5d85ff341385069cc349a83fe607d2e7511345a2
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_crat.c
1 /*
2  * Copyright 2015-2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/acpi.h>
25 #include "kfd_crat.h"
26 #include "kfd_priv.h"
27 #include "kfd_topology.h"
28 #include "kfd_iommu.h"
29 #include "amdgpu_amdkfd.h"
30
31 /* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
32  * GPU processor ID are expressed with Bit[31]=1.
33  * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
34  * used in the CRAT.
35  */
36 static uint32_t gpu_processor_id_low = 0x80001000;
37
38 /* Return the next available gpu_processor_id and increment it for next GPU
39  *      @total_cu_count - Total CUs present in the GPU including ones
40  *                        masked off
41  */
42 static inline unsigned int get_and_inc_gpu_processor_id(
43                                 unsigned int total_cu_count)
44 {
45         int current_id = gpu_processor_id_low;
46
47         gpu_processor_id_low += total_cu_count;
48         return current_id;
49 }
50
51 /* Static table to describe GPU Cache information */
52 struct kfd_gpu_cache_info {
53         uint32_t        cache_size;
54         uint32_t        cache_level;
55         uint32_t        flags;
56         /* Indicates how many Compute Units share this cache
57          * Value = 1 indicates the cache is not shared
58          */
59         uint32_t        num_cu_shared;
60 };
61
62 static struct kfd_gpu_cache_info kaveri_cache_info[] = {
63         {
64                 /* TCP L1 Cache per CU */
65                 .cache_size = 16,
66                 .cache_level = 1,
67                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
68                                 CRAT_CACHE_FLAGS_DATA_CACHE |
69                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
70                 .num_cu_shared = 1,
71
72         },
73         {
74                 /* Scalar L1 Instruction Cache (in SQC module) per bank */
75                 .cache_size = 16,
76                 .cache_level = 1,
77                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
78                                 CRAT_CACHE_FLAGS_INST_CACHE |
79                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
80                 .num_cu_shared = 2,
81         },
82         {
83                 /* Scalar L1 Data Cache (in SQC module) per bank */
84                 .cache_size = 8,
85                 .cache_level = 1,
86                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
87                                 CRAT_CACHE_FLAGS_DATA_CACHE |
88                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
89                 .num_cu_shared = 2,
90         },
91
92         /* TODO: Add L2 Cache information */
93 };
94
95
96 static struct kfd_gpu_cache_info carrizo_cache_info[] = {
97         {
98                 /* TCP L1 Cache per CU */
99                 .cache_size = 16,
100                 .cache_level = 1,
101                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
102                                 CRAT_CACHE_FLAGS_DATA_CACHE |
103                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
104                 .num_cu_shared = 1,
105         },
106         {
107                 /* Scalar L1 Instruction Cache (in SQC module) per bank */
108                 .cache_size = 8,
109                 .cache_level = 1,
110                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
111                                 CRAT_CACHE_FLAGS_INST_CACHE |
112                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
113                 .num_cu_shared = 4,
114         },
115         {
116                 /* Scalar L1 Data Cache (in SQC module) per bank. */
117                 .cache_size = 4,
118                 .cache_level = 1,
119                 .flags = (CRAT_CACHE_FLAGS_ENABLED |
120                                 CRAT_CACHE_FLAGS_DATA_CACHE |
121                                 CRAT_CACHE_FLAGS_SIMD_CACHE),
122                 .num_cu_shared = 4,
123         },
124
125         /* TODO: Add L2 Cache information */
126 };
127
128 /* NOTE: In future if more information is added to struct kfd_gpu_cache_info
129  * the following ASICs may need a separate table.
130  */
131 #define hawaii_cache_info kaveri_cache_info
132 #define tonga_cache_info carrizo_cache_info
133 #define fiji_cache_info  carrizo_cache_info
134 #define polaris10_cache_info carrizo_cache_info
135 #define polaris11_cache_info carrizo_cache_info
136 #define polaris12_cache_info carrizo_cache_info
137 /* TODO - check & update Vega10 cache details */
138 #define vega10_cache_info carrizo_cache_info
139 #define raven_cache_info carrizo_cache_info
140
141 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
142                 struct crat_subtype_computeunit *cu)
143 {
144         dev->node_props.cpu_cores_count = cu->num_cpu_cores;
145         dev->node_props.cpu_core_id_base = cu->processor_id_low;
146         if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
147                 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
148
149         pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
150                         cu->processor_id_low);
151 }
152
153 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
154                 struct crat_subtype_computeunit *cu)
155 {
156         dev->node_props.simd_id_base = cu->processor_id_low;
157         dev->node_props.simd_count = cu->num_simd_cores;
158         dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
159         dev->node_props.max_waves_per_simd = cu->max_waves_simd;
160         dev->node_props.wave_front_size = cu->wave_front_size;
161         dev->node_props.array_count = cu->array_count;
162         dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
163         dev->node_props.simd_per_cu = cu->num_simd_per_cu;
164         dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
165         if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
166                 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
167         pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
168 }
169
170 /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
171  * topology device present in the device_list
172  */
173 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
174                                 struct list_head *device_list)
175 {
176         struct kfd_topology_device *dev;
177
178         pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
179                         cu->proximity_domain, cu->hsa_capability);
180         list_for_each_entry(dev, device_list, list) {
181                 if (cu->proximity_domain == dev->proximity_domain) {
182                         if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
183                                 kfd_populated_cu_info_cpu(dev, cu);
184
185                         if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
186                                 kfd_populated_cu_info_gpu(dev, cu);
187                         break;
188                 }
189         }
190
191         return 0;
192 }
193
194 static struct kfd_mem_properties *
195 find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width,
196                 struct kfd_topology_device *dev)
197 {
198         struct kfd_mem_properties *props;
199
200         list_for_each_entry(props, &dev->mem_props, list) {
201                 if (props->heap_type == heap_type
202                                 && props->flags == flags
203                                 && props->width == width)
204                         return props;
205         }
206
207         return NULL;
208 }
209 /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
210  * topology device present in the device_list
211  */
212 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
213                                 struct list_head *device_list)
214 {
215         struct kfd_mem_properties *props;
216         struct kfd_topology_device *dev;
217         uint32_t heap_type;
218         uint64_t size_in_bytes;
219         uint32_t flags = 0;
220         uint32_t width;
221
222         pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
223                         mem->proximity_domain);
224         list_for_each_entry(dev, device_list, list) {
225                 if (mem->proximity_domain == dev->proximity_domain) {
