Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[sfrench/cifs-2.6.git] / drivers / dma / amba-pl08x.c
1 /*
2  * Copyright (c) 2006 ARM Ltd.
3  * Copyright (c) 2010 ST-Ericsson SA
4  * Copyirght (c) 2017 Linaro Ltd.
5  *
6  * Author: Peter Pearse <peter.pearse@arm.com>
7  * Author: Linus Walleij <linus.walleij@linaro.org>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  *
19  * The full GNU General Public License is in this distribution in the file
20  * called COPYING.
21  *
22  * Documentation: ARM DDI 0196G == PL080
23  * Documentation: ARM DDI 0218E == PL081
24  * Documentation: S3C6410 User's Manual == PL080S
25  *
26  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
27  * channel.
28  *
29  * The PL080 has 8 channels available for simultaneous use, and the PL081
30  * has only two channels. So on these DMA controllers the number of channels
31  * and the number of incoming DMA signals are two totally different things.
32  * It is usually not possible to theoretically handle all physical signals,
33  * so a multiplexing scheme with possible denial of use is necessary.
34  *
35  * The PL080 has a dual bus master, PL081 has a single master.
36  *
37  * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
38  * It differs in following aspects:
39  * - CH_CONFIG register at different offset,
40  * - separate CH_CONTROL2 register for transfer size,
41  * - bigger maximum transfer size,
42  * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
43  * - no support for peripheral flow control.
44  *
45  * Memory to peripheral transfer may be visualized as
46  *      Get data from memory to DMAC
47  *      Until no data left
48  *              On burst request from peripheral
49  *                      Destination burst from DMAC to peripheral
50  *                      Clear burst request
51  *      Raise terminal count interrupt
52  *
53  * For peripherals with a FIFO:
54  * Source      burst size == half the depth of the peripheral FIFO
55  * Destination burst size == the depth of the peripheral FIFO
56  *
57  * (Bursts are irrelevant for mem to mem transfers - there are no burst
58  * signals, the DMA controller will simply facilitate its AHB master.)
59  *
60  * ASSUMES default (little) endianness for DMA transfers
61  *
62  * The PL08x has two flow control settings:
63  *  - DMAC flow control: the transfer size defines the number of transfers
64  *    which occur for the current LLI entry, and the DMAC raises TC at the
65  *    end of every LLI entry.  Observed behaviour shows the DMAC listening
66  *    to both the BREQ and SREQ signals (contrary to documented),
67  *    transferring data if either is active.  The LBREQ and LSREQ signals
68  *    are ignored.
69  *
70  *  - Peripheral flow control: the transfer size is ignored (and should be
71  *    zero).  The data is transferred from the current LLI entry, until
72  *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
73  *    will then move to the next LLI entry. Unsupported by PL080S.
74  */
75 #include <linux/amba/bus.h>
76 #include <linux/amba/pl08x.h>
77 #include <linux/debugfs.h>
78 #include <linux/delay.h>
79 #include <linux/device.h>
80 #include <linux/dmaengine.h>
81 #include <linux/dmapool.h>
82 #include <linux/dma-mapping.h>
83 #include <linux/export.h>
84 #include <linux/init.h>
85 #include <linux/interrupt.h>
86 #include <linux/module.h>
87 #include <linux/of.h>
88 #include <linux/of_dma.h>
89 #include <linux/pm_runtime.h>
90 #include <linux/seq_file.h>
91 #include <linux/slab.h>
92 #include <linux/amba/pl080.h>
93
94 #include "dmaengine.h"
95 #include "virt-dma.h"
96
97 #define DRIVER_NAME     "pl08xdmac"
98
99 #define PL80X_DMA_BUSWIDTHS \
100         BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
101         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
102         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
103         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
104
105 static struct amba_driver pl08x_amba_driver;
106 struct pl08x_driver_data;
107
108 /**
109  * struct vendor_data - vendor-specific config parameters for PL08x derivatives
110  * @config_offset: offset to the configuration register
111  * @channels: the number of channels available in this variant
112  * @signals: the number of request signals available from the hardware
113  * @dualmaster: whether this version supports dual AHB masters or not.
114  * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the
115  *      channels have Nomadik security extension bits that need to be checked
116  *      for permission before use and some registers are missing
117  * @pl080s: whether this variant is a Samsung PL080S, which has separate
118  *      register and LLI word for transfer size.
119  * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020
120  * @max_transfer_size: the maximum single element transfer size for this
121  *      PL08x variant.
122  */
123 struct vendor_data {
124         u8 config_offset;
125         u8 channels;
126         u8 signals;
127         bool dualmaster;
128         bool nomadik;
129         bool pl080s;
130         bool ftdmac020;
131         u32 max_transfer_size;
132 };
133
134 /**
135  * struct pl08x_bus_data - information of source or destination
136  * busses for a transfer
137  * @addr: current address
138  * @maxwidth: the maximum width of a transfer on this bus
139  * @buswidth: the width of this bus in bytes: 1, 2 or 4
140  */
141 struct pl08x_bus_data {
142         dma_addr_t addr;
143         u8 maxwidth;
144         u8 buswidth;
145 };
146
147 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
148
149 /**
150  * struct pl08x_phy_chan - holder for the physical channels
151  * @id: physical index to this channel
152  * @base: memory base address for this physical channel
153  * @reg_config: configuration address for this physical channel
154  * @reg_control: control address for this physical channel
155  * @reg_src: transfer source address register
156  * @reg_dst: transfer destination address register
157  * @reg_lli: transfer LLI address register
158  * @reg_busy: if the variant has a special per-channel busy register,
159  * this contains a pointer to it
160  * @lock: a lock to use when altering an instance of this struct
161  * @serving: the virtual channel currently being served by this physical
162  * channel
163  * @locked: channel unavailable for the system, e.g. dedicated to secure
164  * world
165  * @ftdmac020: channel is on a FTDMAC020
166  * @pl080s: channel is on a PL08s
167  */
168 struct pl08x_phy_chan {
169         unsigned int id;
170         void __iomem *base;
171         void __iomem *reg_config;
172         void __iomem *reg_control;
173         void __iomem *reg_src;
174         void __iomem *reg_dst;
175         void __iomem *reg_lli;
176         void __iomem *reg_busy;
177         spinlock_t lock;
178         struct pl08x_dma_chan *serving;
179         bool locked;
180         bool ftdmac020;
181         bool pl080s;
182 };
183
184 /**
185  * struct pl08x_sg - structure containing data per sg
186  * @src_addr: src address of sg
187  * @dst_addr: dst address of sg
188  * @len: transfer len in bytes
189  * @node: node for txd's dsg_list
190  */
191 struct pl08x_sg {
192         dma_addr_t src_addr;
193         dma_addr_t dst_addr;
194         size_t len;
195         struct list_head node;
196 };
197
198 /**
199  * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
200  * @vd: virtual DMA descriptor
201  * @dsg_list: list of children sg's
202  * @llis_bus: DMA memory address (physical) start for the LLIs
203  * @llis_va: virtual memory address start for the LLIs
204  * @cctl: control reg values for current txd
205  * @ccfg: config reg values for current txd
206  * @done: this marks completed descriptors, which should not have their
207  *   mux released.
208  * @cyclic: indicate cyclic transfers
209  */
210 struct pl08x_txd {
211         struct virt_dma_desc vd;
212         struct list_head dsg_list;
213         dma_addr_t llis_bus;
214         u32 *llis_va;
215         /* Default cctl value for LLIs */
216         u32 cctl;
217         /*
218          * Settings to be put into the physical channel when we
219          * trigger this txd.  Other registers are in llis_va[0].
220          */
221         u32 ccfg;
222         bool done;
223         bool cyclic;
224 };
225
226 /**
227  * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel
228  * states
229  * @PL08X_CHAN_IDLE: the channel is idle
230  * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
231  * channel and is running a transfer on it
232  * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
233  * channel, but the transfer is currently paused
234  * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
235  * channel to become available (only pertains to memcpy channels)
236  */
237 enum pl08x_dma_chan_state {
238         PL08X_CHAN_IDLE,
239         PL08X_CHAN_RUNNING,
240         PL08X_CHAN_PAUSED,
241         PL08X_CHAN_WAITING,
242 };
243
244 /**
245  * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
246  * @vc: wrappped virtual channel
247  * @phychan: the physical channel utilized by this channel, if there is one
248  * @name: name of channel
249  * @cd: channel platform data
250  * @cfg: slave configuration
251  * @at: active transaction on this channel
252  * @host: a pointer to the host (internal use)
253  * @state: whether the channel is idle, paused, running etc
254  * @slave: whether this channel is a device (slave) or for memcpy
255  * @signal: the physical DMA request signal which this channel is using
256  * @mux_use: count of descriptors using this DMA request signal setting
257  */
258 struct pl08x_dma_chan {
259         struct virt_dma_chan vc;
260         struct pl08x_phy_chan *phychan;
261         const char *name;
262         struct pl08x_channel_data *cd;
263         struct dma_slave_config cfg;
264         struct pl08x_txd *at;
265         struct pl08x_driver_data *host;
266         enum pl08x_dma_chan_state state;
267         bool slave;
268         int signal;
269         unsigned mux_use;
270 };
271
272 /**
273  * struct pl08x_driver_data - the local state holder for the PL08x
274  * @slave: optional slave engine for this instance
275  * @memcpy: memcpy engine for this instance
276  * @has_slave: the PL08x has a slave engine (routed signals)
277  * @base: virtual memory base (remapped) for the PL08x
278  * @adev: the corresponding AMBA (PrimeCell) bus entry
279  * @vd: vendor data for this PL08x variant
280  * @pd: platform data passed in from the platform/machine
281  * @phy_chans: array of data for the physical channels
282  * @pool: a pool for the LLI descriptors
283  * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
284  * fetches
285  * @mem_buses: set to indicate memory transfers on AHB2.
286  * @lli_words: how many words are used in each LLI item for this variant
287  */
288 struct pl08x_driver_data {
289         struct dma_device slave;
290         struct dma_device memcpy;
291         bool has_slave;
292         void __iomem *base;
293         struct amba_device *adev;
294         const struct vendor_data *vd;
295         struct pl08x_platform_data *pd;
296         struct pl08x_phy_chan *phy_chans;
297         struct dma_pool *pool;
298         u8 lli_buses;
299         u8 mem_buses;
300         u8 lli_words;
301 };
302
303 /*
304  * PL08X specific defines
305  */
306
307 /* The order of words in an LLI. */
308 #define PL080_LLI_SRC           0
309 #define PL080_LLI_DST           1
310 #define PL080_LLI_LLI           2
311 #define PL080_LLI_CCTL          3
312 #define PL080S_LLI_CCTL2        4
313
314 /* Total words in an LLI. */
315 #define PL080_LLI_WORDS         4
316 #define PL080S_LLI_WORDS        8
317
318 /*
319  * Number of LLIs in each LLI buffer allocated for one transfer
320  * (maximum times we call dma_pool_alloc on this pool without freeing)
321  */
322 #define MAX_NUM_TSFR_LLIS       512
323 #define PL08X_ALIGN             8
324
325 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
326 {
327         return container_of(chan, struct pl08x_dma_chan, vc.chan);
328 }
329
330 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
331 {
332         return container_of(tx, struct pl08x_txd, vd.tx);
333 }
334
335 /*
336  * Mux handling.
337  *
338  * This gives us the DMA request input to the PL08x primecell which the
339  * peripheral described by the channel data will be routed to, possibly
340  * via a board/SoC specific external MUX.  One important point to note
341  * here is that this does not depend on the physical channel.
342  */
343 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
344 {
345         const struct pl08x_platform_data *pd = plchan->host->pd;
346         int ret;
347
348         if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
349                 ret = pd->get_xfer_signal(plchan->cd);
350                 if (ret < 0) {
351                         plchan->mux_use = 0;
352                         return ret;
353                 }
354
355                 plchan->signal = ret;
356         }
357         return 0;
358 }
359
360 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
361 {
362         const struct pl08x_platform_data *pd = plchan->host->pd;
363
364         if (plchan->signal >= 0) {
365                 WARN_ON(plchan->mux_use == 0);
366
367                 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
368                         pd->put_xfer_signal(plchan->cd, plchan->signal);
369                         plchan->signal = -1;
370                 }
371         }
372 }
373
374 /*
375  * Physical channel handling
376  */
377
378 /* Whether a certain channel is busy or not */
379 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
380 {
381         unsigned int val;
382
383         /* If we have a special busy register, take a shortcut */
384         if (ch->reg_busy) {
385                 val = readl(ch->reg_busy);
386                 return !!(val & BIT(ch->id));
387         }
388         val = readl(ch->reg_config);
389         return val & PL080_CONFIG_ACTIVE;
390 }
391
392 /*
393  * pl08x_write_lli() - Write an LLI into the DMA controller.
