDOM =
2813                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2814         } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2815                         option == DITHER_OPTION_SPATIAL10 ||
2816                         option == DITHER_OPTION_SPATIAL10_FM8 ||
2817                         option == DITHER_OPTION_SPATIAL10_FM6) {
2818                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2819                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2820                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2821                 fmt_bit_depth->flags.RGB_RANDOM =
2822                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2823         }
2824
2825         if (option == DITHER_OPTION_SPATIAL6 ||
2826                         option == DITHER_OPTION_SPATIAL8 ||
2827                         option == DITHER_OPTION_SPATIAL10) {
2828                 fmt_bit_depth->flags.FRAME_RANDOM = 0;
2829         } else {
2830                 fmt_bit_depth->flags.FRAME_RANDOM = 1;
2831         }
2832
2833         //////////////////////
2834         //// temporal dither
2835         //////////////////////
2836         if (option == DITHER_OPTION_FM6           ||
2837                         option == DITHER_OPTION_SPATIAL8_FM6     ||
2838                         option == DITHER_OPTION_SPATIAL10_FM6     ||
2839                         option == DITHER_OPTION_TRUN10_FM6     ||
2840                         option == DITHER_OPTION_TRUN8_FM6      ||
2841                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2842                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2843                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2844         } else if (option == DITHER_OPTION_FM8        ||
2845                         option == DITHER_OPTION_SPATIAL10_FM8  ||
2846                         option == DITHER_OPTION_TRUN10_FM8) {
2847                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2848                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2849         } else if (option == DITHER_OPTION_FM10) {
2850                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2851                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2852         }
2853
2854         fmt_bit_depth->pixel_encoding = pixel_encoding;
2855 }
2856
2857 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2858 {
2859         struct dc_link *link = stream->link;
2860         struct timing_generator *tg = dc->res_pool->timing_generators[0];
2861         enum dc_status res = DC_OK;
2862
2863         calculate_phy_pix_clks(stream);
2864
2865         if (!tg->funcs->validate_timing(tg, &stream->timing))
2866                 res = DC_FAIL_CONTROLLER_VALIDATE;
2867
2868         if (res == DC_OK) {
2869                 if (!link->link_enc->funcs->validate_output_with_stream(
2870                                                 link->link_enc, stream))
2871                         res = DC_FAIL_ENC_VALIDATE;
2872         }
2873
2874         /* TODO: validate audio ASIC caps, encoder */
2875
2876         if (res == DC_OK)
2877                 res = dc_link_validate_mode_timing(stream,
2878                       link,
2879                       &stream->timing);
2880
2881         return res;
2882 }
2883
2884 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
2885 {
2886         enum dc_status res = DC_OK;
2887
2888         /* TODO For now validates pixel format only */
2889         if (dc->res_pool->funcs->validate_plane)
2890                 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
2891
2892         return res;
2893 }
2894
2895 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
2896 {
2897         switch (format) {
2898         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
2899                 return 8;
2900         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
2901         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
2902                 return 12;
2903         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
2904         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
2905         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
2906         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
2907                 return 16;
2908         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
2909         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
2910         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
2911         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
2912         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
2913 #if defined(CONFIG_DRM_AMD_DC_DCN)
2914         case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
2915         case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
2916 #endif
2917                 return 32;
2918         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
2919         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
2920         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
2921         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
2922                 return 64;
2923         default:
2924                 ASSERT_CRITICAL(false);
2925                 return -1;
2926         }
2927 }
2928 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
2929 {
2930         if (modes) {
2931                 if (modes->sample_rates.rate.RATE_192)
2932                         return 192000;
2933                 if (modes->sample_rates.rate.RATE_176_4)
2934                         return 176400;
2935                 if (modes->sample_rates.rate.RATE_96)
2936                         return 96000;
2937                 if (modes->sample_rates.rate.RATE_88_2)
2938                         return 88200;
2939                 if (modes->sample_rates.rate.RATE_48)
2940                         return 48000;
2941                 if (modes->sample_rates.rate.RATE_44_1)
2942                         return 44100;
2943                 if (modes->sample_rates.rate.RATE_32)
2944                         return 32000;
2945         }
2946         /*original logic when no audio info*/
2947         return 441000;
2948 }
2949
2950 void get_audio_check(struct audio_info *aud_modes,
2951         struct audio_check *audio_chk)
2952 {
2953         unsigned int i;
2954         unsigned int max_sample_rate = 0;
2955
2956         if (aud_modes) {
2957                 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
2958
2959                 audio_chk->max_audiosample_rate = 0;
2960                 for (i = 0; i < aud_modes->mode_count; i++) {
2961                         max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
2962                         if (audio_chk->max_audiosample_rate < max_sample_rate)
2963                                 audio_chk->max_audiosample_rate = max_sample_rate;
2964                         /*dts takes the same as type 2: AP = 0.25*/
2965                 }
2966                 /*check which one take more bandwidth*/
2967                 if (audio_chk->max_audiosample_rate > 192000)
2968                         audio_chk->audio_packet_type = 0x9;/*AP =1*/
2969                 audio_chk->acat = 0;/*not support*/
2970         }
2971 }
2972