Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[sfrench/cifs-2.6.git] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
32
33 #include <asm/page.h>
34 #include <asm/system.h>
35
36 #include "fw-ohci.h"
37 #include "fw-transaction.h"
38
39 #define DESCRIPTOR_OUTPUT_MORE          0
40 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
41 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
42 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
43 #define DESCRIPTOR_STATUS               (1 << 11)
44 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
45 #define DESCRIPTOR_PING                 (1 << 7)
46 #define DESCRIPTOR_YY                   (1 << 6)
47 #define DESCRIPTOR_NO_IRQ               (0 << 4)
48 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
49 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
50 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
51 #define DESCRIPTOR_WAIT                 (3 << 0)
52
53 struct descriptor {
54         __le16 req_count;
55         __le16 control;
56         __le32 data_address;
57         __le32 branch_address;
58         __le16 res_count;
59         __le16 transfer_status;
60 } __attribute__((aligned(16)));
61
62 struct db_descriptor {
63         __le16 first_size;
64         __le16 control;
65         __le16 second_req_count;
66         __le16 first_req_count;
67         __le32 branch_address;
68         __le16 second_res_count;
69         __le16 first_res_count;
70         __le32 reserved0;
71         __le32 first_buffer;
72         __le32 second_buffer;
73         __le32 reserved1;
74 } __attribute__((aligned(16)));
75
76 #define CONTROL_SET(regs)       (regs)
77 #define CONTROL_CLEAR(regs)     ((regs) + 4)
78 #define COMMAND_PTR(regs)       ((regs) + 12)
79 #define CONTEXT_MATCH(regs)     ((regs) + 16)
80
81 struct ar_buffer {
82         struct descriptor descriptor;
83         struct ar_buffer *next;
84         __le32 data[0];
85 };
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct ar_buffer *current_buffer;
90         struct ar_buffer *last_buffer;
91         void *pointer;
92         u32 regs;
93         struct tasklet_struct tasklet;
94 };
95
96 struct context;
97
98 typedef int (*descriptor_callback_t)(struct context *ctx,
99                                      struct descriptor *d,
100                                      struct descriptor *last);
101 struct context {
102         struct fw_ohci *ohci;
103         u32 regs;
104
105         struct descriptor *buffer;
106         dma_addr_t buffer_bus;
107         size_t buffer_size;
108         struct descriptor *head_descriptor;
109         struct descriptor *tail_descriptor;
110         struct descriptor *tail_descriptor_last;
111         struct descriptor *prev_descriptor;
112
113         descriptor_callback_t callback;
114
115         struct tasklet_struct tasklet;
116 };
117
118 #define IT_HEADER_SY(v)          ((v) <<  0)
119 #define IT_HEADER_TCODE(v)       ((v) <<  4)
120 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
121 #define IT_HEADER_TAG(v)         ((v) << 14)
122 #define IT_HEADER_SPEED(v)       ((v) << 16)
123 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
124
125 struct iso_context {
126         struct fw_iso_context base;
127         struct context context;
128         void *header;
129         size_t header_length;
130 };
131
132 #define CONFIG_ROM_SIZE 1024
133
134 struct fw_ohci {
135         struct fw_card card;
136
137         u32 version;
138         __iomem char *registers;
139         dma_addr_t self_id_bus;
140         __le32 *self_id_cpu;
141         struct tasklet_struct bus_reset_tasklet;
142         int node_id;
143         int generation;
144         int request_generation;
145         u32 bus_seconds;
146
147         /*
148          * Spinlock for accessing fw_ohci data.  Never call out of
149          * this driver with this lock held.
150          */
151         spinlock_t lock;
152         u32 self_id_buffer[512];
153
154         /* Config rom buffers */
155         __be32 *config_rom;
156         dma_addr_t config_rom_bus;
157         __be32 *next_config_rom;
158         dma_addr_t next_config_rom_bus;
159         u32 next_header;
160
161         struct ar_context ar_request_ctx;
162         struct ar_context ar_response_ctx;
163         struct context at_request_ctx;
164         struct context at_response_ctx;
165
166         u32 it_context_mask;
167         struct iso_context *it_context_list;
168         u32 ir_context_mask;
169         struct iso_context *ir_context_list;
170 };
171
172 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
173 {
174         return container_of(card, struct fw_ohci, card);
175 }
176
177 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
178 #define IR_CONTEXT_BUFFER_FILL          0x80000000
179 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
180 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
181 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
182 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
183
184 #define CONTEXT_RUN     0x8000
185 #define CONTEXT_WAKE    0x1000
186 #define CONTEXT_DEAD    0x0800
187 #define CONTEXT_ACTIVE  0x0400
188
189 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
190 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
191 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
192
193 #define FW_OHCI_MAJOR                   240
194 #define OHCI1394_REGISTER_SIZE          0x800
195 #define OHCI_LOOP_COUNT                 500
196 #define OHCI1394_PCI_HCI_Control        0x40
197 #define SELF_ID_BUF_SIZE                0x800
198 #define OHCI_TCODE_PHY_PACKET           0x0e
199 #define OHCI_VERSION_1_1                0x010010
200 #define ISO_BUFFER_SIZE                 (64 * 1024)
201 #define AT_BUFFER_SIZE                  4096
202
203 static char ohci_driver_name[] = KBUILD_MODNAME;
204
205 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
206 {
207         writel(data, ohci->registers + offset);
208 }
209
210 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
211 {
212         return readl(ohci->registers + offset);
213 }
214
215 static inline void flush_writes(const struct fw_ohci *ohci)
216 {
217         /* Do a dummy read to flush writes. */
218         reg_read(ohci, OHCI1394_Version);
219 }
220
221 static int
222 ohci_update_phy_reg(struct fw_card *card, int addr,
223                     int clear_bits, int set_bits)
224 {
225         struct fw_ohci *ohci = fw_ohci(card);
226         u32 val, old;
227
228         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
229         flush_writes(ohci);
230         msleep(2);
231         val = reg_read(ohci, OHCI1394_PhyControl);
232         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
233                 fw_error("failed to set phy reg bits.\n");
234                 return -EBUSY;
235         }
236
237         old = OHCI1394_PhyControl_ReadData(val);
238         old = (old & ~clear_bits) | set_bits;
239         reg_write(ohci, OHCI1394_PhyControl,
240                   OHCI1394_PhyControl_Write(addr, old));
241
242         return 0;
243 }
244
245 static int ar_context_add_page(struct ar_context *ctx)
246 {
247         struct device *dev = ctx->ohci->card.device;
248         struct ar_buffer *ab;
249         dma_addr_t ab_bus;
250         size_t offset;
251
252         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
253         if (ab == NULL)
254                 return -ENOMEM;
255
256         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
257         if (dma_mapping_error(ab_bus)) {
258                 free_page((unsigned long) ab);
259                 return -ENOMEM;
260         }
261
262         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
263         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
264                                                     DESCRIPTOR_STATUS |
265                                                     DESCRIPTOR_BRANCH_ALWAYS);
266         offset = offsetof(struct ar_buffer, data);
267         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
268         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
269         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
270         ab->descriptor.branch_address = 0;
271
272         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
273
274         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
275         ctx->last_buffer->next = ab;
276         ctx->last_buffer = ab;
277
278         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
279         flush_writes(ctx->ohci);
280
281         return 0;
282 }
283
284 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
285 {
286         struct fw_ohci *ohci = ctx->ohci;
287         struct fw_packet p;
288         u32 status, length, tcode;
289
290         p.header[0] = le32_to_cpu(buffer[0]);
291         p.header[1] = le32_to_cpu(buffer[1]);
292         p.header[2] = le32_to_cpu(buffer[2]);
293
294         tcode = (p.header[0] >> 4) & 0x0f;
295         switch (tcode) {
296         case TCODE_WRITE_QUADLET_REQUEST:
297         case TCODE_READ_QUADLET_RESPONSE:
298                 p.header[3] = (__force __u32) buffer[3];
299                 p.header_length = 16;
300                 p.payload_length = 0;
301                 break;
302
303         case TCODE_READ_BLOCK_REQUEST :
304                 p.header[3] = le32_to_cpu(buffer[3]);
305                 p.header_length = 16;
306                 p.payload_length = 0;
307                 break;
308
309         case TCODE_WRITE_BLOCK_REQUEST:
310         case TCODE_READ_BLOCK_RESPONSE:
311         case TCODE_LOCK_REQUEST:
312         case TCODE_LOCK_RESPONSE:
313                 p.header[3] = le32_to_cpu(buffer[3]);
314                 p.header_length = 16;
315                 p.payload_length = p.header[3] >> 16;
316                 break;
317
318         case TCODE_WRITE_RESPONSE:
319         case TCODE_READ_QUADLET_REQUEST:
320         case OHCI_TCODE_PHY_PACKET:
321                 p.header_length = 12;
322                 p.payload_length = 0;
323                 break;
324         }
325
326         p.payload = (void *) buffer + p.header_length;
327
328         /* FIXME: What to do about evt_* errors? */
329         length = (p.header_length + p.payload_length + 3) / 4;
330         status = le32_to_cpu(buffer[length]);
331
332         p.ack        = ((status >> 16) & 0x1f) - 16;
333         p.speed      = (status >> 21) & 0x7;
334         p.timestamp  = status & 0xffff;
335         p.generation = ohci->request_generation;
336
337         /*
338          * The OHCI bus reset handler synthesizes a phy packet with
339          * the new generation number when a bus reset happens (see
340          * section 8.4.2.3).  This helps us determine when a request
341          * was received and make sure we send the response in the same
342          * generation.  We only need this for requests; for responses
343          * we use the unique tlabel for finding the matching
344          * request.
