Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[sfrench/cifs-2.6.git] / drivers / dma / imx-sdma.c
1 /*
2  * drivers/dma/imx-sdma.c
3  *
4  * This file contains a driver for the Freescale Smart DMA engine
5  *
6  * Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
7  *
8  * Based on code from Freescale:
9  *
10  * Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
11  *
12  * The code contained herein is licensed under the GNU General Public
13  * License. You may obtain a copy of the GNU General Public License
14  * Version 2 or later at the following locations:
15  *
16  * http://www.opensource.org/licenses/gpl-license.html
17  * http://www.gnu.org/copyleft/gpl.html
18  */
19
20 #include <linux/init.h>
21 #include <linux/iopoll.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/bitops.h>
25 #include <linux/mm.h>
26 #include <linux/interrupt.h>
27 #include <linux/clk.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/semaphore.h>
31 #include <linux/spinlock.h>
32 #include <linux/device.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/firmware.h>
35 #include <linux/slab.h>
36 #include <linux/platform_device.h>
37 #include <linux/dmaengine.h>
38 #include <linux/of.h>
39 #include <linux/of_address.h>
40 #include <linux/of_device.h>
41 #include <linux/of_dma.h>
42
43 #include <asm/irq.h>
44 #include <linux/platform_data/dma-imx-sdma.h>
45 #include <linux/platform_data/dma-imx.h>
46 #include <linux/regmap.h>
47 #include <linux/mfd/syscon.h>
48 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
49
50 #include "dmaengine.h"
51
52 /* SDMA registers */
53 #define SDMA_H_C0PTR            0x000
54 #define SDMA_H_INTR             0x004
55 #define SDMA_H_STATSTOP         0x008
56 #define SDMA_H_START            0x00c
57 #define SDMA_H_EVTOVR           0x010
58 #define SDMA_H_DSPOVR           0x014
59 #define SDMA_H_HOSTOVR          0x018
60 #define SDMA_H_EVTPEND          0x01c
61 #define SDMA_H_DSPENBL          0x020
62 #define SDMA_H_RESET            0x024
63 #define SDMA_H_EVTERR           0x028
64 #define SDMA_H_INTRMSK          0x02c
65 #define SDMA_H_PSW              0x030
66 #define SDMA_H_EVTERRDBG        0x034
67 #define SDMA_H_CONFIG           0x038
68 #define SDMA_ONCE_ENB           0x040
69 #define SDMA_ONCE_DATA          0x044
70 #define SDMA_ONCE_INSTR         0x048
71 #define SDMA_ONCE_STAT          0x04c
72 #define SDMA_ONCE_CMD           0x050
73 #define SDMA_EVT_MIRROR         0x054
74 #define SDMA_ILLINSTADDR        0x058
75 #define SDMA_CHN0ADDR           0x05c
76 #define SDMA_ONCE_RTB           0x060
77 #define SDMA_XTRIG_CONF1        0x070
78 #define SDMA_XTRIG_CONF2        0x074
79 #define SDMA_CHNENBL0_IMX35     0x200
80 #define SDMA_CHNENBL0_IMX31     0x080
81 #define SDMA_CHNPRI_0           0x100
82
83 /*
84  * Buffer descriptor status values.
85  */
86 #define BD_DONE  0x01
87 #define BD_WRAP  0x02
88 #define BD_CONT  0x04
89 #define BD_INTR  0x08
90 #define BD_RROR  0x10
91 #define BD_LAST  0x20
92 #define BD_EXTD  0x80
93
94 /*
95  * Data Node descriptor status values.
96  */
97 #define DND_END_OF_FRAME  0x80
98 #define DND_END_OF_XFER   0x40
99 #define DND_DONE          0x20
100 #define DND_UNUSED        0x01
101
102 /*
103  * IPCV2 descriptor status values.
104  */
105 #define BD_IPCV2_END_OF_FRAME  0x40
106
107 #define IPCV2_MAX_NODES        50
108 /*
109  * Error bit set in the CCB status field by the SDMA,
110  * in setbd routine, in case of a transfer error
111  */
112 #define DATA_ERROR  0x10000000
113
114 /*
115  * Buffer descriptor commands.
116  */
117 #define C0_ADDR             0x01
118 #define C0_LOAD             0x02
119 #define C0_DUMP             0x03
120 #define C0_SETCTX           0x07
121 #define C0_GETCTX           0x03
122 #define C0_SETDM            0x01
123 #define C0_SETPM            0x04
124 #define C0_GETDM            0x02
125 #define C0_GETPM            0x08
126 /*
127  * Change endianness indicator in the BD command field
128  */
129 #define CHANGE_ENDIANNESS   0x80
130
131 /*
132  *  p_2_p watermark_level description
133  *      Bits            Name                    Description
134  *      0-7             Lower WML               Lower watermark level
135  *      8               PS                      1: Pad Swallowing
136  *                                              0: No Pad Swallowing
137  *      9               PA                      1: Pad Adding
138  *                                              0: No Pad Adding
139  *      10              SPDIF                   If this bit is set both source
140  *                                              and destination are on SPBA
141  *      11              Source Bit(SP)          1: Source on SPBA
142  *                                              0: Source on AIPS
143  *      12              Destination Bit(DP)     1: Destination on SPBA
144  *                                              0: Destination on AIPS
145  *      13-15           ---------               MUST BE 0
146  *      16-23           Higher WML              HWML
147  *      24-27           N                       Total number of samples after
148  *                                              which Pad adding/Swallowing
149  *                                              must be done. It must be odd.