226                         /* We're on GPU node */
227                         if (dev->node_props.cpu_cores_count == 0) {
228                                 /* APU */
229                                 if (mem->visibility_type == 0)
230                                         heap_type =
231                                                 HSA_MEM_HEAP_TYPE_FB_PRIVATE;
232                                 /* dGPU */
233                                 else
234                                         heap_type = mem->visibility_type;
235                         } else
236                                 heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
237
238                         if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
239                                 flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
240                         if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
241                                 flags |= HSA_MEM_FLAGS_NON_VOLATILE;
242
243                         size_in_bytes =
244                                 ((uint64_t)mem->length_high << 32) +
245                                                         mem->length_low;
246                         width = mem->width;
247
248                         /* Multiple banks of the same type are aggregated into
249                          * one. User mode doesn't care about multiple physical
250                          * memory segments. It's managed as a single virtual
251                          * heap for user mode.
252                          */
253                         props = find_subtype_mem(heap_type, flags, width, dev);
254                         if (props) {
255                                 props->size_in_bytes += size_in_bytes;
256                                 break;
257                         }
258
259                         props = kfd_alloc_struct(props);
260                         if (!props)
261                                 return -ENOMEM;
262
263                         props->heap_type = heap_type;
264                         props->flags = flags;
265                         props->size_in_bytes = size_in_bytes;
266                         props->width = width;
267
268                         dev->node_props.mem_banks_count++;
269                         list_add_tail(&props->list, &dev->mem_props);
270
271                         break;
272                 }
273         }
274
275         return 0;
276 }
277
278 /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
279  * topology device present in the device_list
280  */
281 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
282                         struct list_head *device_list)
283 {
284         struct kfd_cache_properties *props;
285         struct kfd_topology_device *dev;
286         uint32_t id;
287         uint32_t total_num_of_cu;
288
289         id = cache->processor_id_low;
290
291         pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
292         list_for_each_entry(dev, device_list, list) {
293                 total_num_of_cu = (dev->node_props.array_count *
294                                         dev->node_props.cu_per_simd_array);
295
296                 /* Cache infomration in CRAT doesn't have proximity_domain
297                  * information as it is associated with a CPU core or GPU
298                  * Compute Unit. So map the cache using CPU core Id or SIMD
299                  * (GPU) ID.
300                  * TODO: This works because currently we can safely assume that
301                  *  Compute Units are parsed before caches are parsed. In
302                  *  future, remove this dependency
303                  */
304                 if ((id >= dev->node_props.cpu_core_id_base &&
305                         id <= dev->node_props.cpu_core_id_base +
306                                 dev->node_props.cpu_cores_count) ||
307                         (id >= dev->node_props.simd_id_base &&
308                         id < dev->node_props.simd_id_base +
309                                 total_num_of_cu)) {
310                         props = kfd_alloc_struct(props);
311                         if (!props)
312                                 return -ENOMEM;
313
314                         props->processor_id_low = id;
315                         props->cache_level = cache->cache_level;
316                         props->cache_size = cache->cache_size;
317                         props->cacheline_size = cache->cache_line_size;
318                         props->cachelines_per_tag = cache->lines_per_tag;
319                         props->cache_assoc = cache->associativity;
320                         props->cache_latency = cache->cache_latency;
321                         memcpy(props->sibling_map, cache->sibling_map,
322                                         sizeof(props->sibling_map));
323
324                         if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
325                                 props->cache_type |= HSA_CACHE_TYPE_DATA;
326                         if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
327                                 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
328                         if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
329                                 props->cache_type |= HSA_CACHE_TYPE_CPU;
330                         if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
331                                 props->cache_type |= HSA_CACHE_TYPE_HSACU;
332
333                         dev->cache_count++;
334                         dev->node_props.caches_count++;
335                         list_add_tail(&props->list, &dev->cache_props);
336
337                         break;
338                 }
339         }
340
341         return 0;
342 }
343
344 /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
345  * topology device present in the device_list
346  */
347 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
348                                         struct list_head *device_list)
349 {
350         struct kfd_iolink_properties *props = NULL, *props2;
351         struct kfd_topology_device *dev, *to_dev;
352         uint32_t id_from;
353         uint32_t id_to;
354
355         id_from = iolink->proximity_domain_from;
356         id_to = iolink->proximity_domain_to;
357
358         pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n",
359                         id_from, id_to);
360         list_for_each_entry(dev, device_list, list) {
361                 if (id_from == dev->proximity_domain) {
362                         props = kfd_alloc_struct(props);
363                         if (!props)
364                                 return -ENOMEM;
365
366                         props->node_from = id_from;
367                         props->node_to = id_to;
368                         props->ver_maj = iolink->version_major;
369                         props->ver_min = iolink->version_minor;
370                         props->iolink_type = iolink->io_interface_type;
371
372                         if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
373                                 props->weight = 20;
374                         else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI)
375                                 props->weight = 15;
376                         else
377                                 props->weight = node_distance(id_from, id_to);
378
379                         props->min_latency = iolink->minimum_latency;
380                         props->max_latency = iolink->maximum_latency;
381                         props->min_bandwidth = iolink->minimum_bandwidth_mbs;
382                         props->max_bandwidth = iolink->maximum_bandwidth_mbs;
383                         props->rec_transfer_size =
384                                         iolink->recommended_transfer_size;
385
386                         dev->io_link_count++;
387                         dev->node_props.io_links_count++;
388                         list_add_tail(&props->list, &dev->io_link_props);
389                         break;
390                 }
391         }
392
393         /* CPU topology is created before GPUs are detected, so CPU->GPU
394          * links are not built at that time. If a PCIe type is discovered, it
395          * means a GPU is detected and we are adding GPU->CPU to the topology.