345          */
346
347         if (p.ack + 16 == 0x09)
348                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
349         else if (ctx == &ohci->ar_request_ctx)
350                 fw_core_handle_request(&ohci->card, &p);
351         else
352                 fw_core_handle_response(&ohci->card, &p);
353
354         return buffer + length + 1;
355 }
356
357 static void ar_context_tasklet(unsigned long data)
358 {
359         struct ar_context *ctx = (struct ar_context *)data;
360         struct fw_ohci *ohci = ctx->ohci;
361         struct ar_buffer *ab;
362         struct descriptor *d;
363         void *buffer, *end;
364
365         ab = ctx->current_buffer;
366         d = &ab->descriptor;
367
368         if (d->res_count == 0) {
369                 size_t size, rest, offset;
370
371                 /*
372                  * This descriptor is finished and we may have a
373                  * packet split across this and the next buffer. We
374                  * reuse the page for reassembling the split packet.
375                  */
376
377                 offset = offsetof(struct ar_buffer, data);
378                 dma_unmap_single(ohci->card.device,
379                         le32_to_cpu(ab->descriptor.data_address) - offset,
380                         PAGE_SIZE, DMA_BIDIRECTIONAL);
381
382                 buffer = ab;
383                 ab = ab->next;
384                 d = &ab->descriptor;
385                 size = buffer + PAGE_SIZE - ctx->pointer;
386                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
387                 memmove(buffer, ctx->pointer, size);
388                 memcpy(buffer + size, ab->data, rest);
389                 ctx->current_buffer = ab;
390                 ctx->pointer = (void *) ab->data + rest;
391                 end = buffer + size + rest;
392
393                 while (buffer < end)
394                         buffer = handle_ar_packet(ctx, buffer);
395
396                 free_page((unsigned long)buffer);
397                 ar_context_add_page(ctx);
398         } else {
399                 buffer = ctx->pointer;
400                 ctx->pointer = end =
401                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
402
403                 while (buffer < end)
404                         buffer = handle_ar_packet(ctx, buffer);
405         }
406 }
407
408 static int
409 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
410 {
411         struct ar_buffer ab;
412
413         ctx->regs        = regs;
414         ctx->ohci        = ohci;
415         ctx->last_buffer = &ab;
416         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
417
418         ar_context_add_page(ctx);
419         ar_context_add_page(ctx);
420         ctx->current_buffer = ab.next;
421         ctx->pointer = ctx->current_buffer->data;
422
423         return 0;
424 }
425
426 static void ar_context_run(struct ar_context *ctx)
427 {
428         struct ar_buffer *ab = ctx->current_buffer;
429         dma_addr_t ab_bus;
430         size_t offset;
431
432         offset = offsetof(struct ar_buffer, data);
433         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
434
435         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
436         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
437         flush_writes(ctx->ohci);
438 }
439
440 static struct descriptor *
441 find_branch_descriptor(struct descriptor *d, int z)
442 {
443         int b, key;
444
445         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
446         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
447
448         /* figure out which descriptor the branch address goes in */
449         if (z == 2 && (b == 3 || key == 2))
450                 return d;
451         else
452                 return d + z - 1;
453 }
454
455 static void context_tasklet(unsigned long data)
456 {
457         struct context *ctx = (struct context *) data;
458         struct fw_ohci *ohci = ctx->ohci;
459         struct descriptor *d, *last;
460         u32 address;
461         int z;
462
463         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
464                                 ctx->buffer_size, DMA_TO_DEVICE);
465
466         d    = ctx->tail_descriptor;
467         last = ctx->tail_descriptor_last;
468
469         while (last->branch_address != 0) {
470                 address = le32_to_cpu(last->branch_address);
471                 z = address & 0xf;
472                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
473                 last = find_branch_descriptor(d, z);
474
475                 if (!ctx->callback(ctx, d, last))
476                         break;
477
478                 ctx->tail_descriptor      = d;
479                 ctx->tail_descriptor_last = last;
480         }
481 }
482
483 static int
484 context_init(struct context *ctx, struct fw_ohci *ohci,
485              size_t buffer_size, u32 regs,
486              descriptor_callback_t callback)
487 {
488         ctx->ohci = ohci;
489         ctx->regs = regs;
490         ctx->buffer_size = buffer_size;
491         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
492         if (ctx->buffer == NULL)
493                 return -ENOMEM;
494
495         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
496         ctx->callback = callback;
497
498         ctx->buffer_bus =
499                 dma_map_single(ohci->card.device, ctx->buffer,
500                                buffer_size, DMA_TO_DEVICE);
501         if (dma_mapping_error(ctx->buffer_bus)) {
502                 kfree(ctx->buffer);
503                 return -ENOMEM;
504         }
505
506         ctx->head_descriptor      = ctx->buffer;
507         ctx->prev_descriptor      = ctx->buffer;
508         ctx->tail_descriptor      = ctx->buffer;
509         ctx->tail_descriptor_last = ctx->buffer;
510
511         /*
512          * We put a dummy descriptor in the buffer that has a NULL
513          * branch address and looks like it's been sent.  That way we
514          * have a descriptor to append DMA programs to.  Also, the
515          * ring buffer invariant is that it always has at least one
516          * element so that head == tail means buffer full.
517          */
518
519         memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
520         ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
521         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
522         ctx->head_descriptor++;
523
524         return 0;
525 }
526
527 static void
528 context_release(struct context *ctx)
529 {
530         struct fw_card *card = &ctx->ohci->card;
531
532         dma_unmap_single(card->device, ctx->buffer_bus,
533                          ctx->buffer_size, DMA_TO_DEVICE);
534         kfree(ctx->buffer);
535 }
536
537 static struct descriptor *
538 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
539 {
540         struct descriptor *d, *tail, *end;
541
542         d = ctx->head_descriptor;
543         tail = ctx->tail_descriptor;
544         end = ctx->buffer + ctx->buffer_size / sizeof(*d);
545
546         if (d + z <= tail) {
547                 goto has_space;
548         } else if (d > tail && d + z <= end) {
549                 goto has_space;
550         } else if (d > tail && ctx->buffer + z <= tail) {
551                 d = ctx->buffer;
552                 goto has_space;
553         }
554
555         return NULL;
556
557  has_space:
558         memset(d, 0, z * sizeof(*d));
559         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
560
561         return d;
562 }
563
564 static void context_run(struct context *ctx, u32 extra)
565 {
566         struct fw_ohci *ohci = ctx->ohci;
567
568         reg_write(ohci, COMMAND_PTR(ctx->regs),
569                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
570         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
571         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
572         flush_writes(ohci);
573 }
574
575 static void context_append(struct context *ctx,
576                            struct descriptor *d, int z, int extra)
577 {
578         dma_addr_t d_bus;
579
580         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
581
582         ctx->head_descriptor = d + z + extra;
583         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
584         ctx->prev_descriptor = find_branch_descriptor(d, z);
585
586         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
587                                    ctx->buffer_size, DMA_TO_DEVICE);
588
589         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
590         flush_writes(ctx->ohci);
591 }
592
593 static void context_stop(struct context *ctx)
594 {
595         u32 reg;
596         int i;
597
598         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
599         flush_writes(ctx->ohci);
600
601         for (i = 0; i < 10; i++) {
602                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
603                 if ((reg & CONTEXT_ACTIVE) == 0)
604                         break;
605
606                 fw_notify("context_stop: still active (0x%08x)\n", reg);
607                 mdelay(1);
608         }
609 }
610
611 struct driver_data {
612         struct fw_packet *packet;
613 };
614
615 /*
616  * This function apppends a packet to the DMA queue for transmission.