150  *      28              Lower WML Event(LWE)    SDMA events reg to check for
151  *                                              LWML event mask
152  *                                              0: LWE in EVENTS register
153  *                                              1: LWE in EVENTS2 register
154  *      29              Higher WML Event(HWE)   SDMA events reg to check for
155  *                                              HWML event mask
156  *                                              0: HWE in EVENTS register
157  *                                              1: HWE in EVENTS2 register
158  *      30              ---------               MUST BE 0
159  *      31              CONT                    1: Amount of samples to be
160  *                                              transferred is unknown and
161  *                                              script will keep on
162  *                                              transferring samples as long as
163  *                                              both events are detected and
164  *                                              script must be manually stopped
165  *                                              by the application
166  *                                              0: The amount of samples to be
167  *                                              transferred is equal to the
168  *                                              count field of mode word
169  */
170 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
171 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
172 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
173 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
174 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
175 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
176 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
177 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
178 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
179 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
180
181 /*
182  * Mode/Count of data node descriptors - IPCv2
183  */
184 struct sdma_mode_count {
185         u32 count   : 16; /* size of the buffer pointed by this BD */
186         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
187         u32 command :  8; /* command mostly used for channel 0 */
188 };
189
190 /*
191  * Buffer descriptor
192  */
193 struct sdma_buffer_descriptor {
194         struct sdma_mode_count  mode;
195         u32 buffer_addr;        /* address of the buffer described */
196         u32 ext_buffer_addr;    /* extended buffer address */
197 } __attribute__ ((packed));
198
199 /**
200  * struct sdma_channel_control - Channel control Block
201  *
202  * @current_bd_ptr      current buffer descriptor processed
203  * @base_bd_ptr         first element of buffer descriptor array
204  * @unused              padding. The SDMA engine expects an array of 128 byte
205  *                      control blocks
206  */
207 struct sdma_channel_control {
208         u32 current_bd_ptr;
209         u32 base_bd_ptr;
210         u32 unused[2];
211 } __attribute__ ((packed));
212
213 /**
214  * struct sdma_state_registers - SDMA context for a channel
215  *
216  * @pc:         program counter
217  * @t:          test bit: status of arithmetic & test instruction
218  * @rpc:        return program counter
219  * @sf:         source fault while loading data
220  * @spc:        loop start program counter
221  * @df:         destination fault while storing data
222  * @epc:        loop end program counter
223  * @lm:         loop mode
224  */
225 struct sdma_state_registers {
226         u32 pc     :14;
227         u32 unused1: 1;
228         u32 t      : 1;
229         u32 rpc    :14;
230         u32 unused0: 1;
231         u32 sf     : 1;
232         u32 spc    :14;
233         u32 unused2: 1;
234         u32 df     : 1;
235         u32 epc    :14;
236         u32 lm     : 2;
237 } __attribute__ ((packed));
238
239 /**
240  * struct sdma_context_data - sdma context specific to a channel
241  *
242  * @channel_state:      channel state bits
243  * @gReg:               general registers
244  * @mda:                burst dma destination address register
245  * @msa:                burst dma source address register
246  * @ms:                 burst dma status register
247  * @md:                 burst dma data register
248  * @pda:                peripheral dma destination address register
249  * @psa:                peripheral dma source address register
250  * @ps:                 peripheral dma status register
251  * @pd:                 peripheral dma data register
252  * @ca:                 CRC polynomial register
253  * @cs:                 CRC accumulator register
254  * @dda:                dedicated core destination address register
255  * @dsa:                dedicated core source address register
256  * @ds:                 dedicated core status register
257  * @dd:                 dedicated core data register
258  */
259 struct sdma_context_data {
260         struct sdma_state_registers  channel_state;
261         u32  gReg[8];
262         u32  mda;
263         u32  msa;
264         u32  ms;
265         u32  md;
266         u32  pda;
267         u32  psa;
268         u32  ps;
269         u32  pd;
270         u32  ca;
271         u32  cs;
272         u32  dda;
273         u32  dsa;
274         u32  ds;
275         u32  dd;
276         u32  scratch0;
277         u32  scratch1;
278         u32  scratch2;
279         u32  scratch3;
280         u32  scratch4;
281         u32  scratch5;
282         u32  scratch6;
283         u32  scratch7;
284 } __attribute__ ((packed));
285
286 #define NUM_BD (int)(PAGE_SIZE / sizeof(struct sdma_buffer_descriptor))
287
288 struct sdma_engine;
289
290 /**
291  * struct sdma_channel - housekeeping for a SDMA channel
292  *
293  * @sdma                pointer to the SDMA engine for this channel
294  * @channel             the channel number, matches dmaengine chan_id + 1
295  * @direction           transfer type. Needed for setting SDMA script
296  * @peripheral_type     Peripheral type. Needed for setting SDMA script
297  * @event_id0           aka dma request line
298  * @event_id1           for channels that use 2 events
299  * @word_size           peripheral access size
300  * @buf_tail            ID of the buffer that was processed
301  * @buf_ptail           ID of the previous buffer that was processed
302  * @num_bd              max NUM_BD. number of descriptors currently handling
303  */
304 struct sdma_channel {
305         struct sdma_engine              *sdma;
306         unsigned int                    channel;
307         enum dma_transfer_direction             direction;
308         enum sdma_peripheral_type       peripheral_type;
309         unsigned int                    event_id0;
310         unsigned int                    event_id1;
311         enum dma_slave_buswidth         word_size;
312         unsigned int                    buf_tail;
313         unsigned int                    buf_ptail;
314         unsigned int                    num_bd;
315         unsigned int                    period_len;
316         struct sdma_buffer_descriptor   *bd;
317         dma_addr_t                      bd_phys;
318         unsigned int                    pc_from_device, pc_to_device;
319         unsigned int                    device_to_device;
320         unsigned long                   flags;
321         dma_addr_t                      per_address, per_address2;
322         unsigned long                   event_mask[2];
323         unsigned long                   watermark_level;
324         u32                             shp_addr, per_addr;
325         struct dma_chan                 chan;
326         spinlock_t                      lock;
327         struct dma_async_tx_descriptor  desc;
328         enum dma_status                 status;
329         unsigned int                    chn_count;
330         unsigned int                    chn_real_count;
331         struct tasklet_struct           tasklet;
332         struct imx_dma_data             data;
333 };
334
335 #define IMX_DMA_SG_LOOP         BIT(0)
336
337 #define MAX_DMA_CHANNELS 32
338 #define MXC_SDMA_DEFAULT_PRIORITY 1
339 #define MXC_SDMA_MIN_PRIORITY 1
340 #define MXC_SDMA_MAX_PRIORITY 7
341
342 #define SDMA_FIRMWARE_MAGIC 0x414d4453
343
344 /**
345  * struct sdma_firmware_header - Layout of the firmware image
346  *
347  * @magic               "SDMA"
348  * @version_major       increased whenever layout of struct sdma_script_start_addrs
349  *                      changes.
350  * @version_minor       firmware minor version (for binary compatible changes)
351  * @script_addrs_start  offset of struct sdma_script_start_addrs in this image
352  * @num_script_addrs    Number of script addresses in this image
353  * @ram_code_start      offset of SDMA ram image in this firmware image
354  * @ram_code_size       size of SDMA ram image
355  * @script_addrs        Stores the start address of the SDMA scripts
356  *                      (in SDMA memory space)
357  */
358 struct sdma_firmware_header {
359         u32     magic;
360         u32     version_major;
361         u32     version_minor;
362         u32     script_addrs_start;
363         u32     num_script_addrs;
364         u32     ram_code_start;
365         u32     ram_code_size;
366 };
367
368 struct sdma_driver_data {
369         int chnenbl0;
370         int num_events;
371         struct sdma_script_start_addrs  *script_addrs;
372 };
373
374 struct sdma_engine {
375         struct device                   *dev;
376         struct device_dma_parameters    dma_parms;
377         struct sdma_channel             channel[MAX_DMA_CHANNELS];
378         struct sdma_channel_control     *channel_control;
379         void __iomem                    *regs;
380         struct sdma_context_data        *context;
381         dma_addr_t                      context_phys;
382         struct dma_device               dma_device;
383         struct clk                      *clk_ipg;
384         struct clk                      *clk_ahb;
385         spinlock_t                      channel_0_lock;