396          * At this time, also add the corresponded CPU->GPU link if GPU
397          * is large bar.
398          * For xGMI, we only added the link with one direction in the crat
399          * table, add corresponded reversed direction link now.
400          */
401         if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) {
402                 to_dev = kfd_topology_device_by_proximity_domain(id_to);
403                 if (!to_dev)
404                         return -ENODEV;
405                 /* same everything but the other direction */
406                 props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
407                 props2->node_from = id_to;
408                 props2->node_to = id_from;
409                 props2->kobj = NULL;
410                 to_dev->io_link_count++;
411                 to_dev->node_props.io_links_count++;
412                 list_add_tail(&props2->list, &to_dev->io_link_props);
413         }
414
415         return 0;
416 }
417
418 /* kfd_parse_subtype - parse subtypes and attach it to correct topology device
419  * present in the device_list
420  *      @sub_type_hdr - subtype section of crat_image
421  *      @device_list - list of topology devices present in this crat_image
422  */
423 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
424                                 struct list_head *device_list)
425 {
426         struct crat_subtype_computeunit *cu;
427         struct crat_subtype_memory *mem;
428         struct crat_subtype_cache *cache;
429         struct crat_subtype_iolink *iolink;
430         int ret = 0;
431
432         switch (sub_type_hdr->type) {
433         case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
434                 cu = (struct crat_subtype_computeunit *)sub_type_hdr;
435                 ret = kfd_parse_subtype_cu(cu, device_list);
436                 break;
437         case CRAT_SUBTYPE_MEMORY_AFFINITY:
438                 mem = (struct crat_subtype_memory *)sub_type_hdr;
439                 ret = kfd_parse_subtype_mem(mem, device_list);
440                 break;
441         case CRAT_SUBTYPE_CACHE_AFFINITY:
442                 cache = (struct crat_subtype_cache *)sub_type_hdr;
443                 ret = kfd_parse_subtype_cache(cache, device_list);
444                 break;
445         case CRAT_SUBTYPE_TLB_AFFINITY:
446                 /*
447                  * For now, nothing to do here
448                  */
449                 pr_debug("Found TLB entry in CRAT table (not processing)\n");
450                 break;
451         case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
452                 /*
453                  * For now, nothing to do here
454                  */
455                 pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
456                 break;
457         case CRAT_SUBTYPE_IOLINK_AFFINITY:
458                 iolink = (struct crat_subtype_iolink *)sub_type_hdr;
459                 ret = kfd_parse_subtype_iolink(iolink, device_list);
460                 break;
461         default:
462                 pr_warn("Unknown subtype %d in CRAT\n",
463                                 sub_type_hdr->type);
464         }
465
466         return ret;
467 }
468
469 /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
470  * create a kfd_topology_device and add in to device_list. Also parse
471  * CRAT subtypes and attach it to appropriate kfd_topology_device
472  *      @crat_image - input image containing CRAT
473  *      @device_list - [OUT] list of kfd_topology_device generated after
474  *                     parsing crat_image
475  *      @proximity_domain - Proximity domain of the first device in the table
476  *
477  *      Return - 0 if successful else -ve value
478  */
479 int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
480                          uint32_t proximity_domain)
481 {
482         struct kfd_topology_device *top_dev = NULL;
483         struct crat_subtype_generic *sub_type_hdr;
484         uint16_t node_id;
485         int ret = 0;
486         struct crat_header *crat_table = (struct crat_header *)crat_image;
487         uint16_t num_nodes;
488         uint32_t image_len;
489
490         if (!crat_image)
491                 return -EINVAL;
492
493         if (!list_empty(device_list)) {
494                 pr_warn("Error device list should be empty\n");
495                 return -EINVAL;
496         }
497
498         num_nodes = crat_table->num_domains;
499         image_len = crat_table->length;
500
501         pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
502
503         for (node_id = 0; node_id < num_nodes; node_id++) {
504                 top_dev = kfd_create_topology_device(device_list);
505                 if (!top_dev)
506                         break;
507                 top_dev->proximity_domain = proximity_domain++;
508         }
509
510         if (!top_dev) {
511                 ret = -ENOMEM;
512                 goto err;
513         }
514
515         memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
516         memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
517                         CRAT_OEMTABLEID_LENGTH);
518         top_dev->oem_revision = crat_table->oem_revision;
519
520         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
521         while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
522                         ((char *)crat_image) + image_len) {
523                 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
524                         ret = kfd_parse_subtype(sub_type_hdr, device_list);
525                         if (ret)
526                                 break;
527                 }
528
529                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
530                                 sub_type_hdr->length);
531         }
532
533 err:
534         if (ret)
535                 kfd_release_topology_device_list(device_list);
536
537         return ret;
538 }
539
540 /* Helper function. See kfd_fill_gpu_cache_info for parameter description */