617  * Must always be called with the ochi->lock held to ensure proper
618  * generation handling and locking around packet queue manipulation.
619  */
620 static int
621 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
622 {
623         struct fw_ohci *ohci = ctx->ohci;
624         dma_addr_t d_bus, uninitialized_var(payload_bus);
625         struct driver_data *driver_data;
626         struct descriptor *d, *last;
627         __le32 *header;
628         int z, tcode;
629         u32 reg;
630
631         d = context_get_descriptors(ctx, 4, &d_bus);
632         if (d == NULL) {
633                 packet->ack = RCODE_SEND_ERROR;
634                 return -1;
635         }
636
637         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
638         d[0].res_count = cpu_to_le16(packet->timestamp);
639
640         /*
641          * The DMA format for asyncronous link packets is different
642          * from the IEEE1394 layout, so shift the fields around
643          * accordingly.  If header_length is 8, it's a PHY packet, to
644          * which we need to prepend an extra quadlet.
645          */
646
647         header = (__le32 *) &d[1];
648         if (packet->header_length > 8) {
649                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
650                                         (packet->speed << 16));
651                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
652                                         (packet->header[0] & 0xffff0000));
653                 header[2] = cpu_to_le32(packet->header[2]);
654
655                 tcode = (packet->header[0] >> 4) & 0x0f;
656                 if (TCODE_IS_BLOCK_PACKET(tcode))
657                         header[3] = cpu_to_le32(packet->header[3]);
658                 else
659                         header[3] = (__force __le32) packet->header[3];
660
661                 d[0].req_count = cpu_to_le16(packet->header_length);
662         } else {
663                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
664                                         (packet->speed << 16));
665                 header[1] = cpu_to_le32(packet->header[0]);
666                 header[2] = cpu_to_le32(packet->header[1]);
667                 d[0].req_count = cpu_to_le16(12);
668         }
669
670         driver_data = (struct driver_data *) &d[3];
671         driver_data->packet = packet;
672         packet->driver_data = driver_data;
673
674         if (packet->payload_length > 0) {
675                 payload_bus =
676                         dma_map_single(ohci->card.device, packet->payload,
677                                        packet->payload_length, DMA_TO_DEVICE);
678                 if (dma_mapping_error(payload_bus)) {
679                         packet->ack = RCODE_SEND_ERROR;
680                         return -1;
681                 }
682
683                 d[2].req_count    = cpu_to_le16(packet->payload_length);
684                 d[2].data_address = cpu_to_le32(payload_bus);
685                 last = &d[2];
686                 z = 3;
687         } else {
688                 last = &d[0];
689                 z = 2;
690         }
691
692         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
693                                      DESCRIPTOR_IRQ_ALWAYS |
694                                      DESCRIPTOR_BRANCH_ALWAYS);
695
696         /* FIXME: Document how the locking works. */
697         if (ohci->generation != packet->generation) {
698                 if (packet->payload_length > 0)
699                         dma_unmap_single(ohci->card.device, payload_bus,
700                                          packet->payload_length, DMA_TO_DEVICE);
701                 packet->ack = RCODE_GENERATION;
702                 return -1;
703         }
704
705         context_append(ctx, d, z, 4 - z);
706
707         /* If the context isn't already running, start it up. */
708         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
709         if ((reg & CONTEXT_RUN) == 0)
710                 context_run(ctx, 0);
711
712         return 0;
713 }
714
715 static int handle_at_packet(struct context *context,
716                             struct descriptor *d,
717                             struct descriptor *last)
718 {
719         struct driver_data *driver_data;
720         struct fw_packet *packet;
721         struct fw_ohci *ohci = context->ohci;
722         dma_addr_t payload_bus;
723         int evt;
724
725         if (last->transfer_status == 0)
726                 /* This descriptor isn't done yet, stop iteration. */
727                 return 0;
728
729         driver_data = (struct driver_data *) &d[3];
730         packet = driver_data->packet;
731         if (packet == NULL)
732                 /* This packet was cancelled, just continue. */
733                 return 1;
734
735         payload_bus = le32_to_cpu(last->data_address);
736         if (payload_bus != 0)
737                 dma_unmap_single(ohci->card.device, payload_bus,
738                                  packet->payload_length, DMA_TO_DEVICE);
739
740         evt = le16_to_cpu(last->transfer_status) & 0x1f;
741         packet->timestamp = le16_to_cpu(last->res_count);
742
743         switch (evt) {
744         case OHCI1394_evt_timeout:
745                 /* Async response transmit timed out. */
746                 packet->ack = RCODE_CANCELLED;
747                 break;
748
749         case OHCI1394_evt_flushed:
750                 /*
751                  * The packet was flushed should give same error as
752                  * when we try to use a stale generation count.
753                  */
754                 packet->ack = RCODE_GENERATION;
755                 break;
756
757         case OHCI1394_evt_missing_ack:
758                 /*
759                  * Using a valid (current) generation count, but the
760                  * node is not on the bus or not sending acks.
761                  */
762                 packet->ack = RCODE_NO_ACK;
763                 break;
764
765         case ACK_COMPLETE + 0x10:
766         case ACK_PENDING + 0x10:
767         case ACK_BUSY_X + 0x10:
768         case ACK_BUSY_A + 0x10:
769         case ACK_BUSY_B + 0x10:
770         case ACK_DATA_ERROR + 0x10:
771         case ACK_TYPE_ERROR + 0x10:
772                 packet->ack = evt - 0x10;
773                 break;
774
775         default:
776                 packet->ack = RCODE_SEND_ERROR;
777                 break;
778         }
779
780         packet->callback(packet, &ohci->card, packet->ack);
781
782         return 1;
783 }
784
785 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
786 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
787 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
788 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
789 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
790
791 static void
792 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
793 {
794         struct fw_packet response;
795         int tcode, length, i;
796
797         tcode = HEADER_GET_TCODE(packet->header[0]);
798         if (TCODE_IS_BLOCK_PACKET(tcode))
799                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
800         else
801                 length = 4;
802
803         i = csr - CSR_CONFIG_ROM;
804         if (i + length > CONFIG_ROM_SIZE) {
805                 fw_fill_response(&response, packet->header,
806                                  RCODE_ADDRESS_ERROR, NULL, 0);
807         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
808                 fw_fill_response(&response, packet->header,
809                                  RCODE_TYPE_ERROR, NULL, 0);
810         } else {
811                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
812                                  (void *) ohci->config_rom + i, length);
813         }
814
815         fw_core_handle_response(&ohci->card, &response);
816 }
817
818 static void
819 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
820 {
821         struct fw_packet response;
822         int tcode, length, ext_tcode, sel;
823         __be32 *payload, lock_old;
824         u32 lock_arg, lock_data;
825
826         tcode = HEADER_GET_TCODE(packet->header[0]);
827         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
828         payload = packet->payload;
829         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
830
831         if (tcode == TCODE_LOCK_REQUEST &&
832             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
833                 lock_arg = be32_to_cpu(payload[0]);
834                 lock_data = be32_to_cpu(payload[1]);
835         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
836                 lock_arg = 0;
837                 lock_data = 0;
838         } else {
839                 fw_fill_response(&response, packet->header,
840                                  RCODE_TYPE_ERROR, NULL, 0);
841                 goto out;
842         }
843
844         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
845         reg_write(ohci, OHCI1394_CSRData, lock_data);
846         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
847         reg_write(ohci, OHCI1394_CSRControl, sel);
848
849         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
850                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
851         else
852                 fw_notify("swap not done yet\n");
853
854         fw_fill_response(&response, packet->header,
855                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
856  out:
857         fw_core_handle_response(&ohci->card, &response);
858 }
859
860 static void
861 handle_local_request(struct context *ctx, struct fw_packet *packet)
862 {
863         u64 offset;
864         u32 csr;
865
866         if (ctx == &ctx->ohci->at_request_ctx) {
867                 packet->ack = ACK_PENDING;
868                 packet->callback(packet, &ctx->ohci->card, packet->ack);
869         }
870
871         offset =
872                 ((unsigned long long)