386         u32                             script_number;
387         struct sdma_script_start_addrs  *script_addrs;
388         const struct sdma_driver_data   *drvdata;
389         u32                             spba_start_addr;
390         u32                             spba_end_addr;
391         unsigned int                    irq;
392 };
393
394 static struct sdma_driver_data sdma_imx31 = {
395         .chnenbl0 = SDMA_CHNENBL0_IMX31,
396         .num_events = 32,
397 };
398
399 static struct sdma_script_start_addrs sdma_script_imx25 = {
400         .ap_2_ap_addr = 729,
401         .uart_2_mcu_addr = 904,
402         .per_2_app_addr = 1255,
403         .mcu_2_app_addr = 834,
404         .uartsh_2_mcu_addr = 1120,
405         .per_2_shp_addr = 1329,
406         .mcu_2_shp_addr = 1048,
407         .ata_2_mcu_addr = 1560,
408         .mcu_2_ata_addr = 1479,
409         .app_2_per_addr = 1189,
410         .app_2_mcu_addr = 770,
411         .shp_2_per_addr = 1407,
412         .shp_2_mcu_addr = 979,
413 };
414
415 static struct sdma_driver_data sdma_imx25 = {
416         .chnenbl0 = SDMA_CHNENBL0_IMX35,
417         .num_events = 48,
418         .script_addrs = &sdma_script_imx25,
419 };
420
421 static struct sdma_driver_data sdma_imx35 = {
422         .chnenbl0 = SDMA_CHNENBL0_IMX35,
423         .num_events = 48,
424 };
425
426 static struct sdma_script_start_addrs sdma_script_imx51 = {
427         .ap_2_ap_addr = 642,
428         .uart_2_mcu_addr = 817,
429         .mcu_2_app_addr = 747,
430         .mcu_2_shp_addr = 961,
431         .ata_2_mcu_addr = 1473,
432         .mcu_2_ata_addr = 1392,
433         .app_2_per_addr = 1033,
434         .app_2_mcu_addr = 683,
435         .shp_2_per_addr = 1251,
436         .shp_2_mcu_addr = 892,
437 };
438
439 static struct sdma_driver_data sdma_imx51 = {
440         .chnenbl0 = SDMA_CHNENBL0_IMX35,
441         .num_events = 48,
442         .script_addrs = &sdma_script_imx51,
443 };
444
445 static struct sdma_script_start_addrs sdma_script_imx53 = {
446         .ap_2_ap_addr = 642,
447         .app_2_mcu_addr = 683,
448         .mcu_2_app_addr = 747,
449         .uart_2_mcu_addr = 817,
450         .shp_2_mcu_addr = 891,
451         .mcu_2_shp_addr = 960,
452         .uartsh_2_mcu_addr = 1032,
453         .spdif_2_mcu_addr = 1100,
454         .mcu_2_spdif_addr = 1134,
455         .firi_2_mcu_addr = 1193,
456         .mcu_2_firi_addr = 1290,
457 };
458
459 static struct sdma_driver_data sdma_imx53 = {
460         .chnenbl0 = SDMA_CHNENBL0_IMX35,
461         .num_events = 48,
462         .script_addrs = &sdma_script_imx53,
463 };
464
465 static struct sdma_script_start_addrs sdma_script_imx6q = {
466         .ap_2_ap_addr = 642,
467         .uart_2_mcu_addr = 817,
468         .mcu_2_app_addr = 747,
469         .per_2_per_addr = 6331,
470         .uartsh_2_mcu_addr = 1032,
471         .mcu_2_shp_addr = 960,
472         .app_2_mcu_addr = 683,
473         .shp_2_mcu_addr = 891,
474         .spdif_2_mcu_addr = 1100,
475         .mcu_2_spdif_addr = 1134,
476 };
477
478 static struct sdma_driver_data sdma_imx6q = {
479         .chnenbl0 = SDMA_CHNENBL0_IMX35,
480         .num_events = 48,
481         .script_addrs = &sdma_script_imx6q,
482 };
483
484 static struct sdma_script_start_addrs sdma_script_imx7d = {
485         .ap_2_ap_addr = 644,
486         .uart_2_mcu_addr = 819,
487         .mcu_2_app_addr = 749,
488         .uartsh_2_mcu_addr = 1034,
489         .mcu_2_shp_addr = 962,
490         .app_2_mcu_addr = 685,
491         .shp_2_mcu_addr = 893,
492         .spdif_2_mcu_addr = 1102,
493         .mcu_2_spdif_addr = 1136,
494 };
495
496 static struct sdma_driver_data sdma_imx7d = {
497         .chnenbl0 = SDMA_CHNENBL0_IMX35,
498         .num_events = 48,
499         .script_addrs = &sdma_script_imx7d,
500 };
501
502 static const struct platform_device_id sdma_devtypes[] = {
503         {
504                 .name = "imx25-sdma",
505                 .driver_data = (unsigned long)&sdma_imx25,
506         }, {
507                 .name = "imx31-sdma",
508                 .driver_data = (unsigned long)&sdma_imx31,
509         }, {
510                 .name = "imx35-sdma",
511                 .driver_data = (unsigned long)&sdma_imx35,
512         }, {
513                 .name = "imx51-sdma",
514                 .driver_data = (unsigned long)&sdma_imx51,
515         }, {
516                 .name = "imx53-sdma",
517                 .driver_data = (unsigned long)&sdma_imx53,
518         }, {
519                 .name = "imx6q-sdma",
520                 .driver_data = (unsigned long)&sdma_imx6q,
521         }, {
522                 .name = "imx7d-sdma",
523                 .driver_data = (unsigned long)&sdma_imx7d,
524         }, {
525                 /* sentinel */
526         }
527 };
528 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
529
530 static const struct of_device_id sdma_dt_ids[] = {
531         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
532         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
533         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
534         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
535         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
536         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
537         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
538         { /* sentinel */ }
539 };
540 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
541
542 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
543 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
544 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
545 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
546
547 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
548 {
549         u32 chnenbl0 = sdma->drvdata->chnenbl0;
550         return chnenbl0 + event * 4;
551 }
552
553 static int sdma_config_ownership(struct sdma_channel *sdmac,
554                 bool event_override, bool mcu_override, bool dsp_override)
555 {
556         struct sdma_engine *sdma = sdmac->sdma;
557         int channel = sdmac->channel;
558         unsigned long evt, mcu, dsp;
559
560         if (event_override && mcu_override && dsp_override)
561                 return -EINVAL;
562
563         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
564         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
565         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
566
567         if (dsp_override)
568                 __clear_bit(channel, &dsp);
569         else
570                 __set_bit(channel, &dsp);
571
572         if (event_override)
573                 __clear_bit(channel, &evt);
574         else
575                 __set_bit(channel, &evt);
576
577         if (mcu_override)
578                 __clear_bit(channel, &mcu);
579         else
580                 __set_bit(channel, &mcu);
581
582         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
583         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
584         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
585
586         return 0;
587 }
588
589 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
590 {
591         writel(BIT(channel), sdma->regs + SDMA_H_START);
592 }
593
594 /*
595  * sdma_run_channel0 - run a channel and wait till it's done
596  */
597 static int sdma_run_channel0(struct sdma_engine *sdma)
598 {
599         int ret;
600         u32 reg;
601
602         sdma_enable_channel(sdma, 0);
603
604         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
605                                                 reg, !(reg & 1), 1, 500);
606         if (ret)
607                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
608
609         /* Set bits of CONFIG register with dynamic context switching */
610         if (readl(sdma->regs + SDMA_H_CONFIG) == 0)
611                 writel_relaxed(SDMA_H_CONFIG_CSM, sdma->regs + SDMA_H_CONFIG);
612
613         return ret;
614 }
615
616 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
617                 u32 address)
618 {
619         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
620         void *buf_virt;
621         dma_addr_t buf_phys;
622         int ret;
623         unsigned long flags;
624
625         buf_virt = dma_alloc_coherent(NULL,
626                         size,
627                         &buf_phys, GFP_KERNEL);
628         if (!buf_virt) {
629                 return -ENOMEM;
630         }
631
632         spin_lock_irqsave(&sdma->channel_0_lock, flags);
633
634         bd0->mode.command = C0_SETPM;
635         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
636         bd0->mode.count = size / 2;
637         bd0->buffer_addr = buf_phys;
638         bd0->ext_buffer_addr = address;
639
640         memcpy(buf_virt, buf, size);
641
642         ret = sdma_run_channel0(sdma);
643
644         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
645
646         dma_free_coherent(NULL, size, buf_virt, buf_phys);
647
648         return ret;
649 }
650
651 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
652 {
653         struct sdma_engine *sdma = sdmac->sdma;
654         int channel = sdmac->channel;
655         unsigned long val;
656         u32 chnenbl = chnenbl_ofs(sdma, event);
657
658         val = readl_relaxed(sdma->regs + chnenbl);
659         __set_bit(channel, &val);
660         writel_relaxed(val, sdma->regs + chnenbl);
661 }
662
663 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
664 {
665         struct sdma_engine *sdma = sdmac->sdma;
666         int channel = sdmac->channel;
667         u32 chnenbl = chnenbl_ofs(sdma, event);
668         unsigned long val;
669
670         val = readl_relaxed(sdma->regs + chnenbl);
671         __clear_bit(channel, &val);
672         writel_relaxed(val, sdma->regs + chnenbl);
673 }
674
675 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
676 {
677         struct sdma_buffer_descriptor *bd;
678         int error = 0;
679         enum dma_status old_status = sdmac->status;
680
681         /*
682          * loop mode. Iterate over descriptors, re-setup them and
683          * call callback function.