541 static int fill_in_pcache(struct crat_subtype_cache *pcache,
542                                 struct kfd_gpu_cache_info *pcache_info,
543                                 struct kfd_cu_info *cu_info,
544                                 int mem_available,
545                                 int cu_bitmask,
546                                 int cache_type, unsigned int cu_processor_id,
547                                 int cu_block)
548 {
549         unsigned int cu_sibling_map_mask;
550         int first_active_cu;
551
552         /* First check if enough memory is available */
553         if (sizeof(struct crat_subtype_cache) > mem_available)
554                 return -ENOMEM;
555
556         cu_sibling_map_mask = cu_bitmask;
557         cu_sibling_map_mask >>= cu_block;
558         cu_sibling_map_mask &=
559                 ((1 << pcache_info[cache_type].num_cu_shared) - 1);
560         first_active_cu = ffs(cu_sibling_map_mask);
561
562         /* CU could be inactive. In case of shared cache find the first active
563          * CU. and incase of non-shared cache check if the CU is inactive. If
564          * inactive active skip it
565          */
566         if (first_active_cu) {
567                 memset(pcache, 0, sizeof(struct crat_subtype_cache));
568                 pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
569                 pcache->length = sizeof(struct crat_subtype_cache);
570                 pcache->flags = pcache_info[cache_type].flags;
571                 pcache->processor_id_low = cu_processor_id
572                                          + (first_active_cu - 1);
573                 pcache->cache_level = pcache_info[cache_type].cache_level;
574                 pcache->cache_size = pcache_info[cache_type].cache_size;
575
576                 /* Sibling map is w.r.t processor_id_low, so shift out
577                  * inactive CU
578                  */
579                 cu_sibling_map_mask =
580                         cu_sibling_map_mask >> (first_active_cu - 1);
581
582                 pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
583                 pcache->sibling_map[1] =
584                                 (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
585                 pcache->sibling_map[2] =
586                                 (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
587                 pcache->sibling_map[3] =
588                                 (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
589                 return 0;
590         }
591         return 1;
592 }
593
594 /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
595  * tables
596  *
597  *      @kdev - [IN] GPU device
598  *      @gpu_processor_id - [IN] GPU processor ID to which these caches
599  *                          associate
600  *      @available_size - [IN] Amount of memory available in pcache
601  *      @cu_info - [IN] Compute Unit info obtained from KGD
602  *      @pcache - [OUT] memory into which cache data is to be filled in.
603  *      @size_filled - [OUT] amount of data used up in pcache.
604  *      @num_of_entries - [OUT] number of caches added
605  */
606 static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
607                         int gpu_processor_id,
608                         int available_size,
609                         struct kfd_cu_info *cu_info,
610                         struct crat_subtype_cache *pcache,
611                         int *size_filled,
612                         int *num_of_entries)
613 {
614         struct kfd_gpu_cache_info *pcache_info;
615         int num_of_cache_types = 0;
616         int i, j, k;
617         int ct = 0;
618         int mem_available = available_size;
619         unsigned int cu_processor_id;
620         int ret;
621
622         switch (kdev->device_info->asic_family) {
623         case CHIP_KAVERI:
624                 pcache_info = kaveri_cache_info;
625                 num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
626                 break;
627         case CHIP_HAWAII:
628                 pcache_info = hawaii_cache_info;
629                 num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
630                 break;
631         case CHIP_CARRIZO:
632                 pcache_info = carrizo_cache_info;
633                 num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
634                 break;
635         case CHIP_TONGA:
636                 pcache_info = tonga_cache_info;
637                 num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
638                 break;
639         case CHIP_FIJI:
640                 pcache_info = fiji_cache_info;
641                 num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
642                 break;
643         case CHIP_POLARIS10:
644                 pcache_info = polaris10_cache_info;
645                 num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
646                 break;
647         case CHIP_POLARIS11:
648                 pcache_info = polaris11_cache_info;
649                 num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
650                 break;
651         case CHIP_POLARIS12:
652                 pcache_info = polaris12_cache_info;
653                 num_of_cache_types = ARRAY_SIZE(polaris12_cache_info);
654                 break;
655         case CHIP_VEGA10:
656         case CHIP_VEGA12:
657         case CHIP_VEGA20:
658                 pcache_info = vega10_cache_info;
659                 num_of_cache_types = ARRAY_SIZE(vega10_cache_info);
660                 break;
661         case CHIP_RAVEN:
662                 pcache_info = raven_cache_info;
663                 num_of_cache_types = ARRAY_SIZE(raven_cache_info);
664                 break;
665         default:
666                 return -EINVAL;
667         }
668
669         *size_filled = 0;
670         *num_of_entries = 0;
671
672         /* For each type of cache listed in the kfd_gpu_cache_info table,
673          * go through all available Compute Units.