873                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
874                 packet->header[2];
875         csr = offset - CSR_REGISTER_BASE;
876
877         /* Handle config rom reads. */
878         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
879                 handle_local_rom(ctx->ohci, packet, csr);
880         else switch (csr) {
881         case CSR_BUS_MANAGER_ID:
882         case CSR_BANDWIDTH_AVAILABLE:
883         case CSR_CHANNELS_AVAILABLE_HI:
884         case CSR_CHANNELS_AVAILABLE_LO:
885                 handle_local_lock(ctx->ohci, packet, csr);
886                 break;
887         default:
888                 if (ctx == &ctx->ohci->at_request_ctx)
889                         fw_core_handle_request(&ctx->ohci->card, packet);
890                 else
891                         fw_core_handle_response(&ctx->ohci->card, packet);
892                 break;
893         }
894
895         if (ctx == &ctx->ohci->at_response_ctx) {
896                 packet->ack = ACK_COMPLETE;
897                 packet->callback(packet, &ctx->ohci->card, packet->ack);
898         }
899 }
900
901 static void
902 at_context_transmit(struct context *ctx, struct fw_packet *packet)
903 {
904         unsigned long flags;
905         int retval;
906
907         spin_lock_irqsave(&ctx->ohci->lock, flags);
908
909         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
910             ctx->ohci->generation == packet->generation) {
911                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
912                 handle_local_request(ctx, packet);
913                 return;
914         }
915
916         retval = at_context_queue_packet(ctx, packet);
917         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
918
919         if (retval < 0)
920                 packet->callback(packet, &ctx->ohci->card, packet->ack);
921
922 }
923
924 static void bus_reset_tasklet(unsigned long data)
925 {
926         struct fw_ohci *ohci = (struct fw_ohci *)data;
927         int self_id_count, i, j, reg;
928         int generation, new_generation;
929         unsigned long flags;
930         void *free_rom = NULL;
931         dma_addr_t free_rom_bus = 0;
932
933         reg = reg_read(ohci, OHCI1394_NodeID);
934         if (!(reg & OHCI1394_NodeID_idValid)) {
935                 fw_notify("node ID not valid, new bus reset in progress\n");
936                 return;
937         }
938         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
939                 fw_notify("malconfigured bus\n");
940                 return;
941         }
942         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
943                                OHCI1394_NodeID_nodeNumber);
944
945         /*
946          * The count in the SelfIDCount register is the number of
947          * bytes in the self ID receive buffer.  Since we also receive
948          * the inverted quadlets and a header quadlet, we shift one
949          * bit extra to get the actual number of self IDs.
950          */
951
952         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
953         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
954         rmb();
955
956         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
957                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
958                         fw_error("inconsistent self IDs\n");
959                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
960         }
961         rmb();
962
963         /*
964          * Check the consistency of the self IDs we just read.  The
965          * problem we face is that a new bus reset can start while we
966          * read out the self IDs from the DMA buffer. If this happens,
967          * the DMA buffer will be overwritten with new self IDs and we
968          * will read out inconsistent data.  The OHCI specification
969          * (section 11.2) recommends a technique similar to
970          * linux/seqlock.h, where we remember the generation of the
971          * self IDs in the buffer before reading them out and compare
972          * it to the current generation after reading them out.  If
973          * the two generations match we know we have a consistent set
974          * of self IDs.
975          */
976
977         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
978         if (new_generation != generation) {
979                 fw_notify("recursive bus reset detected, "
980                           "discarding self ids\n");
981                 return;
982         }
983
984         /* FIXME: Document how the locking works. */
985         spin_lock_irqsave(&ohci->lock, flags);
986
987         ohci->generation = generation;
988         context_stop(&ohci->at_request_ctx);
989         context_stop(&ohci->at_response_ctx);
990         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
991
992         /*
993          * This next bit is unrelated to the AT context stuff but we
994          * have to do it under the spinlock also.  If a new config rom
995          * was set up before this reset, the old one is now no longer
996          * in use and we can free it. Update the config rom pointers
997          * to point to the current config rom and clear the
998          * next_config_rom pointer so a new udpate can take place.
999          */
1000
1001         if (ohci->next_config_rom != NULL) {
1002                 if (ohci->next_config_rom != ohci->config_rom) {
1003                         free_rom      = ohci->config_rom;
1004                         free_rom_bus  = ohci->config_rom_bus;
1005                 }
1006                 ohci->config_rom      = ohci->next_config_rom;
1007                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1008                 ohci->next_config_rom = NULL;
1009
1010                 /*
1011                  * Restore config_rom image and manually update
1012                  * config_rom registers.  Writing the header quadlet
1013                  * will indicate that the config rom is ready, so we
1014                  * do that last.
1015                  */
1016                 reg_write(ohci, OHCI1394_BusOptions,
1017                           be32_to_cpu(ohci->config_rom[2]));
1018                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1019                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1020         }
1021
1022         spin_unlock_irqrestore(&ohci->lock, flags);
1023
1024         if (free_rom)
1025                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1026                                   free_rom, free_rom_bus);
1027
1028         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1029                                  self_id_count, ohci->self_id_buffer);
1030 }
1031
1032 static irqreturn_t irq_handler(int irq, void *data)
1033 {
1034         struct fw_ohci *ohci = data;
1035         u32 event, iso_event, cycle_time;
1036         int i;
1037
1038         event = reg_read(ohci, OHCI1394_IntEventClear);
1039
1040         if (!event || !~event)
1041                 return IRQ_NONE;
1042
1043         reg_write(ohci, OHCI1394_IntEventClear, event);
1044
1045         if (event & OHCI1394_selfIDComplete)
1046                 tasklet_schedule(&ohci->bus_reset_tasklet);
1047
1048         if (event & OHCI1394_RQPkt)
1049                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1050
1051         if (event & OHCI1394_RSPkt)
1052                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1053
1054         if (event & OHCI1394_reqTxComplete)
1055                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1056
1057         if (event & OHCI1394_respTxComplete)
1058                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1059
1060         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1061         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1062
1063         while (iso_event) {
1064                 i = ffs(iso_event) - 1;
1065                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1066                 iso_event &= ~(1 << i);
1067         }
1068
1069         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1070         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1071
1072         while (iso_event) {
1073                 i = ffs(iso_event) - 1;
1074                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1075                 iso_event &= ~(1 << i);
1076         }
1077
1078         if (unlikely(event & OHCI1394_postedWriteErr))
1079                 fw_error("PCI posted write error\n");
1080
1081         if (event & OHCI1394_cycle64Seconds) {
1082                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1083                 if ((cycle_time & 0x80000000) == 0)
1084                         ohci->bus_seconds++;
1085         }
1086
1087         return IRQ_HANDLED;
1088 }
1089
1090 static int software_reset(struct fw_ohci *ohci)
1091 {
1092         int i;
1093
1094         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1095
1096         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1097                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1098                      OHCI1394_HCControl_softReset) == 0)
1099                         return 0;
1100                 msleep(1);
1101         }
1102
1103         return -EBUSY;
1104 }
1105
1106 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1107 {
1108         struct fw_ohci *ohci = fw_ohci(card);
1109         struct pci_dev *dev = to_pci_dev(card->device);
1110
1111         if (software_reset(ohci)) {
1112                 fw_error("Failed to reset ohci card.\n");
1113                 return -EBUSY;
1114         }
1115
1116         /*
1117          * Now enable LPS, which we need in order to start accessing
1118          * most of the registers.  In fact, on some cards (ALI M5251),
1119          * accessing registers in the SClk domain without LPS enabled
1120          * will lock up the machine.  Wait 50msec to make sure we have
1121          * full link enabled.