394  *
395  * The PL08x derivatives support linked lists, but the first item of the
396  * list containing the source, destination, control word and next LLI is
397  * ignored. Instead the driver has to write those values directly into the
398  * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE
399  * register need to be set up for the first transfer.
400  */
401 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
402                 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
403 {
404         if (pl08x->vd->pl080s)
405                 dev_vdbg(&pl08x->adev->dev,
406                         "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
407                         "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
408                         phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
409                         lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
410                         lli[PL080S_LLI_CCTL2], ccfg);
411         else
412                 dev_vdbg(&pl08x->adev->dev,
413                         "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
414                         "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
415                         phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
416                         lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
417
418         writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src);
419         writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst);
420         writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli);
421
422         /*
423          * The FTMAC020 has a different layout in the CCTL word of the LLI
424          * and the CCTL register which is split in CSR and SIZE registers.
425          * Convert the LLI item CCTL into the proper values to write into
426          * the CSR and SIZE registers.
427          */
428         if (phychan->ftdmac020) {
429                 u32 llictl = lli[PL080_LLI_CCTL];
430                 u32 val = 0;
431
432                 /* Write the transfer size (12 bits) to the size register */
433                 writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK,
434                                phychan->base + FTDMAC020_CH_SIZE);
435                 /*
436                  * Then write the control bits 28..16 to the control register
437                  * by shuffleing the bits around to where they are in the
438                  * main register. The mapping is as follows:
439                  * Bit 28: TC_MSK - mask on all except last LLI
440                  * Bit 27..25: SRC_WIDTH
441                  * Bit 24..22: DST_WIDTH
442                  * Bit 21..20: SRCAD_CTRL
443                  * Bit 19..17: DSTAD_CTRL
444                  * Bit 17: SRC_SEL
445                  * Bit 16: DST_SEL
446                  */
447                 if (llictl & FTDMAC020_LLI_TC_MSK)
448                         val |= FTDMAC020_CH_CSR_TC_MSK;
449                 val |= ((llictl  & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
450                         (FTDMAC020_LLI_SRC_WIDTH_SHIFT -
451                          FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT));
452                 val |= ((llictl  & FTDMAC020_LLI_DST_WIDTH_MSK) >>
453                         (FTDMAC020_LLI_DST_WIDTH_SHIFT -
454                          FTDMAC020_CH_CSR_DST_WIDTH_SHIFT));
455                 val |= ((llictl  & FTDMAC020_LLI_SRCAD_CTL_MSK) >>
456                         (FTDMAC020_LLI_SRCAD_CTL_SHIFT -
457                          FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT));
458                 val |= ((llictl  & FTDMAC020_LLI_DSTAD_CTL_MSK) >>
459                         (FTDMAC020_LLI_DSTAD_CTL_SHIFT -
460                          FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT));
461                 if (llictl & FTDMAC020_LLI_SRC_SEL)
462                         val |= FTDMAC020_CH_CSR_SRC_SEL;
463                 if (llictl & FTDMAC020_LLI_DST_SEL)
464                         val |= FTDMAC020_CH_CSR_DST_SEL;
465
466                 /*
467                  * Set up the bits that exist in the CSR but are not
468                  * part the LLI, i.e. only gets written to the control
469                  * register right here.
470                  *
471                  * FIXME: do not just handle memcpy, also handle slave DMA.
472                  */
473                 switch (pl08x->pd->memcpy_burst_size) {
474                 default:
475                 case PL08X_BURST_SZ_1:
476                         val |= PL080_BSIZE_1 <<
477                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
478                         break;
479                 case PL08X_BURST_SZ_4:
480                         val |= PL080_BSIZE_4 <<
481                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
482                         break;
483                 case PL08X_BURST_SZ_8:
484                         val |= PL080_BSIZE_8 <<
485                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
486                         break;
487                 case PL08X_BURST_SZ_16:
488                         val |= PL080_BSIZE_16 <<
489                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
490                         break;
491                 case PL08X_BURST_SZ_32:
492                         val |= PL080_BSIZE_32 <<
493                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
494                         break;
495                 case PL08X_BURST_SZ_64:
496                         val |= PL080_BSIZE_64 <<
497                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
498                         break;
499                 case PL08X_BURST_SZ_128:
500                         val |= PL080_BSIZE_128 <<
501                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
502                         break;
503                 case PL08X_BURST_SZ_256:
504                         val |= PL080_BSIZE_256 <<
505                                 FTDMAC020_CH_CSR_SRC_SIZE_SHIFT;
506                         break;
507                 }
508
509                 /* Protection flags */
510                 if (pl08x->pd->memcpy_prot_buff)
511                         val |= FTDMAC020_CH_CSR_PROT2;
512                 if (pl08x->pd->memcpy_prot_cache)
513                         val |= FTDMAC020_CH_CSR_PROT3;
514                 /* We are the kernel, so we are in privileged mode */
515                 val |= FTDMAC020_CH_CSR_PROT1;
516
517                 writel_relaxed(val, phychan->reg_control);
518         } else {
519                 /* Bits are just identical */
520                 writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control);
521         }
522
523         /* Second control word on the PL080s */
524         if (pl08x->vd->pl080s)
525                 writel_relaxed(lli[PL080S_LLI_CCTL2],
526                                 phychan->base + PL080S_CH_CONTROL2);
527
528         writel(ccfg, phychan->reg_config);
529 }
530
531 /*
532  * Set the initial DMA register values i.e. those for the first LLI
533  * The next LLI pointer and the configuration interrupt bit have
534  * been set when the LLIs were constructed.  Poke them into the hardware
535  * and start the transfer.
536  */
537 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
538 {
539         struct pl08x_driver_data *pl08x = plchan->host;
540         struct pl08x_phy_chan *phychan = plchan->phychan;
541         struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
542         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
543         u32 val;
544
545         list_del(&txd->vd.node);
546
547         plchan->at = txd;
548
549         /* Wait for channel inactive */
550         while (pl08x_phy_channel_busy(phychan))
551                 cpu_relax();
552
553         pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
554
555         /* Enable the DMA channel */
556         /* Do not access config register until channel shows as disabled */
557         while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id))
558                 cpu_relax();
559
560         /* Do not access config register until channel shows as inactive */
561         if (phychan->ftdmac020) {
562                 val = readl(phychan->reg_config);
563                 while (val & FTDMAC020_CH_CFG_BUSY)
564                         val = readl(phychan->reg_config);
565
566                 val = readl(phychan->reg_control);
567                 while (val & FTDMAC020_CH_CSR_EN)
568                         val = readl(phychan->reg_control);
569
570                 writel(val | FTDMAC020_CH_CSR_EN,
571                        phychan->reg_control);
572         } else {
573                 val = readl(phychan->reg_config);
574                 while ((val & PL080_CONFIG_ACTIVE) ||
575                        (val & PL080_CONFIG_ENABLE))
576                         val = readl(phychan->reg_config);
577
578                 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
579         }
580 }
581
582 /*
583  * Pause the channel by setting the HALT bit.
584  *
585  * For M->P transfers, pause the DMAC first and then stop the peripheral -
586  * the FIFO can only drain if the peripheral is still requesting data.
587  * (note: this can still timeout if the DMAC FIFO never drains of data.)
588  *
589  * For P->M transfers, disable the peripheral first to stop it filling
590  * the DMAC FIFO, and then pause the DMAC.
591  */
592 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
593 {
594         u32 val;
595         int timeout;
596
597         if (ch->ftdmac020) {
598                 /* Use the enable bit on the FTDMAC020 */
599                 val = readl(ch->reg_control);
600                 val &= ~FTDMAC020_CH_CSR_EN;
601                 writel(val, ch->reg_control);
602                 return;
603         }
604
605         /* Set the HALT bit and wait for the FIFO to drain */
606         val = readl(ch->reg_config);
607         val |= PL080_CONFIG_HALT;
608         writel(val, ch->reg_config);
609
610         /* Wait for channel inactive */
611         for (timeout = 1000; timeout; timeout--) {
612                 if (!pl08x_phy_channel_busy(ch))
613                         break;
614                 udelay(1);
615         }
616         if (pl08x_phy_channel_busy(ch))
617                 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
618 }
619
620 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
621 {
622         u32 val;
623
624         /* Use the enable bit on the FTDMAC020 */
625         if (ch->ftdmac020) {
626                 val = readl(ch->reg_control);
627                 val |= FTDMAC020_CH_CSR_EN;
628                 writel(val, ch->reg_control);
629                 return;
630         }
631
632         /* Clear the HALT bit */
633         val = readl(ch->reg_config);
634         val &= ~PL080_CONFIG_HALT;
635         writel(val, ch->reg_config);
636 }
637
638 /*
639  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
640  * clears any pending interrupt status.  This should not be used for
641  * an on-going transfer, but as a method of shutting down a channel
642  * (eg, when it's no longer used) or terminating a transfer.
643  */
644 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
645         struct pl08x_phy_chan *ch)
646 {
647         u32 val;
648
649         /* The layout for the FTDMAC020 is different */
650         if (ch->ftdmac020) {
651                 /* Disable all interrupts */
652                 val = readl(ch->reg_config);
653                 val |= (FTDMAC020_CH_CFG_INT_ABT_MASK |
654                         FTDMAC020_CH_CFG_INT_ERR_MASK |
655                         FTDMAC020_CH_CFG_INT_TC_MASK);
656                 writel(val, ch->reg_config);
657
658                 /* Abort and disable channel */
659                 val = readl(ch->reg_control);
660                 val &= ~FTDMAC020_CH_CSR_EN;
661                 val |= FTDMAC020_CH_CSR_ABT;
662                 writel(val, ch->reg_control);
663
664                 /* Clear ABT and ERR interrupt flags */
665                 writel(BIT(ch->id) | BIT(ch->id + 16),
666                        pl08x->base + PL080_ERR_CLEAR);
667                 writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
668
669                 return;
670         }
671
672         val = readl(ch->reg_config);
673         val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
674                  PL080_CONFIG_TC_IRQ_MASK);
675         writel(val, ch->reg_config);
676
677         writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR);
678         writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR);
679 }
680
681 static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch)
682 {
683         u32 val;
684         u32 bytes;
685
686         if (ch->ftdmac020) {
687                 bytes = readl(ch->base + FTDMAC020_CH_SIZE);
688
689                 val = readl(ch->reg_control);
690                 val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK;
691                 val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT;
692         } else if (ch->pl080s) {
693                 val = readl(ch->base + PL080S_CH_CONTROL2);
694                 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
695
696                 val = readl(ch->reg_control);
697                 val &= PL080_CONTROL_SWIDTH_MASK;
698                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
699         } else {
700                 /* Plain PL08x */
701                 val = readl(ch->reg_control);
702                 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
703
704                 val &= PL080_CONTROL_SWIDTH_MASK;
705                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
706         }
707
708         switch (val) {
709         case PL080_WIDTH_8BIT:
710                 break;
711         case PL080_WIDTH_16BIT:
712                 bytes *= 2;
713                 break;
714         case PL080_WIDTH_32BIT:
715                 bytes *= 4;
716                 break;
717         }
718         return bytes;
719 }
720
721 static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va)
722 {
723         u32 val;
724         u32 bytes;
725
726         if (ch->ftdmac020) {
727                 val = llis_va[PL080_LLI_CCTL];
728                 bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK;
729
730                 val = llis_va[PL080_LLI_CCTL];
731                 val &= FTDMAC020_LLI_SRC_WIDTH_MSK;
732                 val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT;
733         } else if (ch->pl080s) {
734                 val = llis_va[PL080S_LLI_CCTL2];
735                 bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK;
736
737                 val = llis_va[PL080_LLI_CCTL];
738                 val &= PL080_CONTROL_SWIDTH_MASK;
739                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
740         } else {
741                 /* Plain PL08x */
742                 val = llis_va[PL080_LLI_CCTL];
743                 bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK;
744
745                 val &= PL080_CONTROL_SWIDTH_MASK;
746                 val >>= PL080_CONTROL_SWIDTH_SHIFT;
747         }
748
749         switch (val) {
750         case PL080_WIDTH_8BIT:
751                 break;
752         case PL080_WIDTH_16BIT:
753                 bytes *= 2;
754                 break;
755         case PL080_WIDTH_32BIT:
756                 bytes *= 4;
757                 break;
758         }
759         return bytes;
760 }
761
762 /* The channel should be paused when calling this */
763 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
764 {
765         struct pl08x_driver_data *pl08x = plchan->host;
766         const u32 *llis_va, *llis_va_limit;
767         struct pl08x_phy_chan *ch;
768         dma_addr_t llis_bus;
769         struct pl08x_txd *txd;
770         u32 llis_max_words;
771         size_t bytes;
772         u32 clli;
773
774         ch = plchan->phychan;
775         txd = plchan->at;
776
777         if (!ch || !txd)
778                 return 0;
779
780         /*
781          * Follow the LLIs to get the number of remaining
782          * bytes in the currently active transaction.