674          * The [i,j,k] loop will
675          *              if kfd_gpu_cache_info.num_cu_shared = 1
676          *                      will parse through all available CU
677          *              If (kfd_gpu_cache_info.num_cu_shared != 1)
678          *                      then it will consider only one CU from
679          *                      the shared unit
680          */
681
682         for (ct = 0; ct < num_of_cache_types; ct++) {
683                 cu_processor_id = gpu_processor_id;
684                 for (i = 0; i < cu_info->num_shader_engines; i++) {
685                         for (j = 0; j < cu_info->num_shader_arrays_per_engine;
686                                 j++) {
687                                 for (k = 0; k < cu_info->num_cu_per_sh;
688                                         k += pcache_info[ct].num_cu_shared) {
689
690                                         ret = fill_in_pcache(pcache,
691                                                 pcache_info,
692                                                 cu_info,
693                                                 mem_available,
694                                                 cu_info->cu_bitmap[i][j],
695                                                 ct,
696                                                 cu_processor_id,
697                                                 k);
698
699                                         if (ret < 0)
700                                                 break;
701
702                                         if (!ret) {
703                                                 pcache++;
704                                                 (*num_of_entries)++;
705                                                 mem_available -=
706                                                         sizeof(*pcache);
707                                                 (*size_filled) +=
708                                                         sizeof(*pcache);
709                                         }
710
711                                         /* Move to next CU block */
712                                         cu_processor_id +=
713                                                 pcache_info[ct].num_cu_shared;
714                                 }
715                         }
716                 }
717         }
718
719         pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
720
721         return 0;
722 }
723
724 /*
725  * kfd_create_crat_image_acpi - Allocates memory for CRAT image and
726  * copies CRAT from ACPI (if available).
727  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
728  *
729  *      @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
730  *                   crat_image will be NULL
731  *      @size: [OUT] size of crat_image
732  *
733  *      Return 0 if successful else return error code
734  */
735 int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
736 {
737         struct acpi_table_header *crat_table;
738         acpi_status status;
739         void *pcrat_image;
740
741         if (!crat_image)
742                 return -EINVAL;
743
744         *crat_image = NULL;
745
746         /* Fetch the CRAT table from ACPI */
747         status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
748         if (status == AE_NOT_FOUND) {
749                 pr_warn("CRAT table not found\n");
750                 return -ENODATA;
751         } else if (ACPI_FAILURE(status)) {
752                 const char *err = acpi_format_exception(status);
753
754                 pr_err("CRAT table error: %s\n", err);
755                 return -EINVAL;
756         }
757
758         if (ignore_crat) {
759                 pr_info("CRAT table disabled by module option\n");
760                 return -ENODATA;
761         }
762
763         pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL);
764         if (!pcrat_image)
765                 return -ENOMEM;
766
767         *crat_image = pcrat_image;
768         *size = crat_table->length;
769
770         return 0;
771 }
772
773 /* Memory required to create Virtual CRAT.
774  * Since there is no easy way to predict the amount of memory required, the
775  * following amount are allocated for CPU and GPU Virtual CRAT. This is
776  * expected to cover all known conditions. But to be safe additional check
777  * is put in the code to ensure we don't overwrite.
778  */
779 #define VCRAT_SIZE_FOR_CPU      (2 * PAGE_SIZE)
780 #define VCRAT_SIZE_FOR_GPU      (3 * PAGE_SIZE)
781
782 /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
783  *
784  *      @numa_node_id: CPU NUMA node id
785  *      @avail_size: Available size in the memory
786  *      @sub_type_hdr: Memory into which compute info will be filled in
787  *
788  *      Return 0 if successful else return -ve value
789  */
790 static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
791                                 int proximity_domain,
792                                 struct crat_subtype_computeunit *sub_type_hdr)
793 {
794         const struct cpumask *cpumask;
795
796         *avail_size -= sizeof(struct crat_subtype_computeunit);
797         if (*avail_size < 0)
798                 return -ENOMEM;
799
800         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
801
802         /* Fill in subtype header data */
803         sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
804         sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
805         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
806
807         cpumask = cpumask_of_node(numa_node_id);
808
809         /* Fill in CU data */
810         sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
811         sub_type_hdr->proximity_domain = proximity_domain;
812         sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
813         if (sub_type_hdr->processor_id_low == -1)
814                 return -EINVAL;
815
816         sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
817
818         return 0;
819 }
820
821 /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
822  *
823  *      @numa_node_id: CPU NUMA node id
824  *      @avail_size: Available size in the memory
825  *      @sub_type_hdr: Memory into which compute info will be filled in
826  *
827  *      Return 0 if successful else return -ve value
828  */
829 static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
830                         int proximity_domain,
831                         struct crat_subtype_memory *sub_type_hdr)
832 {
833         uint64_t mem_in_bytes = 0;
834         pg_data_t *pgdat;
835         int zone_type;
836
837         *avail_size -= sizeof(struct crat_subtype_memory);
838         if (*avail_size < 0)
839                 return -ENOMEM;
840
841         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
842
843         /* Fill in subtype header data */
844         sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
845         sub_type_hdr->length = sizeof(struct crat_subtype_memory);
846         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
847
848         /* Fill in Memory Subunit data */
849
850         /* Unlike si_meminfo, si_meminfo_node is not exported. So
851          * the following lines are duplicated from si_meminfo_node
852          * function
853          */
854         pgdat = NODE_DATA(numa_node_id);
855         for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
856                 mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]);
857         mem_in_bytes <<= PAGE_SHIFT;
858
859         sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
860         sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
861         sub_type_hdr->proximity_domain = proximity_domain;
862
863         return 0;
864 }
865
866 #if CONFIG_X86_64
867 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
868                                 uint32_t *num_entries,
869                                 struct crat_subtype_iolink *sub_type_hdr)
870 {
871         int nid;
872         struct cpuinfo_x86 *c = &cpu_data(0);
873         uint8_t link_type;
874
875         if (c->x86_vendor == X86_VENDOR_AMD)
876                 link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
877         else
878                 link_type = CRAT_IOLINK_TYPE_QPI_1_1;
879
880         *num_entries = 0;
881
882         /* Create IO links from this node to other CPU nodes */
883         for_each_online_node(nid) {
884                 if (nid == numa_node_id) /* node itself */
885                         continue;
886
887                 *avail_size -= sizeof(struct crat_subtype_iolink);
888                 if (*avail_size < 0)
889                         return -ENOMEM;
890
891                 memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
892
893                 /* Fill in subtype header data */
894                 sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
895                 sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
896                 sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
897
898                 /* Fill in IO link data */
899                 sub_type_hdr->proximity_domain_from = numa_node_id;
900                 sub_type_hdr->proximity_domain_to = nid;
901                 sub_type_hdr->io_interface_type = link_type;
902
903                 (*num_entries)++;
904                 sub_type_hdr++;
905         }
906
907         return 0;
908 }
909 #endif
910
911 /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
912  *
913  *      @pcrat_image: Fill in VCRAT for CPU
914  *      @size:  [IN] allocated size of crat_image.