1122          */
1123         reg_write(ohci, OHCI1394_HCControlSet,
1124                   OHCI1394_HCControl_LPS |
1125                   OHCI1394_HCControl_postedWriteEnable);
1126         flush_writes(ohci);
1127         msleep(50);
1128
1129         reg_write(ohci, OHCI1394_HCControlClear,
1130                   OHCI1394_HCControl_noByteSwapData);
1131
1132         reg_write(ohci, OHCI1394_LinkControlSet,
1133                   OHCI1394_LinkControl_rcvSelfID |
1134                   OHCI1394_LinkControl_cycleTimerEnable |
1135                   OHCI1394_LinkControl_cycleMaster);
1136
1137         reg_write(ohci, OHCI1394_ATRetries,
1138                   OHCI1394_MAX_AT_REQ_RETRIES |
1139                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1140                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1141
1142         ar_context_run(&ohci->ar_request_ctx);
1143         ar_context_run(&ohci->ar_response_ctx);
1144
1145         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1146         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1147         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1148         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1149         reg_write(ohci, OHCI1394_IntMaskSet,
1150                   OHCI1394_selfIDComplete |
1151                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1152                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1153                   OHCI1394_isochRx | OHCI1394_isochTx |
1154                   OHCI1394_postedWriteErr | OHCI1394_cycle64Seconds |
1155                   OHCI1394_masterIntEnable);
1156
1157         /* Activate link_on bit and contender bit in our self ID packets.*/
1158         if (ohci_update_phy_reg(card, 4, 0,
1159                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1160                 return -EIO;
1161
1162         /*
1163          * When the link is not yet enabled, the atomic config rom
1164          * update mechanism described below in ohci_set_config_rom()
1165          * is not active.  We have to update ConfigRomHeader and
1166          * BusOptions manually, and the write to ConfigROMmap takes
1167          * effect immediately.  We tie this to the enabling of the
1168          * link, so we have a valid config rom before enabling - the
1169          * OHCI requires that ConfigROMhdr and BusOptions have valid
1170          * values before enabling.
1171          *
1172          * However, when the ConfigROMmap is written, some controllers
1173          * always read back quadlets 0 and 2 from the config rom to
1174          * the ConfigRomHeader and BusOptions registers on bus reset.
1175          * They shouldn't do that in this initial case where the link
1176          * isn't enabled.  This means we have to use the same
1177          * workaround here, setting the bus header to 0 and then write
1178          * the right values in the bus reset tasklet.
1179          */
1180
1181         if (config_rom) {
1182                 ohci->next_config_rom =
1183                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1184                                            &ohci->next_config_rom_bus,
1185                                            GFP_KERNEL);
1186                 if (ohci->next_config_rom == NULL)
1187                         return -ENOMEM;
1188
1189                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1190                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1191         } else {
1192                 /*
1193                  * In the suspend case, config_rom is NULL, which
1194                  * means that we just reuse the old config rom.
1195                  */
1196                 ohci->next_config_rom = ohci->config_rom;
1197                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1198         }
1199
1200         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1201         ohci->next_config_rom[0] = 0;
1202         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1203         reg_write(ohci, OHCI1394_BusOptions,
1204                   be32_to_cpu(ohci->next_config_rom[2]));
1205         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1206
1207         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1208
1209         if (request_irq(dev->irq, irq_handler,
1210                         IRQF_SHARED, ohci_driver_name, ohci)) {
1211                 fw_error("Failed to allocate shared interrupt %d.\n",
1212                          dev->irq);
1213                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1214                                   ohci->config_rom, ohci->config_rom_bus);
1215                 return -EIO;
1216         }
1217
1218         reg_write(ohci, OHCI1394_HCControlSet,
1219                   OHCI1394_HCControl_linkEnable |
1220                   OHCI1394_HCControl_BIBimageValid);
1221         flush_writes(ohci);
1222
1223         /*
1224          * We are ready to go, initiate bus reset to finish the
1225          * initialization.
1226          */
1227
1228         fw_core_initiate_bus_reset(&ohci->card, 1);
1229
1230         return 0;
1231 }
1232
1233 static int
1234 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1235 {
1236         struct fw_ohci *ohci;
1237         unsigned long flags;
1238         int retval = -EBUSY;
1239         __be32 *next_config_rom;
1240         dma_addr_t next_config_rom_bus;
1241
1242         ohci = fw_ohci(card);
1243
1244         /*
1245          * When the OHCI controller is enabled, the config rom update
1246          * mechanism is a bit tricky, but easy enough to use.  See
1247          * section 5.5.6 in the OHCI specification.
1248          *
1249          * The OHCI controller caches the new config rom address in a
1250          * shadow register (ConfigROMmapNext) and needs a bus reset
1251          * for the changes to take place.  When the bus reset is
1252          * detected, the controller loads the new values for the
1253          * ConfigRomHeader and BusOptions registers from the specified
1254          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1255          * shadow register. All automatically and atomically.
1256          *
1257          * Now, there's a twist to this story.  The automatic load of
1258          * ConfigRomHeader and BusOptions doesn't honor the
1259          * noByteSwapData bit, so with a be32 config rom, the
1260          * controller will load be32 values in to these registers
1261          * during the atomic update, even on litte endian
1262          * architectures.  The workaround we use is to put a 0 in the
1263          * header quadlet; 0 is endian agnostic and means that the
1264          * config rom isn't ready yet.  In the bus reset tasklet we
1265          * then set up the real values for the two registers.
1266          *
1267          * We use ohci->lock to avoid racing with the code that sets
1268          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1269          */
1270
1271         next_config_rom =
1272                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1273                                    &next_config_rom_bus, GFP_KERNEL);
1274         if (next_config_rom == NULL)
1275                 return -ENOMEM;
1276
1277         spin_lock_irqsave(&ohci->lock, flags);
1278
1279         if (ohci->next_config_rom == NULL) {
1280                 ohci->next_config_rom = next_config_rom;
1281                 ohci->next_config_rom_bus = next_config_rom_bus;
1282
1283                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1284                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1285                                   length * 4);
1286
1287                 ohci->next_header = config_rom[0];
1288                 ohci->next_config_rom[0] = 0;
1289
1290                 reg_write(ohci, OHCI1394_ConfigROMmap,
1291                           ohci->next_config_rom_bus);
1292                 retval = 0;
1293         }
1294
1295         spin_unlock_irqrestore(&ohci->lock, flags);
1296
1297         /*
1298          * Now initiate a bus reset to have the changes take
1299          * effect. We clean up the old config rom memory and DMA
1300          * mappings in the bus reset tasklet, since the OHCI
1301          * controller could need to access it before the bus reset
1302          * takes effect.
1303          */
1304         if (retval == 0)
1305                 fw_core_initiate_bus_reset(&ohci->card, 1);
1306         else
1307                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1308                                   next_config_rom, next_config_rom_bus);
1309
1310         return retval;
1311 }
1312
1313 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1314 {
1315         struct fw_ohci *ohci = fw_ohci(card);
1316
1317         at_context_transmit(&ohci->at_request_ctx, packet);
1318 }
1319
1320 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1321 {
1322         struct fw_ohci *ohci = fw_ohci(card);
1323
1324         at_context_transmit(&ohci->at_response_ctx, packet);
1325 }
1326
1327 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1328 {
1329         struct fw_ohci *ohci = fw_ohci(card);
1330         struct context *ctx = &ohci->at_request_ctx;
1331         struct driver_data *driver_data = packet->driver_data;
1332         int retval = -ENOENT;
1333
1334         tasklet_disable(&ctx->tasklet);
1335
1336         if (packet->ack != 0)
1337                 goto out;
1338
1339         driver_data->packet = NULL;
1340         packet->ack = RCODE_CANCELLED;
1341         packet->callback(packet, &ohci->card, packet->ack);
1342         retval = 0;
1343
1344  out:
1345         tasklet_enable(&ctx->tasklet);
1346
1347         return retval;
1348 }
1349
1350 static int
1351 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1352 {
1353         struct fw_ohci *ohci = fw_ohci(card);
1354         unsigned long flags;
1355         int n, retval = 0;
1356
1357         /*
1358          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1359          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1360          */
1361
1362         spin_lock_irqsave(&ohci->lock, flags);
1363
1364         if (ohci->generation != generation) {
1365                 retval = -ESTALE;
1366                 goto out;
1367         }
1368
1369         /*
1370          * Note, if the node ID contains a non-local bus ID, physical DMA is
1371          * enabled for _all_ nodes on remote buses.