783          */
784         clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2;
785
786         /* First get the remaining bytes in the active transfer */
787         bytes = get_bytes_in_phy_channel(ch);
788
789         if (!clli)
790                 return bytes;
791
792         llis_va = txd->llis_va;
793         llis_bus = txd->llis_bus;
794
795         llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
796         BUG_ON(clli < llis_bus || clli >= llis_bus +
797                                                 sizeof(u32) * llis_max_words);
798
799         /*
800          * Locate the next LLI - as this is an array,
801          * it's simple maths to find.
802          */
803         llis_va += (clli - llis_bus) / sizeof(u32);
804
805         llis_va_limit = llis_va + llis_max_words;
806
807         for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
808                 bytes += get_bytes_in_lli(ch, llis_va);
809
810                 /*
811                  * A LLI pointer going backward terminates the LLI list
812                  */
813                 if (llis_va[PL080_LLI_LLI] <= clli)
814                         break;
815         }
816
817         return bytes;
818 }
819
820 /*
821  * Allocate a physical channel for a virtual channel
822  *
823  * Try to locate a physical channel to be used for this transfer. If all
824  * are taken return NULL and the requester will have to cope by using
825  * some fallback PIO mode or retrying later.
826  */
827 static struct pl08x_phy_chan *
828 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
829                       struct pl08x_dma_chan *virt_chan)
830 {
831         struct pl08x_phy_chan *ch = NULL;
832         unsigned long flags;
833         int i;
834
835         for (i = 0; i < pl08x->vd->channels; i++) {
836                 ch = &pl08x->phy_chans[i];
837
838                 spin_lock_irqsave(&ch->lock, flags);
839
840                 if (!ch->locked && !ch->serving) {
841                         ch->serving = virt_chan;
842                         spin_unlock_irqrestore(&ch->lock, flags);
843                         break;
844                 }
845
846                 spin_unlock_irqrestore(&ch->lock, flags);
847         }
848
849         if (i == pl08x->vd->channels) {
850                 /* No physical channel available, cope with it */
851                 return NULL;
852         }
853
854         return ch;
855 }
856
857 /* Mark the physical channel as free.  Note, this write is atomic. */
858 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
859                                          struct pl08x_phy_chan *ch)
860 {
861         ch->serving = NULL;
862 }
863
864 /*
865  * Try to allocate a physical channel.  When successful, assign it to
866  * this virtual channel, and initiate the next descriptor.  The
867  * virtual channel lock must be held at this point.
868  */
869 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
870 {
871         struct pl08x_driver_data *pl08x = plchan->host;
872         struct pl08x_phy_chan *ch;
873
874         ch = pl08x_get_phy_channel(pl08x, plchan);
875         if (!ch) {
876                 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
877                 plchan->state = PL08X_CHAN_WAITING;
878                 return;
879         }
880
881         dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
882                 ch->id, plchan->name);
883
884         plchan->phychan = ch;
885         plchan->state = PL08X_CHAN_RUNNING;
886         pl08x_start_next_txd(plchan);
887 }
888
889 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
890         struct pl08x_dma_chan *plchan)
891 {
892         struct pl08x_driver_data *pl08x = plchan->host;
893
894         dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
895                 ch->id, plchan->name);
896
897         /*
898          * We do this without taking the lock; we're really only concerned
899          * about whether this pointer is NULL or not, and we're guaranteed
900          * that this will only be called when it _already_ is non-NULL.
901          */
902         ch->serving = plchan;
903         plchan->phychan = ch;
904         plchan->state = PL08X_CHAN_RUNNING;
905         pl08x_start_next_txd(plchan);
906 }
907
908 /*
909  * Free a physical DMA channel, potentially reallocating it to another
910  * virtual channel if we have any pending.
911  */
912 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
913 {
914         struct pl08x_driver_data *pl08x = plchan->host;
915         struct pl08x_dma_chan *p, *next;
916
917  retry:
918         next = NULL;
919
920         /* Find a waiting virtual channel for the next transfer. */
921         list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
922                 if (p->state == PL08X_CHAN_WAITING) {
923                         next = p;
924                         break;
925                 }
926
927         if (!next && pl08x->has_slave) {
928                 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
929                         if (p->state == PL08X_CHAN_WAITING) {
930                                 next = p;
931                                 break;
932                         }
933         }
934
935         /* Ensure that the physical channel is stopped */
936         pl08x_terminate_phy_chan(pl08x, plchan->phychan);
937
938         if (next) {
939                 bool success;
940
941                 /*
942                  * Eww.  We know this isn't going to deadlock
943                  * but lockdep probably doesn't.
944                  */
945                 spin_lock(&next->vc.lock);
946                 /* Re-check the state now that we have the lock */
947                 success = next->state == PL08X_CHAN_WAITING;
948                 if (success)
949                         pl08x_phy_reassign_start(plchan->phychan, next);
950                 spin_unlock(&next->vc.lock);
951
952                 /* If the state changed, try to find another channel */
953                 if (!success)
954                         goto retry;
955         } else {
956                 /* No more jobs, so free up the physical channel */
957                 pl08x_put_phy_channel(pl08x, plchan->phychan);
958         }
959
960         plchan->phychan = NULL;
961         plchan->state = PL08X_CHAN_IDLE;
962 }
963
964 /*
965  * LLI handling
966  */
967
968 static inline unsigned int
969 pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x,
970                         u32 cctl,
971                         bool source)
972 {
973         u32 val;
974
975         if (pl08x->vd->ftdmac020) {
976                 if (source)
977                         val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >>
978                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
979                 else
980                         val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >>
981                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
982         } else {
983                 if (source)
984                         val = (cctl & PL080_CONTROL_SWIDTH_MASK) >>
985                                 PL080_CONTROL_SWIDTH_SHIFT;
986                 else
987                         val = (cctl & PL080_CONTROL_DWIDTH_MASK) >>
988                                 PL080_CONTROL_DWIDTH_SHIFT;
989         }
990
991         switch (val) {
992         case PL080_WIDTH_8BIT:
993                 return 1;
994         case PL080_WIDTH_16BIT:
995                 return 2;
996         case PL080_WIDTH_32BIT:
997                 return 4;
998         default:
999                 break;
1000         }
1001         BUG();
1002         return 0;
1003 }
1004
1005 static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x,
1006                                          u32 cctl,
1007                                          u8 srcwidth, u8 dstwidth,
1008                                          size_t tsize)
1009 {
1010         u32 retbits = cctl;
1011
1012         /*
1013          * Remove all src, dst and transfer size bits, then set the
1014          * width and size according to the parameters. The bit offsets
1015          * are different in the FTDMAC020 so we need to accound for this.
1016          */
1017         if (pl08x->vd->ftdmac020) {
1018                 retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK;
1019                 retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK;
1020                 retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1021
1022                 switch (srcwidth) {
1023                 case 1:
1024                         retbits |= PL080_WIDTH_8BIT <<
1025                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1026                         break;
1027                 case 2:
1028                         retbits |= PL080_WIDTH_16BIT <<
1029                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1030                         break;
1031                 case 4:
1032                         retbits |= PL080_WIDTH_32BIT <<
1033                                 FTDMAC020_LLI_SRC_WIDTH_SHIFT;
1034                         break;
1035                 default:
1036                         BUG();
1037                         break;
1038                 }
1039
1040                 switch (dstwidth) {
1041                 case 1:
1042                         retbits |= PL080_WIDTH_8BIT <<
1043                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1044                         break;
1045                 case 2:
1046                         retbits |= PL080_WIDTH_16BIT <<
1047                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1048                         break;
1049                 case 4:
1050                         retbits |= PL080_WIDTH_32BIT <<
1051                                 FTDMAC020_LLI_DST_WIDTH_SHIFT;
1052                         break;
1053                 default:
1054                         BUG();
1055                         break;
1056                 }
1057
1058                 tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK;
1059                 retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT;
1060         } else {
1061                 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
1062                 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
1063                 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
1064
1065                 switch (srcwidth) {
1066                 case 1:
1067                         retbits |= PL080_WIDTH_8BIT <<
1068                                 PL080_CONTROL_SWIDTH_SHIFT;
1069                         break;
1070                 case 2:
1071                         retbits |= PL080_WIDTH_16BIT <<
1072                                 PL080_CONTROL_SWIDTH_SHIFT;
1073                         break;
1074                 case 4:
1075                         retbits |= PL080_WIDTH_32BIT <<
1076                                 PL080_CONTROL_SWIDTH_SHIFT;
1077                         break;
1078                 default:
1079                         BUG();
1080                         break;
1081                 }
1082
1083                 switch (dstwidth) {
1084                 case 1:
1085                         retbits |= PL080_WIDTH_8BIT <<
1086                                 PL080_CONTROL_DWIDTH_SHIFT;
1087                         break;
1088                 case 2:
1089                         retbits |= PL080_WIDTH_16BIT <<
1090                                 PL080_CONTROL_DWIDTH_SHIFT;
1091                         break;
1092                 case 4:
1093                         retbits |= PL080_WIDTH_32BIT <<
1094                                 PL080_CONTROL_DWIDTH_SHIFT;
1095                         break;
1096                 default:
1097                         BUG();
1098                         break;
1099                 }
1100
1101                 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
1102                 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
1103         }
1104
1105         return retbits;
1106 }
1107
1108 struct pl08x_lli_build_data {
1109         struct pl08x_txd *txd;
1110         struct pl08x_bus_data srcbus;
1111         struct pl08x_bus_data dstbus;
1112         size_t remainder;
1113         u32 lli_bus;
1114 };
1115
1116 /*
1117  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
1118  * victim in case src & dest are not similarly aligned. i.e. If after aligning
1119  * masters address with width requirements of transfer (by sending few byte by
1120  * byte data), slave is still not aligned, then its width will be reduced to
1121  * BYTE.
1122  * - prefers the destination bus if both available
1123  * - prefers bus with fixed address (i.e. peripheral)
1124  */
1125 static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x,
1126                                     struct pl08x_lli_build_data *bd,
1127                                     struct pl08x_bus_data **mbus,
1128                                     struct pl08x_bus_data **sbus,
1129                                     u32 cctl)
1130 {
1131         bool dst_incr;
1132         bool src_incr;
1133
1134         /*
1135          * The FTDMAC020 only supports memory-to-memory transfer, so
1136          * source and destination always increase.