684          */
685         while (1) {
686                 bd = &sdmac->bd[sdmac->buf_tail];
687
688                 if (bd->mode.status & BD_DONE)
689                         break;
690
691                 if (bd->mode.status & BD_RROR) {
692                         bd->mode.status &= ~BD_RROR;
693                         sdmac->status = DMA_ERROR;
694                         error = -EIO;
695                 }
696
697                /*
698                 * We use bd->mode.count to calculate the residue, since contains
699                 * the number of bytes present in the current buffer descriptor.
700                 */
701
702                 sdmac->chn_real_count = bd->mode.count;
703                 bd->mode.status |= BD_DONE;
704                 bd->mode.count = sdmac->period_len;
705                 sdmac->buf_ptail = sdmac->buf_tail;
706                 sdmac->buf_tail = (sdmac->buf_tail + 1) % sdmac->num_bd;
707
708                 /*
709                  * The callback is called from the interrupt context in order
710                  * to reduce latency and to avoid the risk of altering the
711                  * SDMA transaction status by the time the client tasklet is
712                  * executed.
713                  */
714
715                 dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
716
717                 if (error)
718                         sdmac->status = old_status;
719         }
720 }
721
722 static void mxc_sdma_handle_channel_normal(unsigned long data)
723 {
724         struct sdma_channel *sdmac = (struct sdma_channel *) data;
725         struct sdma_buffer_descriptor *bd;
726         int i, error = 0;
727
728         sdmac->chn_real_count = 0;
729         /*
730          * non loop mode. Iterate over all descriptors, collect
731          * errors and call callback function
732          */
733         for (i = 0; i < sdmac->num_bd; i++) {
734                 bd = &sdmac->bd[i];
735
736                  if (bd->mode.status & (BD_DONE | BD_RROR))
737                         error = -EIO;
738                  sdmac->chn_real_count += bd->mode.count;
739         }
740
741         if (error)
742                 sdmac->status = DMA_ERROR;
743         else
744                 sdmac->status = DMA_COMPLETE;
745
746         dma_cookie_complete(&sdmac->desc);
747
748         dmaengine_desc_get_callback_invoke(&sdmac->desc, NULL);
749 }
750
751 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
752 {
753         struct sdma_engine *sdma = dev_id;
754         unsigned long stat;
755
756         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
757         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
758         /* channel 0 is special and not handled here, see run_channel0() */
759         stat &= ~1;
760
761         while (stat) {
762                 int channel = fls(stat) - 1;
763                 struct sdma_channel *sdmac = &sdma->channel[channel];
764
765                 if (sdmac->flags & IMX_DMA_SG_LOOP)
766                         sdma_update_channel_loop(sdmac);
767                 else
768                         tasklet_schedule(&sdmac->tasklet);
769
770                 __clear_bit(channel, &stat);
771         }
772
773         return IRQ_HANDLED;
774 }
775
776 /*
777  * sets the pc of SDMA script according to the peripheral type
778  */
779 static void sdma_get_pc(struct sdma_channel *sdmac,
780                 enum sdma_peripheral_type peripheral_type)
781 {
782         struct sdma_engine *sdma = sdmac->sdma;
783         int per_2_emi = 0, emi_2_per = 0;
784         /*
785          * These are needed once we start to support transfers between
786          * two peripherals or memory-to-memory transfers
787          */
788         int per_2_per = 0;
789
790         sdmac->pc_from_device = 0;
791         sdmac->pc_to_device = 0;
792         sdmac->device_to_device = 0;
793
794         switch (peripheral_type) {
795         case IMX_DMATYPE_MEMORY:
796                 break;
797         case IMX_DMATYPE_DSP:
798                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
799                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
800                 break;
801         case IMX_DMATYPE_FIRI:
802                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
803                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
804                 break;
805         case IMX_DMATYPE_UART:
806                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
807                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
808                 break;
809         case IMX_DMATYPE_UART_SP:
810                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
811                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
812                 break;
813         case IMX_DMATYPE_ATA:
814                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
815                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
816                 break;
817         case IMX_DMATYPE_CSPI:
818         case IMX_DMATYPE_EXT:
819         case IMX_DMATYPE_SSI:
820         case IMX_DMATYPE_SAI:
821                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
822                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
823                 break;
824         case IMX_DMATYPE_SSI_DUAL:
825                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
826                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
827                 break;
828         case IMX_DMATYPE_SSI_SP:
829         case IMX_DMATYPE_MMC:
830         case IMX_DMATYPE_SDHC:
831         case IMX_DMATYPE_CSPI_SP:
832         case IMX_DMATYPE_ESAI:
833         case IMX_DMATYPE_MSHC_SP:
834                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
835                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
836                 break;
837         case IMX_DMATYPE_ASRC:
838                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
839                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
840                 per_2_per = sdma->script_addrs->per_2_per_addr;
841                 break;
842         case IMX_DMATYPE_ASRC_SP:
843                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
844                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
845                 per_2_per = sdma->script_addrs->per_2_per_addr;
846                 break;
847         case IMX_DMATYPE_MSHC:
848                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
849                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
850                 break;
851         case IMX_DMATYPE_CCM:
852                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
853                 break;
854         case IMX_DMATYPE_SPDIF:
855                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
856                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
857                 break;
858         case IMX_DMATYPE_IPU_MEMORY:
859                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
860                 break;
861         default:
862                 break;
863         }
864
865         sdmac->pc_from_device = per_2_emi;
866         sdmac->pc_to_device = emi_2_per;
867         sdmac->device_to_device = per_2_per;
868 }
869
870 static int sdma_load_context(struct sdma_channel *sdmac)
871 {
872         struct sdma_engine *sdma = sdmac->sdma;
873         int channel = sdmac->channel;
874         int load_address;
875         struct sdma_context_data *context = sdma->context;
876         struct sdma_buffer_descriptor *bd0 = sdma->channel[0].bd;
877         int ret;
878         unsigned long flags;
879
880         if (sdmac->direction == DMA_DEV_TO_MEM)
881                 load_address = sdmac->pc_from_device;
882         else if (sdmac->direction == DMA_DEV_TO_DEV)
883                 load_address = sdmac->device_to_device;
884         else
885                 load_address = sdmac->pc_to_device;
886
887         if (load_address < 0)
888                 return load_address;
889
890         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
891         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
892         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
893         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
894         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
895         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
896
897         spin_lock_irqsave(&sdma->channel_0_lock, flags);
898
899         memset(context, 0, sizeof(*context));
900         context->channel_state.pc = load_address;
901
902         /* Send by context the event mask,base address for peripheral
903          * and watermark level
904          */
905         context->gReg[0] = sdmac->event_mask[1];
906         context->gReg[1] = sdmac->event_mask[0];
907         context->gReg[2] = sdmac->per_addr;
908         context->gReg[6] = sdmac->shp_addr;
909         context->gReg[7] = sdmac->watermark_level;
910
911         bd0->mode.command = C0_SETDM;
912         bd0->mode.status = BD_DONE | BD_INTR | BD_WRAP | BD_EXTD;
913         bd0->mode.count = sizeof(*context) / 4;
914         bd0->buffer_addr = sdma->context_phys;
915         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
916         ret = sdma_run_channel0(sdma);
917
918         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
919
920         return ret;
921 }
922
923 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
924 {
925         return container_of(chan, struct sdma_channel, chan);
926 }
927
928 static int sdma_disable_channel(struct dma_chan *chan)
929 {
930         struct sdma_channel *sdmac = to_sdma_chan(chan);
931         struct sdma_engine *sdma = sdmac->sdma;
932         int channel = sdmac->channel;
933
934         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
935         sdmac->status = DMA_ERROR;
936
937         return 0;
938 }
939
940 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
941 {
942         struct sdma_engine *sdma = sdmac->sdma;
943
944         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
945         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
946
947         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
948         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
949
950         if (sdmac->event_id0 > 31)
951                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
952
953         if (sdmac->event_id1 > 31)
954                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
955
956         /*
957          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
958          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
959          * r0(event_mask[1]) and r1(event_mask[0]).