1372          */
1373
1374         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1375         if (n < 32)
1376                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1377         else
1378                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1379
1380         flush_writes(ohci);
1381  out:
1382         spin_unlock_irqrestore(&ohci->lock, flags);
1383         return retval;
1384 }
1385
1386 static u64
1387 ohci_get_bus_time(struct fw_card *card)
1388 {
1389         struct fw_ohci *ohci = fw_ohci(card);
1390         u32 cycle_time;
1391         u64 bus_time;
1392
1393         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1394         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1395
1396         return bus_time;
1397 }
1398
1399 static int handle_ir_dualbuffer_packet(struct context *context,
1400                                        struct descriptor *d,
1401                                        struct descriptor *last)
1402 {
1403         struct iso_context *ctx =
1404                 container_of(context, struct iso_context, context);
1405         struct db_descriptor *db = (struct db_descriptor *) d;
1406         __le32 *ir_header;
1407         size_t header_length;
1408         void *p, *end;
1409         int i;
1410
1411         if (db->first_res_count > 0 && db->second_res_count > 0)
1412                 /* This descriptor isn't done yet, stop iteration. */
1413                 return 0;
1414
1415         header_length = le16_to_cpu(db->first_req_count) -
1416                 le16_to_cpu(db->first_res_count);
1417
1418         i = ctx->header_length;
1419         p = db + 1;
1420         end = p + header_length;
1421         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1422                 /*
1423                  * The iso header is byteswapped to little endian by
1424                  * the controller, but the remaining header quadlets
1425                  * are big endian.  We want to present all the headers
1426                  * as big endian, so we have to swap the first
1427                  * quadlet.
1428                  */
1429                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1430                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1431                 i += ctx->base.header_size;
1432                 p += ctx->base.header_size + 4;
1433         }
1434
1435         ctx->header_length = i;
1436
1437         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1438                 ir_header = (__le32 *) (db + 1);
1439                 ctx->base.callback(&ctx->base,
1440                                    le32_to_cpu(ir_header[0]) & 0xffff,
1441                                    ctx->header_length, ctx->header,
1442                                    ctx->base.callback_data);
1443                 ctx->header_length = 0;
1444         }
1445
1446         return 1;
1447 }
1448
1449 static int handle_ir_packet_per_buffer(struct context *context,
1450                                        struct descriptor *d,
1451                                        struct descriptor *last)
1452 {
1453         struct iso_context *ctx =
1454                 container_of(context, struct iso_context, context);
1455         struct descriptor *pd = d + 1;
1456         __le32 *ir_header;
1457         size_t header_length;
1458         void *p, *end;
1459         int i, z;
1460
1461         if (pd->res_count == pd->req_count)
1462                 /* Descriptor(s) not done yet, stop iteration */
1463                 return 0;
1464
1465         header_length = le16_to_cpu(d->req_count);
1466
1467         i   = ctx->header_length;
1468         z   = le32_to_cpu(pd->branch_address) & 0xf;
1469         p   = d + z;
1470         end = p + header_length;
1471
1472         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1473                 /*
1474                  * The iso header is byteswapped to little endian by
1475                  * the controller, but the remaining header quadlets
1476                  * are big endian.  We want to present all the headers
1477                  * as big endian, so we have to swap the first quadlet.
1478                  */
1479                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1480                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1481                 i += ctx->base.header_size;
1482                 p += ctx->base.header_size + 4;
1483         }
1484
1485         ctx->header_length = i;
1486
1487         if (le16_to_cpu(pd->control) & DESCRIPTOR_IRQ_ALWAYS) {
1488                 ir_header = (__le32 *) (d + z);
1489                 ctx->base.callback(&ctx->base,
1490                                    le32_to_cpu(ir_header[0]) & 0xffff,
1491                                    ctx->header_length, ctx->header,
1492                                    ctx->base.callback_data);
1493                 ctx->header_length = 0;
1494         }
1495
1496
1497         return 1;
1498 }
1499
1500 static int handle_it_packet(struct context *context,
1501                             struct descriptor *d,
1502                             struct descriptor *last)
1503 {
1504         struct iso_context *ctx =
1505                 container_of(context, struct iso_context, context);
1506
1507         if (last->transfer_status == 0)
1508                 /* This descriptor isn't done yet, stop iteration. */
1509                 return 0;
1510
1511         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1512                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1513                                    0, NULL, ctx->base.callback_data);
1514
1515         return 1;
1516 }
1517
1518 static struct fw_iso_context *
1519 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1520 {
1521         struct fw_ohci *ohci = fw_ohci(card);
1522         struct iso_context *ctx, *list;
1523         descriptor_callback_t callback;
1524         u32 *mask, regs;
1525         unsigned long flags;
1526         int index, retval = -ENOMEM;
1527
1528         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1529                 mask = &ohci->it_context_mask;
1530                 list = ohci->it_context_list;
1531                 callback = handle_it_packet;
1532         } else {
1533                 mask = &ohci->ir_context_mask;
1534                 list = ohci->ir_context_list;
1535                 if (ohci->version >= OHCI_VERSION_1_1)
1536                         callback = handle_ir_dualbuffer_packet;
1537                 else
1538                         callback = handle_ir_packet_per_buffer;
1539         }
1540
1541         spin_lock_irqsave(&ohci->lock, flags);
1542         index = ffs(*mask) - 1;
1543         if (index >= 0)
1544                 *mask &= ~(1 << index);
1545         spin_unlock_irqrestore(&ohci->lock, flags);
1546
1547         if (index < 0)
1548                 return ERR_PTR(-EBUSY);
1549
1550         if (type == FW_ISO_CONTEXT_TRANSMIT)
1551                 regs = OHCI1394_IsoXmitContextBase(index);
1552         else
1553                 regs = OHCI1394_IsoRcvContextBase(index);
1554
1555         ctx = &list[index];
1556         memset(ctx, 0, sizeof(*ctx));
1557         ctx->header_length = 0;
1558         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1559         if (ctx->header == NULL)
1560                 goto out;
1561
1562         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1563                               regs, callback);
1564         if (retval < 0)
1565                 goto out_with_header;
1566
1567         return &ctx->base;
1568
1569  out_with_header:
1570         free_page((unsigned long)ctx->header);
1571  out:
1572         spin_lock_irqsave(&ohci->lock, flags);
1573         *mask |= 1 << index;
1574         spin_unlock_irqrestore(&ohci->lock, flags);
1575
1576         return ERR_PTR(retval);
1577 }
1578
1579 static int ohci_start_iso(struct fw_iso_context *base,
1580                           s32 cycle, u32 sync, u32 tags)
1581 {
1582         struct iso_context *ctx = container_of(base, struct iso_context, base);
1583         struct fw_ohci *ohci = ctx->context.ohci;
1584         u32 control, match;
1585         int index;
1586
1587         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1588                 index = ctx - ohci->it_context_list;
1589                 match = 0;
1590                 if (cycle >= 0)
1591                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1592                                 (cycle & 0x7fff) << 16;
1593
1594                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1595                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1596                 context_run(&ctx->context, match);
1597         } else {
1598                 index = ctx - ohci->ir_context_list;
1599                 control = IR_CONTEXT_ISOCH_HEADER;
1600                 if (ohci->version >= OHCI_VERSION_1_1)
1601                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1602                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1603                 if (cycle >= 0) {
1604                         match |= (cycle & 0x07fff) << 12;
1605                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1606                 }
1607
1608                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1609                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1610                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1611                 context_run(&ctx->context, control);
1612         }
1613
1614         return 0;
1615 }
1616
1617 static int ohci_stop_iso(struct fw_iso_context *base)
1618 {
1619         struct fw_ohci *ohci = fw_ohci(base->card);
1620         struct iso_context *ctx = container_of(base, struct iso_context, base);
1621         int index;
1622
1623         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1624                 index = ctx - ohci->it_context_list;
1625                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1626         } else {
1627                 index = ctx - ohci->ir_context_list;
1628                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1629         }
1630         flush_writes(ohci);
1631         context_stop(&ctx->context);
1632
1633         return 0;
1634 }
1635
1636 static void ohci_free_iso_context(struct fw_iso_context *base)
1637 {
1638         struct fw_ohci *ohci = fw_ohci(base->card);
1639         struct iso_context *ctx = container_of(base, struct iso_context, base);
1640         unsigned long flags;
1641         int index;
1642
1643         ohci_stop_iso(base);
1644         context_release(&ctx->context);
1645         free_page((unsigned long)ctx->header);
1646
1647         spin_lock_irqsave(&ohci->lock, flags);
1648
1649         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1650                 index = ctx - ohci->it_context_list;
1651                 ohci->it_context_mask |= 1 << index;
1652         } else {
1653                 index = ctx - ohci->ir_context_list;
1654                 ohci->ir_context_mask |= 1 << index;
1655         }
1656
1657         spin_unlock_irqrestore(&ohci->lock, flags);
1658 }
1659
1660 static int
1661 ohci_queue_iso_transmit(struct fw_iso_context *base,
1662                         struct fw_iso_packet *packet,
1663                         struct fw_iso_buffer *buffer,
1664                         unsigned long payload)
1665 {
1666         struct iso_context *ctx = container_of(base, struct iso_context, base);
1667         struct descriptor *d, *last, *pd;
1668         struct fw_iso_packet *p;
1669         __le32 *header;
1670         dma_addr_t d_bus, page_bus;
1671         u32 z, header_z, payload_z, irq;
1672         u32 payload_index, payload_end_index, next_page_index;
1673         int page, end_page, i, length, offset;
1674
1675         /*
1676          * FIXME: Cycle lost behavior should be configurable: lose
1677          * packet, retransmit or terminate..