1137          */
1138         if (pl08x->vd->ftdmac020) {
1139                 dst_incr = true;
1140                 src_incr = true;
1141         } else {
1142                 dst_incr = !!(cctl & PL080_CONTROL_DST_INCR);
1143                 src_incr = !!(cctl & PL080_CONTROL_SRC_INCR);
1144         }
1145
1146         /*
1147          * If either bus is not advancing, i.e. it is a peripheral, that
1148          * one becomes master
1149          */
1150         if (!dst_incr) {
1151                 *mbus = &bd->dstbus;
1152                 *sbus = &bd->srcbus;
1153         } else if (!src_incr) {
1154                 *mbus = &bd->srcbus;
1155                 *sbus = &bd->dstbus;
1156         } else {
1157                 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
1158                         *mbus = &bd->dstbus;
1159                         *sbus = &bd->srcbus;
1160                 } else {
1161                         *mbus = &bd->srcbus;
1162                         *sbus = &bd->dstbus;
1163                 }
1164         }
1165 }
1166
1167 /*
1168  * Fills in one LLI for a certain transfer descriptor and advance the counter
1169  */
1170 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
1171                                     struct pl08x_lli_build_data *bd,
1172                                     int num_llis, int len, u32 cctl, u32 cctl2)
1173 {
1174         u32 offset = num_llis * pl08x->lli_words;
1175         u32 *llis_va = bd->txd->llis_va + offset;
1176         dma_addr_t llis_bus = bd->txd->llis_bus;
1177
1178         BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
1179
1180         /* Advance the offset to next LLI. */
1181         offset += pl08x->lli_words;
1182
1183         llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
1184         llis_va[PL080_LLI_DST] = bd->dstbus.addr;
1185         llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
1186         llis_va[PL080_LLI_LLI] |= bd->lli_bus;
1187         llis_va[PL080_LLI_CCTL] = cctl;
1188         if (pl08x->vd->pl080s)
1189                 llis_va[PL080S_LLI_CCTL2] = cctl2;
1190
1191         if (pl08x->vd->ftdmac020) {
1192                 /* FIXME: only memcpy so far so both increase */
1193                 bd->srcbus.addr += len;
1194                 bd->dstbus.addr += len;
1195         } else {
1196                 if (cctl & PL080_CONTROL_SRC_INCR)
1197                         bd->srcbus.addr += len;
1198                 if (cctl & PL080_CONTROL_DST_INCR)
1199                         bd->dstbus.addr += len;
1200         }
1201
1202         BUG_ON(bd->remainder < len);
1203
1204         bd->remainder -= len;
1205 }
1206
1207 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
1208                         struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
1209                         int num_llis, size_t *total_bytes)
1210 {
1211         *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len);
1212         pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
1213         (*total_bytes) += len;
1214 }
1215
1216 #if 1
1217 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1218                            const u32 *llis_va, int num_llis)
1219 {
1220         int i;
1221
1222         if (pl08x->vd->pl080s) {
1223                 dev_vdbg(&pl08x->adev->dev,
1224                         "%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
1225                         "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
1226                 for (i = 0; i < num_llis; i++) {
1227                         dev_vdbg(&pl08x->adev->dev,
1228                                 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
1229                                 i, llis_va, llis_va[PL080_LLI_SRC],
1230                                 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1231                                 llis_va[PL080_LLI_CCTL],
1232                                 llis_va[PL080S_LLI_CCTL2]);
1233                         llis_va += pl08x->lli_words;
1234                 }
1235         } else {
1236                 dev_vdbg(&pl08x->adev->dev,
1237                         "%-3s %-9s  %-10s %-10s %-10s %s\n",
1238                         "lli", "", "csrc", "cdst", "clli", "cctl");
1239                 for (i = 0; i < num_llis; i++) {
1240                         dev_vdbg(&pl08x->adev->dev,
1241                                 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1242                                 i, llis_va, llis_va[PL080_LLI_SRC],
1243                                 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
1244                                 llis_va[PL080_LLI_CCTL]);
1245                         llis_va += pl08x->lli_words;
1246                 }
1247         }
1248 }
1249 #else
1250 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
1251                                   const u32 *llis_va, int num_llis) {}
1252 #endif
1253
1254 /*
1255  * This fills in the table of LLIs for the transfer descriptor
1256  * Note that we assume we never have to change the burst sizes
1257  * Return 0 for error
1258  */
1259 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
1260                               struct pl08x_txd *txd)
1261 {
1262         struct pl08x_bus_data *mbus, *sbus;
1263         struct pl08x_lli_build_data bd;
1264         int num_llis = 0;
1265         u32 cctl, early_bytes = 0;
1266         size_t max_bytes_per_lli, total_bytes;
1267         u32 *llis_va, *last_lli;
1268         struct pl08x_sg *dsg;
1269
1270         txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
1271         if (!txd->llis_va) {
1272                 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
1273                 return 0;
1274         }
1275
1276         bd.txd = txd;
1277         bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
1278         cctl = txd->cctl;
1279
1280         /* Find maximum width of the source bus */
1281         bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true);
1282
1283         /* Find maximum width of the destination bus */
1284         bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false);
1285
1286         list_for_each_entry(dsg, &txd->dsg_list, node) {
1287                 total_bytes = 0;
1288                 cctl = txd->cctl;
1289
1290                 bd.srcbus.addr = dsg->src_addr;
1291                 bd.dstbus.addr = dsg->dst_addr;
1292                 bd.remainder = dsg->len;
1293                 bd.srcbus.buswidth = bd.srcbus.maxwidth;
1294                 bd.dstbus.buswidth = bd.dstbus.maxwidth;
1295
1296                 pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl);
1297
1298                 dev_vdbg(&pl08x->adev->dev,
1299                         "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
1300                         (u64)bd.srcbus.addr,
1301                         cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
1302                         bd.srcbus.buswidth,
1303                         (u64)bd.dstbus.addr,
1304                         cctl & PL080_CONTROL_DST_INCR ? "+" : "",
1305                         bd.dstbus.buswidth,
1306                         bd.remainder);
1307                 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
1308                         mbus == &bd.srcbus ? "src" : "dst",
1309                         sbus == &bd.srcbus ? "src" : "dst");
1310
1311                 /*
1312                  * Zero length is only allowed if all these requirements are
1313                  * met:
1314                  * - flow controller is peripheral.
1315                  * - src.addr is aligned to src.width
1316                  * - dst.addr is aligned to dst.width
1317                  *
1318                  * sg_len == 1 should be true, as there can be two cases here:
1319                  *
1320                  * - Memory addresses are contiguous and are not scattered.
1321                  *   Here, Only one sg will be passed by user driver, with
1322                  *   memory address and zero length. We pass this to controller
1323                  *   and after the transfer it will receive the last burst
1324                  *   request from peripheral and so transfer finishes.
1325                  *
1326                  * - Memory addresses are scattered and are not contiguous.
1327                  *   Here, Obviously as DMA controller doesn't know when a lli's
1328                  *   transfer gets over, it can't load next lli. So in this
1329                  *   case, there has to be an assumption that only one lli is
1330                  *   supported. Thus, we can't have scattered addresses.
1331                  */
1332                 if (!bd.remainder) {
1333                         u32 fc;
1334
1335                         /* FTDMAC020 only does memory-to-memory */
1336                         if (pl08x->vd->ftdmac020)
1337                                 fc = PL080_FLOW_MEM2MEM;
1338                         else
1339                                 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1340                                         PL080_CONFIG_FLOW_CONTROL_SHIFT;
1341                         if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1342                                         (fc <= PL080_FLOW_SRC2DST_SRC))) {
1343                                 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1344                                         __func__);
1345                                 return 0;
1346                         }
1347
1348                         if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1349                                 !IS_BUS_ALIGNED(&bd.dstbus)) {
1350                                 dev_err(&pl08x->adev->dev,
1351                                         "%s src & dst address must be aligned to src"
1352                                         " & dst width if peripheral is flow controller",
1353                                         __func__);
1354                                 return 0;
1355                         }
1356
1357                         cctl = pl08x_lli_control_bits(pl08x, cctl,
1358                                         bd.srcbus.buswidth, bd.dstbus.buswidth,
1359                                         0);
1360                         pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1361                                         0, cctl, 0);
1362                         break;
1363                 }
1364
1365                 /*
1366                  * Send byte by byte for following cases
1367                  * - Less than a bus width available
1368                  * - until master bus is aligned
1369                  */
1370                 if (bd.remainder < mbus->buswidth)
1371                         early_bytes = bd.remainder;
1372                 else if (!IS_BUS_ALIGNED(mbus)) {
1373                         early_bytes = mbus->buswidth -
1374                                 (mbus->addr & (mbus->buswidth - 1));
1375                         if ((bd.remainder - early_bytes) < mbus->buswidth)
1376                                 early_bytes = bd.remainder;
1377                 }
1378
1379                 if (early_bytes) {
1380                         dev_vdbg(&pl08x->adev->dev,
1381                                 "%s byte width LLIs (remain 0x%08zx)\n",
1382                                 __func__, bd.remainder);
1383                         prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1384                                 num_llis++, &total_bytes);
1385                 }
1386
1387                 if (bd.remainder) {
1388                         /*
1389                          * Master now aligned
1390                          * - if slave is not then we must set its width down
1391                          */
1392                         if (!IS_BUS_ALIGNED(sbus)) {
1393                                 dev_dbg(&pl08x->adev->dev,
1394                                         "%s set down bus width to one byte\n",
1395                                         __func__);
1396
1397                                 sbus->buswidth = 1;
1398                         }
1399
1400                         /*
1401                          * Bytes transferred = tsize * src width, not
1402                          * MIN(buswidths)
1403                          */
1404                         max_bytes_per_lli = bd.srcbus.buswidth *
1405                                                 pl08x->vd->max_transfer_size;
1406                         dev_vdbg(&pl08x->adev->dev,
1407                                 "%s max bytes per lli = %zu\n",
1408                                 __func__, max_bytes_per_lli);
1409
1410                         /*
1411                          * Make largest possible LLIs until less than one bus
1412                          * width left
1413                          */
1414                         while (bd.remainder > (mbus->buswidth - 1)) {
1415                                 size_t lli_len, tsize, width;
1416
1417                                 /*
1418                                  * If enough left try to send max possible,
1419                                  * otherwise try to send the remainder
1420                                  */
1421                                 lli_len = min(bd.remainder, max_bytes_per_lli);
1422
1423                                 /*
1424                                  * Check against maximum bus alignment:
1425                                  * Calculate actual transfer size in relation to
1426                                  * bus width an get a maximum remainder of the
1427                                  * highest bus width - 1
1428                                  */
1429                                 width = max(mbus->buswidth, sbus->buswidth);
1430                                 lli_len = (lli_len / width) * width;
1431                                 tsize = lli_len / bd.srcbus.buswidth;
1432
1433                                 dev_vdbg(&pl08x->adev->dev,
1434                                         "%s fill lli with single lli chunk of "
1435                                         "size 0x%08zx (remainder 0x%08zx)\n",
1436                                         __func__, lli_len, bd.remainder);
1437
1438                                 cctl = pl08x_lli_control_bits(pl08x, cctl,
1439                                         bd.srcbus.buswidth, bd.dstbus.buswidth,
1440                                         tsize);
1441                                 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1442                                                 lli_len, cctl, tsize);
1443                                 total_bytes += lli_len;
1444                         }
1445
1446                         /*
1447                          * Send any odd bytes
1448                          */
1449                         if (bd.remainder) {
1450                                 dev_vdbg(&pl08x->adev->dev,
1451                                         "%s align with boundary, send odd bytes (remain %zu)\n",
1452                                         __func__, bd.remainder);
1453                                 prep_byte_width_lli(pl08x, &bd, &cctl,
1454                                         bd.remainder, num_llis++, &total_bytes);
1455                         }
1456                 }
1457
1458                 if (total_bytes != dsg->len) {
1459                         dev_err(&pl08x->adev->dev,
1460                                 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1461                                 __func__, total_bytes, dsg->len);
1462                         return 0;
1463                 }
1464
1465                 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1466                         dev_err(&pl08x->adev->dev,
1467                                 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1468                                 __func__, MAX_NUM_TSFR_LLIS);
1469                         return 0;
1470                 }
1471         }
1472
1473         llis_va = txd->llis_va;
1474         last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1475
1476         if (txd->cyclic) {
1477                 /* Link back to the first LLI. */
1478                 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1479         } else {
1480                 /* The final LLI terminates the LLI. */
1481                 last_lli[PL080_LLI_LLI] = 0;
1482                 /* The final LLI element shall also fire an interrupt. */
1483                 if (pl08x->vd->ftdmac020)
1484                         last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK;
1485                 else
1486                         last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1487         }
1488
1489         pl08x_dump_lli(pl08x, llis_va, num_llis);
1490
1491         return num_llis;
1492 }
1493
1494 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1495                            struct pl08x_txd *txd)
1496 {
1497         struct pl08x_sg *dsg, *_dsg;
1498
1499         if (txd->llis_va)
1500                 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1501
1502         list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1503                 list_del(&dsg->node);
1504                 kfree(dsg);
1505         }
1506
1507         kfree(txd);
1508 }
1509
1510 static void pl08x_desc_free(struct virt_dma_desc *vd)
1511 {
1512         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1513         struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1514
1515         dma_descriptor_unmap(&vd->tx);
1516         if (!txd->done)
1517                 pl08x_release_mux(plchan);
1518
1519         pl08x_free_txd(plchan->host, txd);
1520 }
1521
1522 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1523                                 struct pl08x_dma_chan *plchan)
1524 {
1525         LIST_HEAD(head);
1526
1527         vchan_get_all_descriptors(&plchan->vc, &head);
1528         vchan_dma_desc_free_list(&plchan->vc, &head);
1529 }
1530
1531 /*
1532  * The DMA ENGINE API
1533  */
1534 static void pl08x_free_chan_resources(struct dma_chan *chan)
1535 {
1536         /* Ensure all queued descriptors are freed */
1537         vchan_free_chan_resources(to_virt_chan(chan));
1538 }
1539
1540 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1541                 struct dma_chan *chan, unsigned long flags)
1542 {
1543         struct dma_async_tx_descriptor *retval = NULL;
1544
1545         return retval;
1546 }
1547
1548 /*
1549  * Code accessing dma_async_is_complete() in a tight loop may give problems.