960          */
961         if (lwml > hwml) {
962                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
963                                                 SDMA_WATERMARK_LEVEL_HWML);
964                 sdmac->watermark_level |= hwml;
965                 sdmac->watermark_level |= lwml << 16;
966                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
967         }
968
969         if (sdmac->per_address2 >= sdma->spba_start_addr &&
970                         sdmac->per_address2 <= sdma->spba_end_addr)
971                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
972
973         if (sdmac->per_address >= sdma->spba_start_addr &&
974                         sdmac->per_address <= sdma->spba_end_addr)
975                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
976
977         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
978 }
979
980 static int sdma_config_channel(struct dma_chan *chan)
981 {
982         struct sdma_channel *sdmac = to_sdma_chan(chan);
983         int ret;
984
985         sdma_disable_channel(chan);
986
987         sdmac->event_mask[0] = 0;
988         sdmac->event_mask[1] = 0;
989         sdmac->shp_addr = 0;
990         sdmac->per_addr = 0;
991
992         if (sdmac->event_id0) {
993                 if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
994                         return -EINVAL;
995                 sdma_event_enable(sdmac, sdmac->event_id0);
996         }
997
998         if (sdmac->event_id1) {
999                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1000                         return -EINVAL;
1001                 sdma_event_enable(sdmac, sdmac->event_id1);
1002         }
1003
1004         switch (sdmac->peripheral_type) {
1005         case IMX_DMATYPE_DSP:
1006                 sdma_config_ownership(sdmac, false, true, true);
1007                 break;
1008         case IMX_DMATYPE_MEMORY:
1009                 sdma_config_ownership(sdmac, false, true, false);
1010                 break;
1011         default:
1012                 sdma_config_ownership(sdmac, true, true, false);
1013                 break;
1014         }
1015
1016         sdma_get_pc(sdmac, sdmac->peripheral_type);
1017
1018         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1019                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1020                 /* Handle multiple event channels differently */
1021                 if (sdmac->event_id1) {
1022                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1023                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1024                                 sdma_set_watermarklevel_for_p2p(sdmac);
1025                 } else
1026                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1027
1028                 /* Address */
1029                 sdmac->shp_addr = sdmac->per_address;
1030                 sdmac->per_addr = sdmac->per_address2;
1031         } else {
1032                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1033         }
1034
1035         ret = sdma_load_context(sdmac);
1036
1037         return ret;
1038 }
1039
1040 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1041                 unsigned int priority)
1042 {
1043         struct sdma_engine *sdma = sdmac->sdma;
1044         int channel = sdmac->channel;
1045
1046         if (priority < MXC_SDMA_MIN_PRIORITY
1047             || priority > MXC_SDMA_MAX_PRIORITY) {
1048                 return -EINVAL;
1049         }
1050
1051         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1052
1053         return 0;
1054 }
1055
1056 static int sdma_request_channel(struct sdma_channel *sdmac)
1057 {
1058         struct sdma_engine *sdma = sdmac->sdma;
1059         int channel = sdmac->channel;
1060         int ret = -EBUSY;
1061
1062         sdmac->bd = dma_zalloc_coherent(NULL, PAGE_SIZE, &sdmac->bd_phys,
1063                                         GFP_KERNEL);
1064         if (!sdmac->bd) {
1065                 ret = -ENOMEM;
1066                 goto out;
1067         }
1068
1069         sdma->channel_control[channel].base_bd_ptr = sdmac->bd_phys;
1070         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1071
1072         sdma_set_channel_priority(sdmac, MXC_SDMA_DEFAULT_PRIORITY);
1073         return 0;
1074 out:
1075
1076         return ret;
1077 }
1078
1079 static dma_cookie_t sdma_tx_submit(struct dma_async_tx_descriptor *tx)
1080 {
1081         unsigned long flags;
1082         struct sdma_channel *sdmac = to_sdma_chan(tx->chan);
1083         dma_cookie_t cookie;
1084
1085         spin_lock_irqsave(&sdmac->lock, flags);
1086
1087         cookie = dma_cookie_assign(tx);
1088
1089         spin_unlock_irqrestore(&sdmac->lock, flags);
1090
1091         return cookie;
1092 }
1093
1094 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1095 {
1096         struct sdma_channel *sdmac = to_sdma_chan(chan);
1097         struct imx_dma_data *data = chan->private;
1098         int prio, ret;
1099
1100         if (!data)
1101                 return -EINVAL;
1102
1103         switch (data->priority) {
1104         case DMA_PRIO_HIGH:
1105                 prio = 3;
1106                 break;
1107         case DMA_PRIO_MEDIUM:
1108                 prio = 2;
1109                 break;
1110         case DMA_PRIO_LOW:
1111         default:
1112                 prio = 1;
1113                 break;
1114         }
1115
1116         sdmac->peripheral_type = data->peripheral_type;
1117         sdmac->event_id0 = data->dma_request;
1118         sdmac->event_id1 = data->dma_request2;
1119
1120         ret = clk_enable(sdmac->sdma->clk_ipg);
1121         if (ret)
1122                 return ret;
1123         ret = clk_enable(sdmac->sdma->clk_ahb);
1124         if (ret)
1125                 goto disable_clk_ipg;
1126
1127         ret = sdma_request_channel(sdmac);
1128         if (ret)
1129                 goto disable_clk_ahb;
1130
1131         ret = sdma_set_channel_priority(sdmac, prio);
1132         if (ret)
1133                 goto disable_clk_ahb;
1134
1135         dma_async_tx_descriptor_init(&sdmac->desc, chan);
1136         sdmac->desc.tx_submit = sdma_tx_submit;
1137         /* txd.flags will be overwritten in prep funcs */
1138         sdmac->desc.flags = DMA_CTRL_ACK;
1139
1140         return 0;
1141
1142 disable_clk_ahb:
1143         clk_disable(sdmac->sdma->clk_ahb);
1144 disable_clk_ipg:
1145         clk_disable(sdmac->sdma->clk_ipg);
1146         return ret;
1147 }
1148
1149 static void sdma_free_chan_resources(struct dma_chan *chan)
1150 {
1151         struct sdma_channel *sdmac = to_sdma_chan(chan);
1152         struct sdma_engine *sdma = sdmac->sdma;
1153
1154         sdma_disable_channel(chan);
1155
1156         if (sdmac->event_id0)
1157                 sdma_event_disable(sdmac, sdmac->event_id0);
1158         if (sdmac->event_id1)
1159                 sdma_event_disable(sdmac, sdmac->event_id1);
1160
1161         sdmac->event_id0 = 0;
1162         sdmac->event_id1 = 0;
1163
1164         sdma_set_channel_priority(sdmac, 0);
1165
1166         dma_free_coherent(NULL, PAGE_SIZE, sdmac->bd, sdmac->bd_phys);
1167
1168         clk_disable(sdma->clk_ipg);
1169         clk_disable(sdma->clk_ahb);
1170 }
1171
1172 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1173                 struct dma_chan *chan, struct scatterlist *sgl,
1174                 unsigned int sg_len, enum dma_transfer_direction direction,
1175                 unsigned long flags, void *context)
1176 {
1177         struct sdma_channel *sdmac = to_sdma_chan(chan);
1178         struct sdma_engine *sdma = sdmac->sdma;
1179         int ret, i, count;
1180         int channel = sdmac->channel;
1181         struct scatterlist *sg;
1182
1183         if (sdmac->status == DMA_IN_PROGRESS)
1184                 return NULL;
1185         sdmac->status = DMA_IN_PROGRESS;
1186
1187         sdmac->flags = 0;
1188
1189         sdmac->buf_tail = 0;
1190         sdmac->buf_ptail = 0;
1191         sdmac->chn_real_count = 0;
1192
1193         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1194                         sg_len, channel);
1195
1196         sdmac->direction = direction;
1197         ret = sdma_load_context(sdmac);
1198         if (ret)
1199                 goto err_out;
1200
1201         if (sg_len > NUM_BD) {
1202                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1203                                 channel, sg_len, NUM_BD);
1204                 ret = -EINVAL;
1205                 goto err_out;
1206         }
1207
1208         sdmac->chn_count = 0;
1209         for_each_sg(sgl, sg, sg_len, i) {
1210                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1211                 int param;
1212
1213                 bd->buffer_addr = sg->dma_address;
1214
1215                 count = sg_dma_len(sg);
1216