915  *              [OUT] actual size of data filled in crat_image
916  */
917 static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
918 {
919         struct crat_header *crat_table = (struct crat_header *)pcrat_image;
920         struct acpi_table_header *acpi_table;
921         acpi_status status;
922         struct crat_subtype_generic *sub_type_hdr;
923         int avail_size = *size;
924         int numa_node_id;
925 #ifdef CONFIG_X86_64
926         uint32_t entries = 0;
927 #endif
928         int ret = 0;
929
930         if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
931                 return -EINVAL;
932
933         /* Fill in CRAT Header.
934          * Modify length and total_entries as subunits are added.
935          */
936         avail_size -= sizeof(struct crat_header);
937         if (avail_size < 0)
938                 return -ENOMEM;
939
940         memset(crat_table, 0, sizeof(struct crat_header));
941         memcpy(&crat_table->signature, CRAT_SIGNATURE,
942                         sizeof(crat_table->signature));
943         crat_table->length = sizeof(struct crat_header);
944
945         status = acpi_get_table("DSDT", 0, &acpi_table);
946         if (status != AE_OK)
947                 pr_warn("DSDT table not found for OEM information\n");
948         else {
949                 crat_table->oem_revision = acpi_table->revision;
950                 memcpy(crat_table->oem_id, acpi_table->oem_id,
951                                 CRAT_OEMID_LENGTH);
952                 memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
953                                 CRAT_OEMTABLEID_LENGTH);
954         }
955         crat_table->total_entries = 0;
956         crat_table->num_domains = 0;
957
958         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
959
960         for_each_online_node(numa_node_id) {
961                 if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
962                         continue;
963
964                 /* Fill in Subtype: Compute Unit */
965                 ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
966                         crat_table->num_domains,
967                         (struct crat_subtype_computeunit *)sub_type_hdr);
968                 if (ret < 0)
969                         return ret;
970                 crat_table->length += sub_type_hdr->length;
971                 crat_table->total_entries++;
972
973                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
974                         sub_type_hdr->length);
975
976                 /* Fill in Subtype: Memory */
977                 ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
978                         crat_table->num_domains,
979                         (struct crat_subtype_memory *)sub_type_hdr);
980                 if (ret < 0)
981                         return ret;
982                 crat_table->length += sub_type_hdr->length;
983                 crat_table->total_entries++;
984
985                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
986                         sub_type_hdr->length);
987
988                 /* Fill in Subtype: IO Link */
989 #ifdef CONFIG_X86_64
990                 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
991                                 &entries,
992                                 (struct crat_subtype_iolink *)sub_type_hdr);
993                 if (ret < 0)
994                         return ret;
995                 crat_table->length += (sub_type_hdr->length * entries);
996                 crat_table->total_entries += entries;
997
998                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
999                                 sub_type_hdr->length * entries);
1000 #else
1001                 pr_info("IO link not available for non x86 platforms\n");
1002 #endif
1003
1004                 crat_table->num_domains++;
1005         }
1006
1007         /* TODO: Add cache Subtype for CPU.
1008          * Currently, CPU cache information is available in function
1009          * detect_cache_attributes(cpu) defined in the file
1010          * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
1011          * exported and to get the same information the code needs to be
1012          * duplicated.
1013          */
1014
1015         *size = crat_table->length;
1016         pr_info("Virtual CRAT table created for CPU\n");
1017
1018         return 0;
1019 }
1020
1021 static int kfd_fill_gpu_memory_affinity(int *avail_size,
1022                 struct kfd_dev *kdev, uint8_t type, uint64_t size,
1023                 struct crat_subtype_memory *sub_type_hdr,
1024                 uint32_t proximity_domain,
1025                 const struct kfd_local_mem_info *local_mem_info)
1026 {
1027         *avail_size -= sizeof(struct crat_subtype_memory);
1028         if (*avail_size < 0)
1029                 return -ENOMEM;
1030
1031         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
1032         sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
1033         sub_type_hdr->length = sizeof(struct crat_subtype_memory);
1034         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1035
1036         sub_type_hdr->proximity_domain = proximity_domain;
1037
1038         pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
1039                         type, size);
1040
1041         sub_type_hdr->length_low = lower_32_bits(size);
1042         sub_type_hdr->length_high = upper_32_bits(size);
1043
1044         sub_type_hdr->width = local_mem_info->vram_width;
1045         sub_type_hdr->visibility_type = type;
1046
1047         return 0;
1048 }
1049
1050 /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
1051  * to its NUMA node
1052  *      @avail_size: Available size in the memory
1053  *      @kdev - [IN] GPU device
1054  *      @sub_type_hdr: Memory into which io link info will be filled in
1055  *      @proximity_domain - proximity domain of the GPU node
1056  *
1057  *      Return 0 if successful else return -ve value
1058  */
1059 static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size,
1060                         struct kfd_dev *kdev,
1061                         struct crat_subtype_iolink *sub_type_hdr,
1062                         uint32_t proximity_domain)
1063 {
1064         *avail_size -= sizeof(struct crat_subtype_iolink);
1065         if (*avail_size < 0)
1066                 return -ENOMEM;
1067
1068         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1069
1070         /* Fill in subtype header data */
1071         sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1072         sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1073         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
1074         if (kfd_dev_is_large_bar(kdev))
1075                 sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1076
1077         /* Fill in IOLINK subtype.