1550  * If slaves are relying on interrupts to signal completion this function
1551  * must not be called with interrupts disabled.
1552  */
1553 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1554                 dma_cookie_t cookie, struct dma_tx_state *txstate)
1555 {
1556         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1557         struct virt_dma_desc *vd;
1558         unsigned long flags;
1559         enum dma_status ret;
1560         size_t bytes = 0;
1561
1562         ret = dma_cookie_status(chan, cookie, txstate);
1563         if (ret == DMA_COMPLETE)
1564                 return ret;
1565
1566         /*
1567          * There's no point calculating the residue if there's
1568          * no txstate to store the value.
1569          */
1570         if (!txstate) {
1571                 if (plchan->state == PL08X_CHAN_PAUSED)
1572                         ret = DMA_PAUSED;
1573                 return ret;
1574         }
1575
1576         spin_lock_irqsave(&plchan->vc.lock, flags);
1577         ret = dma_cookie_status(chan, cookie, txstate);
1578         if (ret != DMA_COMPLETE) {
1579                 vd = vchan_find_desc(&plchan->vc, cookie);
1580                 if (vd) {
1581                         /* On the issued list, so hasn't been processed yet */
1582                         struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1583                         struct pl08x_sg *dsg;
1584
1585                         list_for_each_entry(dsg, &txd->dsg_list, node)
1586                                 bytes += dsg->len;
1587                 } else {
1588                         bytes = pl08x_getbytes_chan(plchan);
1589                 }
1590         }
1591         spin_unlock_irqrestore(&plchan->vc.lock, flags);
1592
1593         /*
1594          * This cookie not complete yet
1595          * Get number of bytes left in the active transactions and queue
1596          */
1597         dma_set_residue(txstate, bytes);
1598
1599         if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1600                 ret = DMA_PAUSED;
1601
1602         /* Whether waiting or running, we're in progress */
1603         return ret;
1604 }
1605
1606 /* PrimeCell DMA extension */
1607 struct burst_table {
1608         u32 burstwords;
1609         u32 reg;
1610 };
1611
1612 static const struct burst_table burst_sizes[] = {
1613         {
1614                 .burstwords = 256,
1615                 .reg = PL080_BSIZE_256,
1616         },
1617         {
1618                 .burstwords = 128,
1619                 .reg = PL080_BSIZE_128,
1620         },
1621         {
1622                 .burstwords = 64,
1623                 .reg = PL080_BSIZE_64,
1624         },
1625         {
1626                 .burstwords = 32,
1627                 .reg = PL080_BSIZE_32,
1628         },
1629         {
1630                 .burstwords = 16,
1631                 .reg = PL080_BSIZE_16,
1632         },
1633         {
1634                 .burstwords = 8,
1635                 .reg = PL080_BSIZE_8,
1636         },
1637         {
1638                 .burstwords = 4,
1639                 .reg = PL080_BSIZE_4,
1640         },
1641         {
1642                 .burstwords = 0,
1643                 .reg = PL080_BSIZE_1,
1644         },
1645 };
1646
1647 /*
1648  * Given the source and destination available bus masks, select which
1649  * will be routed to each port.  We try to have source and destination
1650  * on separate ports, but always respect the allowable settings.
1651  */
1652 static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst)
1653 {
1654         u32 cctl = 0;
1655         u32 dst_ahb2;
1656         u32 src_ahb2;
1657
1658         /* The FTDMAC020 use different bits to indicate src/dst bus */
1659         if (ftdmac020) {
1660                 dst_ahb2 = FTDMAC020_LLI_DST_SEL;
1661                 src_ahb2 = FTDMAC020_LLI_SRC_SEL;
1662         } else {
1663                 dst_ahb2 = PL080_CONTROL_DST_AHB2;
1664                 src_ahb2 = PL080_CONTROL_SRC_AHB2;
1665         }
1666
1667         if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1668                 cctl |= dst_ahb2;
1669         if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1670                 cctl |= src_ahb2;
1671
1672         return cctl;
1673 }
1674
1675 static u32 pl08x_cctl(u32 cctl)
1676 {
1677         cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1678                   PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1679                   PL080_CONTROL_PROT_MASK);
1680
1681         /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1682         return cctl | PL080_CONTROL_PROT_SYS;
1683 }
1684
1685 static u32 pl08x_width(enum dma_slave_buswidth width)
1686 {
1687         switch (width) {
1688         case DMA_SLAVE_BUSWIDTH_1_BYTE:
1689                 return PL080_WIDTH_8BIT;
1690         case DMA_SLAVE_BUSWIDTH_2_BYTES:
1691                 return PL080_WIDTH_16BIT;
1692         case DMA_SLAVE_BUSWIDTH_4_BYTES:
1693                 return PL080_WIDTH_32BIT;
1694         default:
1695                 return ~0;
1696         }
1697 }
1698
1699 static u32 pl08x_burst(u32 maxburst)
1700 {
1701         int i;
1702
1703         for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1704                 if (burst_sizes[i].burstwords <= maxburst)
1705                         break;
1706
1707         return burst_sizes[i].reg;
1708 }
1709
1710 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1711         enum dma_slave_buswidth addr_width, u32 maxburst)
1712 {
1713         u32 width, burst, cctl = 0;
1714
1715         width = pl08x_width(addr_width);
1716         if (width == ~0)
1717                 return ~0;
1718
1719         cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1720         cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1721
1722         /*
1723          * If this channel will only request single transfers, set this
1724          * down to ONE element.  Also select one element if no maxburst
1725          * is specified.
1726          */
1727         if (plchan->cd->single)
1728                 maxburst = 1;
1729
1730         burst = pl08x_burst(maxburst);
1731         cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1732         cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1733
1734         return pl08x_cctl(cctl);
1735 }
1736
1737 /*
1738  * Slave transactions callback to the slave device to allow
1739  * synchronization of slave DMA signals with the DMAC enable
1740  */
1741 static void pl08x_issue_pending(struct dma_chan *chan)
1742 {
1743         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1744         unsigned long flags;
1745
1746         spin_lock_irqsave(&plchan->vc.lock, flags);
1747         if (vchan_issue_pending(&plchan->vc)) {
1748                 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1749                         pl08x_phy_alloc_and_start(plchan);
1750         }
1751         spin_unlock_irqrestore(&plchan->vc.lock, flags);
1752 }
1753
1754 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1755 {
1756         struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1757
1758         if (txd)
1759                 INIT_LIST_HEAD(&txd->dsg_list);
1760         return txd;
1761 }
1762
1763 static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x)
1764 {
1765         u32 cctl = 0;
1766
1767         /* Conjure cctl */
1768         switch (pl08x->pd->memcpy_burst_size) {
1769         default:
1770                 dev_err(&pl08x->adev->dev,
1771                         "illegal burst size for memcpy, set to 1\n");
1772                 /* Fall through */
1773         case PL08X_BURST_SZ_1:
1774                 cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
1775                         PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
1776                 break;
1777         case PL08X_BURST_SZ_4:
1778                 cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
1779                         PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
1780                 break;
1781         case PL08X_BURST_SZ_8:
1782                 cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
1783                         PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
1784                 break;
1785         case PL08X_BURST_SZ_16:
1786                 cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
1787                         PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
1788                 break;
1789         case PL08X_BURST_SZ_32:
1790                 cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
1791                         PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
1792                 break;
1793         case PL08X_BURST_SZ_64:
1794                 cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
1795                         PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
1796                 break;
1797         case PL08X_BURST_SZ_128:
1798                 cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
1799                         PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
1800                 break;
1801         case PL08X_BURST_SZ_256:
1802                 cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
1803                         PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
1804                 break;
1805         }
1806
1807         switch (pl08x->pd->memcpy_bus_width) {
1808         default:
1809                 dev_err(&pl08x->adev->dev,
1810                         "illegal bus width for memcpy, set to 8 bits\n");
1811                 /* Fall through */
1812         case PL08X_BUS_WIDTH_8_BITS:
1813                 cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
1814                         PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
1815                 break;
1816         case PL08X_BUS_WIDTH_16_BITS:
1817                 cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
1818                         PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
1819                 break;
1820         case PL08X_BUS_WIDTH_32_BITS:
1821                 cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
1822                         PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
1823                 break;
1824         }
1825
1826         /* Protection flags */
1827         if (pl08x->pd->memcpy_prot_buff)
1828                 cctl |= PL080_CONTROL_PROT_BUFF;
1829         if (pl08x->pd->memcpy_prot_cache)
1830                 cctl |= PL080_CONTROL_PROT_CACHE;
1831
1832         /* We are the kernel, so we are in privileged mode */
1833         cctl |= PL080_CONTROL_PROT_SYS;
1834
1835         /* Both to be incremented or the code will break */
1836         cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1837
1838         if (pl08x->vd->dualmaster)
1839                 cctl |= pl08x_select_bus(false,
1840                                          pl08x->mem_buses,
1841                                          pl08x->mem_buses);
1842
1843         return cctl;
1844 }
1845
1846 static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x)
1847 {
1848         u32 cctl = 0;
1849
1850         /* Conjure cctl */
1851         switch (pl08x->pd->memcpy_bus_width) {
1852         default:
1853                 dev_err(&pl08x->adev->dev,
1854                         "illegal bus width for memcpy, set to 8 bits\n");
1855                 /* Fall through */
1856         case PL08X_BUS_WIDTH_8_BITS:
1857                 cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1858                         PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1859                 break;
1860         case PL08X_BUS_WIDTH_16_BITS:
1861                 cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1862                         PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1863                 break;
1864         case PL08X_BUS_WIDTH_32_BITS:
1865                 cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT |
1866                         PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT;
1867                 break;
1868         }
1869
1870         /*
1871          * By default mask the TC IRQ on all LLIs, it will be unmasked on
1872          * the last LLI item by other code.
1873          */
1874         cctl |= FTDMAC020_LLI_TC_MSK;
1875
1876         /*
1877          * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL
1878          * and FTDMAC020_LLI_DSTAD_CTL as zero
1879          */
1880         if (pl08x->vd->dualmaster)
1881                 cctl |= pl08x_select_bus(true,
1882                                          pl08x->mem_buses,
1883                                          pl08x->mem_buses);
1884
1885         return cctl;
1886 }
1887
1888 /*
1889  * Initialize a descriptor to be used by memcpy submit
1890  */
1891 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1892                 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1893                 size_t len, unsigned long flags)
1894 {
1895         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1896         struct pl08x_driver_data *pl08x = plchan->host;
1897         struct pl08x_txd *txd;
1898         struct pl08x_sg *dsg;
1899         int ret;
1900
1901         txd = pl08x_get_txd(plchan);
1902         if (!txd) {
1903                 dev_err(&pl08x->adev->dev,
1904                         "%s no memory for descriptor\n", __func__);
1905                 return NULL;
1906         }
1907
1908         dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1909         if (!dsg) {
1910                 pl08x_free_txd(pl08x, txd);
1911                 return NULL;
1912         }
1913         list_add_tail(&dsg->node, &txd->dsg_list);
1914
1915         dsg->src_addr = src;
1916         dsg->dst_addr = dest;
1917         dsg->len = len;
1918         if (pl08x->vd->ftdmac020) {
1919                 /* Writing CCFG zero ENABLES all interrupts */
1920                 txd->ccfg = 0;
1921                 txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x);
1922         } else {
1923                 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1924                         PL080_CONFIG_TC_IRQ_MASK |
1925                         PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1926                 txd->cctl = pl08x_memcpy_cctl(pl08x);
1927         }
1928
1929         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1930         if (!ret) {
1931                 pl08x_free_txd(pl08x, txd);
1932                 return NULL;
1933         }
1934
1935         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1936 }
1937
1938 static struct pl08x_txd *pl08x_init_txd(
1939                 struct dma_chan *chan,
1940                 enum dma_transfer_direction direction,
1941                 dma_addr_t *slave_addr)
1942 {
1943         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1944         struct pl08x_driver_data *pl08x = plchan->host;
1945         struct pl08x_txd *txd;
1946         enum dma_slave_buswidth addr_width;
1947         int ret, tmp;
1948         u8 src_buses, dst_buses;
1949         u32 maxburst, cctl;
1950
1951         txd = pl08x_get_txd(plchan);
1952         if (!txd) {
1953                 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1954                 return NULL;
1955         }
1956
1957         /*
1958          * Set up addresses, the PrimeCell configured address
1959          * will take precedence since this may configure the
1960          * channel target address dynamically at runtime.