1217                 if (count > 0xffff) {
1218                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1219                                         channel, count, 0xffff);
1220                         ret = -EINVAL;
1221                         goto err_out;
1222                 }
1223
1224                 bd->mode.count = count;
1225                 sdmac->chn_count += count;
1226
1227                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES) {
1228                         ret =  -EINVAL;
1229                         goto err_out;
1230                 }
1231
1232                 switch (sdmac->word_size) {
1233                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1234                         bd->mode.command = 0;
1235                         if (count & 3 || sg->dma_address & 3)
1236                                 return NULL;
1237                         break;
1238                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1239                         bd->mode.command = 2;
1240                         if (count & 1 || sg->dma_address & 1)
1241                                 return NULL;
1242                         break;
1243                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1244                         bd->mode.command = 1;
1245                         break;
1246                 default:
1247                         return NULL;
1248                 }
1249
1250                 param = BD_DONE | BD_EXTD | BD_CONT;
1251
1252                 if (i + 1 == sg_len) {
1253                         param |= BD_INTR;
1254                         param |= BD_LAST;
1255                         param &= ~BD_CONT;
1256                 }
1257
1258                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1259                                 i, count, (u64)sg->dma_address,
1260                                 param & BD_WRAP ? "wrap" : "",
1261                                 param & BD_INTR ? " intr" : "");
1262
1263                 bd->mode.status = param;
1264         }
1265
1266         sdmac->num_bd = sg_len;
1267         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1268
1269         return &sdmac->desc;
1270 err_out:
1271         sdmac->status = DMA_ERROR;
1272         return NULL;
1273 }
1274
1275 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1276                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1277                 size_t period_len, enum dma_transfer_direction direction,
1278                 unsigned long flags)
1279 {
1280         struct sdma_channel *sdmac = to_sdma_chan(chan);
1281         struct sdma_engine *sdma = sdmac->sdma;
1282         int num_periods = buf_len / period_len;
1283         int channel = sdmac->channel;
1284         int ret, i = 0, buf = 0;
1285
1286         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1287
1288         if (sdmac->status == DMA_IN_PROGRESS)
1289                 return NULL;
1290
1291         sdmac->status = DMA_IN_PROGRESS;
1292
1293         sdmac->buf_tail = 0;
1294         sdmac->buf_ptail = 0;
1295         sdmac->chn_real_count = 0;
1296         sdmac->period_len = period_len;
1297
1298         sdmac->flags |= IMX_DMA_SG_LOOP;
1299         sdmac->direction = direction;
1300         ret = sdma_load_context(sdmac);
1301         if (ret)
1302                 goto err_out;
1303
1304         if (num_periods > NUM_BD) {
1305                 dev_err(sdma->dev, "SDMA channel %d: maximum number of sg exceeded: %d > %d\n",
1306                                 channel, num_periods, NUM_BD);
1307                 goto err_out;
1308         }
1309
1310         if (period_len > 0xffff) {
1311                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %d > %d\n",
1312                                 channel, period_len, 0xffff);
1313                 goto err_out;
1314         }
1315
1316         while (buf < buf_len) {
1317                 struct sdma_buffer_descriptor *bd = &sdmac->bd[i];
1318                 int param;
1319
1320                 bd->buffer_addr = dma_addr;
1321
1322                 bd->mode.count = period_len;
1323
1324                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1325                         goto err_out;
1326                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1327                         bd->mode.command = 0;
1328                 else
1329                         bd->mode.command = sdmac->word_size;
1330
1331                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1332                 if (i + 1 == num_periods)
1333                         param |= BD_WRAP;
1334
1335                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1336                                 i, period_len, (u64)dma_addr,
1337                                 param & BD_WRAP ? "wrap" : "",
1338                                 param & BD_INTR ? " intr" : "");
1339
1340                 bd->mode.status = param;
1341
1342                 dma_addr += period_len;
1343                 buf += period_len;
1344
1345                 i++;
1346         }
1347
1348         sdmac->num_bd = num_periods;
1349         sdma->channel_control[channel].current_bd_ptr = sdmac->bd_phys;
1350
1351         return &sdmac->desc;
1352 err_out:
1353         sdmac->status = DMA_ERROR;
1354         return NULL;
1355 }
1356
1357 static int sdma_config(struct dma_chan *chan,
1358                        struct dma_slave_config *dmaengine_cfg)
1359 {
1360         struct sdma_channel *sdmac = to_sdma_chan(chan);
1361
1362         if (dmaengine_cfg->direction == DMA_DEV_TO_MEM) {
1363                 sdmac->per_address = dmaengine_cfg->src_addr;
1364                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1365                         dmaengine_cfg->src_addr_width;
1366                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1367         } else if (dmaengine_cfg->direction == DMA_DEV_TO_DEV) {
1368                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1369                 sdmac->per_address = dmaengine_cfg->dst_addr;
1370                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1371                         SDMA_WATERMARK_LEVEL_LWML;
1372                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1373                         SDMA_WATERMARK_LEVEL_HWML;
1374                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1375         } else {
1376                 sdmac->per_address = dmaengine_cfg->dst_addr;
1377                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1378                         dmaengine_cfg->dst_addr_width;
1379                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1380         }
1381         sdmac->direction = dmaengine_cfg->direction;
1382         return sdma_config_channel(chan);
1383 }
1384
1385 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1386                                       dma_cookie_t cookie,
1387                                       struct dma_tx_state *txstate)
1388 {
1389         struct sdma_channel *sdmac = to_sdma_chan(chan);
1390         u32 residue;
1391
1392         if (sdmac->flags & IMX_DMA_SG_LOOP)
1393                 residue = (sdmac->num_bd - sdmac->buf_ptail) *
1394                            sdmac->period_len - sdmac->chn_real_count;
1395         else
1396                 residue = sdmac->chn_count - sdmac->chn_real_count;
1397
1398         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1399                          residue);
1400
1401         return sdmac->status;
1402 }
1403
1404 static void sdma_issue_pending(struct dma_chan *chan)
1405 {
1406         struct sdma_channel *sdmac = to_sdma_chan(chan);
1407         struct sdma_engine *sdma = sdmac->sdma;
1408
1409         if (sdmac->status == DMA_IN_PROGRESS)
1410                 sdma_enable_channel(sdma, sdmac->channel);
1411 }
1412
1413 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1414 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1415 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1416 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1417
1418 static void sdma_add_scripts(struct sdma_engine *sdma,
1419                 const struct sdma_script_start_addrs *addr)
1420 {
1421         s32 *addr_arr = (u32 *)addr;
1422         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1423         int i;
1424
1425         /* use the default firmware in ROM if missing external firmware */
1426         if (!sdma->script_number)
1427                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1428
1429         for (i = 0; i < sdma->script_number; i++)
1430                 if (addr_arr[i] > 0)
1431                         saddr_arr[i] = addr_arr[i];
1432 }
1433
1434 static void sdma_load_firmware(const struct firmware *fw, void *context)
1435 {
1436         struct sdma_engine *sdma = context;