1078          * TODO: Fill-in other fields of iolink subtype
1079          */
1080         sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
1081         sub_type_hdr->proximity_domain_from = proximity_domain;
1082 #ifdef CONFIG_NUMA
1083         if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
1084                 sub_type_hdr->proximity_domain_to = 0;
1085         else
1086                 sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
1087 #else
1088         sub_type_hdr->proximity_domain_to = 0;
1089 #endif
1090         return 0;
1091 }
1092
1093 static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size,
1094                         struct kfd_dev *kdev,
1095                         struct crat_subtype_iolink *sub_type_hdr,
1096                         uint32_t proximity_domain_from,
1097                         uint32_t proximity_domain_to)
1098 {
1099         *avail_size -= sizeof(struct crat_subtype_iolink);
1100         if (*avail_size < 0)
1101                 return -ENOMEM;
1102
1103         memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
1104
1105         sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
1106         sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
1107         sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED |
1108                                CRAT_IOLINK_FLAGS_BI_DIRECTIONAL;
1109
1110         sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI;
1111         sub_type_hdr->proximity_domain_from = proximity_domain_from;
1112         sub_type_hdr->proximity_domain_to = proximity_domain_to;
1113         return 0;
1114 }
1115
1116 /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
1117  *
1118  *      @pcrat_image: Fill in VCRAT for GPU
1119  *      @size:  [IN] allocated size of crat_image.
1120  *              [OUT] actual size of data filled in crat_image
1121  */
1122 static int kfd_create_vcrat_image_gpu(void *pcrat_image,
1123                                       size_t *size, struct kfd_dev *kdev,
1124                                       uint32_t proximity_domain)
1125 {
1126         struct crat_header *crat_table = (struct crat_header *)pcrat_image;
1127         struct crat_subtype_generic *sub_type_hdr;
1128         struct kfd_local_mem_info local_mem_info;
1129         struct kfd_topology_device *peer_dev;
1130         struct crat_subtype_computeunit *cu;
1131         struct kfd_cu_info cu_info;
1132         int avail_size = *size;
1133         uint32_t total_num_of_cu;
1134         int num_of_cache_entries = 0;
1135         int cache_mem_filled = 0;
1136         uint32_t nid = 0;
1137         int ret = 0;
1138
1139         if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
1140                 return -EINVAL;
1141
1142         /* Fill the CRAT Header.
1143          * Modify length and total_entries as subunits are added.
1144          */
1145         avail_size -= sizeof(struct crat_header);
1146         if (avail_size < 0)
1147                 return -ENOMEM;
1148
1149         memset(crat_table, 0, sizeof(struct crat_header));
1150
1151         memcpy(&crat_table->signature, CRAT_SIGNATURE,
1152                         sizeof(crat_table->signature));
1153         /* Change length as we add more subtypes*/
1154         crat_table->length = sizeof(struct crat_header);
1155         crat_table->num_domains = 1;
1156         crat_table->total_entries = 0;
1157
1158         /* Fill in Subtype: Compute Unit
1159          * First fill in the sub type header and then sub type data
1160          */
1161         avail_size -= sizeof(struct crat_subtype_computeunit);
1162         if (avail_size < 0)
1163                 return -ENOMEM;
1164
1165         sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
1166         memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
1167
1168         sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
1169         sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
1170         sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
1171
1172         /* Fill CU subtype data */
1173         cu = (struct crat_subtype_computeunit *)sub_type_hdr;
1174         cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
1175         cu->proximity_domain = proximity_domain;
1176
1177         amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info);
1178         cu->num_simd_per_cu = cu_info.simd_per_cu;
1179         cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
1180         cu->max_waves_simd = cu_info.max_waves_per_simd;
1181
1182         cu->wave_front_size = cu_info.wave_front_size;
1183         cu->array_count = cu_info.num_shader_arrays_per_engine *
1184                 cu_info.num_shader_engines;
1185         total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
1186         cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
1187         cu->num_cu_per_array = cu_info.num_cu_per_sh;
1188         cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
1189         cu->num_banks = cu_info.num_shader_engines;
1190         cu->lds_size_in_kb = cu_info.lds_size;
1191
1192         cu->hsa_capability = 0;
1193
1194         /* Check if this node supports IOMMU. During parsing this flag will
1195          * translate to HSA_CAP_ATS_PRESENT
1196          */
1197         if (!kfd_iommu_check_device(kdev))
1198                 cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
1199
1200         crat_table->length += sub_type_hdr->length;
1201         crat_table->total_entries++;
1202
1203         /* Fill in Subtype: Memory. Only on systems with large BAR (no
1204          * private FB), report memory as public. On other systems
1205          * report the total FB size (public+private) as a single
1206          * private heap.