1961          */
1962         if (direction == DMA_MEM_TO_DEV) {
1963                 cctl = PL080_CONTROL_SRC_INCR;
1964                 *slave_addr = plchan->cfg.dst_addr;
1965                 addr_width = plchan->cfg.dst_addr_width;
1966                 maxburst = plchan->cfg.dst_maxburst;
1967                 src_buses = pl08x->mem_buses;
1968                 dst_buses = plchan->cd->periph_buses;
1969         } else if (direction == DMA_DEV_TO_MEM) {
1970                 cctl = PL080_CONTROL_DST_INCR;
1971                 *slave_addr = plchan->cfg.src_addr;
1972                 addr_width = plchan->cfg.src_addr_width;
1973                 maxburst = plchan->cfg.src_maxburst;
1974                 src_buses = plchan->cd->periph_buses;
1975                 dst_buses = pl08x->mem_buses;
1976         } else {
1977                 pl08x_free_txd(pl08x, txd);
1978                 dev_err(&pl08x->adev->dev,
1979                         "%s direction unsupported\n", __func__);
1980                 return NULL;
1981         }
1982
1983         cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1984         if (cctl == ~0) {
1985                 pl08x_free_txd(pl08x, txd);
1986                 dev_err(&pl08x->adev->dev,
1987                         "DMA slave configuration botched?\n");
1988                 return NULL;
1989         }
1990
1991         txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses);
1992
1993         if (plchan->cfg.device_fc)
1994                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1995                         PL080_FLOW_PER2MEM_PER;
1996         else
1997                 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1998                         PL080_FLOW_PER2MEM;
1999
2000         txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
2001                 PL080_CONFIG_TC_IRQ_MASK |
2002                 tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
2003
2004         ret = pl08x_request_mux(plchan);
2005         if (ret < 0) {
2006                 pl08x_free_txd(pl08x, txd);
2007                 dev_dbg(&pl08x->adev->dev,
2008                         "unable to mux for transfer on %s due to platform restrictions\n",
2009                         plchan->name);
2010                 return NULL;
2011         }
2012
2013         dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
2014                  plchan->signal, plchan->name);
2015
2016         /* Assign the flow control signal to this channel */
2017         if (direction == DMA_MEM_TO_DEV)
2018                 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
2019         else
2020                 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
2021
2022         return txd;
2023 }
2024
2025 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
2026                            enum dma_transfer_direction direction,
2027                            dma_addr_t slave_addr,
2028                            dma_addr_t buf_addr,
2029                            unsigned int len)
2030 {
2031         struct pl08x_sg *dsg;
2032
2033         dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
2034         if (!dsg)
2035                 return -ENOMEM;
2036
2037         list_add_tail(&dsg->node, &txd->dsg_list);
2038
2039         dsg->len = len;
2040         if (direction == DMA_MEM_TO_DEV) {
2041                 dsg->src_addr = buf_addr;
2042                 dsg->dst_addr = slave_addr;
2043         } else {
2044                 dsg->src_addr = slave_addr;
2045                 dsg->dst_addr = buf_addr;
2046         }
2047
2048         return 0;
2049 }
2050
2051 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
2052                 struct dma_chan *chan, struct scatterlist *sgl,
2053                 unsigned int sg_len, enum dma_transfer_direction direction,
2054                 unsigned long flags, void *context)
2055 {
2056         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2057         struct pl08x_driver_data *pl08x = plchan->host;
2058         struct pl08x_txd *txd;
2059         struct scatterlist *sg;
2060         int ret, tmp;
2061         dma_addr_t slave_addr;
2062
2063         dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
2064                         __func__, sg_dma_len(sgl), plchan->name);
2065
2066         txd = pl08x_init_txd(chan, direction, &slave_addr);
2067         if (!txd)
2068                 return NULL;
2069
2070         for_each_sg(sgl, sg, sg_len, tmp) {
2071                 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2072                                       sg_dma_address(sg),
2073                                       sg_dma_len(sg));
2074                 if (ret) {
2075                         pl08x_release_mux(plchan);
2076                         pl08x_free_txd(pl08x, txd);
2077                         dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
2078                                         __func__);
2079                         return NULL;
2080                 }
2081         }
2082
2083         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2084         if (!ret) {
2085                 pl08x_release_mux(plchan);
2086                 pl08x_free_txd(pl08x, txd);
2087                 return NULL;
2088         }
2089
2090         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2091 }
2092
2093 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
2094                 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
2095                 size_t period_len, enum dma_transfer_direction direction,
2096                 unsigned long flags)
2097 {
2098         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2099         struct pl08x_driver_data *pl08x = plchan->host;
2100         struct pl08x_txd *txd;
2101         int ret, tmp;
2102         dma_addr_t slave_addr;
2103
2104         dev_dbg(&pl08x->adev->dev,
2105                 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
2106                 __func__, period_len, buf_len,
2107                 direction == DMA_MEM_TO_DEV ? "to" : "from",
2108                 plchan->name);
2109
2110         txd = pl08x_init_txd(chan, direction, &slave_addr);
2111         if (!txd)
2112                 return NULL;
2113
2114         txd->cyclic = true;
2115         txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
2116         for (tmp = 0; tmp < buf_len; tmp += period_len) {
2117                 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
2118                                       buf_addr + tmp, period_len);
2119                 if (ret) {
2120                         pl08x_release_mux(plchan);
2121                         pl08x_free_txd(pl08x, txd);
2122                         return NULL;
2123                 }
2124         }
2125
2126         ret = pl08x_fill_llis_for_desc(plchan->host, txd);
2127         if (!ret) {
2128                 pl08x_release_mux(plchan);
2129                 pl08x_free_txd(pl08x, txd);
2130                 return NULL;
2131         }
2132
2133         return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
2134 }
2135
2136 static int pl08x_config(struct dma_chan *chan,
2137                         struct dma_slave_config *config)
2138 {
2139         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2140         struct pl08x_driver_data *pl08x = plchan->host;
2141
2142         if (!plchan->slave)
2143                 return -EINVAL;
2144
2145         /* Reject definitely invalid configurations */
2146         if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
2147             config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
2148                 return -EINVAL;
2149
2150         if (config->device_fc && pl08x->vd->pl080s) {
2151                 dev_err(&pl08x->adev->dev,
2152                         "%s: PL080S does not support peripheral flow control\n",
2153                         __func__);
2154                 return -EINVAL;
2155         }
2156
2157         plchan->cfg = *config;
2158
2159         return 0;
2160 }
2161
2162 static int pl08x_terminate_all(struct dma_chan *chan)
2163 {
2164         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2165         struct pl08x_driver_data *pl08x = plchan->host;
2166         unsigned long flags;
2167
2168         spin_lock_irqsave(&plchan->vc.lock, flags);
2169         if (!plchan->phychan && !plchan->at) {
2170                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2171                 return 0;
2172         }
2173
2174         plchan->state = PL08X_CHAN_IDLE;
2175
2176         if (plchan->phychan) {
2177                 /*
2178                  * Mark physical channel as free and free any slave
2179                  * signal
2180                  */
2181                 pl08x_phy_free(plchan);
2182         }
2183         /* Dequeue jobs and free LLIs */
2184         if (plchan->at) {
2185                 pl08x_desc_free(&plchan->at->vd);
2186                 plchan->at = NULL;
2187         }
2188         /* Dequeue jobs not yet fired as well */
2189         pl08x_free_txd_list(pl08x, plchan);
2190
2191         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2192
2193         return 0;
2194 }
2195
2196 static int pl08x_pause(struct dma_chan *chan)
2197 {
2198         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2199         unsigned long flags;
2200
2201         /*
2202          * Anything succeeds on channels with no physical allocation and
2203          * no queued transfers.
2204          */
2205         spin_lock_irqsave(&plchan->vc.lock, flags);
2206         if (!plchan->phychan && !plchan->at) {
2207                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2208                 return 0;
2209         }
2210
2211         pl08x_pause_phy_chan(plchan->phychan);
2212         plchan->state = PL08X_CHAN_PAUSED;
2213
2214         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2215
2216         return 0;
2217 }
2218
2219 static int pl08x_resume(struct dma_chan *chan)
2220 {
2221         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2222         unsigned long flags;
2223
2224         /*
2225          * Anything succeeds on channels with no physical allocation and
2226          * no queued transfers.
2227          */
2228         spin_lock_irqsave(&plchan->vc.lock, flags);
2229         if (!plchan->phychan && !plchan->at) {
2230                 spin_unlock_irqrestore(&plchan->vc.lock, flags);
2231                 return 0;
2232         }
2233
2234         pl08x_resume_phy_chan(plchan->phychan);
2235         plchan->state = PL08X_CHAN_RUNNING;
2236
2237         spin_unlock_irqrestore(&plchan->vc.lock, flags);
2238
2239         return 0;
2240 }
2241
2242 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
2243 {
2244         struct pl08x_dma_chan *plchan;
2245         char *name = chan_id;
2246
2247         /* Reject channels for devices not bound to this driver */
2248         if (chan->device->dev->driver != &pl08x_amba_driver.drv)
2249                 return false;
2250
2251         plchan = to_pl08x_chan(chan);
2252
2253         /* Check that the channel is not taken! */
2254         if (!strcmp(plchan->name, name))
2255                 return true;
2256
2257         return false;
2258 }
2259 EXPORT_SYMBOL_GPL(pl08x_filter_id);
2260
2261 static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id)
2262 {
2263         struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
2264
2265         return plchan->cd == chan_id;
2266 }
2267
2268 /*
2269  * Just check that the device is there and active
2270  * TODO: turn this bit on/off depending on the number of physical channels
2271  * actually used, if it is zero... well shut it off. That will save some
2272  * power. Cut the clock at the same time.
2273  */
2274 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
2275 {
2276         /* The Nomadik variant does not have the config register */
2277         if (pl08x->vd->nomadik)
2278                 return;
2279         /* The FTDMAC020 variant does this in another register */
2280         if (pl08x->vd->ftdmac020) {
2281                 writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR);
2282                 return;
2283         }
2284         writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
2285 }
2286
2287 static irqreturn_t pl08x_irq(int irq, void *dev)
2288 {
2289         struct pl08x_driver_data *pl08x = dev;
2290         u32 mask = 0, err, tc, i;
2291
2292         /* check & clear - ERR & TC interrupts */
2293         err = readl(pl08x->base + PL080_ERR_STATUS);
2294         if (err) {
2295                 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
2296                         __func__, err);
2297                 writel(err, pl08x->base + PL080_ERR_CLEAR);
2298         }
2299         tc = readl(pl08x->base + PL080_TC_STATUS);
2300         if (tc)
2301                 writel(tc, pl08x->base + PL080_TC_CLEAR);
2302
2303         if (!err && !tc)
2304                 return IRQ_NONE;
2305
2306         for (i = 0; i < pl08x->vd->channels; i++) {
2307                 if ((BIT(i) & err) || (BIT(i) & tc)) {
2308                         /* Locate physical channel */
2309                         struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
2310                         struct pl08x_dma_chan *plchan = phychan->serving;
2311                         struct pl08x_txd *tx;
2312
2313                         if (!plchan) {
2314                                 dev_err(&pl08x->adev->dev,
2315                                         "%s Error TC interrupt on unused channel: 0x%08x\n",
2316                                         __func__, i);
2317                                 continue;
2318                         }
2319
2320                         spin_lock(&plchan->vc.lock);
2321                         tx = plchan->at;
2322                         if (tx && tx->cyclic) {
2323                                 vchan_cyclic_callback(&tx->vd);
2324                         } else if (tx) {
2325                                 plchan->at = NULL;
2326                                 /*
2327                                  * This descriptor is done, release its mux
2328                                  * reservation.