1678          */
1679
1680         p = packet;
1681         payload_index = payload;
1682
1683         if (p->skip)
1684                 z = 1;
1685         else
1686                 z = 2;
1687         if (p->header_length > 0)
1688                 z++;
1689
1690         /* Determine the first page the payload isn't contained in. */
1691         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1692         if (p->payload_length > 0)
1693                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1694         else
1695                 payload_z = 0;
1696
1697         z += payload_z;
1698
1699         /* Get header size in number of descriptors. */
1700         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1701
1702         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1703         if (d == NULL)
1704                 return -ENOMEM;
1705
1706         if (!p->skip) {
1707                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1708                 d[0].req_count = cpu_to_le16(8);
1709
1710                 header = (__le32 *) &d[1];
1711                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1712                                         IT_HEADER_TAG(p->tag) |
1713                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1714                                         IT_HEADER_CHANNEL(ctx->base.channel) |
1715                                         IT_HEADER_SPEED(ctx->base.speed));
1716                 header[1] =
1717                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1718                                                           p->payload_length));
1719         }
1720
1721         if (p->header_length > 0) {
1722                 d[2].req_count    = cpu_to_le16(p->header_length);
1723                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1724                 memcpy(&d[z], p->header, p->header_length);
1725         }
1726
1727         pd = d + z - payload_z;
1728         payload_end_index = payload_index + p->payload_length;
1729         for (i = 0; i < payload_z; i++) {
1730                 page               = payload_index >> PAGE_SHIFT;
1731                 offset             = payload_index & ~PAGE_MASK;
1732                 next_page_index    = (page + 1) << PAGE_SHIFT;
1733                 length             =
1734                         min(next_page_index, payload_end_index) - payload_index;
1735                 pd[i].req_count    = cpu_to_le16(length);
1736
1737                 page_bus = page_private(buffer->pages[page]);
1738                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1739
1740                 payload_index += length;
1741         }
1742
1743         if (p->interrupt)
1744                 irq = DESCRIPTOR_IRQ_ALWAYS;
1745         else
1746                 irq = DESCRIPTOR_NO_IRQ;
1747
1748         last = z == 2 ? d : d + z - 1;
1749         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1750                                      DESCRIPTOR_STATUS |
1751                                      DESCRIPTOR_BRANCH_ALWAYS |
1752                                      irq);
1753
1754         context_append(&ctx->context, d, z, header_z);
1755
1756         return 0;
1757 }
1758
1759 static int
1760 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1761                                   struct fw_iso_packet *packet,
1762                                   struct fw_iso_buffer *buffer,
1763                                   unsigned long payload)
1764 {
1765         struct iso_context *ctx = container_of(base, struct iso_context, base);
1766         struct db_descriptor *db = NULL;
1767         struct descriptor *d;
1768         struct fw_iso_packet *p;
1769         dma_addr_t d_bus, page_bus;
1770         u32 z, header_z, length, rest;
1771         int page, offset, packet_count, header_size;
1772
1773         /*
1774          * FIXME: Cycle lost behavior should be configurable: lose
1775          * packet, retransmit or terminate..
1776          */
1777
1778         if (packet->skip) {
1779                 d = context_get_descriptors(&ctx->context, 2, &d_bus);
1780                 if (d == NULL)
1781                         return -ENOMEM;
1782
1783                 db = (struct db_descriptor *) d;
1784                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1785                                           DESCRIPTOR_BRANCH_ALWAYS |
1786                                           DESCRIPTOR_WAIT);
1787                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1788                 context_append(&ctx->context, d, 2, 0);
1789         }
1790
1791         p = packet;
1792         z = 2;
1793
1794         /*
1795          * The OHCI controller puts the status word in the header
1796          * buffer too, so we need 4 extra bytes per packet.
1797          */
1798         packet_count = p->header_length / ctx->base.header_size;
1799         header_size = packet_count * (ctx->base.header_size + 4);
1800
1801         /* Get header size in number of descriptors. */
1802         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1803         page     = payload >> PAGE_SHIFT;
1804         offset   = payload & ~PAGE_MASK;
1805         rest     = p->payload_length;
1806
1807         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1808         while (rest > 0) {
1809                 d = context_get_descriptors(&ctx->context,
1810                                             z + header_z, &d_bus);
1811                 if (d == NULL)
1812                         return -ENOMEM;
1813
1814                 db = (struct db_descriptor *) d;
1815                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1816                                           DESCRIPTOR_BRANCH_ALWAYS);
1817                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1818                 db->first_req_count = cpu_to_le16(header_size);
1819                 db->first_res_count = db->first_req_count;
1820                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1821
1822                 if (offset + rest < PAGE_SIZE)
1823                         length = rest;
1824                 else
1825                         length = PAGE_SIZE - offset;
1826
1827                 db->second_req_count = cpu_to_le16(length);
1828                 db->second_res_count = db->second_req_count;
1829                 page_bus = page_private(buffer->pages[page]);
1830                 db->second_buffer = cpu_to_le32(page_bus + offset);
1831
1832                 if (p->interrupt && length == rest)
1833                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1834
1835                 context_append(&ctx->context, d, z, header_z);
1836                 offset = (offset + length) & ~PAGE_MASK;
1837                 rest -= length;
1838                 page++;
1839         }
1840
1841         return 0;
1842 }
1843
1844 static int
1845 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1846                                          struct fw_iso_packet *packet,
1847                                          struct fw_iso_buffer *buffer,
1848                                          unsigned long payload)
1849 {
1850         struct iso_context *ctx = container_of(base, struct iso_context, base);
1851         struct descriptor *d = NULL, *pd = NULL;
1852         struct fw_iso_packet *p;
1853         dma_addr_t d_bus, page_bus;
1854         u32 z, header_z, rest;
1855         int i, page, offset, packet_count, header_size;
1856
1857         if (packet->skip) {
1858                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
1859                 if (d == NULL)
1860                         return -ENOMEM;
1861
1862                 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
1863                                          DESCRIPTOR_INPUT_LAST |
1864                                          DESCRIPTOR_BRANCH_ALWAYS |
1865                                          DESCRIPTOR_WAIT);
1866                 context_append(&ctx->context, d, 1, 0);
1867         }
1868
1869         /* one descriptor for header, one for payload */
1870         /* FIXME: handle cases where we need multiple desc. for payload */
1871         z = 2;
1872         p = packet;
1873
1874         /*
1875          * The OHCI controller puts the status word in the
1876          * buffer too, so we need 4 extra bytes per packet.