1207          */
1208         amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info);
1209         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1210                         sub_type_hdr->length);
1211
1212         if (debug_largebar)
1213                 local_mem_info.local_mem_size_private = 0;
1214
1215         if (local_mem_info.local_mem_size_private == 0)
1216                 ret = kfd_fill_gpu_memory_affinity(&avail_size,
1217                                 kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
1218                                 local_mem_info.local_mem_size_public,
1219                                 (struct crat_subtype_memory *)sub_type_hdr,
1220                                 proximity_domain,
1221                                 &local_mem_info);
1222         else
1223                 ret = kfd_fill_gpu_memory_affinity(&avail_size,
1224                                 kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
1225                                 local_mem_info.local_mem_size_public +
1226                                 local_mem_info.local_mem_size_private,
1227                                 (struct crat_subtype_memory *)sub_type_hdr,
1228                                 proximity_domain,
1229                                 &local_mem_info);
1230         if (ret < 0)
1231                 return ret;
1232
1233         crat_table->length += sizeof(struct crat_subtype_memory);
1234         crat_table->total_entries++;
1235
1236         /* TODO: Fill in cache information. This information is NOT readily
1237          * available in KGD
1238          */
1239         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1240                 sub_type_hdr->length);
1241         ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
1242                                 avail_size,
1243                                 &cu_info,
1244                                 (struct crat_subtype_cache *)sub_type_hdr,
1245                                 &cache_mem_filled,
1246                                 &num_of_cache_entries);
1247
1248         if (ret < 0)
1249                 return ret;
1250
1251         crat_table->length += cache_mem_filled;
1252         crat_table->total_entries += num_of_cache_entries;
1253         avail_size -= cache_mem_filled;
1254
1255         /* Fill in Subtype: IO_LINKS
1256          *  Only direct links are added here which is Link from GPU to
1257          *  to its NUMA node. Indirect links are added by userspace.
1258          */
1259         sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
1260                 cache_mem_filled);
1261         ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev,
1262                 (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
1263
1264         if (ret < 0)
1265                 return ret;
1266
1267         crat_table->length += sub_type_hdr->length;
1268         crat_table->total_entries++;
1269
1270
1271         /* Fill in Subtype: IO_LINKS
1272          * Direct links from GPU to other GPUs through xGMI.
1273          * We will loop GPUs that already be processed (with lower value
1274          * of proximity_domain), add the link for the GPUs with same
1275          * hive id (from this GPU to other GPU) . The reversed iolink
1276          * (from other GPU to this GPU) will be added
1277          * in kfd_parse_subtype_iolink.
1278          */
1279         if (kdev->hive_id) {
1280                 for (nid = 0; nid < proximity_domain; ++nid) {
1281                         peer_dev = kfd_topology_device_by_proximity_domain(nid);
1282                         if (!peer_dev->gpu)
1283                                 continue;
1284                         if (peer_dev->gpu->hive_id != kdev->hive_id)
1285                                 continue;
1286                         sub_type_hdr = (typeof(sub_type_hdr))(
1287                                 (char *)sub_type_hdr +
1288                                 sizeof(struct crat_subtype_iolink));
1289                         ret = kfd_fill_gpu_xgmi_link_to_gpu(
1290                                 &avail_size, kdev,
1291                                 (struct crat_subtype_iolink *)sub_type_hdr,
1292                                 proximity_domain, nid);
1293                         if (ret < 0)
1294                                 return ret;
1295                         crat_table->length += sub_type_hdr->length;
1296                         crat_table->total_entries++;
1297                 }
1298         }
1299         *size = crat_table->length;
1300         pr_info("Virtual CRAT table created for GPU\n");
1301
1302         return ret;
1303 }
1304
1305 /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
1306  *              creates a Virtual CRAT (VCRAT) image
1307  *
1308  * NOTE: Call kfd_destroy_crat_image to free CRAT image memory
1309  *
1310  *      @crat_image: VCRAT image created because ACPI does not have a
1311  *                   CRAT for this device
1312  *      @size: [OUT] size of virtual crat_image
1313  *      @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
1314  *              COMPUTE_UNIT_GPU - Create VCRAT for GPU
1315  *              (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
1316  *                      -- this option is not currently implemented.
1317  *                      The assumption is that all AMD APUs will have CRAT
1318  *      @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
1319  *
1320  *      Return 0 if successful else return -ve value
1321  */
1322 int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
1323                                   int flags, struct kfd_dev *kdev,
1324                                   uint32_t proximity_domain)
1325 {
1326         void *pcrat_image = NULL;
1327         int ret = 0;
1328
1329         if (!crat_image)
1330                 return -EINVAL;
1331
1332         *crat_image = NULL;
1333
1334         /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
1335          * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
1336          * all the current conditions. A check is put not to overwrite beyond
1337          * allocated size
1338          */
1339         switch (flags) {
1340         case COMPUTE_UNIT_CPU:
1341                 pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
1342                 if (!pcrat_image)
1343                         return -ENOMEM;
1344                 *size = VCRAT_SIZE_FOR_CPU;
1345                 ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
1346                 break;
1347         case COMPUTE_UNIT_GPU:
1348                 if (!kdev)
1349                         return -EINVAL;
1350                 pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
1351                 if (!pcrat_image)
1352                         return -ENOMEM;
1353                 *size = VCRAT_SIZE_FOR_GPU;
1354                 ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
1355                                                  proximity_domain);
1356                 break;
1357         case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
1358                 /* TODO: */
1359                 ret = -EINVAL;
1360                 pr_err("VCRAT not implemented for APU\n");
1361                 break;
1362         default:
1363                 ret = -EINVAL;
1364         }
1365
1366         if (!ret)
1367                 *crat_image = pcrat_image;
1368         else
1369                 kfree(pcrat_image);
1370
1371         return ret;
1372 }
1373
1374
1375 /* kfd_destroy_crat_image
1376  *
1377  *      @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
1378  *
1379  */
1380 void kfd_destroy_crat_image(void *crat_image)
1381 {
1382         kfree(crat_image);
1383 }