2329                                  */
2330                                 pl08x_release_mux(plchan);
2331                                 tx->done = true;
2332                                 vchan_cookie_complete(&tx->vd);
2333
2334                                 /*
2335                                  * And start the next descriptor (if any),
2336                                  * otherwise free this channel.
2337                                  */
2338                                 if (vchan_next_desc(&plchan->vc))
2339                                         pl08x_start_next_txd(plchan);
2340                                 else
2341                                         pl08x_phy_free(plchan);
2342                         }
2343                         spin_unlock(&plchan->vc.lock);
2344
2345                         mask |= BIT(i);
2346                 }
2347         }
2348
2349         return mask ? IRQ_HANDLED : IRQ_NONE;
2350 }
2351
2352 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
2353 {
2354         chan->slave = true;
2355         chan->name = chan->cd->bus_id;
2356         chan->cfg.src_addr = chan->cd->addr;
2357         chan->cfg.dst_addr = chan->cd->addr;
2358 }
2359
2360 /*
2361  * Initialise the DMAC memcpy/slave channels.
2362  * Make a local wrapper to hold required data
2363  */
2364 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
2365                 struct dma_device *dmadev, unsigned int channels, bool slave)
2366 {
2367         struct pl08x_dma_chan *chan;
2368         int i;
2369
2370         INIT_LIST_HEAD(&dmadev->channels);
2371
2372         /*
2373          * Register as many many memcpy as we have physical channels,
2374          * we won't always be able to use all but the code will have
2375          * to cope with that situation.
2376          */
2377         for (i = 0; i < channels; i++) {
2378                 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
2379                 if (!chan)
2380                         return -ENOMEM;
2381
2382                 chan->host = pl08x;
2383                 chan->state = PL08X_CHAN_IDLE;
2384                 chan->signal = -1;
2385
2386                 if (slave) {
2387                         chan->cd = &pl08x->pd->slave_channels[i];
2388                         /*
2389                          * Some implementations have muxed signals, whereas some
2390                          * use a mux in front of the signals and need dynamic
2391                          * assignment of signals.
2392                          */
2393                         chan->signal = i;
2394                         pl08x_dma_slave_init(chan);
2395                 } else {
2396                         chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL);
2397                         if (!chan->cd) {
2398                                 kfree(chan);
2399                                 return -ENOMEM;
2400                         }
2401                         chan->cd->bus_id = "memcpy";
2402                         chan->cd->periph_buses = pl08x->pd->mem_buses;
2403                         chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
2404                         if (!chan->name) {
2405                                 kfree(chan->cd);
2406                                 kfree(chan);
2407                                 return -ENOMEM;
2408                         }
2409                 }
2410                 dev_dbg(&pl08x->adev->dev,
2411                          "initialize virtual channel \"%s\"\n",
2412                          chan->name);
2413
2414                 chan->vc.desc_free = pl08x_desc_free;
2415                 vchan_init(&chan->vc, dmadev);
2416         }
2417         dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
2418                  i, slave ? "slave" : "memcpy");
2419         return i;
2420 }
2421
2422 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
2423 {
2424         struct pl08x_dma_chan *chan = NULL;
2425         struct pl08x_dma_chan *next;
2426
2427         list_for_each_entry_safe(chan,
2428                                  next, &dmadev->channels, vc.chan.device_node) {
2429                 list_del(&chan->vc.chan.device_node);
2430                 kfree(chan);
2431         }
2432 }
2433
2434 #ifdef CONFIG_DEBUG_FS
2435 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
2436 {
2437         switch (state) {
2438         case PL08X_CHAN_IDLE:
2439                 return "idle";
2440         case PL08X_CHAN_RUNNING:
2441                 return "running";
2442         case PL08X_CHAN_PAUSED:
2443                 return "paused";
2444         case PL08X_CHAN_WAITING:
2445                 return "waiting";
2446         default:
2447                 break;
2448         }
2449         return "UNKNOWN STATE";
2450 }
2451
2452 static int pl08x_debugfs_show(struct seq_file *s, void *data)
2453 {
2454         struct pl08x_driver_data *pl08x = s->private;
2455         struct pl08x_dma_chan *chan;
2456         struct pl08x_phy_chan *ch;
2457         unsigned long flags;
2458         int i;
2459
2460         seq_printf(s, "PL08x physical channels:\n");
2461         seq_printf(s, "CHANNEL:\tUSER:\n");
2462         seq_printf(s, "--------\t-----\n");
2463         for (i = 0; i < pl08x->vd->channels; i++) {
2464                 struct pl08x_dma_chan *virt_chan;
2465
2466                 ch = &pl08x->phy_chans[i];
2467
2468                 spin_lock_irqsave(&ch->lock, flags);
2469                 virt_chan = ch->serving;
2470
2471                 seq_printf(s, "%d\t\t%s%s\n",
2472                            ch->id,
2473                            virt_chan ? virt_chan->name : "(none)",
2474                            ch->locked ? " LOCKED" : "");
2475
2476                 spin_unlock_irqrestore(&ch->lock, flags);
2477         }
2478
2479         seq_printf(s, "\nPL08x virtual memcpy channels:\n");
2480         seq_printf(s, "CHANNEL:\tSTATE:\n");
2481         seq_printf(s, "--------\t------\n");
2482         list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
2483                 seq_printf(s, "%s\t\t%s\n", chan->name,
2484                            pl08x_state_str(chan->state));
2485         }
2486
2487         if (pl08x->has_slave) {
2488                 seq_printf(s, "\nPL08x virtual slave channels:\n");
2489                 seq_printf(s, "CHANNEL:\tSTATE:\n");
2490                 seq_printf(s, "--------\t------\n");
2491                 list_for_each_entry(chan, &pl08x->slave.channels,
2492                                     vc.chan.device_node) {
2493                         seq_printf(s, "%s\t\t%s\n", chan->name,
2494                                    pl08x_state_str(chan->state));
2495                 }
2496         }
2497
2498         return 0;
2499 }
2500
2501 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2502 {
2503         return single_open(file, pl08x_debugfs_show, inode->i_private);
2504 }
2505
2506 static const struct file_operations pl08x_debugfs_operations = {
2507         .open           = pl08x_debugfs_open,
2508         .read           = seq_read,
2509         .llseek         = seq_lseek,
2510         .release        = single_release,
2511 };
2512
2513 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2514 {
2515         /* Expose a simple debugfs interface to view all clocks */
2516         (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2517                         S_IFREG | S_IRUGO, NULL, pl08x,
2518                         &pl08x_debugfs_operations);
2519 }
2520
2521 #else
2522 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2523 {
2524 }
2525 #endif
2526
2527 #ifdef CONFIG_OF
2528 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2529                                          u32 id)
2530 {
2531         struct pl08x_dma_chan *chan;
2532
2533         /* Trying to get a slave channel from something with no slave support */
2534         if (!pl08x->has_slave)
2535                 return NULL;
2536
2537         list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2538                 if (chan->signal == id)
2539                         return &chan->vc.chan;
2540         }
2541
2542         return NULL;
2543 }
2544
2545 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2546                                        struct of_dma *ofdma)
2547 {
2548         struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2549         struct dma_chan *dma_chan;
2550         struct pl08x_dma_chan *plchan;
2551
2552         if (!pl08x)
2553                 return NULL;
2554
2555         if (dma_spec->args_count != 2) {
2556                 dev_err(&pl08x->adev->dev,
2557                         "DMA channel translation requires two cells\n");
2558                 return NULL;
2559         }
2560
2561         dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2562         if (!dma_chan) {
2563                 dev_err(&pl08x->adev->dev,
2564                         "DMA slave channel not found\n");
2565                 return NULL;
2566         }
2567
2568         plchan = to_pl08x_chan(dma_chan);
2569         dev_dbg(&pl08x->adev->dev,
2570                 "translated channel for signal %d\n",
2571                 dma_spec->args[0]);
2572
2573         /* Augment channel data for applicable AHB buses */
2574         plchan->cd->periph_buses = dma_spec->args[1];
2575         return dma_get_slave_channel(dma_chan);
2576 }
2577
2578 static int pl08x_of_probe(struct amba_device *adev,
2579                           struct pl08x_driver_data *pl08x,
2580                           struct device_node *np)
2581 {
2582         struct pl08x_platform_data *pd;
2583         struct pl08x_channel_data *chanp = NULL;
2584         u32 val;
2585         int ret;
2586         int i;
2587
2588         pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2589         if (!pd)
2590                 return -ENOMEM;
2591
2592         /* Eligible bus masters for fetching LLIs */
2593         if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2594                 pd->lli_buses |= PL08X_AHB1;
2595         if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2596                 pd->lli_buses |= PL08X_AHB2;
2597         if (!pd->lli_buses) {
2598                 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2599                 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2600         }
2601
2602         /* Eligible bus masters for memory access */
2603         if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2604                 pd->mem_buses |= PL08X_AHB1;
2605         if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2606                 pd->mem_buses |= PL08X_AHB2;
2607         if (!pd->mem_buses) {
2608                 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2609                 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2610         }
2611
2612         /* Parse the memcpy channel properties */
2613         ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2614         if (ret) {
2615                 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2616                 val = 1;
2617         }
2618         switch (val) {
2619         default:
2620                 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2621                 /* Fall through */
2622         case 1:
2623                 pd->memcpy_burst_size = PL08X_BURST_SZ_1;
2624                 break;
2625         case 4:
2626                 pd->memcpy_burst_size = PL08X_BURST_SZ_4;
2627                 break;
2628         case 8:
2629                 pd->memcpy_burst_size = PL08X_BURST_SZ_8;
2630                 break;
2631         case 16:
2632                 pd->memcpy_burst_size = PL08X_BURST_SZ_16;
2633                 break;
2634         case 32:
2635                 pd->memcpy_burst_size = PL08X_BURST_SZ_32;
2636                 break;
2637         case 64:
2638                 pd->memcpy_burst_size = PL08X_BURST_SZ_64;
2639                 break;
2640         case 128:
2641                 pd->memcpy_burst_size = PL08X_BURST_SZ_128;
2642                 break;
2643         case 256:
2644                 pd->memcpy_burst_size = PL08X_BURST_SZ_256;
2645                 break;
2646         }
2647
2648         ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2649         if (ret) {
2650                 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2651                 val = 8;
2652         }
2653         switch (val) {
2654         default:
2655                 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2656                 /* Fall through */
2657         case 8:
2658                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS;
2659                 break;
2660         case 16:
2661                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS;
2662                 break;
2663         case 32:
2664                 pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS;
2665                 break;
2666         }
2667
2668         /*
2669          * Allocate channel data for all possible slave channels (one
2670          * for each possible signal), channels will then be allocated
2671          * for a device and have it's AHB interfaces set up at
2672          * translation time.