1877          */
1878         packet_count = p->header_length / ctx->base.header_size;
1879         header_size  = packet_count * (ctx->base.header_size + 4);
1880
1881         /* Get header size in number of descriptors. */
1882         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1883         page     = payload >> PAGE_SHIFT;
1884         offset   = payload & ~PAGE_MASK;
1885         rest     = p->payload_length;
1886
1887         for (i = 0; i < packet_count; i++) {
1888                 /* d points to the header descriptor */
1889                 d = context_get_descriptors(&ctx->context,
1890                                             z + header_z, &d_bus);
1891                 if (d == NULL)
1892                         return -ENOMEM;
1893
1894                 d->control      = cpu_to_le16(DESCRIPTOR_INPUT_MORE);
1895                 d->req_count    = cpu_to_le16(header_size);
1896                 d->res_count    = d->req_count;
1897                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1898
1899                 /* pd points to the payload descriptor */
1900                 pd = d + 1;
1901                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1902                                           DESCRIPTOR_INPUT_LAST |
1903                                           DESCRIPTOR_BRANCH_ALWAYS);
1904                 if (p->interrupt)
1905                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1906
1907                 pd->req_count = cpu_to_le16(rest);
1908                 pd->res_count = pd->req_count;
1909
1910                 page_bus = page_private(buffer->pages[page]);
1911                 pd->data_address = cpu_to_le32(page_bus + offset);
1912
1913                 context_append(&ctx->context, d, z, header_z);
1914         }
1915
1916         return 0;
1917 }
1918
1919 static int
1920 ohci_queue_iso(struct fw_iso_context *base,
1921                struct fw_iso_packet *packet,
1922                struct fw_iso_buffer *buffer,
1923                unsigned long payload)
1924 {
1925         struct iso_context *ctx = container_of(base, struct iso_context, base);
1926
1927         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1928                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1929         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1930                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1931                                                          buffer, payload);
1932         else
1933                 return ohci_queue_iso_receive_packet_per_buffer(base, packet,
1934                                                                 buffer,
1935                                                                 payload);
1936 }
1937
1938 static const struct fw_card_driver ohci_driver = {
1939         .name                   = ohci_driver_name,
1940         .enable                 = ohci_enable,
1941         .update_phy_reg         = ohci_update_phy_reg,
1942         .set_config_rom         = ohci_set_config_rom,
1943         .send_request           = ohci_send_request,
1944         .send_response          = ohci_send_response,
1945         .cancel_packet          = ohci_cancel_packet,
1946         .enable_phys_dma        = ohci_enable_phys_dma,
1947         .get_bus_time           = ohci_get_bus_time,
1948
1949         .allocate_iso_context   = ohci_allocate_iso_context,
1950         .free_iso_context       = ohci_free_iso_context,
1951         .queue_iso              = ohci_queue_iso,
1952         .start_iso              = ohci_start_iso,
1953         .stop_iso               = ohci_stop_iso,
1954 };
1955
1956 static int __devinit
1957 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1958 {
1959         struct fw_ohci *ohci;
1960         u32 bus_options, max_receive, link_speed;
1961         u64 guid;
1962         int err;
1963         size_t size;
1964
1965         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
1966         if (ohci == NULL) {
1967                 fw_error("Could not malloc fw_ohci data.\n");
1968                 return -ENOMEM;
1969         }
1970
1971         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1972
1973         err = pci_enable_device(dev);
1974         if (err) {
1975                 fw_error("Failed to enable OHCI hardware.\n");
1976                 goto fail_put_card;
1977         }
1978
1979         pci_set_master(dev);
1980         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1981         pci_set_drvdata(dev, ohci);
1982
1983         spin_lock_init(&ohci->lock);
1984
1985         tasklet_init(&ohci->bus_reset_tasklet,
1986                      bus_reset_tasklet, (unsigned long)ohci);
1987
1988         err = pci_request_region(dev, 0, ohci_driver_name);
1989         if (err) {
1990                 fw_error("MMIO resource unavailable\n");
1991                 goto fail_disable;
1992         }
1993
1994         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1995         if (ohci->registers == NULL) {
1996                 fw_error("Failed to remap registers\n");
1997                 err = -ENXIO;
1998                 goto fail_iomem;
1999         }
2000
2001         ar_context_init(&ohci->ar_request_ctx, ohci,
2002                         OHCI1394_AsReqRcvContextControlSet);
2003
2004         ar_context_init(&ohci->ar_response_ctx, ohci,
2005                         OHCI1394_AsRspRcvContextControlSet);
2006
2007         context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
2008                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2009
2010         context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
2011                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2012
2013         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2014         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2015         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2016         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2017         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2018
2019         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2020         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2021         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2022         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2023         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2024
2025         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2026                 fw_error("Out of memory for it/ir contexts.\n");
2027                 err = -ENOMEM;
2028                 goto fail_registers;
2029         }
2030
2031         /* self-id dma buffer allocation */
2032         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2033                                                SELF_ID_BUF_SIZE,
2034                                                &ohci->self_id_bus,
2035                                                GFP_KERNEL);
2036         if (ohci->self_id_cpu == NULL) {
2037                 fw_error("Out of memory for self ID buffer.\n");
2038                 err = -ENOMEM;
2039                 goto fail_registers;
2040         }
2041
2042         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2043         max_receive = (bus_options >> 12) & 0xf;
2044         link_speed = bus_options & 0x7;
2045         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2046                 reg_read(ohci, OHCI1394_GUIDLo);
2047
2048         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2049         if (err < 0)
2050                 goto fail_self_id;
2051
2052         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2053         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2054                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2055         return 0;
2056
2057  fail_self_id:
2058         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2059                           ohci->self_id_cpu, ohci->self_id_bus);
2060  fail_registers:
2061         kfree(ohci->it_context_list);
2062         kfree(ohci->ir_context_list);
2063         pci_iounmap(dev, ohci->registers);
2064  fail_iomem:
2065         pci_release_region(dev, 0);
2066  fail_disable:
2067         pci_disable_device(dev);
2068  fail_put_card:
2069         fw_card_put(&ohci->card);
2070
2071         return err;
2072 }
2073
2074 static void pci_remove(struct pci_dev *dev)
2075 {
2076         struct fw_ohci *ohci;
2077
2078         ohci = pci_get_drvdata(dev);
2079         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2080         flush_writes(ohci);
2081         fw_core_remove_card(&ohci->card);
2082
2083         /*
2084          * FIXME: Fail all pending packets here, now that the upper
2085          * layers can't queue any more.
2086          */
2087
2088         software_reset(ohci);
2089         free_irq(dev->irq, ohci);
2090         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2091                           ohci->self_id_cpu, ohci->self_id_bus);
2092         kfree(ohci->it_context_list);
2093         kfree(ohci->ir_context_list);
2094         pci_iounmap(dev, ohci->registers);
2095         pci_release_region(dev, 0);
2096         pci_disable_device(dev);
2097         fw_card_put(&ohci->card);
2098
2099         fw_notify("Removed fw-ohci device.\n");
2100 }
2101
2102 #ifdef CONFIG_PM
2103 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
2104 {
2105         struct fw_ohci *ohci = pci_get_drvdata(pdev);
2106         int err;
2107
2108         software_reset(ohci);
2109         free_irq(pdev->irq, ohci);
2110         err = pci_save_state(pdev);
2111         if (err) {
2112                 fw_error("pci_save_state failed\n");
2113                 return err;
2114         }
2115         err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2116         if (err)
2117                 fw_error("pci_set_power_state failed with %d\n", err);
2118
2119         return 0;
2120 }
2121
2122 static int pci_resume(struct pci_dev *pdev)
2123 {
2124         struct fw_ohci *ohci = pci_get_drvdata(pdev);
2125         int err;
2126
2127         pci_set_power_state(pdev, PCI_D0);
2128         pci_restore_state(pdev);
2129         err = pci_enable_device(pdev);
2130         if (err) {
2131                 fw_error("pci_enable_device failed\n");
2132                 return err;
2133         }
2134
2135         return ohci_enable(&ohci->card, NULL, 0);
2136 }
2137 #endif
2138
2139 static struct pci_device_id pci_table[] = {
2140         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2141         { }
2142 };
2143
2144 MODULE_DEVICE_TABLE(pci, pci_table);
2145
2146 static struct pci_driver fw_ohci_pci_driver = {
2147         .name           = ohci_driver_name,
2148         .id_table       = pci_table,
2149         .probe          = pci_probe,
2150         .remove         = pci_remove,
2151 #ifdef CONFIG_PM
2152         .resume         = pci_resume,
2153         .suspend        = pci_suspend,
2154 #endif
2155 };
2156
2157 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2158 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2159 MODULE_LICENSE("GPL");
2160
2161 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2162 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2163 MODULE_ALIAS("ohci1394");
2164 #endif
2165
2166 static int __init fw_ohci_init(void)
2167 {
2168         return pci_register_driver(&fw_ohci_pci_driver);
2169 }
2170
2171 static void __exit fw_ohci_cleanup(void)
2172 {
2173         pci_unregister_driver(&fw_ohci_pci_driver);
2174 }
2175
2176 module_init(fw_ohci_init);
2177 module_exit(fw_ohci_cleanup);