1437         const struct sdma_firmware_header *header;
1438         const struct sdma_script_start_addrs *addr;
1439         unsigned short *ram_code;
1440
1441         if (!fw) {
1442                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1443                 /* In this case we just use the ROM firmware. */
1444                 return;
1445         }
1446
1447         if (fw->size < sizeof(*header))
1448                 goto err_firmware;
1449
1450         header = (struct sdma_firmware_header *)fw->data;
1451
1452         if (header->magic != SDMA_FIRMWARE_MAGIC)
1453                 goto err_firmware;
1454         if (header->ram_code_start + header->ram_code_size > fw->size)
1455                 goto err_firmware;
1456         switch (header->version_major) {
1457         case 1:
1458                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1459                 break;
1460         case 2:
1461                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1462                 break;
1463         case 3:
1464                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1465                 break;
1466         case 4:
1467                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1468                 break;
1469         default:
1470                 dev_err(sdma->dev, "unknown firmware version\n");
1471                 goto err_firmware;
1472         }
1473
1474         addr = (void *)header + header->script_addrs_start;
1475         ram_code = (void *)header + header->ram_code_start;
1476
1477         clk_enable(sdma->clk_ipg);
1478         clk_enable(sdma->clk_ahb);
1479         /* download the RAM image for SDMA */
1480         sdma_load_script(sdma, ram_code,
1481                         header->ram_code_size,
1482                         addr->ram_code_start_addr);
1483         clk_disable(sdma->clk_ipg);
1484         clk_disable(sdma->clk_ahb);
1485
1486         sdma_add_scripts(sdma, addr);
1487
1488         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1489                         header->version_major,
1490                         header->version_minor);
1491
1492 err_firmware:
1493         release_firmware(fw);
1494 }
1495
1496 #define EVENT_REMAP_CELLS 3
1497
1498 static int sdma_event_remap(struct sdma_engine *sdma)
1499 {
1500         struct device_node *np = sdma->dev->of_node;
1501         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1502         struct property *event_remap;
1503         struct regmap *gpr;
1504         char propname[] = "fsl,sdma-event-remap";
1505         u32 reg, val, shift, num_map, i;
1506         int ret = 0;
1507
1508         if (IS_ERR(np) || IS_ERR(gpr_np))
1509                 goto out;
1510
1511         event_remap = of_find_property(np, propname, NULL);
1512         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1513         if (!num_map) {
1514                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1515                 goto out;
1516         } else if (num_map % EVENT_REMAP_CELLS) {
1517                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1518                                 propname, EVENT_REMAP_CELLS);
1519                 ret = -EINVAL;
1520                 goto out;
1521         }
1522
1523         gpr = syscon_node_to_regmap(gpr_np);
1524         if (IS_ERR(gpr)) {
1525                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1526                 ret = PTR_ERR(gpr);
1527                 goto out;
1528         }
1529
1530         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1531                 ret = of_property_read_u32_index(np, propname, i, &reg);
1532                 if (ret) {
1533                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1534                                         propname, i);
1535                         goto out;
1536                 }
1537
1538                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1539                 if (ret) {
1540                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1541                                         propname, i + 1);
1542                         goto out;
1543                 }
1544
1545                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1546                 if (ret) {
1547                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1548                                         propname, i + 2);
1549                         goto out;
1550                 }
1551
1552                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1553         }
1554
1555 out:
1556         if (!IS_ERR(gpr_np))
1557                 of_node_put(gpr_np);
1558
1559         return ret;
1560 }
1561
1562 static int sdma_get_firmware(struct sdma_engine *sdma,
1563                 const char *fw_name)
1564 {
1565         int ret;
1566
1567         ret = request_firmware_nowait(THIS_MODULE,
1568                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1569                         GFP_KERNEL, sdma, sdma_load_firmware);
1570
1571         return ret;
1572 }
1573
1574 static int sdma_init(struct sdma_engine *sdma)
1575 {
1576         int i, ret;
1577         dma_addr_t ccb_phys;
1578
1579         ret = clk_enable(sdma->clk_ipg);
1580         if (ret)
1581                 return ret;
1582         ret = clk_enable(sdma->clk_ahb);
1583         if (ret)
1584                 goto disable_clk_ipg;
1585
1586         /* Be sure SDMA has not started yet */
1587         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1588
1589         sdma->channel_control = dma_alloc_coherent(NULL,
1590                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1591                         sizeof(struct sdma_context_data),
1592                         &ccb_phys, GFP_KERNEL);
1593
1594         if (!sdma->channel_control) {
1595                 ret = -ENOMEM;
1596                 goto err_dma_alloc;
1597         }
1598
1599         sdma->context = (void *)sdma->channel_control +
1600                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1601         sdma->context_phys = ccb_phys +
1602                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1603
1604         /* Zero-out the CCB structures array just allocated */
1605         memset(sdma->channel_control, 0,
1606                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control));
1607
1608         /* disable all channels */
1609         for (i = 0; i < sdma->drvdata->num_events; i++)
1610                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1611
1612         /* All channels have priority 0 */
1613         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1614                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1615
1616         ret = sdma_request_channel(&sdma->channel[0]);
1617         if (ret)
1618                 goto err_dma_alloc;
1619
1620         sdma_config_ownership(&sdma->channel[0], false, true, false);
1621
1622         /* Set Command Channel (Channel Zero) */
1623         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1624
1625         /* Set bits of CONFIG register but with static context switching */
1626         /* FIXME: Check whether to set ACR bit depending on clock ratios */
1627         writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1628
1629         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1630
1631         /* Initializes channel's priorities */
1632         sdma_set_channel_priority(&sdma->channel[0], 7);
1633
1634         clk_disable(sdma->clk_ipg);
1635         clk_disable(sdma->clk_ahb);
1636
1637         return 0;
1638
1639 err_dma_alloc:
1640         clk_disable(sdma->clk_ahb);
1641 disable_clk_ipg:
1642         clk_disable(sdma->clk_ipg);
1643         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1644         return ret;
1645 }
1646
1647 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1648 {
1649         struct sdma_channel *sdmac = to_sdma_chan(chan);
1650         struct imx_dma_data *data = fn_param;
1651
1652         if (!imx_dma_is_general_purpose(chan))
1653                 return false;
1654
1655         sdmac->data = *data;
1656         chan->private = &sdmac->data;
1657
1658         return true;
1659 }
1660
1661 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1662                                    struct of_dma *ofdma)
1663 {
1664         struct sdma_engine *sdma = ofdma->of_dma_data;
1665         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1666         struct imx_dma_data data;
1667
1668         if (dma_spec->args_count != 3)
1669                 return NULL;
1670
1671         data.dma_request = dma_spec->args[0];
1672         data.peripheral_type = dma_spec->args[1];
1673         data.priority = dma_spec->args[2];
1674         /*
1675          * init dma_request2 to zero, which is not used by the dts.