2673          */
2674         if (pl08x->vd->signals) {
2675                 chanp = devm_kcalloc(&adev->dev,
2676                                      pl08x->vd->signals,
2677                                      sizeof(struct pl08x_channel_data),
2678                                      GFP_KERNEL);
2679                 if (!chanp)
2680                         return -ENOMEM;
2681
2682                 pd->slave_channels = chanp;
2683                 for (i = 0; i < pl08x->vd->signals; i++) {
2684                         /*
2685                          * chanp->periph_buses will be assigned at translation
2686                          */
2687                         chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2688                         chanp++;
2689                 }
2690                 pd->num_slave_channels = pl08x->vd->signals;
2691         }
2692
2693         pl08x->pd = pd;
2694
2695         return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2696                                           pl08x);
2697 }
2698 #else
2699 static inline int pl08x_of_probe(struct amba_device *adev,
2700                                  struct pl08x_driver_data *pl08x,
2701                                  struct device_node *np)
2702 {
2703         return -EINVAL;
2704 }
2705 #endif
2706
2707 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2708 {
2709         struct pl08x_driver_data *pl08x;
2710         struct vendor_data *vd = id->data;
2711         struct device_node *np = adev->dev.of_node;
2712         u32 tsfr_size;
2713         int ret = 0;
2714         int i;
2715
2716         ret = amba_request_regions(adev, NULL);
2717         if (ret)
2718                 return ret;
2719
2720         /* Ensure that we can do DMA */
2721         ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2722         if (ret)
2723                 goto out_no_pl08x;
2724
2725         /* Create the driver state holder */
2726         pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2727         if (!pl08x) {
2728                 ret = -ENOMEM;
2729                 goto out_no_pl08x;
2730         }
2731
2732         /* Assign useful pointers to the driver state */
2733         pl08x->adev = adev;
2734         pl08x->vd = vd;
2735
2736         pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2737         if (!pl08x->base) {
2738                 ret = -ENOMEM;
2739                 goto out_no_ioremap;
2740         }
2741
2742         if (vd->ftdmac020) {
2743                 u32 val;
2744
2745                 val = readl(pl08x->base + FTDMAC020_REVISION);
2746                 dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n",
2747                          (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff);
2748                 val = readl(pl08x->base + FTDMAC020_FEATURE);
2749                 dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, "
2750                          "%s built-in bridge, %s, %s linked lists\n",
2751                          (val >> 12) & 0x0f,
2752                          (val & BIT(10)) ? "no" : "has",
2753                          (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0",
2754                          (val & BIT(8)) ? "supports" : "does not support");
2755
2756                 /* Vendor data from feature register */
2757                 if (!(val & BIT(8)))
2758                         dev_warn(&pl08x->adev->dev,
2759                                  "linked lists not supported, required\n");
2760                 vd->channels = (val >> 12) & 0x0f;
2761                 vd->dualmaster = !!(val & BIT(9));
2762         }
2763
2764         /* Initialize memcpy engine */
2765         dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2766         pl08x->memcpy.dev = &adev->dev;
2767         pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2768         pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2769         pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2770         pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2771         pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2772         pl08x->memcpy.device_config = pl08x_config;
2773         pl08x->memcpy.device_pause = pl08x_pause;
2774         pl08x->memcpy.device_resume = pl08x_resume;
2775         pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2776         pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2777         pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2778         pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2779         pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2780         if (vd->ftdmac020)
2781                 pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES;
2782
2783
2784         /*
2785          * Initialize slave engine, if the block has no signals, that means
2786          * we have no slave support.
2787          */
2788         if (vd->signals) {
2789                 pl08x->has_slave = true;
2790                 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2791                 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2792                 pl08x->slave.dev = &adev->dev;
2793                 pl08x->slave.device_free_chan_resources =
2794                         pl08x_free_chan_resources;
2795                 pl08x->slave.device_prep_dma_interrupt =
2796                         pl08x_prep_dma_interrupt;
2797                 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2798                 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2799                 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2800                 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2801                 pl08x->slave.device_config = pl08x_config;
2802                 pl08x->slave.device_pause = pl08x_pause;
2803                 pl08x->slave.device_resume = pl08x_resume;
2804                 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2805                 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2806                 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2807                 pl08x->slave.directions =
2808                         BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2809                 pl08x->slave.residue_granularity =
2810                         DMA_RESIDUE_GRANULARITY_SEGMENT;
2811         }
2812
2813         /* Get the platform data */
2814         pl08x->pd = dev_get_platdata(&adev->dev);
2815         if (!pl08x->pd) {
2816                 if (np) {
2817                         ret = pl08x_of_probe(adev, pl08x, np);
2818                         if (ret)
2819                                 goto out_no_platdata;
2820                 } else {
2821                         dev_err(&adev->dev, "no platform data supplied\n");
2822                         ret = -EINVAL;
2823                         goto out_no_platdata;
2824                 }
2825         } else {
2826                 pl08x->slave.filter.map = pl08x->pd->slave_map;
2827                 pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len;
2828                 pl08x->slave.filter.fn = pl08x_filter_fn;
2829         }
2830
2831         /* By default, AHB1 only.  If dualmaster, from platform */
2832         pl08x->lli_buses = PL08X_AHB1;
2833         pl08x->mem_buses = PL08X_AHB1;
2834         if (pl08x->vd->dualmaster) {
2835                 pl08x->lli_buses = pl08x->pd->lli_buses;
2836                 pl08x->mem_buses = pl08x->pd->mem_buses;
2837         }
2838
2839         if (vd->pl080s)
2840                 pl08x->lli_words = PL080S_LLI_WORDS;
2841         else
2842                 pl08x->lli_words = PL080_LLI_WORDS;
2843         tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2844
2845         /* A DMA memory pool for LLIs, align on 1-byte boundary */
2846         pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2847                                                 tsfr_size, PL08X_ALIGN, 0);
2848         if (!pl08x->pool) {
2849                 ret = -ENOMEM;
2850                 goto out_no_lli_pool;
2851         }
2852
2853         /* Turn on the PL08x */
2854         pl08x_ensure_on(pl08x);
2855
2856         /* Clear any pending interrupts */
2857         if (vd->ftdmac020)
2858                 /* This variant has error IRQs in bits 16-19 */
2859                 writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR);
2860         else
2861                 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2862         writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2863
2864         /* Attach the interrupt handler */
2865         ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2866         if (ret) {
2867                 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2868                         __func__, adev->irq[0]);
2869                 goto out_no_irq;
2870         }
2871
2872         /* Initialize physical channels */
2873         pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2874                         GFP_KERNEL);
2875         if (!pl08x->phy_chans) {
2876                 ret = -ENOMEM;
2877                 goto out_no_phychans;
2878         }
2879
2880         for (i = 0; i < vd->channels; i++) {
2881                 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2882
2883                 ch->id = i;
2884                 ch->base = pl08x->base + PL080_Cx_BASE(i);
2885                 if (vd->ftdmac020) {
2886                         /* FTDMA020 has a special channel busy register */
2887                         ch->reg_busy = ch->base + FTDMAC020_CH_BUSY;
2888                         ch->reg_config = ch->base + FTDMAC020_CH_CFG;
2889                         ch->reg_control = ch->base + FTDMAC020_CH_CSR;
2890                         ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR;
2891                         ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR;
2892                         ch->reg_lli = ch->base + FTDMAC020_CH_LLP;
2893                         ch->ftdmac020 = true;
2894                 } else {
2895                         ch->reg_config = ch->base + vd->config_offset;
2896                         ch->reg_control = ch->base + PL080_CH_CONTROL;
2897                         ch->reg_src = ch->base + PL080_CH_SRC_ADDR;
2898                         ch->reg_dst = ch->base + PL080_CH_DST_ADDR;
2899                         ch->reg_lli = ch->base + PL080_CH_LLI;
2900                 }
2901                 if (vd->pl080s)
2902                         ch->pl080s = true;
2903
2904                 spin_lock_init(&ch->lock);
2905
2906                 /*
2907                  * Nomadik variants can have channels that are locked
2908                  * down for the secure world only. Lock up these channels
2909                  * by perpetually serving a dummy virtual channel.
2910                  */
2911                 if (vd->nomadik) {
2912                         u32 val;
2913
2914                         val = readl(ch->reg_config);
2915                         if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2916                                 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2917                                 ch->locked = true;
2918                         }
2919                 }
2920
2921                 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2922                         i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2923         }
2924
2925         /* Register as many memcpy channels as there are physical channels */
2926         ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2927                                               pl08x->vd->channels, false);
2928         if (ret <= 0) {
2929                 dev_warn(&pl08x->adev->dev,
2930                          "%s failed to enumerate memcpy channels - %d\n",
2931                          __func__, ret);
2932                 goto out_no_memcpy;
2933         }
2934
2935         /* Register slave channels */
2936         if (pl08x->has_slave) {
2937                 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2938                                         pl08x->pd->num_slave_channels, true);
2939                 if (ret < 0) {
2940                         dev_warn(&pl08x->adev->dev,
2941                                  "%s failed to enumerate slave channels - %d\n",
2942                                  __func__, ret);
2943                         goto out_no_slave;
2944                 }
2945         }
2946
2947         ret = dma_async_device_register(&pl08x->memcpy);
2948         if (ret) {
2949                 dev_warn(&pl08x->adev->dev,
2950                         "%s failed to register memcpy as an async device - %d\n",
2951                         __func__, ret);
2952                 goto out_no_memcpy_reg;
2953         }
2954
2955         if (pl08x->has_slave) {
2956                 ret = dma_async_device_register(&pl08x->slave);
2957                 if (ret) {
2958                         dev_warn(&pl08x->adev->dev,
2959                         "%s failed to register slave as an async device - %d\n",
2960                         __func__, ret);
2961                         goto out_no_slave_reg;
2962                 }
2963         }
2964
2965         amba_set_drvdata(adev, pl08x);
2966         init_pl08x_debugfs(pl08x);
2967         dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2968                  amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2969                  (unsigned long long)adev->res.start, adev->irq[0]);
2970
2971         return 0;
2972
2973 out_no_slave_reg:
2974         dma_async_device_unregister(&pl08x->memcpy);
2975 out_no_memcpy_reg:
2976         if (pl08x->has_slave)
2977                 pl08x_free_virtual_channels(&pl08x->slave);
2978 out_no_slave:
2979         pl08x_free_virtual_channels(&pl08x->memcpy);
2980 out_no_memcpy:
2981         kfree(pl08x->phy_chans);
2982 out_no_phychans:
2983         free_irq(adev->irq[0], pl08x);
2984 out_no_irq:
2985         dma_pool_destroy(pl08x->pool);
2986 out_no_lli_pool:
2987 out_no_platdata:
2988         iounmap(pl08x->base);
2989 out_no_ioremap:
2990         kfree(pl08x);
2991 out_no_pl08x:
2992         amba_release_regions(adev);
2993         return ret;
2994 }
2995
2996 /* PL080 has 8 channels and the PL080 have just 2 */
2997 static struct vendor_data vendor_pl080 = {
2998         .config_offset = PL080_CH_CONFIG,
2999         .channels = 8,
3000         .signals = 16,
3001         .dualmaster = true,
3002         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3003 };
3004
3005 static struct vendor_data vendor_nomadik = {
3006         .config_offset = PL080_CH_CONFIG,
3007         .channels = 8,
3008         .signals = 32,
3009         .dualmaster = true,
3010         .nomadik = true,
3011         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3012 };
3013
3014 static struct vendor_data vendor_pl080s = {
3015         .config_offset = PL080S_CH_CONFIG,
3016         .channels = 8,
3017         .signals = 32,
3018         .pl080s = true,
3019         .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
3020 };
3021
3022 static struct vendor_data vendor_pl081 = {
3023         .config_offset = PL080_CH_CONFIG,
3024         .channels = 2,
3025         .signals = 16,
3026         .dualmaster = false,
3027         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3028 };
3029
3030 static struct vendor_data vendor_ftdmac020 = {
3031         .config_offset = PL080_CH_CONFIG,
3032         .ftdmac020 = true,
3033         .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
3034 };
3035
3036 static struct amba_id pl08x_ids[] = {
3037         /* Samsung PL080S variant */
3038         {
3039                 .id     = 0x0a141080,
3040                 .mask   = 0xffffffff,
3041                 .data   = &vendor_pl080s,
3042         },
3043         /* PL080 */
3044         {
3045                 .id     = 0x00041080,
3046                 .mask   = 0x000fffff,
3047                 .data   = &vendor_pl080,
3048         },
3049         /* PL081 */
3050         {
3051                 .id     = 0x00041081,
3052                 .mask   = 0x000fffff,
3053                 .data   = &vendor_pl081,
3054         },
3055         /* Nomadik 8815 PL080 variant */
3056         {
3057                 .id     = 0x00280080,
3058                 .mask   = 0x00ffffff,
3059                 .data   = &vendor_nomadik,
3060         },
3061         /* Faraday Technology FTDMAC020 */
3062         {
3063                 .id     = 0x0003b080,
3064                 .mask   = 0x000fffff,
3065                 .data   = &vendor_ftdmac020,
3066         },
3067         { 0, 0 },
3068 };
3069
3070 MODULE_DEVICE_TABLE(amba, pl08x_ids);
3071
3072 static struct amba_driver pl08x_amba_driver = {
3073         .drv.name       = DRIVER_NAME,
3074         .id_table       = pl08x_ids,
3075         .probe          = pl08x_probe,
3076 };
3077
3078 static int __init pl08x_init(void)
3079 {
3080         int retval;
3081         retval = amba_driver_register(&pl08x_amba_driver);
3082         if (retval)
3083                 printk(KERN_WARNING DRIVER_NAME
3084                        "failed to register as an AMBA device (%d)\n",
3085                        retval);
3086         return retval;
3087 }
3088 subsys_initcall(pl08x_init);