1676          * For P2P, dma_request2 is init from dma_request_channel(),
1677          * chan->private will point to the imx_dma_data, and in
1678          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1679          * be set to sdmac->event_id1.
1680          */
1681         data.dma_request2 = 0;
1682
1683         return dma_request_channel(mask, sdma_filter_fn, &data);
1684 }
1685
1686 static int sdma_probe(struct platform_device *pdev)
1687 {
1688         const struct of_device_id *of_id =
1689                         of_match_device(sdma_dt_ids, &pdev->dev);
1690         struct device_node *np = pdev->dev.of_node;
1691         struct device_node *spba_bus;
1692         const char *fw_name;
1693         int ret;
1694         int irq;
1695         struct resource *iores;
1696         struct resource spba_res;
1697         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1698         int i;
1699         struct sdma_engine *sdma;
1700         s32 *saddr_arr;
1701         const struct sdma_driver_data *drvdata = NULL;
1702
1703         if (of_id)
1704                 drvdata = of_id->data;
1705         else if (pdev->id_entry)
1706                 drvdata = (void *)pdev->id_entry->driver_data;
1707
1708         if (!drvdata) {
1709                 dev_err(&pdev->dev, "unable to find driver data\n");
1710                 return -EINVAL;
1711         }
1712
1713         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1714         if (ret)
1715                 return ret;
1716
1717         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
1718         if (!sdma)
1719                 return -ENOMEM;
1720
1721         spin_lock_init(&sdma->channel_0_lock);
1722
1723         sdma->dev = &pdev->dev;
1724         sdma->drvdata = drvdata;
1725
1726         irq = platform_get_irq(pdev, 0);
1727         if (irq < 0)
1728                 return irq;
1729
1730         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1731         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
1732         if (IS_ERR(sdma->regs))
1733                 return PTR_ERR(sdma->regs);
1734
1735         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1736         if (IS_ERR(sdma->clk_ipg))
1737                 return PTR_ERR(sdma->clk_ipg);
1738
1739         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
1740         if (IS_ERR(sdma->clk_ahb))
1741                 return PTR_ERR(sdma->clk_ahb);
1742
1743         clk_prepare(sdma->clk_ipg);
1744         clk_prepare(sdma->clk_ahb);
1745
1746         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
1747                                sdma);
1748         if (ret)
1749                 return ret;
1750
1751         sdma->irq = irq;
1752
1753         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
1754         if (!sdma->script_addrs)
1755                 return -ENOMEM;
1756
1757         /* initially no scripts available */
1758         saddr_arr = (s32 *)sdma->script_addrs;
1759         for (i = 0; i < SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1; i++)
1760                 saddr_arr[i] = -EINVAL;
1761
1762         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
1763         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
1764
1765         INIT_LIST_HEAD(&sdma->dma_device.channels);
1766         /* Initialize channel parameters */
1767         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1768                 struct sdma_channel *sdmac = &sdma->channel[i];
1769
1770                 sdmac->sdma = sdma;
1771                 spin_lock_init(&sdmac->lock);
1772
1773                 sdmac->chan.device = &sdma->dma_device;
1774                 dma_cookie_init(&sdmac->chan);
1775                 sdmac->channel = i;
1776
1777                 tasklet_init(&sdmac->tasklet, mxc_sdma_handle_channel_normal,
1778                              (unsigned long) sdmac);
1779                 /*
1780                  * Add the channel to the DMAC list. Do not add channel 0 though
1781                  * because we need it internally in the SDMA driver. This also means
1782                  * that channel 0 in dmaengine counting matches sdma channel 1.
1783                  */
1784                 if (i)
1785                         list_add_tail(&sdmac->chan.device_node,
1786                                         &sdma->dma_device.channels);
1787         }
1788
1789         ret = sdma_init(sdma);
1790         if (ret)
1791                 goto err_init;
1792
1793         ret = sdma_event_remap(sdma);
1794         if (ret)
1795                 goto err_init;
1796
1797         if (sdma->drvdata->script_addrs)
1798                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
1799         if (pdata && pdata->script_addrs)
1800                 sdma_add_scripts(sdma, pdata->script_addrs);
1801
1802         if (pdata) {
1803                 ret = sdma_get_firmware(sdma, pdata->fw_name);
1804                 if (ret)
1805                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
1806         } else {
1807                 /*
1808                  * Because that device tree does not encode ROM script address,
1809                  * the RAM script in firmware is mandatory for device tree
1810                  * probe, otherwise it fails.
1811                  */
1812                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
1813                                               &fw_name);
1814                 if (ret)
1815                         dev_warn(&pdev->dev, "failed to get firmware name\n");
1816                 else {
1817                         ret = sdma_get_firmware(sdma, fw_name);
1818                         if (ret)
1819                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
1820                 }
1821         }
1822
1823         sdma->dma_device.dev = &pdev->dev;
1824
1825         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
1826         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
1827         sdma->dma_device.device_tx_status = sdma_tx_status;
1828         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
1829         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
1830         sdma->dma_device.device_config = sdma_config;
1831         sdma->dma_device.device_terminate_all = sdma_disable_channel;
1832         sdma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1833         sdma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1834         sdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1835         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1836         sdma->dma_device.device_issue_pending = sdma_issue_pending;
1837         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
1838         dma_set_max_seg_size(sdma->dma_device.dev, 65535);
1839
1840         platform_set_drvdata(pdev, sdma);
1841
1842         ret = dma_async_device_register(&sdma->dma_device);
1843         if (ret) {
1844                 dev_err(&pdev->dev, "unable to register\n");
1845                 goto err_init;
1846         }
1847
1848         if (np) {
1849                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
1850                 if (ret) {
1851                         dev_err(&pdev->dev, "failed to register controller\n");
1852                         goto err_register;
1853                 }
1854
1855                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
1856                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
1857                 if (!ret) {
1858                         sdma->spba_start_addr = spba_res.start;
1859                         sdma->spba_end_addr = spba_res.end;
1860                 }
1861                 of_node_put(spba_bus);
1862         }
1863
1864         return 0;
1865
1866 err_register:
1867         dma_async_device_unregister(&sdma->dma_device);
1868 err_init:
1869         kfree(sdma->script_addrs);
1870         return ret;
1871 }
1872
1873 static int sdma_remove(struct platform_device *pdev)
1874 {
1875         struct sdma_engine *sdma = platform_get_drvdata(pdev);
1876         int i;
1877
1878         devm_free_irq(&pdev->dev, sdma->irq, sdma);
1879         dma_async_device_unregister(&sdma->dma_device);
1880         kfree(sdma->script_addrs);
1881         /* Kill the tasklet */
1882         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
1883                 struct sdma_channel *sdmac = &sdma->channel[i];
1884
1885                 tasklet_kill(&sdmac->tasklet);
1886         }
1887
1888         platform_set_drvdata(pdev, NULL);
1889         return 0;
1890 }
1891
1892 static struct platform_driver sdma_driver = {
1893         .driver         = {
1894                 .name   = "imx-sdma",
1895                 .of_match_table = sdma_dt_ids,
1896         },
1897         .id_table       = sdma_devtypes,
1898         .remove         = sdma_remove,
1899         .probe          = sdma_probe,
1900 };
1901
1902 module_platform_driver(sdma_driver);
1903
1904 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
1905 MODULE_DESCRIPTION("i.MX SDMA driver");
1906 MODULE_LICENSE("GPL");